٩.

люминесценция пластмассовых сцинтилляторов

И. М. Розман и С. Ф. Килин

§ 1. ВВЕДЕНИЕ

В сцинтилляционных методах регистрации и исследования ионизирующих излучений применяются в основном три класса люминеспируюших веществ: неорганические кристаллы, органические вещества и инертные газы. В классе органических спинтилляторов наряду с кристаллами и жилкими растворами следует особо выделять группу пластмас сосцинтилляторов, представляющих собой твердые расвых творы органических люминесцирующих веществ в прозрачной пластмассе (полистирол, поливинилтоуол)*. Пластмассовые сцинтилляторы (ПС) обладают сравнительно высокой световой отдачей, составляющей от ½ до 2/2 световой отдачи монокристалла антрацена, лучшего в этом смысле из известных органических сцинтилляторов. ПС являются «быстрыми» летекторами понизирующих частии. Средняя длительность симитилляции лежит в интервале $10^{-9} - 10^{-8}$ сек. Соответствующим выбором люминеспирующих добавок можно привести спектр свечения ПС в хорошее соответствие со спектральной чувствительностью регистрирующего прибора (фотоэлектронный умножитель). ПС обладают высокой механической прочностью, негигроскопичны, могут применяться внутри вакуумных установок, а также в широком интервале температур. Если, кроме того, принять во внимание несложность изготовления и сравнительно низкую стоимость ПС, то будут ясны их достоинства как по сравнению с монокристаллами, так и с жидкими сцинтилляторами.

Пластмассовым сцинтилляторам посвящено большое число работ. Приводятся описания различных способов изготовления ПС, результаты определения люминесцентных характеристик, важные для практического использования этих сцинтилляторов. Кроме того, в литературе имеются результаты исследования люминесценции ПС, представляющие также большой теоретический интерес. Особенности этих систем, а именно возможность введения различного рода примесей и практически полное отсутствие диффузии молекул или радикалов, позволяют получить некоторые важные сведения о механизме свечения органических веществ под действием ионизирующего излучения (радиолюминесценция).

В настоящей статье предпринята попытка систематизировать имеющиеся данные о пластмассовых сцинтилляторах. При этом учитывалось, что часть результатов собрана в монографиях ¹⁻³ и обзорных статьях ⁴⁻⁷. В работе ⁵ содержится также обзор экспериментальных методов исследования сцинтилляционных свойств.

^{*)} Об агрегатном состоянии люминесцирующих добавок в иластмассе высказанонесколько предположений. См. ниже.

§ 2. СПОСОБЫ ИЗГОТОВЛЕНИЯ

Люминесцентные характеристики ПС существенно зависят от состава сцинтилляторов (основное вещество и люминесцирующие добавки) и способа изготовления. Из опробованных способов изготовления ⁸⁻¹² лучшие результаты были получены полимеризацией растворов люминесцирующих веществ в некоторых мономерах, а именно: в стироле^{9,13}, в смеси стирола и винилтетралина¹⁴, в винилтолуоле¹⁵. Применяются два способа полимеризации: полимеризация в присутствии катализатора при низкой (50° С¹⁴) или средней (120° С^{9,16}) температуре и термическая полимеризация при средней (140° С^{15,17}) или высокой (200° С^{18,19}) температуре. Первый способ в настоящее время используется редко, так как катализатор значительно снижает световую отдачу ПС²⁰. Нежелательно также присутствие кислорода в процессе полимеризации. Удаление кислорода производится вымораживанием растворов⁹ или барботированием азотом ^{19,21}.

Разработаны режимы термической полимеризации, позволяющие изготовить ПС больших размеров ^{22–24}. Так, например, изготовлены сцинтилляторы на основе полистирола диаметром 107 см и весом около 100 кг²⁴. Однако более перспективным способом изготовления ПС большого объема и произвольной формы является, по-видимому, литье под давлением из предварительно изготовленной люминесцирующей пластмассы^{7,21}.

Для некоторых приложений сцинтилляционных методов необходимы сцинтилляторы очень малой толщины. Тонкие ПС (до 0,02 *мм*) изготавливались прессованием сцинтиллирующей пластмассы при температуре несколько ниже точки плавления ²⁵.

Наибольшей световой отдачей (сцинтилляционной эффективностью) обладают ПС на основе поливинилтолуола с добавками *n*-терфенила или *PBD**). Так, сцинтилляторы, изготовленные термической полимеризацией винилтолуола (при 125° С в течение четырех дней) с добавками 2°_{0} *PBD* и 0,1% *PPS*, имеют эффективность, равную 0,55 эффективности кристалла антрацена ¹⁷. Согласно рекламе, эффективность ПС типа NE-102 составляет 0,60-0,65 от коммерчески доступного антрацена. Данные о ряде других эффективных ПС на основе полистирола и поливинилтолуола имеются также в ²⁶⁻²⁸.

§ 3. ЛЮМИНЕСЦЕНТНЫЕ ХАРАКТЕРИСТИКИ

Наиболее важными характеристиками сцинтилляционного счетчика являются его энергетическая и временная разрешающие способности. Эти величины зависят как от параметров фотоэлектронного умножителя (ФЭУ), так и от свойств сцинтиллятора. Временнае разрешение зависит от распределения во времени фотонов люминесценции, попадающих на ФЭУ, т. е. от формы сцинтилляции. Энергетическое разрешение счетчика определяется количеством поглощенной в сцинтилляторе энергии в расчете на один фотоэлектрон, вырванный из катода ФЭУ, т. е. зависит от числа и спектрального распределения фотонов, попадающих на умножитель. Еще одной важной характеристикой сцинтилляционного счетчика

^{*)} В дальнейшем используется следующая сокращенная запись наименований химических соединений: *п*-терфенил — 3*P*; 2,5-дифенил-1,3-оксазол — *PPO*; 4,4'-ди-фенилстильбен — *PPS*; 1,1',4,4'-тстрафенил-1,3-бутадиец — 4*PB*; 1,3,5-трифенил- Δ^2 -пиразолин — 3*PP*; 2-фенил-5 (4-бифенил)-1,3,4-оксдиазол — *PBD*; 2-(1-нафтил)-бененлоксазол — *aNPO*; 2,5-ди-(4-бифенил)-оксазол — *BBO*; кватерфенил — 4*P*; 1,5-дифенил-3-стирил- Δ^2 -пиразолин — *PPS*,*P*; 1,4-ди-[2-(5-фенилоксазолин)]-бензол — *POPOP*; 2,5-дифенил-1,3,4-оксциазол — *PPD*.

является степень его «пропорциональности». В пропорциональном счетчике выходной импульс ФЭУ должен быть прямо пропорционален энергии, поглощенной в сцинтилляторе. Так как можно считать, что умножитель дает линейное усиление, то вопрос о пропорциональности счетчика сводится к вопросу о зависимости выхода люминесценции от энергии различного рода ионизирующих частиц. Таким образом, свойства сцинтилляционного счетчика непосредственно связаны с такими характеристиками сцинтиллятора, как выход люминесценции, спектры свечения, длительность сцинтилляций.

Люминесцентные характеристики зависят не только от вещества сцинтиллятора, но и от его размеров и условий собирания света, так как для сложных молекул имеет место значительное перекрытие спектров поглощения и испускания²⁹. Поглощение собственной люминесценции, или реабсорбция, сопровождается вторичной флуоресценцией. Вследствие этого реабсорбция, вообще говоря, приводит к перераспределению фотонов во внешнем спектре свечения (ослабление коротковолновой части спектра), к уменьшению выхода и увеличению длительности свечения. Поэтому внешние, или т е х н и ч е с к и е, характеристики могут существенно отличаться от «в н у т р е и н и х», или ф и з и ч е с к и х.

3. 1. Спектры свечения

Как известно, спектры флуоресценции органических веществ всегда соответствуют переходам с первого электроиного уровня возбуждения молекул в основное состояние (независимо от длины волны возбуждающего света). Эксперимент подтверждает это правило и для возбуждения частицами высокой энергии: спектры радиолюминесценции совпадают со спектрами флуоресценции. В частности, это имеет место и для веществ, из которых изготавливаются пластмассовые сцинтилляторы ^{9,19,30}. Однако для ПС дело обстоит несколько сложнее. Возбуждающее ионизирующее излучение поглощается главным образом в основном компоненте, так как концентрация добавок обычно не превышает нескольких процентов. Энергия электронного возбуждения частично переносится к молекулам добавки безызлучательным путем, а частично приводит к флуоресценции основного компонента (см. п. 4. 3). Если концентрация добавок в ПС очень мала или сцинтиллятор имеет малую толщину, то во внешнем спектре свечения содержится эта флуоресценция, ослабленная поглощением в добавск ³⁰.

Спектры флуоресценции добавок в ПС соответствуют в большинстве случаев спектрам этих веществ в жидких растворах. Исключения наблюдались для антрацена³¹, вступающего в химическую связь с полистиролом³¹⁻³³, а также для *п*-терфенила в полистироле, в спектре флуоресценции которого (при концентрациях выше 1%) появляются полосы кристалла³⁴. В таблице I указано положение максимумов молекулярных спектров флуоресценции некоторых органических соединений, применяющихся для изготовления ПС.

