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1 Введение
Нейтронные – звезды один из немногих космических объектов, которые бы-

ли предсказаны теоретически до их открытия наблюдателями. Впервые идея
о существовании звезд с увеличенной плотностью была высказана Л.Д.Ландау
еще до открытия нейтрона. [1].

Однако найдена первая такая звезда была только в 1967 году аспираткой
Энтнони Хьюиша - Джоселин Белл. Она обнаружила объект, излучающий ре-
гулярные радиоипульсы, это явление было объяснено узкой направленностью
радиолуча от быстро вращающегося космического объекта. Проблема заключа-
лась в том, что любая обычная звезда разрушилась бы под действием центро-
бежной силы при такой скорости вращения. На роль подобного объекта подхо-
дили только нейтронные звезды.

Наше понимание нейтронных звезд кардинально изменилось с 1966, когда
не было известно ни одной нейтронной звезды, и дискуссия состояла из полно-
стью теоретического подхода к сжатым плотным звездам. Изменения произо-
шли в последнее десятилетие, когда обнаружение и точно синхронизированные
наблюдения пульсаров происходили с все более высокой скоростью. Рентгенов-
ские и гамма-телескопы нового поколения предоставили высококачественные
наборы данных, а большой объем теоретических работ по свойствам излуче-
ния нейтронных звезд позволил в последнее время значительно улучшить нашу
способность моделировать эти экстремальные объекты и интерпретировать их
наблюдения [2].

Целью работы является модельный расчет в приближении нуклонного ферми-
газа зависимости массы нейтронной звезды от ее радиуса.
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2 Что нам известно?
Нейтронными звездами называется класс космических объектов, состоящих

в основном из нейтронов, образовавшихся в процессе обратного бета-распада и
покрытых тонкой корой вещества в виде тяжелых атомных ядер и электронов
[3].

На данный момент мы знаем точные массы для ∼35 нейтронных звезд, охва-
тывающие диапазон от 1,17 до 2,0 M�, и можем определить радиусы более
десятка в диапазоне 10–11,5 км. Сочетание самой тяжелой из известных масс
нейтронных звезд с существующими измерениями радиуса уже накладывает
существенные ограничения на уравнение состояния холодной плотной материи
вплоть до плотностей, в 5-10 раз превышающих ядерную плотность [2].

Подавляющее большинство точных измерений массы нейтронных было вы-
полнено с использованием радионаблюдений вращающихся пульсаров. В на-
стоящее время в Галактике известно более 2500 пульсаров, большинство из ко-
торых можно характеризовать как радиопульсары, но также некоторые из них
наблюдаются в рентгеновских лучах, а все большее количество обнаруживается
в гамма-лучах.

Около 90% радиопульсаров являются изолированными. Их массы не мо-
гут быть измерены, потому что все современные методы основаны на точном
отслеживании орбитальных движений по времени прихода наблюдаемых пуль-
саций. Остальные 250 пульсаров находятся в бинарных системах (три из них
в многокомпонентных системах). Текущие исследования сосредоточены исклю-
чительно на них.

Измерения радиуса нейтронных значительно продвинулись за последнее де-
сятилетие, и был использован ряд различных методов. Большинство методов
основано на обнаружении теплового излучения с поверхности звезды либо для
измерения ее кажущегося углового размера, либо для определения влияния ис-
кривления пространства-времени нейтронной звезды на это излучение. Подхо-
ды можно широко разделить на спектроскопические и временные измерения [2].

Несмотря на разнообразие способов, количество нейтронных звезд, у кото-
рых известны одновременно и масса, и радиус, крайне мало. Поэтому основные
экспериментальные ограничения, налагаемые на массу и радиус, вытекают из
анализа закономерностей в существующих данных.

Конечной целью всех подобных работ является построение адекватной моде-
ли, по которой можно будет судить о внутренней структуре нейтронной звезды.
Примеры экспериментальных данных приведены в Приложении (A).

3



3 Уравнение Оппенгеймера-Волкова и его реше-
ние

В работе используется следующая система уравнений [3, 4],

dp

dr
= −Gε(r)M(r)

c2r2

[
1 +

p(r)

ε(r)

] [
1 +

4πr3p(r)

M(r)c2

] [
1− 2GM(r)

c2r

]−1
dM

dr
= 4πr2ρ(r) =

4πr2ε(r)

c2

M(r) = 4π

∫ r

0

r′
2
dr′ρ(r′) = 4π

∫ r

0

r′
2
dr′ε(r′)/c2

где p - давление, M - масса звезды заключенная в сфере радиуса r, ρ - плот-
ность вещества на расстоянии r от центра звезды, а ε - плотность энергии на
расстоянии r от центра звезды.

