УСПЕХИ ФИЗИЧЕСКИХ НАУК

ЭНЕРГЕТИЧЕСКИЕ УРОВНИ АТОМНЫХ ЯДЕР

В. Н. Кондратьев

Атомное ядро как устойчивая или квазиустойчивая квантовомеханическая система элементарных частиц — протонов и нейтронов — обладает дискретным спектром энергетических уровней. Прямым указанием на наличие энергетических уровней ядра служат дискретные спектры альфа-лучей, наблюдающиеся при альфа-распадеестественно-радиоактивных элементов, а также монохроматический егр уппы гамма-лучей, которые сопутствуют альфа-или бетараспаду ядер. Другим, не менее убедительным экспериментальным доказательством существования энергетических ядерных уровней являются резонансные эффекты, наблюдающиеся при различного рода ядерных процессах, к числу которых относятся процессы рассеяния нейтронов, протонов и альфа-частиц ядрами, процессы захвата (реакции n, γ и p, γ) и реакции расщепления ядер, идущие при наличии энергетического резонанса с повышенным поперечным сечением.

I

Теоретическое решение задачи об ядерных уровнях, являющейся основной задачей динамики атомного ядра, встречает ряд трудностей, обусловленных как недостаточностью наших сведений о силах взаимодействия ядерных частиц, так и сложностью самой квантовой задачи, представляющей собой задачу многих тел. Попытки ряда авторов построить схему энергетических уровней ядер в предположении экспоненциального закона взаимодействия ядерных частиц не привели к сколько-нибудь существенным результатам в отношении установления количественных закономерностей в расположении ядерных уровней 1.

В основе этих попыток обычно лежит одно из двух взаимноисключающих представлений о движении ядерных частиц. Первое представление исходит из предположения о независимом движении отдельных протонов и нейтронов в ядре. Преимуществом этого-

крайне упрощённого и поэтому далёкого от истины представления является возможность приписания каждой ядерной частице определённых квантовых чисел - главного и азимутального, - позволяющих построить рациональную классификацию ядерных уровней. Эта клиссификация в соответствии с принципом Паули приводит к представлению о существовании замкнутых нуклонных «оболочек», последовательно заполняемых протонами и нейтронами, подобно электронным оболочкам атомов: «оболочек» s, содержащих максимум два протона или два нейтрона, «оболочек» р — с шестью протонами или нейтронами, d-c десятью и т. д. Из этого представления, в частности, следует повышенная прочность ядер с целиком заполненными нуклонными «оболочками» и сравнительно малая прочность связи каждого нейтрона или протона, находящегося вне такой «оболочки». Так, при допущении следующего порядка в относительном расположении «оболочек»: 1s, 2p, 3d, 2s, 4f,..., получающегося при определённых представлениях о внутриядерном поле, нужно ожидать особенной устойчивости ядер, содержащих 2, 8, 20 и т. д. протонов или нейтронов². Энергия возбуждения таких ядер должна быть также повышенной по сравнению с ядрами, имеющими незамкнутые нуклонные «оболочки». Добавим, что повышенная прочность замкнутых «оболочек», в частности «оболочек» s, содержащих два протона и два нейтрона, даёт некоторое обоснование довольно распространённому представлению о наличии в ядре альфа-частиц в качестве вторичных элементарных составных частей ядра. Однако это представление находится в очевидном противоречии с исходным предположением о независимости движения протонов и нейтронов в ядре и может быть рассматриваемо только как известный корректив, смягчающий грубость этого предположения.

Изложенные представления находят частичное экспериментальное обоснование в периодичности ядерных масс и распространённости стабильных изотопов различных элементов 3, что рассматривается как указание на наличие замкнутых нуклонных оболочек. Однако отсутствие достаточно точных значений масс средних и тяжёлых ядер, а также крайняя скудость наших сведений об энергетических ядерных уровнях делают невозможным на данном этапе развития ядерной физики надёжное экспериментальное обоснование тех или иных представлений, лежащих в основе теории ядра. Такое обоснование будет возможным только в результате накопления фактического числового материала, немаловажную часть которого должны составить данные, относящиеся к энергетическим уровням ядра.

Второе — противоположное первому — представление, развитое Бором и Калькаром 4, предполагает взаимную динамическую связь между ядерными частицами. Согласно этому представлению каждое стационарное состояние атомного ядра отвечает определённому коллективному типу движения всех его нуклонов, подобному тому, какое имеет место при упругих колебаниях кристаллической решётки или

жидкого шара. Исходя из этой аналогии, Бор и Калькар вычисляют частоты колебаний объёма $V=A\delta^3$, имеющего форму шара (A- число протонов и нейтронов в ядре и $\delta-$ средний диаметр ячейки, приходящейся на каждый нуклон), отождествляя эти частоты с уровнями ядра. Вычисления Бора и Калькара носят, однако, лишь ориентировочный, качественный характер и, по мнению самих авторов, в лучшем случае могут дать только грубые представления о частоте расположения ядерных уровней в зависимости от атомного числа A. Согласно этим авторам расстояния между соседними уровнями должны

уменьшаться с A как $A^{-\frac{1}{3}}$ в случае объёмных колебаний и как $A^{-\frac{1}{2}}$ — в случае колебаний формы (поверхностные колебания). Из опыта следует, что изменение с A средних расстояний между

наиболее низкими ядерными уровнями ближе к зависимости $A^{-\frac{1}{2}}$. Отсюда можно заключить ⁴, что если отождествление уровней ядра с частотами квазиупругих колебаний и не лишено физических оснований, то низкие уровни во всяком случае должны представлять собой лишь те колебательные уровни, которые отвечают поверхностным колебаниям ядра.

Более подробно вопрос о поверхностных или капиллярных колебаниях ядра, рассматриваемого как равномерно заряженная жидкая капля (с зарядом Z_4), был рассмотрен Френкелем , который пришёл к следующему выражению для частоты этих колебаний:

$$v_n = \frac{1}{2\pi} \sqrt{\frac{U_0 n}{3MR^2} \left[(n-1)(n+2) - 10\gamma \frac{n-1}{2n-1} \right]}, \tag{1}$$

где $U_0=4\pi R^2$ з— поверхностная энергия ядра (R— радиус и σ — поверхностное натяжение капли), M— его масса, γ — отношение кулоновской энергии $E_0=\frac{3}{5}\frac{(Ze)^2}{R}$ к поверхностной энергии и n— число, характеризующее порядок колебания *). Ввиду гармоничности колебаний для колебательной энергии, т. е. для энергии соответствующего ядерного уровня, получается выражение

$$E_n = s_n h v_n, \tag{2}$$

где s, — число колебательных квантов.

Отметим ещё, что, в противоположность боровской капельножидкой модели ядра, Вильсоном была предложена модель, представляющая собою тонкий шаровой слой. По Вильсону, образование шарового слоя вместо сплошного шара может быть обусловлено насыщением ядерных сил. Так, если допустить, что каждая ядерная

^{*)} Как это явствует из формулы (1), частота основного колебания отвечает n=2. Следовательно, мы имеем n=2, 3, 4...

частица не может испытывать сильного притяжения со стороны более чем четырёх окружающих её частиц, то легко видеть, что электростатические силы превратят шар в шаровой слой. Частоты колебаний такого шарового слоя (при неизменной его поверхности) выражаются формулой

$$v_n = \frac{Ze}{4\pi R} (MR)^{-\frac{1}{2}} \sqrt{n(n+1) - 2}, \tag{3}$$

где R — радиус слоя и n=2, 3, 4,... Заметим, что при n>5 формула (3) даёт практически равностоящие уровни.

Известны также попытки, основанные на представлении ядра как жёсткого ротатора, отождествить низкие ядерные уровни с вращательными уровнями такого ротатора. Теоретическое рассмотрение этого вопроса привело, однако, Теллера и Уилера к отрицательному результату, особенно в отношении возможности представления именнонизких ядерных уровней как вращательных уровней жёсткого ротатора. Позже этот вопрос был снова поставлен Гуггенгеймером на основе чисто энергетических соображений, из которых, ввиду быстрого убывания ядерных сил с расстоянием, можно заключить, что энергия ядра в основном должна иметь форму кинетической энергии к.).

Для энергии жёсткого ротатора из квантовой механики получается следующее выражение:

$$E = BK(K+1), \tag{4}$$

где

$$B=\frac{\hbar^2}{2I}$$
.

Момент инерции I ядра, вращающегося, как целое, и имеющего сферическую симметрию, равен

$$I = \frac{2}{5} MR^2$$

(R — радиус ядра **)). Полагая M=mA (m — масса нуклона) и представляя R в виде

$$R = R_0 A^{\frac{1}{3}},$$

из (4) мы получаем:

$$E = 2.5B_0 A^{-\frac{5}{3}} K(K+1), \tag{5}$$

^{*)} Энергия жёсткого ротатора, как известно, является кинетической энергией.

^{**)} Плотность всех ядер, как и ранее, считается одинаковой, что является лишь приближённо правильным.

SET

$$B_0 = \frac{\hbar^2}{2mR_0^2} *).$$

Анализируя известные энергетические спектры различных ядер с точки зрения формул (5) и (6), Гуггенгеймер приходит к заключению о существовании рациональных отношений между разностями энергетических уровней ядра, находящихся в соответствии с этими формулами. Слабой стороной анализа Гуггенгеймера является то обстоятельство, что им совершенно не были приняты во внимание как правила отбора для квантового числа К, так и зависимость вероятности переходов между различными вращательными уровнями ядра от числа К. Рассмотрение данных Гуггенгеймера с этой точки зрения показывает, что они находятся в явном противоречии с выводами теории 9. Это заставляет усомниться в правильности интерпретации рассмотренных Гуггенгеймером ядерных уровней как вращательных. Поэтому, несмотря на казалось бы хорощее согласие его данных с формулами жёсткого ротатора, возможность чисто вращательных переходов в ядре нельзя считать экспериментально доказанной, тем более, что экспериментальные данные об ядерных уровнях в большинстве случаев недостаточно точны и не всегда достаточно надёжны. По этой причине проверка формул жёсткого ротатора на большом опытном материале в данный момент является исключённой. Помимо этого, и сам вопрос о применимости простых формул вида (4) не представляется в достаточной мере выясненным. В частности, не исключена возможность того, что большая часть ядер не имеет сферической симметрии: вращательная энергия таких ядер будет уже выражаться не формулой (4), а более сложной формулой, содержащей два или три момента инерции. А так как вопрос о форме ядра не может быть в данный момент решён теорией, то это оставляет значительную неопределённость и неуверенность в правильности той или иной интерпретации ядерных уровней. Добавим ещё, что в цитированной уже работе Теллер и Уилер допускают возможность значительного смещения вращательных уровней (по сравнению с уровнями жёсткого ротатора), обусловленного недостаточной жёсткостью связи между нуклонами.

Рассматривая вероятности вращательных переходов в ядре, Френкель ⁵ приходит к заключению, что чисто вращательный спектр ядер

$$E = B_0 a^{-1} A^{-\frac{2}{3}} K(K+1), \tag{6}$$

где a — число вращающихся частиц (радиус вращения полагается равным радиусу ядра).

^{*)} Наряду с вращением ядра, как целого, Гуггенгеймер допускает также возможность вращения одной или немногих ядерных частиц вокруг остальной части ядра. В этом случае для вращательной энергии получается следующее выражение:

должен быть чрезвычайно слабым, так же как и чисто колебательный. По мнению Френкеля, наибольшей интенсивностью должен обладать вращательно-колебательный спектр ядра, подобно тому, как это имеет место в случае оптических молекулярных спектров. Одновременное изменение колебательной и вращательной энергии ядра должно проявляться в тонкой структуре ядерных уровней и спектров—в результате расщепления каждого колебательно-

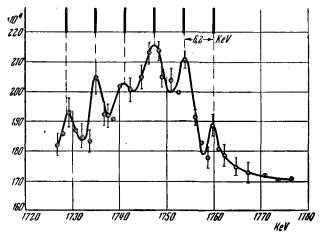


Рис. 1. Тонкая структура гамма-линии 1,760 MeV *14RaC'.

го уровня и, соответственно, каждой колебательной линии на ряд вращательно-колебательных компонент. В случае ядра, рассматриваемого как жёсткий ротатор, расстояния между отдельными компонентами тонкой структуры линии должны выражаться формулой

$$\Delta v_n = \frac{B}{h} \left[K \left(K + 1 \right) - \left(K \pm \Delta K \right) \left(K \pm \Delta K + 1 \right) \right], \tag{7}$$

причём $\Delta K \leqslant n$ (при K = 0 $\Delta K = n$).

Блестящим подтверждением теории явилось открытие Латышевым с сотрудниками^{10, 9} тонкой структуры гамма-линий RaC'. Контур одной из проанализированных ими линий представлен на рис. 1, из которого видно, что здесь тонкая структура проявляется в расщеплении линии на ряд равноотстоящих линий. Из формулы (7) следует, что расстояние между двумя соседними линиями тонкой (вращательной) структуры должно равняться

$$\frac{2B\Delta K}{h} = \frac{h}{4\pi^2 I} \Delta K.$$

Из сравнения этой величины с наблюдённой разностью энергии двух соседних линий тонкой структуры (6,2 KeV) при $\Delta K=1$ и

 $I=\frac{2}{5}MR^2=\frac{2}{5}$ 214 mR^2 для радиуса ядра RaC' получается значение $R=(8,88\pm0,30)\,10^{-13}$ см, находящееся в хорошем согласии с данными, полученными с помощью других методов 9 , из чего следует правильность интерпретации тонкой структуры линий RaC' как вращательной.

Аналогичная интерпретация была предложена также Вильсоном 11 для объяснения структуры энергетического спектра ядер 28 Si и 28 Al. А именно Вильсон показал, что 10 из 36 наблюдённых резонансных уровней 28 Si и 4 из 20 уровней 28 Al могут быть интерпретированы как вращательно-колебательные уровни этих ядер.

Рядом авторов делались попытки установить эмпирически количественные закономерности в распределении уровней различных ядер на основе их сравнительного изучения. Так, в результате рассмотрения уровней около 50 лёгких ядер Чанг пришёл к заключению, что в каждой из четырёх серий ядер 4n-1, 4n, 4n+1 и 4n+2 ядра с одинаковым избытком нейтронов N-Z (N-число нейтронов и Z-число протонов в ядре) имеют сходные системы уровней. А именно, в каждой из четырёх серий уровни ядер с одинаковым N-Z могут быть выражены эмпирической формулой

$$E = as - \frac{b}{s}, \tag{8}$$

где s — целое число, а a и b — константы различные для различных . серий и различных значений N-Z. При этом первый член в формуле (8) автором интерпретируется как выражающий энергию ядра без учёта взаимодействия его частиц, второй же член выражает это взаимодействие *). Ещё раньше сходство систем ядерных уровней у ядер 27 Al, 31 P и 35 Cl, обладающих N-Z=1, было подмечено Гакселем 18, который, повидимому, был первым, кто обратил внимание на связь между строением ядра и его энергетическим спектром. Такое же сходство было обнаружено Мэй и Вайдианатаном 14 в случае ядер 22 Ne, 26 Mg, 30 Si и 34 S, у которых N-Z=2. Эти авторы. исходящие (как и Чанг) из представления о наличии альфа-частиц в ядре (альфа-модель ядра), связывают сходство систем уровней у изученных ими ядер с тем фактом, что наряду с некоторым количеством альфа-частиц эти ядра содержат по два избыточных нейтрона («радикал» 2n). Соответственно, таким «радикалом», обусловливающим сходство систем ядерных уровней, в гомологичном ряду 27А1, 31Р, ³⁵С1 является группа 2n + p. Легко, однако, видеть, что если указанная закономерность и не является простой случайностью, то, во всяком случае, она простирается на очень ограниченное число «гомологов». В частности, известно, что системы уровней ядер ¹⁵N и ¹¹B, содержащих также по два «избыточных» нейтрона и по одному про-

^{*)} В смысле двух приведённых в начале этой статьи представлений о движении ядерных частиц.

тону (2n+p), ничего общего не имеют с системой уровней 27 Al, 31 P и 35 Cl.

Как это явствует из всего вышеизложенного, теория ядра на современном этапе её развития оказывается бессильной в решении количественной задачи энергетических ядерных уровней. Тем большее значение приобретают экспериментальные возможности установления систем уровней различных ядер, так как можно надеяться, что знание различных квантовых состояний ядра, в смысле их свойств и взаимного расположения соответствующих им уровней, в случае максимально большого числа ядер наметит пути для построения точной теории ядра, позволит правильно сформулировать ту руководящую гипотезу, которая должна быть положена в основу этой теории.

В следующем разделе мы остановимся на экспериментальных методах исследования ядерных уровней, ограничив, однако, задачу вопросом об энергетическом спектре ядер (системы уровней) и совершенно не касаясь не менее важного вопроса о свойствах уровней и соответствующих им состояний ядра (ширина уровней и связанная с нею вероятность квантовых переходов, ядерный спин, электрический момент и т. д.).

H

Дискретный характер спектра альфа-частиц *), испускаемых при альфа-распаде тяжёлых ядер, даёт принципиальную возможность установления энергетических уровней этих ядер. Действительно, наличие нескольких изоэнергетических групп альфа-частиц в альфа-спектре большинства радиоактивных ядер свидетельствует о том, что либо эти ядра распадаются, находясь на различных энергетических уровнях, либо же возникающие в результате распада конечные ядра имеют различные степени возбуждения.

