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Discovered in 1963, the Roper resonance appears to be an exact copy of the proton except that its
mass is 50% greater and it is unstable. These features of the Roper have been very difficult to explain
so that for half a century this lightest excited state of the proton has defied understanding. The last
decade has presented a new challenge, viz. precise information on the proton-to-Roper electro-
production transition form factors. Reaching to momentum transfer Q2 ≈ 4.5 GeV2, the data probe a
domain within which hard valence-quark degrees of freedom could be expected to determine form
factor behavior. An explanation of the Roper should combine an understanding of all these things.
This is a prodigious task, but a ten-year international collaborative effort, involving experimentalists
and theorists, has presented a candidate solution to the puzzle. Namely, the observed Roper is at the
heart of the proton’s first radial excitation, consisting of a dressed-quark core augmented by a meson
cloud that reduces the core mass by approximately 20% and materially alters its electroproduction
form factors on Q2 < 2m2

N , where mN is the proton’s mass. This Colloquium describes the
experimental developments which enabled electroproduction data to be procured within a domain
that is the purview of strong quantum chromodynamics, thereby providing challenges and
opportunities for modern theory, and surveys the developments in reaction models and QCD theory
that have enabled this picture of the Roper resonance to be drawn.
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I. INTRODUCTION

The hydrogen atom played a crucial role in the development
of the modern approach to fundamental interactions, but it
required more than merely knowledge of the ground state to
spur the breakthroughs. A chart of the hydrogen atom
spectrum, i.e., the excited states, was necessary to validate
the jump to quantum mechanics via the Bohr model

(Bohr, 1913), and the discovery of the Lamb shift between
the 2S1=2 and 2P1=2 levels within that spectrum (Lamb and
Retherford, 1947) was critical to forcing the steps from the
Dirac equation (Dirac, 1928) to quantum electrodynamics
(QED) (Feynman, 1966; Tomonaga, 1966; Schwinger,
1982).
The same has been true in the development of quantum

chromodynamics (QCD), the strong interaction piece of the
standard model of particle physics, which emerged more than
forty years ago from an array of distinct ideas and discoveries
(Marciano and Pagels, 1978, 1979). Owing to the existence of
three readily accessible “flavors” of lighter quarks, the
spectrum of ground-state strongly interacting particles
(hadrons) revealed a great deal, leading to the quark model
(Gell-Mann, 1964; Zweig, 1964) with its wide range of
successful predictions. However, the first excited state of
the proton did not fit the standard picture. This state, the Roper
resonance, was discovered in 1963 (Adelman, 1964; Auvil
et al., 1964; Bareyre et al., 1964; Roper, 1964; Roper, Wright,
and Feld, 1965), and its characteristics have been the source of
great puzzlement since that time.
The Roper is the lightest excitation of the proton, and the

proton is arguably the most fundamental bound state in nature,
being simultaneously the first hadron and the first nucleus
discovered (Geiger andMarsden, 1909; Rutherford, 1911), and
seemingly absolutely stable (Tanabashi et al., 2018). TheRoper
is therefore a benchmark, and no claim that the standard model
is understood can be sustained until a resolution is found to the
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mystery that surrounds the nature of this first excited state
of the proton.
We begin, therefore, with a statement of the Roper’s

simplest characteristics: it is a J ¼ 1=2 positive-parity reso-
nance with pole mass ≈1.37 GeV and width ≈0.18 GeV
(Tanabashi et al., 2018). In the spectrum of nucleonlike
states, i.e., baryons with isospin1 I ¼ 1=2, the Roper reso-
nance lies about 0.4 GeV above the ground-state nucleon
and 0.15 GeV below the first J ¼ 1=2 negative-parity state,
which has roughly the same width. Today, the levels in this
spectrum are labeled NðmassÞJP. Hence, the ground-state
nucleon is denoted as Nð940Þ1=2þ, the Roper resonance as
Nð1440Þ1=2þ, and the negative-parity state previously
described is Nð1535Þ1=2−.
The search for an understanding of the Roper resonance is

the highest profile case in a long-running effort to chart and
explain the spectrum and interactions of strong interaction
bound states. The importance of this effort has long been
recognized. Indeed, baryons and their resonances play a
central role in the existence of our Universe and ourselves;
and therefore (Isgur, 2000) “… they must be at the center of
any discussion of why the world we actually experience has
the character it does. I am convinced that completing this
chapter in the history of science will be one of the most
interesting and fruitful areas of physics for at least the next
thirty years.”
QCD, which should describe all hadrons and, ultimately,

the properties of every atomic nucleus, is the theory of gluons
(gauge fields) and quarks (matter fields). It is conceptually
simple and can be expressed compactly in just one line, with
two definitions (Wilczek, 2000). And yet, nearly four decades
after its formulation, we are still seeking answers to such
apparently simple questions as what is the proton’s wave
function and which, if any, of the known baryons is the
proton’s first radial excitation? Numerous problems remain
open because QCD is fundamentally different from the
standard model’s other pieces: while a perturbation theory
exists and is a powerful tool when used in connection with
high-energy QCD processes, it is essentially useless when it
comes to developing an understanding of strong interaction
bound states built from light quarks.
The study of light-hadron properties is a problem in strong

QCD (sQCD), viz. the body of experimental and theoretical
methods used to probe and map the infrared domain of
standard model physics. Here emergent phenomena, such
as gluon and quark confinement and dynamical chiral sym-
metry breaking (DCSB), play the dominant role in determin-
ing all observables of the theory. The nature of sQCD and its
contemporary methods and challenges will become apparent
as we recount the history of the Roper resonance and the
recent developments which have enabled a coherent picture of
this system to emerge and, by analogy, an array of related
resonances.

II. CONSTITUENT-QUARK MODEL EXPECTATIONS

Theoretical speculations on the nature of the Roper reso-
nance followed immediately upon its discovery. For instance,
it was emphasized that the enhancement observed in experi-
ment need not necessarily be identified with a resonant state
(Dalitz and Moorhouse, 1965), but if it is a resonance, then it
has structural similarities with the ground-state nucleon
(Moorhouse, 1966).
The Roper was found during a dramatic period in the

development of hadron physics, which saw the appearance
of “color” as a quantum number carried by “constituent quarks”
(Greenberg, 1964), the interpretation of baryons as bound states
of three such constituents (Gell-Mann, 1964; Zweig, 1964), and
the development of nonrelativistic quantummechanical models
with two-body potentials between constituent quarks that were
tuned to describe the baryon spectrum as it was then known
(Hey and Kelly, 1983). Owing to their mathematical properties,
harmonic oscillator potentials were favored as the zeroth-order
term in the associated Hamiltonian:

H0 ¼ T þ U0; T ¼
X3
i¼1

p2
i

2Mi
; U0 ¼

X3
i<j¼1

1

2
Kr2ij;

ð2:1Þ

where pi are the constituent-quark momenta, rij are the
associated two-body separations, and spin-dependent inter-
actions were treated as (perturbative) corrections. The indices
in Eq. (2.1) sample the baryon’s constituent-quark flavors
so that, e.g., in the proton, f1; 2; 3g≡ fU ¼ up; U ¼ up;
D ¼ downg, and K is a common “spring constant” for all the
constituents. If one assumes that all three constituent quarks have
the same mass, viz. M1 ¼ M2 ¼ M3, then this Hamiltonian
produces the level ordering in Fig. 1. [A similar ordering of these

FIG. 1. Solid blue lines: level ordering produced by the
Hamiltonian in Eq. (2.1). The ð560; 0þÞ level represents a
supermultiplet that is completed by the states in the following
representations of SUð3Þ ×Oð3Þ: ð56; 2þÞ, ð20; 1þÞ, ð70; 2þÞ,
and ð70; 0þÞ. Dashed green lines and shaded bands: pole mass
and width of the nucleon’s two lowest-lying J ¼ 1=2 excitations,
determined in a wide ranging analysis of available data
(Kamano et al., 2013). For the purposes of this illustration,
ℏω is chosen so that the proton-Nð1535Þ1=2− splitting associates
the Nð1535Þ1=2− state with the ð70; 1−Þ supermultiplet, as
suggested in quantum mechanics by its spin and parity.

1Isospin is a quantum number associated with strong interaction
bound states. Its value indicates the number of electric-charge states
that may be considered as (nearly) identical in the absence of
electroweak interactions, e.g., the neutron and proton form an I ¼
1=2 multiplet and are collectively described as nucleons.
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low-lying levels is also obtained with linear two-body potentials
(Richard, 1992).]
It is evident in Fig. 1 that the natural level ordering obtained

with such potential models has the first negative-parityΔL ¼ 1

angular momentum excitation of the ground-state three-quark
system—the Nð1535Þ1=2−— at a lower energy than its first
radial excitation. If the Roper resonance Nð1440Þ1=2þ is
identified with that radial excitation, whose quantum numbers
it shares, then there is immediately a serious conflict between
experiment and theory. However, this ignores the “perturba-
tions,” i.e., corrections to H0, which might describe spin-spin,
spin-orbit, and other kindred interactions that can eliminate the
degeneracies in n ≥ 2 harmonic oscillator supermultiplets.
(There are no such degeneracies in the n ¼ 0, 1 supermultip-
lets.) It was subsequently proved (Gromes and Stamatescu,
1976; Isgur and Karl, 1979) that given any anharmonic
perturbation of the form

