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PREFACE TO THE REISSUE OF 
NUCLEAR STRUCTURE (VOLUMES I AND 11) 

Many of our colleagues have called our attention to an apparent need 
for access to the present volumes, which have been out of print for some 
time. Especially they have had in mind younger scientists entering nuclear 
physics as well as other areas such as the structure of mesoscopic systems in 
which the generality of concepts from nuclear structure has manifested 
itself. We therefore welcomed the interest expressed by World Scientific 
Publishing Company in a reissue of the work. 

Since the first edition published in 1969 (Vol I) and 1975 (Vol II), there 
has, of course, been an enormous development in the field of nuclear 
physics based on the refinement of the experimental arts. The field has 
expanded in so many directions, in connection with the increase in 
accessible energy, angular momentum, and nuclear species, and the new 
phenomena, which have been revealed, have stimulated conceptual 
developments concerning the significant degrees of freedom and their 
interplay in nuclear dynamics. Thus, in connection with the reissue of the 
original text, we have considered the possibility of adding material covering 
these developments. However, we quickly recognized that it would be 
impossible for us to provide an assessment of this vastly expanded subject 
with anything like the degree of comprehensiveness aimed at in the original 
text. At the same time, this text continues to describe the basis for the under- 
standing of nuclear structure as we see it today, and, therefore, we feel it the 
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vi  PREFACE TO THE REISSUE 

most appropriate to reissue the text in its original fern. It is our hope that 
such a reissue may contribute to the basis for the exploration and 
digestion of current developments in a wide field. 

Aage Bohr 
Ben R. Mottelson 

Copenhagen, 1997 



P R E F A C E  

The plan for the present treatise originated about a decade ago at  the time 
of major developments relating collective nuclear properties to the motion of 
the individual nucleons. In trying to describe these developments, we gradually 
came to appreciate that their proper exploitation required a broader discussion 
starting from the more phenomenological analysis of nuclear properties. We 
thus eventually became involved (without appreciating the time that would be 
required) in a more systematic attempt to evaluate the present status in our 
understanding of nuclear structure. 

Some of our colleagues have argued that a proper presentation of the sub- 
ject should start with the Schrodinger equation for the nuclear many-body 
system and proceed by appropriate approximations to derive the observed 
nuclear properties. We view the subject, however, in a rather different way. In 
the study of a many-body system such as the nucleus with its rich variety of 
structural facets, the central problem appears to be the identification of the 
appropriate concepts and degrees of freedom that are suitable for describing the 
phenomena encountered. Progress in this direction has been achieved by a com- 
bination of approaches based partly on clues provided by experimental data, 
partly on the theoretical study of model systems, and partly on the exploration 
of general relations following from considerations of symmetry. 

In the presentation of the subject matter, we have found it convenient to 
exploit a threefold division at several different levels of organization. Thus, the 
exterior form is physically divided into three volumes with three. chapters 
in each. Single-particle motion is the main topic of Volume I, but we have 
chosen to precede the discussion with a summary of the important symmetry 
features of nuclear systems, which represent a continuing theme throughout 
the whole book. Volume I1 is devoted to the phenomenological analysis 
of the consequences of nuclear deformations. Volume 111 deals with the 
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viii PREFACE 

microscopic theory of collective phenomena, starting from the analysis of few 
particle configurations. 

The many dimensional relations between theory and experiment have led 
us to a further threefold.division of the material into text, illustrative examples, 
and appendices. The text represents an attempt at a systematic development of 
the subject, in which each section builds only on the concepts explained in pre- 
vious sections. While the main conclusions, which can be drawn from comparison 
with the experiments, are given in the text, the one-dimensional presentation is 
inappropriate in the discussion of the actual information provided by the ex- 
periments. In fact, any real experiment involves a whole nucleus, and the analysis 
may often require the full arsenal of available tools and a broad body of infor- 
mation concerning the nucleus under study. For this reason we have placed 
most of the discussion of empirical data in sections labeled “Illustrative Exam- 
ples,” in which we have felt free to employ results from any section of the book. 
The theory of nuclear structure and the analysis of experiments involve general 
tools that are more conveniently presented as separate topics, since they apply to 
phenomena within wide domains of quanta1 physics. In the appendices, we 
have included brief discussions of a number of such topics with a view to 
making the book as self-contained as possible. For example, the formulation 
of electromagnetic, P-decay, and nuclear reaction theory is treated in this 
manner with the emphasis on defining the matrix elements measured by these 
different processes. Angular momentum algebra and other symmetry problems, 
elements of statistical mechanics, and a number of simple models are also 
treated in appendices. 

The division into text, illustrative examples, and appendixes is clearly 
indicated by the typography. To further help the reader, each page has been 
labeled by one of the familiar Chinese characters R (wen = text), El (t’u = illus- 
tration), and k M  (f’u = appendix), which so graphically convey the distinction 
between the three divisions. 

In the long labors involved in preparing this book we have received in- 
valuable support and stimulation from a large number of colleagues. The 
material of each chapter has been the special province of a Chapterman who 
has helped with the collection and organization of the material as well as with 
critical comments on the presentation. For this important contribution we wish 
to thank Hans Lutken (Chapters 1 and 4), Jakob Peter Bondorf (Chapter 2), 
Jerrgen Damgaard (Chapter 3), Bertel Lohmann Andersen (Chapter 5) ,  Carl 
Jerrgen Veje (Chapter 6), Peter Winge (Chapter 7), Jens Bang (Chapter 8), and 
Bent Ssrensen (Chapter 9). The presentation has greatly benefited from the 
critical comments of Peter Axel, J. P. Elliott, and John Rasmussen, who under- 
took to read the entire manuscript. We would also like to thank Norman Austern, 
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John Blair, G. E. Brown, K.-Y. Chan, George Ewan, James Hamilton, 
J. D. Jackson, A. K. Kerman, Thomas Lauritsen, John Nagel, Ove Nathan, 
S. G. Nilsson, John Rogers, Lion Rosenfeld, Lev Sliv, W. J. Swiatecki, Takeshi 
Udagawa, Aage Winther, and Toshimitsu Yamazaki, whose advice we have 
sought in connection with special sections. It is impossible for us to mention 
all those among the members and visitors to the Institute who have contributed 
with suggestions and help in the preparation of the material. As will be 
apparent from the acknowledgements in figure captions, such help has played 
an important role in the preparation of a large fraction of all the figures. 

It is hard to imagine how we could have coped with the immense organiz- 
ational problem of bringing all the material together, and processing it 
through the numerous stages from preliminary version to completed proofs, 
if Sophie Hellmann had retired at the normal age of 70. We wish to express our 
admiration and gratitude for her eminent generalship of the entire campaign. 
The many versions of the manuscript were typed and retyped by Lise Madsen, 
whose endurance and devotion to the cause have been a major support. The 
illustrations have been skillfully and imaginatively drawn by Henry Olsen. In 
Sinological questions we have benefited from the advice of Splren Egerod. 

Aage Bohr 
Ben Mottelson 

Copenhagen 
August 1968 
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S Y M M E T R I E S  Ch. I 

1-1  NUCLEA-R CONSTITUTION 

Nuclei are aggregates consisting of two types of particles, protons and 
neutrons, together referred to as the nucleons. The main properties of free 
nucleons are summarized in Table 1-1, p. 4. 

The forces responsible for binding nuclear systems belong to the category 
of “ strong interactions,” which comprises the interactions among nucleons, 
mesons, and hyperons, collectively referred to as hadrons. It is in the nature of 
the strong interactions that the structure of each of these particles and the 
forces between any two of them involve to a greater or lesser extent the inter- 
play of all the hadrons. The complexity of these phenomena is especially 
revealed in collisions with energies large compared to the rest masses of the 
particles. Thus, a collision between two nucleons with energies in the giga- 
electron volt range has appreciable probability for producing a great variety of 
strongly interacting particles. Although a number of the general features 
characterizing the strong interactions are understood, the basic character of these 
phenomena and the relationship to other known interactions remain a challeng- 
ing field of investigation. 

In the structure of nuclei, however, the full complexity of the strong inter- 
actions does not usually come into play, owing to the fact that nuclei are 
relatively weakly bound systems. The energy required to remove a nucleon from 
a nucleus is about 5-10 MeV, and the average kinetic energy of the nucleons in 
the nucleus is of the order of 25 MeV. These energies are small compared with 
the rest energies not only of the nucleons themselves (Mc’ m 1000 MeV), but 
also of the lightest of the hadrons, the n mesons (rn,c2 w 137 MeV). In the 
analysis of nuclear bound states and reactions at not too high energies, it is 
therefore a good first approximation to regard the nucleus as composed of a 
definite number of nucleons with properties similar to those of free nucleons, 
and moving with nonrelativistic velocities (u’/c’ 5 0.1). The virtual presence of 
other particles may then be approximately taken into account in terms of forces 
acting between the nucleons. It appears that the main features of the nuclear 
binding can be attributed to two-body forces, which can be most directly studied 
in two-nucleon scattering experiments at the appropriate energies and in the 
properties of thedeuteron ground state. The available data make possible a rather 
detailed characterization of these forces, which turn out to be of quite compli- 
cated character. (See the discussion in Sec. 2-5.) At the present time, hardly 
anything is known about the many-body forces between nucleons; this problem 
might be studied most directly in the scattering and bound state properties of 
the three- and four-nucleon systems. 

In addition to the strong interactions, the nucleons produce electromagnetic 
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effects and the still weaker type of interactions that manifest themselves in 
the b-decay processes, and belong to the category of “weak interactions.” 
Although these additional weaker interactions play a relatively minor role in the 
nuclear structure itself, they are of decisive importance for the study of nuclear 
phenomena. Thus, they determine the degree of stability of the bound nuclear 
states, the states that cannot emit nucleons and which therefore would be 
completely stationary if only the strong interactions were present. Moreover, 
the study of nuclear transmutation by electromagnetic processes is an especially 
important tool for probing nuclear structure, because this interaction is relatively 
simple and has well-established properties. It may also be remarked that our 
contact with the nuclear phenomena ultimately arises entirely from the electro- 
magnetic signals produced by the nuclear particles. 

Because of the complexity of the nuclear forces and the difficulties inherent 
in a detailed description of systems with large numbers of degrees of freedom, the 
characterization of nuclear states in terms of symmetry properties and the appli- 
cation of conservation laws play a prominent role in the analysis of nuclear 
phenomena. The symmetry laws of nuclear physics stem partly from the in- 
variance of the interactions with respect to transformations of the space-time 
coordinate system. While the invariance under the continuous transformations 
(translations, rotations, and Lorentz transformations) appears to have universal 
validity, the reflection symmetries have been found to be only partially valid. 
The study of nuclear phenomena has contributed in an important manner to the 
elucidation of the degree of validity of these symmetries. 

The nuclear processes are governed by additional symmetries for which 
there is no apparent connection with invariance under space-time transform- 
ations. Thus, the stability of nuclei is attributed to the conservation of baryon 
number (see Table 1-l), which appears as a counterpart to the law of conserva- 
tion of the electric charge number. The study of p processes has revealed an 
analogous conservation law for lepton number (see Sec. 3D-1). 

Another type of symmetry is associated with the existence of the two states 
of the nucleon (neutron and proton) with intimately related properties (see 
Table 1-1). This degeneracy reflects invariance properties of the strong inter- 
actions, referred to as isobaric symmetry. The generalization of this symmetry to 
include the additional, approximate, degeneracies discovered in the hadronic 
spectrum is at the present time a central topic in particle physics. 

The nucleons are fermions and therefore obey the exclusion principle, 
which requires the wave function to be antisymmetric with respect to exchange 
of identical particles. The consequence of isobaric symmetry for the nuclear 
structure is closely connected with permutation symmetry imposed by the 
exclusion principle. 
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Table 1-1 

A 

1 See, for example, N. F. Ramsey, Molecular Beams, Clarendon Press, Oxford (1956). Still 
more accurate later determinations can be found in G .  H. Fuller and V. W. Cohen, 
Nuclear Moments, Appendix 1 to Nuclear Data Sheets (1965). 

2 C. P. Stanford, T. E. Stephenson, and S. Bernstein, Phys. Rev. 96, 983 (1954). 
3 The stability of the proton seems to imply the existence of a new conservation law, the 

conservation of nucleons. In high-energy collisions, one does observe processes in which 
nucleons are transformed into other kinds of particles. Thus, the conservation law must be 
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less detailed information is available on the other “weak couplings ” involving nucleons, 
such as p- + p  + n  + Y,,, A +p + x- ,  etc. 

6 A discussion of the present status of the experimental evidence on the neutrality of atoms 
has been given by V. W. Hughes, Chapter 13 in Gravitation and Relativity, edited by 
H.-Y. Chiu and W. F. Hoffmann, Benjamin, New York (1964). From experiments 
attempting to measure a change in potential associated with the effusion of a macroscopic 
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The present chapter brings together discussions of the various symmetries 
that provide important tools for the description of the nuclear phenomena. This 
subject is in itself one of great scope as  a part of the study of the elementary 
interactions. The systematic treatment of nuclear structure starts with Chapter 2, 
and some readers may prefer to give Chapter 1 only a short perusal and to  
return to  this material when it is needed in connection with the later applications. 

v 
I L L U S T R A T I V E  

E X A M P L E S  TO 

SECTION 1-1 

Properties of nucleons (Table I - I )  
The kinematic properties of a particle are characterized by the mass and the 

spin. These two relativistic invariants specify the transformation properties of the 
one-particle states with respect to space-time translations, rotations, and 
Lorentz transformations. (The mass and spin may be referred to as the quantum 
numbers labeling the representations of the Lorentz group.) States involving 
several identical particles are further characterized by the statistics which are 
manifest even when the particles are outside the range of mutual interaction. 
(The statistics label the representations of the permutation group; see Appen- 
dix 1C.) For the proton and neutron, the mass, spin, and statistics are listed 
in Table 1-1, p. 4. 

The next item in Table 1-1 is the lifetime. An unstable particle is, strictly 
spealung, a transient stage in a collision process. However, when the lifetime T is 
so long that r = h / ~  is small compared with the mass and other energies charac- 
teristic of the intrinsic structure, the decaying particle can be approximately 
treated as an entity whose properties are independent of the mode of formation. 
(The decay constant r may be regarded as an imaginary component of the mass; 
see Appendix 3F.) 

The additional items in Table 1-1 involve the interaction of nucleons with 
the various force fields. The charge and magnetic moment occupy a special posi- 
tion in the sense that these coupling constants can be determined from classical 
experiments, employing macroscopic electromagnetic fields. If the wavelength 
of the electromagnetic field becomes sufficiently small, the interaction depends 
on the distribution of charge and magnetic moment inside the nucleons (the 
electromagnetic form factors). The leading moments of these distributions are 
included in the table. 

The last item in Table 1-1 gives the coupling constant of the nucleons to the 
n-mesic field. This coupling constant is one of many characterizing the strong 
interaction between nucleons and other hadrons. It is, however, one that acquires A 
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v special significance in low-energy nuclear physics, since it determines the 
nucleonic potential at large distances (see Sec. 2-5a). The coupling parameters 

A associated with the weak interaction of nucleons are considered in Appendix 3D. 

1-2 NUCLEAR SYMMETRY PROPERTIES 
ASSOCIATED WITH SPACE-TIME 
IN V A RIA N C E’ 

1-2a Continuous Transformations 

If no external fields act on a system, the Hamiltonian is invariant with 
respect to translations of the coordinate system, in space and time, as well as 
with respect to rotations of the coordinate axes. In addition, the equations of 
motion are unaffected by a uniform motion of the system (Galilean, or Lorentz, 
invariance). 

Spatial translations 

The general connection between invariance and conservation laws is 
illustrated most simply by the spatial translations, by which the coordinate 
system X is displaced to a new set of axes X’ .  This symmetry is of basic 
significance for physical processes, since it implies the conservation of momen- 
tum. In the discussion of the intrinsic nuclear structure, the translation invari- 
ance plays only a minor role, but we consider it here as a prototype for the 
formulation of symmetries in quanta1 systems. 

The translational invariance can be expressed by the statement that to every 
quantum state IA) there corresponds a translated state IA‘) whose properties, 
described by an observer in .XI, are identical with those of IA), as seen from 
x. 

The relation between the equivalent sets of states [ A ) ,  IB), . . . and 
IA’), IB‘), . . . is such that corresponding scalar products are equal 

(1-1) (B’ I A ’ )  = ( B  I A )  

IA’) = 42 IA) = c Im @I 42 I& 

The transformation from IA) to ] A ’ )  is therefore unitary, 

( 1-2) 
B 

where ( B  I 42 IA) is an element of a unitary matrix = OiZt42 = 1). 

* The far-reaching significance of the space-time symmetries for the description of atomic and 
subatomic phenomena was emphasized at an early stage in the development of quantum theory by 
E. Wigner (see, for instance, Wigner, 1959). 
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Because the consequences of the formalism are expressed in terms of probabili- 
ties (absolute squares of amplitudes), the equivalence between the states ] A )  and IA’) 
requires only the equality of scalar products to within a phase factor, I(B’ I A’)  I = 

I ( B J A ) J .  However, by a suitable choice of phases fcr the states JA’ ) ,  i t  is always 
possible to achieve either the relation (1-1) or the relation (B‘  I A’)* = ( B  I A )  
corresponding to an antiunitary transformation. An example of an antiunitary trans- 
formation is provided by the time reversal operation discussed below. Continuous 
transformations, such as translations, can be associated only with unitary transform- 
ations. (For a proof that the unitary and antiunitary transformations exhaust all possi- 
bilities, see Wigner, 1959, p. 233 ; Messiah, 1962, p. 633.) 

The above formulation of the translational invariance is equivalent to the 
relation 

(B’l T‘ 1.1’) = (BI T 1.1) (1-3) 

for all matrix elements. In this relation, T is an arbitrary operator expressed in 
terms of the variables in .X, while T‘ is the corresponding operator in X‘.  If we 
view the change of coordinate system in terms of a transformation of the opera- 
tors, it follows from Eqs. (1-2) and (1-3) that 

T’ = QTQ-’ ( 1  -4) 

Thus, the transformation of the position r k ,  momentum p k ,  and spin sk 
of a particle, labeled k,  is given by 

r; = rk - a = a r k $ & - ’  

p; = pk = QpkQ-l  (1-5) 

s; = sk = a s k % - ’  

where a represents the displacement of .X’ with respect to X .  If T is a function 
of r k  , pk , sk , the transformed operator T’  is the same function of rk’ , pa’, sk’. 
Note that, if T = p(r) is the particle density at  the space point r, a displacement 
of all the particles has the same effect on T as the inverse displacement of r, and 
thus T ‘  = p(r + a). (Examples of transformations of field operators, such as p(r), 

are considered in Sec. 1A-7.) 
The transformation operator %“ can be expressed in the form 

Q(a)=exp - - a . P  (1-6) ( ; 1  I 
where P is the total momentum, that is, the sum of the nucleon momenta with 
additional contributions from photons, leptons, mesons, etc., that may be 
present in the system. The transformation (1-5) follows from Eq. (1-6) and the 
canonical commutation relations for the coordinates and momenta of a particle. 
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A finite translation of the coordinate system may be generated by a series 
of infinitesimal steps 

1 
%(6a) = 1 - - 6a . P 

h 

and P is referred to as the generator of infinitesimal translations. 
The conservation law associated with translational symmetry expresses the 

invariance of the Hamiltonian (the energy) with respect to a translation of the 
coordinate system. The Hamiltonian therefore commutes with %(a), and hence 
with P, implying the law of conservation of linear momentum. 

In  the formulation of the basic laws of quantum mechanics, one may take the 
invariance arguments as a starting point. Thus, we may define the momentum P as the 
Hermitian operator associated with infinitesimal translations through Eq. (1-7). The 
canonical commutation relations for position and momentum operators then follow 
from the geometrical relation rk’ = rk - a (see Eq. (1-5)). 

Time displacements 

A displacement in time by the amount to takes us from the original system 
X to a system X‘ ,  such that clocks in X’  register the time t‘ = t - to when 
those in 2f“ show the time t. The state ( A ’ )  is thus characterized by the fact that 
events taking place in IA)  at t = tl take place in 1.4’) at t‘ = t,, that is, for t = 

tl + t o  . 
The unitary transformation from IA)  to / A ’ )  is generated by the operator 

where H is the total energy. Using this transformation, we obtain for the time 
dependence of operators (see the corresponding relation (1-4)) 

Hf) (1-9) 

We can thus also view the conservation of total momentum as an expression of 
the commutability of spatial translations and time displacements, which implies 
that the translations are time-independent operations. 

Rotations 

Rotational invariance plays a decisive role in the analysis of nuclear pheno- 
mena. Partly, one may exploit the infinitesimal rotations, which define the angu- 
lar momentum and spherical tensor properties of nuclear states and operators ; 
and partly one may employ the finite rotations to define an intrinsic coordinate 
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frame, as in the theory of nuclear rotations and in the helicity description of single- 
particle wave functions. The systematic formulation of the rotational transform- 
ations is considered in Appendix 1A; in the present section, we indicate the 
relation of this analysis to the description of translational invariance as consider- 
ed above. 

The unitary operator associated with a rotation (specified by the direction 
of the axis of rotation and the magnitude x of the rotation angle) can be written, 
in analogy to Eq. (l-6), 

B(x) = exp{ - ix . I} (1-10) 

where I is the total angular momentum in units of ti. The law of conservation of 
angular momentum reflects the invariance of the Hamiltonian with respect to 
rotations or, equivalently, the fact that spatial rotations and displacements in 
time are commutable operations. 

While translations of the coordinate system in different directions are com- 
mutable operations (and therefore the components of P commuting operators), 
rotations with respect to different axes do not commute. The commutation 
relations for the components of I 

[I,, Z y ]  = il, and cyclic permutations (1-11) 

can be obtained from the relation (1-10) by considering the effect of two 
infinitesimal rotations taken in different orders. 

The rotational invariance implies the possibility of labeling the stationary 
states by the total angular momentum quantum numbers IM representing the 
eigenvalues of (I)’ ( = Z ( I  + 1)) and I, (==M). These quantum numbers charac- 
terize the transformation of the states under rotation of the coordinate system. 
A similar characterization of operators leads to a classification in terms of 
spherical tensors, labeled by the symmetry numbers Ap. Thus, a tensor compo- 
nent T,, transfers an angular momentum 2 with component p to the state on 
which it acts. 

The commutation relations for angular and linear momenta may be ob- 
tained from geometrical arguments, similar to those leading to Eq. (I-11), by 
considering the effect of successive infinitesimal translations and rotations taken 
in different orders 

C I X  , PXI = 0 

[I,, Pyl = iP, (1-12) 
and cyclic permutations 

Thus, in order to form states that are simultaneously eigenstates of total 
momentum and angular momentum, we must go to the rest frame in which 
P = 0. 
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Galilean transforniations 

The properties of systems with P # 0 follow from those in the rest system 
by Galilean (or Lorentz) invariance, which expresses the invariance of the 
interactions with respect to  a transformation to a coordinate system X’  moving 
with uniform velocity with respect to  X .  This invariance applies to the nucleus as  
a whole, but is not immediately applicable to tbe description of individual 
nucleons moving in the nucleus, since the rest system of the remaining nucleons 
defines a preferred coordinate system. Thus, in the discussion of nuclear struc- 
ture, we shall have little occasion to exploit this important general symmetry. 

In the nonrelativistic approximation, a transformation to a uniformly moving 
system X’ coinciding momentarily with the fixed system X is expressed by the rela- 
tions (Galilean transformation) 

r; = rk 

v; = v k  - u 

s; = s* 
(1-13) 

where u is the velocity of X ’  with respect‘to X ,  while v k  is the velocity of the kth 
particle, that is, the time derivative of rk . 

If the interactions between the particles are velocity dependent, we must dis- 
tinguish between the velocity and momentum operators, which are related to each 
other by 

The Hamiltonian has been expressed in the form 

(1-14) 

(1-15) 

where the mass of the k th  particle is denoted by Mk , while W represents the interac- 
tions. The Galilean invariance implies that W depends only on relative velocities of the 
particles and is thus invariant under the transformation (1-13), that is, W ’  = W. From 
Eq. (1-14) and the corresponding relation for the variables referred to the moving 
system, we obtain the transformation of the momenta (see also Eq. (1-13)) 

p; = P k  - Mk u (1-16) 

The transformation of the coordinates and momenta given by Eqs, (1-13) and 
(1-1 6) can be accomplished by the unitary operator 

%(u) = exp( I] ~u . ..,,,I (1-17) 

where A’ and R,, represent the total mass and the center-of-mass coordinate 
& = z & f k  

C 

(1-18) 

The center-of-mass coordinate is therefore the generator of infinitesimal Galilean 
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transformations. (A Galilean transformation is formally similar to  a translation, with 
the roles of coordinates and momenta interchanged.) 

For Galilean invariant interactions, the Hamiltonian (1-1 5) can be written in the 
form 

(1-19) 

where the Galilean invariant intrinsic Hamiltonian Ifintr depends only on the relative 
velocities (and relative coordinates, assuming translational invariance). Thus, the 
dynamics of the system can be separated into a Galilean invariant intrinsic motion 
and a center-of-mass motion of the system as a whole. The invariance properties of 
the Hamiltonian can also be expressed by the relation 

i 1 
fi - [H7 Rcml  = ii? (1 -20) 

for the commutator of H with the generator of Galilean transformations. 
The Galilean invariance is a property of the interactions and of the equations of 

motion. The kinetic energy, however, and the total Hamiltonian are not invariant 
(see Eqs. (1-16) and (1-20)). Thus, in contrast to the case of translational and rotational 
invariance, we obtain no new conservation law nor new quantum numbers. 

The relativistic generalization of relation (1-19), expressing the Lorentz invari- 
ance, is given by 

H = + C ~ ( P ) ~ ) ” ~  (1-21) 

where Hint,  and H now also include the rest masses of the particles. The relation (1-21) 
differs from (1-19) not only in the higher-order terms in P, but also because the total 
rest mass, Hint,, now includes the binding energy and thus depends on the intrinsic 
motion. 

The unitary transformation generating Lorentz transformations cannot be 
expressed in a form corresponding to Eq. (1-17), since the center-of-mass coordinate 
(or the coordinate of a particle) cannot be defined in a relativistically covariant manner. 
The generator of Lorentz transformations can be expressed in terms of the derivative 
operator in momentum space and involves an additional part acting on the spin 
variables. (The resultant rotation of the spin vector is referred to as the Thomas pre- 
cessibn.) 

Rotating coordinate frames 

While the dependence of the energy on  the linear momentum follows from 
Galilean invariance (see Eq. (1-19)), there is no  general relation for  the depend- 
ence of the energy on  the angular momentum since, in a rotating coordinate 
system, the equations of motion are modified by the occurrence of Coriolis and  
centrifugal forces. In  some situations, these forces produce only a small perturb- 
ation on the intrinsic structure, and the energy can then be approximately 
expressed as a simple function of the total angular momentum, I ,  similar t o  the 
relation (1-19). Under such conditions, the spectrum of the system exhibits a 
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rotational band structure. In other situations, the centrifugal effects become 
large, even for a single quantum of rotational motion, and there may be no 
simple physical relation between different quantum states with successive values 
of I .  The conditions under which rotational structure occurs in the nuclear 
spectra will be an important topic in following chapters. 

The energy as a function of the angular momentum, considered formally as a 
continuous variable by an analytic continuation of the equations of motion, is often 
referred to as a Regge trajectory. An exact analysis of such trajectories is possible for 
certain simple models, such as that of a nonrelativistic two-particle system, for which a 
complete separation between rotational and intrinsic motion can be performed. (See 
de Alfaro and Regge, 1965. For a review of relativistic extensions of the Regge analysis 
and its application in scattering theory, see, for example, Oehme, 1963.) Anexample of 
the ambiguities that may arise in the definition of trajectories for many-particle 
systems is discussed in Sec. 4-5. 

1-2b Space Reflection 

We begin the discussion of the reflection symmetries by considering the 
space inversion, which has especially simple properties of far-reaching signifi- 
cance for the discussion of nuclear structure. The discovery of the violation of 
parity in the fl  processes has led to extensive exploration of the degree of validity 
of the various reflection symmetries and to deeper insight into the relationship 
between these symmetries. 

A reflection of the three spatial coordinate axes, which transforms a right- 
handed into a left-handed system, can be associated with a unitary transforma- 
tion, 9, which inverts all spatial coordinates. The degrees of freedom of a particle 
are thus transformed according to 

(1-22) 

The transformation of momenta and spins follows from geometrical considera- 
tions concerning the commutation of a spatial reflection with translations and 
rotations 

(1-23) 

The geometrical interpretation of the reflection operation does not deter- 
mine the effect of 9 on other quantum numbers such as the electric charge or 
baryon number, for which there is no established connection with the space- 
time description. We shall define B to be a space reflection operator that leaves 
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these quantities invariant. It is well known that, for systems oSpartic1e.s governed 
by electromagnetic forces (atoms, molecules, etc.), the Hamiltonian commutes 
with such a reflection operator, as a consequence of the 9 invariance of the 
electromagnetic interactions. By testing the assumption of 9 invariance for 
nuclear systems, we can determine the extent to which the nuclear interactions 
possess this symmetry. 

If the interactions commute with 9, we can simultaneously diagonalize the 
Hamiltonian and 9, and label the stationary state ] A )  by the corresponding 
eigenvalue nA of 9 

The state of a nucleon (neutron or proton) at rest must be an eigenstate of 9, 
since there exist no other states with the same mass and the same charge and 
baryon number. Because of the conservation of baryon number A and electric 
charge Ze, the relative parity of states with different A or Z is arbitrary, and 
we are free to fix it by assigning an intrinsic parity of + 1 for the neutron and for 
the proton. The parity of a nuclear state is thus a property of the relative motion 
of the nucleons. Acting twice with 9 on a nuclear wave function expressed in 
terms of coordinates (or momenta) and spin variables is an identity, and hence 

I A )  = X A  I A )  ( 1  -24) 

X A =  (1-25) 

(The interaction between nucleons may lead to the production (real or virtual) of 
other particles (mesons, photons, etc.), but the total parity is not affected, pro- 
vided the interactions are 9' invariant.) 

We can characterize the various operators by their transformation under 
9. For operators T which transform into themselves, apart from a phase factor, 
we have 

(1-26) 

Any operator can be divided into two parts which are, respectively, even and odd 
under the parity transformation. For an operator T satisfying Eq. (1-26), the 
matrix elements between eigenstates of 9 obey the relation 

(BI T IA) = (BI 9-'2J'TY-'P IA) 

= nA X B  nT(BI I A )  (1-27) 

which leads to the selection rule 

X A  Xg X T  = 1 (1-28) 

For example, the electric dipole moment, which is a linear expression in the 
coordinates of theparticles, has n(E1) = - 1 ,  while the magnetic dipole moment is 
proportional to the angular momenta in the system, and thus has n(M1) = + 1. 
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More generally, electric moments of multipole order 2 have n(E2) = (- l)A, 
while n(Mi.) = (- l)’+l for magnetic multipole operators (see Appendix 3C). 
Thus, between states of the same parity we have only even electric and odd 
magnetic multipole transitions, and between states of different parity the only 
multipoles are odd electric and even magnetic. The vanishing of the expectation 
value of all odd electric and even magnetic multipoles in a state of definite 
parity is a special case of these rules. 

In an effort to test one of these rules in a very sensitive way, a careful 
search was made for an electric dipole moment of the neutron. The experiments 
(Miller et a/., 1967; Shull and Nathans, 1967) set an upper limit of D 2 lO-”e 
cm on the value of the neutron dipole moment. Despite the electric neutrality 
of the neutron, the magnetic moment reveals the existence of electric currents 
comparable to those in the proton (see Table 1-1); hence, in the absence of 
special symmetries one might expect D - lO-I3e cm, since the internal structure 
of the neutron has a spatial extent of about cm. The above experimental 
limit on D might thus be interpreted as setting alimit, F 5 on the amplitude 
of odd parity admixture in the neutron state. This conclusion is, however, 
weakened by the fact that time reversal invariance would also imply the vanish- 
ing of D (see p. 20), and therefore it is not clear whether it is 9 or F invariance 
that is being tested in this experiment. 

We can also express the consequences of reflection invariance by observing 
that, if the Hamiltonian commutes with 9, the parity quantum number must be 
a constant of the motion, and thus we may speak of the conservation of parity. 
The selection rules governing the emission of multipole radiation may also be 
viewed as following from the conservation of parity. We have only to recognize 
that the emitted photon has a parity (- l)A for electric multipoles and (- l)”I 
for magnetic multipoles, and hence Eq. (1-28) may be read as an equation de- 
manding that the total parity of the system be the same both before and after 
the transition. In nuclear scattering or reaction processes, we can label the 
different channels with their appropriate parity quantum number, and the 
conservation of parity tells us that only channels of the same parity can be 
coupled. 

Experimental evidence testing the parity selection rules in an a-decay process 
is shown in Fig. 1-1, p. 22; the selection rules in a y-decay process are tested by 
the experiment discussed in connection with Fig. 1-2, p. 24. This, and many 
similar experiments, establish the fact that, in processes involving nuclear and 
electromagnetic interactions, the parity selection rules are obeyed to a high 
degree of accuracy. In contrast to the nuclear and electromagnetic interactions, 
the weak interactions are found to violate the space reflection symmetry (Lee 
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and Yang, 1956; Wu et al., 1957). The manner in which parity violation is 
exhibited by the /3-decay processes is illustrated in Fig. 1-3, p. 26. 

The interactions responsible for B decay are expected to give rise to weak 
parity-violating forces acting between the nucleons, and thus to a small viola- 
tion of the parity selection rules in nuclear processes (see Sec. 3D-I). Evidence 
for such an effect, which is of considerable significance for the exploration of the 
weak interactions, is discussed in connection with Fig. 1-2. 

The 9 invariance discussed above involves the additional assumption that 
space reflection does not affect dynamical properties such as the electric charge. 
A space-reflection symmetry of considerably expanded validity is obtained by 
combining 9 with the operation %', which interchanges particles and antiparti- 
cles (charge conjugation; see the text adjoining Fig. 1-3, p. 26). However, it has 
been found that even the combined 9V symmetry is violated in the KO decay 
(Christensen et al., 1964); the scope and nature of these symmetries are thus an 
area of continuing and exciting investigation. 

1-2c Time Reversal 

The appreciation of the broad implications of time reversal symmetry in 
nuclear systems has only developed gradually during the past decades. The 
main concepts and results are summarized in the present section, but since this 
symmetry has a different form from that of the other symmetries considered 
above, the subject is somewhat further elaborated in Appendix 1B. Recent 
discoveries have brought into focus the question of the validity of time reversal 
for the various fundamental interactions, and this problem is one of considerable 
current interest. 