Они представляют собой нелинейную систему дифференциальных уравне-
ний которую мы будем решать численно.

Для начала сведем величины к безразмерным:

p = p/ε0, ε = ε/ε0, M = M/M�, r = r/r0,

где M� - масса солнца, а r0 = 1км. Что касается ε0, то эту постоянную мы
будем подбирать в каждом конкретном случае для более удобного решения.
Подставляя выражения для безразмерных величин в систему получим:

dp

dr
= − GM�

r0c2︸ ︷︷ ︸
α

εM

r2

[
1 +

p

ε

]1 +
4πr30ε0
c2M�︸ ︷︷ ︸

β

r3p

M


1− 2GM�

r0c2︸ ︷︷ ︸
γ

M

r


−1

dM

dr
=

4πr30ε0
c2M�︸ ︷︷ ︸

β

r2ε

где α = 1.476, γ = 2.953, а β = 7.03 · 10−39(см3

эрг ) · ε0
Таким образом, задавая ε0, получаем систему уравнений, которую мы уже

непосредственно будем решать.
dp

dr
= −αεM

r2

[
1 +

p

ε

] [
1 + β

r3p

M

] [
1− γM

r

]−1
dM

dr
= βr2ε

Как можно видеть, из системы необходимо исключить третью неизвестную -
ε. Для этого нам понадобится зависимость ε(p), ее мы получим когда будем
рассматривать конкретные модели.
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Переходя непосредственно к численному решению системы [4], воспользу-
емся языком программирования Python и библиотекой “scipy.integrate”, которая
позволяет реализовать решение системы дифференциальных уравнений мето-
дом Рунге-Кутты. Основное преимущество данной библиотеки перед собствен-
норучно написаной реализацией данного метода состоит в хорошем автоподборе
начальных коэфициентов.

Говоря о начальных условиях: M(0) = 0, т.к в сфере нулевого радиуса не
заключена масса, что касается p(0) 6= 0, то это значение варьируется от выбора
ε0 и точки на кривой M(R), которую мы хотим получить. К примеру, в ходе
построения кривой для нейтронного Ферми газа значение p(0) изменялось от
0.0005 до 1000.

Когда мы подаем на вход функции “odient” функцию, рассчитывающую зна-
чения производных для произвольных M , p и r (реализующую исходные урав-
нения), начальные условия и массив значений r, для которых надо найти реше-
ние, на выход мы получаем массив значенийM и p в заданных точках. Так как
критерием того, что “звезда закончилась”, служит условие p = 0, после чего
решение данной системы не пренадлежит множеству действительных чисел, то
мы должны, постепенно увеличивая диапазон значений r, ожидать появления
ошибки в последней строчке выходного массива. После чего мы можем счи-
тать, что достигли границы звезды, а значит искомые радиус и масса найдутся
в предпоследних ячейках своих массивов.

Таким образом, меняя r, мы получили одну точку на плоскости M -R, те-
перь постепенно меняя p(0) получим множество таких точек - они и соcтавят
искомую кривую M(R).

В данной реализации существует два тонких места:
1)В нахождении первых производных при r = 0 и M = 0. Так как и ради-

ус, и масса присутствуют в знаменателе уравнения Оппенгеймера-Волкова, то
формальное вычисление даст ошибку. Решение проблемы заключается в при-
своении значений производным в этих случаях: при r = 0 - обе производные
приравнять 0, при M = 0 приравнять нулю только производную давления.

2)Начальные условия необходимо выбирать близкими к реальным физи-
ческим значениям, иначе результат может быть практически произвольным
вплоть до ошибки в ходе выполнения программы. К примеру, выбирая p(0)
слишком маленьким вы рискуете получить звезду радиусом в 50000 км или в
обратном случае 10−10 м. Это можно увидеть по спиралям на получившихся
рисунках.

Текст программы для случая нейтронного Ферми газа можно посмотреть в
Приложении B.
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4 Нейтронный Ферми газ
Для свободных нейтронов количество доступных состояний на единицу объ-

ема определляется масимальным импульсом kF [3, 4].

dn =
d3k

(2πh̄)3
=

4πk2dk

(2πh̄)3

n =
8π

(2πh̄)3

∫ kF

0

k2dk =
k3F

3π2h̄3

(1)

Тогда плотность вещества определяется, как ρ = nmN , гдеmN - масса нейтрона,
а плотоность энергии, как

ε(kF ) =
8π

(2πh̄)3

∫ kF

0

(k2c2 +m2
Nc

4)1/2k2dk (2)