P
i<jUðrijÞ, then at first order in

perturbation theory the n ¼ 2 supermultiplet is always split as
depicted in Fig. 2, where Δ is a measure of the shape of the
potential. In practice, there is always a value ofΔ for which the
ð560; 0þÞ (Roper) state is shifted below the Nð1535Þ1=2−.
Typically, however, the value is so large that one must question
the validity of first-order perturbation theory (Isgur and
Karl, 1979).
Notwithstanding such difficulties, at this time it was not

uncommon for practitioners to imagine that such models were
providing a realistic picture of the baryon spectrum and, in
fact, they were a phenomenal phenomenological success (Hey
and Kelly, 1983). Such conclusions were premature as made
clear by Sec. III herein and also the vast array of novel
experimental results from the Belle, BABAR, BESIII, and
LHCb Collaborations (Aaij et al., 2015; Braaten, 2016; Shen,
2016), which reveal states that cannot be explained by quark
models.
This period of enthusiasm coincided with the “discovery”

of QCD (Marciano and Pagels, 1978, 1979). Some of its
peculiar features had been exposed on the perturbative domain
(Gross, 2005; Politzer, 2005; Wilczek, 2005), but the spec-
trum of bound states it supported could not then be deter-
mined. (It may still be said today that the complete spectrum
of bound states supported by real QCD, i.e., in the presence of

dynamical quarks with realistic values for their current
masses, is unknown.)
In the absence of approaches with a direct QCD connection,

studies of quantum mechanical constituent-quark models
(CQMs) continued. In relation to the Roper resonance it
was found that within a broad class of phenomenological
potentials, the negative-parity orbital excitation of the three-
quark ground state is always lighter than the L ¼ 0 radial
excitation (Høgaasen and Richard, 1983; Richard, 1992). This
means that the ordering in Fig. 2 is an artifact of first-order
perturbation theory, which is unreliable when the leading
correction is comparable to the value of ℏω associated with
H0, and, moreover, that the ordering of the nucleon’s low-
lying excitations is incorrect in a wide array of such con-
stituent-quark models (Capstick and Roberts, 2000; Crede and
Roberts, 2013; Giannini and Santopinto, 2015).
The difficulty in providing a sound theoretical explanation

of the Roper resonance was now becoming apparent. In fact, at
this point it was considered plausible that the Nð1440Þ1=2þ
might not actually be a state generated by three valence
quarks. It was also conjectured that the Roper might be a
breathing mode of the ground-state nucleon, if the latter is
realized as a topological soliton (Kaulfuss and Meissner,
1985; Mattis and Karliner, 1985). And the notion was also
entertained that it may be a hybrid, viz. a system with a
material valence-gluon component or, at least, that the Roper
might contain a substantial hybrid component (Barnes and
Close, 1983; Li, Burkert, and Li, 1992; Capstick and
Page, 2002).
The appearance of QCD refocused attention on some

prominent weaknesses in the formulation of CQMs. In
particular, their treatment of constituent-quark motion within
a hadron as nonrelativistic, when calculations showed
hpii ∼Mi, where hpii is the mean momentum of a bound
constituent quark, and the use of nonrelativistic dynamics,
e.g., the omission of calculable relativistic corrections to the
various potential terms, which would normally become energy
dependent. Consequently, a relativized constituent-quark
model was developed (Godfrey and Isgur, 1985) and applied
to the baryon spectrum (Capstick and Isgur, 1986). But these
improvements did not change the ordering of the energy
levels, i.e., the low-lying excitations of the nucleon were still
ordered as depicted in Fig. 1. This remains true even within a
relativistic field theory framework that employs instantaneous
interquark interactions to compute the baryon spectrum
(Löring, Metsch, and Petry, 2001), namely, a three-body term
expressing linear confinement of constituent quarks and a
spin-flavor-dependent two-body interaction to describe spin-
dependent mass splittings.
The QCD-inspired CQMs described above all assume that

interquark dynamics derives primarily from gluon-related
effects. An alternative is to suppose that the hyperfine
interaction between constituent quarks is produced by
exchange of the lightest pseudoscalar mesons (Glozman
and Riska, 1996), i.e., the pseudo–Nambu-Goldstone modes:
π, K, and η mesons, in which case the hyperfine interaction is
flavor dependent in contrast to that inferred from one-gluon
exchange. Using algebraic arguments, one may demonstrate
that this sort of Goldstone boson-exchange (GBE) hyperfine
interaction produces more attraction in systems whose wave

FIG. 2. If an arbitrary anharmonic potential, restricted only
insofar as it can be written as a sum of two-body terms, is added
to H0 in Eq. (2.1), then at first order in perturbation theory the
n ¼ 2 harmonic oscillator supermultiplet is split as indicated
here. [E0 is roughly the original ð560; 0þÞ energy and Δ is a
measure of the shape of the potential.]
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functions possess higher spin-flavor symmetry. Such dynam-
ics can thus lead to an inversion of the excited state levels
depicted in Fig. 1, so that the Roper resonance, viewed as the
lowest radial excitation of a three constituent-quark ground
state, lies below the Nð1535Þ1=2−, the first orbital excitation
of that system. This inversion of levels is a positive feature of
the model, and it hints that mesonlike correlations should play
a role in positioning states in the baryon spectrum. [Similar
conclusions may be drawn from analyses of unquenched
CQMs (Julia-Diaz and Riska, 2006).]
On the other hand, a GBE picture of baryon structure can be

only figurative at best. All mesons are composite systems with
radii that are similar in magnitude to those of baryons, and
hence one-boson exchange between constituent quarks cannot
be understood literally (Chen et al., 2018). A deeper class of
questions is relevant to all such CQMs. Namely, in the era of
QCD can any connection be drawn between that underlying
theory and the concept of a constituent quark? Can the
interactions between the lightest quarks in nature veraciously
be described by a potential of any kind? And notwithstanding
the challenges they face in describing the Roper resonance, do
their apparent successes in other areas yield any sound
insights into strong interaction phenomena? At present, each
practitioner has their own answers to these questions. Our
view is that CQMs continue to be a valuable part of the sQCD
toolkit.

III. ROPER RESONANCE IN EXPERIMENT

A. Sparse data

One source of the difficulty in understanding the Roper
resonance is the quality of the data that was available in the
previous millennium. Illustrated by Fig. 3, it was poor owing
to limitations in sensitivity to the channels γp → π0p and
ep → eπ0p that were typically employed in analyses of the
photocoupling and electrocoupling helicity amplitudes and
transition form factors. Such data could not reasonably be
used to distinguish between competing theoretical models of
the Roper resonance. It was thus evident, given that physics is
an empirical science, that a key to resolving the conundrum
was more and better data, i.e., to replace the limited data
available in the previous millennium with a much larger set of
high-precision data. This was strong motivation for a new
experimental program at what is now known as the Thomas
Jefferson National Accelerator Facility (JLab), which began
operations in 1994 and was then called the Continuous
Electron Beam Accelerator Facility (CEBAF).

B. Electroproduction kinematics

The data in Fig. 3 were obtained in single-pion photo-
production and electroproduction processes eN → eπN. The
production of a J ¼ 1=2þ resonance in the intermediate part
of such reactions is described by an electromagnetic current
that is completely expressed by two form factors:

ūfðPfÞ
�
γTμF�

1ðQ2Þ þ 1

mfi
σμνQνF�

2ðQ2Þ
�
uiðPiÞ; ð3:1Þ

where ui and ūf are, respectively, Dirac spinors describing the
incoming or outgoing baryons, with four-momenta Pi;f and
masses mi;f so that P2

i;f¼−m2
i;f , Q¼Pf−Pi, mfi¼mfþmi,

and γT ·Q ¼ 0. In terms of these quantities, the helicity
amplitudes in Fig. 3 are

A1=2ðQ2Þ ¼ cðQ2Þ½F�
1ðQ2Þ þ F�

2ðQ2Þ�; ð3:2aÞ

S1=2ðQ2Þ ¼ jqjp
2
cðQ2Þ

�
F�
1ðQ2Þmfi

Q2
−
F�
2ðQ2Þ
mfi

�
; ð3:2bÞ

with Q2
� ¼ Q2 þ ðmf �miÞ2, K ¼ ðm2

f −m2
i Þ=ð2mfÞ,

cðQ2Þ ¼
�
αemπQ2

−

mfmiK

�
1=2

; jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

−Q2þ
p
2mf

; ð3:3Þ

where jqj is the magnitude of the virtual-photon three-
momentum in the resonance rest frame.
The dominant Roper decay is Nð1440Þ → Nπ, where the

neutronþ πþ ðnπþÞ channel is most prominent. It also
couples to the two-pion channel, being there most conspicu-
ous in Nð1440Þ → pπþπ−, where p labels the proton. By
design, the CEBAF Large Acceptance Spectrometer (CLAS)
at JLab was ideally suited to measuring both these reactions in
the same experiment, simultaneously employing the polarized
high-precision continuous-wave electron beam at energies up

FIG. 3. Data on the (left panel) transverse and (right panel)
longitudinal Roper resonance photo- and electrocoupling helicity
amplitudes, Eqs. (3.2), as they were available in the last
millennium. Data: open (red) circle—1998 estimate of A1=2 at
the photoproduction point (Caso et al., 1998), and error bar (gray)
—our assessment of the true uncertainty in this value at that time.
Solid squares and short-dashed (cyan) curves—results from a
fixed-t dispersion relation fit (Gerhardt, 1980), where the error
bars on the squares are our estimate of the systematic uncertainty.
Model results: long-dashed (red) curves—nonrelativistic quark
model (Koniuk and Isgur, 1980; Close and Li, 1990) (incom-
patible with then-existing data); dotted curve (purple, left
panel)—relativized quark model (Warns et al., 1990); and solid
curve (green)—model constructed assuming the Roper is a hybrid
system, constituted from three constituent quarks plus a type of
gluon excitation (Li, Burkert, and Li, 1992), wherewith the
longitudinal amplitude vanishes. Ordinate expressed in units of
10−3 GeV−1=2.
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to 6 GeV. This capability provided the CLAS Collaboration
with a considerable advantage over earlier experiments
because measurements and extractions of Roper resonance
observables could be based on the analysis of complete center-
of-mass angular distributions and large energy range, and
cross checked against each other in different channels.
A typical kinematics choice for the reaction ep → enπþ is

depicted in Fig. 4: the incoming and outgoing electrons define
the scattering plane; the πþ and neutron momentum vectors
define the hadronic production plane, characterized by polar
angles θπ and θn; and ϕπ defines the angle between the
production plane and the electron scattering plane. The
differential cross section is then

d3σ
dEfdΩedΩ

≕Γ
dσ
dΩ

; ð3:4Þ

where Γ is the virtual photon flux

Γ ¼ αem
2π2Q2

ðW2 −m2
NÞEf

2mNEi

1

1 − ϵ
: ð3:5Þ

Here αem is the fine structure constant and mN is the nucleon
mass; W is the invariant mass of the hadronic final state;
Q2 ¼ −ðei − efÞ2 is the photon virtuality, where ei and ef are
the four-momentum vectors of the initial- and final-state
electrons, respectively, and Ei and Ef are their respective
energies in the laboratory frame. ϵ is the polarization factor of
the virtual photon, and Ωe and Ω are the electron and pion
solid angles. The unpolarized differential hadronic cross
section has the following ϕπ dependence:

dσ
dΩ

¼ σLþT þ ϵσTT cos2ϕπþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵð1þ ϵÞ

p
σLT cosϕπ; ð3:6Þ

where the ϕπ-independent term is defined as σLþT ¼
σT þ ϵσL. Distinct from photoproduction, the virtual photon
in electroproduction has both transverse and longitudinal polar-
izations. Resolving the associated kinematic dependences
reveals additional information about the production process,
e.g., by measuring the ϕπ dependence of the cross section in
Eq. (3.6), one can isolate the terms that describe transverse-
transverse and transverse-longitudinal interferences.