The classical equations of motion governing a system of interacting parti- 
cles are invariant with respect to the direction of time, that is, with respect to a 
transformation that reverses the motion of all the components of the system, 
For a quanta1 system, such a transformation is characterized by 

(1-29) 

for the position, momentum, and spin variables of a particle. 
As in the case of the space reflection, the effect of time reversal on proper- 

ties such as the electric charge does not follow from the geometrical signifi- 
cance of F. We shall pursue the consequences of an assumed invariance with 
respect to a F operation, that affects only the kinematical properties of the 
components of the system, in the manner given by Eq. (1-29). Such an invariance 
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applies, for example, to the equations of quantum electrodynamics, which are 
known to have a wide range of validity. 

A transformation with the properties (1-29) cannot be accomplished by an 
operation of the usual, unitary, type. In fact, a unitary transformation pre- 
serves algebraic relations between operators, while time reversal changes the 
sign of the commutation relations, such as 

[ p x , x ] =  - i h - - + [ p k , x ’ ] =  ih 

[sx , s,,] = is, --+ [s i ,  s/] = - is; 
(1-30) 

Thus, a unitary transformation inverting the direction of p must also invert r (as 
for the parity operation), and cannot change the sign of all three components of s. 

. I t  is possible, however, to express Y as a product of a unitary operator, 
%,T, and an operator, K,  which implies taking the complex conjugate of all 
c numbers 

F = @ g K  (1-31) 

Such a transformation, which is called antiunitary, produces the necessary 
extra change of sign in the transformation of the commutation relations (1-30). 

The effect of the operator K depends on the representation considered. Thus, if 
1.) denotes the basis vectors specifying a representation, complex conjugation trans- 
forms a state ( A )  into the state with complex conjugate components in the representa- 
tion la), 

(1 -32) 

a 

If we choose a new basis set la’) for which ( a  I a’) is not real for all CI and CI’, the effect 
of K changes. For example, in a representation containing the state / A )  among the 
basis vectors, we have K I A )  = J A ) .  

Time reversal, however, is an operation with a definite physical significance, and 
therefore independent of the representation in which its properties are evaluated. The 
dependence of K on representation is therefore compensated by a corresponding 
dependence of the unitary operator in Eq. (1-31). Examples are given in Appendix 1B. 

For an antiunitary transformation, we have 

IA’) = “ZK ( A )  

( B  I A )  = ( B  I K @ - ’ @ K  [ A )  

= ( K B  I @ - I  ]A’)*  

= (B’  I A’)* 

(1-33) 

The transfer of the operator Kfrom its position in front of W’, where it complex 
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conjugates all the following operators as well as the ket, / A ) ,  to the position in 
front of B, where K acts only on the bra, ( B  1, is equivalent to a complex conju- 
gation of the entire matrix element. The relations (1-33) between scalar products 
imply a complete equivalence between the sets of states IA) and / A ’ ) ,  since the 
physical consequences of the formalism are expressed in terms of the absolute 
values of matrix elements. (See the comments on p. 8.) 

By an argument similar to that employed in Eq. (1-33), it is seen that the 
general relation (1 -3)  between matrix elements referring to the reference systems 
X and X ’  is replaced by 

(B’I T‘ IA’) = (FBI F T F - ’  / F A )  

= (BI T IA)* (1-34) 

The commutation relations assumed in Eq. (1-29) can also be interpreted 
in terms of the commutability of time reversal with spatial translations and 
rotations. In fact, since F changes the sign of i, the commutation with @(a) and 
9 ( x )  implies that Y anticommutes with linear and angular momenta, as in Eq. 
(1-29). For the time displacement operator (I-S), we have 

S @ ( t )  = @( - t)F (1-35) 

and thus F transforms an operator T(t)  into T’(-t), where T’(t = 0) is the time 
reverse of T( t  =O). 

It is not possible to associate a quantum number with Y that plays a role 
corresponding to that of parity. In fact, if A is an eigenstate of F, the eigen- 
value depends on the phase of IA). Thus, if 

9- IA) = exp(icp.4) IA) (1-36) 

a suitable change of phase leads to a state with eigenvalue unity, 

(1-37) 

The effect of the time reversal operation is therefore intimately connected with 
the phase of the state. 

The consequences of F invariance may be exhibited by employing a set of 
basis states with phases specified in terms of their transformation under Y. 
We shall construct such a set in the angular momentum representation. 

Since F anticommutes with the total angular momentum, it is convenient 
to combine F with a rotation 9 through the angle 7c about an axis perpendicular 
to the z axis (the axis of space quantization). Such a rotation also inverts I, and 
thus 

[WS, Z,] = 0 

[.BY, = 0 (1-38) 

It is therefore possible to construct a set of basis states with quantum numbers 
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ZM, which are also eigenvectors of 9'Y. By suitably choosing the phases of these 
states, the eigenvalues of BY may be set equal to unity, 

9s IaZM) = IaIM) (1-39) 

where c( represents a set of additional quantum numbers specifying the internal 
structure of the states. The conventional phasing corresponds to choosing the 
rotation axis of W to be the y axis; from the expression for W,,(n) (see Eq. 
(1A-47)), one then obtains from Eq. (1-39) 

I=) = 9- IctZM) = (- l)'+M lal - M )  (1-40) 

We have here introduced a notation, to be frequently employed in the following, 
by which a bar over a set of quantum numbers (such as m) designates the 
time-reversed state. (In the phase convention (1-39), the Y invariance has been 
linked to the W invariance. For systems that are F invariant but not W invariant, 
a convenient choice of basis states and the associated reality properties of matrix 
elements is considered in Sec. 1B-2.) 

The operator F2 is again a unitary operator and commutes with all the 
particle coordinates (see Eq. (1-29)). By acting with 9i'Y on both sides of Eq. 
(1-39), and employing the fact (see Eq. (1A-47)) that a rotation W 2  of 360" 
gives + I  for integer spins (corresponding to even number of nucleons, n) and 
-1 for half-integer spin (corresponding to odd n), one finds 

9 - 2  = (- 1)" (1-41) 

From Eq. (1-41) we may concluae L ~ L ,  __. , ,-.,.ML~s of 5, 
since according to Eq. (1-37) any eigenstate of 9- has F2 -- +l .  

If / A )  is an eigenstate of a Y-invariant Hamiltonian, with energy EA,  
the state Y I A )  is also an eigenstate of H with the energy E A .  Since F ( A )  cannot 
be proportional to \ A )  for n odd, it follows that the stationary states of an 
odd-n system are pairwise degenerate. (This result is referred to as Kramers' 
theorem and was first obtained in connection with the study of electron orbits in 
crystals (Kramers, 1930).) In systems possessing rotational invariance, this 
degeneracy appears as a special case of the (21 + 1)-fold degeneracy associated 
with a state of angular momentum Z (since 21 + 1 is even for odd n). In a de- 
formed nucleus, the individual nucleon orbits retain a twofold degeneracy as 
a result of Kramers' theorem. 

In the basis set (1-39), the relation (1-34) can be written 

( a 2 1 2  M z  IT I"JlM1) 

= (aZ 1, M2 l9YT(WY)-'I  alZIM,)* ( 1-42) 

Thus, if the operator T is invariant under 95, all its matrix elements are real; 
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if T changes sign, its matrix elements are purely imaginary. In this manner, the 
transformation of operators under time reversal characterizes the phase of their 
matrix elements. The corresponding relations for 9, which do not involve a 
complex conjugation, lead instead to selection rules in the matrix elements (see 

For a time reversal and rotationally invariant system, the Hamiltonian H 
commutes with .F and 92; all the matrix elements of H are thus real, and the 
stationary states of the system are real vectors in the representation (1-39). 

As a further example of phase relations implied by Eq. (1-42), we consider 
the z component of the electric dipole moment, which is invariant under F but 
changes sign under 92. Its matrix elements are, therefore, purely imaginary. In 
contrast, the z component of the magnetic dipole operator, which is odd under F 
and 92 separately and therefore commutes with 925, has real matrix elements. 
More generally, the matrix elements have the phase id for electric multipole 
moments and i”’ for magnetic multipoles (see Eqs. (1A-75) and (3C-10)). 

Time reversal invariance of the electromagnetic coupling implies real rela- 
tive phases for the amplitude of different multipole components in a y transition 
of mixed multipolarity. In fact, these amplitudes are proportional to the matrix 
elements of the electromagnetic coupling between the initial nuclear state and the 
final state containing the y quantum, and these matrix elements are real as a 
consequence of the relation (1-42). For an example of this phase rule, see p. 24. 

The transformation properties of operators under 92F can be used to 
obtain selection rules for expectation values. Because the expectation value of a 
Hermitian operator must be real, Eq. (1-42) implies that expectation values of 
Hermitian operators that are odd under B?F must vanish. An example is pro- 
vided by the electric dipole moment D, which is the expectation value of the z 
component of the dipole operator, in the magnetic substate M = 1. The very 
small upper limit that can be set experimentally on the dipole moment of the 
neutron (see p. 15) must therefore be taken as a measure of the amplitude in the 
neutron state associated with the violation of both 9 and F. 

There are also important consequences of F invariance for nuclear scat- 
tering and reaction processes. The states describing such processes, although 
they may have a definite energy, are quasistationary, since they are associated 
with a direction in time (a difference between final and initial conditions). The 
time reversal operator therefore inverts not only the momenta and spins of the 
particles involved in the reaction, but also the direction of the processes them- 
selves. Thus, F symmetry relates a reaction to its inverse (see Sec. 1B-3). 

Tests of F invariance in scattering and reaction processes are illustrated in 
Figs. 1-4 and 1-6. The experimental evidence is consistent with time reversal 
invariance for the nuclear interactions, but is much less precise than in the case 

Eq. (1-27)). 
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of space reflection invariance (see above); it is possible to conclude that, if there 
is a part of the nuclear interaction that changes sign under 9, it must be at least 
two orders of magnitude weaker than the invariant part of the interaction. The 
9 invariance of the electromagnetic and weak interaction processes in the nu- 
cleus have been tested with a similar accuracy. (See, for example, the test of the 
phase rule for electromagnetic transitions of mixed multipolarity by Kistner, 
1967, and the evidence on correlations in p decay quoted in connection with Fig. 
1-3. For a further discussion of tests of time reversal in nuclear processes, see 
Henley and Jacobsohn, 1959.) 

The combined reflection symmetry 9%F, where % is the charge conjugation 
(see p. 16), can be shown to follow from relativistic invariance together with certain 
rather general assumptions regarding the locality of interactions. (See, for example, 
Kemmer et al., 1959; Streater and Wightman, 1964, give a discussion involving 
only Memorable Concepts.) If one accepts these assumptions, the validity of F 
invariance becomes equivalent to the validity of 9% invariance. The evidence for 9% 
violation in K O  decay (see p. 16) thus implies a corresponding breakdown of F 
invariance. For a discussion of experiments testing 9%F invariance, see Lee and Wu 
(1965 and 1966). 

v 
ILLUSTRATIVE 

EXAMPLES T O  

S E C T I O N  1-2  

Test of parity conservation in 01 decay (Fig. 1-1) 

An a-decay process leading to a daughter nucleus in a O+ state (for 
example, the ground state of an even-even nucleus) is governed by a simple 
parity selection rule. The final state of the process associated with two particles, 
each with spin zero (the a particle and the daughter nucleus), has a total angular 
momentum equal to the orbital angular momentum of relative motion ( I  = L)  
and a total parity given by the parity of this relative motion (n: = (- = (- ] ) I ) .  

The law of conservation of parity thus forbids the a decay for states in the parent 
nucleus with n: = 

This selection rule accounts for the stability against c1 emission observed for 
a number of states in l6O with energies above the threshold for c1 decay to the 
''C ground state (see Fig. 1-1). Among these states is the 8.88 MeV level, which 
can be populated by allowed p decay of 16N. Since the ground state of 16N has 
In = 2 -, as follows from the shape of the fi spectrum for the branch leading to 
the I6O ground state, the 8.88 MeV level in I6O must have negative parity and 
I = 1,2, or 3. Its c( stability thus suggests a 2- assignment, and this is confirmed 
by the observed angular correlations exhibited by the y decay. 

A very careful search for an a-decay branch from the 8.88 MeV level has 

(that is, with Zn = 0-, I + ,  2-,  ...). 

A 
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Figure 1-1 The upper limit for the a branch from the 8.8 MeV state in l60 has been estab- 
lished by R. E. Segel, J. W. Olness, and E. L. Sprenkel, Phil. Mug. 6,163 (1961) and Phys. Rev. 
123, 1382 (1961). The additional information in the figure is taken from the compilation by 
F. Ajzenberg-Selove and T. Lauritsen, Nuclear Phys. 11, 1 (1959). All energies are measured 
from the ground state of l60. 

'I established the upper limit of 2 x loe6 for the ratio of a- and y-decay proba- 
bilities (see Fig. 1-1). 

The rate of y emission has not been measured experimentally, but can be 
estimated if one assumes the 8.88 MeV level to be approximately described in 
terms of the particle-hole configuration (p;,\d5,J; I = 2, T = 0. (See the dis- 
cussion of the l60 spectrum in Chapter 7.) For the M2 transition to  the ground 
state, we then obtain (using Eqs. (3B-25) and (3C-37) and the fact that the T = 0 
excitation involves a symmetric combination of neutron and proton excitations) 
the transition probability B(M2; 2-  + O + )  z 1.2 x 10-26(eh/2Mc)2 cm', cor- 
responding to a partial width of (ry)2-+o+ z 6 x eV (see Eq. (3C-18)). 
The decay to the ground state accounts for 7 % of the total decay, and the above 
estimate of the partial width implies (I'y)total z lo-' eV. 

The rate of the y transition, 2 - + 0 + , however, is very sensitive to  con- 
figuration mixtures, and estimates indicate that such correlations lead to  a 
reduction of the partial width by a factor of about 10 (Elliott and Flowers, 
1957). The observation that the 8.88 MeV level is not strongly excited in inelastic 
proton scattering also indicates that the transition is weaker than the pure 
single-particle picture would imply. In view of the uncertainties in the detailed 
interpretation of the l60 excitation spectrum, we take the above estimate of Tr as 
a conservative upper limit, which implies r. < 2  x lo-* eV. In contrast, a A 
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v 2+ level at the same energy, with unit reduced width (see Eq. (3F-65)), would 
have r, z (ra)sp % 60 keV. The experimental data thus imply a retardation 
factor of the order of 3 x 10" or more. 

In the presence of small amounts of parity-violating forces, the c( decay 
could take place by an admixture of a small component of a 2+ state into the 
wave function for the l60 level, or by an admixture of a 0- state into the 12C or 
c1 wave functions. The order of magnitude, E ,  of such admixtures roughly cor- 
responds to the ratio of parity-violating to parity-conserving forces. Since the 
c1 width is proportional to E', the experiment indicates that E does not greatly 
exceed A quantitative conclusion, however, would require a more detailed 
analysis of the effects of parity-violating forces on the wave functions for the 
initial and final states of the process as well as of the mechanism by which the a 
emission takes place. 

Search for parity admixtures of nuclear states by analysis of 
circular polarization of y radiation (Fig. 1-2) 

The assumption of invariance implies that the properties of y rays emitted 
by a nucleus in a state of definite parity are invariant with respect to a reflection 
in the origin. Such a reflection inverts the direction of propagation of the y rays 
without affecting their angular momenta. The circular polarization represents 
the component of angular momentum along the direction of propagation (the 
helicity) and thus changes sign under the reflection. Hence, it follows from 9 
symmetry that the number of right-hand polarized y rays emitted in any given 
direction equals the number of left-handed quanta emitted in the opposite 
direction. If the radiating nuclei are randomly oriented, the radiation is isotropic 
and the circular polarization vanishes in all directions. 

An especially careful search for a violation of this parity rule has been made 
for the 482 keV transition in '*lTa, shown in Fig. 1-2. The excited state is popula- 
ted in the p decay of '"Hf and, since the /3 rays are not detected, we are dealing 
with y radiation from randomly oriented nuclei. The circular polarization of 
the radiation is analyzed by the scattering on magnetized iron. 

The 482 keV radiation is predominantly of mixed M1 + E2 character, and a 
presence of circular polarization thus requires a small admixtiire of E l  or M 2  
radiation. Since M2 radiation is intrinsically much weaker than El radiation, the 
main contribution is expected from El admixture. With such an admixture, a 
circular polarization arises from the interference between the E l  and MI com- 
ponents of the radiation. (For randomly oriented nuclei, there can be no inter- 
ference between radiations of different multipole order 1.) A fully circularly 
polarized photon (h = 1) is a superposition of equal amounts of states with 
opposite parities 

1 
Ihh = i l >  =/2 ([EX> lt / M A ) )  

A as follows from the fact that the states with opposite helicity transform into each 
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Figure 1-2 The circular polarization h of the 482 keV y ray in '**Ta has been measured by 
V. M. Lobashov, V. A. Nazarenko, L. F. Saenko, L. M. Smotritsky, and G. I. Kharkevitch, 
Phys. Letters, 25B, 104 (1967). The additional information in the figure is taken from 
Table of Isotopes by Lederer et a/. (1967). 

v other under the parity transformation. (The transformation coefficients are real 
if the states Ah,  E l ,  and MA have the standard phasing (9W = 1 ; see Eq. (I-39)).) 
Hence ( A )  = 2 c ( E I )  c(Ml), where c(E1) and c(M1) are the amplitudes of the 
E l  and M1 radiation, normalized to a total strength of unity (c2(E2) + c2(M1) 
+ c2(E1) z c2(E2) + c2(M1) = 1). This assumes real relative amplitudes for the 
different multipole components, as required by time reversal invariance (see 
p. 20). If F invariance is also violated, the value of ( A )  is reduced ( ( h )  = 2 
Re{c(El)c(Ml)}) and vanishes if c(E1) and c(M1) are 90" out of phase (maximal 
F violation). The experiment thus provides a test for interactions violating 
parity, but conserving time reversal. 

a circular polarization of 
-6 x (see Fig. 1-2) implies c2(E1) z 4 x lo-''. From the measured half- 
life of the 482 keV level and the observation that 850/0(1 - 0.03) = 82% of 
the decays are associated with the 482 keV y transition, we obtain a total y-decay 
rate T,,(482) M 5 x lo7 sec-'. Thus, the partial El decay rate becomes 
T(EI) M 2 x sec-', corresponding to a reduced transition probability 
B(E1; 5/2 -+ 7/2) % 10-42e2 cm2 (see Ey. (3C-18)). 

The ground state and the 482 keV level in '"Ta can be described in terms 
of different single-particle states for the last proton moving in a spheroidal 
potential, and we may therefore compare the observed B(E1) value with that 
expected for a single-particle El transition in such a nucleus. The 482 keV level 
has the quantum numbers [402 5/21 (see Chapter 5 )  and is connected by an 
unhindered El transition to the level [503 7/21, I = 7/2, having the same K, I 

Since the M1 admixture is c2(Ml) = 2 x 

A 
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'I values as the ground state. For harmonic oscillator wave functions, the strength 
of this transition is (see Chapters 4 and 5) B(E1; [402 5/21, Z = 5/2 + [503 7/21, 
I = 7/2) z 10-26e2 cm2. A B(E1) value for the 482 keV decay of the magnitude 
indicated thus corresponds to a retardation factor of the order of 

One may attempt to  describe the effect of parity-violating interactions in 
terms of an average pseudoscalar field. If we require time reversal invariance, 
such a one-particle field must be velocity dependent (since cr r is odd with 
respect to F), and if we restrict ourselves to first order in the velocity, the field is 
of the form (Mc)-'{a . pv,,dd(r) + v,,dd(r)6 * p}. The presence of a pseudoscalar 
component in the field implies that the predominantly positive parity single- 
particle states will contain small components of negative parity. The negative 
parity states associated with large El transition matrix elements (such as the 
[503 7/21 state considered above) occur at excitation energies of 5-10 MeV, and a 
B(E1) value of the magnitude considered thus indicates a parity-violating coup- 
ling matrix element of the order of lo-' eV, corresponding to a pseudoscalar 
potential VOdd of order lo-* as compared with the scalar potential. 

Parity-violating interactions of such an order of magnitude can be inter- 
preted within the framework of the theory of weak interactions. I f  these inter- 
actions are assumed to operate not only between nucleons and leptons, but also 
among the nucleons themselves, they produce parity-violating nuclear forces of 
strength to lo-' as compared with the strong interactions. (See Sec. 3D-lb; 
the nucleon-lepton coupling acting in second order also produces parity- 
violating nuclear forces, but of much smaller magnitude (- 10-l2).) 

An attempt at a quantitative analysis of the parity-violating effect implied 
by the weak interactions involves a critical examination of a number of points. 

(a) An estimate of the effective nuclear two-body forces implied by the weak 
interactions. These forces may be expected to have considerable complexity 
resulting from the interplay between the strong and weak interactions. 

(b) A derivation of the average parity-violating field implied by these forces 
and an estimate of the possible significance of more specific two-particle inter- 
action effects. (Some aspects of the problems (a) and (b) have been considered by 
Rlin-Stoyle, 1960, and by Michel, 1964.) 

(c) A detailed analysis of the effect of the parity-violating field on the one- 
particle motion. (Aspects of this problem have been considered by Wahlborn, 
1965.) 

Parity uiolation in /3 decay. Test of time reversal invariance (Fig. I -3)  

The violation of parity in weak interaction processes has been established 
by the observation of a number of correlation effects showing a departure from 
mirror symmetry. 

Figure 1-3 gives a schematic illustration of such a correlation, between the 
orientation, I, of the parent nucleus and the direction, pp, of the emitted j? A 
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Violation of reflection symmetry in fi decay. 

'I particle. If the decaying system possesses a definite parity which is conserved 
during the process, the system is identical to its mirror image obtained by a 
reflection in the origin. (The states ] A )  and ! A ' )  = PIA) = n,lA) differ only by 
a phase factor.) Space inversion symmetry would thus imply that the number of B 
particles emitted at  an angle 9 with respect to the direction of orientation is 
equal to the number emitted at an angle n - 9. In fact, however, one observes 
large forward-backward asymmetries in these processes. The first discovery of 
parity violation was based on an experiment of this type, involving a polarized 
source of 6oCo nuclei (Wu et al., 1957). 

One can also express the observed departure from reflection symmetry in 
terms of the nonvanishing expectation value of the quantity I * ps . This product 
is a pseudoscalar (a rotational invariant that changes sign under reflections) and 
its expectation value thus vanishes for a state of definite parity. Examples of 
other pseudoscalar correlations observed in P-decay processes are (ss . pa) 
(helicity of particles emitted by randomly oriented nuclei) and ((ps - p,) 
(s, p,)) (circular polarization of y rays following B emission from randomly 
oriented nuclei). 

The parity selection rules that can be formulated in terms of the vanish- 
ing of expectation values for pseudoscalar quantities have a semiclassical A 
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v significance, since they directly express the internal reflection symmetry of the 
system. Further selection rules, with no classical analogs, involve the parity 
quantum numbers; thus, for example, in a two-particle decay process 
( A  + B + C) ,  the conservation of parity implies 7c4 = ng7cc( - l)L, where L 
is the angular momentum in the relative motion of B and C ;  an example of this 
selection rule is discussed in Fig. 1-1.  

The assumption of 9%' invariance implies that a decaying antiparticle is 
the mirror image of a decaying particle (with the same polarization), and thus 
pseudoscalar correlations are of equal magnitude and opposite sign for the decay 
of particle and antiparticle. It has not so far been possible to test this symmetry 
directly for the decay of nuclei or nucleons, but 9%' invariance has been 
established for the decay of 7c and p mesons. Thus, the helicities of the p 
particles in n decay are found to be opposite for n+ and n- and the kip decay is 
also observed to be the mirror of the p+ decay (see, for example, Alikhanov 
et a[., 1960). Evidence for a small violation of 9%' in KO decay is mentioned 
on p. 16. 

The ,T transformation directly relates a decay process to the inverse 
process of formation, which, in the case of fi  decay, would involve the experi- 
mentally difficult reaction by which an electron-neutrino pair is captured by the 
daughter nucleus. The final state of the decay and the initial state in the forma- 
tion process differ not only in the direction of motion (and spins) of the particles, 
but also in the phase shift caused by the interaqtion between the particles (which 
is of opposite sign for the two states). By compensating for this phase shift (the 
Coulomb phase shift in the case of p decay), one can obtain relationships among 
the decay amplitudes themselves, expressing the consequence of F invariance 
(see Eq. (1B-39)). 

The situation is especially simple if the final state interaction can be 
neglected, as in the case of y decay and, approximately, for p decay of light 
nuclei. The consequences of F invariance then become quite analogous to those 
of B invariance, and imply the vanishing of expectation values of quantities 
that are odd under ,T. 

Whereas the correlations considered above, such as I * ps and ss * ps , are 
even under F, an example of a correlation which changes sign under Y is 
provided by 1. ps x pR,  where pR is the momentum of the recoiling nucleus. 
The quantity (I * p a  x pR) has been measured in the neutron decay and is 
found to be less than about 10% of its maximum value Ipsp, (see Wu and 
Moszkowski, 1966, p. 180). For the /l decay of I9Ne, the validity of the time 
reversal relations has been established to an accuracy of a few percent (Calaprice 
et al., 1967). 

Comparison of cross sections for  inverse reactions (Fig. 1-4) 

The time reversal symmetry relates the cross sections of the inverse reac- 
tions a, + a, P 6, + b, . The symmetry of the scattering amplitude associated A 
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'I with F invariance is discussed in Sec. 1B-3. From the relation (1B-29) for the 
S-matrix element, together with the expressions (IB-31) and (IB-34) for the 
scattering amplitudes and cross sections, it follows that cross sections for inverse 
reactions satisfy the condition 

The differential cross sections for the inverse processes refer to the same total 
energy and scattering angle, in the center-of-mass system, and the spins of the 
particles are denoted by al ,  and so on. The cross sections in Eq. (1-43) refer to 
unpolarized particles and thus represent averages over the initial polarizations 
and sums over final polarizations. A 

- 
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Figure 1-4 The figure shows cross sections for inverse reactions as given by D. Bodansky, 
S. F. Eccles, G .  W. Farwell, M. E. Rickey, and P. C. Robinson, Phys. Rev. Letters 2, 101 
(1 959). 

v The right-hand side of the above relation (1-43) is independent of the 
scattering angle, and this independence has been tested in the reactions 
a + " C * d  + 14N as illustrated in Fig. 1-4. No absolute determination of 
cross sections was made. The relative cross sections for the reactions are very A 
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v similar; the deviations amount on the average to about 5 % ,  which is also the 
estimated experimental uncertainty. 

Recent studies of the inverse reactions 24Mg + d ~1 25Mg + p (Bodansky 
el al., 1966) and 24Mg + c1 "A1 + p (von Witsch et al., 1967) have tested the 
reciprocity relation (1-43) to an accuracy of a fraction of a percent. 

Polarization asymmetry relation in elastic scattering (Figs. 1-5 and 1-6) 

The time reversal symmetry relates the polarization of a final particle in a 
reaction a, + a, + b, + b, to the azimuthal asymmetry in the inverse process 
with polarized particles. 

As an example we consider the elastic nuclear scattering of an incident 
particle of spin 1/2 (for example, n, p ,  or 3H). We denote by a(R; m, -+ ml) the 
cross section for the scattering process R (right-handed deflection) with m, and 
m: specifying the polarization of the incident and the scattered particle in a 
direction normal to the collision plane (see Fig. 1-5).'The cross section represents A 

X 

- m ~ =  / Le:Eb+w 

Figure 1-5 Right-left asymmetry in elastic scattering of polarized particles. 

v an average over initial nuclear polarizations and a sum over final nuclear polari- 
zations. 

Time reversal symmetry gives the relation 

o(R; m, +m:)  = a ( L ;  -mi + -mJ ( 1-44) 

since, after a rotation about the z axis by the angle II + 9, the inverse process 
goes into the scattering process L, with left-handed deflection (see Fig. 1-5). In A 
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addition, the processes R and L are related by a rotation of n about the y axis 

The polarization of the scattered particle, for unpolarized incident beam, is 
a(R;m,+m') =o(L;  -ms+-rn:)  (1 -45) 

c a(R;  m,+ 1/2) - o(R;  m,+ -1/2) 
(1 -46) ms 

ms ms 

p = ms C U(R;  m, --f 1/21 + C U ( R ;  m, + - 1/21 

which is seen to be equal to the azimuthal asymmetry defined by 

A as a consequence of the relations (1-44) and (1-45). 

100 010 

80 

60 

40 

20 

0 
0 

I i 

(1  -47) 

5 

Figure 1-6 The figure shows the polarization (P) and azimuthal asymmetry ( A )  as given by 
P. Hillman, A. Johansson, and G .  Tibell, Phys. Rev. 110, 1218 (1958). 

v Figure 1-6 shows measured values of P and A for the scattering of high- 
energy protons on Li. The polarization measurements refer to an average energy 
of E,, = 180 MeV, while the asymmetry determination, which requires a polarized 
beam obtained by first scattering the protons on a carbon target, refers to the 
energy 155 MeV. The angular scale in the figure is chosen so as to correct approxi- 
mately for this energy difference and it is seen that the two measurements agree 
within the experimental error of about 8 %. A 
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v 

A 

1-3 

In order to obtain an unambiguous test of F symmetry, the target nucleus 
must have a finite spin, since for spin zero, the relation P= A can also be obtained 
from 9 conservation. In fact, a reflection in the collision plane gives a phase 
( -  for each particle in a reaction; hence, for target spin 0, 9 conservation 
implies ( -  l )ms-m's = + 1, which for s = 4 allows only the nonflip processes 
m, = mi. With this restriction, the above relation (1-44) follows from the relation 
(1-45) and is therefore a consequence of rotational symmetry. 

Thus, for 'Li, in which the spin angular momentum is mainly concentrated 
on a single proton, only the contribution of this particle to the scattering pro- 
vides a test of F symmetry, if 9 symmetry is assumed. The data in Fig. 1-6 
therefore only provide weak limits on the ratio of the F violating to F invariant 
nuclear fields. The polarization-asymmetry relation has also been tested in other 
scattering processes, including p - p scattering (see, for instance, Hillman et al., 
loc. cit., Fig. 1-6). 

ISOBARIC INVARIANCE 

1-3a Isospin Symmetry 

Isospin of nucleons 
A fundamental feature of nuclear structure is associated with the presence 

of two kinds of nucleons, the neutron and the proton. The near equality of the 
mass of these two particles ( d M / M  = 1.4 x see Table 1-1, p. 4) immedi- 
ately suggests a deep similarity between them (Heisenberg, 1932), and the more 
detailed study of their role in nuclear processes has revealed a basic symmetry 
between neutron and proton in all nuclear interactions. The symmetry in the 
interaction was first recognized as a result of the analysis of the low-energy np 
and pp scattering (Breit et al., 1936). At low energies ( E  < 5 MeV), the np 
system interacts mainly in the ' S  and 3S channels, but the exclusion principle 
restricts the p p  system to the ' S  channel. A detailed analysis of the observed 
scattering reveals that the np interaction in the ' S  channel is equal to the p p  
interaction (with the Coulomb force subtracted) to within a few percent. (For 
references, see the discussion in Sec. 2-5a.) The existence of a general symmetry 
between np, nn, and p p  interactions is strikingly borne out by the comparison 
of the spectra of different isobars (nuclei having the same total number of 
nucleons, but different numbers of neutrons and protons). Examples will be 
discussed at the end of the present section. 

Thus, we are led to consider the hypothesis that the nuclear forces are inde- 
pendent of the charge of the nucleon. Because of the exclusion principle, the 
charge independence symmetry refers only to the channels with antisymmetric 
space-spin wave functions, that is, singlet spin ( S  = 0) and even orbital angular 
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momentum (IS, ' D, . . .), or triplet spin (S = 1) and odd orbital symmetry 
(", 3F, . . .). In these channels, the interaction is assumed to be the same for 
nn, np, and p p  systems. The symmetric channels 3S, 'P, 3D,  . . . are permitted 
only for the np system. 

The consequences of charge independence are most conveniently obtained 
in a formalism that regards the neutron and proton as two different states of a 
single particle. Thus, the wave function for a nucleon will depend partly on the 
usual space and spin variables (r and a,( =2sz = rrt 1)) and partly on an isobaric 
variable t,, which distinguishes between a neutron (t, = 1) and a proton (t, = - 1). 
For a neutron in the state $(r, a,), we write 

(1-48) (3 $,,(r, 0,) = $(r, 0, ,z, = 1 )  = $(r, 0,) 

while, for a proton in the same state, we have 

$,,(r, 0,) = $ 6 - 3  .A(;) (1-49) 

The protons and neutrons are known to obey the exclusion principle, which 
requires the wave function to be antisymmetric under the exchange of all co- 
ordinates of two protons or two neutrons. In order to obtain a treatment 
exploiting the relationship of the two types of nucleons, we impose a generalized 
exclusion principle, which requires the wave function to be antisymmetric with 
respect to the interchange of all the coordinates (space, spin, and isospin) of any 
two nucleons. 

The generalized exclusion principle is not an extra assumption, but rather a part 
of a convenient formalism. I n  fact, the isobaric notation introduces a redundance in 
the enumeration of the states, since the configuration involving a proton and a neutron 
with the coordinates r,,, o,(p) and r,, a,(n) can be described either by the set of variables 
(rl = r,,, a,(l) = a,(p), ~ ~ ( 1 )  = - 1, rz = r, , a,(2) = a,(n), ~ ~ ( 2 )  = + 1)  or by the set 
involving an interchange of 1 and 2 for all the coordinates (space, spin, and isospin 
coordinates). The antisymmetry condition thus serves to remove this extra degree of 
freedom. I t  is also possible to treat the consequences of charge independence without 
the introduction of isobaric variables or of a generalized exclusion principle (see 
Bayman, 1966). 

In the isobaric formalism, the operators become matrices in the isobaric 
coordinates of the particles. For example, the interaction between two neutrons 
may be written 

(1  -50) 

where the subscripts indicate that the matrices act in the isobaric space of particle 
1 and particle 2, respectively. 
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As is well known from the quanta1 description of the spin, any 2 x 2 
matrix can be expressed in terms of linear combinations of the unit matrix and 
the three Pauli matrices. It is therefore possible to express the operators in iso- 
baric space in terms of the isospin matrices 

?y = (9 -;) (1-51) 

for the individual nucleons. The matrices are regarded as the components of a 
vector z in a three-dimensional isospace, with axes labeled x,y, and z. The z 
component, which is diagonal, corresponds to the isobaric variable introduced 
above. 

From the matrices (1-51) we obtain the isobaric spin operators 

t = 42 (1-52) 

whose components obey the commutation relations for components of an 
angular momentum vector (see Eq. (1-1 1)). Since (t)’ = 3/4, the nucleon has 
the total isospin t = 1/2, and the z components rn, = t ,  = + 1/2 (for neutron) 
and -1/2 (for the proton).’ 

