

Тайны атомных ядер

Элементарные частицы

Электрон

1897 - Дж. Дж. Томсон. Открытие электрона $Q_e = -1,6\ 10^{-19}\ \mathrm{K}\pi;\ m_e = 1/2000\ M(^1\mathrm{H})$

1904 - Дж. Дж. Томсон. Модель атома

Протон

1911 – Э. Резерфорд. Открытие атомного ядра

$$\alpha + {}^{197}_{79}Au \rightarrow \alpha + {}^{197}_{79}Au$$

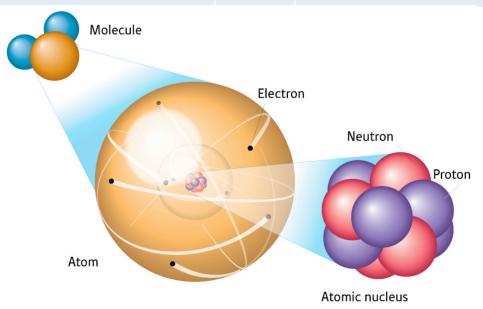
1919 – Э. Резерфорд. Открытие протона

$$Q_p = -q_e$$
; $m_p = M(^1\text{H})$
 $\alpha + {}^{14}N \longrightarrow p + {}^{17}O$

Нейтрон

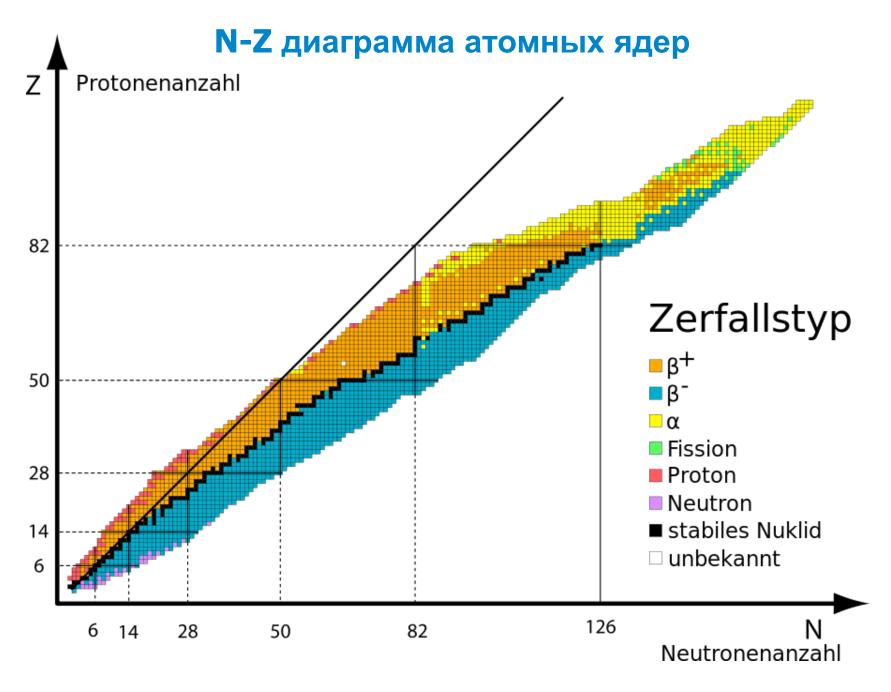
1932 г. Дж. Чадвик. Открытие нейтрона

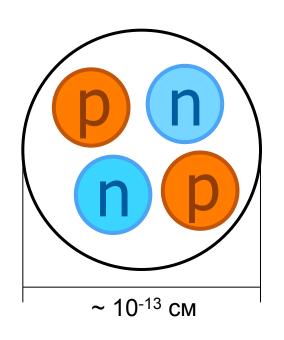
$$Q_n = 0; \quad m_n = m_p$$


$$\alpha + {}_4^9 Be \longrightarrow n + {}_6^{12} C$$

Нейтрино

1930 г. В. Паули. Гипотеза нейтрино $(A,Z) \to (A,Z+1) + e + v$ $Q_v = 0; \quad m_v \sim 0$


		Заряд, $q_{\it e}$	Масса, МэВ/ <i>с</i> ²
Электрон	e	-1	0,511
Протон	p	+1	938,3
Нейтрон	n	0	939,6
"Нейтрино"	ν	0	0



$$Z = 82$$

$$N = 126$$

$$A = 208$$

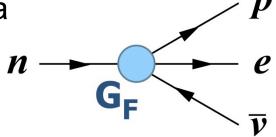
α -частица

lpha-частица – ядро атома гелия $^4_2 He$

Какие силы связывают протоны и нейтроны в атомные ядра?