C. Electroproduction data at low Q2

Experiments with CLAS began in 1998. Following
commissioning, the CLAS Collaboration took precise data
covering a large mass range from pion threshold up to
W ¼ 1.55 GeV, with nπþ and pπ0 being the final states at
two values ofQ2, pursuing a primary goal of studying the low-
Q2 behavior of the proton-Roper transition. Analysis of the
data was a complex and time-consuming task.
Resonance electroexcitation amplitudes are extracted from

exclusive electroproduction data by employing phenomeno-
logical reaction models capable of reproducing the full set of
observablesmeasured in theNπ andpπþπ− channels, subject to
general reaction theory constraints, such as analyticity and
unitarity. When analyzing nπþ, pπ0, and pη final states, the
most frequently used approaches are the unitary isobar model
(UIM) (Drechsel et al., 1999; Aznauryan, 2003; Drechsel,
Kamalov, and Tiator, 2007) and fixed-t dispersion relations
(DRs) (Aznauryan et al., 2005). In both cases, resonances are
described by a relativistic Breit-Wigner distribution involving
an energy-dependent width. Naturally, it is important to imple-
ment a good description of the background contributions. With
the UIM approach, these are described explicitly through the
inclusion of s- and t-channel meson-exchange processes;
whereas in the DR method they are calculated directly from
the s-channel resonance terms using dispersion relations. The
DR approach is tightly constrained, but the UIM method,
involving more fitting parameters, has greater flexibility.
Employing these schemes, the CLAS Collaboration released

an analysis of their low-Q2 data shortly after the beginning of
the new millennium (Aznauryan et al., 2005). As illustrated by
Fig. 5, both the UIM and DRmethods give very similar results,
and the CLAS Collaboration used the difference between them
as an estimate of systematic uncertainties in the model analysis.
In this way they obtained the helicity amplitudes displayed in

FIG. 4. Kinematics of πþ electroproduction from a proton.

FIG. 5. Cross-section data. (Left panels) Q2 ¼ 0.45 GeV2 and
(right panels) Q2 ¼ 0.60 GeV2. (Upper panels) γ�p → π0p and
(lower panels) γ�p → πþn. The curves are results of global fits to
these data using the (solid) UIM and (dashed) DR approaches.
[Details provided elsewhere (Aznauryan et al., 2005). The
ordinate unit is μb.]
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Fig. 6. The results contrast starkly with the pre-2000 data in
Fig. 3: now the transverse amplitude shows a clear zero crossing
near Q2 ¼ 0.5 GeV2, the first time this had been seen in any
hadron form factor or transition amplitude, and the longitudinal
amplitude is large and positive. The power of precise, accurate
data on the transition form factors is also evident in Fig. 6: the
hybrid (constituent-quark plus gluon) Roper (Li, Burkert, and
Li, 1992) and two other constituent-quark models (Warns et al.,
1990; Tiator et al., 2004) are eliminated.
The model most favored by the new data is arguably that

which describes the Roper as a radial excitation of the
nucleon’s quark core dressed by a soft meson cloud (Cano
and Gonzalez, 1998), where a detailed explanation of this
“cloud” is presented in Sec. IV, although the relativistic CQM
(Capstick and Keister, 1995) remains viable. Both these
calculations predict the zero in the A1=2 amplitude, although
it is achieved through different mechanisms: the meson cloud
is responsible in Cano and Gonzalez (1998) and relativity
plays a crucial role in Capstick and Keister (1995).
Furthermore, the predictions made by these two models
disagree markedly at larger Q2, i.e., on the domain within
which any soft meson-cloud component of a resonance should
become invisible to the probe. This is correlated with the
differing dynamical origins of the A1=2 zero in the two CQMs.
It was now clear that higher-Q2 data are necessary in order to
determine the nature of the Roper resonance.

D. Pushing electroproduction experiments to higher Q2

Using CLAS and the 6 GeV continuous-wave electron beam
at JLab, high-statistics data were subsequently collected and
analyzed, extending the kinematic range to W ¼ 2 GeV and
Q2 ¼ 4.5 GeV2 (Aznauryan et al., 2008, 2009; Aznauryan and
Burkert, 2012a; Mokeev et al., 2012, 2016). The new experi-
ments revealed some surprising aspects of the Roper electro-
production amplitudes, overturning conclusions thatmight have
been drawn from the low-Q2 data alone. For example, as
highlighted in Fig. 7, whereas A1=2 is small in the low-Q2 range
accessed by the earlier CLAS data, because it is undergoing a
sign change at Q2 ≈ 0.5 GeV2, and hence the Roper is not

directly visible in the total cross section, at high Q2 this
resonance becomes very strong, even dominating over the
Δð1232Þ on Q2 > 2 GeV2 in the nπþ final state.
The final data set used in theglobal fit contained over 120 000

points in ep → e0nπþ and ep → e0pπ0, measuring differential
cross sections, and polarized beam and polarized target asym-
metries, covering the complete range of azimuthal and polar
angles, and W < 1.8 GeV and Q2 < 4.5 GeV2. The Roper
resonance transverse and longitudinal electroproduction hel-
icity amplitudes obtained from the complete analysis are
displayed in Fig. 8. These results confirm those obtained in
earlier analyses of much reduced data sets and significantly
extend them. Importantly, the evident agreement between
independent analyses of single- and double-pion final states
boosts confidence in both. [N.B. New CLAS data on πþπ−p
electroproduction (Isupov et al., 2017), with nine onefold
differential cross sections covering a final hadron invariant
mass rangeW∈ ½1.4;2.0�GeV andQ2∈ ½2;5�GeV2, will enable
this agreement to be tested further.]

E. Roper resonance: Current experimental status

It is appropriate here to summarize the modern empirical
status.

• The Roper ½Nð1440Þ1=2þ� is a four-star resonance with
pole mass ≈1.37 GeV and width ≈0.18 GeV (Tanabashi
et al., 2018).

• Transverse helicity amplitude A1=2ðQ2Þ:
— increases rapidly as Q2 increases from the real

photon point to Q2 ≈ 2 GeV2;
— changes sign at Q2 ≈ 0.5 GeV2;
— exhibits a maximum value at Q2 ≈ 2 GeV2,

attaining a magnitude which matches or exceeds
that at the real photon point;

FIG. 6. First results from CLAS on the Roper helicity ampli-
tudes (Aznauryan et al., 2005)—solid squares. All curves are
results from various types of CQM: solid bold and solid thin—
results obtained using, respectively, relativistic and nonrelativistic
versions (Capstick and Keister, 1995); dotted (Warns et al.,
1990); dashed (Cano and Gonzalez, 1998); dot-dashed, thin—
quark-gluon hybrid model (Li, Burkert, and Li, 1992); and dot-
dashed (Tiator et al., 2004). Open circle in left panel—Estimate at
photoproduction point from Eidelman et al. (2004).

FIG. 7. Lowest moment of the polar-angle dependence in the
Legendre expansion of the total cross section σTþL for the nπþ

and pπ0 electroproduction final states, where the solid (red) and
dashed (blue) curves represent, respectively, DR and UIM fits
(Aznauryan et al., 2009). Evidently, while the Δð1232Þ is the
most conspicuous feature at low Q2 (left panels), the Roper
resonance becomes prominent in the nπþ final state at large Q2,
generating the broad shoulder centered near W ¼ 1.35 GeV
(lower right panel). N.B. The strong peak at 1.5 GeV owes
two other resonances: Nð1520Þ3=2− and Nð1535Þ1=2−.
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— decreases steadily toward zero with increasingQ2

after reaching its maximum value.
• Longitudinal helicity amplitude S1=2ðQ2Þ:

— maximal near the real photon point;
— decreases slowly as Q2 increases toward

1 GeV2;
— decreases more quickly on Q2 ≳ 1 GeV2.

• Nπ and pπþπ− final states in electroproduction: The
nonresonant contributions to these two final states are
markedly dissimilar and hence very different analysis
procedures are required to isolate the resonant contri-
butions. Notwithstanding this, the results for the resonant
contributions agree on the domain of overlap, i.e.,
Q2 ∈ ½0.25; 1.5� GeV2.

IV. DYNAMICAL COUPLED-CHANNELS CALCULATIONS

As highlighted in Sec. III, the last twenty years have seen an
explosion in the amount of available data on the reactions
γð�ÞN → πN and γð�ÞN → ππN, which are particularly rel-
evant to discussions of the Roper resonance. As the data

accumulated, so grew an appreciation of the need for a sound
theoretical analysis which unified all its reliable elements. At
the beginning of 2006, this culminated with the establishment
of the Excited Baryon Analysis Center (EBAC) at JLab (Lee,
2007, 2013; Kamano and Lee, 2012), whose primary goals are
to perform a dynamical coupled-channels (DCC) analysis of
the world’s data on meson production reactions from the
nucleon in order to determine the meson-baryon partial-wave
amplitudes, and identify and characterize all nucleon reso-
nances that contribute to these reactions.
In contrast to partial-wave analyses, which are model

independent to some extent, but also, therefore, limited in
the amount of information they can provide about resonance
structure, modern DCC analyses are formulated via a
Hamiltonian approach to multichannel reactions (Julia-Diaz
et al., 2007; Kamano et al., 2010, 2013; Suzuki et al., 2010;
Rönchen et al., 2013). The Hamiltonian expresses model
assumptions, e.g., statements about the masses of bare or
undressed baryons (in the sense of particle versus quasiparticle)
and the dominant meson-baryon reaction channels that trans-
form the bare baryon into the observed quasiparticle. Naturally,
such assumptions can be wrong. Equally, the models are
flexible; they can be falsified and thereby improved, given
the vast amount of existing data, and, used judiciously, they can
bridge the gap between data andQCD-connected approaches to
the computation of baryon properties.
The EBAC approach (Sato and Lee, 1996;Matsuyama, Sato,

and Lee, 2007), for instance, describes meson-baryon (MB)
reactions involving the following channels: πN, ηN, and ππN,
the last of which has πΔ, ρN, and σN resonant components. The
excitation of the internal structure of a given initial-state baryon
(B) by a meson (M) to produce a bare nucleon resonance N̄� is
implemented by an interaction vertex ΓMB→N̄� . Importantly,
the Hamiltonian also contains energy-independent meson-
exchange terms vMB;M0B0 , deduced from widely used meson-
exchange models of πN and NN scattering.
In such an approach, the features of a given partial-wave

amplitude may be connected with dressing of the bare
resonances included in the Hamiltonian (N̄�), in which case
the resulting N� states are considered to be true resonance
excitations of the initial-state baryon. On the other hand, they
can also be generated by attraction produced by the vMB;M0B0

interaction and channel-coupling effects, in which case they
are commonly described as “molecular states” so as to
differentiate them from true resonance excitations. The need
to reliably distinguish between these two different types of
systems in the solution of the coupled-channels problem
defined by the model Hamiltonian requires that the form
and features of vMB;M0B0 must be very carefully constrained by,
e.g., elastic scattering data, throughout the region of relevance
to the resonance production reactions.
Being aware of the challenges associated with understand-

ing the Roper resonance, the EBAC Collaboration made a
determined effort to produce a sound description of the
spectrum of baryon resonances with masses below 2 GeV
using their DCC model. Refining this tool by developing a
description of 22 348 independent data points, representing
the complete array of partial waves, they arrived at some
striking conclusions (Julia-Diaz et al., 2007; Kamano et al.,
2010; Suzuki et al., 2010), illustrated in Fig. 9.