Так как конечное ядро (ядро отдачи) после выброса альфачастицы исходным ядром имеет некоторую кинетическую энергию, равную, согласно законам сохранения, $\frac{4}{A}$ E_{aik} (A — атомный вес конечного ядра и E_{aik} — энергия альфа-частицы), то изменение энергии при данном акте распада должно быть равным

$$\Delta W_{ik} = \frac{A+4}{A} E_{aik}.$$

Вместе с тем величина ΔW равна разности энергий исходного (W_i^0) и конечного (W_k) ядер, откуда следует

$$W_i^0 - W_k = \frac{A+4}{A} E_{aik}. \tag{9}$$

^{*)} Исследование структуры альфа-спектров основано на применении магнитного анализа. Группы альфа-частиц, значительно отличающихся по их энергии, легко различимы также по длине пробега.

Как видно из этого равенства, лишь при различных i и одном и том же значении k, или, наоборот, при одном i и различных k, оно даёт возможность найти разности уровней исходного $(W_i^0 - W_{i'}^0)$ или, соответственно, конечного ядра $(W_k - W_{k'})$ как разности величин $\frac{A+4}{A}$ E_{alk} . Следовательно, на основании одного только анализа альфаспектра система уровней данного ядра не может быть однозначно установлена.

Поэтому для решения этой задачи обычно наряду с данными по альфа-спектру используют данные, относящиеся к спектру гаммалучей, который также является дискретным, будучи связанным с квантовыми переходами ядра. Величина гамма-кванта (γ) *) непосредственно даёт разность соответствующих уровней исходного или конечного ядра, т. е.

$$\gamma_{ii'} = W_i^0 - W_{i'}^0$$

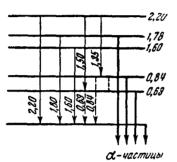
$$\gamma_{kk} = W_k - W_{k'}.$$
(10)

или

Равенство разностей энергии (ΔW), вычисляемых из альфа-спектра, и величины гамма-квантов (γ) установлено в случае большого числа альфа-радиоактивных ядер. Для примера укажем следующие данные, относящиеся к RaAc (KeV):

$$\Delta W$$
 . . 33,6 41 60 100 191 275 295 309 γ . . . 31,5 43,7 61,4 101 195 282 300

Однако, простое сопоставление данных, полученных из анализа альфа-спектра, с данными анализа гамма-спектра ещё не решает задачи об уровнях энергии данного ядра, так как для этого необходимо убедиться в том, какому ядру — начальному или конечному — принадлежит гамма-спектр. Наиболее надёжным методом здесь является метод с о в п а де н и й (см. ниже), заключающийся в одновременном наблюдении актов испускания альфа- и гамма-лучей. Так как средняя продолжительность жизни возбуждённого ядра измеряется величиной порядка 10^{-13} сек., то испускание гамма-лучей конечным ядром происходит практически одновременно с процессом альфа-распада. В этом случае мы будем иметь «истинное» $\alpha \gamma$ -совпадение. В случае же, когда гамма-лучи испускаются исходным ядром, $\alpha \gamma$ -совпадение может быть только случайным, что легко установить, произведя достаточно


^{*)} Измерение величины гамма-квантов, осуществляется путём магнитноспектрографического измерения энергии электронов, вырываемых гаммалучами из тонких металлических пластинок (Комптон- и фотоэффект), или путём измерения энергии электронов и позитронов, возникающих в результате внутренней конверсии гамма-лучей 15. Более грубый метод основан на измерении коэффициента поглощения гамма-лучей в свинце, являющегося однозначной функцией длины волны.

² уфн. т. XXXVIII, вып. 2

большое число наблюдений. Таким путём можно установить принадлежность наблюдаемого гамма-спектра тому или другому ядру и, сопоставляя его с альфа-спектром, найти уровни этого ядра.

В качестве примера на рис. 2 мы приводим систему уровней ядра ThC', построенную на основании анализа его альфа- и гамма-спектров 15 . Аналогичные схемы уровней установлены и для некоторых других альфа-активных ядер.

Для установления уровней продуктов распада бета-активных ядервиесто альфа-спектров могут быть использованы их бета-спектры.

Последние, как известно, являются с п л о шны м и, однако нетрудно видеть, что изменение энергии при бета-распаде, т. е. разность уровней исходного и конечного ядра, в этом случае должна быть равной максимальной энергии соответствующей группы бета-лучей (при β-распаде), находимой из границы бета-спектра со стороны больших энергий.

Представляя процесс β — -распада схемой

$$A^Z \rightarrow A^{Z+1} + \beta^- + \nu + T_{ib}$$

Рис. 2. Схема энергетических уровней ²¹²ThC'.

максимальной энергии электрона) и полагая энергии исходного и конечного ядра равными соответственно

$$W_i^0 = W_0^0 + E_i^0$$
 и $W_k = W_0 + E_k$

 $\left(W_0^0$ и W_0 — энергии ядер в их нормальном состоянии) из баланса соответствующих атомных масс (с учётом того факта, что покоящаяся масса нейтрино равна нулю) мы будем иметь 16

$$\Delta W_{ik} = W_i^{0} - W_k = (W_0^0 - W_0) + (E_i^0 - E_k) = T_{ik}, \quad (11)$$

где

$$W_0^0 - W_0 = c^2 (m_Z - m_{Z+1}).$$

Задача установления системы энергетических уровней ядер на основе анализа бета- и гамма-спектров облегчается тем, что исходное ядро практически всегда находится в нормальном состоянии $(E_i^0=0)$ - В этом случае, согласно равенству (11), разности максимальных энергий бета-частиц $(T_{0k}-T_{0k'})$ непосредственно дают разности уровней конечного ядра: $E_{k'}-E_k$.

Рассмотрим несколько типичных примеров ¹⁷. На рис. З представлен бета-распад ядра: ¹⁹⁸ Au. В этом случае наблюдается моноэнергетическая группа бета-лучей с максимальной энергией $T_{01} = 0,92$ MeV и монохроматические гамма-лучи с энергией $\gamma_{10} = 0,41$ MeV. Изме-

рения $\beta\gamma$ -совпадений позволяют установить, что конечный уровень бета-излучения является начальным для гамма-излучения.

Схема установки для измерения совпадений изображена на рис. 4. При измерении $\beta\gamma$ -совпадений между источником и одним из счётчиков Гейгера-Мюллера помещают тонкие алюминиевые пластинки различной

толщины и измеряют число совпадений в зависимости от толщины алюминия, т. е. от энергии бета-лучей. При этом по независимости числа βγ-совпадений от энергии бета-частиц убеждаются в том, что в данном бета-спектре присугствует только одна группа бета-частиц. При наличии двух или нескольких групп бета-частиц число совпадений должно зависеть от их энергии, особенно в тех случаях, когда одна из этих групп связана с переходом на нормальный уровень конечного ядра. Рис В приведённом примере бета-распада 198 А и число в у-совпадений оказывается не зависящим от энер-

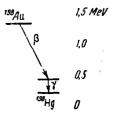


Рис. 3. Бета-распад

гии бета-частиц, из чего следует: 1) наличие одной только труппы бета-частиц и 2) факт практически одновременного испускания бета-

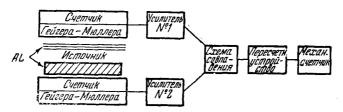


Рис. 4. Схема установки для измерения рү- и үү-совпадений.

и гамма-лучей, т. е. бета-распад $^{198}\mathrm{Au}$ с переходом на возбуждённый уровень ядра $^{198}\mathrm{Hg}$, являющийся начальным для гамма-излучения.

При измерении үү-совпадений между источником и обоими счётчиками помещается толстый слой алюминия, достаточный для поглощения всех бета-частиц. При этом совпадение наблюдается только при наличии в гамма-спектре двух или более, длин волн. В случае ¹⁹⁸Au үү-совпадения не наблюдаются, из чего следует монохроматичность гамма-излучения.

При наличии двух или нескольких гамма-квантов в гамма-спектре часто возникает вопрос о том, испускаются ли различные кванты последовательно (каскад) или параллельно. Последнее имеет место тогда, когда исходный уровень гамма-излучения является общим для различных гамма-переходов. Один из методов решения этого вопроса заключается в параллельном измерении поглощения гамма-лучей свинцом с применением одного счётчика и двух, включённых по схеме совпадения (при помещении свинца между источником и каждым из счёт-

чиков). При этом в случае каскада кривые поглощения, снятые с помощью одного и двух счётчиков, очевидно, будут иметь одинаковую форму. В противном случае (параллельные гамма-лучи) из-за различия коэффициентов поглощения для различных длин волн

гамма-лучей кривые поглощения будут

иметь различную форму.

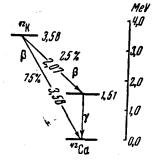
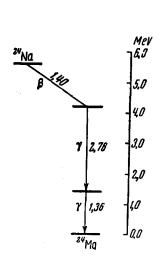
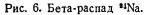




Рис. 5. Бета-распад 42 К.

На рис. 5, 6, 7 и 8 представлены более сложные случаи бета-распада. В случае распада 42 К число $\beta\gamma$ -совпадений оказывается зависящим от энергии бета-частиц в соответствии с наличием двух групп этих частиц с максимальной энергией $T_{01}=2,07~{\rm MeV}$ и $T_{00}=3,58~{\rm MeV}$. Из разности этих чисел для энергии возбуждения ядра $^{42}{\rm Ca}$ получается $E_1=T_{00}-T_{01}=1,51~{\rm MeV}$ — величина, совпадающая с энергией гамма-кванта (γ_{10}) ; отсюда схема рис. 5. Независимость $\beta\gamma$ -совпадений

от энергии (одна группа бета-частиц), наличие үү-совпадений и каскадный характер гамма-излучения в случае бета-распада ²⁴Na вместе с измерениями энергии бета-частиц и гамма-квантов приводят к схеме

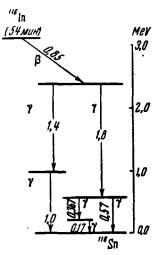


Рис. 7. Бета-распад ¹¹⁶In.

рис. 6. Аналогичным путём получены более сложные схемы рис. 7 и 8, как и схемы, относящиеся к ряду других бета-активных ядер.

Здесь мы остановимся ещё только на схеме бета-распада естественно радиоактивных $^{234}_{90}$ UX₁, $^{234}_{91}$ UX₂ и $^{234}_{91}$ UZ (рис. 9). В открытом

Ганом ¹⁹ UZ, оказавшемся изомером UX₂ (одинаковые N и Z), мы имеем первый случай ядерной изомерии, предсказанной Содди ²⁰ за несколько лет до этого открытия. UZ и UX₂ обладают различными периодами полураспада (6,7 часа и 1,14 мин.) и различными бета-спектрами. Это заставляет рассматривать UZ как метастабильный UX₂. Согласно гипотезе Вейцзекера ²¹ всегда, когда первое возбуждённое

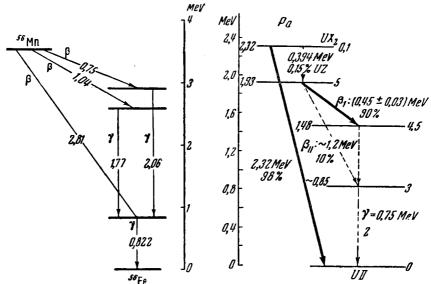


Рис. 8. Бета-распад 56Мп.

Рис. 9. Бета-распад 90 UX₁, 91 UX₂ и 234 UZ.

состояние ядра имеет спин, значительно отличающийся от спина нормального состояния, в силу правил отбора переход из этого состояния в нормальное «запрещён» и оно оказывается метастабильным *).

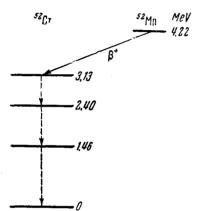
Кроме $UX_2 - UZ$, в настоящее время известно большое число ядер-изомеров (см. ниже).

В случае позитронно-активных ядер (β +-активность) для установления энергетических уровней продуктов их распада могут быть привлечены измерения спектра позитронов (обычно параллельно с данными по гамма-излучению, сопутствующему процессу распада). Этот процесс представляется схемой

$$A^Z \longrightarrow A^{Z-1} + \beta^+ + \nu + T_{0k}$$

где β^+ — позитрон и T_{0k} — кинетическая энергия позитрона и нейтрино (равная максимальной энергии позитрона). Ввиду того, что при позитронном распаде одновременно с позитроном атом теряет ещё

^{*)} См. также Френкель 5.


один электрон, изменение энергии в этом случае выразится следующим равенством 16 :

$$\Delta W_{ik} = W_i^0 - W_k = (W_0^0 - W_0) + E_i - E_k = T_{ik} + 2m_e c^{2*}), (12)$$

где m_e — масса электрона и

$$W_0^0 - W_0 = c^2 (m_Z - m_{Z-1}).$$

На рис. 10 мы приводим схему распада β +-активного 52 Мп и уровни получающегося из него 52 Сг 22 . Отметим, что в отличие от

этого случая, как правило, почти всегда $E_i = 0$, как и при β —-распаде.

Возбуждённые состояния ядер возникают также при превращениях, связанных с K-захватом, который очень часто осуществляется параллельно с позитронным распадом, что, конечно, не обязательно, как это, например, имеет место и в случае 52 Мп. Из схемы K-захвата

$$A^Z + e_k \longrightarrow A^{Z-1} + v + T$$

(T — кинетическая энергия нейтрино) для изменения энергии системы следует 16 :

$$\Delta W_{ik} = W_i^0 - W_k = (W_0^0 - W_0) + E_i - E_k = T_{ik}. \quad (13)$$

Рис. 10. Позитронный распад 58 Mn и уровни 52 Cr.

Ввиду невозможности измерения энергии нейтрино величина ΔW_{ik} в этом случае не может быть получена из опыта и уровни конечного ядра E_k ($E_i=0$, см. выше) могут быть установлены лишь на основании изучения гамма-спектра. Простейшие примеры даны на рис. 11 и 12. Первый из них представляет также пример ядра (64 Cu), способного как к β^+ -, так и к β^- -распаду. При этом наряду с позитронным распадом, приводящим к нормальному уровню конечного ядра (64 Ni), осуществляются также два процесса K-захвата, в результате которых получается нормальное и возбуждённое ядро 64 Ni 23 . Рис. 12 относится к распаду 107 Cd 24 . Из приведённых здесь данных видно, что это ядро в 99,27 случаях из ста превращается путём K-захвата в метастабильный изомер 107 Ag * , тем же путём в 0,42 случаях из ста — в возбуждённое ядро 107 Ag и в 0,31 случаях испытывает позитронный распад.

 Переход метастабильного ядра ¹⁰⁷Ag *, обладающего периодом полураспада в 44 сек., в нормальное состояние осуществляется путём

^{*)} $2 m_e c^2 = 1,01 \text{ MeV}.$

испускания гамма-кванта, претерпевающего внутреннюю конверсию 25 , приводящую к выбрасыванию электрона из K- или L-оболочки (с меньшей вероятностью из M- и N-оболочек) атома, испускающего гамма-квант. Энергия метастабильного уровня (E), таким образом, может быть вычислена из энергии электрона конверсии T_e и энергин связи его с ядром eI, находимой из границы соответствующей рентгеновской серии, т. е.

$$E = T_{\bullet} + eI. \tag{14}$$

Аналогичным путём были вычислены значения энергии метастабильных уровней большого числа ядер. Так, например, в случае

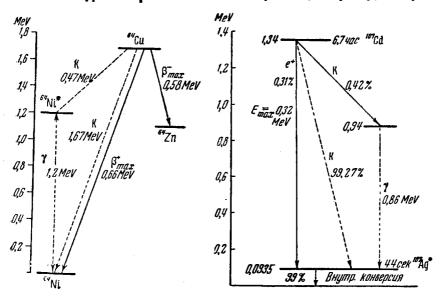


Рис. 11. Распад 64Си.

Рис. 12. Распад 107Cd.

тамма-активного изомера стабильного 83 Kг, получающегося при бетараспаде 83 Bг и обладающего периодом полураспада в 113 мин., энергия электронов конверсии оказывается равной $T_e=35$ KeV. Добавляя к этому числу энергию связи K-электрона в атоме криптона, равную 14 KeV, на основании (14) получаем E=0,049 MeV 26 . Добавим, что из вероятности перехода 83 Kr* \longrightarrow 83 Kr для ядерного спина метастабильного ядра криптона (83 Kr*) получается $\frac{1}{2}$ (по сравнению с $\frac{9}{2}$ для нормального 83 Kr). Большая разница в спинах (4) находится в полном согласии с гипотезой Вейцзекера (см. выше).

Как это явствует из всего вышесказанного, гамма-спектры играют исключительно важную роль при установлении системы ядер-

ных уровней, присущих радиоактивным ядрам или ядрам, возникающим в результате бета-распада (β — и β +) или процессов K-захвата. Возбуждённые ядра часто образуются также и при других ядерных реакциях, идущих при взаимодействии нейтронов, протонов, дейтонов и альфа-частиц с различными ядрами. Изучение спектра гамма-лучей, сопровождающих данную реакцию, и даёт возможность найти энергетические уровни конечного ядра, возникающего в результате этой реакции. В этом отношении особенно подробно изучены лёгкие ядра 27 .