Влияние реабсорбции на спектры свечения полистирола можно видеть на рис. 1. По оси ординат отложено относительное число фотонов на единичный интервал длин волн, и спектральные кривые нормированы по длинноволновым участкам. Степень реабсорбции зависит от размеров ПС и от вещества добавки. Однако даже для сцинтилляторов небольшого объема (~1 см³) она приводит к потере значительной доли фотонов ³⁰. Реабсорбция существенно меньше в ПС с двумя люминесцирующими добавками. В этих сцинтилляторах энергия возбуждения передается безызлучательным путем от основного вещества к первой добавке (~3% по весу), а от нее ко второй добавке (<0,1%) за счет фотонного механизма. Концентрация второй добавки достаточна для практически полного

> Максимумы молекулярных спектров флуоресценции некоторых органических веществ ⁹, ¹⁴⁻¹⁷, ¹⁹, ³⁰, ³², ³⁵, ³⁷

Таблица I

Химическое Химическое ^λтах в тр λтах в тμ соелинение соелинение PPS409 310 Полистирол Поливинилто-POPOP 420402aNPO луол 315 3P408 344 BBO $\tilde{P}PD$ 435 -350 4PB3PP436 PBD -370 $PPS_{t}P$ 490 PPO382 $\overline{4P}$ 375 - 390

поглощения флуоресценции первой, однако она все же мала и не вызывает большого самопоглощения (рис. 2). Влияние второй добавки (или

Рис. 1. Спектры люминесценции полистирола ³⁷. Кривая 1—возбуждение линией Hg 2537 Å, толщина образца 0,5 мм, измерение со стороны возбуждения. Кривая 3—то же, измерение в направлении возбуждающего излучения («на просвет»). Кривая 2—возбуждение β-частицами, измерение «на просвет», толщина 0,5 мм. Кривая 4—то же, толщина 10 мм

сместителя спектра) не ограничивается реабсорбцией. Сместитель спектра изменяет саму кинетику процесса высвечивания (п. 3.3).

3. 2. Выход люминесценции. Величина сцинтилляций

Абсолютный энергетический выход фотолюминесценции определяется как отношение полной энергии свечения к поглощенной возбуждающей энергии²⁹. При этом предполагается отсутствие реабсорбции флуоресценции внутри люминофора, т. е. отношение энергии должно быть взято для элемента объема $\Delta v \rightarrow 0^{38}$. При возбуждении корпускулярным излучением*) энергия, потерянная первичной частицей в некотором элементе объема сцинтиллятора, может привести к возбуждению молекул, находящихся на конечном расстоянии от этого элемента (за счет быстрых вторичных электронов). Поэтому энергетический выход люминесценции для понизирующей частицы энергии E можно определить формулой ³⁹

$$B = \frac{dL}{dE} , \qquad (1)$$

где dE—потеря энергии частицей на пути dx, dL— энергия света люминесценции, возбужденной за счет dE^{**}).

Опыт показывает ¹, что для органических веществ в конденсированной фазе выход зависит, вообще говоря, от скорости и заряда частицы. С уменьшением удельной потери энергии $\frac{dE}{dx}$ выход возрастает, достигая своего максимального значения B_0 при $\frac{dE}{dx} \cong 4 \ M \frac{\partial B}{cm}^{40}$. На основании (1) средняя величина выхода при полном торможении частицы начальной энергии E_0 будет

$$\overline{B} = \frac{1}{E_0} \int_{0}^{E_0} B(E) dE = \frac{L}{E_0} , \qquad (2)$$

где L – суммарная энергия люминесценции. Если средняя энергия фотонов в спектре испускания равна $h\overline{v}$, то величина сцинтилляции (число фотонов в одной вспышке)

$$S = \frac{E_0}{h\bar{\nu}} B_0, \tag{3}$$

а удельная величина сцинтилляции (или число фотонов на единицу иоглощения энергии возбуждения)

$$s(E) = \frac{B(E)}{h\bar{v}} \quad \text{if } \bar{s} = \frac{\overline{B}}{h\bar{v}} \quad . \tag{4}$$

Сцинтилляторы применяются не только для счета частиц, но и для измерения интенсивности излучений или для дозиметрии. В этих случаях имест смысл говорить об энергетическом выходе люминесценции для данного излучения, т. е. о величине

$$\overline{\overline{B}} = \frac{\Phi}{D} , \qquad (5)$$

где Ф—интенсивность люминесцепции, D—мощность поглощенной в сцинтилляторе дозы. Величина $\overline{\overline{B}}$ зависит от спектра первичных возбуждающих частиц ***) $\sigma(E_0)$:

$$\overline{\overline{B}} = \frac{\int B(E_0) E_0 \sigma(E_0) dE_0}{\int E_0 \sigma(E_0) dE_0} \ .$$

Измерение энергетического выхода радиолюминесценции содержит три задачи⁴¹: 1) определение абсолютной чувствительности ФЭУ

^{*)} Для у- или рентгеновских лучей возбуждение происходит за счет вторичных электронов, для нейтронов — за счет ядер отдачи или продуктов ядерных реакций.

^{**)} Имеются в виду только потери энергии на возбуждение и ионизацию вещества сцинтиллятора.

^{***)} При у-возбуждении — это спектр комптоновских и фотоэлсктронов.

в интересующем интервале длин волн, 2) определение количества поглощенной сцинтиллятором энергии возбуждающего излучения, 3) определение общей энергии люминесценции по измерению потока света, попадающего на ФЭУ. Наибольшие затруднения вызывает последняя задача, особенно в связи с необходимостью учета самопоглощения и вторичной флуоресценции. Некоторые методические указания имеются в ⁴¹⁻⁴⁴. Подробное описание методики в применении к ПС при возбуждении ү-лучами дано в ³⁹. Для ПС с добавкой 1,5·10⁻² г/г 4PB, изготовленных термической полимеризацией при высокой температуре¹⁹, энергетический выход

$$\overline{B} = 0.038$$

(возбуждение ү-лучами Со⁶⁰). Так как средняя энергия фотонов в спектре 4PB равна 2,66 эв, то удельная величина сцинтилляции

_s=0,014 фотонов/эв.

Соответствующая величина для кристаллического антрацена лежит в пределах 0,021 ⁴³ - 0,036 ⁴², т. е. примерно в 2 раза больше.

В других работах, посвященных определению выхода люминесценции ПС, приводятся результаты сравнения внешних выходов ПС с выходом кристаллического антрацена или стильбена без учета различий в спектрах свечения и степени реабсорбции, т. е. приводится так называемая эффективность сцинтилляторов относительно антрацена или стильбена. Она зависит от размеров сцинтилляторов и спектральной чувствительности фотоумножителя^{3,28} (см. также табл. 11). Кроме

Таблица II

Относительная эффективность ПС различных размеров в зависимости от люминесцирующих добавок и фотоумножителя⁴⁵. ПС на основе полистирола¹⁹. Образцы цилиндрические. Возбуждение β-частицами Ce¹⁴⁴—Pr¹⁴⁴

	70	Отн	осител	ьная э	ффект	ивност	ьс
Trafferrur	ция в г	ФЭУ-19			ФЭУ-1С		
дооавна	на 100 г стирола	при высоте образдов мм					
		10	20	30	75	20	30
$\begin{array}{c} 3P+3PP\\ 3P+4PB\\ 3P+4P\\ PPO\\ PPS_{t}P \end{array}$	$\left \begin{array}{c} 2+0,04\\ 3+0,02\\ 3+0,1\\ 1,3\\ 1,8\end{array}\right $	$50 \\ 50 \\ 56 \\ 54 \\ 20$	$50 \\ 48 \\ 49 \\ 46 \\$	50 47 45 43 17	50 	50 49 38 37 	50 46 34 34 23

того, сцинтилляционные характеристики кристаллов стильбена и особенно антрацена сильно зависят от способов их изготовления и условий хранения⁵. Все это затрудняет, а иногда делает невозможным сравнение результатов различных авторов. В таблице III приведены относительные эффективности нескольких типов пластмассовых сцинтилляторов английской фирмы Nuclear Enterprises и наших образцов IIC ⁴⁵ с различными фотоумножителями, а также «техническая» величина сцинтилляций, характеризующая эти ПС безотносительно к ФЭУ.

Рассмотрим теперь результаты исследования «пропорциональности» ИС. Автор⁴⁶ провел измерения величины выходного импульса ФЭУ

ЛЮМИНЕСЦЕНЦИЯ ПЛАСТМАССОВЫХ СЦИНТИЛЛЯТОРОВ

Таблица III

	Относител	ьная эффектии		
Сцинтиллятор	ФЭУ-29	ΦθΥ-10	RCA-5819	Внешняя величина сцинтилляций **)
Pamilon NE-101 NE-102 IIC-1***) IIC-2 IIC-3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	56 58 60 52 67 53	54 56 60 49 63 53	
*) Измерения по и по высоте импульсо Для NE-102 эффективн **) Измерено при такт со сцинтилляторс ***) ПС-1: 3P+3PJ 3P+PPS в поливинилт	среднему то в для электр ость принята помощи ква ом. Произвол Р в полистир олуоле.	оку при возб онов 624 кас а равной 60. нтового счет ьные единип оле; ПС-2: т	уждении β-ч дают совпа чика, имевш ы. о же в поли	астицами Се ¹⁴⁴ —Рг ¹⁴⁴ дающие результаты. него оптический кон- винилтолуоле; ПС-3:

Относительная эффективность ПС с различными фотоумножителями ⁴⁵. Образцы цилиндрические диаметром 1,1 и высотой 1 дюйм без отражателей

(H) при возбуждении ПС (3P + 4PB) в поливинилтолуоле) моноэнергетическими электронами (E = 280 - 980 кэс). По крайней мере до энергии 800 кэс H возрастает быстрее E. В отличие от этого в работе⁴⁷ для ПС такого же типа получена пропорциональность между H и E в интервале энергий электронов 180 - 2380 кэс. Линейная зависимость H и E получена также для ПС с $4PB^{48}$ (энергия электронов 478 - 1040 кэс). Для α-частиц выход люминесценции уменьшается с энергией. Уменьшение идет быстрее, чем в кристаллическом антрацене⁴⁸.

«Нелинейность» сцинтилляторов принято характеризовать так называемым α/β-отношением, которое равно отношению средних выходов люминесценции для α-частиц Ро²¹⁰ и электронов высокой энергии, т. е.

$$D_{\alpha\beta} = \frac{\overline{B}_{\alpha}}{B_0} = \frac{H_{\alpha}}{E_{\alpha}} \frac{E_{\beta}}{H_{\beta}} .$$

Для органических кристаллов α/β -отношение примерно равно 0,10^{4, 5, 49}. Для жидких и пластмассовых сцинтилляторов оно лежит в пределах 0,08 — 0,12^{5,49–51}. При этом $D_{\alpha\beta}$ зависит от концентрации люминесцирующего вещества. Так, для *п*-терфенила в толуоле $D_{\alpha\beta} = 0,06$ при концентрации 0,2 г/л и равно 0,09 при концентрации 8 г/л⁵². Для IIC из данных ³⁵ следует обратная концентрационная зависимость: $D_{\alpha\beta}$ уменьшается с ростом концентрации добавки.