FIG. 8. (Upper panel) Transverse and (lower panel) longitudinal
Roper resonance electrocoupling helicity amplitudes. Circles
(purple)—analysis of single-pion final states (Aznauryan et al.,
2008, 2009); triangles (green)—analysis of ep → e0πþπ−p0
(Mokeev et al., 2012, 2016); square (upper panel, black)—CLAS
Collaboration result at the photoproduction point (Dugger et al.,
2009) and triangle (black)—review of particle properties global
average of this value (Tanabashi et al., 2018). Square (lower
panel, black)—Q2 ≃ 0.1 GeV2 e⃗p → e0p⃗π0 measurement (Štaj-
ner et al., 2017).
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• From a bare state with mass 1.763 GeV, three
distinct features appear in the P11 partial wave, as
described by Fig. 9. (We will subsequently return to
the interpretation of the bare state.)

• Of the three spectral features that emerge in this
channel, two are associated with the Roper reso-
nance. [This two-pole character of the Roper is
common to many analyses of the scattering data,
including one involving Roper himself (Arndt, Ford,
and Roper, 1985) and more recent analyses of πN
scattering data (Cutkosky and Wang, 1990; Arndt
et al., 2006; Döring et al., 2009).]

• The third pole is located farther from the origin
(position C in Fig. 9) and might plausibly be
associated with the Nð1710Þ1=2þ state listed by
the Particle Data Group (Tanabashi et al., 2018).

[N.B. (i) The same EBAC DCC analysis identified a bare state
with mass 1.800 GeV as the origin of the Nð1535Þ1=2− and a
bare state with mass 1.391 GeV associated with the
Δð1232Þ3=2þ (Julia-Diaz et al., 2007). (ii) Despite the
seemingly large amount of independent data used, the set
is incomplete, e.g., polarized target information is lacking in
some regions. It is conceivable therefore that such bare masses
might shift somewhat with the acquisition of additional data.
This cannot affect the electroproduction form factors, how-
ever, because they are independent of these pieces of the DCC
models.]
The trajectories in Fig. 9 emphasize that the coupling

between channels, required to simultaneously describe all
partial waves, has an extraordinary effect with, e.g., numerous
spectral features in the P11 channel evolving from a single

bare state, expressed as a pole on the real axis, through its
coupling to the πN, ηN, and ππN reaction channels. Hence, no
analysis of one partial wave in isolation can reasonably be
claimed to provide an understanding of such a complex array
of emergent features.

V. RELATIVISTIC QUANTUM FIELD THEORY

A. Lattice-regularized QCD

An introduction to the numerical simulation of lattice-
regularized QCD (lQCD) is provided elsewhere (Gattringer
and Lang, 2010), so here we simply note that this method is a
nonperturbative approach to solving QCD in which the gluon
and quark fields are quantized on a discrete lattice of finite
extent, whose intersections each represent a point in spacetime
(Wilson, 1974).
The lQCD approach has provided a spectrum of light

ground-state hadrons that agree with experiment (Durr et al.,
2008), but numerous hurdles are encountered in attempting to
compute properties of resonance states in this way (Liu, 2017;
Briceno, Dudek, and Young, 2018). In connection with the
Roper, which in reality couples strongly to many final-state
interaction (FSI) channels, as indicated in Fig. 9, these include
the following: the challenges of computing with a realistic
pion mass and developing both a fully representative collec-
tion of interpolating fields and a valid strategy for handling all
contributing final-state interaction channels, which incorpo-
rate the issue of ensuring that the nucleon’s lowest excitations
are properly isolated from all higher excitations; and the
problem of veraciously expressing chiral symmetry and the
pattern by which it is broken in both the fermion action
and the algorithm used in performing the simulation.
Much needs to be learned and implemented before these

problems are overcome, so the current status of lQCD results
for the Roper is unsettled. This is illustrated in Fig. 10, which
provides a snapshot of recent results for the masses of the

FIG. 9. Open circle (black): mass of the bare Roper state
determined in the EBAC DCC analysis of πN scattering
(Julia-Diaz et al., 2007; Kamano et al., 2010; Suzuki et al.,
2010). This bare Roper state, with full spectral weight at mass
1.763 GeV, splits and evolves following the inclusion of meson-
baryon final-state interactions, with the trajectories in this
complex-energy plane depicting the motion of the three, distinct
daughter poles as the magnitude of those interactions is increased
from zero to their full strength. The horizontal dashed lines
(black) mark the branch cuts associated with all thresholds
relevant to the solution of the DCC scattering problem in this
channel. Solid star (green): mass of the dressed-quark core of the
proton’s first radial excitation predicted by a three valence-quark
Faddeev equation (Segovia et al., 2015).

FIG. 10. Illustrative collection of lQCD results for the mass of
the nucleon (lower band) and its lightest positive-parity excitation
as a function of m2

π , where mπ is the pion mass used in the
simulation. The results depicted were obtained with different
lattice formulations and varying methods for identifying the
excited state, as described in the source material (Edwards et al.,
2011; Alexandrou et al., 2015; Liu et al., 2014; Mahbub et al.,
2012; Engel et al., 2013; Liu, 2017).
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nucleon and its lowest-mass positive-parity excitation. In this
image, almost all formulations of the lQCD problem produce
values that extrapolate (as m2

π is taken toward its empirical
value) to a Roper mass of roughly 1.8 GeV, i.e., to a mass that
is 0.4 GeV above the real part of the empirical value, viz.
1.4 GeV. One band, though, appears to extrapolate to some-
where near this empirical value. Contrary to the other
formulations, the fermion action in that case (Liu et al.,
2014) possesses good chiral symmetry properties. Its propo-
nents conjecture (Liu, 2017) that this feature enables the
simulation to better incorporate aspects of the extensive
dynamical channel couplings which are known to be impor-
tant in explaining and understanding the spectral features of
πN scattering in the P11 channel (Julia-Diaz et al., 2007;
Kamano et al., 2010; Suzuki et al., 2010). This speculation
remains unproven, however.
As emphasized heretofore, computing a value (even cor-

rect) for the Roper mass is insufficient to validate a formu-
lation of the Roper resonance problem and its solution. An
additional and far more stringent test is an explanation of the
pointwise behavior of the transition form factors measured in
electroproduction, Eq. (3.1). The first such lQCD calculations,
which used the quenched truncation of the theory, are
described by Lin et al. (2008). More recently, results were
obtained with two light quarks and one strange quark
(Nf ¼ 2þ 1) (Lin and Cohen, 2012). They are depicted in
Fig. 11. These simulations identified the Roper resonance with
the first positive-parity excitation of the nucleon, whose
computed mass is roughly 1.8 GeV, and focused on the
low-Q2 domain. Significantly, compared with the quenched
results, the inclusion of Nf ¼ 2þ 1 dynamical fermions
produces a sign change in F�

2, located in the same neighbor-
hood as that seen in experimental data. This difference
between quenched and dynamical simulations once again
suggests that meson-baryon (MB) FSIs are a critical part of the
long-wavelength structure of the Roper.

B. Insight from continuum analyses

An approach to developing a solution of QCD in the
continuum is provided by the Dyson-Schwinger equations
(DSEs) (Roberts and Williams, 1994; Chang, Roberts, and
Tandy, 2011; Bashir et al., 2012; Eichmann et al., 2016; Horn
and Roberts, 2016; Roberts, 2016), which define a symmetry-
preserving (and hence Poincaré covariant) framework with a
traceable connection to the QCD Lagrangian. The challenge in
this approach is the need to employ a truncation in order to
define a tractable bound-state problem. Much has been
learned in the past twenty years, and one may now separate
DSE predictions into three classes: class A—model-indepen-
dent statements about QCD, class B—illustrations of such
statements using well-constrained model elements and pos-
sessing a traceable connection to QCD, and class C—QCD-
based analyses whose elements have not been computed using
a truncation that preserves a systematically improvable con-
nection with QCD.
The treatment of a baryon as a continuum three-valence-

body bound-state problem became possible following the
formulation of a Poincaré-covariant Faddeev equation
(Burden, Cahill, and Praschifka, 1989; Cahill, 1989; Cahill,

Roberts, and Praschifka, 1989; Efimov, Ivanov, and
Lyubovitskij, 1990; Reinhardt, 1990), which is depicted in
Fig. 12. The ensuing years have seen studies increase in
breadth and sophistication. In order to understand the current
status, it is apt to begin by elucidating the nature of the

FIG. 11. Existing results for the (upper panel) Dirac and (lower
panel) Pauli proton-Roper transition form factors computed using
the methods of lQCD (Lin and Cohen, 2012) on anisotropic lattices
with pion masses (in GeV): 0.39 (red squares), 0.45 (orange
triangles), and 0.875 (green circles); and associated spatial lengths
of 3, 2.5, and 2.5 fm. Open circles are empirical results from the
CLAS Collaboration (Aznauryan et al., 2009; Dugger et al., 2009;
Mokeev et al., 2012, 2016).