Так, например, в результате реакции

10
 B $(n\alpha)$ 7 Li,

наряду с нормальными ядрами ⁷Li, в 93 случаях из ста ²⁸ образуются возбуждённые ядра, испускающие монохроматические гамма-лучи ²⁹ с энергией $\gamma_{10} = 0,480$ MeV, откуда следует $E_1 = 0,480$ MeV. Те же уровни ⁷Li возникают также в результате реакций

9
 Be $(d\alpha)$ 7 Li 27 и 6 Li (dp) 7 Li 30 ,

как это, в частности, следует из измерений соответствующих гаммаспектров. Точно так же на основании анализа гамма-излучения можно было установить факт образования в ряде реакций (наряду с нормальными) возбуждённых ядер ¹²С и найти ряд уровней этого ядра. К числу этих реакций относятся реакции:

⁹Be
$$(\alpha n)^{12}C^{31,27}$$
, $^{11}B(dn)^{12}C^{32,33,27}$, $^{11}B(p\gamma)^{12}C^{34}$, $^{14}N(d\alpha)^{12}C^{35,27}$ H $^{15}N(p\alpha)^{12}C^{36}$.

Применяя метод $\gamma\gamma$ -совпадений, можно было установить порядок излучения соответствующих линий возбуждённым ядром и, таким образом, найти его уровни (E_k) .

Из других реакций укажем реакцию

10
B (αp) 13 C,

в результате которой возникают возбуждённые ядра ¹³С (наряду с нормальным). Ряд уровней этого ядра можно было установить на основании анализа гамма-спектра ^{37,38}. Часть этих уровней получается также из анализа гамма-спектра реакции

Как известно, возбуждённые ядра возникают также в результате неупругого рассеяния нейтронов, протонов и альфа-частиц. Уровни рассеивающего ядра в этом случае могут быть установлены как по спектру гамма-лучей, так и по спектру рассеиваемых частиц. Так, при неупругом рассеянии протонов 40 и альфа-частиц 41 литием

обнаруживается монохроматическое гамма-излучение, отвечающее уровню E = 0.480 MeV. Далее, в спектре рассеяния моноэнергетических протонов (с энергией 4 MeV) неоном наблюдается группа протонов с энергией на ~1,4 MeV меньшей первоначальной энергии, связанная с возбуждением уровня 20 Ne $E_1 = 1.5$ MeV в результате неупругого рассеяния 42. Точно так же при рассеянии нейтронов магнием возникает группа нейтронов с энергией, на ~ 1,3 MeV меньшей первоначальной энергии, соответственно возбуждению ядра ²⁴Mg ⁴³. На рис. 13 приведён первоначальный спектр (пунктир) и спектр рассеянных ней-

(сплошная кривая). Нейтронный спектр в этом случае измерялся по пробегу протонов отдачи в камере Вильсона, наполненной этаном.

Как уже указывалось выше, ядра, возникающие в результате той или иной реакции, нии. Поэтому в реакциях, сопровождающихся часто оказываются в возбуждённом состоявылетом лёгкой частицы, т. е. в реакциях типа $n\alpha$, dn, dp, $d\alpha$, αn , αp ,..., при условии достаточно большой энергии бомбардирующих частиц или достаточно большого положительного энергетического эффекта реакции, в энергетическом спектре вылетающих должны наблюдаться дискретные группы частиц, подобно тому как это имеет место при неупругом рассеянии. При этом группа частиц с максимальной энергией, очевидно, соответствует такой реакции, когда конечное ядро оказывается в нормальном состоянии, группы же с меньшей энергией — реакциям, продуктом которых являются ядра, находящиеся на том или ином уровне возбуждения ($E_{\rm b}$). Измерения энергии этих групп дают возможность определить величины E_{b} , на чём и основан один из широко распространённых методов установления энергетических уровней ядер (а также энерге-

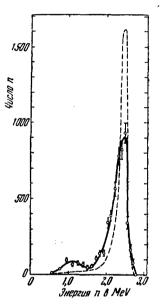


Рис. 13. Неупругое рассеяние нейтронов в 34Мg. Пунктир — первоначальный нейтронный спектр, сплошная кривая-спектр рассеянных нейтронов.

тических эффектов соответствующих реакций и, следовательно, масс ядер).

При вычислении энергии возбуждения E_{k} из энергетического спектра возникающих в результате реакции лёгких частиц или неупруго рассеянных частиц необходимо принимать во внимание долю кинетической энергии, получаемую ядром отдачи, что в особенности относится к лёгким ядрам. Обозначая начальную кинетическую энергию и массу бомбардирующей и вылетающей частиц соответственно через T^0 , m^0 и T_{b} , m, энергетический эффект реакции — через Q (в случае экзоэнергетических реакций Q>0) и массу ядра отдачи—через M, из законов сохранения имеем:

$$E_{k} = Q + \left(1 - \frac{m^{0}}{M}\right) T^{0} - \left(1 + \frac{m}{M}\right) T_{k} + 2 \frac{\sqrt{m^{0}m}}{M} \sqrt{T^{0} T_{k}} \cos \vartheta, (15)$$

где ϑ — угол между направлением вылета лёгкой частицы и направлением бомбардирующей частицы. Если измеряется максимальная энергия вылетающих частиц, то в равенстве (15) $\cos \vartheta = 1$ и поправка, учитывающая энергию ядра отдачи, будет иметь вид

$$-\left(\sqrt{\frac{m^0}{M}T^0}-\sqrt{\frac{m}{M}T_k}\right)^2.$$

В случае достаточно тяжёлых ядер этой поправкой можно пренебречь и мы будем иметь

$$E_{k} = Q + T^{0} - T_{k}. \tag{16}$$

В этом случае энергия возбуждённых уровней ядра непосредственно получается как разность величин T_0 и T_k , где T_0 — энергия, отвечающая группе наиболее быстрых частиц. Действительно, так как при k=0 $E_k=E_0=0$, то мы имеем $T_0=Q+T^0$, т. е.

$$E_k = T_0 - T_k. \tag{17}$$

Равенства (15), (16) и (17), очевидно, остаются в силе и в случае неупругого рассеяния, когда $m^0=m$ и Q=0. В качестве примера приведём случай реакции

 24 Mg $(dp)^{25}$ Mg.

При облучении магния дейтонами с энергией в 3,9 MeV наблюдаются четыре группы протонов. В предположении, что все эти группы связаны с реакцией дейтона с наиболее распространённым из трёх устойчивых изотопов магния — 24 Mg, для энергетических уровней ядра 25 Mg в этом случае получаются следующие значения: E_1 = 0,70, E_2 = 1,70 и E_3 = 2,25 MeV 44 .

Возбуждённые состояния ядра возникают не только при облучении ядер нейтронами, протонами или альфа-частицами, но также и при облучении быстрыми электронами и Х-лучами. До настоящего времени этот метод, повидимому, применялся лишь в случае ядер, обладающих метастабильными уровнями, обусловливающими их длительную активность. Измеряя активность (путём счёта электронов конверсии) при различных энергиях бомбардирующих электронов (eV) или различных ускоряющих потенциалах (V) в рентгеновской трубке (Х-лучи), строят кривую активности А в зависимости от величины V. Типичная кривая такого рода, относящаяся к слу-

чаю 108 Rh 45 изображена на рис. 14. Из значений энергии X-лучей в eV, отвечающих изломам кривой $A=A\left(V\right)$, свидетельствующим о повышенной «активации» родия при превышении энергией фотонов некоторых определённых пороговых значений, получаются те энергетические

уровни ¹⁰³Rh, с возбуждением которых связана «активация» этого ядра. Отвечаю-

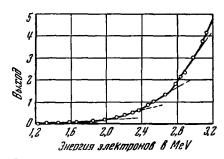


Рис. 14. Возбуждение активности метастабильного 108Rh при облучении родия X-лучами различной энергии.

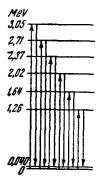


Рис. 15. Схема возбуждения 45-минутной активности ¹⁰⁸Rh Х-лучами.

щая кривой рис. 14 схема возбуждения активности родия представлена на рис. 15. Цифры слева (1,26...3,05 MeV), отвечающие положению изломов кривой рис. 14, представляют собой энергетические уровни ядра 103Rh, первично возбуждаемые X-лучами. Соответствующие квантовые переходы в ядре изображены стрелками, направленными снизу вверх. С испусканием гамма-квантов возбуждённые ядра практически мгновенно переходят в метастабильное состояние активного 103Rh * (стрелки, направленные сверху вниз). Переход из этого состояния, обладающего полупериодом жизни в 45 ± 1 мин., осуществляется путём испускания гамма-кванта, претерпевающего внутреннюю конверсию. Измерение энергии электронов конверсии с учётом энергии связи К-электронов родия даёт для энергии метастабильного уровня величину в 0,040 MeV. Существенно подчеркнуть, что этот уровень возбуждается Х-лучами не непосредственно, а через более высокие уровни, что явствует из существования порога возбуждения, определяемого энергией наиболее низкого из этих уровней -1,26 MeV (см. рис. 14). Причина этого несомненно заключается в малой вероятности перехода $E_0 \longrightarrow E_0^*$ (метастабильный уровень). Аналогичная картина наблюдается, повидимому, и во всех других известных случаях возбуждения метастабильных уровней ядер Х-лучами или быстрыми электронами. Интересно, далее, отметить, что возбуждение метастабильного состояния 103Rh удалось наблюдать также при облучении родия трёхмегавольтными нейтронами 46. Здесь, повидимому, может итти речь о неупругом рассеянии нейтронов. Известно также

возбуждение метастабильного 115 In при облучении индия быстрыми нейтронами (2,5 MeV) 47 , протонами (\sim 5,8 MeV) 48 и альфа-частицами (\sim 16 MeV) 49 , повидимому, также связанное с неупругим рассеянием этих частиц. Порог возбуждения 115 In * X-лучами и электронами отвечает энергии в 1,2 MeV. Возбуждение метастабильных состояний ядер при неупругом рассеянии нейтронов, протонов или альфа-частиц, повидимому, также связано с предварительным возбуждением более высоких уровней ядра, о чём, в частности, свидетельствует тот факт, что порог возбуждения метастабильного золота 197 Au оказывается одним и тем же (1,22 MeV) для X-лучей и для нейтронов 50 . Из этого

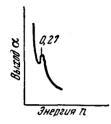


Рис. 16. Выход альфа-частиц в реакции 6 Li $(n\alpha)$ 3 T.

факта также следует, что уровень ¹⁹⁷Au 1,22 MeV может возбуждаться как X-лучами, так и нейтронами (см. ниже).

Все рассмотренные до сих пор методы определения ядерных уровней в основном относятся к уровням конечного (ядерные реакции, бета-распад, К-захват) или облучаемого ядра (неупругое рассеяние, Х-лучи и быстрые электроны). В дальнейшем будут рассмотрены методы, с помощью которых определяются уровни промежуточного ядра, представляющего собою промежуточное или переходное состояние реагирующей ядерной системы. Уровни промежуточного ядра, в частности, об-

наруживаются по появлению резонансных максимумов на кривых выхода продуктов различных реакций — в соответствии с теорией ядерных реакций 51 . Приведём несколько примеров, остановившись сначала на реакциях нейтронов. В этих реакциях промежуточным ядром является ядро более тяжёлого изотопа (A+1) исходного ядра (A).

На рис. 16 мы приводим кривую выхода альфа-частиц, возникающих в результате реакции

в зависимости от энергии нейтронов 52 . Промежуточным ядром здесь является ядро 7 Li. Поэтому резонансный максимум, наблюдающийся при энергии нейтронов в 0,27 MeV (рис. 16), должен соответствовать одному из уровней 7 Li. Обозначая энергию нейтрона, отвечающую резонансному максимуму кривой выхода, через T_r (0,27 MeV), энергию, освобождающуюся при образовании промежуточного ядра (7 Li) из исходного ядра (6 Li) и нейтрона, — через Q', массы нейтрона и обоих ядер — через m_n , m (исходное ядро) и m' (промежуточное ядро), скорость центра тяжести системы — через v' и искомую энергию возбуждения ядра 7 Li — через E, из закона сохранения энергии найдём:

$$Q' + T_r = E + \frac{m'v'^2}{2}$$

или, ввиду

$$\frac{m' v'^2}{2} = \frac{m_n}{m'} T_r,$$

$$E = Q' + \frac{m}{m'} T_r.$$
(18)

Вычисляя величину Q' из известных масс нейтрона и атомов ⁶Li и ⁷Li на основании равенства

$$Q' = c^2 (m_n + m - m'),$$

мы найдём Q' = 7,15 MeV и, далее, на основании (18)

$$E = 7.15 + \frac{6}{7} \cdot 0.27 = 7.38 \text{ MeV}.$$

На рис. 17 приведена кривая выхода реакции (сечение реакции) 14 N (np) 14 C 53 .

Из отвечающих максимумам этой кривой трёх значений величины $T_{\rm c}=0.55,~0.70$ и $1.45~{\rm MeV}$ и энергетического эффекта Q' на осно-

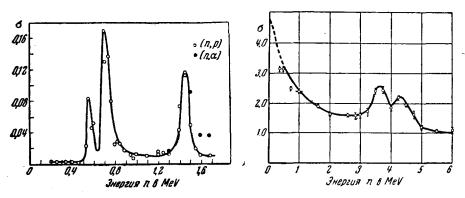


Рис. 17. Поперечное сечение реак- Рис. 18. Полное поперечное сечеции 14 N $(np)^{14}$ C. ние 12 C.

вании (18) получаются следующие три уровня ядра 15 N: E=11,26,11,40 и 12,10 MeV.

В качестве примера реакции захвата нейтрона $(n\gamma)$ можно указать реакцию

$$^{238}U(n\gamma)^{239}U$$
,

обнаруживающую резкий резонанс при значении $T_r = 5$ eV. Отсюда следует, что соответствующий уровень ядра ²³⁹U должен иметь энергию $E \simeq Q'$ (18).

Наконец, к числу реакций нейтронов формально мы можем отнести и процессы рассеяния, которые в их теоретической трактовке по существу не отличаются от прочих нейтронных реакций ⁵¹ и которые,

как известно, также обнаруживают эффект резонанса (аномальное или резонансное рассеяние). Примером аномального рассеяния нейтронов может служить рассеяние их углеродом. «Аномалия» здесь обнаруживается по появлению нескольких резонансных максимумов на кривой полного сечения. Эта кривая в области быстрых нейтронов имеет два максимума (рис. 18) 54 , из положения которых получаются следующие уровни энергии ядра 13 C: E=8,25 и 8,90 MeV.

Рассмотрим, далее, реакции протонов и дейтонов. В этих реакциях промежуточными ядрами являются ядра $(A+1)^{Z+1}$ и $(A+2)^{Z+1}$, если A^Z — бомбардируемое ядро. На рис. 19 и 20 приведены кривые выхода нейтронов в реакции

$${}^{9}\text{Be}(pn){}^{9}\text{B}{}^{55},$$

из положения резонансного максимума которой получается уровень ядра ^{10}B : E=8,76 MeV, и реакции

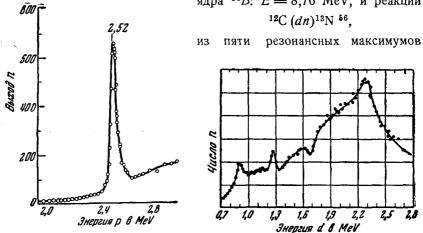


Рис. 19. Выход нейтронов в реакции ${}^9{\rm Be}\,(pn)$ ${}^9{\rm B}.$ Рис. 20. Выход нейтронов в реакции ${}^{12}{\rm C}\,(dn)$ ${}^{13}{\rm N}.$

которой получаются следующие уровни ядра ^{14}N : $E=11,05,\ 11,26,\ 11,37,\ 11,6$ и 12,3 MeV. Те же резонансные максимумы и, следовательно, те же уровни получаются из кривой выхода другого продукта реакции позитронно-активного ^{13}N .

На рис. 21 приведена кривая выхода гамма-лучей, отвечающая излучению ядра 7 Li с энергией 0,48 MeV, при облучении лития быстрыми протонами 57 . Наличие резонансного максимума указывает на аномальное неупругое рассеяние протонов. Из положения максимума получается уровень ядра 8 Be $E=18,13\,$ MeV. На рис. 22 приведена кривая выхода радиоактивного 8 Li, получающегося в результате реакции

 $^{7}\text{L1}(dp)^{8}\text{Li}^{58}$.

Из резонансных максимумов, наблюдающихся при энергии дейтонов 0,65, 1,02 и 1,35 MeV, получаются следующие уровни ядра 9 Ве: $E=17,17,\ 17,45$ и 17,71 MeV.

В качестве примера реакции $p\alpha$ на рис. 23 приведена кривая выхода альфа-частиц в реакции

¹¹B
$$(p\alpha)^8$$
 Be ⁵⁹.