Выход люминесценции ПС зависит от температуры. Исследованию этой зависимости посвящены работы ^{18, 53, 54}. В частности, оказалось, что для некоторых типов ПС внешний выход радиолюминесценции мало изменяется в широком интервале температур. Для других ПС температурная зависимость сильнее, а иногда характеризуется переменой знака (табл. IV). Температурное тушение зависит от концентрации добавок и уменьшается с ростом концентрации (рис. 3). Сопоставление с температурным тушением флуоресценции добавок показывает, что концентрационный эффект связан с увеличением эффективности

465

Таблица IV

Эффективность ПС в зависимости от температуры ⁵⁴. Сцинтилляторы на основе полистирола ¹⁹. Образцы цилиндрические диаметром 16 и высотой 10 мм. Возбуждение ү-лучами Со⁶⁰. Измерение интенсивности свечения ФЭУ-19. Температура ФЭУ не изменялась.

Люминесци- рующая добавка	Концен-	Относительная эффективность при температуре (°К)					
	трация, гна 100 г	100	140	190	240	290	340
Чистый полисти-		52	41	32	24	17	11
$\begin{vmatrix} po_{A} \\ 4PB \\ 3PP \\ 3P+4PB \end{vmatrix}$	$^{1,5}_{1,0}_{3,0+0,05}$	98 104 134	106 103 134	110 102 133	108 101 132	100 100 122	78 92 108

безызлучательного переноса энергии возбуждения от полистирола к добавке ^{53, 54}. Для чистого полистирола температурное тушение радиолюминесценции (возбуждение α, β, γ-лучами) в пределах точности

Рис. 3. Внешний выход люминесценции ПС с 3*PP* в зависимости от температуры ⁵⁴. Возбуждение γ -лучами. Толщина образцов 10 мм. Числа на кривых указывают концентрацию добавки (в e/e). Кривые совмещены при T = 110 °K. Пунктирная кривал-для возбуждения с-частицами.

у-лучами) в пределах точности измерений ± 5% не отличается от тушения флуоресценции ⁵³.

Важной характеристикой сцинтиллятора является ero paдиационная устойчивость. Известно, например, что величина сцинтилляций антрацена уменьшается в 2 раза после его облучения потоком а-частиц $Po^{210} \sim 10^{11} \ cm^{-2}$ или электронов 4 кэе $\sim 10^{14}$ см⁻²¹. Радиационная устойчивость сцинтилляторов на основе полистирола значительно выше^{33, 55} (см. табл. V). При этом, для β-излучения выход реакции радиационного повреждения в 6-8 раз ниже выхода для α-частиц⁵⁶. Облучение чистого полистирола, а также сцинтилляторов на его основе в присутствии воздуха сопровождается

уменьшением пропускаемости собственной люминесценции и более быстрым уменьшением выхода (табл. V). Коэффициент дополнительного поглощения возрастает пропорционально дозе излучения, полученной сцинтиллятором. Так, при облучении а-частицами коэффициент поглощения для группы ртутных линий λ 366 mµ

$$\mu = 3.4 \cdot 10^{-9} D \ c M^{-1}$$

где D — доза в эрг/г. Это соотношение проверено до $D \simeq 6 \cdot 10^{11}$ эрг/г ⁵⁶. Авторы ^{55, 56} следующим образом объясняют кинетику радиацион-

ного повреждения сцинтилляторов на основе полистирола. При воздействии ионизирующего излучения в полистироле образуются химические щества, сильно поглощающие в ультрафиолетовой области спектра

Таблица V

Люминесцир ующая добавка	Концентра- ция, г на 100 г	Доза (эрг/г), уменьшени пропускания света собст- венной люмп- песценции	вызывающая е в 2 раза выхода люминесцен- цип
Чистый полистирол 4PB 3P+4PB Антрацен кристал- лический	$\begin{array}{c c} & & & \\ & & & 1,5 \\ 2,5+0,01 \\ & & 30 & 0,12 \\ & & & - \end{array}$	1,6·10 ¹⁰ 32·10 ¹⁰ —	$\begin{array}{c} 4,2\cdot10^9\\ 9,0\cdot10^9\\ 6,1\cdot10^9\\ 5,6\cdot10^9\\ 1,0\cdot10^8\ {}^{57}\end{array}$

Повреждение ПС на основе полистирола при облучении а-частицами Ро²¹⁰, ⁵⁵, ⁵⁶

(см. также ^{58, 59}). Реакция имеет сравнительно низкий выход, что обеспечивает пропорциональность между концентрацией продуктов повреждения и дозой вплоть до очень высоких доз. Продукты радиационного повреждения вызывают динамическое тушение люминесценции полистирола и главным образом статическое тушение добавок (или соответственно тушение II и I рода). Динамический характер тушения свечения полистирола подтверждается уменьшением длительности свечения с ростом дозы ⁴⁵.

3.3. Длительность свечения. Форма сцинтилляций

Кинетика сцинтилляций в ПС определяется наличием дополнительного тушения, связанного со спецификой возбуждения ионизирующими частицами, переносом энергии возбуждения к люминесцирующей добавке и флуоресценцией добавки. Исследование кинетики свечения является важным средством выяснения механизма этих процессов и, в частности, переноса энергии возбуждения ⁶⁰. Начнем рассмотрение с конечного этапа сцинтилляции — с флуоресценции добавки.

Флуоресценция разбавленных растворов органических веществ затухает по экспоненциальному закону. Это легко понять. Все возбужденные молекулы находятся в идентичных условиях, и между ними нет взаимодействия. В концентрированных растворах или при наличии индуктивно-резонансного переноса энергии возбуждения к какому-либо другому веществу экспоненциальность затухания нарушается ^{61, 62}. Вообще говоря, к нарушению экспоненциальности затухания флуоресценции может также привести реабсорбция с сопровождающей ее вторичной флуоресценцией ^{63, 64}.

В настоящее время напболее чувствительным методом определения экспоненциальности затухания свечения малой длительности является флуорометрический метод. Как известно, разность фаз φ между интенсивностью свечения и возбуждающим излучением, модулированным частотой ω , связана с законом затухания L(t) формулой

$$tg \varphi = \frac{\int_{0}^{\infty} L(t) \sin \omega t \, dt}{\int_{0}^{\infty} L(t) \cos \omega t \, dt}.$$
(6)

При экспоненциальном законе

$$L(t) = L_0 e^{-\lambda t}$$

«флуорометрическое время»

не зависит от частоты модуляции и равно средней длительности све-

Рис. 4. Средняя длительность флуоресценции добавок в ПС в зависимости от концентрации ⁶⁴. Кривая 1—4PB, 2—3PP.

чения. Таким образом, для проверки экспоненциальности затухания достаточно измерить ф для нескольких ω. Такие измерения были выполнены для ПС на многочастотном флуорометре с электронным лучом 65. Оказалось, что в пределах точности измерений ($\pm 2 \cdot 10^{-10} \, ce\kappa$) флуоресценция 4РВ и ЗРР в полистироле затухает по экспоненциальному закону, несмотря на значительное возрастание средней длительности с концентрацией добавки (рис. 4). Эти результаты соответствуют теории 64.

Кинетика сцинтилляции ПС с одной люминесцирующей добавкой рассмотрена в работе ⁶⁶. Если при t = 0 было возбуждено N_{10} молекул основного вещества и N_{20} молекул добавки, то

$$\frac{dN_2}{dt} = -\lambda_2 N_2 + N_{10} R_1(t)$$
(7)

или

$$N_{2}(t) = N_{10}e^{-\lambda_{2}t} \left\{ \alpha_{2} + \int_{0}^{t} R_{1}(t') e^{\lambda_{2}t'} dt' \right\}, \qquad (8)$$

где $\lambda_2^{-1} = \tau_2 - длительность флуоресценции добавки с учетом вторич$ $ного свечения, <math>N_{10}R_1(t)$ – число переносов энергии возбуждения от основного вещества к добавке за единицу времени в момент t, $\alpha_2 = N_{20}/N_{10}$. По определению средняя длительность сцинтилляции

$$\tau_{s} = \frac{\int\limits_{0}^{\infty} t \, dN_{2}}{\int\limits_{0}^{\infty} dN_{2}}$$

где dN_2 – число молекул добавки, теряющих свою энергию возбуждения в интервале времени t, t + dt. Вычисления дают

$$\tau_{s} = \tau_{2} + \tau_{12}, \quad \tau_{12} = \frac{\int_{0}^{\infty} tR_{1}(t) dt}{\alpha_{2} + \int_{0}^{\infty} R_{1}(t) dt} \quad .$$
(9)

Средняя длительность сцинтилляции т, превышает длительность флуо-

468

ресценции добавки τ_2 на величину τ_{12} , зависящую от механизма переноса энергии возбуждения от основного компонента к добавке.

Экспериментальное определение τ_{12} было выполнено на многочастотном фазовом флуорометре ⁶⁵. Формула (6) при законе затухания (8) дает

$$\varphi_{s} = \varphi_{2} + \varphi_{12},$$

$$\operatorname{tg} \varphi_{2} = \omega \tau_{2}, \quad \operatorname{tg} \varphi_{12} = \frac{\int_{0}^{\infty} R_{1} \sin \omega t \, dt}{\alpha_{2} + \int_{0}^{\infty} R_{1} \cos \omega t \, dt}.$$
(10)

Следовательно, измеряя отдельно φ_s и φ_2 , можно вычислить «флуорометрическое время» переноса

$$\tau_{12}^{\phi_{\pi}} = \frac{1}{\omega} \operatorname{tg} \varphi_{12}.$$

Результаты измерений для 3PP в полистироле приведены на рис. 5. Быстрое уменьшение $\tau_{12}^{\phi_{\pi}}$ с ростом концентрации 3PP свидетельствует о том, что при высоких концентрациях добавки перенос энергии возбуждения происходит главным образом безызлучательным путем, т. е до испускания фотонов полистиролом. При большой скорости переноса R_1 достигает пренебрежимо малых значений уже при $t \ll 1/\omega$ и согласно (10) и (9) должно быть

$$\tau_{12}^{\oplus \pi} \cong \tau_{12}$$
.