1.Сильное взаимодействие между нуклонами

$$\frac{F_{NN}}{F_{Coul}} \sim 40$$


2. Конечность радиуса действия ядерных сил

$$r_{NN} \sim 1 \ \Phi \text{M} \ (10^{-13} \ \text{CM})$$

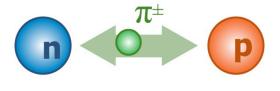
Теория Ферми

1934 – Э. Ферми. Теория β-распада

$$au_n pprox rac{1}{{G^2}_F} rac{1}{(m_n - m_p)^5} \sim 885,7 \; {
m cek}$$

$$G_F \sim rac{10^{-5}}{m_p^2}$$
 — константа **слабого** взаимодействия

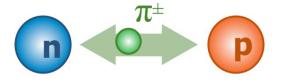
Для E_{ν} ~ 1 МэВ σ_{ν} ~ 10⁻⁴³ см², L_{ν} ~ 10²⁰ см



Для ядерных сил радиус взаимодействия

$$r_{NN} \sim \frac{hc}{m_e} \sim 10^3 \ \Phi \mathrm{M}$$

Теория Юкавы



1935 г. Х. Юкава разработал теорию ядерного взаимодействия и предсказал мезоны – кванты ядерного поля.

$$r_{NN} \sim 1 \ \Phi \text{M} \ (10^{-13} \ \text{cm})$$

$$m_{\pi} \sim 200 m_{e}$$

Теория Юкавы

1935 г. Х. Юкава разработал теорию ядерного взаимодействия и предсказал мезоны - кванты ядерного поля.

1949

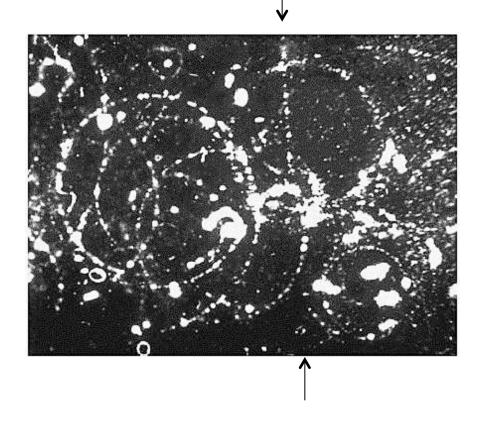
$$r_{NN} \sim 1 \ \Phi \text{м} \ (10^{-13} \ \text{см})$$

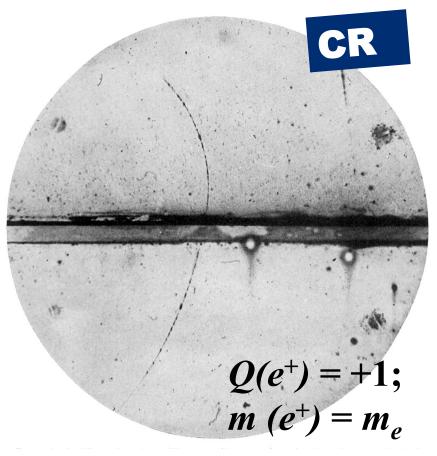
$$m_{\pi} \sim 200 m_{e}$$

1937 г. К. Андерсон, С.Неддермейер. Открытие мюона.

$$Q_{\mu} = q_e; \quad m_{\mu} = 200 \ m_e \ J = 1/2$$

1947 г. С.Пауэлл. Открытие заряженных пионов.