Из резкого резонансного максимума этой кривой, наблюдающегося при энергии протонов в 0,165 MeV, получается уровень

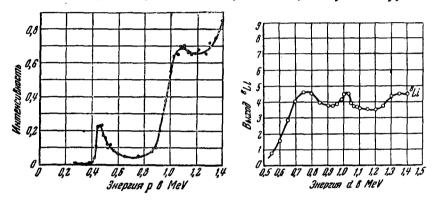


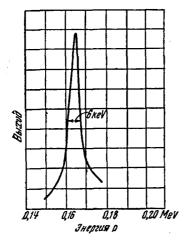
Рис. 21. Выход возбуждённого ⁷Li при неупругом рассеянии протонов литием. Рис. 22. Выход радиоактивно- го ⁸Li в реакции ⁷Li (dp) ⁸Li.

¹²С E=16,11 MeV. Для иллюстрации резонансного эффекта реакции p_{γ} на рис. 24 приведена кривая выхода гамма-лучей при p-за-хвате в углероде

$$^{12}C(p\gamma)^{13}N^{60}$$
.

Из положения максимума (0,453 MeV) получается ўровень ядра 13 N E=2,34 MeV.

Наличие резонансных уровней промежуточного ядра иногда проявляется не в появлении максимумов на кривой выхода продуктов реакции, а в более или менее резком увеличении выхода в точках резонанса. Такой вид имеет, например, кривая выхода нейтронов в реакции


9
Be $(\alpha n)^{12}C^{61}$,

представленная на рис. 25. Из положения изломов кривой выхода (1,3, 2,4, 3,3, 4,3,...) получаются следующие уровни ядра 13 C: E = 11,5, 12,3, 12,9, 13,6,... MeV.

Наконец, укажем ещё аномальное (резонансное) рассеяние альфачастиц, позволяющее из положения резонансных максимумов найти уровни промежуточного ядра $(A+4)^{Z+2}$. С помощью этого метода

удалось установить ряд уровней ⁸Ве, ¹⁶О, ²⁰Ne и др. (по аномальному рассеянию альфа-частиц гелием, углеродом, кислородом и др.).

Из опыта следует, что одни и те же ядерные уровни могут быть возбуждены различными путями. Так, например, уровень ⁷Li 0,48 MeV возбуждается в результате реакций ⁶Li $(dp)^7$ Li, ⁷Be $(K)^7$ Li, ⁹Be $(d\alpha)^7$ Li, ¹⁰B $(n\alpha)^7$ Li, а также в результате неупругого рассеяния протонов и альфа-частиц²⁷, ряд уровней ⁸Be возбуждается в реакциях ⁷Li $(dn)^8$ Be, ¹⁰B $(d\alpha)^8$ Be, ¹¹B $(p\alpha)^8$ Be ²⁷, так же, как ряд уровней ¹²C возбуждается при реакциях ¹¹B $(dn)^{12}$ C, ¹⁴ $N(d\alpha)^{12}$ C, ¹⁵N $(p\alpha)^{12}$ C и т. д. Ранее мы указывали, что метастабильное состояние ¹¹⁵In возбуждается при бом-

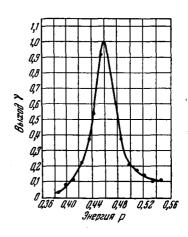
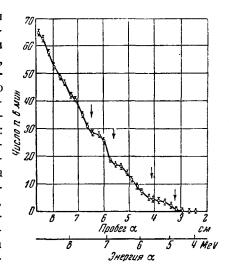


Рис. 23. Выход альфа-частиц в реакции 11 В ($p\alpha$) 6 Ве.

Рис. 24. Выход гамма-излучения в реакции p-захвата 12 С (p_7) 18 N.


бардировке индия электронами и при облучении X-лучами, а также в результате неупругого рассеяния нейтронов, протонов и альфачастиц. Это состояние возбуждается также в результате реакции $^{115}\text{Cd}\ (\beta^-)^{115}\text{In}\ ^{47}$. Точно так же метастабильное состояние ^{87}Sr возникает в результате реакций $^{87}\text{Y}\ (K)^{87}\text{Sr},\ ^{87}\text{Rb}\ (pn)\ ^{87}\text{Sr},\ ^{86}\text{Sr}\ (n_{\Upsilon})^{87}\text{Sr}^{62},$ или метастабильное состояние ^{88}Kr — в результате реакций $^{80}\text{Se}\ (an)^{83}\text{Kr},$ $^{82}\text{Kr}\ (dp)^{83}\text{Kr}^{68},\ ^{83}\text{Br}\ (\beta^-)^{83}\text{Kr}^{26},\ ^{82}\text{Kr}\ (n_{\Upsilon})^{83}\text{Kr}$ и при облучении X-лучами и т. д. Все приведённые выше примеры относятся к уровням конечного ядра.

В результате различных реакций могут быть возбуждены одни и те же уровни и промежуточного ядра. Так, уровни 17,17 и 17,45 MeV ядра 9 Ве возбуждаются как в реакции 7 Li $(dp)^8$ Li, так и в реакции 7 Li $(dn)^8$ Ве 58 , для которых это ядро является промежуточным. В результате реакций 12 С $(dp)^{18}$ С и 12 С $(dn)^{18}$ N возбуждаются уровни ядра 14 N (11,05, 11,26, 11,37 и 11,8 MeV) 56 , которое является про-

межуточным для этих реакций. То же самое имеет место в случае уровня промежуточного ядра ¹⁵N 12,10 MeV, возбуждающегося в реакциях $^{14}N (np)^{14}C$ и $^{14}N (n\alpha)$ ^{11}B 53 .

Однако наряду с фактами, свидетельствующими о возможности возбуждения одних и тех же ядерных уровней различными путями, можно привести большое число экспериментальных фактов, из которых следует, что существуют уровни, возбуждающиеся одним путём и не возбуждающиеся другими. Так, из двух наинизших известных уровней ядра²⁰Ne 1,5 и 2,2 MeV, возбуждающихся в ре-

зультате реакции $^{19}F(dn)^{20}Ne^{64}$. при бета-распаде ²⁰F возбуждается только уровень 2,2, как это следует из максимальной энергии электронов 65. С другой стороны. при неупругом рассеянии протонов неоном возбуждается только уровень 1,5⁴² Приведём ещё пример уровней ядра 56 Ге: из чеуровней **это**го ядра: 0,845, 2,09, 266 и 2,98 МеV, первый, третий и четвёртый возбуждаются в результате распада 56 Мп (β +) 56 Fe, второй же—в результате распада 56 Co (β +) 56 Fe 66 . Аналогичное явление наблюдается и в случае уровней промежуточного ядра. Так, уровень ядра ⁹Ве 17,71 MeV возбуждается в реакции 7 Li $(dp)^8$ Li и не возбуждается Рис. 25. Выход нейтронов в реакции в реакции 7 Li $(dn)^{8}$ Be 58 или уровень ^{14}N 11,49 MeV возбуж-

⁹Be (αn) ¹-C.

дается в реакции ${}^{12}\text{C}\,(dp){}^{13}\text{C}\,$ и не возбуждается в реакции ${}^{12}\text{C}\,(dn){}^{13}\text{N},$ в которой, наоборот, возбуждается уровень 11,6 MeV, не возбуждающийся в первой реакции⁵⁶.

Все приведённые выше факты, несомненно, находятся в тесной связи с особенностями структуры ядер и свойствами их энергетических состояний, проявляющихся в различной вероятности соответствующих квантовых переходов ядерной системы. Поэтому изучение условий возбуждения различных ядерных уровней, выходов ядерных реакций и вероятностей квантовых переходов в ядре, наряду с установлением системы уровней максимально большого числа ядер и с получением максимально точных значений энергии каждого отдельного уровня, представляет задачу огромной важности с точки зрения динамической теории ядра.

Ниже мы приводим сводку экспериментальных данных, относящихся к системе энергетических уровней различных ядер.

³ УФН, т. XXXVIII вып. 2

Ш

Сводка составлена в виде таблицы по данным, опубликованным до 1 января 1949 г. В таблице указаны порядковый номер Z и символ элемента, число нейтронов N и массовое число A соответствующего изотопа, его активность, энергия различных квантовых состояний ядра в MeV (нормальному состоянию отвечает энергия 0). Далее указаны те ядерные реакции, которые приводят к возбуждению соответствующего уровня, и ссылки на литературу. При этом в отношении данных, вошедших в статьи обзорного характера (например, данные, относящиеся к уровням лёгких ядер), как правило, даётся ссылка на обзорную статью, в которой можно найти дальнейшие ссылки на оригинальную литературу. Наконец, указан метод, с помощью которого установлен тот или иной ядерный уровень.

Наиболее достоверные значения энергии, полученные из различных ядерных реакций или различными методами даны жирными цифрами. В ряде случаев (что относится в основном к средним и 1яжёлым ядрам) из-за недостаточных данных для построения схемы уровней приведены только значения энергии гамма-квантов, испускаемых соответствующим ядром.

Значения энергий уровней, полученные с помощью различных методов, обладают различной точностью. Наиболее точны данные, полученные из внутренней конверсии и из спектрографических измерений гамма-спектров, а также данные, относящиеся к промежуточным ядрам и полученные из резонансного выхода реакции. Менее точны данные, полученные из измерений энергии ядер отдачи, в особенности из измерений нейтронных спектров. Из-за недостаточного разрешения многие из приведённых простых уровней в действительности, несомненно, являются сложными, как это имеет место в случае уровней, о неразрешённой тонкой структуре которых свидетельствует тонкая структура гамма-лучей.

Сама схема уровней не всегда может быть однозначно установлена. Наиболее достоверными схемами нужно считать те, которые установлены в результате достаточно подробного изучения спектров бета- и гамма-лучей (в случае ядер, возникающих при бета-распаде) с наблюдением $\beta \gamma$ и $\gamma \gamma$ -совпадений, а также схемы, установленные по спектру альфа-частиц, протонов или нейтронов, возникающих при распаде промежуточного ядра (если известен энергетический эффект реакции) и схемы, получающиеся из резонансных эффектов (если известны массы исходного и промежуточного ядер). В случае элементов, обладающих двумя или несколькими стабильными изотопами, не всегда возможно отнесение тех или иных уровней к определённому ядру.

В силу указанных причин наши сведения об энергетических уровнях ядер в настоящий момент являются ещё крайне скудными и только для очень небольшого числа ядер схема уровней представлена более или менее значительным числом компонент (см. таблицу).

ЭНЕРГЕТИЧЕСКИЕ УРОВНИ АТОМНЫХ ЯДЕР

z	Символ	N	A	Актив- ность	Уровни в MeV	Реакция	Литература	Метод
2	He	3	5	$\alpha + n$	0 0,24		67 68	Аномальное рассеяние <i>п</i> Спектр а
3	Li	2	5	$\beta^-, p + \alpha$	0 шесть уровней	-1H (αp) 4He	69,70	
		3	6		0 3 , 0?	⁹ Be (<i>p</i> ²) ⁶ Li	27,71	Спектр ү
		4	7	· 7	0 0,480 7 7,38 m =	TLi (pp') TLi TLi $(\alpha\alpha')$ TLi TBe (K) 7 Li 10B (na) TLi 9Be $(d\alpha)$ TLi 6Li (dp) TLi 6Li (na) ST	27, 72, 73 27 27 27 27,74 27,75 27,75 27,75	Спектр ү; неупругое рас- сеяние Спектр ү Спектр а и ү Спектр а и ү Спектр р и ү Резонансный выход а
4	Ве	4	8	$\begin{array}{c c} \alpha + \alpha \\ \alpha + \alpha, \gamma \end{array}$	0 3,0 3,4+0,4? 4,8 7,0	$T_{\text{Li}} (p\gamma) ^8\text{Be}$ $^7\text{Li} (dn) ^8\text{Be}$ $^7\text{Li} (dn) ^8\text{Be}$ $^{10}\text{B} (da) ^8\text{Be}$ $^{11}\text{B} (pa) ^8\text{Be}$ $^8\text{Li} (\beta^-) ^8\text{Be}$ $^7\text{Li} (dn) ^8\text{Be}$ $^{10}\text{B} (da) ^8\text{Be}$ $^{10}\text{B} (da) ^8\text{Be}$	76 27 27 27 27 27 27 27 27 27	Спектр ү Спектр п Спектр а Спектр а Спектр а Спектр п и ү Спектр а Спектр а

z	Символ	N	A	Актив- ность	Уровни в МеV	Реакция	Литература	Метод
4	Ве	4	8	۲	7,0 9,8 17,57 18,13	TLi (dn) 8Be TLi (dn) 8Be TLi $(p\gamma)$ 8Be TLi $(p\gamma)$ 7Li TLi (pn) 7Be	27 27 27,76 27 27 27	Спектр <i>п</i> Спектр <i>п</i> Спектр <i>ү</i> Спектр <i>ү</i> Спектр <i>ү</i> Резонансное неупругое рас- ссяние Резонансный выход <i>п</i> и ⁷ Ве
		5	9		0 2,42 17,17 17,45		77 27 27 27 27 27 27 27 27	Неупругое рассеяние, спектр р Резонансный выход ⁸ Li Резонансный выход <i>n</i> и ү Резонансный выход ⁸ Li Резонансный выход ⁸ Li Резонансный выход ⁸ Li
		6	10	β	0 7,19 9,03	⁹ Be (<i>n</i> ¹) ⁶ He	27,78 27,78 27,78	— Резонанс о Резонанс о и резонансный выход ^в Не
5	В	5	10	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0 0,411 0,718	9Be (dn) 10B 10B (pp') 10B 9Be (dn) 10B 9Be (pr) 10B	79.80 80 79,80 81 27,80	Спектр γ Спектр γ Спектр γ Спектр <i>п</i> Спектр γ

Z	Символ	N	A	Актив- ность	Уровни в MeV	Реакция	Литература	Метод
5	В	5	10	7 7 7 7 7 7 7	0,718 1,024? 1,2 1,435 2,170 2 924? 3,425 6,78 7,09? 7,26? 7,38 7,47 7,72 8,76	7Li (αn) 10B 9Be (dn) 10B 7Li (αn) 10B 9Be (dn) 10B 9Be (pn) 10B 9Be (pn) 10B	27 79 27 79,80 27,79 27 79 27,79 27 27 27 27 27 27 27 27 27	Резонансный выход п Спектр ү Резонансный выход п Спектр ү и п Резонансный выход п Спектр ү и п Резонансный выход ү
		6	11	λ; λ;	0 2,1 4,4 5,8 11,5? 13,1 13,5? 13,8? 14,2?	14N (n\alpha) 11B 10B (dp) 11B 10B (n\alpha) 7Li 7Li (\alpha n) 10B	27 27 27 27 27 27 27 27 27 27 27 27	Резонанс, спектр у Спектр р и у Спектр р и у Спектр р и у Спектр р и у Резонансный выход а Резонансный выход п
6	С	5	11	λ.5 β.+	0 2,3?	¹⁰ B (dn) ¹¹ C	27	Спектр <i>п</i>

z	Символ	N	A	Актив- ность	Уровни в MeV	Реакция	Литература	Метод
6	С	6	12	7	0 3,0? 4,3 7,1 ± 0,4 9,5 10,3?	*Be (an) 13C 15N (pa) 12C 14N (da) 12C 11B (dn) 12C ** 14N (da) 12C 9Be (an) 12C ** 11B (dn) 12C 9Be (an) 12C 9Be (an) 12C	27 27 27 27 27 27 27 27 27 27 27 27 27	Спектр <i>п</i> Спектр <i>п</i> Резонансный выход ү Спектр <i>α</i> Спектр <i>n</i> Спектр <i>n</i> Спектр <i>а</i> Выход ү Резонансный выход <i>n</i> Спектр <i>n</i> Спектр <i>n</i>
				γ, α	10,8? 16,11 16,71?	¹¹ B(pγ) ¹² C	27 27 27	Резонансный выход п Резонансный выход а и у спектр у Резонансный выход а и
		7	13	γ .	0 0,8 3,18 3,95 5,07 6,07 8,25 8,90 11,86 12,3	10B (ap) 13C 13C (dp) 13C 10B (ap) 13C 10B (ap) 13C 13C (nn) 13C 9Be (an) 13C	27 27 27 27 27 27 27 27 27 27 27 27,81	Спектр р Спектр р и ү Спектр р Резонансное рассеяние п Резонансное рассеяние п Резонансный выход п

Продолжение

Z	Символ	N	A	Актив- ность	Уровни в МеV	Реакция	Литература	Метод
6	С	7	13		12,9 13,6 18 уровней выше 13,6 (до 16,6)	⁹ Be (an) ¹³ C » »	27 27 27 27	Резонансный выход <i>п</i> Резонансный выход <i>п</i> Резонансный выход <i>п</i>
		8	14	13. B	0 5,24	13C (<i>dp</i>) 14C	27	— Спектр <i>р</i> и 7
7	N	6	13	β ⁺ γ	0 2,34	¹² C (ργ) ¹⁸ N	27	Спектр ү и резонансный выход ү
		7	14	15. · · · · · · · · · · · · · · · · · · ·	0 4,0? 4,8? 5,4 6,1? 6,6? 8,07 11,05 11,26	11B (an) 14N 13C (dn) 14N 13C (pγ) 14N 11B (an) 14N 13C (pγ) 14N 12C (dn) 13N 13C (dp) 13C 13C (dn) 13N	27 27 27 27 27 27 27 27 27 27 27 27 27 2	Резонансный выход п Резонансный выход р и т Резонансный выход р и т Резонансный выход р и т Резонансный выход п, т и 13N Резонансный выход п, т и 13N Резонансный выход п, т и 13N