1)В реялтивистском случае kc � mNc
2 и потому можно принебречь вкладом

массы в плотность энергии, тогда

ε(kF ) =
k4F c

4π2h̄3

2)В нерелятивистском случае kc � mNc
2 и пренебрегаем вкладом импульса в

плотность энергии, получим

ε(kF ) =
mNc

2k3F
3π2h̄3

Теперь рассмотрим давление. Из первого закона термодинамики следует

p = n2
d(ε/n)

dn
=

8πc2

3(2πh̄)3

∫ kF

0

k4

(k2c2 +m2
Nc

4)1/2
dk (3)

Рассуждая аналогично случаю с плотностью энергии получим
1)В релятивистском случае

p =
k4F c

12π2h̄3
= ε/3

2)В нерелятивистском случае

p =
k5F

15π2h̄3mN

=
h̄2

15π2mN

(
3π2ε

mNc2

)5/3

Окончательную же зависимость ε(p) мы представим в виде:

ε = ANRp
3/5 + ARp
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Где p = p/ε0 и ε = ε/ε0 - безразмерные величины, а ε0 выбирается из со-
ображений удобства. Мы выбрали именно такую функцию, потому что ана-
литическое нахождение зависимости ε(p) в произвольном случае сопряжено
с трудностями. Представив общую зависимость в виде линейной комбинации
нерелятивистского(NR) и релятивистского(R) случаев, мы получили функцию,
стремящуюся к релятивисткой зависимости при p→ inf и к нерелятивистской
при p → 0, и плавно переходящую от одной к другой. Кофициенты ANR и AR

получим аппроксимируя численную зависимость ε(p), полученную интегриро-
ванием уравнений (2) и (3), предложенной функцией. В нашем случае значения
получаются следующими:

ε0 =
m4
Nc

5

3π2h̄3
= 5.4883 · 1036

эрг
см3

, ANR = 2.4216, AR = 2.8663

На рисунке 1 показана зависимость, полученная с использованием вышеопи-
санной методики.

Рис. 1: Зависимость массыM(вM�) от радиусаR(в км) для нейтронной звезды
в модели нейтронного Ферми газа.

На графике видно, что в данной модели предельная максимальная масса
нейтронной звезды составляет менее 0.8 масс Солнца, а соответствующий ра-
диус звезды около 10 км.
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5 Учтем протоны и электроны в модели Ферми
газа

Безусловно [3, 4], нейтронные звезды не состоят из одних только нейтро-
нов, причиной этому служит тот факт, что в свободном состоянии нейтроны
испытывают слабый распад

n→ p+ e− + νe

и имеют среднее время жизни примерно 15 минут.
В ходе данного распада выделяется энергия в 0.778 МэВ, большую часть

которой уносит нейтрино. Так что на протон и электрон приходится лишь малая
доля. Кроме того, так как протоны и электроны - фермионы, после того, как
они займут все доступные энергетические уровни, прицип Паули предотвратит
дальнейшие распады.

Но поскольку нейтронные звезды электрически нейтральны количество элек-
тронов будет совпадать с количеством протонов.

ne = np ⇒ kF,e = kF,p (как было показано в формуле (1)) (4)

Кроме того мы должны учесть и обратный процесс, p+e− → n+νe, равновесие
между ними может быть записано в терминах химических потенциалов.

µn = µp + µe, где µi(kF,i) =
dεi
dni

, i = n, p, e (5)

Так как мы работаем в модели Ферми газа, то, воспользовавшись формулами
аналогичными (1) и (2), получим

dεi
dkF,i

=
dεi
dni
· dni
dkF,i

=
dεi
dni
·
k2F,i

π2h̄3

dεi
dkF,i

=
1

π2h̄3
(k2F,ic

2 +m2
i c

4)1/2k2F,i

dεi
dni

= (k2F,ic
2 +m2

i c
4)1/2 (6)

Подставляя (6) в (5) и учитывая (4), получим:

(k2F,nc
2 +m2

nc
4)1/2 − (k2F,pc

2 +m2
pc

4)1/2 − (k2F,pc
2 +m2

ec
4)1/2 = 0

Выразим kF,p из этого уравнения.

kF,p =
[(k2F,n +m2

n −m2
e)

2 − 2m2
n(k

2
F,n +m2

n +m2
e)

2 +m4
p]
1/2

2(k2F,n +m2
n)

1/2
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Таким образом получаем, что задав kF,N , мы задаем все kF,i, а значит и все

εi(kF,i) =
8π

(2πh̄)3

∫ kF,i

0

(k2c2 +m2
i c

4)1/2k2dk

pi(kF,i) =
8πc2

3(2πh̄)3

∫ kF,i

0

k4

(k2c2 +m2
i c

4)1/2
dk

Так мы рассматриваем Ферми газ. то

εtotal =
∑

i=N,p,e

εi ptotal =
∑

i=N,p,e

pi

εi = ANR,ipi
3/5 + AR,ipi

где черта над переменной означает, что та была нормирована на ε0. Найдя εtotal
и ptotal для различных kF,N и пронормировав их на ε0, мы получим точки для
аппроксимации зависимости εtotal(ptotal) функцией

