

Recent Results on B decays - Rare B Decay Highlights + Belle b → sq̄q Time-dependent CPV -

[Includes updates/corrections after ICHEP04 talk]

Y.Sakai (Belle/KEK)

Outline

- Introduction KEKB and Belle Detector [PEP-II/BaBar: by Giorgi]
- New Results on Rare decays (Belle/BaBar) (Highlights)
- Updated/New results on $b \rightarrow s$ TCPV from Belle

[Results are preliminary unless references are given]

Apology; cannot cover all of the many interesting results from the parallel sessions Contributed papers available Belle: http://belle.kek.jp/conferences/ICHEP2004/ BaBar: http://www.slac.stanford.edu/BFROOT/ www/Public/ichep2004/

B Decays & the SM

b-quark: Heavy \rightarrow *variety of decay modes*

Rich field for fundamental SM parameters

B decays & New Physics

Key point: $A_{NP} \sim A_{SM}$ (small/forbidden)

KEKB Collider

Continuous Injection

Belle Detector

SVD Upgrade

- 1 MRad \rightarrow >20 MRad
- 3 layers \rightarrow 4 layers
- $23^{\circ} < \theta < 139^{\circ} \rightarrow 17^{\circ} < \theta < 150^{\circ}$
- $R_{bp} = 2.0 \text{ cm} \rightarrow 1.5 \text{ cm}$
- Better I.P. resolutions

2003 summer

152M BB pairs with SVD1 + 123M BB pairs with SVD2

B-meson Reconstruction

Utilize (VMI 01)/sheed **special Kinematics** at Y(4S)0.00 **Energy difference:** A Energy (Geb/s $\Delta E \equiv \sum E_i - E_{CM}/2$ **Beam-constrained mass:**

$$M_{bc}_{(ES)} = \sqrt{(E_{CM}/2)^2 - (\sum_{i} \vec{p}_i)^2}$$

0.20

Continuum Suppression

- Simplest charmless rare decay modes
- Tree Penguin interference → **Direct CP Violation**

$$A_{CP} = \frac{\overline{\Gamma(B \to f)} - \Gamma(B \to f)}{\overline{\Gamma(B \to f)} + \Gamma(B \to f)}$$

Understanding of Penguin Anomaly (New Physics)

 $A_{CP}(B^{0} \rightarrow K^{+}\pi^{-})$

[PID efficiency bias correction: $\delta A = -0.01 \pm 0.004$]

2nd Evidence for DCPV at Belle $! [A(\pi^+\pi^-) 3.2\sigma]$

 $B^0 \rightarrow \pi^+\pi^-$ CPV Result

 $A_{CP}(B \to K^+ \pi^0)$

 $A_{CP}(K^{\pm}\pi^{0}) = 0.04 \pm 0.05 \pm 0.02$

hint that $A_{CP}(K^+\pi^-) \neq A_{CP}(K^\pm\pi^0)$? (2.4 σ) [also seen by BaBar]

Large EW penguin (Z⁰) ? New Physics ?

$\textcircled{B} \rightarrow VV : Polarization Puzzle$

Naïve Factorization : Longitudinal $f_L = 1 - O(1/m_b^2)$

- $\rho^+\rho^-$, $\rho^+\rho^0$, $(\rho^0 \mathbf{K}^{*+})$: $f_L \approx 1$ Tree dominated
- $f_L(\phi \mathbf{K}^*) \sim 0.5$ Penguin only

Penguin Anomaly ? New physics effect ? $\phi K^*(b \rightarrow s\bar{s}s)$ only ?

(BaBar/Belle)

QCD penguin annihilation: $O(1/m_b^2) \rightarrow O(1)$ $f_{\perp}/f_{\prime\prime} = 1 + O(1/m_b)$? $f_L(\rho^+ K^{*0}) < f_L(\phi K^*)$?

$B \rightarrow \rho^{+}K^{*0}$ Polarization

 $ρ^+, K^{*0} \text{ mass region}$ 2D($M_{bc}, \Delta E$,) ML fit
peak: 6.3σ signif.