Z	Символ	N	A	Актив: ность	Уровни в MeV	Реакция	Литература	Метод
7	N	7	14	۸5	11.37	¹³ C (<i>dp</i>) ¹³ C	27	Резонансный выход р и ү
1		- 1		A j	11,49	» ·	27	Резонансный выход р и ү
- 1		İ		1 '	11,6	$^{12}C(dn)^{13}N$	27	Резонансный выход п
-		1		4.b	11.8?	»	27	Резонансный выход п
- 1				1		$^{12}C(dv)^{13}C$	27 27 27 27 27 27	Резонансный выход р и ү
)	.)		ì	12,3	¹⁸ C (dn) ¹⁸ N	27	Резонансный выход <i>п</i>
				Į.	9 уровней	$^{10}\mathrm{B}~(\alpha n)^{13}\mathrm{N}$	27	Резонансный выход ¹³ N
		1			в интервале			
	,			-	14,42—16,92			
					Ряд уровней	$^{12}{ m C}(dp)^{13}{ m C}$	83	Резонансный выход р
		8	15	 	0 1	_	<u> </u>	
		-	-	Υ	5,39	$^{14}N (dp) ^{15}N$	27	Спектр ри ү
				1 '	6,0?	»	27	Спектр р
	[1	6,0?	D	27 27 27 27 27	Спектр р
	i i			4.5	8,2	»	27	Спектр р
	ľ			,	11,21	¹⁴ C (pn) ¹⁴ N	84	Резонанс
						$^{14}N(np)^{14}C$	27,85	Резонансный выход <i>р</i>
		1		1	11,34	¹⁴ C (pn) ¹⁴ N	84	Резонанс
	1					$^{14}N(np)^{14}C$	27,85	Резонансный выход <i>р</i>
	1)			12,10	»	27,85	Резонансный выход <i>р</i>
		-		į		14N (na) 11B	85 27	Резонансный выход а
				İ	1	$^{11}B(\alpha n)^{14}N$	27	Резонанс
	1			1	12,40	$^{14}N(n\alpha)^{11}B$	85	Резонансный выход а
				1		$^{14}N(np)^{14}C$	85 85 85	Резонансный выход <i>р</i>
	1				12,80	»	85	Резонаисный выход р
						$^{14}N (n\alpha) ^{11}B$	85	Резонансный выход а
]				около 20 уров-	$^{11}B(\alpha n)^{14}N$	27,86	Резонанс
					ней в интервале			
				1	12,5—17,5			

Z	Символ	N	A	Актив- ность	Уровни в MeV	Р е акция	Литература	Метод
7	N	8	15		17.47	¹³ C (<i>dp</i>) ¹⁴ C ¹³ C (<i>dn</i>) ¹⁴ N	27 27	Резонансный выход <i>р</i> Резонансный выход ү
8	0	8	16	7 7 7	$ \begin{array}{c} 0 \\ 6,13\pm0.06 \\ 6,3 \\ 6,98\pm0.07 \\ \sim 10.5 \\ \sim 10.8 \\ \sim 11.2 \\ 12.94 \\ 13.08 \\ 13.2 \end{array} $	19F $(p\alpha)$ 16O 16N (β^{-}) 16O 19F (pz) 16O 16N (β^{-}) 16O 12C (αz) 13C 15N $(p\alpha)$ 13C	27, 76, 87 27 27 27 27, 87 27 27 27 27 27 27 27 27 27	Спектр ү; спектр а Спектр в Спектр в Спектр а и ү Спектр а и ү Спектр в Аномальное рассеяние а Аномальное рассеяние а Аномальной выход ү Резонансный выход ү
		9	17	_	0 0,93±0,09 0,93±0,09 2,95 3,77 4,99	14N (ap) 17O 16O (dp) 17O 19F (da) 17O	88, 89, 90 91 91 91 91	Спектр p Спектр p Спектр α Спектр α Спектр α Спектр α Спектр α
9	F	10	19		0 1,6	¹⁹ Ο (β) ¹⁹ F	92	Спектр в

z	Символ	N	A ≠	Актив- ность	Уровни в MeV	Реакция	Литература	Метод
9	F	11	20	β-	0 0,7 1,0 1,35 1,9	19F (dp) 20F	93 93 93 93 93	— — — — — — — — — — — — — — — — — — —
10	Ne .	10	20	7	0 1,5 2,2 4,2 5,4 7,1 7,8 9,0 10,1 14 уровней между 13,21 и 14,19	20 Ne (pp') 20 Ne 19 F (dn) 20 Ne 20 F (β^{-}) 20 Ne 19 F (dn) 20 Ne 30 Ne 30 Ne 30 Ne 30 Ne 30 Ne	27 27 27 27 27 27 27 27 27 27 27 27 27 2	Неупругсе рассеяние, спектр р Спектр п и γ Спектр п и γ Спектр п Спектр п Спектр п Спектр п Спектр п Спектр п Спектр п Спектр п Спектр п Спектр п Спектр п Спектр п Спектр п
		11	21		0 0,31 1,75 2,83 3,58	20Ne (dp) 21Ne 28Na (dα) 21Ne 20Ne (dp) 21Ne 20Ne (dp) 21Ne	95,96 95 97 95 95 95	— Спектр <i>р</i> Спектр <i>р</i> Спектр <i>а</i> Спектр <i>р</i> Спектр <i>р</i> Спектр <i>р</i>

Z	Символ	N	A	Актив- ность	Уровни в МеV	Реакция	Литература	Метод
10	Ne	12	22	_	0 1,3 3,3 4,6	¹⁹ F (<i>ap</i>) ²³ Ne	14, 98 14, 98 14, 98	— Спектр <i>р</i> Спектр <i>р</i> Спектр <i>р</i>
		13	23	β-	0 0,99 1,66	²³ Ne (<i>dp</i>) ³³ Ne	95 95 95	Спектр <i>р</i> Спектр <i>р</i>
11	Na	13	24	β-	0 0,38 1,26 2,8 3,38	28Na (dp) 24Na	97 97 99 99	Спектр <i>р</i> Спектр <i>р</i> Спектр <i>р</i> Спектр <i>р</i> Спектр <i>р</i>
12	Mg	12	24	γ	0 1,38 1,7±0,3	24Na (β ⁻)34Mg 24Mg (pp') 24Mg 24Mg (nn') 24Mg 24Mg (nn') 24Mg 34Mg (pp') 34Mg	16, 100 101, 102 43 102	Спектр ү Неупругое рассеяние, спектр р Неупругое рассеяние, спектр п Неупругое рассеяние,
	*			γ	2,7±0,5? 4,14	» ²⁴ Na (β) ²⁴ Mg ²⁴ Mg (<i>pp'</i>) ²⁴ Mg	102 16, 100 102	спектр р Неупругое рассеяние, спектр р Спектр ү Неупругое рассеяние, спектр р

Z	Символ	N	Α	Актив- ность	Уровни в MeV	Реакция	Литература	Метод
12	Mg	12	24	_	6 0±0,3	²⁴ Mg (<i>pp'</i>) ²⁴ Mg	102	Неупругое рассеяние, спектр р
					$8,1\pm0,3$	»	102	Неупругое рассеяние, спектр р
,	:				9,2 <u>+</u> 0,5	» 	102	Неупругое рассеяние, спектр p
		13	25	-	0 0,7	24Mg (dp) 25Mg	_ 44	
	·					$^{27}\text{Al}(d\alpha)^{25}\text{Mg}$	103, 104	Спектр а
					1,35 1,70	²⁴ Mg (<i>dp</i>) ²⁵ Mg	103 44	Спектр α Спектр p
					2,25	»	44	Спектр р
		14	26		0		_	
		1.7	20		0,27 0,60	²³ Na (ap) ³⁶ Mg	105, 106 105	Спектр <i>p</i> Спектр <i>p</i>
					1,1	»	98, 105	Спектр р
				γ .	1,74	²⁵ Mg (<i>dp</i>) ²⁶ Mg	105, 106, 107 108, 109	Спектр р и ү
					2,3	23 Na($^{\alpha}p$) 26 Mg	14. 108	Спектр <i>р</i> Спектр <i>р</i>
				γ	2,74	»	98, 105, 106, 107, 109	Спектр р и ү
1					4.0	²⁵ Mg (<i>dp</i>) ²⁶ Mg	108, 109	Спектр р
			9		4,0 5,0	²³ Na (ap) ²⁶ Mg ²³ Na(αp) ²⁶ Mg	14, 108, 109 141,98	Спектр <i>p</i> Спектр <i>p</i>

Z	Символ	N	Α	Актив- ность	Уровни в MeV	Реакция	Литература	Метод
13	Aı	14	27	7 7 7	0 0,84 1,02 1,48 1,7 4,3±0,3?	27 Mg (β^{-}) 27 Al 27 Mg (αp) 27 Al 27 Al (pp') 27 Al 27 Mg (β^{-}) 27 Al 27 Mg (αp) 27 Al	92, 110 13 111 92, 112, 113 92, 110 13, 107 107	Спектр γ Спектр p Неупругое рассеяние, спектр p Спектр γ Спектр γ Спектр p Спектр p
		15	28	β	0 0,8 2,3 3,5 4,7 20 уровней между 0 и 6,5	²⁷ A1 (dp) ²⁸ A1	104, 109 104, 109 104, 109 104 104 103	Спектр <i>р</i> Спектр <i>р</i> Спектр <i>р</i> Спектр <i>р</i> Спектр <i>р</i> Спектр <i>р</i>
14	Si	14	28	γ	0 1,80 36 уровней между 10,85 и 11,97	-28A1 (β) 28Si 27A1 (ργ) 28Si	17, 92, 112 114	— Спектр ү Резонансный выход ү
	1	16	30	_	0 0,9 1,9	²⁹ Si (<i>dp</i>) ³⁰ Si ²⁷ Al (<i>ap</i>) ³⁰ Si ²⁹ Si (<i>dp</i>) ³⁰ Si	108 98, 99 108	— — — — — — — — — — — — — — — — — — —

Продолжение

Z	Символ	N	Α	Актив- ность	Уровни в MeV	Реакция	Литература	Метод
14	Si	16	30	γ	2,28	²⁷ Al (αp) ³⁰ Si	14, 98, 99, 108, 115	Спектр р и рү-совпаде- ния
				γ	2,8 3,6 6	³⁹ Si (dp) ³⁰ Si ²⁷ Al (αp) ³⁰ Si	108 14, 98, 99, 107, 108, 109, 115	Спектр р Спектр р и ү, рү-совпа- дения
				γ	4,8	²⁹ Si (<i>dp</i>) ⁸⁰ Si ²⁷ Al (<i>ap</i>) ³⁰ Si	108 14, 99, 108, 115	Спектр p Спектр p , $p\gamma$ -совпадения
		1			6,1	»	98	Спектр р
		17	31	β-	~0,7	³¹ P (<i>np</i>) ³¹ Si	116	 Спектр <i>р</i>
15	Р	15	30	β+	0 1,02 <u>+</u> 0,12	27A1 (an) 30P	117	Спектр <i>п</i>
		16	31	7	0 0,44 1,05 1,65 2,3±0,3?	30Si (dn) 31P 38Si (ap) 31P 30Si (dn) 31P 28Si (ap) 31P	117 117 13 13 117 107	Спектр <i>п</i> Спектр <i>п</i> Спектр <i>p</i> Спектр <i>p</i> Спектр <i>p</i> Спектр <i>r</i>
16	S	17	33		0 1,0 2,0	³³ S (dp) ⁵³ S	118, 119 118, 119	— Спектр <i>р</i> Спектр <i>р</i>

Z	С имвол	N	A	Актив- ность	Уровни в MeV	Реакция	Литература	Метод
16	S	17	33		2,94 3,84 4,76 5,53	33S (dp) 33S 33S (dp) 33S 33S (dp) 33S	118, 119, 120 118, 119 118, 119 118, 119, 120	Спектр р Спектр р
		18	34	γ	0 1,27 1,9 2,6	31P (αp) 34S 34P (β^{-}) 34S 31P (αp) 34S	98 121 98 14, 98, 107, 122	Спектр <i>р</i> Спектр <i>β</i> Спектр <i>р</i> Спектр <i>р</i>
				γ	3,4 4,2±0,5 4,87? 5,70 6,37?	» » »	98 14, 98, 107, 109, 122 14 14, 122 14	Спектр <i>р</i> Спектр <i>ү и р</i> Спектр <i>р</i> Спектр <i>р</i> Спектр <i>р</i>
17	Cı	18	35	- γ γ	$0 \\ 0,6 \\ 1,6\pm0,3 \\ 2,4\pm0,3$?	32S (αp) 35Cl	13, 123 13, 109, 123 107	Спектр <i>р</i> Спектр ү и р Спектр ү
		20	37	<u> </u>	0 2,7 <u>+</u> 0,2	³⁷ S (β [—]) ³⁷ Cl	121	Спектр у и 3

				<u> </u>				Продолжение
Z	Символ	N	A	Актив- ность	Уровни в МеV	Реакция	Литература	Метод
18	A	20	38	7 7	0 1,7 2,15 3,75 4,3	35C1 (αp) 38 A 38C1 (β^{-}) 38 A 38K (β^{+}) 38 A 38C1 (β^{-}) 38 A 35C1 (αp) 38 A	98 124, 125 124 124 124, 125 98	Спектр р Спектр ү и р Спектр ү Спектр ү Спектр ү Спектр ү и р Спектр р
		22	40	- T	0 1,55	40K (K) 40A	126, 127, 128, 129	Спектр ү
		23	41	β	0 0,63 1,17 1,85 2,16 2,87	40A (dp) 41A	130 130, 131 130, 131 130, 131 130	— — — — — — — — — — — — — — — — — — —
19	К	22	41	- r	0 1,3 <u>+</u> 0,2	41A (β ⁻)41K	131, 132	Спектр ү и β
20	Ca	21	41	K	0 1,79	40Ca (<i>dp</i>) 41Ca	133	
		22	42	_ Y	0 1,4		17, 92 98	— Спектр в и у Спектр р

<i>z</i>	Символ	N	A	Актив-	Уровни в MeV	Реакция	Литература	Метод
20	Ca	22	42		2,0 2,6	⁴³ Κ (β ⁻) ⁴³ Ca ⁵⁹ Κ (αp) ⁴³ Ca	92 98	Спектр в Спектр р
21	Sc	23	44	β+	0 0,27	41K (αn) 44Sc 48Ca (dn) 44Sc	134 134	Внутренняя конверсия Внутренняя конверсия
		25	46	β-, Κ	0 2,30	45Sc (<i>dp</i>) 46Sc	125	Спектр р
22	Ti	24	46	- γ	0,89±0,03 2,01	⁴⁶ Sc (β ⁻) ⁴⁶ Ti	17, 135, 136, 137, 138, 139 17, 135, 136, 138, 139, 140, 141	Спектр р Внутренняя конверсия Внутренняя конверсия Спектр р Спектр ү Спектр р Спектр р Спектр р Спектр р Спектр р
		26	48	_	0 1,1 2,3	45Sc (2p) 48Ti	142 142	
23	V	28	51	η ,	0 0,237 0,330 1,02 4,73	51Cr (K) 51V 51Ti (A) 51V 48Ti (ap) 51V	143 143 137 144 144	

								Продолжение
z	Символ	N	Α	Актив- ность	Уровни в МеV	Реакция	Литература	Метод
23	v	29	52	β	0 2,47 4,70	51 V (<i>dp</i>) 52 V	125 125	Спектр <i>р</i> Спектр <i>р</i>
24	Cr	28	52	7 7	0 1,46±0,03 2,40 3,13	⁵³ V (β [—]) ⁵³ Cr ⁵³ Mn (β ⁺) ⁵² Cr	145 145 145 145 145	Спектр ү Спектр ү Спектр ү Спектр ү
		30	54	- T	0 0,835	54Mn (<i>K</i>) 54Cr	17, 100	Спектр ү
25	Mn	27	52	β ⁺ , <i>K</i>	0 0,4	_	145	Спектр ү
		31	56	β	0 1,07 1,77 2,48 3,61 4,38	55Mn (<i>dp</i>) 56Mn » » »	146 125, 146 146 146 146	Спектр <i>р</i> Спектр <i>р</i> Спектр <i>р</i> Спектр <i>р</i> Спектр <i>р</i>
26	Fe	30	56	7 7	0 0,833 2,10	56Mπ (β ⁺) 56Fe 56Co (β ⁺) 56Fe	17, 66, 147 17, 66 17, 66	Спектр ү и β Спектр ү и β Спектр ү и β

Продолжение

				•		
Метод	Спектр ү и β Спектр ү и β	Спектр т	Спектр ү Слектр ү	Спектр <i>р</i> Спектр <i>р</i>	Спектр ү Спектр ү и β Спектр ү	Спектр т Спектр т
Литература	17, 66, 147 17, 66, 147	17	17, 148		17, 100, 150 Спектр 7 151 Спектр 7 и 17, 100, 150 Спектр 7 и	23, 152, 153
Реакция	δ6Mn (β [−]) 56Fe	88Co (\$\frac{\beta}{4}\) 88Fe	59Fe (\$_") 59Co	$^{69}\mathrm{Co}\left(\overline{dp} ight) ^{60}\mathrm{Co}$	60Co (\$-) 69Ni 60Cu (\$+) 69Ni 60Cu (\$-) 69Ni	64Cu (\$+) 64Ni 64Cu (\$\frac{1}{2}\)
Уровни в МеV	2,63 2,93	0,805	0 1,10 1,30	0 1,75 3,03	0 1,13 1,50 2,40	1,30
Актив-	>- >-	-, ا		002.		٨ ـ
¥.	56	28	59	09	09	64
×	99	32	32	33	32	36
Символ	Fe		3		ž	
7	26	-	27		28	