Rotational invariance in isospace 
For systems with two or more nucleons, the isospins may be coupled to a 

total 

T = C t k  
k 

(1-53) 

with the z component 

M ,  = Tz = f ( N  - Z )  (1-54) 

Since the components of T again satisfy the commutation relations of an angular 
momentum vector, the eigenvalues of (T)’ are T(T + 1) with T = 0, 1 ,  2, . . . for 
systems with an even number of nucleons and T = 1/2, 3/2, . . . for odd num- 
bers of nucleons. The operator T can be associated with rotations in isospace in 

The isospin assignment for neutron and proton, which is here adopted, is conventional in 
nuclear physics problems and has the advantage that the heavy nuclei with large neutron excess 
have their isospins aligned in the direction of the positive z axis ( M T  > 0). In elementary particle 
physics, the convention m, = + 1/2 for the proton and m, = - 1/2 for the neutron is usually em- 
ployed. 
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the same manner as the angular momentum I generates rotations in ordinary 
space. 

The assumption of charge independence implies that the interaction, and 
the total Hamiltonian, can be written in a form that does not explicitly involve 
the isospin variables of the nucleons. We must remember, however, that, as 
part of the isobaric formalism, we have introduced a generalized exclusion 
principle, which can be expressed by the relation 

P( ik )  = P'(ik)P"(ik)P'(ik) = - 1 (1-55) 

for each pair of particles (ik). The operators P', P", and P' exchange the space, 
spin, and isospin variables of the two particles, and P is thus the total exchange 
operat or. 

The relation (1-55) implies a connection between the isospin and the space- 
spin degrees of freedom. Thus, for example, a two-particle interaction depending 
on the symmetry of the two-particle state in spin-orbital space can be written in 
either of the two forms 

V(  ik)  = +( V'"' + V'")) + +( V'"' - V'"')P'P" 

= +(V'"' + VC")) - +(J/("' - V'"')P' (1-56) 

where V(") and Vc") are functions of the space and spin variables of the interacting 
nucleons. The interaction in the channels 3S, 'P, . . . , which are symmetric in 
spin-orbital space, is denoted by V"), while V(") is the interaction in the anti- 
symmetric channels 's, 3P, . . . . (Charge independence implies no relationship 
between Vcs)  and V'"), which are in fact rather different.) The component of 
V(ik) involving P' is referred to as a charge exchange interaction and may be 
associated with an exchange of charged quanta, such as mesons, between the 
two nucleons. 

The charge exchange operator can be expressed in terms of the nucleonic 
isospins 

(1-57) 

as can be seen by direct evaluation of the effect of P' on a two-particle state, 
or from the relation 

(T)2 = T(T + 1) = (ti + tk)' 

= 3 + * T i * T k  (1-58) 

where the total isospin T for the two particles equals 1 for isospin symmetric 
states (P' = + 1 )  and 0 for antisymmetric states (P' = - 1). 
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We can thus express the dependence of the relations (1-55) and (1-56) on 
the nucleonic isospins in terms of the products (zi * zk) for the different pairs of 
particles. Since these products are isoscalars, it follows that the entire description 
is invariant with respect to rotations in isospace. 

Conversely, rotational invariance in isospace implies charge independence, 
so that the two symmetries are synonymous for a system of nucleons. In fact, it 
can be seen that the most general function of the isospins, which is an isoscalar: 
can be expressed as a function of the products (zi * zk) and thus of the charge 
exchange operators P '(ik). A rotationally invariant Hamiltonian can therefore 
be written, by means of the relation ( 1 - 5 9 ,  without explicit reference to the 
isobaric variables. 

The rotational invariance in isospace implies that the Hamiltonian com- 
mutes with the total isospin T. The stationary states can thus be labeled with the 
quantum number T, and the states form degenerate multiplets consisting of 
2T + 1 components with different M ,  = T, . Isobaric multiplet structure is found 
to be a general feature of the nuclear spectra, thus providing abundant experi- 
mental evidence for the charge independence of nuclear interactions. The degen- 
eracy between the multiplet components with different MT (isobaric analog states) 
is lifted by the Coulomb forces (see below). Examples of isobaric multiplet 
structure are illustrated in Figs. 1-7, p. 43, and 1-9, p. 47, as well as in Figs. 
3-2a to 3-2f. 

The isobaric invariance also has important consequences for nuclear 
reaction processes giving selection rules and intensity relations associated with 
the conservation of isospin (see examples discussed on p. 46). Similarly, certain 
transition operators take a very simple form in the isobaric spin formalism, and 
thereby give rise to selection rules in the corresponding transitions. (Examples 
are discussed in connection with Fig. 1-8, p. 44, Fig. 1-10, p. 52, and Table 
1-3, p. 53.) 

Charge symmetry 

Some of the relations following from charge independence can also be 
obtained from the weaker assumption of charge symmetry, based on the 
equality of the p p  and nn interactions. This symmetry can be expressed as an 
invariance with respect to the operation EX'', which replaces all neutrons by 
protons, and vice uersu. For nuclei with N = Z ,  the charge symmetry implies 
that the stationary states are either even (r,  = + 1) or odd (r,  = -1) with 
respect to 5tT. 

In the isospin formalism, the charge symmetry operation corresponds to 
a rotation in isospin of 180" about an axis perpendicular to the z axis, and may be 
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taken to be 
9& = exp{ - inT,} 

For states with N = Z (that is, M T  = 0), we thus have 

(1 -59) 

r,  = (- (1-60) 

Examples of selection rules that can be associated with the charge symmetry 
quantum number are discussed on p. 46. 

Violation o j  isobaric symmetry 

The isobaric invariance is violated by the electromagnetic interaction. The 
symmetry-breaking effects in the nuclear structure are partly associated with the 
Coulomb force (and magnetic forces) between nucleons. Additional effects arise 
from the neutron-proton mass difference and small charge-dependent compo- 
nents in the strong nucleonic interactions, which appear to be associated with the 
electromagnetic structure of the nucleons. 

For the lightest nuclei, these effects are relatively small and can be rather 
accurately treated as perturbations, which mainly act to give small energy 
splittings between the isobaric multiplets (see, for instance, Fig. 1-7). In heavier 
nuclei, the Coulomb field may become very strong, reaching values of the order 
of 20 MeV inside the heaviest nuclei. Thus, for a long time, it was expected that 
the isobaric symmetry might be of little significance in heavy nuclei. The dis- 
covery of well-defined isobaric multiplet structure (Anderson and Wong, 1961) 
has revealed, however, that the strong Coulomb interactions are rather ineffec- 
tive in breaking the isobaric symmetry. Examples of isobaric analog states in 
medium heavy nuclei are illustrated in Fig. 1-9. 

The validity of the T quantum number in heavy nuclei may be understood 
from the fact that the Coulomb field varies rather slowly over the nuclear vol- 
ume. Thus, the wave functions of the individual protons are only little affected 
and the main result of the Coulomb field is to add to the nuclear energy a term 
depending on the number of protons (that is, on M T )  without violating the T 
quantum number. An estimate of the purity of the T quantum number for low- 
lying nuclear states is given in Fig. 2-6. For highly excited states, appreciable T 
mixing must be expected, since states of different isospin but same spin and 
parity occur close together and can be coupled by even relatively weak pertur- 
bations. Such coupling effects are discussed in connection with Fig. 1-9, p. 51. 
In general, reactions proceeding through the formation of long-lived intermediate 
states may thus involve appreciable isospin mixing, but in direct reactions the 
short duration of the collision leads to a much greater range of validity for the 
isospin quantum number. 
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The problem of broken symmetry is one of general significance in nuclear 
and elementary particle physics. The approximate validity of the isobaric in- 
variance in heavy nuclei provides an  example of the persistence of symmetries, 
even in the presence of strong symmetry-breaking perturbations. 

Isobaric invariance and permutation symmetry 

In the above we have formulated the isobaric symmetry in terms of in- 
variance with respect to  rotations in isospace. One can also view this symmetry 
in terms of the transformation of the Hamiltonian and its eigenstates under 
permutation of the isospin variables of the particles. Such an approach is in 
some ways more directly related to the physical phenomena that motivated 
the introduction of the symmetric description of nucleons. 

In  the isobaric formalism, the Hamiltonian is automatically invariant with respect 
to permutations involving all the coordinates of two particles (space, spin, and iso- 
spin). A charge-independent Hamiltonian, however, can be written in a form that 
does not involve the isospin variables and is therefore also invariant with respect to 
permutations of the isobaric variables separately, and hence also with respect to 
permutations of space-spin coordinates separately. One can thus classify the eigen- 
states of the Hamiltonian in terms of symmetry quantum numbers characterizing the 
transformation of the wave function under permutations in isospace and in spin- 
orbital space. The general tools for such a classification of states in terms of permuta- 
tion symmetry are discussed in Appendix 1 C. 

For a two-particle system, the wave functions are either symmetric in isospace 
(T = 1) and antisymmetric in spin-orbital space, or antisymmetric (T = 0) in isospace 
and symmetric in spin-orbital space. For any number of nucleons, one can classify the 
totally antisymmetric states in terms of the permutation symmetry in isospace, labeled 
by the partition [f], and the conjugate symmetry [f] in spin-orbital space (see Sec. 
1C-lf). Since the isospin variable of a nucleon can take only two values, only partitions 
[f] = [f1f2] can occur, and the symmetry quantum numbersf, andf, are equivalent to 
the total number of particles ( A  = fl +f,) and the total isospin ( T =  +(fi -f,)); 
see Sec. IC-2c. 

For a system of particles, each of which can occur in g different states, the classi- 
fication in terms of permutation symmetry is equivalent to a classification in terms of 
the transformation properties with respect to g-dimensional unitary transformations 
(U,) acting on the single-particle wave functions (see Sec. 1C-3). For g = 2, the unitary 
transformations are, as we have seen, equivalent to rotations in a three-dimensional 
space (RJ, corresponding to the fact that the Pauli matrices, which generate U ,  
transformations, have the commutation relations characteristic of an angular momen- 
tum vector. 

The possibility of formulating the isobaric invariance in terms of a rotation 
symmetry is thus contingent on the fact that we are dealing with the equivalence 
between two states of a particle (proton and neutron). One may also consider the 
possibility of more extensive symmetries. Thus, if the nuclear interactions were 
independent of the spins as well as the isospins of the nucleons, for a given spatial 
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configuration, we would be dealing with an equivalence between four states of the nucleon 
(a, = & 1, T= = f 1). In such a situation the states can be classified in terms of “ super- 
multiplets ” labeled by the quantum numbers characterizing the representations of the 
U, group (Wigner, 1937; Hund, 1937). Although this supermultiplet symmetry is 
violated by important components in the nuclear forces that couple spin and orbit, 
it represents a useful approximation in the study of certain light nuclei (see Chapter 7). 

1-3b Extension of Isobaric Symmetry 

Since the nuclear forces are interwoven with the properties of all the strongly 
interacting particles, the isobaric symmetry is expected to be a general property 
of all the strong interaction phenomena. The experimental data confirm this 
view; the mesons and the excited states of the nucleons (the baryon spectrum) 
can be grouped into isobaric multiplets (see Figs. 1-11, p. 57 and 1-12, p. 63), 
and in scattering and reaction processes one observes the expected intensity 
rules corresponding to the conservation of the total isobaric spin. 

The study of the nucleonic interactions in the GeV range has revealed a 
great richness of phenomena, associated with the occurrence of metastable 
states representing excitations of mesons and nucleons (that is, states with 
baryon numbers A = 0 and A = 1). The properties and reactions involving these 
new “particles” are found to be governed by symmetry principles and conser- 
vation laws in addition to those already considered for the nucleons. In the 
following, we shall briefly discuss these extended symmetries, which give a 
generalized framework for viewing the isobaric symmetry of the nucleons. 

In the hadronic spectra, one also finds families of states with the same gen- 
eralized isobaric symmetry quantum numbers, but with increasing values of 
the angular momentum. (Examples are illustrated in Fig. 1-13, p. 65.) There is 
so far little evidence concerning the dynamical relationship between the states 
belonging to such a family, or trajectory. 

Strangeness 

Among the excited states in the meson and baryon spectrum (see Figs. 1-1 1 
and 1-12), some are found to have lifetimes many orders of magnitude longer 
than the natural unit for strongly interacting systems (the time it takes for a 
particle to cover a distance comparable with the range of the interactions). The 
existence of these approximately discrete states may be attributed to selection 
rules associated with another quantum number, the strangeness, which is found 
to be closely connected with the isospin (Gell-Mann, 1953; Nishijima, 1954). 

The possibility of such an additional quantum number might be suggested 
by the puzzling constant 1/2 in the relation between the charge 2 (in units of e)  
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and the z component of the isospin of a nucleon 

2 = -T, + 1/2 (1-61) 

Indeed the semistable excited states of the nucleon are characterized by different 
values for this constant. 

The strangeness quantum number S may be defined by the relation 

S + A  
Z =  - T , +  (l) 

Y 
= -T, + 5 

(1-62) 

where A is the baryon number (+ 1 for a single baryon, - 1 for an antibaryon, 
and 0 for a meson). As an alternative to S one may introduce the hypercharge 
Y = S + A .  

The pronounced stability of some of the meson and baryon states can be 
interpreted in terms of the law of conservation of strangeness (or hypercharge). 
It is also found that all scattering and reaction processes are characterized by 
AS = 0, where S is the sum of the strangeness quantum numbers of the particles. 

According to Eq. (1-62), the conservation of S is equivalent to the conser- 
vation of T, , if we assume the conservation laws for charge and baryon number, 
both of which appear to have universal validity. The conservation of S (and Tz) 
is a feature not only of the strong interactions but also of the electromagnetic 
forces. The weak interactions responsible for the decay of hyperons and heavy 
mesons, which violate the conservation of S and T, , appear to be closely related 
to those giving rise to the fi processes (see Sec. 3D-1). 

The stability of the particles with S # 0, and the fact that they interact with 
nucleons with forces comparable to those acting between nucleons, makes 
possible the formation of nuclei with S # 0. A number of such " hypernuclei " 
involving a bound A particle have indeed been observed. (The A particle has the 
quantum numbers A = 1 , Z  = 0, S = - 1, T = 0.) In spite of the rather difficult 
experimental conditions for the study of these systems, a considerable body of 
evidence has been accumulated, especially regarding the binding energies (and in 
some cases also spin values) for ground states of hypernuclei (see Table 1-4, p. 
55). These data provide information on the A-nucleon interaction. (See especial- 
ly the evidence for charge independence and for rather strong spin dependence 
provided by the data in Table 1-4.) Although the present information concerning 
hypernuclei is extremely primitive compared with that on nuclei with S = 0, the 
study of the properties and reactions involving hypernuclei is potentially an 
important part of the subject of nuclear structure. 

Systems with S = + 1 formed by adding a K +  particle to nuclei do not appear 
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to form bound states, owing to the predominantly repulsive character of the K+ 
nucleon force. (See also the absence of baryonic resonance states with S = + I  
(Fig. 1-1 l).) 

Unitary symmetry 

The existence of a higher symmetry encompassing isospin and strangeness 
was first suggested (Gell-Mann, 1961 ; Ne'eman, 1961) by the observation that 
the baryonic and mesonic states can be grouped into multiplets with related prop- 
erties. Thus, the semistable baryons (n, p ,  A ,  C+, Coy C-, Eo, E - )  all have spin 
1/2. Similarly, the lightest mesons (n+, no, n- ,  K + ,  K - ,  KO, Eo,  p )  form a 
multiplet of pseudoscalar (0-) particles. 

The pattern of this multiplet structure can be interpreted in terms of an invari- 
ance with respect to unitary transformations in three dimensions (SU,  invariance). 
The representations of this symmetry group can be labeled by the quantum numbers A 
and p, connected with the partition numbers by A = fi - f2, p = f, - f3 (see Sec. 1C- 
3b). In elementary particle physics, the representations are usually labeled simply by 
the dimensionality h = &(A + l)(p + l)(A + p + 2) (see Eq. (1C-27)). The states of a 
given multiplet can be specified by the isospin and strangeness, that is, by the three 
quantum numbers T, M,, and S (see Sec. 1C-3b). For example, the nucleon isobaric 
doublet (neutron and proton) belongs to an octuplet ( (Ap)  = (1 1)) comprising also 
A(T = 0, S = - l), C(T = 1, S = - l), and E(T = 1/2, S = -2). (See further examples 
of SU, multiplets in Figs. 1-1 1 and 1-12.) The relationship between the states belonging 
to the same SU,  representation is expressed in terms of intensity rules in production 
and decay processes, ratios between moments, etc. (See, for example, the discussion of 
nucleon electromagnetic moments and form factors (Sec. 3C-4) and of the weak inter- 
action current (Sec. 3D-2e).) 

The SU, multiplets, which would be degenerate if the interactions were SU, 
invariant, exhibit mass separations amounting to several hundred MeV (see Figs. 1-1 1 
and 1-12). These splittings must be attributed to the presence of rather large components 
in the strong interactions, which violate SU, symmetry but preserve the isospin (or SU,) 
symmetry. The pattern of the mass splittings is rather well accounted for by assuming 
the symmetry-violating mass term to transform under SU, as a member of the octu- 
plet representation (see the discussion in connection with Fig. 1-1 1). 

The SU,  symmetry is also violated by the electromagnetic interactions which, 
indeed, are known to violate the isospin invariance. The available evidence appears to 
be compatible with the assumption that the electromagnetic interactions are invariant 
with respect to all the SU,  transformations that conserve the electric charge 
(Coleman and Glashow, 1961). These transformations comprise those generated by 
the electric charge itself (expressing charge conservation) and an additional SU,  sub- 
group, the generators of which are referred to as the U spin (Levinson et al., 1963). 
(The similar invariance with respect to all SU, transformations conserving hypercharge 
is a property of the strong interactions and is equivalent to the conservation of hyper- 
charge and of T spin.) The electromagnetic mass differences of the baryons are dis- 
cussed on p. 61 as an example of the consequences following from the assumption 
that the electromagnetic interaction is a scalar in U space. 
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A striking feature of the SU, classification is the absence of multiplets trans- 
forming as the fundamental three-dimensional representation (in contrast to  the 
existence of the nucleon doublet in the SU, scheme). One has, therefore, considered 
the possibility that the strongly interacting particles are bound states composed of 
subunits (the quarks) which comprise a triplet (Gell-Mann, 1964; Zweig, 1964). Thc 
triplet ( (Ap)  = (10)) consists of an isospin doublet with S = 0 and an isospin singlet 
with S = - 1. In such a model, the baryon number of the quark must be taken to be 
A = 1/3,  which implies noninteger values of the charge number (see Eq. (1-62)). In this 
interpretation the SU, symmetry is a consequence of the equivalence of the three quark 
states in the same manner as the isospin symmetry in nuclei can be traced back to the 
equivalence of the neutron and proton. One can thus also view the partition quantum 
numbers labeling the SU, representations in terms of permutation symmetry, referring 
to the transformation of the states under permutation of the quark variables in spin- 
orbital space, or in isobaric space. (See Sec. 1C-3; the quarks are fermions, and the 
states thus totally antisymmetric under permutations in both spaces.) Thus, for exam- 
ple, the baryon octuplet with (Ap)  = (1  1) and (In) = (1/2+) can be formed by three 
quarks with the mixed permutation symmetry [f] = [21]. The baryon states may 
contain additional quark-antiquark pairs, which may be included by incorporating the 
quarks in the Dirac sea into the description. The baryon octuplet is thus labeled 
[f] = [ N  + 2,  N + 1, N ] ,  where 3N is the number of quarks in the filled Dirac sea. The 
meson octuplet, however, is formed from one (or more) quark-antiquark pairs and 
has the partition [ f ]  = [ N  + 1, N ,  N - I ] .  The two partitions are associated with the 
same SU, symmetry ( ( l p )  = (f, - f,, f, -f3) = ( 1  I ) ) ,  but are distinguished by the 
total quark number n (= fi + fi + f3 - 3 N )  or, equivalently, by the baryon number 
A = n/3. 

There is so far no evidence for the existence of quarks as separate entities. They 
are not produced with detectable cross sections by present accelerators, and their 
mass would thus have to be large. 

One can further extend the unitary symmetry by combining the transformations 
in isobaric space (SU,) with transformations in spin space, to obtain an SyInmetry. 
In the analysis in terms of quarks, one assumes invariance of the interactions with 
respect to the six states of the quarks (two spin states for each quark). The extension of 
SU,  to SU,  symmetry is thus analogous to the extension of nuclear isospin symmetry 
( S U J  to the spin-isospin (or orbital) symmetry (SU,) (see p. 37) .  

The SU6 symmetry makes it possible to bring together the lowest observed S U ,  
multiplets into SU6 supermultiplets (see pp. 62 and 6 4 )  and provides an interpreta- 
tion of various observed intensity relations. I t  is also remarkable that the observed 
ratio of the magnetic moments of neutron and proton finds a simple interpretation 
within the SU6 symmetry scheme (see Sec. 3C-4) .  However, the application of 
symmetry is restricted by the coupling between spin and orbit, which in some situations 
completely violates the symmetry. The proper domain of validity of SU, symmetry 
is a problem of great current interest., 

For a review of the development of the SU3 symmetry classification for the strongly inter- 
acting particles, see the reprint volume by Cell-Mann and Ne'eman, The Eightfold Wuy, 1964. The 
development of SU, symmetry is summarized by Dyson, Symmetry Groups in Nuclear and Particle 
Physics, 1966. A presentation of the unitary symmetry classification, involving only elementary 
mathematical tools, has been given by Lipkin, Lie Groupsfor Pedestrians, 1965. 
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It may be added that many of the consequences which follow from the higher 
symmetries (SU, and SU,) can be obtained on the basis of the “independent quark 
model,” without assuming the higher symmetries. In this model, the baryons are 
regarded as consisting of three quarks, while the mesons are quark-antiquark bound 
states, and the scattering and reaction amplitudes for processes involving the different 
particles are obtained as a simple superposition of the amplitudes for scattering 
processes involving the constituent quarks and antiquarks. (See, for example, Lipkin, 
1967.) 

v 
ILLUSTRATIVE 

EXAMPLES T O  

SECTION 1-3  

Isobaric triplets and singlets in A = 14 (Figs. 1-7 and 1-8) 

The known levels of the nuclei with A = 14 are shown in Fig. 1-7. The most 
strongly bound state is the ground state of 14N with In = 1 +. This level has no 
analog in the spectra of 14C and 140 and is therefore an isobaric singlet (T = 0). 
The ground state of 14C, the 2.312 MeV state of 14N, and the ground state of 
1 4 0 ,  which all have In = 0 + , form an isobaric triplet with M ,  = + 1, 0, and 
- 1, respectively. After correction for the neutron-proton mass difference of 
0.78 MeV, the differences in binding energy between the members of the triplet 
become &(140) - &(14N*) = 3.62 MeV and &(14N*) - &(“C) = 2.94 MeV. A 
simple estimate of the Coulomb energy differences can be obtained from the 
expression (2-19), which yields 3.8 MeV and 3.2 MeV for the binding energy 
differences (140 - 14N*) and (I4N* - 14C), respectively. (The consistency of the 
nuclear size determinations as obtained from Coulomb energies and electron 
scattering data has been discussed by Wilkinson and Mafethe, 1966, for the 
nuclei with 4 < A < 16.) 

The 140 and I4C nuclei have no low-lying excited states; thus, all the low- 
energy levels in 14N, with the exception of the 2.3 MeV state, must be assigned 
T = 0. Starting at about 5 MeV in 1 4 0  and 6 MeV in 14C, a number of ex- 
cited levels have been found, which can be correlated with corresponding 
(T = 1, M ,  = 0) members in the 14N spectrum. For the T = 1 states, the figure 
shows the excitation energies relative to the lowest T = 1 state (the 0 + level) in 
the same nucleus. It is seen that the corresponding levels (characterized by the 
Same spin and parity) have approximately the same excitation energies. There 
are significant shifts, however, typically amounting to several hundred keV, 
which reflect differences in the Coulomb energy associated with the intrinsic 
structure of the states. 

It appears probable that the largest of the level shifts are associated with 
the fact that the average value of the Coulomb repulsion is somewhat different A 
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Figure 1-7 The level schemes for the nuclei with A = 14 are based on the compilation by 
F. Ajzenberg-Selove and T. Lauritsen, Nuclear Phys. 11, 1 (1959), on the results given by 
D. E. Alburger, A. Gallmann, J. B. Nelson, J. T. Sample, and E. K. Warburton, Phys. Rev. 
148, 1050 (1966), and on a private communication by G.  Ball and J. Cerny (August, 1966). 
The relative energies represent atomic masses. 

for particle orbits with different quantum numbers and that, in particular, the 
Coulomb energy is somewhat reduced for the loosely bound orbits and for the 
unbound resonance states (Thomas-Ehrman shift; Ehrman, 1951 ; Thomas, 
1952). Thus, the levels with the greatest downward shifts are expected t o  have 
In = 0 - or 1 - and to have a large parentage of 13C(Z~ = 1/2-) combined 
with s-wave protons. This expectation is confirmed by the observed large 
reduced widths for proton emission. A similar effect is discussed in connection 
with the weakly bound single-particle states of the A = 17 system (see Fig. 3-2b). 

The assignment of isospin to  the levels leads to important consequences for 
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5.69 

3.95 

2.31 

'I various nuclear processes. Thus, the El radiative transition strength depends on 
the matrix element of the electric dipole operator 

1 -  0 

1 +  0 

o +  1 

N 
V 

; - , R z g  u -  ol 

T T  

k k 

(1-63) 

The first term depends only on the position of the center of mass of the whole 
nucleus and thus cannot cause transitions between different nuclear states; it is 
this term that gives the Thompson scattering of photons by the nucleus. The 
second term is the z component of a vector in isospace and thus implies the 
selection rules 

for the isospin quantum numbers of the combining levels. 
In self-conjugate nuclei ( N  = Z,  M ,  = 0), all transitions with T, = Ti are for- 

bidden, since the transition matrix element is proportional to (Ti M ,  10 1 Tf M T )  
(see Eq. (1A-132)), which vanishes for Ti = Tf and M ,  = 0. The isospin selection 
rules for El radiation were formulated by Trainer (1952) and by Gamba e l  al. 
(1952). 

The selection rule forbidding El transitions between two T = 0 states can 
be tested by the decay of the 5.69 MeV, T = 0 level in 14N (see Fig. 1-8); it is A 

6.23 , , 1 +  0 

0 - 1 + o  
MeV l L  N I z  T 

Figure 1-8 Dipole transitions in 14N. The numbers on the arrows represent relative 
y intensities as determined by S. Gorodetzky, R. M. Freeman, A. Gallmann, and F. Haas, 
Phys. Rev. 149, 801 (1966). 

'I found that the transitions to the ground state and the 3.95 MeV, T = 0 level are 
weaker by an order of magnitude than the allowed transition to the 2.31 MeV, 
T = 1 level. (Note that, for the same nuclear matrix element, the transition rate for 
an El transition varies as the cube of the transition energy; see Eq. (3C-18).) 

The MI transition operator is also predominantly an isovector, since the A 
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7 magnetic moment (in units of nuclear magnetons) can be expressed in the form 

(1-65) 

where we have inserted the values g p  = 5.59 and gn = - 3.83 for the spin g factors 
for proton and neutron. 

The first term in Eq. (1-65) is proportional to the total angular momentum 
I and does not contribute to transitions between different states. The second term 
is a scalar in isospace, but has a coefficient that is an order of magnitude smaller 
than that for the last term (the isovector part). Thus we expect the isospin selec- 
tion rules discussed above for El radiation to be also approximately valid for M1 
radiation (Morpurgo, 1958). This is confirmed in the examples shown in Fig. 1-8, 
where the T = 0 + T = 1 M1 transitions are seen to be considerably stronger 
than the T = 0 + T = 0 transitions. 

In nuclear reaction processes, the conservation of isospin can lead to 
important selection rules. Thus, in the process 

l60 + 2H + 14N* + 4He 

the l60 target, as well as 'H and 4He, has T = 0;  therefore we only expect to 
populate T = 0 states in 14N. Indeed it is found that the T = 1 (2.31 MeV) state 
is very weakly populated in comparison with the other low-lying states in 14N. 
For example, for a bombarding energy Ed = 24 MeV, the yield of the 2.31 MeV 
state is 0.7 0.6% of the yield of the ground state (Cerny et al., 1963). 

The conclusions regarding the validity of isospin conservation that can be 
drawn from the observed small yield of the 2.31 MeV level are somewhat 
weakened by the fact that specific features of the reaction mechanism may also 
contribute to the reduction of the yield. In fact, the strong (d,  2) reactions appear 
to take place as two-particle pickup processes in which the picked up n-p pair is 
in a relative s state with unit spin ( S  = 1). Such a process cannot populate a 0 + 
state in 14N. 

As another example, the conservation of isobaric spin implies that the 
reaction 

14N + l z c  ~ 14N* + lZC* 

should not excite the 2.31 (T = 1) state of 14N as long as "C is not at  the same 
time excited to a T = 1 state (such states do not occur in ''C below 15.1 MeV). 
Indeed, all the low-lying states of "C and 14N are observed in this reaction, 
except 14N* (2.31 MeV). The experiments employing an incident 14N beam of 27 
MeV set a limit of - 1/15 on the intensity of 14N* (2.31 MeV) as compared to 
14N* (3.95 MeV, T = 0) produced in this reaction (Halbert and Zucker, 1961). A 
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v The selection rules for the transitions and reactions involving the states of 
14N could also have been discussed in terms of the charge symmetry quantum 
number. For this nucleus with N = Z, the statescan be classified by the eigenvalue 
rr = fl of the charge symmetry operator 9, given by Eq. (1-59). Since the 
electric dipole transition operator is odd under gr and the magnetic dipole transi- 
tion operator approximately odd, E l  and MI transitions between states of equal 
rr are forbidden. Moreover, we have the conservation law for rr in reaction pro- 
cesses. The observed selection rules can thus be accounted for by assigning 
rr = + 1 to the T = 0 states and rr = - 1 to the T = 1 states. 

The similarity between the states in 14C and 1 4 0  can also be attributed to 
charge symmetry, but their relationship to the isobaric analog states in 14N can 
only be understood in terms of the full charge independence. An example of 
reactions testing charge independence rather than charge symmetry is provided 
by the processes 12C(3He,p)14N and 12C(3He, n)140. The yields of the two 
reactions populating the first excited state of 14N and its isobaric analog state, 
the ground state of 140, have been measured for bombarding energies from 6.5 
to 11 MeV (Fulbright et al., 1965). The cross sections at a fixed angle exhibit large 
variations with energy, but are found over the whole energy range to be approxi- 
mately in the ratio 1 : 2, as implied by isospin conservation. In fact, the system 
12C + 3We has T = 1/2, MT = - 1/2, and the ratio of the two cross sections is thus 

(10 t - 3 I $ - $ > 2  : <1 -1 3 41 t - 3 y  = 1 : 2 

Further tests of the charge independence relations have been obtained from a 
study of the reactions I 6 0 ( p ,  t )  and l60(p,  3He) leading respectively to the 
ground state of 1 4 0  and to the 2.31 MeV isobaric analog state in 14N (Cerny and 
Pehl, 1964). The cross sections for the two reactions induced by 44 MeV protons 
exhibit very similar angular distributions and the ratio of the yields was found 
to be 2.1 with an accuracy of a few percent. Charge independence implies a ratio 
of 2. 

Isobaric analog states observed in proton-induced resonance reactions 
(Fig. 1-9 and Table 1-2) 

In medium heavy and heavy nuclei, the strong Coulomb interaction implies 
that the most stable nuclei with given A have a large neutron excess, and thus 
M ,  = J ( N  - Z )  % 1. The quantum number T must be equal to or greater than 
M , ,  and all the low-lying energy levels are found to have minimum isospin, 
T = To = M , .  This feature of the spectra reflects the important systematic 
effects in the nuclear binding that favor low values of T (see the discussion in 
Sec. 2- 1 f). 

The lowest states with T = To + I occur at excitation energies well above 
the threshold for proton emission and have been found to give rise to well- 
defined sharp resonances in proton scattering (Fox et al., 1964). The study of 
such resonances has provided an extensive body of evidence regarding the 
validity of isospin symmetry in heavier nuclei. A 
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'I Figure 1-9 shows the level spectrum of "'Sb ( M ,  = 15/2). The T = 17/2 
states have been observed as resonances in the ':$n(p, p )  and ':;Sn(p, n) pro- 
cesses. The interpretation of the observed resonances as T = 17/2 states implies 
that these levels are isobaric analogs of low-lying levels in "'Sn (MT = 17/2). 
The data in Fig. 1-9 as well as in Table 1-2 show that there is indeed a striking A 

n +"'S b (1 1 8 ) 

Abcout;=lL MeV 

E, = 6.869 MeV 

p+'16Sn(T=8) 

= l5l2 >.82 MeV I - Ix='h+ 
117 117 
51 Sb66 sosn,, 

M, = 15/2 _____* 4- M, = 172 --+ 
Figure 1-9 The T =  17/2 levels in ll'Sb have been observed in proton resonance reactions 
on 116Sn by P. Richard, C. F. Moore, J. A. Becker, and J. D. Fox, Phys. Rev. 145,971 (1966). 
The additional information on energy levels and binding energies has been obtained from 
Table of Zsojopes by Lederer et al. (1967). 

v correspondence as regards energy spacing and spin-parity quantum numbers for 
the T = 17/2 levels in the two nuclei. The difference in binding energy between 
the M ,  = 15/2 and M ,  = 17/2 members of the T = 17/2 multiplets amounts to  
13.8 MeV, and may be compared with the estimate (2-19) for the Coulomb 
energy, which yields 

dd,,,, = dc,,,(Z = 51, A = 117) - 6'c,.l(Z = 50, A = 117) = 13.8 MeV 

One expects small variations in the Coulomb energy shift for the different 
T = 17/2 states, depending on the intrinsic structure of the levels. The observed A 
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v variations are quite small (520  keV), and this may be understood from the fact 
that the Coulomb energy difference represents the average Coulomb energy for 
the proton states obtained by replacing one of the 17 different excess neutrons in 
li7Sn by a proton. Since the different levels in 'I7Sn differ primarily in the orbits 
of a single or a few neutrons, the energy shift is expected to vary only little from 
level to level. 

The excitation energy of the lowest T =  17/2 level in '17Sb is 11.2 MeV 
(see Fig. 1-9) and may be compared to the estimate (2-18), which yields 

b ( A = 1 1 7 , T = 1 7 / 2 , M , = 1 5 / 2 ) - b ( A = 1 1 7 , T = 1 5 / 2 , M ~ = 1 5 / 2 ) x l  13.5MeV 

assuming bsym w 50 MeV (see Eq. (2-15)). The estimated energy difference must be 
somewhat reduced on account of shell structure effects, which give an added 
stability to the 2 = 50 proton configuration in the Sn isotopes and their isobaric 
analog states in the Sb isotopes. 