152M BB

 M_{bc} , ΔE signal region simultaneous fit to ρ ,K* masses

> $\rho^+ K^{*0}$: 26.6 ±8.7 (Stat. sig: 3.2 σ)

> > [Belle-conf-0404]

$B \rightarrow \rho^{+} K^{*0}$ Polarization

$$f_L = 0.50 \pm 0.19 \pm {}^{0.05}_{0.07}$$
 (3.1 σ away from $f_L = 1$
 $B = (6.6 \pm 2.2 \pm 0.8) \ge 10^{-6}$

[Belle-conf-0404]

$B \rightarrow \rho^{+}K^{*0}$ Polarization

$\textcircled{B} \rightarrow \phi K^*$: New Physics Search

K* $B \rightarrow$

[Belle-conf-0419]

 $f_L = 0.51 \pm 0.06 \pm 0.04$

confirm low f_L

$\textcircled{B} \rightarrow \phi K^* : New Physics Summary$

(* recalculated from fit values)

Loops \rightarrow **Sensitive to New Physics**

 $B \rightarrow K^{(*)} l^+ l^-$

[Belle-conf-0415]

LP03: $B \rightarrow X_s ll, K^{(*)} ll$: Belle/BaBar Br, $A_{CP} \sim SM$

 $A_{FB}(K^*ll)$: very sensitive to NP that may not be seen in $B(b \rightarrow s\gamma)$

275M BB

 $b \rightarrow d\gamma: B \rightarrow (\rho, \omega)\gamma$

Suppress $K^*\gamma$ with PID and M('K' π) cut

 $B(B \rightarrow (\rho, \omega)\gamma) = (0.72 + 0.43)$ ± 0.27)x 10⁻⁶ (1.9 σ) [< 1.4 x 10⁻⁶ @90% CL]

Simultaneous fit to 3 modes: $\Gamma(B \rightarrow (\rho, \omega)\gamma) = \Gamma(B^+ \rightarrow \rho^+ \gamma)$ $= 2\Gamma(B^0 \rightarrow \rho^0 \gamma) = 2\Gamma(B^0 \rightarrow \omega \gamma)$

 $B(B \rightarrow (\rho, \omega)\gamma) = (0.6 \pm 0.3)$ ± 0.1) x 10⁻⁶ (2.1 σ) [< 1.2 x 10⁻⁶ @90% CL]

 \implies |Vtd|/|Vts| [\rightarrow A.Ali's talk]

M_{bc} (GeV/c²)

∆E (GeV)

0.2

Belle @LP03 (140 fb⁻¹)

[PRL 91, 261602 (2003)]

3.5σ deviation from the SM !

275M BB

 $\phi K_{S} + \phi K_{L}: S(\phi K^{0}) = +0.06 \pm 0.33 \pm 0.09$ $A(\phi K^{0}) = +0.08 \pm 0.22 \pm 0.09$ $\sim 2\sigma \text{ away from SM}$

275M B**B**

ICHEP 2004, Beijing 37

 $B \rightarrow K^*[Ks \pi^0] \gamma TCPV$

Summary

★B decays: many new results from BaBar/Belle

- Evidence for Direct CPV, $A_{CP}(K^+\pi^-) \neq A_{CP}(K^+\pi^0)$?
- $B \rightarrow \pi^0 \pi^0$ decay established, 1st measurement of $A_{CP}(\pi^0 \pi^0)$
- $f_L(\phi K^*)$ Polarization Puzzle: $f_L(\rho^+ K^{*0}) < 1$ No hint of T-violating NP in $B \rightarrow \phi K^*$
- A first look at $B \rightarrow K^*ll$ FB-asymmetry
- 1st $B^0 \rightarrow K^*[Ks\pi^0]\gamma$ TCPV measurements

\Rightarrow Belle $b \rightarrow s\bar{q}q$ TCPV updates

- $S(\phi K^0) = +0.06 \pm 0.33 \pm 0.09$ (~2 σ away from SM)
- average of $b \rightarrow s\bar{q}q$: +0.43 ± $^{0.13}_{0.11}$ (~2.4 σ from SM)

(Giorgi's review for BaBar results)

More data needed to conclusively establish New Physics

ICHEP 04

Charmless B Br Summary

Backup

CHEP 04	ł	3 -	\rightarrow	P	P/]	PV		V S	ur	nr	na	ry	
	π^{-}	π^0	η	η'	K-	K ⁰	ρ-	ρ^0	ω	¢	K*-	K*0	
$\pi^+ \ \pi^0$			● √	▲ √							\checkmark		
η η η'		•	\checkmark				ا						
K^+				v	\checkmark						_	√ _	
$\frac{\mathbf{R}}{\rho^{+}}$		obs evic uppe	erve lenc er lii	ed (> e (> mit	>5σ) >3σ)			 √			√ ●		
ω φ	P	oth,	Ba	Ba	r, Bo	elle, (CLEO		-	- √	\checkmark	√	
K*+ K*0	[[DCPV exter	V: e [.] Id to	vide	ence cays	in π^+	π ⁻ /K+1 scalar,	τ [–] on] , axia	ly 1-ve	ctor	\checkmark		