Согласно рис. 5 это имеет место для концентрации добавки $c > 0,01 \ e/e$, когда

$$\tau_{12} \leq 1.5 \cdot 10^{-9} \ ce\kappa.$$

Необходимо, однако, обратить внимание на следующее обстоятельство. Известно, что «техническая» длительность сцинтилляций в органиче-

ских кристаллах превышает длительность их флуоресценции¹. Вместе с тем в уравнении (7) содержится предлочто длительность жение. свечения добавки при возбуждении частипами такая же, как и при фотовозбуждении. Эксперимент подтверждает правильность такого предположения, в частности, для электронов: при высоких концентрациях люминесцирующего вещества длительность сцинтилляций τ совпадает с длительностью флуоресценции τ₂ 66,67.

Таким образом, в ПС с оптимальной концентрацией добавки (§ 2) форма сцинтилляции характеризуется

Рис. 5. «Флоурометрическое время» переноса в зависимости от концентрации ЗРР в ПС⁶⁶. Частота модуляции: Кривая 1—20 Мги, 2—15 Мги, 3—12 Мги, 4—8 Мги.

наличием максимума при $t \sim 10^{-9} cek$. После достижения максимума затухание сцинтилляции должно следовать экспоненциальному закону с постоянной времени $\simeq \tau_2^{-66}$. К сожалению, большая временная дисперсия умножителей (> $10^{-9} cek$) не позволила пока изучить начальную часть кривой сцинтилляции прямым осциллографированием ⁶⁸. Обычно начальный участок осциллограмм отбрасывается и средняя длительность сцинтилляции определяется по спадающей части. Имеющиеся в литературе данные собраны в таблице VI. Только в случае ПС с 4*PB* имеются результаты, полученные различными методами. Несовпадение «осциллографических» ^{35,69} п «флуорометрических» ⁶⁶ данных, возможно, связано

Таблица VI

Длительность флуоресценции добавок 🔩 и длительность сцинтилляций 🔩 в ПС

Состав сцинтильнора	τ ₂ (10 ⁻⁹ ceκ)	τ _{.8} (10-9 cen)
Чистый полистирол Полистирол+0,015 г/г ЗРР Полистирол+0,015 г/г ЗРР Полистирол+0,015 г/г 4РВ Полистирол+0,03 г/г ЗР+0,0002 г/г 4РВ Полистирол+0,04 г/г ЗР Полистирол+0,03 г/г ЗР+0,001 г/г 4Р Поливинилтолуол+0,04 г/г ЗР Поливинилтолуол+0,04 г/г ЗР+0,0002 г/г 4РВ Поливинилтолуол+0,04 г/г ЗР+0,0002 г/г 4РВ	4,6 ⁶⁶ 2,9 ⁶⁶ 2,8 ¹⁶ 2,7 ¹⁶ , 1,7 ²⁷ 3,3 ²⁷ для 4Р	$\begin{array}{c} 16 \ 3^{5} \\ 6,0 \ 66 \\ 6,5 \ 35, \ 4,6 \ 5, \\ 5,0 \ 6^{9}, \ 4,3 \ 66 \\ 4,0 \ 5, \ 4,4 \ 69 \\ \leqslant 3,0^{5} \\ 3,5 \ 69 \\ 4,2 \ 69 \\ \leqslant 3,0 \ 70 \\ 4,0 \ 70 \\ \leqslant 3,0 \ 70 \end{array}$
Мстоды измерения сцинтилляций: ⁵ , ³⁵ , ⁷⁶ ножителя RCA-5819 при возбуждении импульс лографирование тока ФЭУ-1В при возбуждени	—осциллографир ами рентгеновски: и препаратом Ро-	ование тока ум- х лучей; —осцил- —Ве; ⁶⁹ —фазовым

методом при возбуждении электронами 30 кэв.

с недостаточно полным учетом временной дисперсии ФЭУ в осциллографических измерениях.

Наличие в ПС второй добавки или сместителя спектра ($c \leq 10^{-3} \ e/e$) усложняет кинетику свечения, так как появляется дополнительный процесс — перенос энергии от первой добавки к сместителю спектра, происходящий главным образом за счет фотонного механизма. Так, из таблицы V1 следует, что добавление 4PB или 4P к сцинтилляторам с *n*-терфенилом приводит к увеличению длительности сцинтилляций. Оно несколько меньше длительности флуоресценции сместителя спектра (табл. VII),

Таблица VII

Увеличение средней длительности сцинтилляций ПС с 0,02 г/г ЗР в полистироле в зависимости от концентрации сместителя спектра—ЗРР 45. Возбуждение электронами ЗО кэв. Измерение флуорометрическим методом 65

Концентрация ЗРР, г/г	Δτ _s (10-9 cer)	Длительность флуореспенции ЗРР (10-9 сек)
3·10 ⁻⁴ 2·10 ⁻³	$2,9 \\ 2,8$	3,6 4,1

что объясняется отсутствием вторичной флуоресценции первой добавки и наличием безызлучательного переноса к сместителю.

Свечение ПС, подобно свечению органических кристаллов, содержит «медленные» компоненты. Так, по данным⁷¹ при возбуждении ПС на ос-

470

нове полистирола и поливинилтолуола с добавкой 3*P* и сместителя спектра рентгеновскими лучами наблюдаются три медленных компонента:

Постоянная затухания (10 ⁻⁶ сек)	0,13	2,5	~40
Выход относительно «быстрого» компо- нента (%)	6	4	0,7

При низкой температуре ($\leq 150^{\circ}$ K) свечение ПС содержит компоненты, затухающие в течение минут ^{18, 54}. Скорость затухания не зависит от люминесцирующей добавки и уменьшается с попижением температуры. Кроме того, при возбуждении ү-лучами ПС обнаруживают температурное высвечивание с максимумом около 120° K. При возбуждении а-частицами выход этого свечения в сотни раз ниже. Автор^{18, 54} связывает эти явления с процессами рекомбинаций радикалов, образующихся в полистироле под воздействием ионизирующего излучения. При этом существенные различия для α - и ү-возбуждения объясняются локальным повышением температуры в треке α -частицы.

§ 4. О МЕХАНИЗМЕ СЦИНТИЛЛЯЦИН

При изучении люминесценции органических веществ под действием жесткого излучения (радиолюминесценция) целесообразно разграничить две фазы явления. Первая фаза — торможение заряженной частицы, сопровождающееся ионизацией и возбуждением молекул среды. Вторая фаза включает все те процессы, которые происходят в облученном участке вешества до потери заряда и энергии возбуждения активированными молекулами. Такое разделение, строго говоря, допустимо только для небольших участков трека, так как длительность полного торможения частицы может оказаться сравнимой или даже значительно превышать длительность некоторых процессов второй фазы. Но этого вполне достаточно, если принять во внимание, что непосредственное взаимодействие между активированными молекулами существенно только на небольших расстояниях (<100 Å)*). Особенностью первой фазы, существенно отличающей радиолюминесценцию от фотолюминесценции, является неселективность действия возбуждающего излучения. Эта неселективность двоякого рода. Во-первых, быстрая заряженная частица способна в конечном счете перевести молекулу в любое возбужденное состояние или вызвать ее ионизацию. Во-вторых, относительная вероятность различных переходов мало зависит от свойств самой частицы**). Вторая существенная особенность заключается в том, что первичные активации, вызываемые возбуждающей частицей, коррелированы во времени и пространстве. Так как при этом пространственная плотность активации существенно зависит от скорости и заряда частицы, то кинетика второй фазы также должна зависсть от этих величин.

Таким образом, удельная величина сцинтилляции, или энергетический выход радиолюминесценции, зависит от количества энергии, которое затрачивается на возбуждение одной молекулы, и от соотношения

^{*)} Легко видеть, что «двухфазное» рассмотрение допустимо и для органических кристаллов, где длина свободного пробега экситонов больше.

^{**)} Здесь речь идет о первичных элементарных процессах. Выход многих радиационных реакций зависит от энергии и заряда частиц. См., например, § 3.2.

скоростей процессов тушения и испускания. В многокомпонентных сцинтилляторах выход также зависит от эффективности переноса энергии возбуждения к флуоресцирующему веществу.

Ниже рассматриваются некоторые из этих вопросов.

4. 1. Возбуждение и ионизация

Полное число актов ионизации и возбуждения (электронных уровней) слагается из процессов, вызываемых непосредственно первичной заряженной частицей и вторичными электронами, вырванными из молекул (атомов) в процессе ионизации. Кинетическая энергия вторичных электронов может достигать максимального значения

$$T_m \cong \frac{4m}{M} E$$

для тяжелых частиц $(M \gg m)$ и $\frac{1}{2}E$ для электронов*). Быстрые вторичные электроны (б-электроны) в свою очередь возбуждают и ионизируют молекулы среды, что приводит к появлению вторичных электронов второго поколения и т. д. Ионизация вторичными электронами составляет значительную долю полной ионизации. Так, для электронов 4—1500 кэв отношение удельной первичной ионизации к удельной полной не зависит от энергии и равно для водорода 0,44, для азота, кислорода и аргона 0,29. Для водородосодержащих соединений оно имеет промежуточное значение⁷².