The resonance structure in the elastic proton scattering can be represented 
by a scattering amplitude consisting of a smoothly varying part (direct amplitude) 
and resonance amplitudes of Breit-Wigner form (see Eqs. (3F-10) and (3F-12)). 
Since the proton energies are several MeV below the Coulomb barrier, the direct 
amplitude is approximately equal to the amplitude for Coulomb scattering. The 
elastic proton widths rp and the total widths r obtained from the resonance 
analysis are listed in Table 1-2. The angular distribution of the resonance scat- 
tering determines the orbital angular momentum Zp of the resonating proton, but 
is rather insensitive to the value of j p .  The extracted proton widths somewhat 
depend on the value of j p ;  the quoted values of T, are obtained by assumingj, 
equal to the observed spin of the analog state in "'Sn. 

The observed values of rp may be compared with the single-particle widths 
(rp)sp that would be expected if the resonances could be described in terms of 
single-particle motion. The states in lI7Sn would then correspond to a single 
neutron moving in the potential of the ll6Sn nucleus in its ground state, while 
the isobaric analog state in 'I7Sb would be represented by (see, for example, 
Eq. (3-19~)) 

I T = To + 1/2, Mr = To - 1/2) 

This state is a linear combination of proton + target ('16Sn) and neutron 
+ target analog (lowest T = 8 state in '16Sb). 

The Coulomb field implies that the state (1-66) is coupled to the T= To - 1/2 
state with the same single-particle configuration 

1 T =  To - 112, MT =To - 1/2) 

A A striking consequence of the Coulomb interaction is the fact that the proton 
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v channel is open while the neutron channel is closed. (The proton energy is below 
the threshold for a ( p ,  n) reaction exciting the analog state of the target, as can be 
seen from Fig. 1-9.) This asymmetry between proton and neutron channels 
implies a major coupling of the states (1-66) and (1-67) when the nucleon is 
outside the nucleus (Robson, 1965). The single-particle proton widths in Table 
1-2 have been obtained from a calculation taking into account the coupling 
between the two channels (1-66) and (1-67) and based on the potential 

The first two terms represent the isoscalar and isovector nuclear potentials 
(see Eq. (2-29)), and Vcou,(r) is the Coulomb potential. 

The ratio between the observed rp and the single-particle value provides a 
measure of the single-particle parentage factor (see Sec. 3-5b and Appendix 3F) 
and can be compared with the parentage factor observed in the neutron transfer 
reactions (“‘Sn(d, p)l17Sn) populating the M ,  = 17/2 components of the 
T = 17/2 states (see Sec. 3-5a and Appendix 3E). The correspondence exhibited 
in Table 1-2 between the ratios of rp to (rp)sp for the proton reactions and the 
ratios odp to (odJsp for the stripping reactions provides further tests of the inter- 
pretation of the states as members of a T multiplet. The agreement is good, 
except for the 1/2+ state. A discrepancy of the magnitude indicated for the 1/2+ 
state would be surprising in view of the additional evidence confirming the inter- 
pretation of the states as isobaric analogs. The discrepancy, however, is hardly 
beyond the uncertainties in the present analysis of the reaction cross sections. 

The total width of the observed resonances in ( p , p )  scattering and ( p ,  n) 
reactions considerably exceeds the proton width for elastic scattering (see Table 
1-2). Additional small contributions to the width are associated with inelastic 
proton scattering, but the main part of the width must be attributed to the 
coupling of the To + 1/2 resonances with the neighboring To - lj2 levels. 

The spacing of To - 1/2 levels of given I and n may be estimated from 
Eq. (2-57). Employing the value a = (n2/6)go = 17 MeV-’ for the parameter a 
related to the single-particle level density go (obtained from the analysis of 
nuclear reactions, see Fig. 2-12), one may estimate the total density of levels 
with In = 1/2+ 

p(A = 117,E= 11.2 MeV, I =  t ,n)  x4(eV)-’ 

The dense spectrum of To - 1/2 levels is expected to have great complexity and 
one may describe the T-violating coupling as a decay of the To + 1/2 levels with 
the formation of a compound nucleus in the To - 1/2 channel. Because of the 
Coulomb barrier, the compound nucleus decays primarily by neutron emission 
and the observed resonance ( p ,  n) reactions may be interpreted in this manner. 

A significant contribution to the compound nucleus formation is expected 
to be associated with the coupling via the T = 15/2 state (1-67); one may attempt A 
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v to describe the further coupling of this state to the compound nucleus by means 
of an imaginary component in the potential for the T = 15/2 channel. (Auerbach 
et a/., 1966; Bondorf et a/., 1966; Tamura, 1966). The term 46,,,, should also 
contain an imaginary part associated with the decay width of the isobaric 
analog of the target (A. Kerman, private communication). 

Since the resonance state decays primarily via compound nucleus forma- 
tion (rcomp > rp), the T = 17/2 state is strongly coupled to the T = l5/2 levels 
in the resonance region, and we are dealing with a typical strength function 
phenomenon (see Secs. 2-4b and 3F-lc). Thus, the true eigenstates of the scat- 
tering process are T = 15/2 levels, each of which has received a small com- 
ponent of the T = 17/2 level. In this sense, the isospin quantum number is com- 
pletely violated. 

The widths r of the T = 17/2 strength functions, though very large com- 
pared with level spacings in the T = 15/2 spectrum, are small compared with the 
spacing of T = 17/2 states with same Zrc. In spite of the strong T mixing for the 
individual scattering states, the properties of the isobaric analog levels therefore 
retain a well-defined meaning in terms of integrated values for the narrow strength 
functions. Interpreted in this manner, the above analysis of energies, spin parity 
quantum numbers, and partial widths for isobaric analog states is only little 
affected by the T mixing. 

Test of isobaric symmetry in P transitions of O'-+O' type (Fig. 1-10 and 
Table 1-3) 

Zsospin allowed transitions. The allowed p transitions of Fermi type 
provide a direct test of the isobaric symmetry, since the transition operator, 
apart from a normalization factor, equals a component 

T* = T, i iT, = t,(k) + it,(k) (1 -69) 
k 

of the total isospin. (This structure of the transition operator is a consequence 
of the assumed general relationship between the vector p current and the electro- 
magnetic current (the " conserved vector current" theory) and thus also includes 
the contributions of virtual mesons in the nucleus (see Eqs. (3D-11) and (3D-40)). 

The operator (1-69) vanishes except for transitions between members of an 
isobaric multiplet, for which we have 

<T, M r  4~ 1 IT+] TM,> =((TF MT)(TI  M ,  + 1))l" (1 -70) 

independently of other properties of the nuclear states. This result can be directly 
tested for transitions where initial as well as final states have In = 0 +, since such 
transitions are of pure Fermi type (the Gamow-Teller matrix element vanishes). 
An example of such a transition is provided by the decay of I4O going to the A 
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Figure 1-10 The figure shows the experimental ft values given by J. M. Freeman, J.  G .  
Jenkin, G .  Murray, and W. E. Burcham, Phys. Rev. Letters 16, 959 (1966); see also the 
references quoted in this article. Theft values include radiative corrections and effects of 
the finite nuclear size, as well as corrections for the screening of the nuclear Coulomb field 
by the atomic electrons. The ft value of the n + +no decay is taken from A. F. Dunaitsev, 
V. I. Petrukhin, Yu. D. Prokoshkin, and V. I. Rykalin, Int. Conf. on Fundamental Aspects 
of Weak Interactions, BNL 837(C-39), p. 344, Brookhaven (1963). A more recent measurement 
has givenft(n+ +no) = 3190 320 sec (Depommier et at., 1968). 

v 2.31 MeV state of 14N (see Fig. 1-7). Figure 1-10 shows the available evidence 
on this type of transition. All the examples refer to T = 1 states, and the constancy 
of the observed .fr values thus provides evidence for the isobaric purity of the 
corresponding states. The most accurately determined ft values are seen to  be 
constant to within the accuracy of the measurement, which is better than 4% 
(the only exception is theft value for the decay of 26A1, which shows a deviation 

A of1-)%). 
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v An estimate of the isospin impurity caused by the Coulomb field is given 
in Fig. 2-6. Such an estimate yields admixtures of components with T = 2 into 
the predominantly T = 1 states, with intensities P(T = 2) increasing rapidly with 
2 and reaching values of a few tenths of a percent for the heaviest nuclei in 
Fig. 1-10. (The value ofP(T = 2) for nuclei with To = 1 is obtained by multiplying 
the value of P(T = 1) for nuclei with N = 2 (which is the quantity plotted in 
Fig. 2-6) by the factor (To M,. 10 I TMT)'.) However, as discussed in connection 
with Fig. 2-6, these isospin impurities have only little effect on the 8-transition 
matrix element, since they represent a cumulative effect associated with all the 
protons in the nucleus and are therefore approximately the same for parent and 
daughter nuclei. The transition matrix element is affected only by the coupling 
between the Coulomb distortion effect and the few nucleons carrying the unit 
isospin. The estimate (2-109) indicates that this coupling leads to  a reduction of 
theft values, which for A < 50 is an order of magnitude smaller than the isospin 
impurities shown in Fig. 2-6. 

The forbiddenness of Fermi transitions with 
AT # 0 has also been observed. Table 1-3 contains the known O+ -+ 0' transi- 
tions between states of different isobaric spin (AT = 1). Comparing thefi  values 
with those in Fig. 1-10 we see that the AT = 1 transitions are hindered by factors 
of the order of lo4 t o  lo8, as compared to  the AT = 0 transitions. 

Isospin forbidden transitions. 

A 

66Ge -+ 66Ga 
"Ga -+ 66Zn 

5 6 E ~  --f 56Gd( 1.05) 
ls6Eu -+ lS6Gd 

170Lu -+ 17'Yb 

234NP -+ 234u 
234Np --f 234U(0.81) 
234Np -+ 234U(1.04) 

1 
2 
15 
15 
14 
24 
24 
24 

2 
3 

14 
14 
15 
25 
25 
25 

6 x lo6 
8 x 107 

3 x 10-4 
I x 10-5 

5.8 x 109 
1.5 x 10" 
5.7 x 109 
1.8 x 10' 
1.5 x 109 
1.4 x lo9 9 x 

3.6 x lo-' 
1.4 x lo-' 
3.7 x 10-8 

8 x lo-' 
7 x 10-7 

Table 1-3 For the /3 transitions to excited states in the daughter nucleus, the excitation 
energy in MeV is given in parenthesis. The decay of 64Ga to 64Zn (log ft = 6.6) may also 
belong to the group of LIT = 1 Fermi transitions, but the spin O+ for 64Ga is not well estab- 
lished. The experimental data for 66Ge are taken from R. A. Ricci, R. K. Girgis, and 
R. van Lieshout, Nuclear Phys. 21, 177 (1960); for 66Ga, from D. C. Camp and L. M. 
Langer, Phys Rev. 129, 1782 (1963); for 156E~, "OLu, and 234Np, from P. G. Hansen, 
H. L. Nielsen, K. Wilsky, and J. G. Cuninghame, Phys. Letters 24B, 95 (1967) and the 
references quoted herein. 

v 

A 

Small contributions to the transition strength for the AT = 1 decays arise 
from higher-order corrections to the Fermi matrix element (for instance, the 
multipole moment A ( j V ,  K = 1, A = 0) and the radial dependence of the Fermi 
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v operator itself; see Appendix 3D). An estimate of these effects indicates, how- 
ever, that they are insignificant in  the cases considered. The transition strength 
is therefore ascribed to isobaric spin impurities in the nuclear states caused by 
the electromagnetic interaction or by possible other interaction components 
violating charge independence. (For a discussion of the effect of charge-dependent 
nucleonic interactions on P-decay matrix elements, see the review by Blin- 
Stoyle (1964, pp. 213 ff.).) 

The main effect can be described in terms of a small admixture of the 
analog state of the parent into the daughter state, or of the analog of the daughter 
into the parent. (For Ti = T, + 1, where Ti and T, represent the isospins of 
parent and daughter states, respectively, the T = T i ,  M ,  = Ti - 1 analog of the 
parent may be admixed into the daughter state, while for Ti = T, - 1, the 
T = T, , M ,  = T, - 1 analog of the daughter may be admixed into the parent.) 
In the last column of Table 1-3, we list the square of the amplitude c for the 
admixture, determined from the observed ft values. The normalization factor in 
the transition operator (the Fermi coupling constant gv) is obtained from the 
AT = 0 transitions in Fig. 1-10, and thus 

6260 
ft (sec) 

2Tm,, C' = - (1-71) 

where T,,,,, is the larger of Ti and T,.  
For three of the decays ( 1 5 6 E ~  + '56Gd(gr.st.), I7OLu .+ '"Yb, and 

234Np -+ 234U), a rather detailed analysis is possible in terms of the transition of 
a single particle moving in a spheroidal potential. Estimates of the effects of the 
Coulomb field in causing a T admixture are found to account approximately for 
the observed transition intensities (Damgaard, 1966). 

The AT = 1 Fermi transitions can also be studied in mixed Fermi and 
Gamow-Teller decays (allowed decays with AZ = 0, excluding 0 --+ 0). The ft 
value gives the sum of the Fermi and Gamow-Teller transition strength, and the 
ratio between them can be obtained by several methods. The most frequently 
used is the measurement of the circular polarization of y quanta as a function 
of the angle between the P and y radiation. The Fermi matrix elements for all the 
AT= 1 transitions are found to be very small. For a compilation of Fermi 
matrix elements in mixed transitions, see Daniel and Schmitt (1965). 

Binding energies and spin of hypernuclei (Table 1-4) 

The mass of the A particle is considerably smaller than the mass of any 
other state with strangeness S = - 1 and baryon number A = I (see Fig. 1-11). 
The next higher state with these quantum numbers is the Z particle, whose mass 
is 80 MeV greater than that of the A particle. The nuclei with S = - 1 can there- 
fore be approximately described as systems composed of nucleons and a A 

A particle. 
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v The binding energy B, of a A particle in a hypernucleus (also referred to 
as the separation energy S,) is given by 

-BA = hf(iz) - M(”- ’Z)  - MA (1 -72) 

and is determined by measuring the kinetic energies of all the disintegration 
products when the hypernucleus decays by one of the two modes 

iZ  +- ”Z + 176.0 MeV - BA 

,“Z+ ”(2 + 1) + T- t 37.7 MeV - B,, 
(1 -73) 

The available evidence on  A-binding energies in hypernuclei is given in 
Table 1-4. One sees that the binding energies for A particles are of similar A 

1- 

0.32 k 0.17 1/2+ 
1.95 f 0.14 O+ 
2.07 f 0.09 O +  
3.04 f 0.03 
4.4 & 0.7 
5.42 f 0.11 
5.9 & 0.8 
6.60 f 0.13 
6.57 & 0.20 
8.24 f 0.28 
6.24 f 0.25 
8.9 f 0.5 
8.8 f 0.5 

10.0 f 0.3 
11.09 f 0.21 
10.6 & 0.4 
13.2 f 0.7 
11.7 kO.5 

Table 1-4 The experimental data are taken from the compilation by 
R. Levi-Setti, Proc. Int. Conf. on Hyperfvagments, St. Cergue, March, 1963 
(CERN 64-1) and from C. Mayeur, J. Sacton, P. Vilain, G. Wilquet, D. Stan- 
ley, P. Allen, D. H. Davis, E. R. Fletcher, D. A. Garbutt, M. A. Shaukat, 
J. E. Allen, V. A. Bull, A. P. Conway, and P. V. March, Universite Libre de 
Bruxelles, Bulletin No. 24, December 1965. 
In the notation ,”Z for hypernuclei, Z gives the atomic species (the total 
nuclear charge Z )  in the usual chemical notation, and A is the total number of 
baryons. The subscript (1 indicates that the strangeness quantum number is 
S = - 1. The assumed T quantum numbers are the lowest values consistent 
with the observed Mr = & ( N  - Z ) .  
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v magnitude as the  binding energies €or nucleons in S = 0 systems (nuclei with 
strangeness zero; see, for example, Fig. 2-4). However, the A-binding energy 
continues to increase with A ,  while the nucleon binding energy does not, corre- 
sponding to the fact that the bound A particle does not have to satisfy the 
exclusion principle with respect to the nucleons of the systems. The lowest A 
orbit is the Isli2 state, for which the kinetic energy is approximately 

(1-74) 

assuming .4 + 1 and R = l.2A"3 fm. For I3C (the heaviest hyperfragment in 
Table 1-4 with even Z and even N ) ,  we have Ekin % 20 MeV, and from the observ- 
ed B,  we obtain the rough estimate V = B, + Ekin NN 30 MeV for the potential 
acting on the A particle. This value for the binding potential is consistent with 
evidence on the decay of heavy hyperfragments formed by capture of K -  mesons 
in the Ag and Br nuclei of photographic emulsions (see, for example, Lemonne 
et al., 1965). The estimated value of 30 MeV for the potential energy of A parti- 
cles in nuclei is approximately half of the average potential acting on a nucleon 
at the Fermi surface (see Sec. 2-lg). 

One can see from Table 1-4 some evidence for charge independence of the 
interaction of A particles with nucleons. There are several pairs forming isobaric 
doublets, such as (:H, :He) and (:L, ;Be), while ;He and :Be belong to an 
isobaric triplet. The isobaric analog states are found to have approximately the 
same binding energies. (The apparently smaller binding in ;He as compared with 
that of the isobaric analog :Be may possibly be ascribed to the presence of 
excited states of .'He in the hyperriuclei decays on which the BA determinations 
have been based (see Pniewsky and Danysz, 1962).) 

The evidence on the spin and parity values in the table ( A  is assigned an 
intrinsic parity of + 1) comes from angular correlation measurements as well as 
from the determination of branching ratios for different decay modes (see, for 
example, the survey by Levi-Setti, 1964.) From the spin values together with the 
variation of the binding energies in the lightest hypernuclei, one may conclude 
that the A-nucleon interaction has a rather strong spin dependence, favoring the 
singlet state ( I S ) .  This is contrary to the nucleon-nucleon interaction for which 
the attraction is strongest in the triplet state (3S); see Sec. 2-5. The spin depen- 
dence of the A-nucleon force also appears to be responsible for the fluctuations 
in B, with respect to a smooth increase with A .  Thus, the relatively small 
binding in ,:Be and ',"C seems to be connected with the fact that the neutrons 
and protons in these systems tend tc) form a state with I = 0, which allows no 
spin correlation with the A particle. (For a discussion of the evidence on the 
A-nucleon force obtained from hypernuclei studies, see Dalitz, 1963.) 

A few cases of hypernuclei with two A particles have been identified: 
":He (Prowse, 1966) and ;:Be (Danysz eta/.,  1963). The total binding energy of the 
two A particles is found, in both cases, to exceed twice the value of B, (for ;He A 



9 1-3 ISOBARIC I N V A R I A N C E  El  57 

- A o 1115 
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N 00 939 
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I I I I 

v and :Be, respectively) by the amount 4.5 
interaction energy of the A particles. 

Multiplets in the baryon spectrum (Fig. 1-11 and Table 1-5) 

0.5 MeV, which thus represents the 

Some of the well-established states in the low-energy excitation spectrum 
of the nucleon (states with baryon number A = 1) are shown in Fig. 1-11. The 
states are labeled by the angular momentum and parity In, the strangeness S, 
and the isospin T. The T quantum number is expressed in terms of the multipli- 
city 2T + 1 of the states. In many cases, the evidence for the assignments is A 

1800 t m 1768(89) 

" A 1700 (LO) A 1670 (18)  
1660 (50) 

R 0 1676 

M 1570? (130?) 
Z " o o  1529 (7.3) A 1525(105) 

2 
1L05(35) 

'* 0.. 1382 (37) 

00 1318 

N'oooo 1236 (120) 
1200 1 C ooo 1193 

1000 

0 

s = Y - I  
Figure 1-11 The experimental data are taken from the 
survey by A. H. Rosenfeld, A. Barbaro-Galtieri, W. J. Podolsky, L. R. Price, P. Soding, 
C. G .  Wohl, M. Roos, and W. J .  Willis, Rev. Mod. Phys. 39, 1 (1967). The numbers give the 
masses in MeV and the full width at half maximum is listed in parenthesis (for the states 
decaying by strong interactions). For T multiplets, the numbers give the average for the 
observed M ,  components. The tentative (In) assignment for the Y* particle with mass 
1768 MeV has been suggested (Dalitz, 1967) on the basis of a possible grouping into SU,  
multiplets. 

Excited states of the nucleon. 
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incomplete and is partially based on the possibility of joining the states into SU, 
multiplets, as will be discussed below. It must also be emphasized that, in 
addition to the states in the figure, many more excited baryon states have been 
observed, but for most of these the assignments are very uncertain. (Some of the 
higher states are included in Fig. 1-13; for a comprehensive survey of the experi- 
mental data, see Rosenfeld et a/., Ioc. cit., Fig. 1-11.) 

The baryon levels in Fig. 1-1  I are grouped into multiplets associated with a 
classification according to SU,  symmetry. These multiplets are labeled by the 
quantum numbers (Ap), and the (S, T )  components contained in a given multi- 
plet can be found by means of the general rules discussed in Secs. 1C-2 and 1C-3. 
It is convenient for this purpose to think of the baryons as composed of three 
quarks, each of which can be in three different states forming an isobaric 
doublet with strangeness zero and an isoscalar with strangeness - 1.  Thus, the 
(Ap) = (11) and (Ap) = (30) multiplets correspond to the diagrams 

(hp)  = (1 1) and I T ]  (hp)  = (30) EF 
The different components are obtained by labeling each box with the set of 
quantum numbers of the quark states, with the restrictions given in Sec. 1C-2b. 
In this manner, one can directly enumerate the possible (S ,  M T )  values and hence 
the (S, T )  components. For example, the (1 1) multiplet is an octuplet contain- 
ing the ( S ,  T )  components (0, 1/2), ( -  1, 0), ( -  1, l), and (-2, 1/2), while the (30) 
multiplet is a decuplet consisting of the ( S ,  T )  components (0, 3/2), ( -  1, I), 
(-2, 1/2), and (-3, 0). 

From Fig. 1-11 it is seen that the low-lying Zz = 1/2+ levels form an 
octuplet, while the 3/2+ levels can be grouped into a decuplet. The higher states 
shown in the figure appear to comprise a singlet with Zz = 1/2 - and two octuplets 
with In = 1/2- and 312-, respectively; however, the expected S = -2 com- 
ponents of these octuplets have not so far been observed. 

The significance of the SU, symmetry quantum numbers, first suggested by 
the simple pattern of the observed baryon levels, is confirmed by an extensive 
body of evidence concerning matrix elements between the states (see Gell-Mann 
and Ne’eman, 1964). At the same time, it is apparent from Fig. 1-1 1 that there 
are rather large symmetry-violating interactions responsible for the mass split- 
tings of several hundred MeV between the different states of the SU, multiplets. 
It is remarkable that these mass splittings are found to obey a simple rule that 
can be interpreted as a first-order perturbation effect of a symmetry-breaking 
interaction, transforming as the T = 0, S = 0 member of an octuplet representa- 
tion with A = 0. 

The mass formula is especially simple for the decuplet, since the represen- 
tation product (30) 0 (1 1) contains the representation (30) only once (see Sec. 
1C-lg). The mass splittings are therefore proportional to a Clebsch-Gordan 
coefficient in SU, space and can be immediately evaluated by noting that the A 
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v hypercharge operator, Y, is an operator with the same transformation properties 
as the assumed symmetry-breaking interaction. The mass splittings are therefore 
proportional to Y, 

A M = a A Y  (1 -75) 

(The argument is the same as that which implies that the diagonal matrix ele- 
ments of the z component of a vector operator are proportional to those of 
I z (=M) . )  In  Eq. (1-75), we have inserted the factor A to ensure that,dM is the 
same for particles and antiparticles. The relation (1-75) is seen to be obeyed with 
an accuracy of a few MeV; indeed, on this basis the mass of the Q particle was 
accurately predicted prior to its experimental discovery. 

For more general representations (Ap),  the mass formula may involve two 
parameters (reduced matrix ekments), since the product ( kp )  @ (1 1) in general 
contains the representation (Ap) twice. We can construct the generalized mass 
formula by employing two combinations of the SU, generators that are 
isoscalars, strangeness conserving, and transform as members of an octuplet. As 
the first, we may take the linear operator Y used above, and, as the second, a 
quadratic expression which must be a linear combination of the isoscalars 
(T)2, Y 2 ,  and 1 .  The appropriate combination transforming as an octuplet 
member may be found by noting that, for the decuplet, the matrix elements must 
be proportional to Y .  Omitting the constant term, the mass formula can be 
written (Gell-Mann, 1962; Okubo, 1962) 

A M = d Y + b ( T ( T +  1)- &Y’) (1-76) 

For the In = 1/2+ octuplet, there are three observed mass differences, and one 
obtains the relation 

3(MN + M d  = t(3MA + M2) (1 -77) 

A similar relation predicts the missing S = -2  components of the In = 1/2- 
and In = 312- octuplets to have M z 1820 MeV and A4 z 1855 MeV, respec- 
tively. 

The above derivation of the mass relations is based on the assumption that 
the SU3 violating interaction has the tensorial structure corresponding to a 
member of a ( A p )  = (1 1) representation. For a discussion of possible origins of 
this “ octuplet dominance,” see, for example, the reprint collection by Gell-Mann 
and Ne’eman (1964). 

One may also attempt to discuss the mass splittings in terms of effective 
interactions between quarks in a model in which one takes quite literally the 
interpretation of the baryons as composed of three particles, which may be in 
any one of the three states with the quantum numbers given above. We use a 
notation where p ,  n are the two members of the isodoublet, and /z the isosinglet 
with strangeness. (Such a model for the mass splittings has been discussed, in the 
context of SU, symmetry, by Federman et al., 1966.) A 
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v In the model considered, the mass splittings arise partly from a difference 
in the masses of the strange and nonstrange quarks, which contributes a term 
proportional to Y, and partly from the interactions. The two-body bonds can be 
classified into five types (assuming isobaric spin invariance and strangeness 
conservation) : 

(1-78) 

VnCpn) 

VdPX) = Vdnh) 

The bonds labeled s are symmetric in the SU, variables and therefore, presum- 
ably, antisymmetric in the spin-orbital variables, while the bonds labeled a are 
antisymmetric in the SU, variables. If the interaction were SU, invariant, the 
bonds would be independent of the quarks involved, and thus would be de- 
scribed in terms of two parameters, one for the symmetric and one for the anti- 
symmetric bonds. We are therefore left with two independent combinations of 
symmetric bonds and one combination of antisymmetric bonds, which can 
contribute to mass splittings within an SU, multiplet. 

As the simplest application, we consider the splittings within the decuplet. 
This representation is completely symmetric in the SU, variables and therefore 
only symmetric bonds occur, and we have 

(1 -79) 

Since there are three mass splittings and only two independent symmetric inter- 
actions, the assumption of two-body forces immediately implies one relation 
between the masses 

M ( Q )  - M ( N  *) = 3 ( M ( B * )  - M( Y * ) )  ( I  -80) 

which is seen to be a weaker form of the mass equation (1-75). The full relation 
(1-75) requires the additional symmetry for the two-body interaction 

Vs(pP> + V,(XX) = 2Vs(p4 (1-81) 

The general interaction (1-78) for the symmetric bonds, if expanded in terms of 
irreducible tensors in SU, , contains one scalar, one tensor of rank ( A p )  = ( 1  I ) ,  
and one belonging to the 27-dimensional representation (Ap)  = (22). The relation 
(1-81) implies the vanishing of the (22) component. A 
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I n  the octuplet, the antisymmetric bonds also contribute, and the total 
interaction becomes 

V ( N )  = i V$(pP) + 3 Vdnp) 

V ( A )  = Vdnp) + aVs(P4 + tV.(ph) 

V ( . a  = vs(PP)  + t Vs(ph) + a V.(ph) 

V(S) = t V,(ph) + a VO(p4 + Vs(hh) 

(1-82) 

Since the antisymmetric bonds have tensor structure in SU, corresponding to a 
scalar and an octuplet, the relation (1-81) is quite generally sufficient to ensure the 
mass formula (1-76) and, therefore, in particular that the Zn = 1/2+ octuplet 
satisfies the relation (1-77). 

The mass splittings within the isospin multiplets of the semistable baryon 
states (those decaying only by weak or electromagnetic interactions) are listed 
in Table 1-5. These splittings are attributed to the electromagnetic interactions, 

Particle M (MeV) 

n 
P 
c- 
Lo 
C+ 

-- - - 
T O  
I 

n' 
no 

K' 
KO 

939.550 f 0.005 
938.256 f 0.005 

1197.4 f 0.1 
1192.6 & 0.1 
1189.5 0.1 

1321.2 f0.2 
1314.7 f 1.0 

139.58 _+ 0.02 
134.97 f 0.02 

493.8 0.1 
497.9 f 0.2 

Table 1-5 Masses for isobaric multiplets in the 
baryon and meson spectra. The data are taken 
from the  compilation by Rosenfeld et a/., loc. 
cit., Fig. 1-11. 

and their magnitude provides a measure of the violation of isospin symmetry. 
The pattern of the electromagnetic contributions to the masses provides guidance 
as to the tensorial structure of the electromagnetic interaction in terms of the 
SU, variables. In  particular, the masses are found to be compatible with the 
assumption that the electromagnetic interaction is invariant under the SU, sub- 
group associated with the U spin (see p. 40). The U spin is analogous to the T 
spin and, thus, the nucleon octuplet can be decomposed into U-spin multiplets 
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v within each of which all the particles have the same charge. One thus obtains two 
U-spin doublets (A", Z') and (Z-, z-), a singlet ((j-J3)Zo - $Ao), and a 
triplet (NO, +Zo + (+J3)Ao, Eo),  where N '. = proton and N o  = neutron. The 
assumed U-spin invariance implies that the electromagnetic mass shifts are the 
same for the components in a multiplet. Combining these relations, weobtain one 
constraint on the splittings of the T multiplets in the octuplet 

M ( N + )  - M(NO) = M ( Z + )  - M(Z- - )  + M ( Z " - )  - M(EO)  (1-83) 

As seen from Table 1-5, this relation is satisfied within the accuracy of the 
measured masses. It may be noted that the validity of the relation (1-83) not 
only depends on the assumed U-spin invariance of the electromagnetic interac- 
tion, but also depends on the validity of the U-spin quantum numbers for the 
particles involved. This latter symmetry is violated by the stronger SU3 symmetry- 
breaking interactions responsible for the large mass shifts. 

In the SU, classification, the In = 1/2+ octuplet and the 3/2+ decuplet 
are viewed as belonging to a single representation with quantum numbers 
[f] = [3], which is totally symmetric in the spin-isobaric variables of the quarks 
and totally antisymmetric in the space variables. The dimensionality of the 
representation in spin-isobaric space is h = 56 (see Eq. (1C-27)), corresponding to 
eight spin doublets and ten spin quadruplets, and the observed states can there- 
fore be accounted for, if we assume the orbital motion to give a single preferred 
state with L = 0. One may attempt to classify the negative parity states in terms 
of a representation with [f] = [21] associated with an orbital L = 1 state with 
conjugate symmetry. The dimensionality of this representation in spin-isobaric 
space is h = 70, and the total number of states is therefore (2L -t I)h = 210. 
If specified by the total angular momentum (and parity), these states comprise 
the following SU, multiplets : Zn = lj2 - (a singlet, two octuplets, and a decuplet), 
In = 3/2 - (a singlet, two octuplets, and adecuplet), and In = 5/2 - (an octuplet). 
Apart from the states shown in Fig. 1-11, there is preliminary evidence for the 
occurrence of a number of states with quantum numbers corresponding to the 
missing members of the 210-dimensional su6 mukiplet. (See Dalitz, 1967, 
for a survey of experimental data and a discussion of the interpretation on the 
basis of a quark model.) 

One may attempt to derive a mass formula for the splittings within the SU, 
multiplets by assuming the symmetry-violating interaction to have the simplest 
possible tensorial structure, as for the analysis of the mass splittings within the 
SU3 multiplets. For SU, , this assumption implies a mass operator transforming 
as a member of the 35-dimensional [f] = [2111 I] representation. Such an opera- 
tor has only a single reduced matrix element when acting between states belong- 
ing to the [f] = [3] representation, and one therefore again obtains the mass 
formula (1-75), which does not account for the observed pattern. (For a ten- 
sorial decomposition of the empirical mass splittings, see Harari and Rashid, 
1966.) 

The total spectrum of fermions (particles with half-integer spin) comprises, A 
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v in addition to hadrons, also the family of leptons. The hadronic fermions have 
baryon number A # 0 (baryons ( A  = 1) and antibaryons ( A  = - l), as well as 
nuclei and antinuclei with IA I = 3, 5, . . .), while the leptons have A = 0. The 
known leptons are the electron (me = 0.51 MeV), the muon (m, = 105.7 
MeV), and the two types of neutrinos (v,, v,; zero mass). The leptons are as- 
sociated with weak interactions and electromagnetic processes, but do not partici- 
pate in the strong interactions. The leptonic processes appear to be governed by 
the conservation of lepton number (I, = 1 for leptons ( e - ,  p-, v,, v,) and 
L = - 1 for antileptons (e', p' ,  V,, i,); see Sec. 3D-1). 

Muhiplets in the meson spectrum (Fig. 1-12) 
Some of the well-established states in the low-energy excitation spectrum 

of mesons (states with A = 0) are shown in Fig. 1-12. The quantum numbers A 
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Figure 1-12 Spectrum of meson states. 
by Rosenfeld et al., loc. cit., Fig. 1-1 1. The abscissa is S (= Y ) .  

The experimental data are taken from the survey 



64 S Y M M E T R I E S  Ch. 1 

v labeling the states are the same as in Fig. 1-1 I .  In addition, the meson IeveIs with 
S = O  and M ,  = O  can be assigned a charge conjugation number, C. (All the 
meson states with S = O  can be assigned a G parity, with G representing the 
product of the charge conjugation operator and the charge symmetry operator; 
thus, for M ,  = 0, we have G = G (- I)'.) For the long-lived states, the mass 
splittings within the T multiplets are listed i n  Table 1-5. 

The meson levels in Fig. 1-12 can be grouped into three octuplets and three 
singlets with respect to S U ,  symmetry. However, it is found that the singlets and 
the T = 0, S = 0 octuplets with the same In are coupled to a significant extent so 
that the observed T = 0, S = 0 levels represent superpositions of singlet and 
octuplet components. Evidence on the mixing has been obtained from observed 
branching ratios in production and decay processes. Assuming the validity of a 
mass formula equivalent to Eq. (1-77), one can also estimate the masses of the 
unperturbed octuplet states with T = 0, S = 0, and in this manner determine the 
mixing ratios. It appears that a consistent interpretation of a variety of data can 
be obtained, although uncertainties remain, for example, as to whether the mass 
relation should be applied to the masses or to the square of the masses. (For a 
survey of the various estimates of the mixing amplitudes, see Goldhaber, 1967.) 