FIG. 12. Poincaré covariant Faddeev equation: a homogeneous
linear integral equation for the matrix-valued function Ψ, being
the Faddeev amplitude for a baryon of total momentum
P ¼ pq þ pd, which expresses the relative momentum correla-
tion between the dressed quarks and diquarks within the baryon.
The shaded rectangle demarcates the kernel of the Faddeev
equation: single line, dressed-quark propagator; Γ, diquark
correlation amplitude; and double line, diquark propagator.
Further details are provided in Sec. V.B.
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individual “bodies” whose interactions are described by that
Faddeev equation.
It is worth opening with an observation, viz. although it is

commonly thought that the Higgs boson is the origin of mass,
that is incorrect: it gives mass only to some very simple
particles, accounting for just 1%–2% of the weight of more
complex entities, such as atoms and molecules. Instead, the
vast bulk of visible mass is generated dynamically by
interactions in QCD (Wilczek, 2012). This remark is readily
substantiated by noting that the mass scale for the spectrum of
strongly interacting matter is characterized by the proton’s
mass mN ≈ 1 GeV ≈ 2000me, where me is the electron mass.
However, the only apparent scale in chromodynamics is the
current-quark mass. This is the quantity generated by the
Higgs boson; but, empirically, the current mass is more than
2 orders of magnitude smaller (Tanabashi et al., 2018). No
amount of “staring” at the Lagrangian for QCD can reveal the
source of that enormous amount of “missing mass.” Yet, it
must be there and exposing the character of the Roper
resonance is critical to understanding the nature of strong
mass generation within the standard model.
One of the keys to resolving this conundrum is the

phenomenon of DCSB (Nambu, 2011), which can be exposed
in QCD by solving the quark gap equation, i.e., the DSE for
the dressed-quark Schwinger function (propagator) (Roberts
and Williams, 1994):

SðpÞ ¼ Zðp2Þ=½iγ · pþMðp2Þ�; ð5:1Þ

where Mðp2Þ is the dressed-quark mass function. Whether or
not DCSB emerges in the standard model is decided by the
structure of the gap equation’s kernel. Hence the basic
question is just what form does that kernel take? Owing to
asymptotic freedom, the answer is known on the perturbative
domain A ¼ fðp; qÞjk2 ¼ ðp − qÞ2 ≃ p2 ≃ q2 ≳ 2 GeV2g.
The question thus actually relates only to the infrared domain,
which is a complement of A and so resides in sQCD.
The gap equation’s kernel is built from the QCD running

coupling, dressed-gluon propagator and dressed-gluon-quark
vertex. The past two decades have revealed much about these
quantities, and the current state of understanding can be traced
from an array of sources (Boucaud et al., 2012; Binosi et al.,
2015; Aguilar, Binosi, and Papavassiliou, 2016; Binosi,
Chang et al., 2017; Binosi, Mezrag et al., 2017). Of particular
interest is the feature that the gluon propagator saturates at
infrared momenta, i.e.,

Δðk2 ≃ 0Þ ¼ 1=m2
g; ð5:2Þ

which entails that the long-range propagation characteristics
of gluons are dramatically affected by their self-interactions.
Importantly, one may associate a renormalization-group-
invariant gluon mass scale with this effect: m0 ≈ 0.5 GeV ≈
mN=2 (Binosi et al., 2015; Cyrol et al., 2016; Binosi, Mezrag
et al., 2017), and summarize a large body of work, which
began roughly thirty-five years ago (Cornwall, 1982), by
stating that gluons, although acting as massless degrees of
freedom on the perturbative domain, actually possess a

running mass, whose value at infrared momenta is charac-
terized by m0.
The mathematical tools that have enabled theory to arrive at

this conclusion (Abbott, 1981, 1982; Cornwall, 1982;
Cornwall and Papavassiliou, 1989; Pilaftsis, 1997; Binosi
and Papavassiliou, 2002, 2004, 2009) can also be used to
compute a process-independent running coupling α̂PIðk2Þ
(Binosi, Mezrag et al., 2017). Depicted as the solid (blue)
curve in Fig. 13, this is a new type of effective charge, which is
an analog of the Gell-Mann–Low effective coupling in QED
(Gell-Mann and Low, 1954), because it is completely deter-
mined by the gauge-boson propagator. The result in Fig. 13 is
a parameter-free class-A prediction, capitalizing on analyses
of QCD’s gauge sector undertaken using both continuum
methods and numerical simulations of lQCD.
The data in Fig. 13 represent empirical information

on αg1 , a process-dependent effective charge (Grunberg,
1984) determined from the Bjorken sum rule, one of the
most basic constraints on our knowledge of nucleon spin
structure. Sound theoretical reasons underpin the almost
precise agreement between α̂PI and αg1 (Binosi, Mezrag et al.,
2017), so that the Bjorken sum may be seen as a near direct
means by which to gain empirical insight into QCD’s Gell-
Mann–Low effective charge. Given the behavior of the
prediction in Fig. 13, it is evident that the coupling is
everywhere finite in QCD, i.e., there is no Landau pole,
and this theory possesses an infrared-stable fixed point.
Evidently, QCD is infrared finite owing to the dynamical
generation of a gluon mass scale.

FIG. 13. Solid (blue) curve: process-independent running cou-
pling α̂PIðk2Þ (Binosi, Mezrag et al., 2017). The shaded (blue)
band bracketing this curve combines a 95% confidence-level
window based on existing lQCD results for the gluon two-point
function with an error of 10% in the continuum analysis of
relevant ghost-gluon dynamics. World data on the process-
dependent effective coupling αg1 , defined via the Bjorken sum
rule (Anthony et al., 1993, 1996, 1999a, 1999b, 2000, 2003; Abe
et al., 1995a, 1995b, 1995c, 1996, 1997a, 1997b, 1997c, 1998;
Ackerstaff et al., 1997, 1998; Airapetian et al., 1998, 2003, 2007;
Kim et al., 1998; Alexakhin et al., 2007; Deur et al., 2007, 2008,
2014; Alekseev et al., 2010; Adolph et al., 2016). The shaded
(yellow) band on k > 1 GeV represents αg1 obtained from the
Bjorken sum by using QCD evolution (Gribov and Lipatov, 1972;
Altarelli and Parisi, 1977; Dokshitzer, 1977) to extrapolate high-
k2 data into the depicted region (Deur et al., 2007, 2008).
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As a unique process-independent effective charge, α̂PI
appears in every one of QCD’s dynamical equations of
motion, setting the interaction strength in all cases, including
the dressed-quark gap equation. It therefore plays a crucial
role in determining the fate of chiral symmetry.
The remaining element in the gap equation is the dressed

gluon-quark vertex Γν. If this vertex were only weakly
modified from its tree-level form γν then, with α̂PI in
Fig. 13, chiral symmetry would be preserved in nature
(Binosi, Chang et al., 2017). It is not, and after nearly forty
years of studying Γν, with numerous contributions that may be
traced from an analysis of Abelian theories (Ball and Chiu,
1980), continuum and lattice efforts have revealed just how
the vertex is dressed so that DCSB is unavoidable. Namely,
the smooth, infrared-finite coupling depicted in Fig. 13 is
strong enough to force nonzero values for those terms in Γν

which usually vanish in the chiral limit. This seeds a powerful
positive feedback chain so that chiral symmetry is not only
broken, but there is a sense in which it is very difficult to keep
the growth of the dressed-quark mass function Mðp2Þ, within
physically reasonable bounds (Binosi, Chang et al., 2017).
Consequently, the gap equation’s solution, Eq. (5.1), describes
a dressed quark with a dynamically generated running mass
that is large in the infrared Mðp2 ≃ 0Þ ≈ 0.3 GeV, as illus-
trated in Fig. 14.
It is dressed quarks characterized by the mass function in

Fig. 14 that are the basic elements in the Faddeev equation
depicted in Fig. 12. Solving this equation in all allowed
channels, one obtains the baryon spectrum and simultaneously
the amplitudes necessary to compute transitions between
ground and excited states. As highlighted elsewhere (Cloët,

Roberts, and Thomas, 2013; Binosi, Chang et al., 2017), this
means that since quarks carry electric charge, experiments
involving electron scattering from hadrons can probe the
momentum dependence of this mass function and also its
collateral influences. Measurements at the upgraded JLab
facility will explore a region that is indicated approximately
by the shading in Fig. 14, i.e., the domain of transition from
strong to perturbative QCD.
Contemporary theory indicates that DCSB is responsible

for more than 98% of the visible mass in the Universe
(Brodsky et al., 2015). Simultaneously, it ensures the exist-
ence of nearly massless pseudo–Nambu-Goldstone modes
(pions), each constituted from a valence quark and antiquark
whose individual Lagrangian current-quark masses are < 1%

of the proton mass (Maris, Roberts, and Tandy, 1998).
Another important consequence of DCSB is less well

known. Namely, any interaction capable of creating
pseudo–Nambu-Goldstone modes as bound states of a light
dressed quark and antiquark, and reproducing the measured
values of their leptonic decay constants, must also generate
strong color-antitriplet correlations between any two dressed
quarks contained within a nucleon. Although a rigorous proof
within QCD cannot be claimed, this assertion is based upon an
accumulated body of evidence, gathered in two decades of
studying bound-state problems in hadron physics (Segovia,
Roberts, and Schmidt, 2015). No realistic counterexamples
are known, and the existence of such diquark correlations is
also supported by lQCD (Alexandrou, de Forcrand, and
Lucini, 2006; Babich et al., 2007).
The properties of such diquark correlations have been

charted. As color-carrying correlations, diquarks are confined
(Bender, Roberts, and von Smekal, 1996; Bender et al., 2002;
Bhagwat et al., 2004). Additionally, owing to properties of
charge conjugation, a diquark with spin parity JP may be
viewed as a partner to the analogous J−P meson (Cahill,
Roberts, and Praschifka, 1987). It follows that the strongest
diquark correlations are scalar isospin zero ½ud�0þ ; and
pseudovector, isospin one fuug1þ , fudg1þ , and fddg1þ .
Moreover, while no pole mass exists, the following mass
scales, which express the strength and range of the correlation,
may be associated with these diquarks (Cahill, Roberts,
and Praschifka, 1987; Maris, 2002; Alexandrou, de
Forcrand, and Lucini, 2006; Babich et al., 2007;
Eichmann, Fischer, and Sanchis-Alepuz, 2016; Lu et al.,
2017; Chen et al., 2018) (in GeV):

m½ud�0þ ≈ 0.7–0.8; mfuug1þ ≈ 0.9–1.1; ð5:3Þ

where mfddg1þ ¼ mfudg1þ ¼ mfuug1þ in the isospin symmetric
limit. The nucleon contains both scalar-isoscalar and pseu-
dovector-isovector correlations: neither can be ignored and
their presence has many observable consequences (Roberts,
Holt, and Schmidt, 2013; Segovia, Chen et al., 2014).
Realistic diquark correlations are also soft and interacting.