Сложная сама по себе задача количественного описания взаимодействия частицы с веществом еще более усложняется в связи с необходимостью учета большого числа вторичных электронов. Однако именно

Таблица VIII

	α-ча	стицы		Электроны			Затрата
Газ	P ₀ 210	Pu239	A137+H3	~ H ³ , Ni ⁶³ , C ¹⁴	S82	Рентген лучи 2 Мэв	энергий на одну первич- ную иониза- цию 94
1	2	3	4	5	6	7	8
$\begin{array}{c} He \\ Ne \\ Ar \\ Kr \\ Xe \\ H_2 \\ Bo3 J \\ YX \\ N_2 \\ O \\ CO_2 \\ C_2 H_4 \\ C_2 H_6 \\ CH_4 \\ C_2 H_2 \end{array}$	$\begin{array}{r} 42,7\\ 36,8\\ 26,4\\ 24,1\\ 21,9\\ 36,3\\ 35,5\\ 36,6\\ 32,5\\ 34,5\\ 28,0\\ 26,6\\ 29,2\\ 27,5\\ \end{array}$	46,0 26,4 37,0 35,0 36,3 32,2 34,3 28,0 29,4	32,5 27,0 38,0 35,0 35,8 32,2 30,2	$\begin{array}{r} 42,3\\36,6\\26,4\\24,1\\22,0\\36,3\\34,1\\34,7\\30,9\\33,0\\26,3\\24,8\\27,3\\26,1\end{array}$	34,1 35,3 26,2 24,7	$\begin{array}{r} 40,4\\ 35,3\\ 25,8\\ 24,8\\ 22,1\\ 36,3\\ 33,9\\ 34,6\\ 31,2\\ 32,6\\ 26,5\\ 26,8\end{array}$	93 80 118 116 106 72 76
Таблица взята из обзора J. Weiss, W. Bernstein, Rad. Research 6, 603 (1957). Графа 6—из статън W. P. Jesse, J. Sadauskis, Phys. Rev. 107, 766 (1957).							

Средняя энергия, затрачиваемая заряженной частицей на образование одной пары ионов в некоторых газах (эв)

*) Из-за неразличимости падающего электрона и электрона, вырванного из атома, принято считать вторичным более медленный. в силу того, что вторичные электроны вызывают более половины актов ионизации и возбуждения, относительная вероятность этих процессов слабо зависит от энергии и рода тормозящихся частиц. Это хорошо видно на примере средней энергии W, затрачиваемой ионизирующей частицей на образование одной пары ионов (табл. VIII). При громадном различии в удельной потере энергии для α-частиц и быстрых электронов различий в W либо совсем нет (благородные газы, водород), либо они незначительны.

Обратимся теперь к вопросу о числе понизации N_i и числе возбуждений N_e за счет энергии E, переданной частицей тормозящему веществу ³⁷. По самому определению W

$$E = N_i W.$$

С другой стороны,

$$E = N_i (I_i + \omega) + N_e I_e,$$

где I_i — потенциал ионизации молекул (с учетом возможной энергии возбуждения иона); w—средняя кинетическая энергия медленных вторичных электронов, неспособных к дальнейшему возбуждению электронных уровней («невозбуждающие электроны»); I_e — средняя энергия возбуждения молекулы*). Из этих двух соотношений получается

$$\frac{N_e}{N_i} = \frac{W - I_i - \omega}{I_e} . \tag{11}$$

Для интересующих нас люминесцирующих веществ **)

$$\frac{N_e}{N_i} \sim 3$$
,

т. е. на каждую ионизированную молекулу приходится около трех возбужденных. Общее число активаций (ионизация, возбуждение) $N_0 = N_i + N_e$, средний расход энергии на одну активацию $\varepsilon_0 = E/N_0 \cong 8$ эе.

Следует остановиться еще на двух вопросах. Первый относится к активации молекул примеси. Если низший потенциал возбуждения примеси I_1 меньше низшего потенциала возбуждения основного компонента I_0 , то в действии ионизирующего излучения будет наблюдаться некоторая селективность ^{73,74}. В самом деле, если при торможении частицы образуется N_0 ионов (в расчете на однозарядные) основного компонента, то вместе с ними появится N_0 свободных «невозбуждающих» электронов с энергиями $\varepsilon < I_0$. «Невозбуждающие» электроны с $\varepsilon > I_1$, способны дополнительно активировать молекулы примеси. Это действительно произойдет, если вероятность конкурирующих процессов (замедление электронов, образование отрицательных ионов) будет достаточно малой. Например⁷⁴, для некоторых газов эти процессы становятся несущественными по сравнению с активацией примеси при ее молекулярной концентрации $\ge 10^{-3}$. Необходимость учета роли «невозбуждающих» электронов в явлении радиолюминесценции была показана при рассмотрении переноса энергии в ПС ⁵³.

Второй вопрос касается длительности жизни положительных ионов, или скорости рекомбинации. Так как при высокой плотности вещества длина свободного пробега медленных электронов очень мала, то в конденсированном веществе большинство вторичных электронов не уходит из поля притяжения ионов, и рекомбинация происходит за очень малый

^{*)} Под I_i и I_e надо понимать величины, соответствующим образом усредненные для каждого сорта молекул.

^{**)} W измерено для газов. Пропорциональность ионизации в газовой и конденсированной средах не доказана, но предположение о ее наличии не противоречит эксперименту. Мы не останавливаемся на разборе этого вопроса из-за недостатка места.

промежуток времени. Так, например, для воды получены следующие расчетные величины ⁷⁵: время замедления электронов начальной энергии 15 эв составляет около $3 \cdot 10^{-14}$ сек; время возврата к положительному иону с расстояния в 100 Å не превышает $1.2 \cdot 10^{-11}$ сек, а с расстояния 20 Å — $2.2 \cdot 10^{-13}$ сек.

Таким образом, большинство ионов в конденсированной среде рекомбинируют за время ~10⁻¹² сек, что по существу снимает различие между ионизированными и возбужденными молекулами: к началу второй фазы сцинтилляции имеются молекулы с различной энергией возбуждения. Однако возможны случаи, когда длительность рекомбинации все же должна сказаться на кипетике свечения. В самом деле, из-за наличия быстрых вторичных электронов некоторая малая доля ионов будет иметь большое время жизни. Их рекомбинация явится источником возбужденных молекул на поздних стадиях свечения, т. е. ведет к увеличению средней длительности сциптилляций. Влияние эффекта должно быть тем сильнее, чем полнее и быстрее происходит тушение первичных активаций *).

4.2. Абсолютный выход люминесценции

Максимально возможная удельная величина сцинтилляций определяется из условия, что все активации сопровождаются переводом молекул в «флуоресцентное состояние», т. е.

$$s_{\mathbf{m} a \mathbf{x}} = \frac{\eta}{\varepsilon_0} = \frac{1}{8} \eta \ \phi omoreo \beta / \partial \theta,$$

где η —квантовый выход флуоресценции. Опыт дает в несколько раз меньтую величину. Для электронов ($E \sim 1 M_{36}$) в антрацене $s/\eta \simeq 0,03$ (см.§ 3.2). Примерно таким же s/η обладают и другие органические кристаллы ^{76,77}, а также полистирол ³⁹. Таким образом, даже при возбуждении электронами высокой энергии в органических сцинтилляторах теряется дополнительно к фотовозбуждению около 80% от общего числа активаций. О природе этих потерь высказано несколько предположений.

Галанин и Гришин⁴⁴ вычислили абсолютный выход люминесценции антрацена для быстрых электронов в предположении, что к испусканию света может привести только непосредственное возбуждение системы л-электронов молекулы. Их результат дает $s/\eta \approx 0,006$. Не исключено, что уточнением расчета можно исправить это число.

Биркс ^{1,78} считает, что первым этапом процесса сцинтилляции является рекомбинация положительных ионов с электронами, приводящая к испусканию коротковолновых «первичных фотонов». Затем следует быстрый ($\sim 10^{-11}$ сек) фотонный каскад (поочередное поглощение и испускание), в результате которого «первичные фотоны» теряют часть своей энергии, но сохраняются в числе. И наконец, происходит обычная флуоресценция. Следовательно, $s = \eta/W \cong 0,03 \eta$ в согласии с экспериментом. Однако это «согласие» покупается дорогой ценой. Во-первых, не учитывается значительно большее число возбужденных молекул ($N_e \cong 3N_i$). Во-вторых, испускание «первичных фотонов» нельзя считать доказанным экспериментально ^{79,80}. Несостоятельность теории Биркса, в частности, по отношению к пластмассовым сцинтилляторам показана результатами экспериментального исследования температурного тушения ⁵³ и кинетики радиационного повреждения ⁵⁶, а также переноса энергии возбуждения (см. § 5).

По гипотезе Кальмана и др.⁸¹, в процессе сцинтилляции существенную роль играет взаимодействие активированных молекул друг с другом.

^{*)} См. также F. D. Brook, Nucl. Instr. Meth. 4, 151 (1959).

Рейнольдс ⁵², Блэк ⁵⁷ и Райт ^{82,83} считают, что бимолекулярные процессы тушения обусловливают низкий выход сцинтилляций для частиц с высокой удельной потерей энергии. Для электронов бимолекулярная гипотеза была развита Розманом и Килиным ⁸⁴.

Перечисленные гипотезы приводят к определенным выводам о кинетике сцинтилляций. Так, из гипотезы Галанина⁴⁴ следует, что длительность сцинтилляций должна совпадать с длительностью флуоресценции (с точностью до возможных различий во вторичной флуоресценции). Согласно гипотезе Биркса¹, кинетика радиолюминесценции существенно отличается от кинетики флуоресценции; форма сцинтилляций, как последовательности двух экспоненциальных распадов, характеризуется нарастанием интенсивности в начальной части. Накопец, при наличии тушения за счет взаимодействия активированных молекул друг с другом форма сцинтилляций должна характеризоваться наличием очень быстрого спада в начале процесса.