In the quark model, the mesons are viewed as consisting of a quark and an 
antiquark. For a given spin-orbital configuration, there are nine isobaric states 
that comprise an SU, octuplet and a singlet. 

In the SU, classification, the Zn = 0- and 1 - levels in Fig. 1-12 can be 
grouped into a singlet and a 35-dimensional representation with the quantum 
numbers [f] = [O] and [2111 I], respectively, both associated with orbital motion 
with L = 0, n = - 1. These 36 states have the symmetry quantum numbers 
implied by the quark model. 

The spectrum of bosons (particles with integer spin) comprises, in  addition 
to the hadrons with A = 0 (mesons) and composite structures (nuclei, atoms, 
etc.), the photon and, if gravitational quanta occur, the graviton. 

Families of baryon states with same r'sobaric symmetry (Fig. 1-13) 

There is some evidence that hadronic states with the same isobaric sym- 
metry (T, S, (Ap) ,  as well as A )  can be grouped into families consisting of a series 
of states with the mass increasing smoothly with increasing values of I .  Examples 
of such suggested families, or trajectories, in the baryon spectrum are shown in 
Fig. 1-13. The members of these families have the same parity and values of Z 
differing by two ( I  = 1/2, 5/2, 9/2, . . . or I = 3/2, 7/2, 11/2, . . .). The states are 
observed as resonances in n-nucleon scattering, but for the higher resonances, 
the spin parity assignment is very uncertain and mainly based on the systematics 
suggested by the trajectories themselves. 

Families of states, such as those considered in Fig. 1-13, may suggest a 
relationship similar to that governing the members of a rotational band, but 
there is so far little evidence concerning the dynamical degree of freedom involved 
in the excitations along the trajectory. A 
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Figure 1-13 Baryon trajectories. The experimental data are taken from the survey by 
Rosenfeld et a/ . ,  loc. cit., Fig. 1-1 I .  A question mark indicates that the spin-parity 
assignment for the observed resonance state is not established. The quantum number Z is 
the angular momentum. (This notation, which is standard in nuclear physics, differs from 
that conventionally employed in elementary particle physics, where I is used for isospin and 
J for total angular momentum.) 

1-4 INVARIANCE C O N D I T I O N S  FOR N U C L E A R  
FORCES 

The invariance laws considered in the previous sections of this chapter 
impose restrictions on the structure of the nuclear forces. In this section, we shall 
consider the most general dependence of these forces on the nucleonic variables. 
(Such an analysis was first given by Eisenbud and Wigner, 1941.) 
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1-4a Velocity-Independent Forces 

Since the binding forces between nucleons result from the exchange of 
other particles (especially n mesons) with rest energies rather large compared to 
the kinetic energies of nucleons in nuclei, one may expect the forces to be approxi- 
mately static. We therefore first consider forces independent of the nucleon 
velocities. 

A static force acting between two nucleons may depend on the spin and 
isospin variables, and on the coordinates rl and r z .  Because of translational 
invariance, the force can involve only the relative distance r = rl - r 2 .  One 
distinguishes between central forces (depending only on the magnitude, not the 
direction of r) and noncentral forces (depending also on the direction of r with 
respect to the spin vectors). 

The most general central static potential, which satisfies rotational in- 
variance and isobaric symmetry, can be written 

J'central = Vo(r) + (a, * %) J'Ar) + (71 * 22) J"r(r> + (01 . 'J2) ("1 . 22)J',, (1-84) 

(We are here using the spin and isospin operators 0 = 2s and z = 2t, which are 
conventionally employed in the present context.) 

The dependence of the interaction on the spin and isospin coordinates can 
also be expressed in other forms, which are sometimes more convenient. Using 
the space exchange operator P', the charge exchange operator P' given by Eq. 
(1-57), and the spin exchange operator 

+1 for S =  1 
-1 for S=O 

P" = +(1 + a* * a2) = (1-85) 

together with the relation (1 -55), which expresses the generalized exclusion prin- 
ciple, the potential (1-84) can be written in terms of the three exchange opera- 
tors. It is customary to use the notation 

Vcentral = V,(r) + VM(r)Pr + VB(r)Pu - V,(r)P' (1-86) 

and to refer to Wigner, Majorana, Bartlett, and Heisenberg forces. One may also 
characterize the force in terms of projection operators that select particular 
channels of the two-nucleon system 

VCentral = 31V(r )  p ( T  = 1, S = 0,  L even) 

+ 13V(r)  B(T = 0,  S = 1, L even) 

+ l 1  V(r)  B(T = 0, S = 0, L odd) 

+ 33V(r)  P(T = 1, S = 1, L odd) 

(1-87) 

where B(S = 0, T = 1, L even) is the projection operator for the spin singlet and 
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angular momentum, L, even channel, and so on. The potentials used in Eqs. 
(1-84), (1-86), and (1-87) are linearly related, 

v, = v, - v, - v, + v,, 
v, = -4v0, 

v, = 2v, - 2v,, 

Noncentral forces may involve the additional scalars (r * a,) and (r u2), 
but cannot depend on these linearly without violating 9 as well as 9 symmetry 
(see Eqs. (1-22) and (1-29)).4 The only possible combination is the product 
(r . al)(r . u2), which is usually introduced in terms of the operator 

(1-89) 

An interaction proportional to Eq. (1-89) is referred to as a tensor force, and 
is similar to the potential between two magnetic dipoles. The force acts only in 
triplet states ( S  = l), and the general static tensor force thus involves two parts: 

V,,,,,, = {VjeVen)(r )9(T = 0, L even) + Vpdd)(r)Y(T = 1 ,  Lodd)}SI2 (1-90) 

referring to even and odd orbital motion. 
The tensor operator (1-89) is the scalar product (see Eq. (1A-71)) of two 

second-rank tensors, of which the first is formed from the spin vectors ul and u2 
and the second from the unit vector 3 in the direction of r = rl - r 2 ,  

We here use an abbreviated notation for the coupling of tensors (and angular 
momenta) that will be extensively employed throughout the rest of the book 
(see p. 80). 

The general form of the q-violating weak interaction potential between nucleons has been 
considered by Blin-Stoyle (1960) and by Herczeg (1963). 
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1-4b Velocity-Dependent Forces 

Although the empirical data confirm the expectation that the interaction 
between nucleons at not too high energies can be expressed in terms of poten- 
tials of predominantly static type, there is also evidence for important velocity- 
dependent components. 

The forces can depend only on the relative nucleonic momentum p = 

p1 - p2 (Galilean invariance). To first order in p, we can form the scalars (r . p), 
(0 * p), and (r x p . a), of which the first violates F symmetry and the second .Y 
symmetry. Hence, the only possibility is the spin-orbit coupling (r x p - a), and 
the associated two-body interaction has the form 

(1-92) 

where the spins enter symmetrically (S = $(al + a2). The symmetric choice is 
required, since the total potential must be symmetric with respect to interchange 
of all coordinates of particles 1 and 2. Charge-independent interactions are 
symmetric in the T variables and thus also in the space-spin variables. 

The symmetry in the spin variables al and a2 , which characterizes the spin- 
orbit coupling (1-92) as well as the tensor force (1-90), implies that these non- 
central interactions commute with the total spin operator (S)' and, therefore, do 
not couple singlet and triplet states. Indeed, the conservation of the spin quan- 
tum number S for a two-nucleon state is a general consequence of charge in- 
dependence and space reflection symmetry, since the antisymmetry condition 
(1-55) gives the relation 

. ( - 1 ) S + L  - 1  (1-93) 

Thus, the conservation of n and T implies the conservation of S.  (Isospin sym- 
metry is essential for the conservation of S ;  in the hydrogen atom, for example, 
the spin-orbit coupling is asymmetric in the spins of the electron and proton 
and therefore mixes triplet and singlet states.) 

If one considers potentials involving higher powers in p, a large number of 
terms becomes possible. Certain terms of this type have been employed in the 
analysis of nucleon-nucleon scattering data (see the second-order spin-orbit 
interaction in Eq. (2-223)). 

We have considered the interaction in a system consisting of only two 
nucleons. If additional particles are present, there may be interaction terms 
depending on the coordinates of three or more particles. The structure of these 
terms can be analyzed in a similar manner as followed above. On account of the 
relatively weak binding of nuclear systems, however, the two-body forces are 
expected to dominate. 
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In nuclear shell-model calculations, one employs effective two-body 
forces acting between the particles in unfilled shells (see Sec. 7-1). These effective 
forces include contributions from the virtual excitation of the rest of the nuc- 
leons (the nuclear core), and therefore have a lower symmetry than the forces 
between nucleons in free space. In fact, the nuclear core is neither translational 
nor Galilean invariant (nor rotationally invariant for deformed nuclei); in 
heavy nuclei with large neutron excess, the effective forces may also depend on 
the orientation of the nucleonic isospins with respect to the isospin of the 
nuclear core. 



APPENDIX 

1A 

Rotational Invariance 

This appendix gives a brief summary of some aspects of the quantum theory of 
angular momentum and rotational transformations, which are employed in the text. 
There are available a number of books that give a more detailed presentation of the 
theory of rotational invariance from various points of view. References to these 
texts as well as a historical survey of the subject may be found in Biedenharn and van 
Dam (1965). 

1A-1 Angular Momentum Matrices 

The components of an angular momentum vector j (which may represent orbital, 
spin, or total angular momentum of a particle, or of a group of particles or quanta) 
obey the commutation relations 

bx, j , ]  = z& and cyclic permutations (1A-1) 

These relations may be interpreted in terms of the geometrical commutation rules for 
the rotations associated with the angular momentum components (see Eq. (1-11)) and 
also represent a special case of the commutation rules between an angular momentum 
and a vector quantity (see Eq. (1A-57)). 

The algebraic relations (1A-1) imply that the square of j commutes with all the 
components of j, and if we assume that the matrices representing j are of finite dimen- 
sion, the eigenvalues of (j)’ can take on the values 

(j)* = j ( j  + 1)  j = 0, 4, 1, . . . (1 A-2) 

For givenj, the eigenvalues of a component of j are 

j z = m  m = - j ,  - j +  1 ,  . . . , j  (1A-3) 

In the representation in whichj, is diagonal, the nonvanishing matrix elements of 
the angular momentum operators are 

(1 A-4) 

The nondiagonal matrix elements in Eq. (1A-4) involve arbitrary phase factors associ- 
ated with the choice of relative phases for the states with different m. The phase 

70 kf$ 



§ I A - 2  COUPLING O F  ANGULAR MOMENTA H!f 71 

convention (1-39) implies that the matrix elements of j ,  are real while those of j y  
are purely imaginary, since j ,  commutes with 9F while j y  anticommutes with 9F 
(see Eq. (1-42)). We are thus left with arbitrary real phase factors (k l), which are con- 
ventionally fixed by the requirement that the matrix elements of j ,  _+ ijy be positive 
(Condon and Shortley, 1935). (Note that this phase convention enters in the matrix 
elements of the rotation operator and is thus implied in the derivation of the relation 
(1-40) for time reversal.) 

1A-2 Coupling of Angular Momenta 

If two components in the system have angular momentaj, andj ,  , the coupling 
of these two components may produce states with resultant angular momentum 

J = l j l - j 2 1 ,  l j l - j 2 1 + 1 ,  ..., j l + j 2  (1A-5) 

The coupled states JM can be written in the form 

I(jlj2)JM) = I j l j z )  = c I j lml , j2  m2> <jlml j 2  m2 I J M )  (1 A-6) 
( j l j d J M  m1m2 

where the expansion coefficients are referred to as vector addition coefficients. (In the 
literature, these quantities are also referred to as Clebsch-Gordan coefficients or Wig- 
ner coefficients.) 

The vector addition coefficients obey the orthogonality relations 

corresponding to the orthonormality of the basis sets j lni l ,  j ,m,  , and (j,j,)JM. In 
Eq. (1A-7), we have assumed the vector addition coefficients to be real quantities, as is 
implied by the phase convention (1-39) ; in fact, the transformation connecting any two 
basis sets, both satisfying (1-39), has real coefficients. The sign of the vector addition 
coefficients depends on the choice of the real phases for the states JM relative to those 
for the states j lml ,  j ,m,  . We follow the convention of Condon and Shortley (1935), 
based on the relations (1A-4) and the phase choices 

<j lml  = j l , j 2 m 2  = j 2  I J = j l  + j 2 ,  M = j l  + j 2 )  = 1 
(1 A-8) 

< ( . i A J ’ M  ljlr I (j&)JM) 2 0 (J’ f J )  

Since J,  = j l r  + j,. is diagonal in J, the last prescription is unsymmetrical in jl and j ,  . 
Thus, the ordering of the coupled angular momenta is significant; an exchange ofj, 
and j z  gives 

) ( j , j 2 >  ( - 1 ) J l + J 2 - ’  1 C ~ I  jz > (1 A-9) 
( J 2 J i ) J M  ( J i J 2 ) J . W  

The vector addition coefficients possess a number of important symmetry 
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properties describing the effect of a reversal of the angular momenta 

< jlml j2 m2 I j 3  ma> = (- 1 ) ' l + ~ ~ - - J 3  < j l  -mi2 -m2 lj3 -m3> (1 A-10) 

and 

(jlmIj2m2 I j 3 m 3 )  =(-1)11+'2-'3 < j 2  m2j1ml I j 3  ma> 

for the effect of permutations of the angular moment. 
In the special case of a coupling to a resultantj, = 0, we obtain 

<jlm1j2m2 =(-1)'1-m1(2j2 + 1)--1/2 <jlm100 Ij2 - m 2 >  

- - ( - 1 ) J l - m l  (2jl + 1)-'/' G, j2) S(ml, -m2)  (1 A-1 2) 

One can also view the coupling j, + jz = j, in terms of a coupling of the three 
vectors to a resultant J = 0, 

I(ili2)iJ ,i3 ; 00) 
= C ( i lmlj2m21j3-m3)(-I)~3+m3(2j3+ 1) -1 /21j lm1, j2m2,jam3> 

m 1 m m 3  

(1A-13) 

where 

is referred to as a 3j symDol or a Wigner symbol. 
The symmetry relations (1A-10) and (1A-11) take an especially simple form when 

expressed in terms of the 3j symbol. Thus, the 3j symbol is invariant under even per- 
mutations of the columns; under odd permutations or under the change of sign of all 
the m values, the 3j symbol is multiplied by the phase factor (- l)j1+j2+j3. 

Closed expressions and recursion relations for the vector addition coefficients can 
be found in textbooks on the theory of angular momenta. Extensive tables are also 
available (see the directory by Way and Hurley, 1966) as well as computer programs 
for the numerical evaluation of these coefficients. In many applications, one of the j 
values is small ( j  I 2). In such cases, vector addition coefficients take a rather simple 
form and can be found in many textbooks discussing the application of the theory of 
angular momentum. 

1A-3 Recoupling Coefficients 

IA-3a Coupling of three angular momenta 

Three angular momenta j,, j,, and j3 can be coupled in several ways to a 
resultant J. Thus, we can first perform the coupling jl + j, = J,, and subsequently 
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J1, + j3 = J; another possibility is j, + j3 = 5 2 3  followed by j, + J23 = J. The trans- 
formation between these two coupling schemes 

I jlj2j3> = C < j l m l i z  mzlJlz M12)<J12 M12j3m31JM>lj1m~ , j 2 m z  , j 3 m 3 >  
( ~ I ~ z ) J I z , ~ ~ ;  J M  m i m z m M 1 2  

(1A-15) 
= C <jl , ( j 2 j 3 ) J Z 3 ;  Jl(jljz)J12 , j3 ;  J > l j l j ~ j d  

J 2  3 J L , ( ~ Z ~ ~ ) J Z S ;  JM 

involves a set of expansion coefficients referred to as recoupling coefficients or Racah 
coefficients. The transformation is independent of the orientation of the system as a 
whole and thus is diagonal in M ,  with coefficients independent of M .  

The transformation to other possible coupling schemes, such as (jij3)J13 , j ,  ; J, 
may be obtained from Eq. (lA-15), using the recoupling coefficients (1A-9) for two 
angular momenta.’ 

The transformation (1A-15) corresponds to the relation for the vector addition 
coefficients 

< j l m l j z m z  1 J12ml + m2> <J1zml + m 2 j 3 m 3  1 J M )  

= < j l m ~ J z 3 m  + m a  I J M )  <jzm2j3m3 I J23m2 + m3> 
5 2 3  

x < j l ,  (jZj3)J23;Jl(jlj2)J12,j3 ; J >  ( 1  A-1 6)  

Employing the orthogonality relations (1A-7) for these coefficients, one can also 
express the recoupling coefficient in Eq. (1A-16) as a sum over products of four vector 
addition coefficients. 

The recoupling coefficients are real (see p. 71) and, as transformation coefficients 
between complete sets of states, they obey orthonormality and completeness relations 
such as 

C < j l , ( j z j 3 ) ~ 2 3  ; J I  (jljdJ12 , j3  ; J >  < j l ,  ( j 2 j 3 1 ~ i 3  ; J I  ( j l j z ) J I z  , j 3  ; J >  
J I Z  

= s(J2 3 > J ;  3) (1A-17) 

and 

< ( j l  j 3 ) ~ ,  , j z  ; J I j l  , ( j 2 j 3 ) ~ 2  3 ; J >  < j l ,  ( j Z j 3 ) ~ ,  ; J 1 ( j l j z ) J l  , j 3  ; J >  
52 3 

= <(j l j3)J13. j2  ;JI( j l j2)J12, j3  ; J >  (1 A-1 8 )  

The recoupling coefficients possess a number of symmetry properties, which are 
conveniently expressed in terms of the 6J symbol defined by 

< j l ,  ( j Z j 3 ) J z 3  ; JI (j1i2)Jl2,j3 ; J >  

A coupling scheme that treats the three angular momenta symmetrically can be obtained by 
employing eigenstates of the operator j, . (j, X j3) (see Chakrabarti, 1964; Dragt, 1965). 



74 BIJ. ROTATIONAL INVARIANCE App. IA  

An equivalent definition of the 6j symbol is 

<(ili3)JI3,jZ ;Jl(jI~Z)JlZ>.i3 ; J >  

The 6j symbol is invariant under any permutation of the columns, or interchange 

If one of the six angular momenta vanishes, the 6j  symbol reduces to 
of upper and lower arguments in each of any two columns. 

(1A-21) 

which is equivalent to the relation 

<jl , ( j 2 j 3 ) J 2  3 =il ; J = 0 J ( i l i Z ) J 1  = j 3  , j 3  ; J = O> = 1 (1A-22) 

IA-36 

Four angular momenta can be coupled in many different ways, such as 

Coupling of four angular momenta 

j, + j2 = J I z  

is c i, = JI3  

j3 + j4 = J34 

j, + j4 =J24 

J 1 2  + 5 3 4  = J 

J 1 3  + 5 2 4  = J 
(1 A-23) 

The transformation between these two coupling schemes involves recoupling coeffi- 
cients depending on nine angular momenta 

I il jzi3i.+ ) 
( j l j z V 1 2 ,  ( j 3 j 4 ) J ~ ;  J M  

(1 A-24) 
= C < ( j l j 3 ) J 1 3 ,  ( j 2 j 4 > ~ 2 4 ;  ~l(jliz)~lz, (j3i4)~34: J >  l(iIjzj3j4) 

J13J24  ( j i j 3 ) J 1 3 .  ( j z j 4 ) J z d ;  J M  

Other coupling schemes can be obtained from Eq. (1A-24) by employing the recoupling 
coefficients for three of the angular momenta. 

The coefficients in Eq. (1A-24) can be expressed as a sum of products involving 
six vector addition coefficients, and are real quantities obeying orthonormality and 
completeness relations analogous to Eqs. (1A-17) and (1A-18). One can also express 
the recoupling coefficients in Eq. (1A-24) as a sum of products of three 6j symbols, 
since the recoupling can be performed in three steps, each of which involves only three 
angular momenta. 

It is often convenient to express the coefficients associated with the recoupling of 
four angular momenta in terms of the 9j symbol, defined by 

<(jljZ)JI 2 ? ( j 3 j 4 1 J 3 4  ; J I ( j I j 3 1 J 1 3  3 ( j 2 j 4 ) J Z 4  ; J >  

The 9j symbol has a simple permutation symmetry. Thus, any even permutation of 
rows or columns, or a transposition (replacement of rows by columns) leaves the 9j 
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symbol invariant, while an odd permutation of rows or columns introduces a phase 
factor ( -  l)’j, where Cj is the sum of all the nine angular momenta. 

If one of the j values vanishes, the 9j symbol reduces to a 6j symbol, 

corresponding to the recoupling relation (see Eqs. (1A-22) and (1A-20)) 

W 1 j 3 ) J ’ ,  ( j 2 j 4 ) J ’ ;  0 I (it j 2 )J ,  ( j 3 j 4 ) J ;  0: 

= < ( j l i d J ’ , i 2  ; i 4  I ( i l j 2 ) J , j 3  ; j 4 )  

(1 A-27) 

For systems involving more than four angular momenta, the recoupling coeffi- 
cients can be expressed in terms of higher invariants (12j, 15j symbols, and so on). 
These have properties analogous to those of 6j and 9j symbols, and can be expressed 
in terms of sums of products of coefficients of lower order. The different invariants 
also obey various recursion relations, which may be exploited in the numerical evalua- 
tion. (For references to tables of 6j and 9j symbols, see the directory by Way and 
Hurley, 1966. The simplest coefficients, in which one of the j values is small, are given 
in many textbooks.) 

1A-4 Rotation Matrices. 9 Functions 

The angular momentum operator is associated with the transformation of states 
under rotations of the coordinate system, in the manner indicated in Sec. 1-2a. We 
label the states by the total angular momentum I ,  the projection M ( = I,), and addi- 
tional quantum numbers ct describing properties that are independent of the orien- 
tation of the coordinate frame (scalars). 

If we introduce a new coordiante system X‘  obtained from the original system X 
by a rotation about a given axis (specified by the rotation vector x), the transformation 
of states is given by (see Eq. (1-10)) 

lalM’)& = 9(X)IaIM’)x  

=.ZIalM), <IMI exp{-ix.I}lzM’) (1A-28) 
M 

where laZM ’ )x ,  is the state with magnetic quantum number M ’, as viewed from X‘ ,  
that is, with I,, = M’.  For the states labeled 2, the magnetic quantum number refers 
to the eigenvalue of I,. We have omitted the index X on the matrix element of 9 ( x ) ,  
since the value of the matrix element is independent of the coordinate system in which 
it is evaluated, as long as the M quantum numbers and the components of I in 9 ( x )  
refer to the same set of axes. (The components of x are in this connection to be re- 
garded as a fixed set of numbers, equal to the components of the rotation vector in Y 
or X ’  (the components are the same in these two systems).) 
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Figure 1A-1 The rotation from %(x, y ,  z )  to X’(x’, .v’, z’) can be decom- 
posed into three parts: a rotation by 4 about the z axis to X”(x”, y”, z”), a rotation of 8 
about the new y axis (y”) to .X‘”(x’’’, y”’, z”’), and finally a rotation of (I, about the new z axis 
(2”’). It &seen that the Euler angles (4, 8, 4)  are so defined that (8, 4) are the polar angles of 
z’ in X, while (8, n - 4) are the polar angles of z in X‘.  The Euler angles are, collectively, 
denoted by w.  

The transformation from x to X‘ can also be accomplished by a single rotation 
specified by the vector x .  The direction of x given by the polar angles (a,, qx)  represents the 
axis of rotation, while the length ,y is the angle of rotation, and we have the relationship 

Euler angles. 

X 8 4 + *  cos - = cos - cos - 
2 2 2 

X 8 
sin - sin 8, = sin - 

2 2 

+*+z  
q . x  = - 2 2  

between the parameters x, 8,, yx and the Eukr angles 4, 8, 4. 

The transformation from X to a system X’ with arbitrary orientation with 
respect to .X can be decomposed into three rotations of the type (IA-28), each about 
a coordinate axis. The angles of rotation correspond to the three Euler angles w = 

(4, 8, $) needed to specify the orientation (see Fig. IA-I) 

Each step is characterized by the angle and (in parenthesis) the axis of rotation. We 
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thus obtain 

= C / z ~ ” ) j u - < I M ” /  exp{-iOZyl (ZM”’) (1A-30) 
M” 

I z M ” > ~ , ,  = C I Z M ) ~ < Z M /  exp{-i+I,) ~ z M ” )  
M 

and, for the total transformation, 

JIM’)m* = C I IM)x<IMJBl ZM‘) (1 A-3 1) 
M 

with 

9 ( w )  = exp { - i+Zz} exp { - iez,} exp{ - i#I,} (1A-32) 

expressing the rotation operator in terms of the Euler angles. 
The matrix elements of B occurring in Eq. (1A-31) define the 9 functions,6 

9L,.(w) = ( Z M / 9 ( w )  I IM’)* 
(1A-33) 

= <IM’ I exp {i+ZZ} exp {iOZ,} exp {+Iz} I IM)  

Since 3 is a unitary operator, the relation (1A-31) can also be written 

/ a I M ) x  = 9LM,(w)  IaIM’>x* (1 A-34) 
M‘ 

In the following we note some of the important properties of the 9 functions. 
The matrix element in Eq. (1A-33) defining the 9 function is evaluated in the 

representation of the angular momentum matrices given in Sec. 1A-1. The dependence 
on the angles 4 and IcI is especially simple 

9 L M , ( w )  = eiM+dhMs(0)eiM’@ (1A-35) 

and the 0 dependence is given by 

dhM.(0) = (IM’j exp{i6ZY} 11~4) (1A-36) 

The d function is real, since I ,  is a purely imaginary matrix, and has the symmetries 

~ , L , . ( o )  = (- 1 ) ~  - M’dLsM(e) 

= ( - 1 ) M - - M ’ ( p M  - . - M , ( O )  

= d&!VM( - 8)  (1A-37) 

We follow here a definition of the 3 functions that is extensively employed in nuclear phy- 
sics problems, in particular in the description of rotational wave functions. The 9 function employed 
by Rose (1957) is the complex conjugate of that defined by Eq. (IA-33). The convention of Rose 
has been used, for example, by Jacob and Wick (1959) in their discussion of scattering theory based 
on the helicity representation, and has become customary in elementary particle physics. For the 
functions dLM,(O), which are real, the convention of Rose is the same as that employed here. The 
dL,> matrix employed by Edmonds (1957) is the transpose of that used here, and the &,, functions 
of Edmonds differ from Eq. (IA-33) by the phase factor (-l)’-M’. 
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Thus, complex conjugation of a 9 function gives 
9rM,(+, e, +) = (- i ) - w M .  - M , ( $ ,  6, +) 

= ( - 1 ) ‘W - M ’ 9LM4-4, -0, -+) (IA-38) 

Closed expressions for the 9 functions and their explicit form for small values of I 
can be found in many textbooks discussing rotational invariance. 

For fixed Z and o, the 9 functions form a unitary matrix 

QZMi(W)QhMz(w> = &MI, M1) 
M 

(I A-39) 

and for the inverse rotation o-‘, characterizing the orientation of X with respect to 
X’,  we have 

9LM,(w- ’ )  = (9;&))s 

( + , ~ ) - 1 = = ( - + ,  -0, - + ~ = ( ~ - + , o ,  -.r-+) 
(1 A-40) 

The 9 functions form a complete orthogonal set of basis functions in 4, 6, i,b 
space, with the normalization 

(The 9 functions with half-integer I change sign under rotations through 277, and to 
obtain one-valued functions, one must therefore double the angular domain, for 
example by letting 4 vary from 0 to 4rr. Such an extension of the domain of integra- 
tion in Eq. (1A-41) is necessary to obtain orthogonality if one of the angular momenta 
( I  or I , )  is half-integer and the other integer. See also the comment on the double- 
valuedness of the representations of the rotation group in  Sec. 1C-3b.) 

The 9 functions represent generalizations of the spherical harmonics. (The 
spherical harmonics constitute a complete orthonormal set of functions on a sphere, 
that is, in 8, 4 space or in 8, $ space.) Thus, for M ’  = 0 (or M = 0), the $9 functions 
reduce to spherical harmonics 

% M ( U )  = (- ( 1 A-42) 

9 6 o ( w )  = P l ( C 0 S  8)  

By considering the relation (1A-34) for a coupled system (Il12)IA4, we obtain the 
coupling rule for 9 functions, which is extensively employed in the text, 

1 (I1M112 Mz I f ~ > ~ ~ , M ~ , < ~ ) ~ ~ ~ M ’ , ( w )  

M1M2 

= < I I M ; I z  Mi 1 IM‘)9LMr(u)  (1  A-43) 

A similar relation can be obtained by coupling the 9 functions through their 
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second index ( M ’ , M ; ) .  By an application of the orthogonality relation (1A-7) for the 
vector addition coefficients, the relation (1A-43) can also be written in the form 

9 2 I M , I ( W ) L a 2 2 M ’ Z ( W )  

I = I ,  i I ,  ~ . _  
= C (IiMilz M Z  ~ I M I  + M z )  <IIM;/Z Mi llMI + Mi)9L1+ M Z ,  ~ ’ 1  + M ’ Z ( W )  

I = I r ,  - 1 ~ 1  
( 1 A-44) 

If we introduce a coordinate system 2, with orientation w1 with respect to S 
and w;  with respect to X’ ,  we obtain for the composition of rotations (by steps similar 
to those leading to Eq. (IA-31)) 

(1 A-45) 

For M ’ = 0, the relation (1A-45) gives the transformation of spherical harmonics 
under rotations of the coordinate system, and for M = M ‘  = 0, we obtain the addition 
theorem for spherical harmonics, 

Y , M ( Q ,  $) = 9 L M ’ ( W )  Y,M,(Q’, $’> 
M’ 

( 1 A-46) 

In the second expression, O , ,  denotes the angle between the directions f?,+2 and O1&, 
corresponding, respectively, to o; and w - l  in Eq. (1A-45); see also Eq. (1A-40). 

The relation (IA-45) expresses the group property of the rotation operators and 
the 9 functions. The 9 functions are the irreducible representations of the rotation 
group (irreducible because it is not possible from the set of (21 + 1) states IM with 
fixed 1 to construct subsets that transform separately under all rotations.) 

In  defining phase conventions for basis states in the angular momentum repre- 
sentation (see p. 19), it is convenient to employ the operator 9 y ( ~ )  for rotations through 
an angle TI about the y axis, 

gY(n) = exp { - inIy }  

( IM‘  IBy(n) IIM) = d , l , , M ( ~ )  (1 A-47) 

= ( - l ) ’ - M  S(M, - M ’ )  

Since the operation 9&n)  inverts the direction of the z axis, the state IM goes into 
I - M ,  and the phase factor may be obtained by first considering the state M = I. 
This state can be represented by the parallel coupling of 21 spin lj2 systems, for each of 
which we have 

77 . . T  
(1 A-48) - - cos - - my sin - = -by 

2 2 

where oy is the Pauli matrix. Thus, the phase factor for each spin, and for the total 
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system, is + 1. Since, moreover, 

9?y(n)(Ix + iIy)  = - ( I x  - iIY)gy(n) (1A-49) 

the phase factor in Eq. ( I  A-47) changes sign for each lowering of M by one unit. 

1A-5 Spherical Tensors and Reduced Matrix Elements 

1A-5a Definition of spherical tensors 

One may characterize operators by the amount of angular momentum they 
transfer to the state on which they act. A spherical tensor of rank A is a set of operators 
T,, (p = A, A - 1, . . . , -A) transferring an angular momentum A with the different 
components p .  For example, if the tensor operates on a state of angular momentum 
zero (specified by further quantum numbers cc), we obtain 

T,, la, I =0> = .N” ly, I = A, M = p) (I A-50) 

where ,.lr is a normalization constant depending on the properties of the tensor and of 
the state a. The different p components of the tensor are to have the same intrinsic 
properties and, thus, the states on the right-hand side of Eq. (1A-50) differ only in M ,  
while they have the same specification y and normalization N .  

If we generalize to the action of T,, on states of arbitrary angular momentum I , ,  
we obtain 

TA la, I , ?  C (IiMiAp 11, M , )  Tj,, la, IiMi? 
(1iA)IzMz , M i  

= .N” Iy, I 2  MZ> (I A-51) 

with A’” independent of M ,  . We are here employing a notation, by which the opera- 
tors and states are written without magnetic quantum numbers, while the coupling 
scheme is specified in a subscript. This notation has the flexibility of allowing a coup- 
ling of theangular momenta in arbitrary order (such as (lLZl)12 M ,  instead of (ZlA)12 M ,  
as in  Eq. (IA-51); see also Eq. (IA-15)). 

The tensor property of an operator may also be expressed in terms of its trans- 
formation under a rotation of the coordinate system. By applying the relation (IA-34) 
to both sides of Eq. (lA-51), one obtains, by means of Eq. (IA-43), 

Ti,, = 1 9i&s(~)TL, (1 A-52) 
v*  

where T‘ is the tensor in the rotated coordinate system. Hence, T;,, = TAp(x+ x’) 
where x and x’ = s’(x, w )  represent the dynamical variables, such as position and 
spin of a particle, referred to the coordinate systems X and X’.  Thus, from Eq. 
(1-4) together with Eq. (IA-52) follows 

(One expresses the property (1A-53) by saying that the operators T,, transform as an 
irreducible representation of the rotation group.) 
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For infinitesimal rotations (.%? z 1 - i6x * I; see Eq. (1-10)) we obtain from Eqs. 
(IA-33) and (1A-53) 

[I, T A p 1  = C <&’ 111 Xp)Tu,  (1A-54) 
P’ 

or, by means of Eq. (1  A-4), 

(IA-55) 

The relations (1A-5 l), ( 1  A-53), and (1  A-54) or (IA-55) are all equivalent and any 

A tensor of rank A = 0 is a rotational invariant (a scalar). A vector V, expressed 
one may be taken as the definition of a spherical tensor. 

in  terms of its spherical components 

v, = VA=l.,, = V* p =  0 (1A-56) 

li - d p , + i V , )  p = + l  

is a spherical tensor of rank 2 = 1 .  Thus, the commutation relation (IA-54) for A = 1 
can also be written in the form 

[I,,  V,] = iV, and cyclic permutations (1A-57) 

of which Eq. (IA-I) is a special case. 
Further examples of tensors are the spherical harmonics YAP($, cp) of the angular 

coordinates of a particle. Thus, if one multiplies an s state (1 = 0) of a particle with 
YiV(9,  cp), a state of angular momentum 2p is formed. The tensor properties of Y,, 
are expressed by Eq. (1A-46), which is of the form (1A-52). Similarly, the @,,(w) for 
fixed v form a spherical tensor of rank 1, which may be integer or half-integer; the 
angles o may represent the orientation of the dynamical system as a whole or of a 
single particle. The tensor properties of creation operators are considered below (Sec. 
1A-5e). 