$$Q_{\pi} = \pm q_e$$
; $m_{\pi} = 140 \text{ M} \cdot \text{B} \ J = 0$

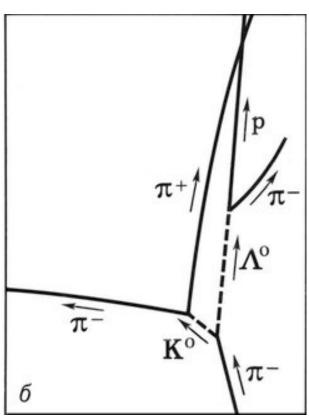


1950

Космические лучи

1927 г. – Д.В. Скобельцын Наблюдение электронов космических лучей

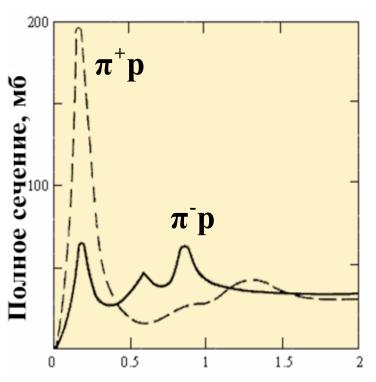
1932 г. Позитрон


1936 г К. Андерсон За открытие позитрона

Странные частицы

1947 - 1953 г. Открытие в космических лучах К-мезонов и гиперонов: Λ, Σ, Ξ

$$\pi^{-} + p \to \Lambda + K^{0}$$


$$\Lambda \to p + \pi^{-}$$

$$K^{0} \to \pi^{+} + \pi^{-}$$

 $\Delta L \approx 0.3 \text{ MM}$ $\Delta t \approx 1 \text{ cek}$

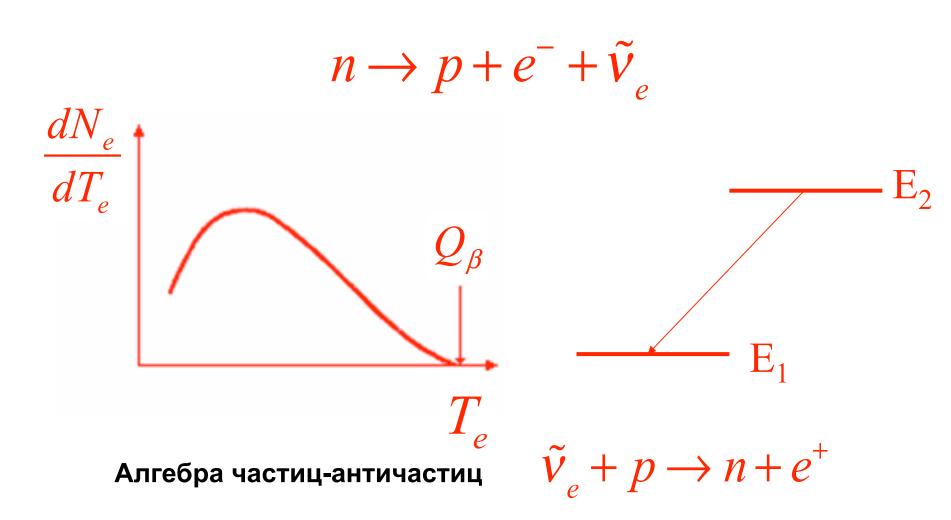
Нуклонные резонансы

1952 г. Э. Ферми. Открытие Δ-резонанса

$$\Gamma \cdot \tau = h$$
100 M₃B \longrightarrow 10⁻²³ c

Частица	Macca, Mc² (МэВ)	JP	
Δ^{++} , Δ^{+} , Δ^{0} , Δ^{-}	~1232	3/2+	
N+, N ⁰ , N ⁻	~1440	1/2+	

Кинетическая энергия пиона, ГэВ

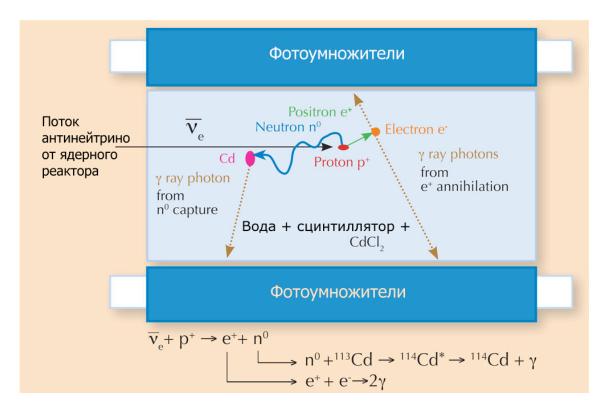

$$p + \pi^{-} \rightarrow \Delta^{0}(1232) \rightarrow n + \pi^{0}$$

Как устроен Мир. 60-е годы ХХ века

Фермионы J = 1/2, 3/2,		Бозоны J=0, 1, 2	
Барионы	Лептоны	Фотон	Мезоны
Нуклоны <i>р, п</i>	Электрон e^-	γ	Пионы π^-,π^+,π^0
Резонансы Δ, N	Мюон μ ⁻		Странные <i>К</i> -мезоны
Гипероны $\Lambda, \Sigma, \Xi, \Omega^-$	Нейтрино $ν_{\rm e}$		Нестранные ρ-, ω- мезон
B = 1	L = 1		B = 0