Попытки экспериментального выяснения формы сцинтилляций антрацена дали противоречивые результаты. Райт⁸⁵ определял форму сцинтилляций, исследуя зависимость мощности, выделяющейся в нагрузочном сопротивлении ФЭУ, от величины этого сопротивления. Он пришел к выводу, что в начале сцинтилляции имеется быстрый спад интенсивности свечения, переходящий затем в более медленный, экспоненциальный. При одинаковой общей величине сцинтилляций начальный пик больше при возбуждении быстрыми электропами, а экспоненциальная часть затухает медленнее при возбуждении α -частицами (ср. 4.1). Глезер⁸⁶ исследовал форму сцинтилляций при возбуждении катодными лучами при помощи электронного двухдискового фосфороскопа. Полученная им кривая с максимумом при $t \simeq 2 \cdot 10^{-8}$ сек соответствует представлениям Биркса¹, хотя ряд других экспериментальных данных, полученных автором⁸⁶, противоречит гипотезе «первичных фотонов».

Килин и Розман⁸⁴ при помощи многочастотного флуорометра измерили «флуорометрическое время» $\tau^{\phi\pi}$ полистирола для различных частот модуляции ω . Оказалось (табл. IX), что $\tau^{\phi\pi}$ зависит от ω , т. е. закон

Таблица IX

1 1						
Частота модуляции ω (10 $^{8}ce\kappa^{-1}$)	0,502	0,754	0,952	1,26		
Фазовый угол ф	30,0	38,8	41,2	48,6		
$\tau^{\phi_{\pi}} = \frac{1}{\omega} \operatorname{tg}\varphi(10^{-9} \operatorname{ce}\kappa)$	11,5 <u>+</u> 0,4	10,7 <u>+</u> 0,4	9,2 \pm 0,3	8,9 <u>+</u> 0,3		
τ ^ф л теоретическое *) (10 ⁻⁹ сек)	11,5	10,7	9,4	8,8		
*) Вычислено по (12) при значениях параметров: $\alpha_c = 0.84$, $\lambda = 6.3 \cdot 10^{7}$ 35, $3/\lambda = 50$.						

τ^фл полистирола при возбуждении электронами 30 кэе ⁸⁴

высвечивания пеэкспоненциальный. Уменьшение $\tau^{\phi_{\pi}}$ с ростом ω противоречит теории «первичных фотонов», из которой следует обратная зависимость, и соответствует предположению о наличии бимолекулярного тушения*). Для количественных оценок авторы⁸⁴ использовали следующую упрощенную схему. В начальный момент времени трек быстрого электрона состоит из некоторого числа aN_0 активированных молекул, расположенных изолированно от других активированных молекул, и из числа a_cN_0 активаций, расположенных в «скоплениях»⁸⁷. Предполагается что все скопления идентичны. Изменения чисел молекул 1-й n(t) и 2-й $n_c(t)$ групп определяются уравнениями (при отсутствии миграции энергии возбуждения)

$$\frac{dn}{dt} = -\lambda n, \quad \frac{dn_c}{dt} = -\lambda n_c - \frac{\beta}{\alpha_c N_0} n_c^2,$$

где $\tau = \lambda^{-1}$ — длительность жизни возбужденного состояния молекулы в отсутствии дополнительного тушения, β —постоянная скорости реакции бимолекулярного тушения. Решение имеет вид

$$N(t) \equiv n + n_c = N_0 e^{-\lambda t} \left[\alpha + \frac{\alpha_c \frac{\lambda}{\beta}}{1 + \frac{\lambda}{\beta} - e^{-\lambda t}} \right]$$
(12)
$$(\alpha + \alpha_c = 1).$$

Величина сцинтилляции

$$S = \int_{0}^{\infty} \lambda \eta N \, dt = \eta N_0 \left[\alpha + \alpha_c F \left(\frac{\beta}{\lambda} \right) \right], \tag{13}$$

где

$$F(x) = x^{-1} \ln (1+x).$$

Так как $N_0 \simeq E/8$ (См. 4.1), и $S/\eta = E/40$, то³⁹

$$F\left(\frac{\beta}{\lambda}\right) \approx 1-\frac{0.8}{\alpha_c}$$
,

т. е. $\alpha_c > 0.8$ и $\beta/\lambda > 10$. Следовательно, доля активаций, находящихся в «скоплениях», составляет не менее 80%. Если принять радиус скопления²⁰ Å, что соответствует пробегу электрона с энергией ~ 100 эв, то полученный результат не противоречит имеющимся расчетам⁸⁸. Далее, закон затухания сцинтилляции (12) дает хорошее совпадение с экспериментом при $\beta/\lambda \sim 10^2$ (табл. IX). Высокая скорость дополнительного тушения согласуется с ранее упоминавшимися данными ⁵³ о температурном тушении люминесценции полистирола. Для достоверного решения вопроса необходимы дополнительные исследования.

Аналогичное рассмотрение можно провести и для ионизирующих частиц с высокой удельной потерей энергии (например, α-частицы). В основном треке частицы отдельные скопления сливаются и образуют общую цилиндрическую колонку активированных молекул. Быстрые вторичные электроны «разветвляют» трек. Сохраняя предыдущую схему⁸⁴, следует выбрать соответствующие значения параметров β и α_c. Однако высокая илотность активаций в основном треке может вызвать некоторые качественно новые явления. К ним относится тушение молекулами, «поврежденными» ионизирующей частицей⁸⁹, или короткоживущими продуктами химических реакций, протекающих в треке ^{82,83}. Под воздействием кулоновского поля ионов и возбужденных молекул увеличивается вероятность

476

^{*)} Оно также соответствует предположению о любом более высоком порядке реакции тушения.

внутримолекулярной дезактивации ^{52,82,83}. К дополнительному тушению должно также привести локальное повышение температуры в треке ^{18,35, 43,49,90}. Имеющиеся экспериментальные данные не позволяют пока установить относительную роль различных процессов тушения ⁵¹.

4.3. Эффективность переноса энергии возбуждения в пластмассовых сцинтилляторах

При торможении в ПС ионизирующих частиц происходит активация главным образом молекул основного компонента. Поэтому величина сцинтилляции существенно зависит от эффективности переноса энергии электронного возбуждения от основного компонента к добавке. Для упрощения дальнейшего изложения будем считать, что дополнительное тушение при возбуждении частицами заканчивается за очень малый промежуток времени (тушение 1-го рода).

Рассмотрим ПС с одной добавкой. Внешняя величина сцинтилляции определяется соотношением

$$S_2 = (n_1 T_{12} + n_2) \eta_2 K_2, \tag{14}$$

где n_1 и n_2 — числа молекул основного компонента M_1 и добавки M_2 , возбуждаемых частицей в «флуоресцентное состояние»; T_{12} — эффективность переноса энергии возбуждения (число молекул M_2 , возбуждаемых за счет переноса, в расчете на одну возбужденную молекулу M_1); η_2 квантовый выход M_2 ; K_2 учитывает самопоглощение в сцинтилляторе. Предельное значение T_{12} зависит от механизма переноса. При фотонном переносе ^{1,91} T_{12} не может превышать величины квантового выхода флуоресценции молекул M_1 , η_{10} . Однако в ряде работ ^{31,35,53,56,92} показано, что в ПС имеет место безызлучательный перенос энергии возбуждения от M_1 к M_2 , эффективность которого возрастает с концентрацией добавки и значительно превышает η_{10} . При одновременном наличии обоих механизмов переноса T_{12} определяется конкуренцией процессов безызлучательного переноса и испускания, с одной стороны, и внутримолекулярного тушения, с другой стороны ^{35,93}, т. е.

$$T_{12} = \frac{K_t + k_e}{K_t + k_e + k_i} = \frac{\eta_{10} + \tau_{10}K_t}{1 + \tau_{10}K_t} ,$$

где $\tau_{10} = (k_e + k_i)^{-1}$ — средняя длительность жизни возбужденного состояния молекул основного вещества при отсутствии добавки, K_t — средняя вероятность безызлучательного переноса (в единицу времени). По определению квантовый выход безызлучательного переноса

$$\eta_t = -\frac{K_t}{K_t + k_e + k_i} ;$$

следовательно, эффективность переноса равна

$$T_{12} = \eta_t \left(1 - \eta_{10} \right) + \eta_{10} \tag{15}$$

и может достигать значений, близких к единице*) (табл. Х).

Согласно гипотезе Кренца³², высокая эффективность переноса энергии в ПС есть результат кополимеризации добавки с основным веществом (стиролом). Миграция энергии происходит не между молекулами, а внутри молекулы полимера. Этой точке зрения противоречит ряд наблюдений, свидетельствующих о том, что в ПС, вообще говоря, нет химической связи

^{*)} Предполагается, что люминесценция основного компонента полностью поглощается добавкой. В общем случае η_{10} должно быть заменено на $\eta_{10}P$, где $P \leqslant 1$.

⁹ УФН, т. LXIX, вып. 3

Таблица Х

Люминесциру- ющая добавка	Возбуж- дающее	т, _t пр цин (г	Лите-		
	излуче- ние	0,3	1,0	3,0	ратура
Антрацен ЗР ЗР ЗРР ЭРР РРО	ΥΦ ΥΦ УΦ УΦ β*) УΦ	$0,08 \\ 0,40 \\ 0,24 \\ 0,28 \\ 0,32 \\ 0,42$	0,50 0,54 0,55 0,63 0,73	0,80 0,75 0,85 0,84	95 95 45 45 45 45
*) Нормирс	вано для	конце	втраци	и 10-з	e/e.

Квантовый выход безызлучательного переноса энергии возбуждения от полистирола к люминесцирующей добавке

между молекулами добавки и основного вещества ^{14,34,94}. Кроме того, несбходимо иметь в виду, что в молекуле полистирола или поливинилтолуола нет двойных связей в боковой цепи. Поэтому отсутствует общая для всей молекулы система л-электронов и нет возможности переноса энергии вдоль цепи за счет такой системы ¹⁷.

Формула (15) позволяет вычислить квантовый выход переноса η_t по экспериментально определяемой эффективности переноса T_{12} . Беликова и Галанин⁹⁵, исследуя фотолюминесценцию ПС с антраценом или *n*-терфенилом, получили значения η_t , хорошо совпадающие с теоретическими в предположении, что перенос энергии происходит за счет «индуктивного резонанса» ^{61,62}. В удовлетворительном согласии с этим предположением находятся также экспериментальные результаты Свэнка и Бака³⁵, Розмана^{37,53,54}, Килина, Просина и Розмана⁶⁶, полученные при возбуждении ионизирующими частицами. Однако имеющиеся данные не позволяют пока оценить роль миграции энергии по основному веществу. Неясны также причины различной концентрационной зависимости выхода для электронов и α -частиц^{35,37}.