Any operator can be expanded in a series of spherical tensors, corresponding to 
the different values of the angular momentum that it can transfer. For example, the 
electric multipole moments are the tensors resulting from the expansion of the electric 
charge density (see Sec. 1A-8). 

I A-56 Reduced matrix elements 

I f  we take the product of Eq. (IA-51) with an arbitrary state having angular 
momentum quantum numbers I,’ M2‘ ,  we obtain 

<PI; M i  1 TJ.] ~ I I )  = C <I,MIX~IJZM~>(PI;M;ITA,I mZMI> 

= Jcr<PI; M i  1 yIz M2> 
= N‘ 6 ( I r ,  I;) 6(M2,  M i )  

( r I ~ ) r 2 M r  m1 

(1A-58) 

where N‘  is independent of the magnetic quantum numbers. Multiplying both sides of 
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Eq. (IA-58) with ( I I M i I p ’  I I ,  M,), summing over I ,  M, , and exploiting the orthogon- 
ality properties of the vector addition coefficients lead to the following relation (in 
which all the primes have been dropped) : 

<BIZ Mz ~TA,, ]  ~ I i M i ) = ~ V < I i M i h p  1 IzMz) (1A-59) 

This relation is known as the Wigner-Eckart theorem. Its essence is that the depen- 
dence of the matrix element on the “magnetic” quantum numbers p, M,,  and M, is 
given by the vector addition coefficient; this dependence follows from the geometry of 
the problem. 

The constant .Af in Eq. (IA-59) is usually expressed in terms of the reduced 
matrix element ( PI ,  11 TA I/ cd, ) defined such that 

<BIZ MZ 1 TA, ,~  a I I M 1 )  = (212 + l ) - ” 2 < Z 1 M ~ h p  112 MZ)<fJI2 llT~llaIl) (1A-60) 

or 

<PIz IIT~lla4) =(212 + 1)1/Z<P12M2 ITAI all) (1A-61) 
( 1 1 , ) 1 2 M z  

For example, the matrix elements (1A-4) of the angular momentum vector (which 
is a tensor of rank I = 1) can be written 

( I M ’  l ( f ) A = i , , , \  I M )  = ( I ( I +  1))1/2<ZMlp 1 I M ’ )  (1 A-62) 

corresponding to 

<I l l ( l ) a= l l l I )  = ( I ( I +  1)(21+ l))l/Z (1 A-63) 

The commutation relations (1A-54) between I and an arbitrary tensor T,, can thus also 
be expressed in the form 

[I , , ,  T A L L , ]  

= (h(h + l))l’z<X ~ ’ 1 1 1  I p + p’> Ta (1 A-64) 

The relation (1A-61) expresses the reduced matrix element in the coupling scheme 
I1 + h = I , ,  but relations more symmetric in Zl and I ,  are obtained by viewing the 
coupling as one in which the three angular momenta produce a resultant zero (I, + 
h - I, = 0). The inversion of the direction of I, may be accomplished by a time rever- 
sal. 

We first illustrate the procedure for the scalar product of state vectors 

x (-1>’””’</3Z, -Mz 1 crZlM1) 

= (212 + 1)”2<fJz2 Mz I aZ1Mz) 6 ( 1 1 , I z )  (1A-65) 

where we have employed the relation (1A-12) and the notation A for the time-reversed 
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state F A .  In  a similar manner, the reduced matrix element can be written in the form 
(if we drop the indices a and p) 

< I ,  IIT~IIIi) = W 2  + 1)”2<12M2 IT>,\ I,> 
( ~ ~ i . ) r ~ ~ ~  

= <72  ITAI I ,> (1 A-66) 
( 1 ~ 1 ) r ~ ~ r ~ ; o  

The symmetry of the coupling scheme with respect to I ,  and I, (see Eq. (1A-22)) 
provides the motivation for the normalization chosen for the reduced matrix element 
(see also p. 8 5 ) .  

A nuclear transition I ,  --$ I2 involving the transfer of angular momentum A can be 
described in terms of a transition operator T,, , such that the transition amplitudes are 
proportional to the matrix elements (IA-60). The total transition probability, summed 
over p and over the polarization M 2  of the final state, is independent of M ,  and given 
by the reduced transition probability 

B ( T A ; I I + I Z ) =  1 ~ < I ~ ~ ~ ~ T A , , ~ I I ~ I > ~ ~  

=(211 + 1)-11<12 lITkllIl>12 
P’W2 

(1 A-67) 

For the inverse transition, Z2 + Z,, we have 

since the absolute value of the reduced matrix element is invariant under the inter- 
change of I ,  and I ,  (see Eq. (]A-79); for processes with transfer of charge or nucleon 
number, the left-hand side of Eq. (1A-68) involves the adjoint tensor T,“ (see 
Eq. (IA-76))). The relation (1A-68) expresses detailed balance for reaction rates 
averaged over polarizations. 

An advantage of using the quantity B (rather than the reduced matrix element) to 
express the total transition rate comes from the fact that many experiments directly 
determine B, while the determination of the reduced matrix element requires a know- 
ledge of the spin of the initial state. 

IA-5c 

If the dynaniical system is composed of two parts 1 and 2 (two particles or 
groups of particles, spin and orbit of a particle, etc.), one can characterize the 
operators not only in terms of the total tensorial rank (associated with rotations of the 
total system), but also in terms of the tensorial properties with respect to the two 
separate parts of the system. Thus, one can expand operators depending on the 
variables x, and x 2  (referring to the two parts of the system) in components of the 
form 

Reduced matrix elements for .coupled systeim 

(1 A-69) 

The reduced matrix element of this coupled tensor between states (1,12)1 and (IiIi)I’, 
where Z, and I ;  refer to part 1, and I , ,  I ;  to part 2 of the system with total angular 
momenta I and I ’ ,  can be expressed in  terms of the reduced matrix elements of F,, and 
G,, by means of a recoupling of the type (1A-24). The reduced matrix element is 



84 R O T A T I O N A L  I N V A R I A N C E  App. IA 

written in the form (1A-61), and after the recoupling, one employs Eq. (IA-58) and the 
orthogonality relations (1A-7) for the vector addition coefficients. Using again Eq. 
(1A-61) and expressing the recoupling coefficient in terms of a 9 j  symbol (see Eq. 
(lA-25)), one finally obtains 

<(1;1;)I ’ l l ( F A  1(xl)GA2(xZ)) 1 1  (11 I2)I) 
(a1a2)1 

= (21’ + 1)1’2<(IiIi)Z’M’ lFA1GAJ 1112)  
(I iI2)I,  (diA2)1; I ’ M ’  

= c <(IlZ2)1, (h1h2)h; 1‘ I (Ilhl)z:, (I2hz)z;; 1 ‘ )  
I(f11112 

x (21’ + l)1’2((ZlIi)I’M’ IFA~GA~I Z1Z2) 
(1 I d i ) I ” i ,  ( 1 2 A 2 ) 1 ” 2  ; I ’ M ’  

= (21’ + 1 ) 1 / 2  c <(Z112)1, (X1X2)X; I’ I (IlAl)I;, ( I 2  h2)z;; I ’) 
I “ l I ” 2  

X <I;M; I F.111 Ii><IiM; ~ G A z ~  1 2 )  
( I 1 1 1 ) l ” i M ’ ’ l  ( I z A ~ ) I ” ~ M ” ~  

= (21’ + l)’~2<(zlz2)z, ( h J 2 P ;  I’ I (zlhl)z;, (12h2)I; ; 1 ‘ )  

x < I ; M :  I F A ~ ~  I,><GM; ( G A ~ )  1,) 
( I ~ A I ) I ’ I M ’ I  (1222)I’2M12 

= ((2h + 1)(21+ 1)(21’ + 1>)1i2 A t  X z  (1; llF~l / I  11) <I; llG~2 / I  Iz> (1A-70) e,: : :.i 
In the special case of /2 = 0, the tensor product in Eq. (1A-69) is a scalar 

(FA(xl)GA(x2))0 (2x + c (-l)”-”FA,(xl)GI-.(x2) (1A-71) 
r 

(The conventional definition of the scalar product of two tensors omits the factor 
(- 1)’(2L + I)-’’* in expression (IA-71).) For the scalar product, the 9 j  symbol in Eq. 
(IA-70) reduces to a 6j  symbol (see Eq. (1A-26)), and we obtain 

< ( I l I 2 1  II(FA(~I)GA(X~))O I I  (fiZ2)I) 

x (1; I I F A I I I I )  (1; llCAllZ2) (1 A-72) 
As another application of the relation (1A-70), we consider the matrix element of 

a multipole operator FA receiving contributions from both parts of the coupled system 

<a;4(I iG)Z’  I IFA(X1) + F A ( x z ) I I  ala&lZ2)Z) 
= ((21+ 1)(21’ + 1))1/2 

The quantities a,, a2 and cii, a; are additional quantum numbers labeling the states of 
the two parts of the system. 



8 IA-5 SPHERICAL TENSORS F1.f 85 

I A-Sd Transformation under time reversal and Hermitian conjugation 

The reduced matrix element is, in general, a complex number. Its phase is related 
to the transformation of Ta, under time reversal. Since the 5 transformation inverts 
angular momenta, it transforms TAP into a tensor component of symmetry A, - p .  It 
is thus convenient to consider the combined transformation 95, where 9 is the rota- 
tion CA?,,(rr) (see Sec. 1 - 2 ~  as well as Appendix 1B). Usually, the tensors encountered 
transform into themselves under BY, except for a phase factor 

B?FTAP(CA?,F)-' == CY T A P  (1 A-73) 

(More generally, one can decompose Ta, into parts with the transformation property 
(1A-73).) From Eqs. (1A-53) and (1A-47) it is seen that the transformation (1A-73) is 
equivalent to 

FTApF- '  1 Cg(-l)A+'Tn-r (1 A-74) 

The phase factor cg is not an intrinsic property of T,, since it depends on the 
phase of the operator. Thus, by multiplying TA with a suitable phase factor, we can 
always achieve cg = + 1. 

If we assume that the nuclear states are phased according to Eq. (1-39), we obtain 
from Eqs. (1 -42) and (1A-73) 

Thus, the phase choice leading to cg = + 1 implies that all matrix elements are real. 
(For example, in the case of the electromagnetic multipoles, cg = + 1 is obtained by 
multiplying electric moments by ia and magnetic moments by i"' ; see Eq. (3C-10).) 

The symmetry of the reduced matrix element with respect to the interchange of 
initial and final states is related to the behavior of Tap under Hermitian conjugation. 
The Hermitian conjugate T:,, of a spherical tensor removes the angular momentum &I 
from the state on which it acts, and the operator 

<Zz llTAllIi)* =cg(Z2 IITAIIII) (1 A-75) 

T,$ = (-l)'+''(T~-n)' (1 A-76) 

is thus again a spherical tensor, as can be formally proved from Eq. (1A-53), using 
the symmetry relation (1A-38). From Eq. (1A-60) we therefore obtain, using Eqs. 
(1A-10) and (1A-1 I) ,  

( I ,  llT?Il12) =(-1> 11 + A - I Z  <Iz l l T A l l I i > *  (1A-77) 

If T,, is self-adjoint, that is, if 
T A P  = C H  T,H, (1A-78) 

the relation (1A-77) can be written 
( 1 1  IITAill2) = C ~ ( - ~ ) ~ ' + ~ - I ~  ( 1 2  l l T A l l I i ) *  (1 A-79) 

Combining Eq. (1A-79) with Eq. (1A-75), we obtain 

where 

While cg and cH depend on the phase of T,, and may take complex values, the product 

(11 IITAlIIl) = - - C ( - ~ ) ~ ' + ~ - I ~  (I2 I I T A I I I I )  (1A-80) 

c = - C g C f l  (1 A-8 1) 
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c is independent of the overall phase of TA, and equals + 1 or - 1. The phase factor c 
also characterizes the particle-hole conjugation of the operator T,, (see Eq. (3-13).) 
Values of c for one-particle operators are listed in Eq. (3-14). 

IA-5e Tensor properties of creation operators 

The operatorat(jm), which creates a particle in the statejn?, is them component of 
a tensor of rank j ,  as follows directly from the definition of tensor operators. The 
formalism based on annihilation and creation operators is discussed in Appendix 2.4. 
The transformation of at(jm) under time reversal is given by 

.Tat(jni).F-l = at(%) 

=(-l>j+"at(j -m) (1A-82) 

as can be seen, for example, by letting 9- act on the state J j m )  = at(jm)JO). The 
phase factor cg is therefore unity, and the matrix elements of at( jm) are real, in a 
representation with the phase convention (1-39). 

The Hermitian conjugate of a'(jm) is the annihilation operator a(jm), from which 
we can construct the tensor (see Eq. (IA-76)) 

- 
bt( jm) = a(jm) = (-l)j+"u(j-m) (I A-83) 

The operator bt(jm) may also be interpreted in terms of the creation of a hole state (see 
Sec. 3-1 b). From Eq. (1 A-77) we thus obtain 

(12 II~(~)III~> = (12 ilbt(j)il I ~ )  

(11 llat(j)llIz) (1 A-84) = (-1)12+J-11 

From products of at  and a operators, one can form the spherical tensors 

( 1  A-85) 

These are unit tensor operators from which arbitrary one-particle operators can be 
constructed. Thus, from Eqs. (2A-24), (1A-60)) and (1A-1 I), we obtain 

T,, = (2jz + l ) - l / z<j lmAp Ijzm2> <j2 I I T ~ l l j ~ ) a t ( j ~ m z ) a ( j l m , )  
j l m l  
Jzm2 

The operator ct(Ap) creating vibrational quanta may be chosen with a phase rule 
corresponding to Eq. (1A-82), 

I c + ( h p ) F - '  = Ct(&) 

= (- l)A+pc+(A -I.> (1A-87) 

and thus also has cg = 1 and real matrix elements. The conjugate tensor c(Ap) has 
matrix elements given by a relation similar to (1A-84). 
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1A-6 Transformation to Intrinsic Coordinate System 

In the description of many-body systems having a shape deviating from spherical 
symmetry (nonspherical nuclei, molecules, etc.), it is convenient to employ an intrinsic 
(or " body-fixed ") coordinate frame. The transformation of operators from the fixed 
frame (the laboratory system) to the intrinsic frame involves special features as a result 
of the fact that the orientation angles (o = 4, 8, $) of the intrinsic frame are to be 
regarded as dynamical variables. The states of orientation can be specified by the 
angular variables or by the associated angular momenta. 

The transformation to an intrinsic coordinate system is also employed in the 
description of the spin polarization of a particle in terms of the helicity. 

1A-6a 

We label the intrinsic axes by K = 1, 2, 3, and the spherical angular momentum 

Components of angular momentum with respect to intrinsic axes 

components 1: with respect to the intrinsic frame are thus 

1 
I:= * I  = 'F - I, & ;I,) 

(1A-88) 42 ( 

z;=o = I3 

The relation between I :  and the components referring to the fixed axes can be 
expressed in the form (see Eqs. (1A-52) and (1A-40)) 

(1A-89) 

B Ir 

The operators IP and 1: do not commute with the orientation angles, but the sums in 
Eq. (1A-89) are independent of the ordering of the 9 functions and I components, as 
can be seen from Eq. (IA-55) with T,, = Btv. 

Commutation relations involving the I: can be found by applying Eq. (1A-64) to 
the spherical tensors 9;" and I,, 

[I;, I,,] = 0 

[I;, f:,] = 42<1Vl"' I 1 ,  u + V ' > K + " ,  

[ I ; ,  9 j " , ( W ) I  = (- l)'(A(A + l))lQ(AY'l - Y I A, u' - v>9; ,  " 8  -"(w) (1 A-90) 

In terms of the Cartesian components, I , ,  the two last relations in Eq. (1A-90) can be 
written 

[II, 12] = - il, and cyclic permutations 

[II  f ;I* 1 9%,,(w>I = ((A f U X A  'F y + l))l/z% "T 1(w) (1A-91) 

[I,, 9iXw)l  = .%"(W) 

The commutation of I: with I ,  is a simple consequence of the fact that the 1; 
components are independent of the orientation of the external system, and thus scalars 
with respect to the rotations generated by the I,. The commutation relations of the 
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I: among themselves (and with Bi,) can also be obtained from geometrical considera- 
tions by interpreting the I: as the generators of infinitesimal rotations about the 
intrinsic axes. The operators I: describe the change in the state vector when the 
coordinate system (the fixed system) is rotated about an axis of the intrinsic frame. 
From this point of view there is a dissymmetry between the I: and the I, ,  since the 
latter give the effect of a rotation of the fixed system about one of its own axes. How- 
ever, we can also view the rotation operators in  a different way, which formally re- 
stores the symmetry between the two sets of angular momentum components. Thus, 
the effect on the state vector produced by a rotation of the fixed system is equivalent to 
the effect of the opposite rotation of the intrinsic system, that is, of the body itself. We 
can therefore regard the I: as the generators of inverse rotations by which the intrinsic 
system is rotated about one of its own axes. 

The commutation relations of the I( can now be obtained as for the I, (see Eq. 
(1-1 1)). For inverse rotations, we have 

[ 9 3 T 1 , 9 ; 1 ]  = - ((931 9?2)-1- ( 9 3 2 9 ? 1 ) - 1 )  (1 A-92) 

which implies that the commutators for the I: involve a change of sign with respect to 
those for I , ,  in accordance with Eqs. (IA-91). 

Similarly, the commutation relations between I ;  and the rotation matrix 9,”,(w) 
for finite rotations can be interpreted in terms of the relation (1A-64) applied to inverse 
rotations with respect to the intrinsic frame. 

Since the intrinsic components of the angular momentum vector commute with 
the space-fixed components, we can choose a representation that is diagonal in  I3 as 
well as in I ,  and (I)’. The eigenvalues of I ,  are denoted by K and the states may thus be 
labeled by the quantum numbers IKM (and an additional set tl representing operators 
commuting with 11,2,3 as well as with IX,,,J. 

The change of sign in the commutation relations for 11,2,3 as compared with those 
for Ix,y,z can be taken into account by representing 11,2,3 by a set of matrices that are 
the complex conjugates of those associated with I x , y , z .  In the standard representa- 
tion (see Sec. 1A-l), the complex conjugation simply implies a reversal of sign for 
I2  as compared with I,. The eigenvalues of I ,  are therefore (as for I,) K = - I ,  
- I  + 1, . . . , I ,  while raising and lowering operators are interchanged. The nonvanishing 
matrix elements of Zl,2,3 are 

<aIKM I I ,  1 u I K M )  = K 
( 1  A-93) 

( a I K F  lMjIl i121 a I K M )  = ( ( I &  K ) ( I +  K +  1))’” 

]A-66 

The state of orientation of the body-fixed system is completely specified by the 
three angular momentum quantum numbers IKM representing the conjugates of the 
three orientation angles w = (4 ,  8, $). The transformation from the basis set lo) with 
sharply defined orientation to the basis set I I K M )  may be obtained by employing 

Wave functions describing orientation of intrinsic system 
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the transformation (1A-34), with c1 = K, to a coordinate system Y’ with orientation 
o with respect to Y 

The state lo) with orientation o with respect to X has the orientation o = 0 with 
respect to X’, 

Iw>, = Iw =o>,. (1A-95) 

and the scalar product of the state vectors in Eqs. (1A-94) and (1A-95) gives the wave 
function 

@ r ~ d w )  <w I Z K W  

= c ~ ~ M , ( W ) < W  = 0 IZKM’) 

= ~ : K ( W ) < W  = O  I ZKM= K ?  

M’ 

(1 A-96) 

In fact, (o = 0 I ZKM‘) vanishes except for M‘ = K ,  since Z3 equals Z, when acting on 
the state I o = 0) (see Eq. (1A-89)). From Eq. (IA-41), it follows that the normalized 
wave function (IA-96) can be written, with a suitable choice of phase, 

(1 A-97) 

(It may be noted that the states IZKM) are not eigenstates of 9?F, since Z3 as well as I ,  
change sign under time reversal. This point is further discussed for the wave functions 
of deformed nuclei (Sec. 4-2) and for the helicity states (Sec. 3A-1).) 

The 9 functions can thus also be viewed as the wave functions describing the 
orientation of a dynamical system with specified angular momentum quantum num- 
bers Z, M ,  and K. In the special case of a single spin-zero particle in a potential (or the 
relative motion of two particles without spin), the intrinsic angular momentum K is 
constrained to have the value zero, and the orientation wave functions reduce to the 
more familiar spherical harmonics (see Eq. (I A-42)). 

While (I)* and Z, are constants of the motion for any system with rotational 
invariance, the commutator of the Hamiltonian with Z3 depends on the intrinsic 
dynamics of the system, and the stationary states do not, in general, possess a definite 
K value. (The conditions under which Z3 is an approximate constant of the motion are 
discussed in Chapter 4.) 

1 A-6c Intrinsic components of tensor operators 

For an arbitrary tensor operator T,, we can define intrinsic components Tiy in 
terms of the relations (see Eq. (IA-52)) 

(1 A-98) 

If the T components and the 9 functions do not commute, the ordering in Eq. (]A-98) 
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is significant. Instead of the products in Eq. (1A-98), we could have used symmetrized 
expressions in the definition of the intrinsic components. 

The intrinsic components Tiv are scalars with respect to rotations of the external 
system and thus commute with Z,. (The sum over p in Eq. (1A-98) is seen to be the 
scalar product of the two tensors 9:-v and T,, ; see Eqs. (1A-38) and (1A-71).) 

The commutation relations of the tensor components with Z: depend on the tensor 
properties of T,, with respect to intrinsic rotations, which are not in general related to 
those characterizing the behavior under external rotations. Two examples will illustrate 
this point. 

For TAP = .9~vo(co), the intrinsic components are c numbers (Tiy = 6(v, vo)) and 
thus scalars with respect to internal as well as external rotations, while T,, is a tensor 
component of rank 1 with respect to internal and external rotations. 

If T,, is a scalar with respect to internal rotations as for the angular momentum 
components Z,, , the intrinsic components Tiy form a tensor of rank II  with respect to 
internal rotations. 

1A-7 Transformation of Fields 

A field F ( r )  is an operator associated with the space point r. For given r, the 
field depends on the dynamical variables x of the system (such as positions, momenta, 
and spins of constituent particles), and the field operator may, therefore, be written as 
F(r,  x). (Note that the components of r are c numbers while the variables x are q 
numbers.) 

If we rotate the coordinate system from X to X’ ,  we have (in analogy to Eq. 

( 1 -4)) 
WF(r)W - = F’(r) (1A-99) 

where F’(r)  is the same function of the dynamical variables x’ (referred to X‘)  as 
F(r)  is of x, 

F’(r) = F(r, x’) (1A-100) 

A scalar field p(r) is characterized by its invariance with respect to rotations of 
the coordinate frame in the sense that its value, at a definite point in space, is the same 
whether described by an observer in X or in X’ ,  

p(r, 4 = dr’ ,  x3 (1A-101) 

or 

= p’(r’> (1 A-102) 

where r‘ and r are the coordinates, referred to X’  and X ,  of the same point in space. 
Combining Eq. (1A-99) with Eq. (1A-102), we obtain 

W-’p(r)W = p(r’) (1 A-103) 

as the formal expression for the scalar character of the field. (Note that Eq. (1A-103) 
involves the inverse transformation as compared with Eq. (1A-99), corresponding to 
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the fact that a rotation of the particle coordinates has the same effect on p as has the 
inverse rotation of r.) 

An example of a scalar field is the electric charge density, which for a system of 
point charges can be expressed in the form 

p d r )  = C e, s(r - rk) (1 A-1 04) 
k 

where rk is the position and ek the charge of the kth particle. 
A vector field, such as a current density j(r), transforms under rotations as a vec- 

tor, that is, a tensor of rank I = 1. If we employ spherical vector coordinates, we thus 
have (see Eq. (1A-52)), in place of Eq. (1A-102), 

im = c %uXu).&(r’) (1 A- 105) 
P’ 

or, by means of Eq. (1A-99), which holds for each value of p, 

In a similar manner, one can express the transformation of tensor fields of higher rank. 
The field at@, m,), representing the creation of a nucleon (spin 1/2 particle) at 

the point r with polarization rn, (see Sec. 2A-6) is a spinor field of rank 1/2, and its 
transformation is given by 

B - I u + ( r ,  m s ) 9  = C g , ! , ~ , ~  (u)ut(r’, mi) (1 A-1 07) 
m‘r 

One can also characterize the fields by their transformatioh with respect to the 
parity operation 

where 

$1 scalar field 
pseudoscalar field 

+ 1 axial vector field 
- 1 polar vector field 

n -  ’ - - 1 

n, = 

(1 A-108) 

(1 A-109) 

The spinor field satisfies the relation 

S a t @ ,  m , ) p - ’  =a+( - r ,  m,) (1 A-1 10) 

corresponding to the even intrinsic parity of the nucleons (see p. 14). 

1A-8 Field Couplings and Expansion in Multipole Moments 

The interaction of the nucleus with “ external ” systems, such as the electromag- 
netic or p fields, or the projectiles in direct nuclear reactions, is often expressed as a 
local field coupling, involving at each space point r the product of a density function (a 
field) depending on the nuclear variables and a density function involving the variables 
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of the external system. The expansion of such an interaction in terms of spherical 
tensors expresses the coupling in terms of nuclear multipole moments. 

IA-8a Scalar field 

A scalar coupling has the form 

H ' = p(r)V(r) dT (1A-111) i 
where p ( r )  is a scalar nuclear density, while q ( r )  is a scalar function depending on the 
external variables. The tensor structure of Eq. (1A-111) is obtained by expanding 
q(r)  in spherical harmonics, 

v ( r >  = C y L ( r )  y A U ( f )  (1 A-1 1 2) 
Ilr 

giving 

(1 A-1 13) 

Each term in Eq. (1A-113) is the p component of a spherical tensor of rank 1 in the 
nuclear variables, as can be seen from Eq. (1A-103) together with Eqs. (1A-46) and 
(1A-53). Since H '  conserves angular momentum (is a scalar for the combined systems), 
qAr is a spherical tensor component Ip in the variables of the external system. 

An example of a scalar coupling is provided by the Coulomb interaction between 
the nucleus and an impinging particle. The density p(r) is then the electric charge 
density of the nucleus while q(r )  is the electrostatic potential produced by the particle. 
Denoting the coordinates of this particle by rp and its charge by 2, e, we have 

The qAr, defined in Eq. (lA-112), are thus expressed in the form 

(1A-114) 

(1 A-1 15) 

It is seen that qAr is indeed a tensor component with symmetry Ip with respect to 
rotations of the external particle. 

The dependence of the interaction on the nuclear variables is especially simple if 
the particle does not penetrate into the nucleus (Coulomb excitation), in which case the 
Ap term in H '  is proportional to the electric multipole moment 

&(EX, p) = j p ( r ) r ^  Y d f )  d7 (1  A-1 16) 

If the particle penetrates into the nucleus, the interaction involves moments of the 
more general type 

~ ( p ,  ~ p )  = Sp(r)fA(r) y A u ( f )  dT (1A-117) 

where the radial form factor,f,(r) is obtained by an integration of q l p ( r )  with respect to 
the particle variable. Thus, if the nuclear excitation can be treated by first-order per- 
turbation theory, fI(r) is proportional to the matrix element of 'p&) between initial 



5 IA-8 EXPANSION I N  MULTIPOLE MOMENTS &I4 93 

and final state of the particle (which may, for example, be represented by “distorted 
waves”). 

As in the example of the Coulomb interaction, one can always express a scalar 
coupling (1A-111) in terms of multipole moments of the form (1A-117). For small r, 
the field q(r)  may be expanded in powers of r, and the leading order term in (plp(r) is 
seen to be proportional to r* (see, for example, Eq. (1A-115)). Thus, fA(r) in Eq. 
(IA-117) varies as r’ for sufficiently small r, and often it is convenient to normalize 
fA(r) in terms of the expansion 

about r = 0. The rate of convergence of the expansion (1A-118) depends on the 
momentum transfer in the interaction. Thus, for example, if the external system, before 
and after the interaction, is in a state of definite momentum (plane wave approxima- 
tion), the r dependence of the matrix element of q(r )  is given by 

< P Z  I d r ) l  p1> =exp{iq. rKpz I d r  =O)l P I )  

f d ( r ) = r a + c c * r A f 2 + * * .  (1A-118) 

1 (1 A-1 19) 
ti q 3 - (PI - P2) 

as follows from translational invariance, using the transformation &(a = -r) (see 
Eq. (1-6)). The exponential in Eq. (1A-119) may be expanded in spherical harmonics, 
and yields a radial form factor fA(r) proportional to the spherical Bessel function 
jA(qr). 

IA-8b VectorJield 

A vector interaction can be written 

H ’  = - j(r). A(r) d~ (1 A-1 20) s 
where j(r) is a nuclear vector density (such as the electric current or the spin density), 
while A(r) is a vector field produced by the external system. 

Vector fields can be expanded in the form 

where 

(1A-121) 

(1 A-1 22) 

is a vector spherical harmonic. The quantity GK,*,, is a tensor of rank A and component 
p, formed by coupling the tensor YK with the first-rank tensor e with components e, , 
each of which is a vector. The components e, have the property that 

V . e, = V, (1 A-1 23) 

for an arbitrary vector V. Thus, 

e,=, = e, (1 A-1 24) 

where e x ,  ey , and e, are unit vectors in the direction of the coordinate axes. 
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The vector spherical harmonics form a complete set of orthonormal functions for 
describing vector functions on a sphere, and can also be written in the form 

(A(2A + l))-l'z(rV + Af)Y,, 
- i(A(h + 1)) - 1/2(r x V) Y,, 

K = h - 1  
K = A  (1A-125) I ((A + 1X2A + l))-l/z(rV - (A + I)?) Ya,, K = A + 1 

@K*A, = 

where P is a unit vector in the direction of r. 
With the expansion (1A-121), the interaction (1A-120) becomes 

(1 A-126) 

Each term in Eq. (1A-126) is a spherical tensor component ,lp in the nuclear variables 
(obtained by coupling the tensor Y, of rank IC with the first-rank tensorj), and with 
respect to the external system. The dependence of the nuclear variables can be expressed 
in terms of the multipole moments 

(1 A-1 27) 

where the radial functions fKA(r) are obtained from matrix elements of A,,,, for the 
external system. If A(r) is expanded in powers of r, the leading-order term in AK,A,(r), 
and thus inf,.(r), is seen to be proportional to r". 

One can also characterize the vector structure of the fields in terms of their 
components in a coordinate system specified by the direction of r (helicity represen- 
tation). Denoting the components of e in this system by e, , we have 

and thus (see Eqs. (1A-42) and (1A-43)) 

- - 

with 

(1A-128) 

(1 A-1 29) 

(1A-130) 

The helicity representation Eq. (1A-130) forms an alternative complete ortho- 
normal set for expanding the vector fields. The associated multipole moments 
A(j, qAp) are obtained from Eq. (1A-127) by replacing @ with Y .  
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IA-8c Spinor$elds 

In the case of reactions involving the transfer of a nucleon, the interaction can be 
expressed in terms of a spinor coupling involving the field at@, m,) creating a 
nucleon at point r with polarization m, and a corresponding spinor quantity associated 
with the incident projectile and outgoing particle. The multipole expansion of at(r, m,) 
corresponds to the transformation to the single-particle quantum numbers nljm, 

(1 A-1 3 1) 

where a’(nljm) is a tensor component with 1p = jm  (see Sec. 1A-5e). 

1A-9 Tensors in Isospace 

The isospin dependence of operators can be characterized by their tensorial 
properties in isospace. The tensorial rank is denoted by t and the component is speci- 
fied by pr ; thus, a tensor FTPr is defined in terms of its transformation properties with 
respect to rotations in isospace or, equivalently, by the property that it transfers the 
isospin zpT to the stateon which it acts. For example, an operator that is independent of 
the isospin variables is an isoscalar (z = O), while an operator proportional to the 
isospin of a nucleon is an isovector (z = 1). The reduced matrix element in isospace 
can be defined by 

(T‘M; IFrFrI TMT)  = (TMTTPr I T‘M;>(2T’ + I)-”’<T’ I l F l I  T )  (1A-132) 

corresponding to Eq. (1A-60). 

rotation of - 
in analogy to Eq. (1A-74), 

For the extended time reversal operation 9, which is the product of F and a 
about the y axis in isospace (see Eqs. (I  B- 15) and (1 B-l6)), we have, 

9 F A , , , , ,  9-’ = cp(- 1)” + #  + *  + p r F A - , , , z - , r  (1 A- 133) 

The phase factor cg gives the phase of the reduced matrix element 

<Z’T’IIIF“rlll IT)* = ~ s < ~ ’ ~ ’ l / / ~ ~ z l l l  IT> (1A-134) 

We have used a triple bar to emphasize that the matrix element is reduced in spin- 
orbital space as well as in isospace. 



APPENDIX 

Time Reversal 

The general properties of the time reversal operation have been considered in 
the text (Sec. 1-2c). In this Appendix we give some further details, discuss a few simple 
examples, and extend the formalism to include states associated with scattering and 
decay processes. 

1B-1 Single-Particle States 

We first consider the effect of time reversal on the wave function qA(r) of a single 
particle without spin. The time-reversed state A = 9-A has the same spatial density 
distribution as A,  while motions are reversed, and the wave function is simply obtained 
by complex conjugation of qA, 

The reversal of the motion can be seen, for example, by expanding in the components 
with momentum p, 

v,(r) = jd3p c,(p) exp(i p r] 

cp;i(r> = Sd3p cz(p> exp [ - f - p 4 r 

PA4 = v39 (1B-1) 

(1 B-2) 

If we consider time-dependent wave functions, the effect of 9- also reverses the 
development in time. In fact, by applying the time displacement operator (see Eq. 
(1-8)), we obtain 

(1B-3) 

= p;(r, - t )  

The Hamiltonian H is assumed to be time reversal invariant and thus a real operator. 
(For H(r, p) = H(r, -ihV,), this assumption implies H(r, p) = H(r, -p).) 

96 Ff$ 
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The wave function cpA(r) is the component of l A )  in the coordinate representation 
Ir>, 

TA(r) = (r I A )  ( 1 B-4) 

The simplicity of the time reversal operation in this representation arises from the 
invariance of the states Ir), 

Fir>= Ir) (1 B-5) 

Thus, we obtain (see Eq. (1-33)) 

(1 B-6) 

as the formal derivation of Eq. (1B-1). 
The time reversal operator can be written as a product of a unitary operator 

4!lT and the complex conjugation operator K (see Eqs. (1-31) and (1-32)). The relation 
(IB-6) implies that, in the coordinate representation, the unitary operator Q3- is the 
identity operator. 