Z	Символ	N	A	Актив- ность	Уровни в MeV	Реакция	Литература	Метод
29	Cu	34	63	7 7	$0,96\pm0,01\\1,9\pm0,1$		23, 154 23, 154	Спектр в и ү Спектр в и ү
		36	65	-	0 1,12?		100, 148 150	— — — — — — — — — — — — — — — — — — —
30	Zn	36	66	-	0 1,32		155	Спектр 7
		37	67	7 7	0 0,0925 0,180 0,297	-	134 134 134 134	Внутренняя конверсия Внутренняя конверсия Внутренняя конверсия
		39	69	β- Υ	0 0,44	_	134	Внутренняя конверсия
31	Ga	36	67	K	0 0,0925	66Zn (<i>dn</i>) 67Ga	134, 156	Внутренняя конверсия
	- · *	38	69	-	0 1,22?	— 69Ge (β ⁺) 69Ga	 157	Спектр ү
		39	70	β-, Κ	0 0,0538		156	Внутренняя конверсия

П	n	o	П	O	л	ж	e	н	и	6
11	ν	v	щ	v	~.	115	·	п	F1	٠,

Z	Символ	N	A	Актив- ность	Уровни в MeV	Реакция	Литература	Метод
32	Ge 40		72	7 7 7	0 0,68 0,84 1,47 2,16 2,52 3,04 3,35	7°Ga (β ⁻) 72Ge , , , , , , , , , , , , , , , , , , ,	158 158, 159, 160, 161 161, 158, 159, 160 158, 159 158, 159, 160 158, 159, 160, 161 162	Внутренняя конверсия Спектр γ и β Спектр γ и β
		41	73	- Y	0 0,10?	78 As (K) 78 Ge	163	— Спектр ү
33	As	42	75	_	$\gamma = 0,22; 0,43$	75Se (K) 75As	164	Спектр ү
		43	76	β^-, β^+, K	0 1,00 2,13	75As (dp) 76As	149 149	
34	Se	42	76	- γ γ	0 0,557 1,78	76As (β ⁻) 76Se	17, 165, 166 17, 165, 166	Спектр ү и в Спектр ү и в
		45,47	79,81	β-	0,099		134	Внутренняя конверсия

								Продолжение
Z	Символ	N	A	Актив- ность	Уровни в МеV	Реакция	Литература	Метод
35	Br	43	78	β+ 7 7	0 0,046 0,108	_	156 156	Внутренняя конверсия Внугренняя конверсия
		45	80	β- γ γ	0 0,037 0,085	_	156, 167 156, 167	Внутренняя конверсия Внутренняя конверсия
36	Kr	46	82	- 1 1	0 1,35 2,14 2,69	82Br (β ⁻) 82Kr	16 16 16	— — — — — — — — — — — — — — — — — — —
		47	83	7	0 0,029 0,046	Х-лучи 82 Кг (лу) ⁸³ Кг 80 Se (ап) ⁸³ Кг 81 Кг (dp) ⁸³ Кг 83 Вг (д) ⁸³ Кг	45, 134 45, 134 45, 134 63 63 63 168	Внутренняя конверсия Внутренняя конверсия Внутренняя конверсия Внутренняя конверсия Внутренняя конверсия Внутренняя конверсия Внутренняя конверсия
38	Sr	47	85	K	0,8	*5Rb (pn) *5Sr	169	Внутренняя конверсия
		48	86	-	0 1,10	86Rb (β ⁻) 86St	170, 171	Спектрүи В

Planting (COL)		- Shows and the later		· .64				Продолжение
z	Символ	N	A	Актив- ность	Уровни в МеV	Реакция	Литература	Метод
38	Sr	49	87	7.	0 0,38	87 Y (K) 87 S г 87 R b (pn) 87 S г 88 S г (n r) 87 S г 87 S г (n n') 87 S г 90 Z г (n a) 87 S г X-лучи Электроны	134, 172, 173 134, 169, 172, 173 134, 172 169, 173 172 169, 173 169, 173	Внутренняя конверсия Внутренняя конверсия Внутренняя конверсия Внутренняя конверсия Внутренняя конверсия Внутренняя конверсия Внутренняя конверсия
39	Y	47	86	K	0 2	86Sr (pn) 86Y	169	Влутренняя конверсия
41	Nb	53	94	β-	0 ∼ 0,05	98Nb (ηγ) 94Nb	174	Внутренняя конверсия
	. •	54	95	β	$0 \\ \gamma = 0.91$	95Zr(\$-)95Nb	175, 176	Спектр ү, совпадения вү
42	Мо	50,51	92,93	_	$ \begin{array}{c} 0 \\ \gamma = 1,3 \pm 0,3 \\ \gamma = 2,4 \pm 0,5 \end{array} $	Τc (β ⁺)Mo	177	— Спектр ү
		52	94		$0 \\ \gamma = 0.9 \pm 0.1$	⁹⁴ Τc (β ⁺) ⁹⁴ Μο	178	Спектр ү

Z	Символ	N	A	Актив- ность	Уровни в MeV	Реакция	Литература	Метод
42	Мо	53	95		$ \begin{array}{c} 0\\ \gamma = 0,2\\ \gamma = 0,77 \end{array} $	95Tc (<i>K</i>)95Mo 95Tc (β ⁺)95Mo 95Tc (<i>K</i>)95Mo	179, 180 180, 181 179, 180, 182	версия
		2 m				95Tc (β ⁺)95Mo 95Nb (β ⁻)95Mo 95Tc (K)95Mo 95Nb (β ⁻)95Mo 95Tc (K)96Mo	181, 183 184 179 182 185 180, 182	Спектр ү Спектр ү Спектр ү Спектр ү Внутренняя конверсия Спектр ү Внутренняя конверсия, спектр ү
		54	96	γ γ γ	0 0,842 1,613 2,419 2,731	68Tc (3 ⁺)96Mo 96Tc (K)96Mo	181 182 182 182 182 182	Спектр ү Спектр ү Спектр ү Спектр ү Спектр ү Спектр ү
43	Тс	49,51	92,94	β ⁺ , <i>K</i>	0 0,0334 y = 0,380; 0,873; 1,48; 1,85; 2,74	Mo (<i>pn</i>) Tc Mo (<i>pn</i>) Tc	186 186	Внутренняя конверсия Спектр ү

Z	Символ	N	A	Актив- ность	Уровни в МеV	Реакция	Литература	Метод
43	Тс	52	95	β+	$ \begin{array}{c} 0 \\ \gamma = 0.5 \\ \gamma = 0.95 \end{array} $	95Ru (β ⁺)95Tc	179 179, 183	Спектр ү Спектр ү
		54	97	β+	$\begin{matrix} 0 \\ \gamma = 0,23 \end{matrix}$	97Ru (<i>K</i>)97Tc	179	Спектр ү
		56	99	Ϋ́Υ	0 0,129 0,84	99Mo (\$\beta^{-})99Tc	181 181, 187	Спектр ү и в Спектр ү и в
		,	7	γ	0 0,097		134	Внутренняя конверсия
44	Ru	54	98	_	$\gamma = 0.9 \pm 0.1$	98Tc (β ⁻)99Ru	178	Спектр ү
45	Rh	58	103	7 7	0 0,0631 0,0659 γ = 0,56 1,26 1,64 2,02 2,37 2,71 3,05	X-лучи 108Rh (nn')103Rh 108Ru (β ⁻)108Rh X-лучи •		Внутренняя конверсия Активность 108Rh* Спектр 7 Резонансный выход 108Rh* Резонансный выход 108Rh* Резонансный выход 108Rh* Резонансный выход 108Rh* Резонансный выход 108Rh*

Продолжение Уровни в MeV Актив-Символ N A Реакция Литература Метод ность 46 Pd 59? 105? $\gamma = 0,282;$ 0,345; 0,430;
0,650 1,0; Ag(K)Pd148 Спектр у 60 106 0,73 106Rh (3-)106Pd 189 Спектр ү γ 106 A g (β+)106 Pd 106 Rh (β-)106 Pd 148, 190 Спектр ү 1,24 189 Спектр ү и в 106Ag (β⁺)106Pd 148 Спектр ү 1,75 2,75? 148, 190 Спектр ү 190 Спектр ү $_{\it K}^{+}$ 47 59 106 Ag 0 0,1 106Cd (pn)106Ag 190 60 107 107Cd (8+)107Ag 0.0935 191, 192, Внутренняя конверсия Y 193, 194 191, 193 45, 134, 195 107Cd (K)107Ag Внутренняя конверсия Внутренняя конверсия Активность ¹⁰⁷ Аg* Х-лучи Pd (β⁻)Ag 107Cd (K)107Ag 194 0.95? 191, 194 Спектр ү 7 62 109 0 109Cd (β+)109Ag 0,0884 192 Внутренняя конверсия Y

Z	Символ	N	A	Актив- ность	Уровни в MeV	Реакция	Литература	Метод
47	Ag	60,62	107,109		0 1,18 1,59 1,95 2,32 2,76 3,13	Х-лучи	45, 195 45, 195 45, 195 45, 195 45, 195 45, 193	Резонансный выход Ag* Резонансный выход Ag* Резонансный выход Ag* Резонансный выход Ag* Резонансный выход Ag* Резонансный выход Ag*
48	Cd	59,61	107,109	K	0 0,0926	_	156	— Внутренняя конверсия
		60,62	108,110		$ 0 \\ \gamma = 0,650; \\ 0,925; 1,51 $	Ag (β ⁻)Cd	148	— Спектр ү
		62,65	[110,113	γ ·	0 0,195 1,25 1,68 2,08 2,56	Х-лучи	45, 195 45, 195 45, 195 45, 195 45, 195 45, 195	Внутренняя конверсия Резонансный выход Cd* Резонансный выход Cd* Резонансный выход Cd* Резонансный выход Cd*
		63	111	Ţ	0 0,247 0,420	111In (<i>K</i>)111Cd	196 196	Внутренняя конверсия Внутренняя конверсия

Z	Символ	N	A	Актив- ность	Уровни в MeV	Реакция	Литература	Метод
49	In	63	112	κ, β ⁺ , β ⁻	0 0,16	109Ag (an)113In	196, 197	Внутренняя конверсия, спектр ү
		66	115	γ	0 0,338 1,12 1,55 2,13 2,63	X-лучи Электроны 115 In (nn') 115 In 115 In (pp') 115 In 115 In (αα') 115 In X-лучи	45, 198, 199 200 47 48 49 45, 199 45, 199 45, 45	Внутренняя конверсия Активность 115 п* Активность 115 п* Активность 115 п* Активность 115 п* Резонансный выход 115 п* Резонансный выход 115 п* Резонансный выход 115 п* Резонансный выход 115 п*
50	Sn	66	116	7 7 7	0 0,17 0,57 1,0 2,4	116]n (β ⁻) ¹¹⁶ Sn	16, 148, 201 16, 148, 201 16, 148, 201 16, 148, 201 16, 148, 201	Спектр ү Спектр ү
51	Sb	70	121	7	0 0,61	¹²¹ Te (K) ¹²¹ Sb	202	Спектр ү
		71	122	β	0 0,140	131Sb (ηγ)122Sb	203	Внутренняя конверсия

Продолжение

Метод	нверсия		ти β, совпадения няя конверсия	внутрения в совпадения в	нверсия
Метод	Внутренняя конверсия	Спектр ү Спектр ү	Спектр ү и β, совпад Вү и үү Внутренняя конберсия	Спектр ү и β, внутренняя конверсия Спектр ү и β, совпадения ву Спектр ү и в Спектр ү и в Спектр ү и в Спектр ү и в	Внутренняя кснверсия
Литература	203	202 202	17, 203, 204, 205 206, 207	17, 203, 208, C 206, 207, 209, 210 C 207, 209, 210 C 209, 211 C 7, 203, 206, C 209, 210	134
Реакция	123Sb (n ₁)124Sb	1	122Sb (\$ ⁻)122Te	134Sb (β ⁻) 134Te , , ,	1
Уровни в МеV	~0,02	0 0,225 0,275	0,568	0 0,605 1,32 1,97 2,32	0,086
Актив- ность	- B	7 t t	1		 }
A	124	121	122	124	127
×	73	69	70	72	75
Символ	Sp	Te			
2	15	25			

Π	p	0	Д	0	Л	Ж	е	H	Ц	e	

Z	Символ	N	A	Актив- ность	Уровни в МеV	Реакция	Литература	Метод
52	Те	77	129	β-	0 0,102	_	134	Внутренняя конверсия
		79	131	β- Υ	0 0,177	-	134	Внутренняя конверсия
54	x	74	128	<u> </u>	0 0 ,428	138J (3) 138X	166	Спектрүи β
		76	130	7 7 7 7	0 0,744 1,411 1,948 2,364		17, 212 17, 212 17, 112 17, 212	Спектр ү, совпадения үү Спектр ү, совпадения үү Спектр ү, совпадения үү Спектр ү, совпадения үү
		77	131	7 7	0 0,080 0,363 0,638	191 J(β—) 131 X	17, 212 17, 100, 212, 213, 214 100, 213, 214	Спектр ү, совпадения үү Спектр ү и в Спектр ү и в
5 5	Cs	78	133	_	$ \begin{array}{c} 0 \\ \gamma = 0,320 \\ \gamma = 0,085 \end{array} $	133Ba (K) 133Cs	215, 216 216	Спектр ү, внутренняя кон- версия Внутренняя конверсия

Продолжение

2	Символ	Z	А	Актив- ность	Уровни в МеV	Реакция	Литература	Метод
25	Cs	6L	134	- X	0,16	¹⁹³ Cs (πη) ¹⁹⁴ Cs	174	Внутренняя конверсия
56	Ba	77	133	¥	0,310	131Ba (ny) 133Ba	215, 217	Внутренняя конверсия, спектр ү
		78	334		0,776±0,015 1,396 1,964	194Cs (\(\beta^{-}\)) 194Ba	218, 219, 22) 218, 219, 220 219, 220	Cnektp γ Cnektp γ Cnektp γ μ β Cnektp γ μ μ β Cnektp γ μ μ β Cnektp γ μ μ β Cnektp γ μ μ β Cnektp γ μ μ β Cnektp γ μ μ β Cnektp γ μ μ β Cnektp γ μ μ β Cnektp γ μ μ β Cnektp γ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ
	<u> </u>	18	137	-	0,663	157Cs (β¯) 137Ba	221, 222	Спектр ү, совпадения вү
22	La La	83	139	l	$\eta = 0,184; 0,8$	199Ce (K) 189La	223	Спектр ү
		83	140	84 —	$\eta = 0.54$	140Ba (p_) 140La	184	Спектр т
28	Ce	83	140	1	$ \begin{array}{l} 0 \\ \gamma = 0,335; 0,49 \\ \gamma = 0,87; 1,65 \\ \gamma = 2,3, \end{array} $	140La (β [—]) 140Ce	184, 224 184, 224 176, 184	Спектр т Спектр т Спектр т

			·					Продолжение
Z	Символ	N	A	Актив- ность	Уровни в МеV	Реакция	Литература	Метод
59	Pr	82	141	_	$\begin{vmatrix} 0 \\ \gamma = 0,137; 0,145 \\ \gamma = 0,2 \end{vmatrix}$	141Ce (5) 141Pr	141 223	Внутренняя конверсия Спектр ү
		84	143	β-	$\gamma = 0,6$	143Ce (β ⁻) 143Pr	223	Спектр ү
60	Nd	83	143	_	0	¹⁴⁸ Pr (β [—]) ¹⁴³ Nd	223	<u> </u>
63	Eu	90	153	-	$ \begin{array}{c} 0 \\ \gamma = 0,0695; \\ 0,103 \\ \gamma = 0,61 \end{array} $	158Sm (β) 158Eu	225, 226 226	Внутренняя конверсия Спектр ү
64	Gd	88	152	7 7 7 7 7 7	0 0,123 0,247 0,533 0,877 1,206 1,649	153Eu (\$\frac{\beta}{\beta}\) 153Gd	227 227 227 227 227 227 227 227	Спектр ү и в Спектр ү и в
*		90	154		$\begin{array}{c c} 0\\ \gamma = 0,1224 \end{array}$	¹⁵⁴ Eu (β ⁻) ¹⁵⁴ Gd	228	Спектр ү

Продолжение

Метод	Спектр 1 Спектр 1 Спектр 1	Спектр ү Спектр ү	Внутренияя конверсия	Спектр ү	Внутренняя конверсия	Внутренияя конверсия Спектр ү и в Спектр ү и в
Литература	229 228 228	230, 231	141, 224	233	232	233 233 233
Реакция	154Eu (9) 154Gd	161 Gd (*) 161 Tb	160Tb (β−) 160Dy ,*	16tTb (β ⁻) 16tDy	$^{-164}$ Dy $(n_{\uparrow})^{165}$ D y	171Er (9—) 171Tm
Уровни в МеV	$ \begin{array}{c} $	$ \begin{array}{c} 0 \\ $	$\begin{array}{c} 0 \\ \gamma = 0.0856; \\ 0.1947; 0.2132; \\ 0.2980 \\ \gamma = 1,1 \end{array}$	η=1,28	0,18	$ \begin{array}{c} 0 \\ 0,113\pm0,005 \\ 0,418 \\ 0,805\pm0,025 \end{array} $
Актив- ность	1	<u> </u>	l		β_ γ	-4-4-4
A	154	191	160	191	165	171
>	06	96	94	95	66	102
Символ) Oq	Tb	Dy	· · · · · · · · · · · · · · · · · · ·		Тш
7	64	739	99			69