Нейтрино

1931 г. В.Паули выдвинул гипотезу о существовании нейтрино для объяснения спектра электронов β-распада


Нейтрино

1956 г. Ф. Райнес, К. Коэн. Регистрация антинейтрино

$$n \longrightarrow p + e^- + \overline{\nu}_e$$

 $\overline{\nu}_e + p \longrightarrow n + e^+$

$$e^+ + e^- \rightarrow 2\gamma$$

 $n + \text{Cd} \rightarrow \text{Cd}^* \rightarrow \text{Cd} + \gamma$

$$\sigma = 12^{+7}_{-4} \cdot 10^{-44} \text{ cm}^2$$

100 дней измерений 567 событий (фон 209 событий)

Нейтрино

1962 г. Л. Ледерман, М. Шварц, Дж. Стейнбергер.

Открытие мюонного нейтрино

Идентификация двух типов нейтрино

1988

Распад пионов:

Эксперимент:

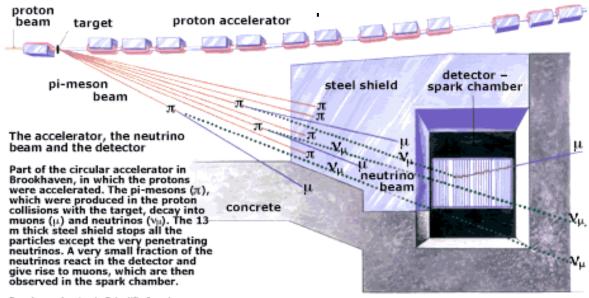
$$\pi^+ \rightarrow \mu^+ + \nu$$

$$\pi^+ \rightarrow \mu^+ + \nu \qquad \pi^- \rightarrow \mu^- + \overline{\nu}$$

Образуются мюоны ?

$$v + n \rightarrow \mu^- + p$$
 $\overline{v} + p \rightarrow \mu^+ + n$

$$\overline{V} + p \rightarrow \mu^+ + n$$


Или электроны?

$$V + n \rightarrow e^- + p$$

$$V+n \rightarrow e^- + p$$
 $\overline{V}+p \rightarrow e^+ + n$

Были зарегистрированы только мюоны, следовательно

$$V_e \neq V_{\mu}$$

Based on a drawing in Scientific American, March 1963.

Лептоны

	Macca МэВ/с²	Электрический заряд, <i>q</i>	Лептонное число
V _e	< 10 -5	0	$L_e = +1$
e ⁻	0, 511	-1	$L_e = +1$
\overline{v}_{e}	< 10 -5	0	$L_e = -1$
e ⁺	0, 511	+1	$L_e = -1$
${f v}_{\mu}$	< 0,2	0	$L_{\mu} = +1$
μ	106	-1	$L_{\mu} = +1$
\overline{v}_{μ}	< 0,2	0	$L_{\mu} = -1$
μ+	106	+1	$L_{\mu} = -1$

Лептонные числа

Каждому поколению лептонов следует приписать свой лептонный заряд, соответственно $L_{\rm e}$, L_{μ} . Этот заряд, как и обычный электрический заряд, является сохраняющимся и аддитивным, т. е. заряд системы лептонов равняется сумме лептонных зарядов отдельных лептонов и должен быть одинаковым до и после завершения любого процесса.

Закон сохранения L_e , L_u

В процессах, происходящих в замкнутой системе в результате сильных, слабых и электромагнитных взаимодействий, каждое лептонное число L_e , L_μ сохраняется порознь.

Лептонные числа

Во всех процессах происходящих в замкнутой системе лептонные числа L_e , L_u , L_τ сохраняются порознь. Поэтому

наблюдаются процессы

$$\tilde{v}_{\mu} + p \rightarrow \mu^{+} + n$$

$$v_{\mu} + n \rightarrow \mu^{-} + p$$

$$\pi^{-} \rightarrow \mu^{-} + \tilde{v}_{\mu}$$

$$\mu^{-} \rightarrow e^{-} + \tilde{v}_{e} + v_{\mu}$$

не наблюдаются процессы

$$\mu^{-} \rightarrow e^{-} + \gamma$$

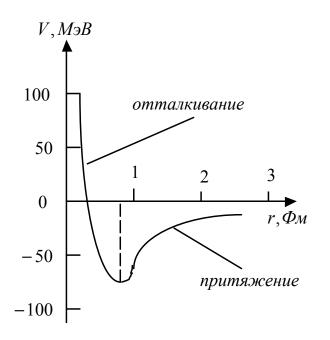
$$\nu_{\mu} + p \rightarrow \mu^{+} + n$$

$$\nu_{\mu} + n \rightarrow e^{-} + p$$

$$w(\mu^{-} \to e^{-} + \gamma)/w(\mu^{-} \to e^{-} + \overline{\nu}_{e} + \nu_{\mu}) < 10^{-11},$$

$$w(\mu^{-} \to e^{-} + e^{-} + e^{+} \gamma)/w(\mu^{-} \to e^{-} + \overline{\nu}_{e} + \nu_{\mu}) < 10^{-12}$$