In the momentum representation, we may determine the effect of 9 by employ- 
ing Eq. (1B-5) and the transformation from Ir) to Ip), 

Ip) = (2nh)-3/2 d3r exp - p . r lr) 

( 1 B-7) 
s (: 1 
i ( d )  9 Ip> = (2Th)-3'2 d 3 r  exp - - p . r Ir) 

In this representation, therefore. +YT is an operator that transforms p to -p,  and is 
equivalent to the parity, 9. 

In the angular momentum representation, the basis states, specified by r and 
the orbital angular momentum lm, are chosen such that 

<r I rfm> = it ~ d a ,  y )  (1 B-8) 

The phase factor i' makes it possible to express F in terms of a rotation W of 180" 
about the y axis (9 -+ TC - 9; cp + IZ - q). In fact, as can be seen from Eq. (1B-6), 

Y 1 r fm)  = ( - 1 ) I  + fl I rl - m )  

= 9-' Irfm> (1 B-9) 

Thus, in the biisis Irlm), the unitary operator 4!ly equals W-'. (We have chosen to 
write 9-' rather than 9 in Eq. (1B-9); the two operations are identical for integer 
values of the angular momentum.) 

In momentum space, the basis Iplrn) is defined by a relation corresponding to Eq. 
(1B-8), but without the phase factor i'. The time reverse of Iplm) is equal to 
(- 1)""'lpl- m), where the factor (- 1)' arises from the fact that 9 inverts the 
direction of p. We thus again obtain = 9 - l .  

The relation 4!lF = 9-' also applies to the description of the spin. The 
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conventional representation of the Pauli 

ax = 2sx = (" 1) 
1 0  

spin matrices 

0 --i 
a> = 2SY = i j  o) 
i l  o\ (1 B-1 0)  

is characterized by ox and oZ being real matrices, and o,, purely imaginary, that is, 

K(sx, S Y  , s x  = (sx , -s, , SJ 

%&, s y  , sz)%gl = (-&, s y , -sz) 

%r = 9-' = exp{imy} = ia, 

Since F inverts all components of s, we have 

which is satisfied for 

(1B-11) 

(1 B-12) 

(1 B-13) 

1B-2 Many-Particle States (Bound Systems) 

For a many-particle system we can choose basis states specified by radial variables 
together with orbital and spin angular momenta of the individual particles. In this 
basis, the unitary operator %y associated with time reversal equals the rotation 2-l 

acting on all the particles, 
%s = 9-' = exp(i.rrZ,) (1B-14) 

Thus, the operation 2F is simply the complex conjugation K .  This relation is not 
affected by couplings of the individual angular momenta, since the vector addition 
coefficients are real in the standard representation (see Sec. 1A-2). 

If the Hamiltonian H is invariant with respect to 9F, we can choose a set of 
eigenstates of H that are also eigenstates of 9F = K .  Since the eigenvalue of K 
depends on the overall phase of the eigenstate, we can always choose the phases such 
that K = BF = + 1. Such a state is characterized by real wave functions in the radial 
variables. The phase convention 2F = + 1 leads to the relation (1-40) and is adopted 
throughout the book in the description of bound states (except where explicitly 
stated). States describing collision processes do not have the time reversal invariance 
of the bound states, and will be considered in the following section. 

For isospin-dependent operators, it is sometimes useful to employ an extended 
time reversal operation 

which reverses not only velocities and spins, but also the direction of isospins (in- 
version of the "motion" in isospace). The action of 9 on a state with the standard 
phasing is given by 

9 = exp{inT,}F (1 B-15) 

fIZMTMT> = ( - l ) '+ '+T+M T I Z  - M T  -MT> ( I  B-16) 

as follows from Eqs. (1-40) and (1A-47). 
In the above discussion we have linked the F transformation to the rotational in- 

variance. For F-invariant systems that are not invariant with respect to 92, we may employ 
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basis states that are eigenstates of 5 itself, provided the number of particles, n, is even. One 
may obtain such an orthogonal basis by starting from an arbitrary state IA >. 

If this state is an eigenstate of F, we can choose its phase such that the eigenvalue of 
9 is +1 (see Eq. (1-37)). If IA> is not an eigenstate of 5, we construct 

IA’> = CA(1 + n I A )  (1 B-17) 

where the normalization factor cA is taken to be real. Since Fz = + 1, when operating on a 
state of even n (see Eq. ( I M I ) ) ,  it follows that = 1.4’). Next, select a state B orthogonal 
to A’ and (if B is not an eigenstate of F) construct 

IB’) = CS(1 + m IB) (1 B-18) 

which is seen to be orthogonal, to [ A ’ )  and to satisfy S I B ’ )  = IF). Proceeding in this 
manner, one may obtain a complete orthonormal basis of eigenstates of 9 with eigenvalue 
+ 1. In this basis the matrix elements of a 5-invariant operator, such as the Hamiltonian, 
are real, as fol\ows from Eq. (1-34). 

For a system with an odd number of fermions, there are no eigenstates of F (see the 
discussion following Eq. (1-41)), but one can construct an orthogonal basis in which the 
states are pairwise F conjugate. Thus, starting from a state IA >, we form F I A  ), which is 
orthogonal to I A )  as a consequence of the relation 5* = -1 (see Eq. (1-41)), 

( 5 A I A ) =  - (AI5A)*  

= - < 5 A / A ) = O  (1 B-19) 

Next, we select a state ( B )  that is orthogonal to [ A >  as well as to 5 1 A )  and form FIB) ,  
which is readily seen to be also orthogonal to [ A >  and / F A ) .  In this manner one may 
continue to form a complete basis. 

For such a basis, it is convenient to use the notation lap), where p takes the values + 1 
and -1, such that 

(1 B-20) 

The total vector space is thus regarded as the product of an a space and a p space. In p space 
the operators are 2 x 2 matrices and can be expressed as linear combinations of the unit 
matrix po together with the three Pauli matrices p = (pl, p z ,  p3) (see Eq. (IB-10)). A general 
operator T can thus be written 

T = T o p o + i T . p  
3 

= Topo + i TJPJ 
j =  1 

where To, TI, T2, and T3 are matrices in ci space. 
For the basis states (1B-20), the time reversal operation is represented by 

% F = (  0 1  ) = i p 2  
-1 0 

(1 B-21) 

(1  B-22) 

in analogy to the relation (IB-13) for time reversal in spin space. Hence, we have 

y p 0 y - - 1  = Po T p T - - 1 =  -P (1B-23) 

and 

F T 9 - l  = T$p0 + iT* * p (1 B-24) 
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A time reversal invariant operator T is therefore characterized by having real matrices 

T$=To  T * = T  (1 B-25) 

In Eqs. (1B-24) and (1B-25), the operator T* i s  obtained by a complex conjugation of the 
Cartesian components T, . 

Since the matrices po , p are Hermitian, we obtain the further relations 

T J =  To Tt=  -T (1 B-26) 

for a Hermitian operator T. An operator of the form (1B-21) satisfying Eqs. (1B-25) and 
(1B-26) is referred to as a real quaternion operator (the elements of the quaternion are 
defined in terms of four basic matrices p o  and -ip). The transformations that preserve the 
relationship ( I  B-20) among the basis states form a symplectic group. For a discussion of the 
quaternion representation and the symplectic transformations, see, for example, Dyson 
(1962b). 

1B-3 Collision Processes 

While the stationary bound states, for a time reversal invariant Hamiltonian, 
are invariant under Y, apart from the change of orientation (see Eq. (1-39)), the 
states describing a collision process are unsymmetric with respect to  F, since such a 
process has a definite direction in time. Thus, a collision state is characterized by a set 
of incident particles (or nuclei), which may scatter or produce new particles. We denote 
such a state by IA in), where the quantum numbers A specify the momenta, spin 
polarization, and internal structure of the incident particles. For t 4 - co, the state 
I A in) represents the freely propagating incident particles, which can be described by wave 
packets with dimensions so large that the indeterminacy in momentum and energy 
can be neglected. If we analyze the collision state in terms of spherical waves describing 
the relative motion of the colliding systems and products formed in the collision, the 
state IA in) may also be characterized by the asymptotic boundary condition that 
incoming spherical waves are present only in the incident channels specified by A .  

The analysis of a collision process involves a conjugate set of states IB out) with 
the property that, for t + co, they develop into large wave packets associated with 
outgoing collision products B. In fact, the detection of products B corresponds to the 
determination of components IB out) in the collision state IA in). The transition 
amplitude for the reaction A -+ B is, therefore, 

<BI SI A )  = (Bout] A in> (1 B-27) 

which is referred to as the S-matrix element. 

in-state into an out-state 
If the Hamiltonian is time reversal invariant, the operator .7 transforms an 

(1 B-28) 

where 2 is obtained from A by reversing momenta and transforming spins and angular 
momenta in accordance with the relations given above (Ipm,) = (- l)s+msl -p -ms), 

- 
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etc.). From Eq. (1B-28) we obtain (see Eq. (1-33)) 

<BISI A )  = (Bout ]  A in) 

= ( B  in\ A out)* 

= <A out I Bin)  

= (AJSIB) (1 B-29) 

as an expression for the time reversal invariance of the S matrix. The equality (1B-29) 
implies the reciprocity relation for the cross sections for inverse reactions (see the 
discussion in connection with Fig. 1-4, p. 28). In  the case of elastic scattering, the 
amplitudes (BISIA) and (AISJB)  are related by rotational invariance, and  Eq. 
(1B-29) may thus restrict the possible form of the angular distribution and polarization 
(see the discussion in connection with Fig. 1-6, p. 30). 

The relationship between the elements of the S matrix and the scattering cross sections 
can be obtained by evaluating the number of transitions per unit time and dividing by the flux 
of particles in the incident channel. We shall give the relation for reactions involving two 
incident and two outgoing particles (each of which may be a composite system). 

The two-particle states may be specified by the total momentum P, the total energy 
E in the center-of-mass system, the direction of the momentum p of one of the particles in 
the center-of-mass frame, and additional quantum numbers a. specifying the intrinsic structure 
and polarization of the two particles. Since the collision conserves P and E, the S-matrix 
element can be written 

< P B E ~ $ B ~ I  s l P ~ E ~ C r l a ) =  < P B P ~ S ~  P A M )  &PA -Ps) 6(EA -EB) (1B-30) 

where the factor multiplying the 6 functions may be referred to as the reduced S-matrix 
element. Assuming the two-particle states to be normalized per unit total momentum, total 
energy, and solid angle in relative motion, we can write the reduced S-matrix element in the 
form 

i 
< p B P I S l p 4 a >  s ( $ 4 - ~ B ) 6 ( a , B > f - ( ( P A P B ) 1 ' Z f ( P A M ~ P B 1 9 )  (1B-31) 2rfi 

The first term in Eq. (1B-31) is the value of S in the absence of interactions, while the second 
term is the transition amplitude. The scattering amplitudefintrodufed in Eq. (1B-31) may be 
regarded as defined by this relation. 

The number of transitions per unit time and unit solid angle is 

d Z N ( p A  a. 4 P s  8) 
dt dQ 

1 
2rti = - 1 < P E P \  SI P A  - a($, - 5 s )  ~ ( M I  p)s>l' (1 B-32) 

and since the flux of incident particles associated with waves normalized per unit energy is 

(1B-33) 

we obtain the differential cross section 

( 1  B-34) P S  

P A  
d a ( P A  + P E P )  = - I f ( p . 4  a + . P E P )  1 dQ 

(In the helicity representation, we employ wave functions normalized to the total solid angle 
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8n2 as in Eq, (3F-5). The scattering amplitude f is still defined by Eq. (1B-31) and is there- 
fore reduced by a factor 2n. The flux (1B-33) is reduced by the same factor, and the expression 
(1B-34) for the cross section therefore contains an extra factor 2n; moreover, the element of 
solid angle is 2n sin 8 d8 dp) 

The scattering amplitude, defined by (lB-31), involves the momenta pa and ps in a 
symmetrical way. The time reversal relation (1B-29) thus implies 

- -  
f ( P a “ - f P B B ) = f ( P B B - f P a a )  (1B-35) 

1B-4 Decay Processes 

The decay A ---t B of an unstable particle or of a nuclear state, A ,  into two or 
more particles represented by the state B is related by time reversal to the inverse 
process B + 2, by which incident particles in the state B form the system A. 

If the decaying state has a lifetime long compared to the periods of internal 
motion, one can describe the decay as a perturbation caused by some small part H’ 
of the total Hamiltonian. For example, H‘ may represent the part of the interaction 
that violates the symmetry responsible for the stability of A (weak or electro- 
magnetic interactions, etc.). To leading order in H‘, the decay is determined by the 
matrix element (B out1 H‘ IA)  where the final state IB out) represents the motion 
of the decay products in the absence of H .  

If the total Hamiltonian including H’ is time reversal invariant, we obtain the 
relation (see Eqs. (1-34) and (1B-28)) 

<Bout I H ’ I  A )  = < A I H ’ ~ Z  in) (1 B-36) 

connecting the decay matrix element to that of the formation process. 
We can obtain an additional relation between formation and decay matrix 

elements in terms of the scattering matrix for the channels B representing the final 
states of the decay process. The scattering consists of a resonant part associated with 
the formation of the intermediate state A and a nonresonant part describing the 
scattering in the absence of the interaction H. Since we consider only leading order 
effects in H ,  we may neglect the resonant part of the scattering. In evaluating the 
formation matrix element, we insert a complete set of outgoing states I B’out) and 
employ Eq. (1B-27) for the scattering amplitude, 

( A I H ’ I  Bin> = C ( A  I H ’ I  B’out) <B’ out1 Bin) 
B’ 

= c <B’I so I B )  (B’ out I H’I A)*  (IB-37) 
B’ 

where So is the scattering matrix in the absence of H‘, Thus, by combining Eqs. 
(1B-36) and (1B-37), we obtain restrictions on the decay amplitude itself, as a conse- 
quence of 9- invariance. 

These relations take an especially simple form if we employ a set of scattering 
states B that are eigenstates of So 

(B’I So I B )  = S(B, B’) exp(2i8,) (1 B-38) 

where the phase shift 6, in the channel B is a real number. (The possibility of trans- 
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forming the So matrix to the diagonal form (1B-38) with real phases 6, expresses the 
unitarity of S o ,  that is, the completeness and orthonormality of each of the sets of 
states I B in) and I B out)). From Eqs. (1 B-36) and (1B-38) we then obtain 

<BoutIH’IA) = exp{2i6s}~BoutIH’IA>* (1 B-39) 

(The phase shift is the same in channels B and B, as a consequence of Eq. (1B-29).) 
The phase shifts 6, in Eq. (1B-39) can be determined experimentally from the non- 
resonant scattering. If the structure of the final state interaction is known, the phase 
shifts can be computed theoretically. For example, in a B-decay process, the phase 
shifts result from the effect of the nuclear Coulomb field on the motion of the emitted 
electron. 

In the case of y decay (or fl decay of light nuclei), the final state B can be approxi- 
mately described in terms of freely moving particles (6, < 1). We then have ( B  in) M 

IB out) and it follows from Eq. (1B-36) that the decay amplitude for the process 
A -+ B, where B specifies the direction and polarization of the decay products, is the 
complex conjugate of the amplitude for A 4 B ;  in particular the rates of the two 
decays are equal. 

The relationships discussed above can also be viewed in terms of the resonance 
scattering analysis (see Appendix 3F). 



APPENDIX 

1c 

Permutation Svmmetrv 

The identity of the nucleons implies 
with respect to the permutations Pjk that 

that the nuclear Hamiltonian is invariant 
exchange all the coordinates of the two 

particles j and k .  These transposition operators are therefore constants of the motion, 
and we can classify the eigenstates of the Hamiltonian in terms of the quantum num- 
bers that describe the permutation symmetry. The Fermi statistics of the nucleons 
only permits physical states that are completely antisymmetric and, thus, in the 
absence of any additional degeneracy or invariance, the consequences of the permu- 
tation symmetry (though very far reaching) would be fairly t r i ~ i a l . ~  

In many nuclear physics problems, the Hamiltonian not only is invariant with 
respect to permutations involving the complete set of coordinates, but, in addition, 
is approximately invariant with respect to permutation operators that act on a 
partial set of coordinates for each nucleon. For example, the charge independence of 
the nuclear forces implies that the Hamiltonian (with neglect of electromagnetic and 
weak interaction effects) can be written in a form in which the isobaric variables of the 
nucleons do not explicitly appear (see p. 34). Such a Hamiltonian is obviously in- 
variant with respect to permutations PJk that act only on the isobaric coordinates of 
the nucleons, and is thus also invariant with respect to permutations that act on the 
space-spin coordinates, PjrkP:k. In some cases, it is of interest to study Hamiltonians 
that are invariant separately under the permutations Pjk, P:k, and P;k. 

The occurrence of these additional symmetries implies that the eigenstates can be 
characterized by additional quantum numbers describing the symmetry of the state 
with respect to the permutation operators that act only on the partial set of coordi- 
nates of the nucleons. 

The above remarks refer to particles obeying Fermi statistics, but very similar 
problems arise for systems of bosons. In the description of nuclear properties, one 
encounters boson systems, for example, in the treatment of excitations in terms of 
vibrational quanta (see especially Chapter 6),  and in the treatment of the harmonic 
oscillator shell structure in terms of the oscillation quanta (Appendix 7B). The wave 
function for such a system must be totally symmetric with respect to permutations 

’ The treatment of antisymmetric many-particle states in terms of particle creation operators is 
discussed in Appendix 2A. 

104 b[j 
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involving all the coordinates of each boson, but additional symmetry quantum numbers 
play a role if the Hamiltonian is approximately invariant with respect to permutations 
acting on only a partial set of coordinates of each boson. 

The transpositions Pjk  can be multiplied together to yield a quite general permu- 
tation P. For an n-particle system, there are n! different permutations P, and the set of 
these operators forms a group called the symmetric group of n objects, S, . Thus, the 
systematic discussion of the permutation symmetry of functions depending on n 
variables amounts to a study of the representations of the group S,, . In the present 
appendix (Sec. 1C-l), we shall introduce the main concepts that are needed in this 
study, derive the results for the simple cases of n = 2 and n = 3, and attempt to make 
plausible the results for general n ;  these results can always be obtained by straight- 
forward extensions of the elementary methods employed for n = 2 and n = 3, though 
usually the extensions are tedious and the powerful mathematics of abstract group 
theory may be exploited to advantage in demonstrating general results appropriate to 
an n-body wave function.' 

In  all the examples mentioned above, the particle variables in one (or more) of the 
spaces are limited to a finite number of discrete values; thus, the isospin variable of a 
nucleon may take only two values, the quanta of the harmonic oscillator motion can 
have three directions, and so on. In this situation, it is convenient to build the wave 
functions from appropriately symmetrized product states (Sec. 1C-2). 

The relationship between the different possible product states, belonging to a 
given permutation symmetry, can be studied in terms of the unitary transformations 
between the different states of the single-particle basis ; these transformations are 
therefore intimately related to the permutation symmetry, and we shall consider some 
aspects of this relation in the last section of this appendix. 

1C-1 Symmetry Quantum Numbers (Partitions) 

1C-la n =  2 

Any function depending on the coordinates of two particles may be thought of as 
the sum of a symmetric function @,(l, 2) and an antisymmetric function Qa(1, 2). The 
permutation operator PI 2 ,  which interchanges the coordinates of particle 1 and particle 
2, yields 

(1C-1) 

Hence, the functions Qi, and Qia go into themselves under the action of P I , ,  which can 
also be expressed by saying that these functions each carry a one-dimensional repre- 
sentation of the symmetric group S, . 

* For a more systematic treatment of these questions employing the methods of group theory, 
see, for example, Bayman (1957), Hamermesh (1962), and Littlewood (1950). 
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With a view to the more systematic notation applicable for general n, we may 
associate each of the representations of S2 with a Young diagram consisting of 
2 (=n) boxes. Two boxes placed in a row, 01, label the symmetric functions, while 

two boxes placed in a column, , label the antisymmetric functions. The R 
U 

diagram may also be characterized by giving the number of boxes in each row; thus, 

s = m = [2], while a = 

partitions of the number n = 2. 

= [ll]. The symbols [2] and [ l l ]  are referred to as El 
1C-Ib n =  3 

There are six (= 3 !) permutation operations that can be performed on a three- 
particle function ; the identity operation, the three transpositions, and the two cyclic 
permutations of all three coordinates 

e 

P12, P13, PZ3 

P I 2 3  9 P I 3 2  

e@(l, 2, 3) = @(l, 2, 3) 

P12 @(I, 2, 3) = @(2, 1 ,  3), etc. 

P I 2 3  @(I, 2, 3) = @(2, 3, I), etc. 

(1 c-2) 

For any n, one can distinguish between even and odd permutations, depending on 
whether they involve an even or odd number of transpositions. Thus, for n = 3, the 
even permutations are e, Pi,,, P132, while the odd permutations are Pi,, P,, , PI,. 
Denoting the number of transpositions in a given permutation P by the symbol p ,  
we have (- l ) p  = + 1 for the even permutations and (- l ) p  = - 1 for the odd per- 
mutations. 

Functions depending on the coordinates of three particles can be divided into 
three symmetry types under the action of the operators (1C-2): 

(a) Completely symmetric functions, for which 

P,k@Sl, 2 , 3 )  = @,(1,2, 3) (1 C-3) 

for any transposition Pjk  . Such functions are also invariant under the cyclic permuta- 
tion operators PI,, and PljZ,  which can be written as products of two transpositions. 
The symmetric representation of S3 is labeled by a Young diagram with three boxes in 
B row, m], or by the partition [3]. The projection operator 9, which picks out 
the symmetric part of any three-particle function, can be written 

9=,;p 1 
(1 C-4) 

where the sum is over all six permutations in S,  . The normalization in Eq. (1C-4) is 
chosen so that the projection operator is idempotent, 9’ = 9. 
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(b) Completely antisymmetric functions, for which 

P , k @ A l ,  2, 3) = --@Al, 2,3) (1 C-5) 

for any transposition P j k .  Functions with this property are invariant under cyclic 
permutations. The antisymmetric representation of S3 is labeled by a diagram with 

three boxes in a column, , or by the partition [I l l ] .  The projection operator, d, 

that picks out the antisymmetric part of a general three-particle function may be 
written 

€I 
1 d = - c ( - 1 ) P P  
6 ,  

(1 C-6) 

where (- 
(c) Functions of mixed symmetry. These functions are characterized by the fact 

that they give zero when acted on by the symmetrizing operator, 9, and when acted 
on by the antisymmetrizing operator, d. Examples of functions of mixed symmetry 
are 

is the parity of the permutation defined above. 

(1 C-7) 

where x, is any variable associated with particle 1. Since @(’) = -+(I + 2P,,)  @(I), 

it is seen that @(l)  and @(’) go into each other under appropriate linear combinations 
of the permutation operators. Moreover, it can easily be verified that the result of any 
of the six permutation operators (IC-2) acting on @ ( I )  or @(’) can be expressed again as 
a linear combination of @(I) and @(’). The two functions (1C-7), therefore, carry a 
two-dimensional representation of S,  . 

As an alternative to the basis function (1C-7) we could, of course, have used any 
pair of independent linear combinations of @ ( l )  and @(2). The particular choice (1C-7) 
is characterized by having definite permutation symmetry with respect to the coordi- 
nates of particles 1 and 2 (that is, P ,  @(I) = @(I) and P ,  @(’) = - @(’)). 

The functions (1C-7) are examples of a more general class of functions carrying 
the mixed symmetry 

1 
@ ( I )  =- 

4 6  

1 

(TI )v2(x2)9)2(x3) + v2(x I )PI (x2)p)2(x3) - 2p)2(xI)p)2(x2)p)1 (x3)) 

(1C-8) 

@(’) =.\/2 (p)1(x1)v2(x2)v2(x3) - p)2(xl)vl(x2)p)Z(x3)) 

For cpl(x) = x and cp2(x) = const., these functions reduce to the form (1C-7), apart 
from the normalization. If cpl(x) and q 2 ( x )  are orthogonal and normalized single- 
particle functions, then also the functions @ given by Eq. (1C-8) form an orthonormal 
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set. The permutation operators acting in this space are represented by the following 
matrices : 

P13 = 

e=(: y )  PI .=( '  0 - 1  O )  

1 
2 
- 

(1 c-9) 

which are seen to be unitary (and real orthogonal on account of the phase choice in 
Eq. (1C-8)). Equivalent unitary representations are obtained by unitary transforma- 
tions of the basis set (IC-8). 

The two-dimensional mixed symmetry representation is irreducible. A represen- 
tation is referred to as irreducible if it is not possible to divide the total vector space 
spanned by the basis states into subspaces that are invariant under all the permuta- 
tions of the group. If such subspaces existed, it would be possible by a linear trans- 
formation of the basis states to transform the matrices representing the permutation 
operators into a form consisting of quadratic blocks along the diagonal with zero 
matrix elements outside the blocks. A representation of this type would thus be 
reducible into representations of smaller dimensions (which might or might not them- 
selves be irreducible). In the special case of a two-dimensional representation, reduci- 
bility would imply that all the permutation matrices could be simultaneously diagonal- 
ized, and this is clearly not the case for the matrices (1C-9). It may be noted that the 
irreducibility of a representation of the permutation group can be tested by consider- 
ing only the transpositions between adjacent particles (P,  , and P,, in the case of S,). 
These permutation elements are referred to as generators of the permutation group, 
since all the permutations can be expressed as products of the adjacent transpositions. 

EP O r  by 

The mixed symmetry representation of S, is labeled by the diagram 

the partition [21]. The particular set of basis states (1C-8) can be further specified by 
their symmetry with respect to permutations acting on the first two particles; thus, 
@(I)  belongs to the symmetric and to the antisymmetric representation of the sub- 
group S, consisting of e and P,, . We can therefore label the function @(') by the two m and @(,) by the diagrams (87, 8). Alternatively, the 

functions are labeled by Young tableaux, in which the numbers I ,  2, and 3 are placed 
in the boxes of the diagram in such a manner that the removal of the box with the last 
number, 3, leads to the diagram specifying the representation of S ,  to which the func- 

diagrams itp ) 

tion belongs. Thus, @(') is labeled by the tableau , and @ ( 2 )  by the tableau 
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and 2 for but in these cases the functions are already fully specified by the I4 
U 

diagrams, since a totally symmetric (antisymmetric) function is necessarily symmetric 
(antisymmetric) with respect to particles 1 and 2.) 

Besides the definition of the symmetry type [21] given above, it is possible to 
define this symmetry in other, but equivalent ways. For example, a function of type 
[21] can be characterized by the following two properties : (a) the function vanishes 
when acted upon by the symmetrizing operator, 9'; (b) it is possible to find linear 
combinations of the permutation operators that, when acting on the function, yield 
a state that is symmetric with respect to interchange of particles 1 and 2 (see, for 
example, @(') above). Still another definition of [21] is a function that gives zero when 
acted on by the antisymmetrizing operator, d, while the action of appropriate linear 
combinations of the permutation operators can yield a function that is antisymmetric 
with respect to interchange of particles 1 and 2 (see, for example, @(2) above). 

The possibility of these alternative definitions results from the fact that, if it is 
impossible to make a function symmetric in all three coordinates, this must imply that 
there is effectively at least one antisymmetric bond, and by acting with appropriate 
linear combinations of the permutation operators, we can bring the function to a form 
that explicitly exhibits this antisymmetry. Similarly, if it is impossible to antisym- 
metrize in all three particles, this must imply that there is effectively a symmetric bond 
in the wave function. 

The two projection operators that pick out the [21] parts of a general function 
are 

(1 c-10) 

where y1 projects onto functions of type @('I, while 8, projects onto functions oftype 
@(2). 

The three types of symmetry found above exhaust the possibilities for n = 3, as 
can be verified by noticing that 

e =d+ Y + PI + 9, (1C-11) 

Thus, any function can be broken into parts having the three symmetries described 
above, and there are no parts left over, after these symmetries have been accounted for. 
Using the results of formal group theory, we could have concluded immediately that 
our enumeration of the irreducible representations of S ,  was complete, since the 
number of such representations is equal to the number of classes (= 3 for S,) or, 
equivalently, by employing the fact that the sum of the squares of the dimensions of 
the irreducible representations is equal to the number of operators in the group ( = 6  
for S3).  For a discussion of these theorems, see, for example, Hamermesh (1962, 
pp. 68 ff.) 
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The above discussion has illustrated the simple relationship between the permu- 

tation symmetries for n = 2 and n = 3, which can be summarized in the following 
results : 

(a) The diagrams labeling the irreducible representations of S, are obtained by add- 
ing a block to the diagrams for s,, subject to the constraint that the length of a row 
(and a column) must not exceed that of preceding rows (and columns). 

(b) The dimensionality of a representation of S,  is equal to the number of ways in 
which the representation can be obtained from representations of S,  in the manner 
stated above. Thus, the representations [3] and [1 1 I ]  can only be derived from [2] and 
[ll], respectively, and are one dimensional, while the representation [21] can be derived 
from [2] as well as from [ 1 1 ]  and is two dimensional. 

(c) For a multidimensional representation of S 3 ,  one can construct a basis (the 
standard basis) in which each member transforms irreducibly with respect to the 
S, subgroup consisting of the permutations acting on the first two particles. 

It is found that these results can be simply generalized to give the relationship 
between the irreducible representations of S, and Sn-l for arbitrary n. Thus, the sym- 
metry types for functions depending on the coordinates of n particles can be obtained 
by successively adding particles, starting from n = 2 and n = 3. 

1C-lc Partitions for general n 

For functions involving the coordinates of n particles, the symmetry " quantum 
numbers " labeling the irreducible representations of S, are written [ fly2 - . -fk] 
(sometimes shortened to [ f I), where the f j  are integers obeying fl 2 f 2  2 * * * 2 f k  and 
fi +f2 + +fk = n.  The set of numbers [ f ]  represents a partition of n into k parts 
and is also expressed by a Young diagram consisting of n boxes arranged withf, 
boxes in the first row, f ,  boxes in the second row, and so on. 

A function labeled by the partition [f] is characterized by the following symmetry 
properties: 

(a) By acting on the function with appropriate linear combinations of the per- 
mutation operators, we can generate a function that is symmetric in the coordinates of 
the first f ,  particles (that is, invariant with respect to any permutation of these coordi- 
nates) and is at the same time symmetric in the coordinates of the next f 2  particles, and 
so on. 

(b) No linear combination of the permutation operators acting on the given function 
can generate a function that is symmetric in the coordinates of the first fl + 1 
particles. Moreover, if the function has been symmetrized with respect to the first fl 
coordinates, it is impossible to symmetrize simultaneously in the next f ,  + 1 particles, 
and so on. 

As in the definition of the three-particle symmetries, there are alternative and 
equivalent definitions of the symmetry properties, which result from the fact that the 
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possibilities for symmetrization stated in (a) imply limitations on the possible degree 
of antisymmetrization. Similarly, the limitations on the degree of symmetrization 
stated in (b) can only result from the presence of antisymmetric bonds between some 
of the particles. 

These relations can be expressed by considering, together with a given partition 
[f], the conjugate partition [f] obtained by interchanging rows and columns in the 
Young diagram. Thus,fl,f2, . . . give the length of thecolumns in theoriginaldiagram. 
We can now get an alternative definition of the symmetry [f] by replacing the word 
“ symmetric” in the above definition by “ antisymmetric” and at the same time replacing 
the numbers f i , f2 ,  . . . with the numbers fl ,f2,  . . .; in this way, we get a characteri- 
zation of the symmetry in terms of the maximal amount of antisymmetrization per- 
mitted by the partition [f]. 

These different characterizations of the symmetry types, that is, of the irreducible 
representations of S,, , correspond to those given above for n = 3 and may be further 
tested on the illustrative four-particle functions shown in Table 1C-1, p. 128. In par- 
ticular, these definitions imply that functions of the type [n] (= [fi = n , f 2  =f, - * -  = 

O ] ) ,  are completely symmetric in all n coordinates, while functions with symmetry 
[l 1 1 - * - 11 are completely antisymmetric in all n coordinates. All other partitions 
imply functions of mixed symmetry. 

The dimension h[f] of a given representation [f] of S,, is equal to the number of 
ways in which the representation can be obtained by successively adding particles, 
starting from n = 1. This number is equivalent to the number of different Young 
tableaux that are possible, subject to the constraint that, at  each stage in filling the 
diagram with numbers (for example, after filling in the first m integers), the part of the 
tableau that is filled corresponds to an allowed Young diagram (withf, 2 f 2  2 2 
fk). The constraint can also be expressed by saying that we only count the tableaux in 
which the numbers increase as we read from left to right in each row and also increase 
as we read down in each column (see the examples in Table 1C-1). 

A systematic analysis of this counting procedure leads to the general dimension- 
ality formula 

htfl = h(S. ; i f i f 2  .* .A])  
n! n (fi -h+i-O (1 c- 12) - - 

k n(fi + k - i)! i i j s k  

i =  1 

(The number h[f] may also be recognized as the trace of the identity element in the 
representation [f] and thus may be deduced from the general formulas for the 
characters of the representations of the permutation group (see Hamermesh, 1962, 
p. 213).) 

The only one-dimensional representations are the totally symmetric (P = 1) 
and the totally antisymmetric (P = (- For the multidimensional representations, 
the basis functions are labeled by an index r .  A particular set of basis states can be 
specified in terms of its transformation properties with respect to the subgroups 
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SnPl, S n - 2 ,  . . . , S, of permutations acting on the first n - 1 ,  n - 2, . . . , 2  particles. 
Any set of n-particle functions carrying an irreducible representation [ f ]  of S, 

also carries representations of the subgroups Sn-l, Snd2,  . . . but, in general, these 
representations will be reducible. By suitable linear transformations of the basis 
states, however, one can reduce the representations with respect to S,,-l, . . . 
and thus obtain a basis, each member of which belongs to irreducible representations 
of the entire chain of subgroups. This basis defines the standard representation of 
the permutation operators. The functions belonging to this basis can be labeled by the 
set of partitions, or diagrams, specifying the transformation under S,, , . . . , S,  , 
or by a Young tableau, in which the numbers from 1 to n are written into the Young 
diagram associated with the partition [ f ’ ] .  The diagram for S, is thus obtained by 
removing the blocks containing the numbers m + 1 ,  m + 2, . . . , n. 

In many applications, it is not necessary (or desirable) to explicitly write out the 
functions of the indicated symmetries [ f l r  or the representation of the permutation 
operators, just as it is usually an advantage to avoid explicitly writing out the angular 
momentum matrices or vector couplings. However, we give in the fine print below a 
description of the permutation operators in the standard representation (Yama- 
nouchi, 1937), since it may help to make the notation and the physical significance of 
these operators and the associated basis states somewhat more concrete. 