All carry charge, scatter electrons, and possess an electro-
magnetic size which is similar to that of the analogous
mesonic system, e.g. (Maris, 2004; Eichmann et al., 2009;
Roberts et al., 2011): r½ud�0þ ≳ rπ , rfuug1þ ≳ rρ, with

FIG. 14. Dressed-quark mass function MðpÞ in Eq. (5.1). Solid
curves—gap equation results (Bhagwat et al., 2003; Bhagwat and
Tandy, 2006), “data”—numerical simulations of lQCD (Bowman
et al., 2005). The current quark of perturbative QCD evolves into
a constituent quark as its momentum decreases. The constituent
mass arises from a cloud of low-momentum gluons attaching
themselves to the current quark. This is DCSB, the nonperturba-
tive effect that generates a quark mass from nothing; namely, it
occurs even in the chiral limit. Notably, the size of Mð0Þ is a
measure of the magnitude of the QCD scale anomaly in
n ¼ 1 point Schwinger functions (Roberts, 2017), and experi-
ments on Q2 ∈ ½0; 12� GeV2 at the upgraded JLab facility are
sensitive to the momentum dependence ofMðpÞ within a domain
that is here indicated approximately by the shaded region.
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rfuug1þ > r½ud�0þ . As in the meson sector, these scales are set
by that associated with DCSB.
Importantly, these dynamical diquark correlations are vastly

different from the static, pointlike “diquarks” which featured
in early attempts (Lichtenberg and Tassie, 1967; Lichtenberg,
Tassie, and Keleman, 1968) to understand the baryon spec-
trum and explain the so-called missing resonance problem,
viz. the fact that quark models predict many more baryon
states than were observed in the previous millennium (Burkert
and Lee, 2004). As stated, modern diquarks are soft. They also
enforce distinct interaction patterns for the singly and doubly
represented valence quarks within the proton (Roberts, Holt,
and Schmidt, 2013; Segovia, Cloët et al., 2014; Roberts,
2016; Segovia and Roberts, 2016). Nevertheless, the number
of states in the spectrum of baryons obtained from the Faddeev
equation (Eichmann, Fischer, and Sanchis-Alepuz, 2016; Lu
et al., 2017; Chen et al., 2018) is similar to that found in the
three-constituent quark model, just as it is in lQCD spectrum
calculations (Edwards et al., 2011). [Notably, modern data
and recent analyses have already reduced the number of
missing resonances (Ripani et al., 2003; Burkert, 2012; Crede
and Roberts, 2013; Kamano et al., 2013; Mokeev et al., 2016;
Anisovich et al., 2017).]
The existence of these tight correlations between two

dressed quarks is the key to transforming the three valence-
quark scattering problem into the simpler Faddeev equation
problem illustrated in Fig. 12, without loss of dynamical
information (Eichmann et al., 2010; Segovia, Roberts, and
Schmidt, 2015). The active kernel here describes binding
within the baryon through diquark breakup and reformation,
which is mediated by exchange of a dressed quark, and such a
baryon is a compound system whose properties and inter-
actions are largely determined by the quark + diquark
structure evident in Fig. 12.
This approach to the baryon bound-state problem has been

used to calculate a wide range of nucleon-related observables
(Wilson et al., 2012; Chang, Roberts, and Schmidt, 2013;
Roberts, Holt, and Schmidt, 2013; Segovia, Cloët et al., 2014;
Roberts, 2015; Xu et al., 2015; Eichmann et al., 2016;
Segovia and Roberts, 2016), in particular, in the computation
of the mass and structure of the nucleon and its first radial
excitation (Segovia et al., 2015). This class-C analysis begins
by solving the Faddeev equation to obtain the masses and
Poincaré-covariant wave functions for these systems, taking
each element of the equation to be as specified by Segovia,
Cloët et al. (2014), which provides a successful description of
the properties of the nucleon and Δ baryon. With those inputs,
the masses are (in GeV)

nucleonðNÞ¼ 1.18; nucleon excitedðRÞ¼ 1.73. ð5:4Þ

These masses correspond to the locations of the two lowest-
magnitude JP ¼ 1=2þ poles in the three dressed-quark scat-
tering problem. The associated residues are the Faddeev wave
functions, which depend upon ðl2;l · PÞ, where l is the
quark-diquark relative momentum and P is the baryon’s
total momentum. Figure 15 depicts the zeroth Chebyshev
moment of all S-wave components in that wave function,
i.e., projections of the form

Wðl2;P2Þ ¼ 2

π

Z
1

−1
du

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
Wðl2; u;P2Þ; ð5:5Þ

where u ¼ l · P=
ffiffiffiffiffiffiffiffiffiffi
l2P2

p
. The appearance of a single zero in

S-wave components of the Faddeev wave function associated
with the first excited state in the three dressed-quark scattering
problem indicates that this state is a radial excitation (Höll,
Krassnigg, and Roberts, 2004; Qin et al., 2012; Rojas, El-
Bennich, and de Melo, 2014). Notably, one may associate a
four-vector length scale of 1=ð0.4 GeVÞ ≈ 0.5 fm with the
location of this zero. [Similar conclusions have been drawn
using lQCD (Roberts, Kamleh, and Leinweber, 2013).]
Consider now the masses in Eq. (5.4). As discussed in

connection with Fig. 9, the empirical values of the pole
locations for the first two states in the nucleon channel are
0.939 GeV for the nucleon and two poles for the Roper
1.357 − i0.076 and 1.364 − i0.105 GeV. At first glance, these
values appear unrelated to those in Eq. (5.4). However, deeper
consideration reveals (Eichmann et al., 2008, 2009) that the
kernel in Fig. 12 omits all those resonant contributions which
may be associated with the MB FSIs (meson-baryon final-
state interactions) that are resummed in dynamical coupled
channels models (Julia-Diaz et al., 2007; Kamano et al., 2010;
Suzuki et al., 2010; Kamano et al., 2013; Rönchen et al.,
2013; Döring, 2014) in order to transform a bare baryon into
the observed state. The Faddeev equation analyzed to produce
the results in Eq. (5.4) should therefore be understood as

FIG. 15. (Upper panel) Zeroth Chebyshev moment of all S-
wave components in the nucleon’s Faddeev wave function, which
is obtained from Ψ in Fig. 12, by reattaching the dressed quark
and diquark legs. (Lower panel) Kindred functions for the first
JP ¼ 1=2þ excited state. S1 is associated with the baryon’s scalar
diquark; the other two curves are associated with the axial-vector
diquark, and here the normalization is chosen such that
S1ð0Þ ¼ 1.
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producing the dressed-quark core of the bound state, not the
completely dressed and hence observable object.
Clothing the nucleon’s dressed-quark core by including

resonant contributions to the kernel produces a physical
nucleon whose mass is ≈0.2 GeV lower than that of the core
(Ishii, 1998; Hecht et al., 2002; Chang et al., 2009; Sanchis-
Alepuz, Fischer, and Kubrak, 2014). Similarly, clothing the
Δ baryon’s core lowers its mass by ≈0.16 GeV (Julia-Diaz
et al., 2007). It is therefore no coincidence that (in GeV)
1.18 − 0.2 ¼ 0.98 ≈ 0.94, i.e., the nucleon mass in Eq. (5.4) is
0.2 GeV greater than the empirical value. A successful body of
work on the baryon spectrum (Lu et al., 2017) and nucleon
and Δ elastic and transition form factors (Segovia, Cloët et al.,
2014; Roberts, 2015; Segovia and Roberts, 2016) has been
built upon this assessment of the impact of omitting resonant
contributions and the magnitude of their effects. Hence, a
comparison between the empirical value of the Roper reso-
nance pole position and the computed dressed-quark-core
mass of the nucleon’s radial excitation is not the critical test.
Instead, it is that between the masses of the quark core and the
value determined for the meson-undressed bare Roper. This
comparison is presented in Table I. Evidently, as already
displayed in Fig. 9, the DCC bare-Roper mass agrees with the
quark-core results obtained using both a QCD-kindred inter-
action (Segovia et al., 2015) and refined treatments of a
vector ⊗ vector contact interaction (Wilson et al., 2012; Lu
et al., 2017). (It is also commensurate with the value obtained
in simulations of lQCD whose formulation and/or parameters
suppress MB FSIs, Fig. 10.) This is notable because all these
calculations are independent, with just one common feature,
viz. an appreciation that observed hadrons should realistically
be built from a dressed-quark core plus a meson cloud.
The agreement in Table I is suggestive but not conclusive

because the same mass is obtained from the Faddeev equation
using vastly different basic interactions. Plainly, the mass
alone does not serve as a fine discriminator between theo-
retical pictures of the nucleon’s first radial excitation and its
possible identification with the Roper. Critical additional tests
are imposed by requiring that the theoretical picture combine a
prediction of the Roper’s mass with detailed descriptions of its
structure and how that structure is revealed in the momentum
dependence of the proton-Roper transition form factors. It
must also combine all this with a similarly complete picture of
the proton, from which the Roper is produced. As detailed in
Sec. III, precise empirical information is now available on the
proton-Roper transition form factors, reaching momentum
transfers Q2 ≈ 4.5 GeV2. At such scales, these form factors
probe a domain whereupon hard dressed-quark degrees of
freedom could be expected to determine their behavior.

Finally, to increase the level of confidence, one should impose
an additional test, requiring that the theoretical picture also
explains all related properties of the Δþ baryon, which is
typically viewed as the proton’s spin-flip excitation.
With wave functions for the participating states in hand,

computation of the transition form factors in Eq. (3.1) is a
straightforward numerical exercise. In any computation of such
form factors, one must first calculate the analogous elastic form
factors for the states involved because the associated values of
F1ðQ2 ¼ 0Þ fix the normalization of the transition. These
normalizations also reveal the diquark content of the bound
states (Roberts, Holt, and Schmidt, 2013; Segovia, Cloët et al.,
2014; Segovia et al., 2015) and predict that the relative strength
of scalar and axial-vector diquark correlations in the nucleon
and its radial excitation is the same with PJ¼0×0 ¼ 62%.
However, the result is sensitive to the quark-quark interaction
so this is a prediction that is tested by experiment. Charge radii
may also be computed from the elastic form factors, with the
result (Segovia et al., 2015) rΨRþ=rΨp ¼ 1.8, i.e., a quark-core
radius for the radial excitation that is 80% larger than that of the
ground state. In contrast, nonrelativistic harmonic oscillator
wave functions yield a value of 1.5 for this ratio. The difference
highlights the impact of orbital angular momentum and spin-
orbit repulsion, which is introduced by relativity into the
Poincaré-covariant Faddeev wave functions for the nucleon
and its radial excitation and increases the size of both systems.
The ratio of magnetic radii is 1.6.
The form factors predicted by Segovia et al. (2015) to

describe the transition between the proton and its first radial
excitation are depicted in Fig. 16. The Dirac transition form
factor F�

1 vanishes at x ¼ Q2=m2
N ¼ 0 owing to orthogonality

between the proton and its radial excitation. The calculations
(gray bands) agree quantitatively in magnitude and qualita-
tively in trend with the data on x ≳ 2. Crucially, nothing was
tuned to achieve these results. Instead, the outcome owes
fundamentally to the QCD-derived momentum dependence of
the propagators and vertices employed in the bound state and
scattering problems. This point is further highlighted by the
contact-interaction result (dot-dashed red): with momentum-
independent masses and vertices, the prediction disagrees both
quantitatively and qualitatively with the data. Experiment is
evidently a sensitive tool with which to chart the nature of the
quark-quark interaction and hence discriminate between
competing theoretical hypotheses, and it is plainly favoring
an interaction that produces a momentum-dependent quark
mass of the form in Fig. 14, which characterizes QCD.
The mismatch on x≲ 2 between data and the prediction in

Segovia et al. (2015) is also revealing. As emphasized, that
calculation yields only those form factor contributions gen-
erated by a rigorously defined dressed-quark core whereas
meson-cloud contributions are expected to be important on
x≲ 2. Thus, the difference between the prediction and data
may plausibly be attributed to MB FSIs. One can estimate the
size of this correction by recognizing that the dressed-quark-
core component of the baryon Faddeev amplitudes should be
renormalized by inclusion of meson-baryon “Fock-space”
components, and an array of analyses indicates that one
may conservatively represent this effect via a 20% reduction
in strength for the quark-core component of the Faddeev
amplitude (Bijker and Santopinto, 2009; Cloët and Roberts,

TABLE I. Quark-core mass of the Roper resonance determined
using different approaches. Row 1 is the value obtained using
EBAC’s DCC approach, and the remaining three rows are separate
DSE computations. (Masses are listed in GeV.)