Как устроен Мир



АДРОНЫ				
БАРИОНЫ		МЕЗОНЫ_		
нуклоны	p, n	ПИОНЫ	π^+,π^0,π^-	
резонансы	$\Delta^-, \Delta^0, \Delta^+, \Delta^{++}$ и тд	каоны	K⁺, K⁻, K⁰, Ҡ ⁰ и тд	
гипероны	$\Lambda, \Sigma^0, \Sigma^+, \Sigma^-, \Omega^-$ и тд	«векторные»	$ ho^+, ho^0, ho^-,\omega$ и тд	

Гиперядра

Ядра странного мира

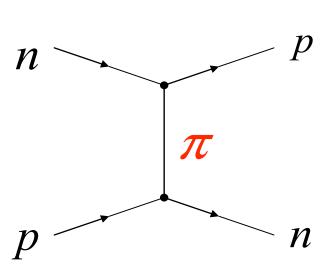
NN - взаимодействие

Радиальная зависимость нуклон-нуклонного потенциала

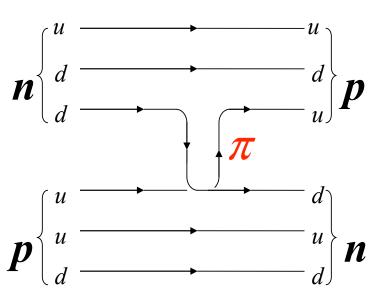
Хидэки Юкава 1907 - 1981

Потенциал, создаваемый облаком испускаемых нуклоном мезонов, носит название *потенциала Юкавы*

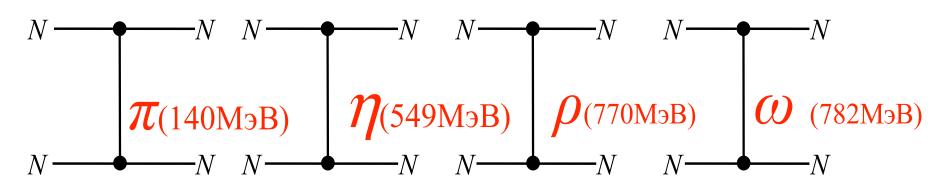
$$V(r) = g_N \frac{e^{-\frac{r}{a}}}{r},$$


где
$$a=rac{\hbar}{mc}$$
, g_N – ядерный заряд нуклона.

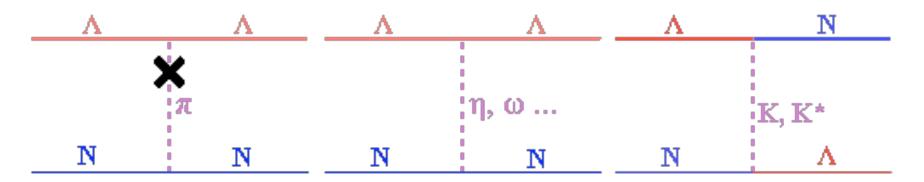
NN - взаимодействие

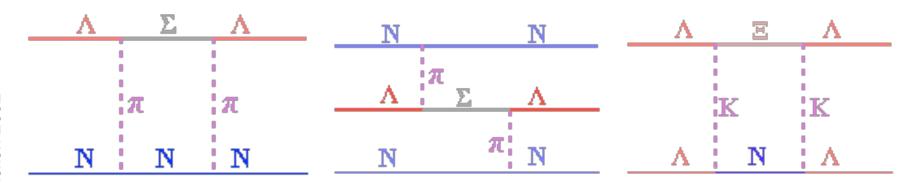

$$R = \frac{h}{mc} \approx 1,5-2,0 \Phi_{\rm M}.$$

$$m_{\pi}c^{2} = \frac{hc}{R} \approx \frac{200 \text{ M} \cdot 3B \cdot \Phi_{M}}{1.5 \text{ } \Phi_{M}} \approx 130 \text{ M} \cdot 3B.$$

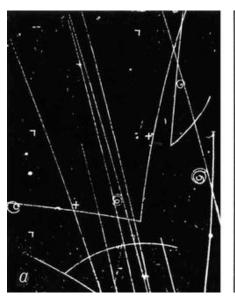

Положительные, отрицательные и нейтральные пионы (π^+,π^0,π^-) описывают взаимодействие между nn-, np-, pp-парами на характерных внутриядерных расстояниях 1.5-2.0 Фм.