 $B^0 \rightarrow \phi K^0$: SVD1,2

SVD1 only

SVD2 only

SVD1:~2.3 σ SVD2:many systematic $S = -0.68 \pm 0.46$ \leftrightarrow $S = +0.78 \pm 0.45$ many systematic $A = -0.02 \pm 0.28$ \leftrightarrow $A = +0.17 \pm 0.33$ checks, all ok

 $B^0 \rightarrow \phi K_S, \phi K_L : CPV$

$B^0 \rightarrow \phi K^{\pm}$: Validations

Control sample

Lifetime fit w/ $B \rightarrow \phi K^{\pm} / K_{S}$

Asymmetry fit w/ ϕK^{\pm}

Systematic errors on S

	Ks π^0	Κ*γ	ωKs	η' Ks	f ₀ Ks	φ K ⁰	K+K-Ks
VTX	0.02	0.06	0.01	0.01	0.02	0.01	0.01
flavor tag	0.01	0.02	0.04	0.01	0.01	0.01	< 0.01
resolution	0.05	0.05	0.07	0.03	0.03	0.04	0.03
fit bias	0.03	0.03	+0.01 -0.10	0.01	0.03	0.01	0.01
signal fraction	0.07	0.02	0.10	0.02	0.05	+0.08 -0.06	0.02
physics parameters	0.02	0.01	0.01	<0.01	0.01	< 0.01	<0.01
background ∆t shape	0.04	0.03	0.02	<0.01	0.04	0.01	<0.01
tag side interference	<0.01	< 0.01	0.01	<0.01	<0.01	< 0.01	<0.01
TOTAL	0.11	0.10	+0.13 -0.16	0.04	0.08	0.09	0.04

KKKS: effective $\sin 2\phi_1 \rightarrow 0.17$ for CP-even fraction ICHEP 2004, Beijing 48

 $D^0\pi^+$, J/ ψ K[±], D⁻ π^+ , D^{*-} π^+ / ρ^+ , D^{*} $l\nu$

Belle preliminary

	SVD1 (152M BB)	SVD2 (123M BB)				
$ au_{B^0}^{}_{[m ps]}$	$1.534 \pm 0.008 \pm 0.010$	1.518 ± 0.012 (stat)				
$ au_{B^+}$ [ps]	$1.635 \pm 0.011 \pm 0.011$	1.652 ± 0.014 (stat)				
Δm_d [ps ⁻¹]	$0.511 \pm 0.005 \pm 0.006$	0.516 ± 0.007 (stat)				
[Belle-conf-0436]						

New detector resolution is well understood

History of $b \rightarrow s\bar{q}q$ CPV

Non- f_0 components are determined from the M($\pi^+\pi^-$) distribution

•
$$f(f_0 K_S) = 91\%$$

• $f(\pi^+ \pi^- K_S) = 2.3\%$
• $f(\rho^0 K_S) = 4.8\%$
• $f(f_x K_S) = 1.6\%$

Continuum Suppression

ICHEP 2004, Beijing 52

CKM Matrix & UT

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud}V_{us}V_{ub}\\ V_{cd}V_{cs}V_{cb}\\ V_{td}V_{ts}V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$
Wolfenstein representation
$$\begin{pmatrix} 1-\lambda^{2}/2 & \lambda & A\lambda^{3}(\rho-i\eta)\\ -\lambda & 1-\lambda^{2}/2 & A\lambda^{2}\\ A\lambda^{3}(1-\rho-i\eta) & -A\lambda^{2} & 1 \end{pmatrix}$$

$$\begin{pmatrix} CKM \text{ matrix}\\ Complex \text{ phase}\\ \leftrightarrow \text{ CP violation} \end{pmatrix}$$

$$\begin{pmatrix} \rho, \eta \end{pmatrix} \quad Unitarity \text{ triangle} \\ V_{ud}V_{ub}^{*} \\ \phi_{2}(\alpha) & V_{ud}V_{cb}^{*} \end{pmatrix}$$

$$\begin{pmatrix} \phi_{3}(\gamma) & \phi_{1}(\beta) \\ V_{cd}V_{cb}^{*} & (0,1) \end{pmatrix}$$

BaBar $B \rightarrow \phi K^*$