⁵ уфн т. XXXVIII, вып. 2

Z	Символ	N	A	Актив- ность	Уровни в MeV	Реакция	Литература	Метод
73	Та	108	181	7 7	0 0,133 0,478 0,7		228 228, 234 234	Внутренняя конверсия Спектр ү Спектр ү
74	W	108	182	7 7 7 7 7 7 7	$\begin{matrix} 0\\ 0,0692\\ 0,1125\\ 0,2550\\ 0,3198\\ 0,3218\\ 0,3386\\ 0,5148\\ 0,6141\\ \gamma=0,15;\ 0,22;\\ 1,13;\ 1,22 \end{matrix}$	183Ta (β)183w	235 235 235 235 235 235 235 235 235 235	Спектр ү Спектр ү Спектр ү Спектр ү Спектр ү Спектр ү Спектр ү Спектр ү Спектр ү Спектр ү Спектр ү
75	Re	110	185		$\gamma \stackrel{0}{=} 0,75$	¹⁸⁵ Os (<i>K</i>) ¹⁸⁵ Re	237	Спектр ү
		112	187	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0,043 0,07 0,21 0,46 0,57 0,69 0,79 0,86	187Os (λ) 187Re 187W (β) 187Re	2 ⋅ 8 136 136, 239 239, 240 239, 240 136, 239, 240 240 240	Спектр 7 Спектр 7 Спектр 7 Спектр 7 Спектр 7 Спектр 7 Спектр 7 Спектр 7

								Продолжени е
Z	Символ	N	A	Актив- ность	Уровни в МеV	Реакция	Литература	Метод
76	Os	112	188	7	$ \begin{array}{c} 0 \\ 0,16 \\ 1,84 \\ \gamma = 0,19; 1,39 \end{array} $	¹⁸⁸ Re (β ⁻) ¹⁸⁸ Os	185 185 185 185	— — — — — Спектр ү Спектр ү
77	Ir	114	191	_	$\gamma = 0,22; 1,58$	191Os (β ⁻) ¹⁹¹ [r	185	Спектр ү
		115	192	β- Υ	0,060	¹⁹¹ Ιτ (ηγ) ¹⁹⁸ Ιτ	241	Внутренняя конверсия
		116	193	- γ	0 0,1291	193Os (β ⁻) 193Ir	228, 237	Внутренняя конверсия
78	Pt	114	192		$0 \\ \gamma = 0,6$	— 192Ir (β [—]) 192Pt	176, 242	Спектр ү
		116	194	7 7 7 7 7	0 0,133 0,294 0,329 0,586 0,601 0,609 1,81 $\gamma = 2,0$ $\gamma = 1,43$	194]r (β ⁻) 194Pt 194Au (Κ) 194Pt 194]r (β ⁻) 194Pt ** 194Au (Κ) 194Pt 194]r (β ⁻) 194Pt	235 176, 235 243 235 235 235 235 243 243 176, 242	Спектр ү Спектр ү Внутренняя конверсия Спектр ү Спектр ү Спектр ү Спектр ү Спектр ү Спектр ү Спектр ү

Z	Символ	N	A	Актив- ность	Уровни в MeV	Реакция	Литература	Метод
78	Pt	117	195	- γ γ	0 0,096 0,129	195Au (K) 195Pt	243 243	Внутренняя конверсия Внутренняя конверсия
		118	196		0 0,139 0,358	196Au (K) 186Pt	243 243	Внутренняя конверсия Внутренняя конверсия
79	Au	118	197	7 7 7	0 0,077 0,135 0,25? 0,300 0,38 1,22 1,68 2,15 2,56 2,97	197Hg (K) 197Au Х-лучи 197Hg (K) 197Au х-лучи х-лучи х-лучи »	244, 245, 246 244, 245, 246 45, 71 245, 244, 246 246 45, 71, 247 45, 71, 247 45, 71, 247 45, 71, 247 45, 71, 247	Внутренняя конверсия Внутренняя конверсия Внутренняя конверсия Спектр 7 Резонансный выход 197 Аи* Резонансный выход 197 Аи* Резонансный выход 197 Аи* Резонансный выход 197 Аи*
80	Hg	116	196	- T	0 0,173 0,334	196Au (β_) 196Hg	243 243	Внутренняя конверсия Внутренняя конверсия
		118	198	γ	0 0,070?	193Au (β ⁻) 198Hg	248	— Внутренняя конверсия

Продолжение

z	Символ	N	A	Актив- ность	Уровни в MeV	Реакция	Литература	Метод
80	Hg	118	198	γ	0,408	¹⁹⁸ Au (β) ¹⁹⁸ Hg	17, 136, 239, 248, 249, 250, 251, 253	конверсия
					0,565	39	251, 252, 253 249, 250, 253	Спектр ү, внутренняя кон-
:					0,773	ď	249, 250, 253	версия Спектр ү и β, внутренняя конверсия
		119	199	<u> </u>	0 0,18	¹⁹⁹ Au (β ⁻) ¹⁹⁹ Hg	252, 254	Спектр ү, совпадения вү
81	ThC"	127	208	β-	0,040	ThC (a) ThC"	18	Спектраи ү
	RaC"	129	210	β-	0 0,062	RaC (a) RaC"	18	Спектр а и .ү
83	RaE	127	210	β-	0 0,0472	RaD (β ⁻) RaE	18	Спектр β и γ
	AcC	128	211	β-, α	0 0,404 0,487 0,764 0,829	³¹¹ AcB (β ⁻) ²¹¹ AcC	255 255 255 255 255	Спектрүи в Спектрүи в Спектрүи в Спектрүи в

z	Символ	N	· A	Актив- ность	Уровни в МеV	Реакция	Литература	Метод
83	ThC	129	212	β-, α	0 0,238	ThB (β ⁻) ThC		Спектр с и ү
	RaC	131	214	β-, α	0 0,0529	RaB (β ⁻) RaC	18	Спектр « и γ
84	ThC'	128	212	a y y y	0 0,69 0,84 1,60 1,78 2,20	212ThC' (a) *08ThD	15	Спектраи у Спектраи у Спектраи у Спектраи у Спектраи у
	RaC'	130	214	מ ז ז ז	0 0,426 0,608 0,766 1,283 1,412 1,663 1,761 1,844 2,015 2,138 2,198 2,268 2,439 2,513 2,697 2,880	214RaC (β) 214RaC'	256 » » » » » » » » » »	Спектр 7 Спектр 7

Z	Символ	N	A	Актив- ность	Уровли в МеV	Реакция	Литература	Метод
86	Rn	136	222	α	0 0,184	2.6Ra (α) ²²² Rn	- 18	Спектр α и γ
88	ThX	133	224	a	0 0,086	2 ²⁸ RdTh (α) ²²⁴ ThX	18	Спектран ү
90	RdTh	138	228	α	0 0,058	²²⁸ MTh 2 (B) ²²⁸ RdTh	18	Спектраи ү
91	UZ UX ₂	143 143	234 234	β— γ, β—	0 0,394	²³⁴ UX ₂ (β ⁻) ²³⁴ UII	 257	Спектр β
	UX ₂	143	234	γ, β -	0 0,093	224UX ₁ (β) *34UX ₂	258	Спектр β
92	UII	142	234	α	0 0,78 0,82 1,50	284UX ₂ (β ⁻) 284UII	257 257 257 257	Спектр в и ү Спектр в и ү Спектр в и ү

Поэтому установление общих закономерностей в распределении уровней в связи с динамикой ядра представляет собой ещё мало благодарную задачу, полноценное решение которой, повидимому, будет возможным лишь после того, как будет накоплен богатый экспериментальный материал, охватывающий большое число ядер. В решении этой задачи большое значение должно сыграть изучение тонкой структуры ядерных уровней и вероятностей квантовых переходов в ядре.

ЛИТЕРАТУРА

- 1. Cm. Bethe a. Bacher, Rev. Mod. Phys. 8, 82 (1936); Wigner a. Feenberg, Reports on progress in physics 8, 274 (1941).
- 2. Elsasser, J. de phys. et rad. 5, 625 (1934); Margenau, Phys. Rev. **46**, 613 (1934).

3. Mayer, Phys. Rev. 74, 235 (1948).

4. Бор и Калькар, Усп. Физ. наук 20, 317 (1938).

5. Френкель, ЖЭГФ **10**, 3**61** (1940). 6. Wilson, Phys. Rev. 69, 538 (1946).

7. Teller a. Wheeler, Phys. Rev. 53, 778 (1938).

- 8. Guggenheimer, Nature 145, 104 (1940); Proc. Roy. Soc. 181, 169 (1942).
- Гей, Латышев и Пасечник, Изв. Академии Наук СССР 12, 732 (1948).
- 10. Гей, Латышев, Пасечник и Тальвик, Изв. АН СССР 12, 724 (1948).
 11. Wilson, Phys. Rev. 74, 352 (1948).
 12. Chang, Phys. Rev. 65, 352 (1944).
 13. Haxel, Phys. Zeits. 36, 804 (1935); Zeits. techn. Phys. 16, 410 (1935).
 14. May a. Vaid yanathan, Proc. Roy. Soc. 155, 519 (1936).

15. Латышев, ЖЭТФ 14, 65 (1944).

- 16. Hughes, Am. Journ. Phys. 16, 415 (1948). 17. Mitchell, Rev. Mod. Phys. 20, 296 (1948).
- Feather a. Bretscher, Proc. Rov. Soc. 165, 530 (1938); Bradt u. Scherrer, Helv. Phys. Acta 18, 260 (1945); 19, 307 (1946); Phys. Rev. 71, 141 (1947).

19. Hahn, Ber. Deutsch. Chem. Ges. 54, 1131 (1921).

20. Soddy, Proc. Roy. Inst. 22, 117 (1917); Journ. Chem. Soc. 115, 1 (1919).

21. Weizsäcker, Naturwiss. 24, 813 (1936).

- 22. Peacock a. Deutsch, Phys. Rev. 69, 306 (1946); Osborne a-
- Peacock a. Deutsch, Phys. Rev. 69, 300 (1946); Osborne a. Deutsch, Phys. Rev. 71, 467 (1947).
 Bradt, Gugelot, Huber, Medicus, Preiswerk, Scherrer u. Steffen, Helv. Phys. Acta 19, 220 (1946).
 Bradt, Gugelot, Huber, Medicus, Preiswerk, Scherrer u. Steffen, Helv. Phys. Acta 19, 218 (1946).
- 25. Bradt, Gugelot, Huber, Medicus, Preiswerk u. Scher-Bradt, Gugelot, Huber, Medicus, Preiswerk u. Scherrer, Helv, Phys. Acta 18, 255 (1945).
 Langsdorf a. Segrè, Phys. Rev. 57, 105 (1940).
 Hornyak a. Lauritsen, Rev. Mod. Phys. 20, 191 (1948).
 Boggild, Kgl. Dansk. Vid. Sels. Math. — Fys. Medd. 23, 4,26 (1945).
 Wilson, Proc. Roy. Soc. 177, 382 (1940).
 Williams, Shepherd a. Haxby, Phys. Rev. 52, 390 (1937).
 Maier-Leibnitz, Zeits. f. Physik 101, 478 (1936).

- 32. Gaerttner, Fowler a. Lauritsen, Phys. Rev. 55, 27 (1939).
- 33. Halpern a. Crane, Phys. Rev. 55, 415 (1939).

- 34. Fowler, Gaerttner a. Lauritsen, Phys. Rev. 53, 628 (1938) 35. Gaerttner a. Pardue, Phys. Rev. 57, 386 (1940). 36. Fowler a. Lauritsen, Phys. Rev. 58, 192 (1940). 37. Bothe u. Baeyer, Göttinger Nachrichten 1, 195 (1935). 38. Bothe a. Maier-Leibnitz, Zeits. f. Physik 107, 513 (1937). 39. Bonner, Becker, Rubin a. Streib, Phys. Rev. 59, 215 (1941). 40. Hudson, Herb a. Plain, Phys. Rev. 57, 587 (1940). 41. Siegbahn u. Slätis, Arkiv f. Ast. Math. Fys. 34A, Nel5 (1946). 42. Powell May Chadwick a Pickayance Nature 145, 893

- 42. Powell, May, Chadwick a. Pickavance, Nature 145, 893. (1940).
- 43. Little, Long a. Mandeville, Phys. Rev. 69, 414 (1946). 44. Немилов и Гедеонов, ДАН СССР 63, 115 (1948).
- 45. Wiedenbeck, Phys. Rev. 68, 237 (1945).
- 46. Flammersfeld, Naturwiss. 32, 36 (1944).
- 47. Goldhaber, Hill a. Szillard, Phys. Rev. 55, 47 (1939). 48. Barnes a. Aradine, Phys. Rev. 55, 50 (1939).
- 49. Lark-Horovitz, Risser a. Smith, Phys. Rev. 55, 878 (1939).
- 50. Sagane, Kojima, Migamoto a. Ikawa, Phys. Rev. 57, 1, 80 (1940).
- 51. См. Кондратьев, УФН 34, 169 (1948).
- 52. Goldsmith a. Ibser, Atomis Energy Comm Rep. MDDC, 1946 (c. 27).
- 53. Barshall a. Battat, Phys. Rev. 70, 245 (1946).
- 54. Bailey, Bennett, Bergstalh, Nuckolls, Richards a. Williams, Phys. Rev. 70, 583 (1946).
- 55. Hushley, Phys. Rev. **67**, 34 (1945). 56. Bailey, Phillips a. Williams, Phys. Rev. **62**, 80 (1942); Bennett, Bonner, Hudspeth, Richards a. Watt, Phys. Rev. **59**, 781 (1941).
- 57. Fowler a. Lauritsen, Phys. Rev. 56, 841 (1939); Hudson, Herb a. Plain, Phys. Rev. 57, 587 (1940).
- 58. Bennett, Bonner, Richards a. Watt, Phys. Rev. 71, 11 (1947).
- 59. Waldmann, Waddel, Calihan a. Schneider, Phys. Rev. **54**, 543, 1017 (1938):
- 60. Fowler, Lauritsen a. Lauritsen, Rev. Mod. Phys. 20, 236 (1948).

- 61. Stuhlinger, Zeits. f. Physik 114, 185 (1939).
 62. Dubridge a. Marshall, Phys. Rev. 56, 706 (1939).
 63. Claney, Phys. Rev. 58, 88 (1940); 60, 87 (1941).
 64. Bonner, Proc. Roy. Soc. 174, 339 (1940); Powell, Proc. Roy. Soc. 181, 344 (1942).

- 65. Bower a. Burcham, Proc. Roy. Soc. 173, 379 (1939).
 66. Elliott a. Deutsch, Phys. Rev. 63, 321 (1943).
 67. Staub a. Tatel, Phys. Rev. 58, 820 (1940); Staub a. Stephens, Phys. Rev. 55, 131 (1939); Kittel, Phys. Rev. 62, 109 (1942).
 68. Williams, Shepherd a. Haxby, Phys. Rev. 52, 390 (1937).
 69. Soc. Totals R. Talan Levend de Phys. Rev. 51, 103 (1940);
- 69. San Tsiang Tsien, Journ. de phys. et rad. 1, 1, 103 (1940); Beck a. San Tsiang Tsien, Phys. Rev. 61, 379 (1942).
- 70. Heydenburg a. Ramsey, Phys. Rev. 60, 42 (1941).
- 71. Hushley, Phys. Rev. 67, 34 (1947). 72. Rubin, Snyder, Lauritsen a. Fowler, Phys. Rev. 74, 1564 (1948).
- 73. Horn yak a. Lauritsen, Phys. Rev. **74**, 1565 (1948). 74. Inglis, Phys. Rev. **74**, 1876 (1948).
- 75. Buechner, Strait, Stergiopoulos a. Sperduto, Phys. Rev. 74, 1569 (1948).
- 76. Walker a. McDaniel, Phys. Rev. 74, 315 (1948).

- 77. Davis a. Hafner, Phys. Rev. 73, 1242, 1473 (1948).
- 78. Allen, Burcham a. Wilkinson, Nature 159, 473 (1947).
- 79. Lauritsen, Dougherty a. Rasmussen, Phys. Rev. 74, 1566 (1948).
- 80. Lauritsen, Fowler, Lauritsen a. Rasmussen, Phys. Rev. **73**, 636 (1948).
- 81. Halpern, Phys. Rev. 74, 1234 (1948).
- 82. Bonner, Evans, Harris a. Phillips, Phys. Rev. 74, 1227 (1948).
- 83. Inglis, Heydenburg a. Hafner, Phys. Rev. 74, 1257 (1948). 84. Shoupp a. Jennings, Phys. Rev. 74, 1233 (1948). 85. Huber a. Stebler, Phys. Rev. 73, 89 (1948).