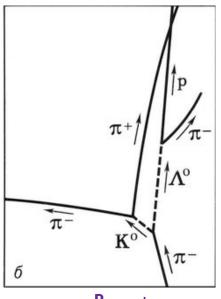
Однопионное пр-взаимодействие

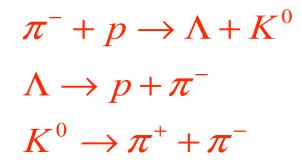

NN - взаимодействие


Взаимодействие между нуклонами зависит от спина частицы, переносящей взаимодействие. Обмен векторными частицами J=1 приводит к отталкиванию между нуклонами. Это отталкивание является аналогом отталкивания двух одноимённых зарядов в электростатике. Обмен скалярными мезонами J=0 приводит к притяжению между нуклонами.

мезон	π	η	ρ	ω
J ^p (I)	0-(1)	0-(0)	1-(1)	1-(0)


ЛN - взаимодействие




Однопионный обмен в системе ΛN запрещен по изоспину. Возможен обмен мезонами с нулевым изоспином (η , ω), а также обмен странными мезонами (K - мезоны). Поскольку пион - легчайший из мезонов, запрет однопионного обмена означает, что радиус ΛN -взаимодействия меньше, чем нуклоннуклонного. Кроме того, возрастает роль двухпионного обмена с виртуальным Σ -гипероном в промежуточном состоянии.



Гипероны

<u>Изоспин I, странность S:</u>

 Λ (лямбда)-гиперон: I = 0, S = 1 Σ (сигма)-гипероны (Σ^+ , Σ^0 , Σ^-): I = 0, S = 1

Каскадные гипероны $\Xi(\kappa c u)$ -гипероны (Ξ^0, Ξ^-) :

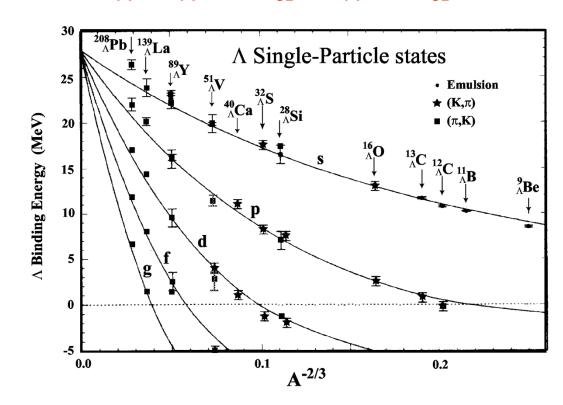
$$\tau (\Lambda) = 2.6 \cdot 10^{-10} \,\mathrm{c}$$

Гиперядра

- А: Полное число барионов (нуклоны и гипероны)
- АZ
 Z: Полный заряд (Не число протонов!)
 - Λ : hyperon (other examples -- Σ , Ξ , ...)
- Примеры:

1.
$$3p + 3n + 1\Lambda \rightarrow \frac{7}{\Lambda}Li$$

2.
$$2p + 2n + 2\Lambda \rightarrow {}_{\Lambda\Lambda}^{6}He$$


3.
$$1p + 2n + 1\Sigma^{+}$$

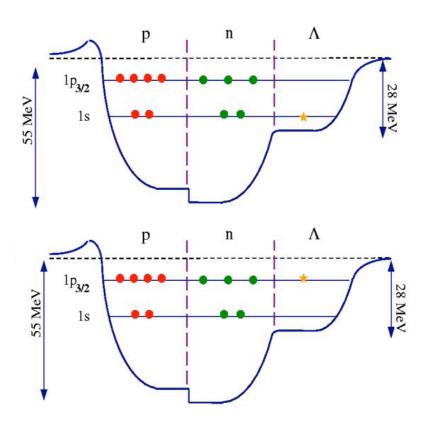
 $2p + 1n + 1\Sigma^{0} \rightarrow {}^{4}_{\Sigma}He$
 $3p + 0n + 1\Sigma^{-}$
(неразличимы)