Approach Roper quark-core mass

DCC (Suzuki et al., 2010) 1.76

DSE (1) (Segovia et al., 2015) 1.73
DSE (2) (Wilson et al., 2012) 1.72
DSE (3) (Lu et al., 2017) 1.82
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2008; Eichmann et al., 2009; Aznauryan and Burkert, 2016).
Naturally, since wave functions in quantum field theory evolve
with resolving scale (Lepage and Brodsky, 1979, 1980;
Efremov and Radyushkin, 1980; Raya et al., 2016; Gao et al.,
2017), the magnitude of this effect is not fixed. Instead
IMB ¼ IMBðQ2Þ, where Q2 measures the resolving scale of
any probe and IMBðQ2Þ → 0þ monotonically with increasing
Q2. Moreover, form factors in QCD possess power-law
behavior, so it is appropriate to renormalize the dressed-
quark-core contributions via the estimate

FcoreðQ2Þ → ½1 − IMBðQ2Þ�FcoreðQ2Þ; ð5:6aÞ

IMBðQ2Þ ¼ ½1 − 0.82�=½1þQ2=Λ2
MB�; ð5:6bÞ

with ΛMB ¼ 1 GeV marking the midpoint of the transition
between the strong and perturbative domains of QCD as
measured by the behavior of the dressed-quark mass function
in Fig. 14. Following this procedure (Roberts and Segovia,

2016), one arrives at the estimate of MB FSI contributions
depicted in Fig. 16.
The lower panel of Fig. 16 depicts the Pauli form factor F�

2.
All observations made regarding F�

1 also apply here, including
those concerning the inferred meson-cloud contributions.
Importantly, the existence of a zero in F�

2 is not influenced
by meson-cloud effects, although its precise location is.
This is an opportune moment to review the picture of the

Roper resonance that is painted by constituent-quark models.
Figure 6 emphasized the importance of relativity in repro-
ducing a zero in F�

2, which generates the zero in A1=2. And the
discussion in this section has highlighted the fact that the
natural degrees of freedom to employ when studying meas-
urable form factors are strongly dressed quasiparticles (and
correlations between them). It is interesting, therefore, that
constituent-quark models, formulated using light-front quan-
tization (LF CQMs) and incorporating aspects of the QCD
dressing explained herein, have been used with success to
describe features of the nucleon-Roper transition (Cardarelli
et al., 1997; Aznauryan and Burkert, 2012b, 2016). In these
models, the dressing effects are implemented phenomeno-
logically, i.e., via parametrizations chosen in order to secure a
good fit to certain data, and they do not properly comply with
QCD constraints at large momenta, e.g., using constituent-
quark electromagnetic form factors that fall too quickly with
increasing momentum transfer (Cardarelli et al., 1997) or a
dressed-quark mass function that falls too slowly (Aznauryan
and Burkert, 2012b). Notwithstanding these limitations, the
outcomes expressed are qualitatively significant. This is also
illustrated in Fig. 16, which reveals a striking similarity
between the DSE prediction for the dressed-quark-core
components of the transition form factors and those computed
using a LF CQM that incorporates a running quark mass
(dotted, brown curve) (Aznauryan and Burkert, 2016). The
parameters of the LF CQM model were adjusted by fitting
nucleon elastic form factors on Q2 ∈ ½0; 16� GeV2, allowing
room for MB FSIs and estimating their impact. Qualitatively,
therefore, despite fundamental differences in formulation,
both the DSE and LF CQM approaches arrive at the same
conclusion regarding the nature of the proton-Roper transition
form factors: while MB FSIs contribute materially on x ≲ 2, a
dressed-quark core is exposed and probed on x ≳ 2.
It should be emphasized here that were the Roper a purely

molecular meson-baryon system, in the sense defined in
Sec. IV, then the transition form factors would express an
overlap between an initial-state proton, which certainly
possesses a dressed-quark core, and a far more diffuse system.
In such circumstances, F�

1;2 would be much softer than
anything that could be produced by a final state with a
material dressed-quark core. However, Fig. 16 reveals that the
extracted transition form factors are hard, explained by
scattering from a three-valence-quark system on x ≳ 2. In
addition, as described in Sec. III, one now has experimental
results on Nπ and πþπ−p electroproduction off protons in 21
Q2 bins, covering the range ½0.2; 4.5� GeV2; and they are
uniformly described by a unique Roper resonance mass and
total and partial hadronic decay widths that are Q2 indepen-
dent. Together, these observations render a purely molecular
hypothesis untenable.

FIG. 16. (Upper panel) F�
1 as a function of x ¼ Q2=m2

N . Gray
band within black curves—dressed-quark-core contribution with
up to 20% Faddeev amplitude renormalization from MB FSIs,
implemented according to Eq. (5.6a). The transition form factor
curve with smallest magnitude at x ¼ 1 has the maximum
renormalization. Green band within dotted green curves—in-
ferred MB FSI contribution. The band demarcates the range of
uncertainty arising from 0% to 20% renormalization of the
dressed-quark core. Dashed blue curve—least-squares fit to the
data on x ∈ ð0; 5Þ. Dot-dashed red curve—contact-interaction
result (Wilson et al., 2012). Long-dashed brown curve—light-
front (LF) CQM result reconstructed from the helicity amplitudes
in Aznauryan and Burkert (2016) using Eqs. (3.2). (Lower
panel) F�

2ðxÞ with the same legend. Data: circles (blue) (Az-
nauryan et al., 2009), triangle (gold) (Dugger et al., 2009),
squares (purple) (Mokeev et al., 2012, 2016), and star (green)
(Tanabashi et al., 2018).
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Finally, given the scope of agreement between experiment
and theory in Fig. 16, one should apply a final test, viz. does
the same perspective also deliver a consistent description of
the nucleon and Δ-baryon elastic form factors and the
nucleon-Δ transition? An affirmative answer is supported
by an array of results (Segovia, Cloët et al., 2014; Roberts,
2015, 2018; Segovia and Roberts, 2016).

VI. CONCLUSION

After more than fifty years, a coherent picture connecting
the Roper resonance with the nucleon’s first radial excitation
has become visible. Completing this portrait only became
possible following: (i) the acquisition and analysis of a vast
amount of high-precision nucleon-resonance electroproduc-
tion data with single- and double-pion final states on a large
kinematic domain of energy and momentum transfer;
(ii) development of a sophisticated dynamical reaction theory
capable of simultaneously describing all partial waves
extracted from available, reliable data; (iii) formulation, and
wide-ranging application of a Poincaré covariant approach to
the continuum bound-state problem in relativistic quantum
field theory that expresses diverse local and global impacts of
DCSB in QCD; and (iv) the refinement of constituent-quark
models so that they, too, qualitatively incorporate these
aspects of strong QCD. In this picture:

• The Roper resonance is, at heart, the first radial ex-
citation of the nucleon.

• It consists of a well-defined dressed-quark core, which
plays a role in determining the system’s properties at all
length scales, but exerts a dominant influence on probes
with Q2 ≳m2

N , where mN is the nucleon mass.
• The core is augmented by a meson cloud, which both
reduces the Roper’s core mass by ≈20%, thereby solving
the mass problem that was such a puzzle in constituent-
quark model treatments, and, at low-Q2, contributes an
amount to the electroproduction transition form factors
that is comparable in magnitude with that of the dressed-
quark core, but vanishes rapidly as Q2 is increased
beyond m2

N .
These fifty years of experience with the Roper resonance

have delivered lessons that cannot be emphasized too strongly.
Namely, in attempting to predict and explain the QCD
spectrum, one must fully consider the impact of meson-
baryon final-state interactions and the couplings between
channels and states that they generate, and look beyond
merely locating the poles in the S matrix, which themselves
reveal little structural information, to also consider the
Q2 dependences of the residues, which serve as a penetrating
scale-dependent probe of resonance composition.
Moreover, the Roper resonance is not unusual. Indeed, in

essence, the picture drawn here is also applicable to the
Δ baryon, and an accumulating body of experiment and theory
indicates that almost all baryon resonances can be viewed the
same way, viz. as systems possessing a three-body dressed-
quark bound-state core that is supplemented by a meson
cloud, whose importance varies from state to state and whose
observable manifestations disappear rapidly as the resolving
power of the probe is increased. In this connection, it is

important to highlight that CLAS12 at the newly upgraded
JLab will be capable of determining the electrocouplings of
most prominent nucleon resonances at unprecedented photon
virtualities Q2 ∈ ½6; 12� GeV2 (Gothe et al., 2009; Carman
et al., 2014). Consequently, the associated experimental
program will be a powerful means of validating the perspec-
tive described herein.
Assuming the picture we have drawn is correct, then

CLAS12 will deliver empirical information that can address
a wide range of issues that are critical to our understanding of
strong interactions (Burkert, 2018), e.g., is there an environ-
ment sensitivity of DCSB, and are quark-quark correlations an
essential element in the structure of all baryons? As reviewed
herein, existing experiment-theory feedback suggests that
there is no environment sensitivity for the nucleon, Δ baryon,
and Roper resonance: DCSB in these systems is expressed in
ways that can readily be predicted once its manifestation is
understood in the pion, and this includes the generation of
diquark correlations with the same character in each of these
baryons. Resonances in other channels, however, may contain
additional diquark correlations, with different quantum num-
bers, and potentially be influenced in new ways by MB FSIs.
Therefore, these channels, and higher excitations, open new
windows on sQCD and its emergent phenomena whose vistas
must be explored and mapped if the most difficult part of the
standard model is finally to be solved.
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2009, Chin. Phys. C 33, 1189.