- 86. Comparat, Journ. de phys. et rad. 2, 36 (1941); Nature 153, 720 (1944).
- 87. Goldhaber, Phys. Rev. 74, 1725 (1948). 88. Pollard a. Davison, Phys. Rev. 72, 162, 736 (1947). 89. Heydenburg a. Inglis, Phys. Rev. 73, 230 (1948). 90. Alburger, Phys. Rev. 74, 1240 (1948).

- 91. Burcham a. Smith, Proc. Roy. Soc. 168, 176 (1938).
 92. Beuier a. Zünti, Helv. Phys. Acta 19, 421 (1946); 20, 195 (1947).
 93. Bown a. Burcham, Proc. Roy. Soc. 173, 379 (1939).
 94. Bonner a. Evans, Phys. Rev. 73, 666 (1948).
 95. Elder, Motz a. Davidson, Phys. Rev. 71, 917 (1947).

- 96. Schultz a. Watson, Phys. Rev. 58, 1047 (1940). 97. Murrell a. Smith, Proc. Roy. Soc. 173, 410 (1939).
- 98. Pollard a. Brasefield, Phys. Rev. 50, 890 (1936).
- 99. Duncanson a. Miller, Proc. Roy. Soc. 146, 408 (1934).
- 100. Davisson a. Evans, Phys. Rev. 74, 1239 (1948).
- 101. Wilkins, Phys. Rev. 60, 365 (1941); Diecke a. Marshall, Phys. Rev. 63, 86 (1943); Wilkins a. Wrenshall, Phys. Rev. 58, 758 (1940); Kikuchi, Proc. Phys. - Math. Soc. Japan 21, 260, 381 (1939); Carran, Dee a. Strothers, Proc. Roy. Soc. 175, 546 (1940); Itoh, Proc. Phys.—Math. Soc. Japan 23, 605 (1941); Elliot, Deutsch a. Roberts, Phys. Rev. 61, 99 (1942); Mandeville, Phys. Rev. 62, 309 (1942).
- 102. Bush a. Fulbright, Phys. Rev. 74, 1206 (1948). 103. Pollard, Saylora. Weeley, Bull. Am. Phys. Soc. 29, № 3 (1948); Phys. Rev. 74, 1233 (1948).
- 104. McMillan a. Lawrence, Phys. Rev. 47, 343 (1935). 105. Humphreys a. Pollard, Phys. Rev. 59, 942 (1941).

- 105. Humphreys a. Poliard, Phys. Rev. 59, 942 (1941).
 106. Motz a. Humphreys, Phys. Rev. 74, 1232 (1948).
 107. Alburger, Phys. Rev. 73, 1014 (1948).
 108. Poliard a. Humphreys, Phys. Rev. 59, 466 (1941).
 109. Allan a. Clavier, Nature 158, 832 (1946); Pollard a. Alburger, Phys. Rev. 72, 1196 (1947).
 110. Itoh, Proc. Phys. Math. Soc. Japan 22, 531 (1940).
 111. Wilkins a. Kuerti, Phys. Rev. 57, 1082 (1940).
 112. Bieuler, Scherrer a. Zünti, Helv. Phys. Acta 18, 262 (1945).
 113. Eklund a. Hole, Arkiv Math. Astron. Fysik 29A, № 26 (1943).
 114. Brostrom, Huus a. Tangen, Phys. Rev. 71, 661 (1947).
 115. Benson, Phys. Rev. 73, 7 (1948).
 116. Metzger, Alder a. Huber, Helv. Phys. Acta 21, 278 (1948).
 117. Peck, Phys. Rev. 73, 947 (1948).
 118. Davison, Phys. Rev. 73, 1241 (1948).
 119. Smith a. Pollard, Phys. Rev. 59, 942 (1941).
 120. Pollard, Phys. Rev. 56, 961 (1939); Davison, Phys. Rev. 74, 1233 (1948). (1948).

121. Bleuler a. Zünti, Helv. Phys. Acta 19, 137 (1946).

122. Paton, Zeits. f. Physik 90, 586 (1934).

- 123. Brasefield a. Pollard, Phys. Rev. 50, 296 (1936).
- 124. Hole a. Siegbahn, Arkiv Math. Astron. Fysik 33, 1 (1946); Ramsey, Meem a. Mitchell, Phys. Rev. 72, 639 (1947).
- 125. Davidson, Phys. Rev. 56, 1062 (1939); Siegbahn a. Hole, Arkiv Math. Astron. Fysik 33A, No 9 (1946).
- 126. Gleditsch a. Graf, Phys. Rev. 72, 640 (1947). 127. Hirzel a. Wäffler, Helv. Phys. Acta 19, 216 (1946).

- 128. Graf, Phys. Rev. 74, 1199 (1948). 129. Meyer, Schwachheim a. De Sonza Santos, Phys. Rev. 71, 908 (1947).
- 130. Pollard a. Davison, Phys. Rev. 73, 1241 (1948).131. Davidson, Phys. Rev. 57, 224 (1940).

132. Bleuler, Bollmann a. Zünti, Helv. Phys. Acta 19, 419 (1946), 133. Davidson, Phys. Rev. 56, 1061 (1939).

- 134. Helmholz, Phys. Rev. 60, 415 (1941).
- 135. Peacock a. Wilkinson, Phys. Rev. 74, 1240 (1948).
- 136. Peacock a. Wilkinson, Phys. Rev. 74, 297 (1948).
- 137. Mandeville a. Scherb, Phys. Rev. 73, 141, 655 (1948).
- 138. Miller a. Deutsch, Phys. Rev. 72, 527 (1947).
- 139. Peacock a. Wilkinson, Phys. Rev. 72, 251 (1947).
- 140. Meitner, Arkiv Mat. Astron. Fysik 32A, № 6 (1945).
- 141. Cork, Shreffler a. Fowler, Phys. Rev. 73, 1220 (1948). 142. Pollard, Phys. Rev. 54, 411 (1938).
- 143. Bradt, Gugelot, Huber, Medicus, Preiswerk u. Scherrer, Helv. Phys. Acta 18, 259 (1945).
- rer, Helv. Phys. Acta 18, 259 (1945).

 144. Davidson a. Pollard, Phys. Rev. 54, 408 (1938).

 145. Osborne a. Deutsch, Phys. Rev. 71, 467 (1947); Peacock a. Deutsch, Phys. Rev. 69, 306 (1946).

 146. Martin, Phys. Rev. 71, 127, 466; 72, 378 (1947).

 147. Siegbahn, Arkiv Mat. Astron. Fysik 33Å, № 10 (1946).

 148. Deutch, Roberts a. Elliott, Phys. Rev. 61, 389 (1942).

 149. Davidson, Phys. Rev. 57, 563 (1940).

 150. Jensen, Laslett a. Pratt, Phys. Rev, 73, 529 (1948).

- 151. Leith, Bratenahl a. Meyer, Phys. Rev. 72, 732 (1947).
 152. Bradt, Helv. Phys. Acta 18, 252 (1945); 19, 219 (1946).
- 153. Meyerhof a. Goldhaber, Phys. Rev. 74, 348 (1948).
 154. Bradt, Helv. Phys. Acta 19, 221 (1946).
 155. Richardson a. Wright. Phys. Rev. 70, 445 (1946).

- 156. Valley a. McCreary, Phys. Rev. 56, 863 (1939). 157. McCown, Woodward a. Pool, Phys. Rev. 74, 1311 (1948). 158. Haynes, Phys. Rev. 73, 1269; 74, 423 (1948).
- 159. Mitchell, Zaffarano a. Kern, Phys. Rev. 73, 1424 (1948).
- 160. Haynes, Phys. Rev. 73, 187 (1948); Mitchell, Kern a. Zaffarano, Phys. Rev. 73, 1220 (1948).
- 161. Mitchell, Journey a. Ramsey, Phys. Rev. 71, 324 (1947).

- 162. Mitchell, Journey a. Ramsey, Phys. Rev. 71, 825 (1947). 163. McCown, Woodward a. Pool, Phys. Rev. 74, 1315 (1948). 164. Cowart, Pool, McCown a. Woodward, Phys. Rev. 73, 1454 (1948).
- 165. Wu, Havens a. Rainwater, Phys. Rev. 74, 1248 (1948).
- 166. Siegbahn a. Hole, Phys. Rev. 70, 133 (1946).
- 167. Гринберг и Русинов, ДАН СССР 27, 649 (1940). 168. Langsdorf a. Segré, Phys. Rev. 57, 105 (1940).
- 169. Dubridge a. Marshall, Phys. Rev. 57, 348 (1940).
- 170. Jurney, Phys. Rev. 74, 1049 (1948).

- 171. Zaffarano, Kern a. Mitchell, Phys. Rev. 74, 682 (1948).
- 172. Dubridge a. Marshall, Phys. Rev. 56, 706 (1939).
- 173. Wiedenbeck, Phys. Rev. 68, 1 (1945).
- 174. Goldhaber a. Muehlhause, Phys. Rev. 74, 1248 (1948).
- 175. Scherb a. Mandeville, Phys. Rev. 74, 1248 (1948).
- 176. Mandeville a. Scherb, Phys. Rev. 73, 1434 (1948).
- 177. Motta a. Boyd, Phys. Rev. 73, 1470 (1948).
- 178. Motta a. Boyd, Phys. Rev. 74, 220 (1948). 179. Eggen a. Pool, Phys. Rev. 74, 57 (1948).
- 180. Huber, Medicus, Preiswerk a. Steffen, Phys. Rev. 73, 1211 (1948).
- 181. Mandeville a. Scherb, Phys. Rev. 73, 848 (1948); Motta a. Boyd, Phys. Rev. 74, 344 (1948).
- 182. Medicus, Mukerji, Preiswerk a. Saussure, Rhys. Rev. 74, 839 (1948).
- 183. Eggen a. Pool, Phys. Rev. 74, 1248 (1948).184. Rall a. Wilkinson, Phys. Rev. 71, 321 (1947).
- 185. Mandeville, Scherb a. Keighton, Phys. Rev. 74, 888 (1948).
- 186. Huber, Marmier, Medicus, Preiswerk a. Steffen, Phys. Rev. 73, 1208 (1948).
- 187. Mandeville a. Scherb, Phys. Rev. 73, 1270 (1948).
- 188. Gunlock a. Pool, Phys. Rev. 74, 1264 (1948). 189. Peacock, Phys. Rev. 72, 1049 (1947).
- 190. Enns, Phys. Rev. 56, 872 (1939).
- 191. Bradt, Helv. Phys. Acta 18, 255 (1945); 19, 248 (1946).
- 192. Bradt, Gugelot, Huber, Medicus, Preiswerk, Scherrer a. Steffen, Helv. Phys. Acta 19, 218 (1946).
- 193. Bradt, Gugelot, Huber, Medicus, Preiswerk a. Scherrer, Helv. Phys. Acta 18, 255, 256 (1945).
- 194. Alvarez, Helmholz a. Nelson, Phys. Rev. 57, 660 (1940).
- 195. Wiedenbeck, Phys. Rev. 67, 92 (1945).
- 196. Tendam a. Bradt, Phys. Rev. 72, 1118 (1947).
- 197. Smith, Phys. Rev. 61, 389 (1942). 198. Collins, Waldman, Stubblefield a. Goldhaber, Phys. Rev. **55**, 507 (1939)
- 199. Waldman, Collins, Stubblefield a. Goldhaber, Phys. Rev. **55**, 1129 (1939).
- 200. Collins a. Waldman, Phys. Rev. 57, 1088 (1940).
- 201. Scherb a. Mandeville, Phys. Rev. 73, 655 (1948).
- 202. Burson, Bittencourt, Duffield a. Goldhaber, Phys. Rev. 70, 566 (1946).
- 203. Der Mateosian, Goldhaber, Muehlhause a. McKeown, Phys. Rev. 72, 1271 (1947).
- 204. Mandeville a. Scherb, Phys. Rev. 73, 340 (1948).
- 205. Rall a. Wilkinson, Phys. Rev. 71, 321 (1947); Mandeville a. Scherb, Phys. Rev. 73, 656 (1948).
- 206. Kern, Zaffarano a. Mitchell, Phys. Rev. 73, 1268 (1948).
- 207. Cook a. Langer, Phys. Rev. 73, 1268 (1948).
- 208. Meyerhof a. Scharff-Goldhaber, Phys. Rev. 72, 273 (1947). 209. Kern, Zaffarano a. Mitchell, Phys. Rev. 73, 1142 (1948); Cook
- a. Langer, Phys. Rev. 73, 1149 (1948); Jurney a. Mitchell, Phys. Rev. 73, 1153 (1948).
- 210. Jurney a. Mitchell, Phys. Rev. 73, 1269 (1948).
- 211. Scherb a. Mandeville, Phys. Rev. 73, 1268 (1948).
- 212. Downing, Deutsch a. Roberts, Phys, Rev. 61, 389 (1942). 213. Metzger a. Deutsch, Phys. Rev. 74, 1640 (1948).
- 214. Owen, Moe a. Cook, Phys. Rev. 74, 1879 (1948).

- 215. Katcoff, Rhys. Rev. 72, 1160 (1947).
- 21o. Fu-Chun-Yua. Kurbatov, Phys. Rev. 74, 34 (1948).
- 217. Fu-Chun-Yu a. Kurbatov, Phys. Rev. 73, 1268 (1948).
- 218. Siegbahn a. Deutsch, Phys. Rev. 71, 483 (1947).
- 219. Elliott a. Bell, Phys. Rev. 72, 979 (1947).
- 220. Siegbahn a. Deutsch, Phys. Rev. 73, 420 (1948).
- 22. Townsend, Cleland a. Hughes, Phys. Rev. 74, 499 (1948).
- 222. Townsend, Owen, Cleland a. Hughes, Phys. Rev. 74, 99 (1948).
- 223. Pool a. Krisberg, Phys. Rev. 73, 1035 (1948).
- 224. Cork, Schreffler a. Fowler, Phys. Rev. 74, 240 (1948). 225. Hill, Phys. Rev. 74, 78 (1948).

- 225. Hill, Phys. Rev. 74, 78 (1948).
 226. Burson a. Mandeville, Phys. Rev. 74, 1264 (1948).
 227. Shull, Phys. Rev. 74, 917 (1948).
 228. Cork, Shreffler a. Fowler, Phys. Rev. 72, 1209 (1947).
 229. Cork, Shreffler a. Fowler, Phys. Rev. 73, 78 (1948).
 230. Krisberg, Pool a. Hibdon, Phys. Rev. 74, 1249 (1948).
 231. Krisberg a. Hibdon, Phys. Rev. 74, 44 (1948).
 232. Ingram, Shaw, Hess a. Hayden, Phys. Rev. 72, 515 (1947).

- 233. Ketelle a. Peacock, Phys. Rev. **73**, 1269 (1948); McGowan a. DeBenedetti, Phys. Rev. **73**, 1269 (1948).
- 234. Bunyan, Lundby, Ward a. Walker, Proc. Roy. Soc. 61, 30) (1948).
- 235. Cork, Phys. Rev. 72, 581 (1947).
- 236. Mandeville a. Scherb, Phys. Rev. 73, 656 (1948).
- 237. Katzin a. Pobereskin, Phys. Rev. 74, 264 (.948).
- 238. Naldrett a. Libby, Phys. Rev. 73, 487 (1948).
- 239. Wilkinson a. Peacock, Phys. Rev. 74, 1250 (1948).

- 240. Schwarz a. Pool, Phys. Rev. 71, 122 (1947). 241. Goldhaber, Muchlhause a. Turkel, Phys. Rev. 71, 372 (1947). 242. Mandeville a. Scherb, Phys. Rev. 74, 1250 (1948). 243. Steffen, Huber, Humbel u. Zünti, Helv. Phys. Acta 21, 194 (1948).
- 244. Huber, Steffen a. Humbel, Helv. Phys. Acta 21, 192 (1948).
- 245. Frauenfelder, Gugelot, Huber, Medicus, Preiswerk, Scherrer a. Steffen, Phys. Rev. 73, 1270 (1948).
- 246. Frauenfelder, Gugelot, Huber, Medicus, Preiswerk, Scherrer u. Steffen, Helv. Phys. Acta 20, 238 (1947).
- 247. Sagane, Kojima, Migamoto a. Ikawa, Phys. Rev. 57, 1180 (1940).
- 248. Wiedenbeck a. Chu, Phys. Rev. **72**, 1171 (1947). 249. Levy a. Greuling, Phys. Rev. **73**, 83 (1948).
- 250. Saxon, Phys. Rev. **73**, 811 (1948).
- 251. Siegbahn, Proc. Roy. Soc. 189, 527 (1947). 252. Mandeville a. Scherb, Phys. Rev. 74, 1565 (1948).
- 253. Dumond, Lind a. Watson, Phys. Rev. 73, 1392 (1948).
- 254. Mandeville, Scherb a. Keighton, Phys. Rev. 74, 601 (1948).
- 255. Surugue, Comptes Randus 212, 337 (1941).
- 256. Rutherford, Lewis a. Bowden, Proc. Roy. Soc. 142, 347 (1933).
- 257. Bradt a. Scherrer, Helv. Phys. Acta 18, 260 (1945).
- 258. Bradt a. Scherrer, Phys. Rev. 71, 141 (1947).
- 259. Philipp u. Rehbein, Zeits, f. Physik. 124, 225 (1948).