M. Danysz, J. Pniewski, Delayed Disintegration of a Heavy Fragment Emitted in Nuclear Explosion, Bull. Acad. Pol. Sci. 1, 42 (1953)

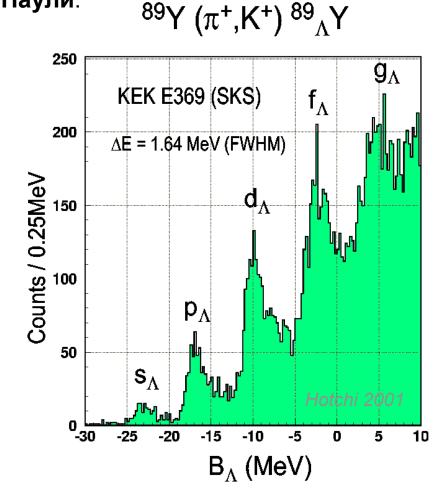
Гиперядра

Энергия связи Л-гиперона – энергия, необходимая для того, чтобы оторвать гиперон от гиперядра

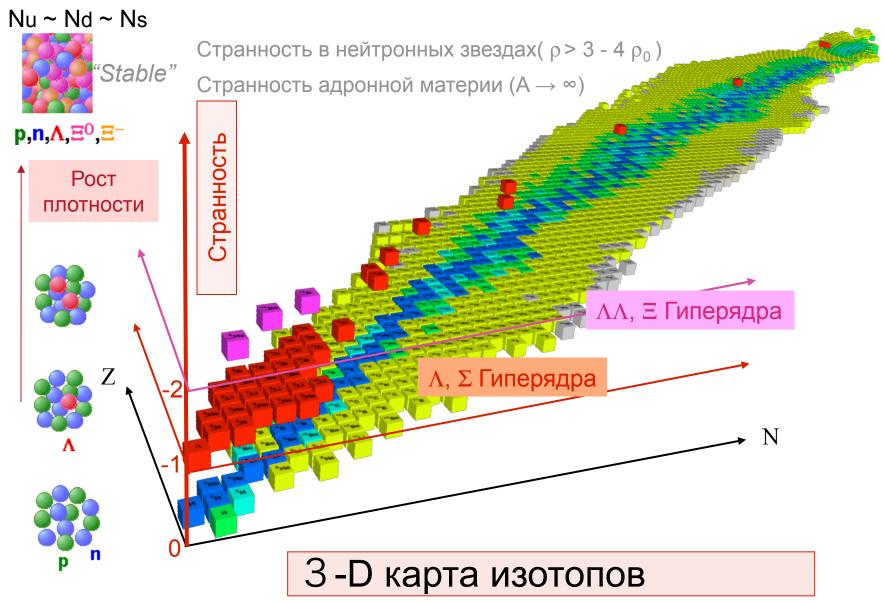
$$B_{\wedge}(A^{+1}_{\wedge}Z) = E_{CB}(A^{+1}_{\wedge}Z) - E_{CB}(A^{-1}_{\wedge}Z)$$



Tamura 2011


Гиперядра

Гиперон, находясь в окружении нетождественных частиц (нуклонов),


не подвержен действию принципа Паули.

Гиперон-нуклонное притяжение слабее, чем нуклон-нуклонное

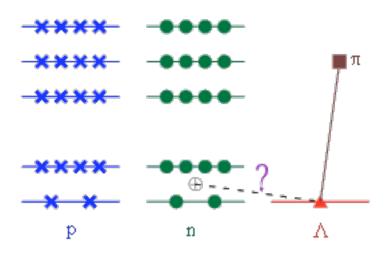
Странные ядра

Tamura 2011

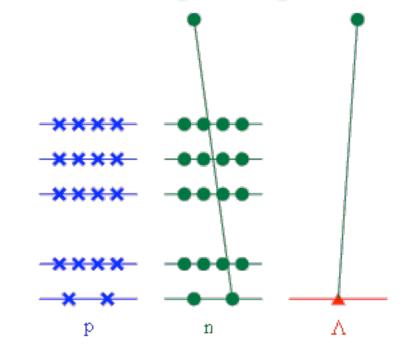
Адронная материя в нейтронных звездах

Фракция барионов: зависит от YN, YY взаимодействия

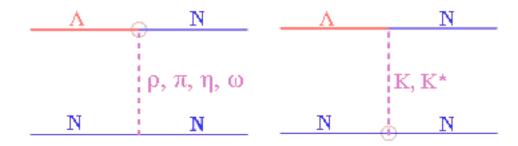
-> Максимальная масса звезды, скорость остывания