Chang, L., C. D. Roberts, and S. M. Schmidt, 2013, Phys. Rev. C 87,
015203.

Chang, L., C. D. Roberts, and P. C. Tandy, 2011, Chin. J. Phys. 49,
955 [https://www.ps-taiwan.org/cjp/download.php?type=paper
&vol;=49#=5&page;=955].

Chen, C., B. El-Bennich, C. D. Roberts, S. M. Schmidt, J. Segovia,
and S. Wan, 2018, Phys. Rev. D 97, 034016.

Chen, X., J. Ping, C. D. Roberts, and J. Segovia, 2018, Phys. Rev. D
97, 094016.

Cloët, I. C., and C. D. Roberts, 2008, Proc. Sci. LC2008, 047.
Cloët, I. C., C. D. Roberts, and A.W. Thomas, 2013, Phys. Rev. Lett.
111, 101803.

Close, F. E., and Z.-P. Li, 1990, Phys. Rev. D 42, 2194.
Cornwall, J. M., 1982, Phys. Rev. D 26, 1453.
Cornwall, J. M., and J. Papavassiliou, 1989, Phys. Rev. D 40, 3474.
Crede, V., and W. Roberts, 2013, Rep. Prog. Phys. 76, 076301.
Cutkosky, R. E., and S. Wang, 1990, Phys. Rev. D 42, 235.
Cyrol, A. K., L. Fister, M. Mitter, J. M. Pawlowski, and N. Strodth-
off, 2016, Phys. Rev. D 94, 054005.

Dalitz, R., and R. Moorhouse, 1965, Phys. Lett. 14, 159.
Deur, A., V. Burkert, J.-P. Chen, and W. Korsch, 2007, Phys. Lett. B
650, 244.

Deur, A., V. Burkert, J.-P. Chen, and W. Korsch, 2008, Phys. Lett. B
665, 349.

Deur, A., Y. Prok, V. Burkert, D. Crabb, F. X. Girod, K. A. Griffioen,
N. Guler, S. E. Kuhn, and N. Kvaltine, 2014, Phys. Rev. D 90,
012009.

Dirac, P. A. M., 1928, Proc. R. Soc. A 117, 610.
Dokshitzer, Y. L., 1977, Sov. Phys. JETP 46, 641 [http://inspirehep
.net/record/126153?ln=en].

Döring, M., 2014, Int. J. Mod. Phys. Conf. Ser. 26, 1460054.

Volker D. Burkert and Craig D. Roberts: Colloquium: Roper resonance: Toward a …

Rev. Mod. Phys., Vol. 91, No. 1, January–March 2019 011003-16

https://doi.org/10.1007/s11467-015-0517-6
https://doi.org/10.1007/s11467-015-0517-6
https://doi.org/10.1016/S0370-2693(98)01341-0
https://doi.org/10.1103/PhysRevLett.90.092002
https://doi.org/10.1103/PhysRevD.75.012007
https://doi.org/10.1016/j.physletb.2010.05.069
https://doi.org/10.1016/j.physletb.2006.12.076
https://doi.org/10.1103/PhysRevLett.97.222002
https://doi.org/10.1103/PhysRevLett.97.222002
https://doi.org/10.1103/PhysRevD.91.014506
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1103/PhysRevLett.119.062004
https://doi.org/10.1103/PhysRevLett.71.959
https://doi.org/10.1103/PhysRevD.54.6620
https://doi.org/10.1016/S0370-2693(99)00940-5
https://doi.org/10.1016/S0370-2693(99)00590-0
https://doi.org/10.1016/S0370-2693(00)01014-5
https://doi.org/10.1016/S0370-2693(02)03015-0
https://doi.org/10.1103/PhysRevC.74.045205
https://doi.org/10.1103/PhysRevD.32.1085
https://doi.org/10.1103/PhysRevD.32.1085
https://doi.org/10.1016/0031-9163(64)91184-9
https://doi.org/10.1016/0031-9163(64)91184-9
https://doi.org/10.1016/j.ppnp.2011.08.001
https://doi.org/10.1103/PhysRevC.85.055202
https://doi.org/10.1103/PhysRevC.80.055203
https://doi.org/10.1103/PhysRevC.67.015209
http://arXiv.org/abs/1603.06692
https://doi.org/10.1103/PhysRevC.71.015201
https://doi.org/10.1103/PhysRevC.78.045209
https://doi.org/10.1103/PhysRevD.76.074021
https://doi.org/10.1103/PhysRevD.22.2542
https://doi.org/10.1016/0031-9163(64)90741-3
https://doi.org/10.1016/0370-2693(83)90965-6
https://doi.org/10.1088/0253-6102/58/1/16
https://doi.org/10.1103/PhysRevC.65.065203
https://doi.org/10.1016/0370-2693(96)00372-3
https://doi.org/10.1016/0370-2693(96)00372-3
https://doi.org/10.1103/PhysRevC.70.035205
https://doi.org/10.1103/PhysRevC.68.015203
https://doi.org/10.1063/1.2220232
https://doi.org/10.1103/PhysRevC.80.065210
https://doi.org/10.1103/PhysRevD.95.031501
https://doi.org/10.1016/j.physletb.2015.01.031
https://doi.org/10.1103/PhysRevD.96.054026
https://doi.org/10.1103/PhysRevD.66.111901
https://doi.org/10.1088/0954-3899/30/2/017
https://doi.org/10.1016/j.physrep.2009.05.001
https://doi.org/10.1080/14786441308634955
https://doi.org/10.1007/s00601-011-0301-2
https://doi.org/10.1103/PhysRevD.71.054507
https://doi.org/10.1051/epjconf/201611301015
https://doi.org/10.1103/RevModPhys.90.025001
https://doi.org/10.1103/RevModPhys.90.025001
http://arXiv.org/abs/1502.05728
http://arXiv.org/abs/1502.05728
https://doi.org/10.1071/PH890147
https://doi.org/10.1071/PH890147
https://doi.org/10.1051/epjconf/20123701017
https://doi.org/10.1146/annurev-nucl-101917-021129
https://doi.org/10.1142/S0218301304002545
https://doi.org/10.1071/PH890171
https://doi.org/10.1103/PhysRevD.36.2804
https://doi.org/10.1103/PhysRevD.36.2804
https://doi.org/10.1071/PH890129
https://doi.org/10.1071/PH890129
https://doi.org/10.1016/S0370-2693(98)00574-7
https://doi.org/10.1103/PhysRevD.34.2809
https://doi.org/10.1103/PhysRevD.51.3598
https://doi.org/10.1103/PhysRevC.66.065204
https://doi.org/10.1016/S0146-6410(00)00109-5
https://doi.org/10.1016/S0370-2693(97)00149-4
https://doi.org/10.1016/S0370-2693(97)00149-4
https://doi.org/10.1007/s10052-998-0104-x
https://doi.org/10.1088/1674-1137/33/12/022
https://doi.org/10.1103/PhysRevC.87.015203
https://doi.org/10.1103/PhysRevC.87.015203
https://www.ps-taiwan.org/cjp/download.php?type=paper&vol=49&num=5&page=955
https://www.ps-taiwan.org/cjp/download.php?type=paper&vol=49&num=5&page=955
https://www.ps-taiwan.org/cjp/download.php?type=paper&vol=49&num=5&page=955
https://www.ps-taiwan.org/cjp/download.php?type=paper&vol=49&num=5&page=955
https://www.ps-taiwan.org/cjp/download.php?type=paper&vol=49&num=5&page=955
https://doi.org/10.1103/PhysRevD.97.034016
https://doi.org/10.1103/PhysRevD.97.094016
https://doi.org/10.1103/PhysRevD.97.094016
https://doi.org/10.1103/PhysRevLett.111.101803
https://doi.org/10.1103/PhysRevLett.111.101803
https://doi.org/10.1103/PhysRevD.42.2194
https://doi.org/10.1103/PhysRevD.26.1453
https://doi.org/10.1103/PhysRevD.40.3474
https://doi.org/10.1088/0034-4885/76/7/076301
https://doi.org/10.1103/PhysRevD.42.235
https://doi.org/10.1103/PhysRevD.94.054005
https://doi.org/10.1016/0031-9163(65)90463-4
https://doi.org/10.1016/j.physletb.2007.05.015
https://doi.org/10.1016/j.physletb.2007.05.015
https://doi.org/10.1016/j.physletb.2008.06.049
https://doi.org/10.1016/j.physletb.2008.06.049
https://doi.org/10.1103/PhysRevD.90.012009
https://doi.org/10.1103/PhysRevD.90.012009
https://doi.org/10.1098/rspa.1928.0023
http://inspirehep.net/record/126153?ln=en
http://inspirehep.net/record/126153?ln=en
https://doi.org/10.1142/S2010194514600544


Döring, M., C. Hanhart, F. Huang, S. Krewald, and U. G. Meissner,
2009, Nucl. Phys. A 829, 170.

Drechsel, D., O. Hanstein, S. S. Kamalov, and L. Tiator, 1999, Nucl.
Phys. A 645, 145.

Drechsel, D., S. S. Kamalov, and L. Tiator, 2007, Eur. Phys. J. A 34,
69.

Dugger, M., et al., 2009, Phys. Rev. C 79, 065206.
Durr, S., et al., 2008, Science 322, 1224.
Edwards, R. G., J. J. Dudek, D. G. Richards, and S. J. Wallace, 2011,
Phys. Rev. D 84, 074508.

Efimov, G. V., M. A. Ivanov, and V. E. Lyubovitskij, 1990, Z. Phys. C
47, 583.

Efremov, A. V., and A. V. Radyushkin, 1980, Phys. Lett. B 94, 245.
Eichmann, G., R. Alkofer, I. C. Cloët, A. Krassnigg, and C. D.
Roberts, 2008, Phys. Rev. C 77, 042202(R).

Eichmann, G., R. Alkofer, A. Krassnigg, and D. Nicmorus, 2010,
Phys. Rev. Lett. 104, 201601.

Eichmann, G., I. C. Cloët, R. Alkofer, A. Krassnigg, and C. D.
Roberts, 2009, Phys. Rev. C 79, 012202(R).

Eichmann, G., C. S. Fischer, and H. Sanchis-Alepuz, 2016, Phys.
Rev. D 94, 094033.

Eichmann, G., H. Sanchis-Alepuz, R. Williams, R. Alkofer, and C. S.
Fischer, 2016, Prog. Part. Nucl. Phys. 91, 1.

Eidelman, S., et al., 2004, Phys. Lett. B 592, 1.
Engel, G. P., C. Lang, D. Mohler, and A. Schäfer, 2013, Phys. Rev. D
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