εtotal = ANR · p3/5total + AR · ptotal

Стоит заметить, что тот факт, что

∑
i=N,p,e

p
3/5
i 6=

 ∑
i=N,p,e

pi

3/5

вносит меньшую ошибку, чем само приближение стпенной функцией, так как
нерелятивисткий член вносит ощутимый вклад в сумму только при малых kF,N ,
а значит при малых pi.

Задав ε0 = 5.4883 · 1036 эрг
см3 получим ANR = 2.572, AR = 2.891. И снова

применив вышеописанный метод получим график M(R). Как можно заметить
график отличается от предыдущего незначительно, что приводит нас к выводу,
что для получения более реалистичной картины необходимо учесть взаимодей-
ствие между частицами, то есть уточнять и расширять вышеописанную модель.
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Рис. 2: Зависимость массы от радиуса для нейтронной звезды в модели ней-
тронного Ферми газа с учетом протонов и электронов. Масса отсчитывается в
массах солнца, а радиус в километрах.

6 Вывод
1)Рассмотрена модель нейтронной звезды, в которой для описания звездного

вещества используется приближение невзаимодействующих частиц.
2)Проведены расчеты зависимости массы нейтронной звезды от ее радиуса

для случая чисто нейтронной материи и с учетом бета-распада. Оба варианта
расчета дают близкие результаты с максимальной массой звезды около 0,8 масс
Солнца и радиусом менее 10 км.

Улчушить и дополнить модель можно следующими способами:
1)Учесть ядерное взаимодействие.
2)Добавить в рассмотрение новые частицы, присутствующие в нейтронной

звезде.
3)Учесть вращение и деформации нейтронной звезды и решить уравнение

Оппенгеймера-Волкова для этого случая.
4)Улучшить алгоритм построения M(R) - сделать возможным численное за-

дание ε(p).
Каждый шаг будет делать нашу модель более правдоподобной, а результаты

- более достоверными. И возможно однажды, на очередном шаге мы получим
достаточно достоверную картину, позволяющую судить о структуре нейтронной
звезды.
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A Экспериментальные данные

Рис. 3: Комбинированные ограничения по массе и радиусу нейтронной звезды,
полученные из (а) всех нейтронных звезд малой массы в двойных системах. (б)
всех нейтронных звезд с термоядерными вспышками.

Рис. 4: Ограничения радиусов, полученные из анализа осциллограмм от аккре-
ционных и вращающихся миллисекундных пульсаров.

Серыми линиями на всех рисунках обозначены теоретические зависимости,
соответсвующие различным уравнениям состояния.
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B Программа
from scipy.integrate import odeint
import math
import numpy as np
import matplotlib.pyplot as plt

def energy(p): # Функции задающая зависимость энегрии от давления
return (p**(0.6)*2.4216+2.8663*p)

def vectorfield(w, t, e0): #функция задающая систему дифференциальных уравнений
p, M =w
r=t
e=energy(p)
alfa=1.476
beta=7.03e-39*e0
gamma=2.953
if (r!=0) and (M!=0):

f = [-alfa*e*M/r/r*(1+p/e)*(1+p*r*r*r/M*beta)/(1-M/r*gamma),
beta*e*r*r] #ситема дифференциальных уравнений

if (M==0): #Оговроки для работоспособности программы
f = [0,

beta*e*r*r]
if (r==0):

f= [0,0]
return f

def solut(p0): #функция находящая массу и радиус звезды
M0=0
e0=5.346e+36
numpoints = 100
j=0
z=0
sol=np.zeros((3))
while (z==0) and (j<10000):

stoptime = j*0.1 #постепенное
j=j+1 #изменение радиуса
t = [stoptime * float(i) / (numpoints - 1) for i in range(numpoints)]
w0 = [p0,M0]
wsol = odeint(vectorfield, w0, t, args=(e0,) ) #вызов функции численного решения
if not(wsol[numpoints-1,0]>0): z=1 #проверка на ошибку в последней строке
else:

sol[0:2]=wsol[numpoints-1,:] #сохранение резульата
sol[2]=t[numpoints-1]

return sol

p0=0.0005 #нижняя граница давления
i=0
sol=np.zeros((1000,2))
while (p0<1000): #верхняя граница давления

sol[i,:]=solut(p0)[1:3] #нахождение и сохранение
p0=p0*1.1 #решений для
i=i+1 #различных p0
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