Для более реалистичных расчетов нужны Одно из возможных данные по гиперядрам ΞN , $\Lambda \Lambda$, ΣN , KN forces, ΛN p-wave предположений. force, NNN and YNN force, ... n star J. \$chaffner-Bielich. 10⁰ $N_u \sim N_d \sim N_s$ GM₁ U_ν=+30 MeV p,n,Λ,E⁰,E[−] íμ U₌=-18 MeV ВОПРОСЫ 10⁻³ Тяжелые (M=1.97 \pm 0.04 M_{\odot}) Λ нейтронные звезды Появление Σ , K^{bar} 10^{-4} 0.3 0.0 0.6 0.9 1.2 1.5 Существование странной материи

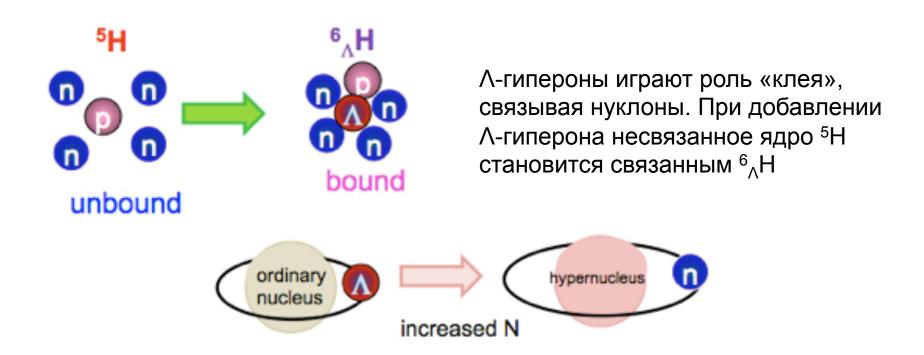
Density (fm⁻³)


Панской 2002

Время жизни гиперядра


$$\Lambda \rightarrow N + \pi + 40$$
 МэВ; $E_N = 5$ МэВ

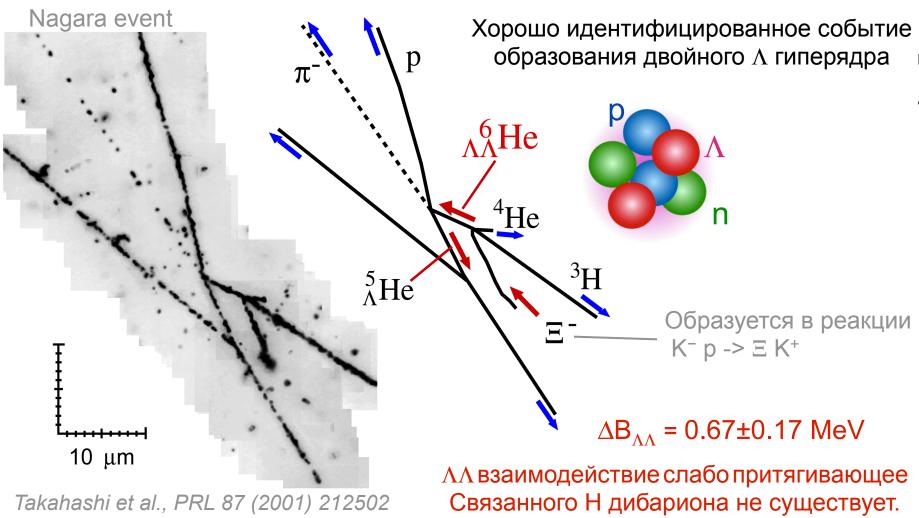
Свободный распад Λ -гиперона в гиперядрах сильно запрещен принципом Паули. Однако времена жизни Λ -гиперядер в действительности несколько меньше τ_{Λ}



 $\Lambda + N \rightarrow N + N + 175 \text{ M}_{3}\text{B}.$

Безмезонный распад с нарушением странности

Гиперядра с нейтронным избытком


Структура гиперядер меняется с увеличением числа нейтронов. Обычные гиперядра, в которых Np ~ Nn, хорошо описываются в модели, где гиперон добавлен к нуклонному остову. В нейтронноизбыточных гиперядрах картина меняется: нейтронное гало движется вокруг гиперядерного остова

Спектроскопия гиперядер

Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.

Двойные гиперядра

Физика Физика атомного Гиперчастиц ядра ядра Астрофизика