В заключение несколько слов о «выгодности» ПС со сместителем спектра. Из-за низкой концентрации сместителя перенос энергии к нему происходит за счет фотонного механизма, что приводит к удлинению сцинтилляций (§ 3.3) и, разумеется, не может привести к увеличению выхода люминесценции. Однако из-за уменьшения самопоглощения и изменения спектра можно, вообще говоря, получить бо́льшую техническую эффективность ПС со сместителем. Рассмотрим это несколько подробнее ⁹⁶. Величина импульса сцинтилляционного счетчика с ПС, содержащим добавку M_{2} , будет согласно (14) равна

$$H_2 = (n_1 T_{12} + n_2) \eta_2 K_2 f_2,$$

где f_2 — средняя чувствительность фотоумножителя к спектру M_2 . Для этого же ПС со сместителем спектра M_3 получим

$$H_3 = (n_1 T_{12} + n_2) \eta_2 \eta_3 K_3 f_3.$$

Следовательно, H_3 больше H_2 , если

$$\eta_3 > \frac{K_2 f_2}{K_3 f_3}$$
.

Это условие является необходимым, однако его недостаточно. Легко видеть, что ПС с двумя добавками M_2 и M_3 дает больший импульс, чем ПС с одной M_3 в высокой концентрации, если квантовый выход флуоресценции вещества M_2 достаточно велик, или, другими словами, потери фотонов за счет внутримолекулярной дезактивации в M_2 меньше, чем потери за счет самопоглощения в M_3 при его высокой концентрации.

§ 5. ПРИМЕНЕНИЕ ПЛАСТМАССОВЫХ СЦИНТИЛЛЯТОРОВ

В этом параграфе будут указаны некоторые примеры использования ПС, которые должны продемонстрировать большое значение этих сцинтилляторов как в практике научного эксперимента, так и для технических измерений.

Одним из основных вопросов применения сцинтилляционных методов для дозиметрии рентгеновских или γ -лучей является вопрос о тканеэквивалентности, или воздухоэквивалентности, сцинтиллятора ^{97,98}. Другими словами, можно ли при помощи сцинтилляционного регистратора измерить дозу излучения в рентгенах? Исследования показали, что с «чистыми» органическими сцинтилляторами это возможно только для достаточно жесткого излучения ($\geq 250~\kappa_{28}$). Комбинация ПС с кристаллофосфором CdWO₄ позволяет снизить этот предел до 80 κ_{26} ⁹⁹. ПС на основе нолистирола с люминесцирующими добавками 3P +4PB и с примесью $1/_{330}$ части мелкозернистого ZnS(Ag) обладает вариацией выхода на рептген излучения не более — 10% в интервале жесткости 20 —2000 κ_{26} ¹⁰⁰.

ПС применяются для регистрации излучений в условиях высокой интенсивности¹⁰¹. Экспериментально проверено отсутствие «насыщения» вплоть до мощности дозы 10⁴ рентген/сек¹⁰². При помощи тонких ПС

измеряется распределение глубинных доз, а также изодозы β-активных аппликаторов ¹⁰³. Приводятся и другие применения ПС для дозиметрии ионизирующих излучений ^{104,105}.

Пластмассовые сцинтилляторы используются для счета в-частиц ^{106, 107}. Для мягкого β-излучения S³⁵ и Ca⁴⁵ удается получить в 2— З раза большую эффективность счета, чем при помощи газовых счетчиков ¹⁰⁸. ПС могут применяться для регистрации электронов в магнитных **β**-спектрометрах, а также пля β-спектрометрии 47. В качестве примера на рис. 6 показан спектр импульсов для конверсионных электронов Ba¹³⁷ (624 кэв), измеренный при помощи ПС-2 (см. табл. II) с ФЭУ-29⁴⁵.

Высокое содержание водорода 642 кэв, 2-а-частицы 4,90 Мэв. в ПС позволяет при их помощи регистрировать быстрые нейтроны по протонам отдачи ⁴⁸. При помощи телескопа из трех ПС был измерен энергетический спектр нейтронного иучка мишени синхроциклотрона ¹⁰⁹. ПС применяются также для исследования пространственного и временного распределения нейтронов в высокотемпературном газовом разряде ¹¹⁰.

При помощи тонких ПС (до 15 микрон) производится регистрация осколков деления при высоком фоне α-частиц. Детектор обладает хорошим

Рис. 6. Спектр импульсов IIC-2 для электронов и α-частиц⁴⁵. 1--электроны 642 кэв, 2--α-частицы 4,90 Мэв.

временным разрешением 111,112. Тонкие ПС в сочетании с толстым сцинтиллятором могут служить для идентификации частиц 113.

Пластмассовые сцинтилляторы используются в схемах совпадений для изучения ядерных превращений и, в частности, длительности жизни возбужденных уровней 114. Малая длительность сцинтилляций с избыт-

Рис. 7. Доля общего числа фотонов сцинтилляции, испущенных за время от 0 до Т 66.

Кривая 1—ПС с 0,015 г/г 4PB, 2—то же с 3PP, 3—кристалл стильбена (τ =6 ·10⁻⁹ сек), 4—кристалл антрацена (τ =25 ·10⁻⁹ сек).

ком компенсирует несколько меньтую интегральную величину выхода (рис. 7). Недостатком является низкое сечение фотоэффекта, что во многих случаях затрудняет или делает невозможным разделение ү-линий. В связи с этим большой интерес представляют попытки изготовить ПС С высоким содержанием тяжелых элементов. К сожелению, они пока не привели к вполне удовлетворительным результатам 14,17.

В заключение следует упомянуть еще два случая применения ПС. Для снижения фона комптоновских электронов в сцинтилляционном у-спектрометре спектрометрический кристалл вместе с ү-препаратом окружается большим ПС. Схема антисовпадений отбирает импульсы только от фотоэлектронов 115. Второй случай связан с возможностью изготовле-

ния тонких нитей из сцинтиллирующей пластмассы. Такие нити за счет полного внутреннего отражения обладают качествами светопровода. Сцинтилляционный счетчик, собранный из большого числа нитей, может служить для регистрации треков частиц 116 подобно люминесцентной камере с электронно-оптическим преобразователем 117.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. J. B. Birks, Scintilation Counters, London, 1953.
- 2. S. C. C u r r a n, Luminescence and the Scintilation Counters, London, 1953.
- 3. Н. О. Чечик, С. М. Файнштейн, Т. М. Лифшиц, Электронные умножители, Гостехиздат, 1957.

- 4. R. K. Swank, Nucleonics 12, n. 3, 14 (1954). 5. R. K. Swank, Ann. Rev. Nucl. Sci. 4, 111 (1954). 6. F. D. Brooks, Progr. Nucl. Phys. 5, 252 (1956). 7. И. М. Розман, Изв. АН СССР, серия физич. 22, 36 (1958).

- И. М. Розман, Изв. АН СССР, серия физич. 22, 36 (1958).
 М. G. Shorr, F. L. Torney, Phys. Rev. 80, 474 (1950).
 W. S. Koski, Phys. Rev. 82, 230 (1951).
 L. Pichat, Y. Koechlin, J. Chim. Phys. 48, 225 (1951).
 R. M. Kloepper, M. L. Wiedenbeck, Rev. Sci. Instr. 23, 446 (1952).
 G. Eichholz, J. L. Horwood, Rev. Sci. Instr. 23, 305 (1952).
 M. Koroн, ЖТФ 26, 1741 (1956).
 L. Pichat, P. Pesteil, J. Clement, J. Chim. Phys. 50, 26 (1953).
 W. L. Buck, R. K. Swank, Nucleonics 11, n. 11, 48 (1953).
 М. М. Котон, Ю. Н. Панов, А. Н. Писаржевский, Т. В. Тимофеева, ПиТЭ, №1, 49 (1957).
 L. J. Basile, J. Chem. Phys. 27, 801 (1957).
 И. М. Розман, ЖЭТФ 28, 251 (1955).
 Е. А. Андреещев, Е. Е. Барони, К. А. Ковырзина, И. Э. Пани,

- И. М. Розман, Люго 20, 201 (1999).
 Е. А. Андреещев, Е. Е. Барони, К. А. Ковырзина, И. Э. Пани, И. М. Розман, В. М. Шония, И и ТЭ, № 1, 32 (1956).
 G. E. Pugh, Rev. Sci. Instr. 24, 878 (1953).
 J. Fischer, Nucleonics 13, n. 5, 52 (1955).

- 22. L. Wouters, Nucleonics 12, n. 3, 26 (1954).
- 23. В. К. Космачевский, М. С. Айнутдинов, П и ТЭ, № 3, 49 (1956).
- 24. G. W. Clark, F. Scherb, W. B. Smith, Rev. Sci. Instr. 28, 433 (1957).

- 25. С. Lagiss, Nucleonics 14, п. 3, 66 (1956). 26. F. N. Hayes, D. G. Ott, V. N. Kerr, Nucleonics 14, п. 1, 42 (1956). 27. М. Н. Медведев, Е. Н. Матвеева, Л. Я. Жильцова, ПиТЭ, № 1, 55 (1957).
- 28. Е. А. Андреещев, Е. Е. Барони, К. А. Ковырзина, И. М. Розман, В. М. Шония, Изв. АН СССР, серия физич. 22, 67 (1958).
- У 29. В. Л. Лёвшин, Фотолюминесценция жидких и твердых веществ, М., 1951.
 - 30. Е. А. Андреещев, И. М. Розман, Оптика и спектроскопия 2, 488 (1957) 31. Е. В. Ануфриева, В. М. Волькенштейн, М. М. Котон, ЖФХ 31, 1532 (1957). 32. F. H. Krenz, Trans. Faraday Soc. 51, 172 (1955).

 - 33. Н. Ніпгісhs, Zeits. Naturforschg. 9a, 617 u. 625 (1954). 34. Н. Э. Пани, Е. Е. Барони, В. М. Шония, ЖФХ 31, 732 (1957).
 - 35. R. K. Swank, W. L. Buck, Phys. Rev. 91, 926 (1953).
 - 36. Е. Н. Матвеева, М. Н. Медведев, М. Д. Шафранов, Труды 2-го Совещания по синтезу, производству и применению сцинтилляторов (в печати).
 - 37. И. М. Розман, Пластмассовые сцинтилляторы на основе полистирола, Диссертация, 1957.
 - 38. Th. Förster, Fluoreszenz organischer Verbindungen, Göttingen, 1951.
 - 39. Е. А. Андреещев, И. М. Розман, Оптика и спектроскопия 5, 39 (1958). 40. C. J. Taylor, W. K. Jentschke, M. E. Remley, T. S. Eby, P. G. Kruger, Phys. Rev. 84, 1034 (1951).

 - 41. I. Broser, H. Kallmann, U. M. Martius, Zeits. Naturforschg. 4a, 204 (1949).
 - 42. М. Furst, H. Kallmann, B. Kramer, Phys. Rev. 89, 416 (1953).
 43. G. T. Wright, Proc. Phys. Soc. A68, 929 (1955).
 44. М. Д. Галанин, А. П. Гришин, ЖЭТФ 30, 33 (1956).

 - 45. м. Д. Галанин, А. П. Гришин, люто 50, 55 (1956).
 45. Е. Барони, Н. А. Вартанов, Д. В. Викторов, С. Ф. Килин, И. М. Розман, В. М. Шония, Доклады на IV научно-технической конференции по ядерной электронике, апрель 1959 года, в печати.
 46. S. Dhar, Indian J. Phys. 29, 329 (1955).
 47. A. Bisi, E. Germagnoli, L. Zappa, Nuovo cimento 3, 1007 (1956).
 48. F. Boreli, B. Grimeland, Nuovo cimento 2, 336 (1955).
 49. М. Ц. Баланин, З. А. Чикикова, Ортика, и спортвородния 4, 196 (1958).
- 49. М. Д. Галанин, З. А. Чижикова, Оптика и спектроскопия 4, 196 (1958).

- 49. М. Д. 1 алании, 5. А. Чижикова, Оптика и спектроскопия 4, 196 (1958).
 50. С. N. Сhou, Phys. Rev. 87, 903 (1952).
 51. Н. Каllmann, G. J. Brucker, Phys. Rev. 108, 1122 (1957).
 52. G. T. Reynolds, Nucleonics 10, п. 7, 46 (1952).
 53. И. М. Розман, Оптика и спектроскопия, 2, 480 (1957).
 54. И. М. Розман, Изв. АН СССР, серия физич. 22, 50 (1958).
 55. И. М. Розман, К. Г. Циммер, Атомпая энергия 2, 54 (1957), см. также Intern. J. Appl. Rad. Isotopes 3, 36 (1958).
 56. И. М. Розман, Изв. АН СССР, серия физич. 22, 60 (1958).
- 56. И. М. Розман, Изв. АН СССР, серия физич. 22, 60 (1958).
- 57. F. A. Black, Phil. Mag. 44, 263 (1953). 58. M. J. Reiney, M. Tryon, B. G. Achhommer, J. Res. Natl. Bur. Stand. 51, 155 (1953). 59. J. T. Fowler, M. J. Day, Nucleonics 13, n. 12, 52 (1955). 60. М. Д. Галанин, Изв. All СССР, серия физич. 15, 543 (1951). 61. Th. Förster, Zeits. Naturforschg. 4a, 321 (1949). 62. М. Д. Галанин, ЖЭТФ 28, 485 (1955).

- 63. В. М. Агранович, Оптика и спектроскопия (в печати). 64. С. Ф. Килин, И. М. Розман, Оптика и спектроскопия 6, 70 (1959). 65. С. Ф. Килин, Г. П. Просин, И. М. Розман, ПиТЭ, № 2, 57 (1959). 66. С. Ф. Килин, Г. П. Просин, И. М. Розман, Труды 2-го Совещания по
- синтезу, производству и применению сцинтилляторов (в печати).
- 67. II. K n a u, Zeits. Naturforschg. 12a, 881 (1957).

- 68. S. Singer, L. K. Neher, R. A. Ruchle, Rev. Sci. Instr. 27, 40 (1956). 69. Г. А. Васильев, В. М. Горбачев, частное сообщение. 70. R. K. Swank, W. L. Buck, Rev. Sci. Instr. 26, 15 (1956). 71. F. B. Harrison, Nucleonics 12, n. 3, 24 (1954). 72. L. Sommermeyer, H. Dresel, Zeits. Phys. 141, 307 (1955); 144, 388 (1956).
- 73. J. Weiss, Nature 174, 78 (1954). 74. R. L. Platzman, Rad. Research 2, 1 (1955).
- 75. A. H. Samuel, J. L. Magee, J. Chem. Phys. 21, 1080 (1953).
- 76. G. T. Wright, Proc. Phys. Soc. A68, 701 (1955). 77. З. А. Чижикова, М. Д. Галанин, ЖЭТФ 30, 187 (1956). 78. J. B. Birks, Phys. Rev. 94, 1567 (1954).

- 79. Radiation Chemistry, Disc. Faraday Soc., n. 12, 44-48 (1952).
 80. L. O. Brown, N. Miller, Trans. Faraday Soc. 51, 1623 (1955).
 81. I. Broser, L. Herforth, H. Kallmann, U. M. Martius, Zeits. Naturforschg. 3a, 6 (1948).

- 83. G. Т. Wright, Phys. Rev. 91, 1282 (1953).
 83. G. T. Wright, Phys. Rev. 96, 569 (1954).
 84. С. Ф. Килин, И. М. Розман, Оптика и спектроскопия 6, 65 (1959).
 85. G. T. Wright, Proc. Phys. Soc. B69, 358 (1956).
 86. F. Gläser, Zeits. Naturforschø. 11a 1030 (1956).
- Gläser, Zeits. Naturforschg. 11a, 1030 (1956)
- 87. D. E. Lea, Actions of Radiations on Living Cells, Cambridge, 1946.
- 88. P. R. J. Burch, Rad. Research 6, 289 (1957).
- 89. J. B. Birks, Phys. Rev. 84, 364 (1951), Proc. Phys. Soc. A64, 874 (1951). У 90. М. Д. Галанин, Оптика и спектроскопия 4, 758 (1958).

 - 91. W. S. Koski, Phys. Rev. 82, 230 (1951). 92. P. Avivi, A. Weinre, b. J. Chem. Phys. 27, 716 (1957). 93. W. A. Thornton, Phys. Rev. 96, 292 (1954). 94. E. E. Барони, В. М. Шония, Труды 2-го Совещания по синтезу, производству и применению сцинтилляторов (в печати).
 - 95. Т. П. Беликова, М. Д. Галанин, Изв. АН СССР, серия физ. 22, 48 (1958). 96. P. Avivi, A. Weinreb, Rev. Sci. Instr. 28, 427 (1957).
 - 97. И. М. Розман, К. Г. Циммер, Вестник рентгенологии и радиологии, вып. 1, 63 (1955), см. также сборник «Исследования в области дозиметрии ионизирую-

 - цих излучений», Изд. АН СССР, М., 1957, стр. 82. 98. I. M. Rosman, K. G. Zimmer, Zeits. Naturforschg. 11b, 46 (1956). 99. D. P. Cole, P. A. Duffy, M. E. Hayes, W. S. Lusby, E. L. Webb, Electr. Engin. 71, 935 (1952).
 - 100. E. H. Belcher, J. E. Géilinger, Brit. J. Radiology 30, 103 (1957)
 - 101. R. L. Schuch, R. D. Hiebert, F. N. Hays, Nucleonics 12, n. 2, 16 (1954).
 - 102. И. М. Розман, К. Г. Циммер, Атомная энергия 2, 70 (1957), см. также Intern. J. Appl. Rad. Isotopes 3, 43 (1958).
 103. Р. N. Goodwin, Nucleonics 14, п. 9, 120 (1956).
 104. G. J. Hine, B. A. Burrows, Rad. Research 5, 482 (1956).

 - 105. Дозиметрия ионизирующих излучений, Доклады иностранных ученых на Женевской конференции, Гостехиздат, 1956.
 - 106. W. S. Michel, G. L. Brownell, J. Mealey, Nucleonics 14, n. 11, 96 (1956).

 - 107. D. R. Stranks, J. Sci. Instr. 33, 1 (1956).
 108. M. L. Mitchell, L. A. Sarkes, Nucleonics 14, n. 9, 124 (1956).
 109. A. Ashmore, R. G. Jarvis, D. S. Mather, S. K. Sen, Proc. Phys. Soc. A70, 735 (1957).
 - 110. О. Андерсон, У. Бэйкер, С. Каулгейт, Дж. Айз, Р. Пайл, Проблемы современной физики, № 1, 116 (1958).

 - 111. B. M. Fopбaчeв, M. И. Казаринова, ПиТЭ, № 4, 20 (1957). 112. V. K. Fscher, E. Nagel, W. W. Havens, Nucl. Sci. Abstr. 11, 991 (1957). 113. D. Bodansky, S. F. Eccles, Rev. Sci. Instr. 28, 464 (1957). 114. O. Nathan, Nucl. Phys. 5, 401 (1958). 115. K. I. Roulston, S. I. H. Nagvi, Rev. Sci. Instr. 27, 830 (1956). 116. C. T. Pownolds, P. F. Condon, Pay Sci. Instr. 28, 4008 (4957).

 - 116. G. T. Reynolds, P. E. Condon, Rev. Sci. Instr. 28, 1098 (1957).
 - 117. Е. К. Завойский, Г. Е. Смолкин, А. Г. Плахов, М. М. Бутслов, ДАН СССР 100, 241 (1955).