We first consider the matrices of the transpositions between adjacent particles Pk- l . k  

acting in the standard representation. The diagonal matrix elements are 

(1 C-13) 

The integer T k  - ,k(r)  is the “ axial distance ” of k and k - 1 in the tableau r, and is defined as 

T1r - 1 ,x(r) col(k) - col(k - 1 )  - (row(k) - row(k - 1)) 

where col(k) and row(k) are the column and row numbers of the kth particle in the tableau 
r .  Thus, for example, T k -  I.k(r) = -k 1 if k and k ~ 1 are in the same row and Tk-l,k(r) = - 1 
if they are in the same column. The nondiagonal matrix elements of Pk - I , k  between two 
states r and s have a nonvanishing value only if the positions of k and k - 1 are interchanged 
in going from the tableau r to the tableau s, in which case 

<[f l sIPk- l ,  kI [ f k >  = ( I  - ( T k - l ,  k ( Y ) ) - z ) 1 ’ 2  ( 1  C- 14) 

The most general permutation, P,  can be written as a product of transpositions of 
adjacent elements and thus we can construct the matrices of these more general operators in 
terms of those given above. Since, in the standard representation, P ,  - , k  is a real orthogonal 
matrix, it follows that all the permutation operators have this property, 

p - ‘ = p t  =p” (1 C-15) 
where the tilde denotes transposition. 

It is seen that functions with tableaux r ,  in which k - 1 and k are adjacent (in the same 
row or in the same column), are eigenfunctions of Pk - .k with eigenvalues + 1 or - I ,  that is, 
symmetric or antisymmetric in these particles. For [ f ]  = [21], the standard representation 
is the same as that derived above (see Eq. ( lC-9)) .  

The irreducibility of the representations [ f ]  implies that the matrices of the permuta- 
tion operators obey orthogonality relations similar to those of the 9 functions of the rotation 
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group. Thus, in analogy to Eq. (lA-41), we have 

= 6 ( [ f ( ’ ) I ,  Lf”’1) W 1 ,  r2)  %, sJ (1 C-16) 

The factor ( n ! )  in Eq. (1C-16) corresponds to the factor 8x2 in Eq. (1A-41) and represents the 
number of elements in the group (for a continuous group, the sum over the group elements 
is replaced by an integration and the factor 879 is the total “volume” obtained by integrating 
over all Euler angles (4, 8, 4)); the factor h ( [ f ( ’ ) ] )  represents the dimension of the repre- 
sentation, as does the corresponding factor (21 + 1) in Eq. (lA-41). 

The relation (1C-16) implies that we can use the matrices of the permutations to 
construct projection operators that pick out of a general function the component with 
specified symmetry [ f ] r  under the permutation operators (compare the analogous construc- 
tion of projection operators in the rotation group as employed, for example, in Vol. 11, 
p. 90). The projection operator can be expressed in the form 

In fact, from Eq. (IC-16) it follows that, when 9’ acts on a general function 

(1 C-17) 

(1 C-18) 

(1 (2-19) 

One can verify that the operators defined in Eq. (1C-10) are special cases of this general 
construction. The projection operators obey the completeness relation 

c 9 ( l f l r )  = e  (1 C- 1 9a) 
I f  lr 

It is also possible to define generalized projection operators (Young operators) 

(1  c-20) 

which produce a state of symmetry [ f ] s  out of the [ f ] r  component of the state on which 
it acts. Thus, for a general function la),  expanded in the form (IC-18), the orthogonality 
relation (1C-16) implies 

9 Y V l r - t ~ )  la> = <[flrIa> I[fls> (1 c-21) 

I C-Id Average value of the transposition operator 

The difference between the number of symmetric pairs, n,, and the number of 
antisymmetric pairs, n,, in a wave function with permutation symmetry u] is given by 

n s  - n o  = ([fir 1 c PJk I [ f k >  
j < k  

(1 c-22) 

This quantity is proportional to the trace of the class of the transpositions and may be 
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obtained from the general formulas for the character of the representations of the 
symmetric group (see Hamermesh, 1962, p. 214). 

The formula (1C-22) is also obtained if one ascribes symmetric bonds to all the 
particles in the same row of a Young tableau and antisymmetric bonds to particles in 
the same column, while particles that are in neither the same row nor the same col- 
umn are counted as half symmetric and half antisymmetric and therefore do not con- 
tribute to (1C-22). While this interpretation of the Young tableau yields the correct 
result (1C-22) and is often a useful guide in thinking about the different symmetry 
types, such a description of a particular function ( [ f l r )  is not strictly correct, as can 
be seen from the examples exhibited in Eq. (1C-7) and Table 1C-1. Indeed, 
for any of the multidimensional representations, it is impossible to construct a state 
that is simultaneously symmetric with respect to coordinates of particles in the same 
row and antisymmetric with respect to  particles in the same column. 

1 C-le Conjugate representations 

The symmetry characterized by the conjugate partition, [f], corresponds to an 
interchange between symmetry and antisymmetry as compared with the partition [ f ]  
(see p. 11 1). From the above discussion it is clear that the dimension of the represen- 
tation [ f ]  is the same as that of [ f ]  and, with each tableau r of [ f ' ] ,  we can associate a 
conjugate tableau i: of [f], which is characterized by the interchange of symmetric and 
antisymmetric bonds. 

In the explicit construction given above for the projection operators and permu- 
tation matrices in the standard representation, the choice of the phase of the nondiagonal 
matrix elements (1C-14) was arbitrary. However, in order that the conjugate diagram 
exactly correspond to an interchange of symmetric and antisymmetric pairs, it is necessary 
that we use one sign for the representation [ f ' ]  and then use the opposite sign in defining 
the states of the conjugate representation [f]. With this choice we have, for any permuta- 
tion P, 

< [ ~ r  IPI [./Is> = ( - ~ ) ~ < [ f l i l ~ I  V I . 9  (1C-23) 

where (- 1)' = + 1 and - 1 for even and odd permutations, respectively. 

I C-If Inner products, Totally antisymmetric states 

If a space wave function of symmetry [.f("] is multiplied by a spin-isospin wave 
function with symmetry [ f " ) ] ,  the product will in general contain many different 
symmetries [ f ]  with respect to permutations acting simultaneously on all the coordi- 
nates of the particles. Such a product of functions referring to different coordinates 
of the same particles is called an inner (or Kronecker) product and is labeled [ f ' ' ) ]  
x [f2)]. The decomposition of inner products for n = 3 is given in Table 1C-2, 

p. 129. The general enumeration of symmetries resulting from inner products is discussed 
by Hamermesh (1962, pp. 254 ff.); for tables, see Itzykson and Nauenberg (1966). 

The expansion of the inner product [ f ( l ) ]  x [ f ( ' ) I  in terms of irreducible repres- 
entations [ f ]  is referred to as the Clebsch-Gordan series for the symmetric group s,. 
For the rotation group, the corresponding series gives the enumeration of the different 
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total angular momenta I formed by coupling two angular momenta I ,  and I,. In this 
case, each representation Z ( = I ,  + Z 2 ,  - a * ,  [ I ,  - I 2  I) is formed only once, while in the 
product [f")] x [f")], a representation [f] may occur several times. 

By taking linear combinations of the inner products of the different states 
belonging to [f"'] and [f"'] ,  one can form functions that transform according to a 
single definite symmetry [ f ] ,  

Wx,  t k  ; [fir) = 1 @(xx ; [ ~ ( ' ) I ~ ~ ) X ( S ~  ; [ f ( 2 ) ~ r 2 ) < [ f ( 1 ) ~ r l ,  [f")lrZ I U I ~ >  (1C-24) 

In this expression, @(xk) and x(&) are the two different parts of the n-particle wave 
function (referring to space and spin-isospin variables, respectively, or to space-spin 
and isospin variables, etc.) and the coupling coefficients ( [ f " ) ] r l r  [ f " ) ] r ,  I [ f l r )  
play the same role as the Clebsch-Gordan coefficients in the coupling of angular 
momenta. (In cases where the representation (f] occurs several times in the product 
[f")] x [f','], the state Y as well as the coupling coefficients must be specified by 
further quantum numbers, in addition to [ f ]  and r.)  

We are especially interested in totally antisymmetric wave functions, [f] = 
[ I  1 1  -.. I] .  I n  these, symmetric bonds in the x variables must be combined with 
antisymmetric bonds in the t variables, and the states must therefore be constructed 
as a product of conjugate representations. The coupling coefficient has the simple 
form 

r I ,  r z  

< [ / ( l ) ] r l ,  [ f (2) ]rz  I [ 1 1 1 1  ... 11 ) = s ( [ f (2)1 ,  [ f ( l ) ] )  6 ( r 2 ,  ~~)(h[f(~)])-1/2 (1 C-25) 

where the normalization constant I1[f("] is the dimension of the representation 
[f")]. (In Eq. (1'2-25) we have assumed a phase for the states [ f" ' l r2  corresponding to 
that of a conjugate representation (IC-23) rather than of a standard representation.) 
The simplicity of the coupling coefficients (IC-25) is related to the fact that [f] = 

[l  1 1 1 - - 1 1  is a one-dimensional representation and is similar to the simplicity of the 
vector addition coefficients that couple L and S (=L) to form a total J = 0. 

For particles obeying Bose statistics, the states are completely symmetric, [n], 
with respect to permutations acting on all the coordinates of the particles. To obtain 
such symmetric states, we must combine identical symmetries, v ( ' ) ] r 1  = Lf")]r,, and 
the coupling coefficient is again a constant, 

W""lr l ,  [ f ( 2 ) l r 2  I [nI> = S( [ f" ) ] ,  [ / " ) I )  S(rl, r d ( / ~ [ f ( ' ) J ) - ~ / *  (1 C-26) 

I C- lg 

Sometimes one is faced with a situation in which the wave function of the first 
n, particles has a permutation symmetry [f"'] and this wave function is multiplied by 
a wave function of the next 172 particles having symmetry lf'2']. One then needs to be 
able to enumerate the different possible symmetries [f] of the n = n, + n2 particle 
system constructed in this manner. Such products involving functions depending on 
the coordinates of different particles are called outer products (denoted Lf")] @ [f',)]). 

It is fairly easy to recognize the symmetries resulting from the addition of a 
single particle ( [ f" ' ]  = [ l ] ) .  In the product [f"'] 0 [l], one obtains the Young 

Outer product of 1c'aveJunctions with definite s~!mmetry 
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diagrams that result from adding the extra block to the Young diagram of [f"'] in all 
possible ways. Indeed, in counting the dimensions of the different representations (see 
p. 11 l), we have already implicitly employed this result. 

When more general representations are multiplied, the result is restricted by the 
fact that the functions belonging to the partition [ f ' 2 ) ]  have definite permutation 
symmetry with respect to interchanges of the n2 particles, and thus they cannot be 
added to [f'')] in all possible ways. These restrictions can be formulated in the follow- 
ing general prescriptions (see Littlewood, 1950) for enumerating the symmetries con- 
tained in the product [f"'] 0 [ f ' 2 ' ] :  

(a) label the blocks of the first row of the Young diagram of [f"'] by a, those of 
the second row by B, and so on; 

(b) add the a blocks to the Young diagram of [f'"] in all possible ways, subject to 
the restrictions that the resulting diagrams must all be regular (have a number of 
blocks in the second row that is less than or equal to that in the first row, and so on) 
and that no two a blocks may be placed vertically over each other; 

(c) add the B blocks to the resulting diagram in all possible ways, subject to the 
same restrictions as above and to the further restrictions that, in reading from the 
upper right-hand corner from right to left with each row taken in order going down, 
the number of p blocks passed at any stage must not exceed the number of a's; 

(d) continue in the same manner for the y,  6, . . . blocks. 

The diagrams obtained in this manner give the decomposition of the product 
[f'')] 0 [f'"] into irreducible representations [f], each of which may occur several 
times. These rules are exploited in the analysis of the symmetries of product wave func- 
tions (see p. 117). More generally, the decomposition of the outer product [ f " ' ) ]  @ 

[f")] gives the Clebsch-Gordan series for the unitary groups (see p. 123). 

1C-2 Symmetry Classification of Wave Functions in Occupation Number Space 

I C-2a Product states 

The above discussion of the permutation symmetries is applicable to any wave 
function. Many problems of quanta1 physics deal with wade functions that can be 
expressed in terms of products of one-particle states or linear combinations of such 
products. The one-particle states may, for example, be orbital states of a single particle 
in a potential, the wave functions in isospace characterizing the orientation of the 
individual isospins, or the states of the individual quanta out of which the vibrational 
wave function may be built. 

In many cases, the one-particle spectrum contains degeneracies (as, for example, 
the (21 + 1)-fold degeneracy of the orbital functions in the configuration I", or the two- 
fold degeneracy of the isobaric spin states in the absence of the Coulomb interaction). 
The occurrence of these degeneracies raises new questions in  connection with the 
symmetry classification of the wave functions. Thus, we may ask the following ques- 
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tions: Starting from all the n-particle product wave functions that can be formed out 
of a g-fold degenerate one-particle orbital, how can we construct linear combinations 
with specified permutation symmetry [ f ]  ? How many different states are there of 
given symmetry, and what additional quantum numbers can be used to label these 
different states ? How can we further characterize the relationship between the states 
having the same permutation symmetry? 

I C-2b 

Assuming some convenient basis for the one-particle states, we label these states 
by the quantum number ma with a = 1,2,  . . . , g. 

First, we note that the product state in which all particles occupy a single one- 
particle state, m a ,  obviously is totally symmetric ([f] = [n]). States with antisymmetric 
pairs can only be constructed from configurations containing different single-particle 
states. Thus, as is well known, a totally antisymmetric wave function ([f] = [I 1 - 11) 
requires n different m values, and for each such configuration, there is one totally 
antisymmetric state, the Slater determinant (see Appendix 2A). More generally, the 
possibility of antisymmetrizing between particles in the same column of a Young 
diagram implies that we can only construct the symmetry [ f, - .  .fk] from configura- 
tions with at least k different m values. 

For example, the isospin wave function is built from one-particle functions with 
g = 2 (m, = ? 1/2), which implies that the permutation symmetry can have at  most 
two rows [f] = [ f i f i ] ,  and since the space-spin function must have the conjugate 
symmetry, its partition quantum numbers fi’( =Ti) are restricted tofi’ i 2. Similarly, 
the one-particle spin-isospin functions have four quantum states, and thus the 
permutation symmetry in this part of the wave function is limited to partitions of the 
type [fif2f3f4], which in turn implies the limitation fi’( =Ti) 5 4 for the space wave 
function. 

The complete enumeration of the permutation symmetries associated with a 
configuration %‘(m) = (m,)”‘ (m2YZ ... (m,)”g can be obtained by noting that such a 
state may be thought of as built from an outer product of states of the type (m,)”n, 
which are totally symmetric in n, particles. Thus, the list of possible symmetries 
occurring for the configuration V(m)  is obtained from an analysis of the symmetries 
contained in the product [n,] 0 [n2]  0 . . . @[n,]. 

From the rules given above for constructing these outer products, we can see that 
the number of times that the symmetry [ f 3 appears in the product is equal to the num- 
ber of different tableaux that can be constructed by writing the occupied m values in 
the boxes of the Young diagram corresponding to [f]. The symmetry of the groups 
[n,] implies that the tableaux are restricted by the conditions that 

Permutation symmetry for product states 

(a) the same m value may not appear twice in any single column, 
(b) the m values must read in increasing order (first all the m,’s, then m2’s, and 

so on) as we read from left to right in any row and as we read from top to bottom in 
any column. 
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Illustrations of these rules are given in Table 1C-3, p. 129, which considers configura- 
tions of the type p 3 ,  and in Table 1C-5, p. 134, which considers product functions in 
spin-isospin space. 

The tableaux obtained by filling the Young diagrams with the m values according 
to the above rules may be used to label the different states that have the same permu- 
tation symmetry. Such a tableau will be denoted by p, , where the notation is intended 
to emphasize the distinction from the tableau r containing the particle numbers 
k = 1 * * * n. A complete set of quantum numbers specifying the states based on product 
wave functions is thus [ f l r p ,  . (See the examples in Table 1C-3.) 

The particular states associated with the tableau in which all the boxes of the 
first row are labeled by m,, those in the second row by m,, . . . , are referred to as 
states of maximal weight (p:""). One may also describe these states as fully aligned in 
m space, since they contain the maximum number of particles in the state m,, the 
maximum number of particles that can subsequently be accommodated in the state 
m,, and so on. 

The label pm is equivalent to a set of +g(g - 1) quantum numbers which may, for 
example, be chosen as the set of partitions [ f ; ,  . . . , f:- ,I,  [ f i ,  . . . ,fi- ,I, . . . obtained 
by successively removing the boxes with m,, rng-,, . . . from the tableau p,. The total 
number of states pm (with fixed [ f l r )  can be expressed in the form (see Hamermesh, 
1962, Chapter 10) 

( 1  C-27) 

(The notation U, refers to the fact that the set of states p,. carries an irreducible 
representation of the group of unitary transformations in g dimensions (see Sec. 
1C-3). Thus, the expression (1C-27) gives the dimension of the representation [f] of 17,. 
The above-mentioned set of $g(g - 1) quantum numbers characterizes a particular 
state pm belonging to the representation [ f ]  of U, in terms of its transformation under 
the chain of subgroups U g - l ,  U, - , ,  . . . .) 

In order to construct the state [ f ] r ~ , ~  associated with the configuration %(m), we may 
start with the simple product wave function 

n 

0 0  = n qL,CX,(Xd (1C-28) 
k =  I 

where m(k) takes on the value m1 for n1 different values of k ,  and so on. For example, we 
may choose the following set of m(k):  

m(k) = m ,  

m(k)  = m2 

k = 1,2, . . . , nl 

k = n, + 1, . . . , n1 + n2 

( 1 C-29) 

m(k) = m, k = n - n, + 1 ,  . . . , n 

The product state (1C-28) may be regarded as a function of the variables xk and ni(k). 
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Interpreted in this manner, it is a totally symmetric function with respect t o  permutations in k 
acting on the m variables as  well as  on  the x variables, 

PmPxcpo = PXPYD, = Qo (1 C-30) 

The desired state is to  be constructed from linear combinations of permuted product 
functions PxO0 (=(P"')- 'Q0) and is characterized by having the symmetry [ f l r ,  with respect 
to permutations acting on  the x variables only, and [flr,,, with respect t o  permutations acting 
on the tn variables only. The particle number tableau r ,  associated with the given quantum 
number tableau p,t, is obtained by replacing the t n  values by k values according to  the chosen 
ordering (1C-29). For  example, 

p,,, = p' 
In general, several different r,,, represent the same p,pt, as in the example considered. The dif- 
ferent choices, however, give rise t o  the same state, since Qo is symmetric with respect to 
permutations P"' involving only k values belonging t o  the same ma. 

The function Q0 can be wiitten as  a sum of terms with specified symmetry [ f l r  with 
respect to  the permutations P". Since Do is totally symmetric when regarded as  a function 
of xk  and m(k) ,  the individual terms possess the same symmetry [ f l u  with respect t o  the 
permutations P"' (see Eq. (IC-26)). The state with symmetry [f]r,r,. can thus be obtained 
by acting on Q0 with an operator in x k  space of the form (lC-20), projecting from [ f lu ,  t o  
[ f l r , ,  or with an operator in m ( k )  space, projecting from [ f ] r x  t o  [flr,.  , 

Q(xk  ; [fir, p,,,) = const 1 <r, \ P I  r,,,>pxQo 
P 

= const 1 (r,, ,  I P I  r,>pmQo (1C-3 1) 
P 

(Since the tableaux r specify the pattern [ f ] ,  we have for brevity dropped the label [ f ]  in the 
matrix elements of P.) The equivalence of the two forms in Eq. (IC-31) follows from Eq. 
(IC-30) and the relation 

<r ,  IPI r, , ,)  = <r,p, I P ' I  r,> (1 C-32) 

which expresses the unitarity and reality of the matrices P. (See Eq. (lC-15).) 
We can proceed to  construct totally antisymmetric (or symmetric) wave functions in 

the particle variables (x, E) (as in Eqs. (IC-24) and (IC-25)) by combining Eq. (1C-31) with 
the corresponding functions 

" 
x ( ' $ h  ; [ f ] f < p v )  const 1 ( f<  IPI Fit>p' x ! t ( h l ( E h )  (1 C-3 3) 

P k = 1  

with conjugate symmetry in f space. From Eq. (IC-25) we then obtain 

y(.u, Ex ; [flpnr P i O a n t i s y m  

= ( / U I ) - " ~  2 Q(xk ; [~ I~ .~P . , ) x (E ,  ;  IF^ = ~ . ~ p . )  
r 
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where we have employed the relation (see Eqs. (1C-23) and (1C-32)) 

1 <rx  1 PI I urn> <f.x 1 ~ 2 1  f g >  

rx 

= (-1)p2<rp IP;’PIJ rn,> = (-l)pz(rm IP;IP21 r , )  (1C-35) 

Moreover, in Eq. (1C-34), the sum over PI and P2 has been replaced by the equivalent sum 
over P E Pi ‘P2 and P, , and we have expressed P; in the form P;(P-’). = P,”Pn’ = PmP;. 

In Eq. (1C-34), the sum over P 2  is seen to be a Slater determinant based on one- 
particle wave functions with quantum numbers m(k)  and p(k ) ,  and we can thus also write 
Eq. (1C-34) in terms of the fermion creation operators for these one-particle states (see 
Appendix 2A). 

I t f l p m  pu>ant irym 

(1C-36) 

where 10) is the vacuum state. The second formof Eq. (IC-36) follows from Eq. (1C-23) and 
the fact that PP’ acting on the totally antisymmetric state equals (-1)”. 

Angular momenta of states with definite [ f ] IC-2c 

In general, the g-fold degeneracy of the one-particle states is a reflection of some 
symmetry of the one-particle Hamiltonian, and states based on the n-particle product 
wave function can be labeled by the quantum numbers of these additional symmetry 
operators. For example, if the one-particle Hamiltonian is rotationally invariant, the 
product states may be characterized by a total angular momentum, and it is useful to 
be able to enumerate the different angular momenta that can occur with any given 
symmetry [ f ] .  There is not any simple and general solution to this problem, but it is 
possible to obtain the answer for any particular configuration by elementary counting 
in the m representation. 

An especially simple example is provided by the question of the possible values 
of the total isospin T of isospin wave functions with definite permutation symmetry. In 
this case, g = 2 (ml = + 1/2 and m2 = - 1/2) and the permutation symmetry is charac- 
terized by a partition with at most two numbers [ f l y 2 ] .  We consider first the completely 
symmetric states [n] .  For given M ,  representing the sum of the individual m values, 
there is just one configuration, (+ 1/2)n/2+M( - 1/2)”/’-”, and each M value from A4 = 

n/2 to M = -n/2 gives rise to a single m tableau by the rules given above. Thus, for the 
symmetric representation [n] ,  we have a single isospin T = 4 2 .  For partitions with two 
rows [fi f 2 ] ,  we must have rn, = + 1/2 in the first f 2  boxes of the first row and m2 = 

- l/2 in all the boxes of the second row in order to fulfil the requirements (a) and (b) 
above. Hence, these first f 2  columns do not contribute to the total M .  The remaining 
fi - fi boxes of the first row can be filled in exactly the same ways as the symmetric 
representation [n = f l  - f 2 ] .  Thus, the permutation symmetry [ f i f 2 ]  gives rise to the 
single isospin T = (fi - f 2 ) / 2 .  

The fact that there is only a single isospin for a given permutation symmetry 
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means that the quantum numbers (n,  T )  are equivalent to the symmetry quantum 
numbers [ f i f 2 ] .  It is also seen that the rules for coupling angular momenta can be 
obtained from the decomposition of outer products described on p. 116. The equi- 
valence of angular momentum and permutation symmetry is special to a system with 
g = 2 (see Sec. 1C-3b). 

The pairs of boxes in the same column in the above example may be recognized 
as forming the unique antisymmetric state (T = M = 0) that is possible for two par- 
ticles in a shell with g = 2 (closed shell configuration). The representation v2f2] is 
made entirely of such closed shells and has a total T = 0. 

Quite generally, a column in the Young diagram with the maximum number, g, 
of boxes corresponds to a completed shell and does not contribute to the total angular 
momentum. It may also be convenient to discuss a given symmetry in terms of the 
" holes " in completed shells; thus, for example, the angular momenta contained in 
[fi ...f,] are the same as those associated with the symmetry [fi -&, . . . , fl - fi , 01. 

Tables 1C-4 and 1C-5 (pp. 132 and 134) contain additional examples of the 
enumeration of the angular momentum values of product wave functions of definite 
permutation symmetry. Table 1C-4 refers to the configurations pn,  while Table 1C-5 
gives the results for the spin-isospin wave functions. 

1C-3 Unitary Symmetry 

I C-3a Shift operators 

A systematic study of the relationship between the states with different quantum 
number tableaux pm , associated with a given permutation symmetry [ f l r  of the particle 
coordinates, can be based on the algebra of the set of operators E ( m b ,  ma) that 
transfer a particle from the one-particle state ma to the state mb . These " shift opera- 
tors" act symmetrically on all the particles, and are thus given by 

n 

E(mb, ma> = 1 E m b .  rna(XJ (1C-37) 
k = l  

where the single-particle operator Emb,,,(x) is defined by its matrix elements 

<md IErnb, mill mc> = 9 mc) s(mb, md) (1 C-38) 

For mb = m, , we have 
E(m., ma) = n. (1C-39) 

with n, representing the number of particles occupying the quantum state ma.  Summing 
over a, we obtain 

(1 c-40) 

and this particular combination of shift operators is therefore a constant for the states 
considered. 

The g2 shift operators may be considered as the elementary units, from which all 
operators acting symmetrically on the particles (and conserving the number of particles) can 
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be constructed. Thus, an arbitrary single-particle operator can be written 

(1 C-41) 

Two-particle operators can be expressed as bilinear forms in the shift operators, and so on. 
If we are dealing with a system of fermions, for which the state is totally antisymmetric 

with respect to permutations acting simultaneously on the x and 6 variables (see Eq. (1C-34)), 
we can also express the shift operators in the form 

where at(m, p) creates a one-particle state with quantum numbers m (referring to x space) 
and p (referring to 6 space). In analogy to Eq. (1C-42), one can also define shift operators 
E(pa, pa) acting in 6 space. 

Since the shift operators act symmetrically on all the particles, they do not affect 
the permutation symmetry and are therefore diagonal in the quantum numbers [ f ]  
and r, with matrix elements 

These matrix elements are nonvanishing only if the tableaux pm and p; are associated 
with configurations V(m) and U’(m), for which n; = n, - I and n; = nb + 1,  while 
n: = nc for c # a, b. (If we consider totally antisymmetric states specified by [flp,, pp , 
the matrix elements of E(mb, m,) are diagonal in [ f ]  and p,,, and are independent 

The shift operators E(m, ,  m,) are the basic elements for the study of the rela- 
tionship between the states [flp,, (with fixed r or pJ, since, from any given state 
[ f ] p m r  it is possible to produce any other state [ f ]ph by acting with a suitable linear 
combination of products of shift operators. This “ completeness ” corresponds to the 
fact that any operator acting symmetrically on the n-particle wave function can be 
constructed from the shift operators, and may also be verified by using the explicit 
construction of the symmetrized states in Eq. (1C-31). 

of P p  .) 

IC-3b 

The shift operators obey the simple commutation relations 

Algebra of shgt operators. The group of unitary transformations 

as follows from Eqs. (IC-37) and (1C-38) (or from Eq. (IC-42)). Since the commutator 
of two shift operators is a linear combination of such operators, the set of g 2  shift 
operators is said to be closed under commutations. One also refers to such a set as 
forming a Lie algebra with a structure defined by Eq. (IC-44). 

The shift operators are the generators of infinitesimal unitary transformations 
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42 acting simultaneously on the wave functions of the n individual particles. Under a 
unitary transformation, the single-particle states transform as 

(1 C-45) 

where ama, mb is a unitary matrix in g dimensions. For infinitesimal transformations, 

a m a .  mb = a m a ,  mb + iem,,, mb (1 C-46) 

where E is Hermitian (and infinitesimal). The operator @ acting in the space of the 
n-particle states can therefore be expressed in the form 

(1 C-47) 

where 1 is the identity operator. 
By superposing infinitesimal transformations, one can form the full group of 

unitary transformations, which is denoted by U, . It is a Lie group whose structure is 
determined by the algebra of the generators, expressed by the relations (1C-44). 

The states [flp, based on n-particle product wave functions can be charac- 
terized as carrying representations of the group U, , and the " completeness " 
properties of the shift operators discussed in the previous section imply that these 
representations are irreducible. The partition quantum numbers [ f ]  therefore label 
the irreducible representations of U, as well as those of S, . (The representations of 
U, comprise partitions for all values of n, but with the number of rows k limited 
to k g (see p. 117).) The Clebsch-Gordan series for U,, that is the reduction of 
the Kronecker product, denoted by [ f " ' ]  0 [ f ( 2 ' ] ,  into irreducible representations 
[f] of U ,  can be obtained from the rules for decomposing outer products (see p. 116). 

The determinant of a unitary matrix is a number eIV of absolute magnitude 
unity. (The determinant equals the product of the eigenvalues, each of which is of 
magnitude unity on account of the relation at%! = 1.) The special unitary transfor- 
mations associated with matrices with determinant unity (cp = 0; unimodular 
matrices) form a subgroup of CJ, , referred to as the special unitary group in g dimen- 
sions (SU,). The infinitesimal unimodular unitary transformations have a traceless 
matrix E , , , , ~ , ~ ,  and the generators are therefore the set of shift operators that are 
linearly independent of the total number operator n given by Eq. (1C-40). (For exam- 
ple, one may take the E(mb, m,) with mb # ma and (g - 1) linearly independent com- 
binations of the type €(ma, m,) - E(mb, f f l b ) ;  it is seen that such a set is also closed 
under commutations and therefore forms a Lie algebra.) 

The irreducible representations of SU, are the same as those of U,,  but repre- 
sentations [ f ]  differing only by completed columns are identical with respect to SU, ; 
thus, the representations of SU, can be specified by the set of (g - 1) numbers (fi - fg , 
f 2  - f , ,  . . . , f q w l  -&). With respect to U , ,  the representations differing by completed 
columns, though trivially related, are distinguished by the quantum number n = Cifi. 

One can construct combinations of shift operators that commute with all the 
shift operators and are therefore invariants under Ug . These invariants are referred 
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to as Casimir operators. The eigenvalues of the invariants are functions of the partition 
quantum numbers, labeling the representations of U, .  The linear invariant is the 
number operator Eq. (1C-40). The quadratic invariant is 

(1 C-48) 

9 

<[f’lpi IGz(udl [ f l p m )  = S([fl ,  [f’l) S(p,,, , pL) C fi(h - 2i+ 1 + 9) (1C-49) 

as can be seen, for example, by acting with G ,  on the state of maximal weight (see 
p. 118). The corresponding Casimir operator for SU, is 

i =  1 

(1C-50) 

Higher-order invariants can be similarly constructed by forming expressions com- 
pletely symmetric in the quantum numbers m, . Thus, the third-order invariant is 

1 
9 

= G2(Ug) - - nZ 

c,(u,) = C E h . ,  m,)E(m,, mb)E(mb, ma) (1C-51) 
ma, mb,  mc 

The eigenvalues of the invariants can be used to label the representations of U, as 
alternatives to the partition quantum numbers. 

For g = 2, the algebra of the shift operators obtains a familiar form if we intro- 
duce the linear combinations 

(1C-52) 

h-  = E ( m z ,  m,) 

The commutation relations (1C-44) imply that the quantities I, , I+ , I- , which are 
the generators of SU, , have the commutators 

(1 C-53) 

corresponding to the components of an angular momentum vector h = ( I l ,  I,, 13) 
with I ,  = I , ,  I ,  = I l  f iI,. 

The group SU, can therefore be viewed as a rotation group R, in a three- 
dimensional space, generated by the angular momentum operator 1, and the represen- 
tations can be labeled by the quantum number I taking the values 0, 1/2, 1, . . . . The 
Casimir operator for SU2 given by Eqs. (1C-48), (1 C-49), and (1 C-50) is G(SU,) = 

2 1112 = 2I(A + I). The equivalence between the sets of quantum numbers n I  and 



SIC-3 UNITARY SYMMETRY pij 125 

[ f i f 2 ]  has already been exhibited (p. 120), using the example of particle states speci- 
fied by the isospin component (ml = 1/2, m2 = - 1/2). In this case, the vector li- 
represents the total isospin T. 

The groups SU,  and R ,  are homomorphic rather than isomorphic, since to each 
element in R ,  there correspond two elements in S U ,  . (Isomorphism implies a one-to-one 
correspondence of the elements.) Thus, if we denote an element of R3 by the Euler angles 
w = (@#) (see Fig. IA-I), the associated elements of S U ,  are the two-dimensional uni- 
modular unitary matrices +9,!’13.,(w), where 9,!,$,,2 are the 9 functions for angular momen- 
tum 1/2 (see Sec. 1A-3). The existence of two elements in S U ,  for given w is connected with 
the fact that a rotation of 360”, which does not affect w,  changes the sign of 9’/’. Thus, the 
representations with half-integer angular momenta are double valued with respect to R3 
but single valued in S U ,  . 

For g >2, one can introduce linear combinations of generators with angular 
momentum-like properties in several essentially different ways. 

One possibility is illustrated by the states of the configuration (j)”’ having 
g = 2j + 1. (The configuration (l)”’ is included by letting j take integer as well as half- 
integer values.) The total angular momentum J is given by (see Eq. (1A-62)) 

(1 c-54) 

in terms of its spherical components (J,= = T 2-l/’Jk). It can also be verified that 
the operators ( 1  C-54) satisfy the commutation relations of an angular momentum as a 
consequence of Eq. (1 C-44). 

Irrespective of the physical significance of the g single-particle states, we may 
formally associate these with the magnetic substates of an angular momentum 
j = f ( g  - 1) and thus define an angular momentum-like operator (a “quasispin”) by 
means of Eq. (IC-54). In this manner, the states belonging to a representation of U, 
may always be labeled by a quantum number J (and the associated MJ).  

In addition to the first-rank tensor J ,  in Eq. (1C-54), one can introduce spherical 
tensors of higher rank. In fact, the g 2  generators can be represented by a scalar (=n), 
and a set of tensors of rank A = 1,2,  . . . , 2 j  = g - 1. For example, the generators of 
U ,  comprise a second-rank tensor in addition to n and an angular momentum vector. 
(See the example in Appendix 7B.) 

An alternative way of defining angular momentum-like operators is to select two 
m values (for example, ml and mz) and introduce the vector operator 3, as in Eq. 
(1C-52). For example, in  the U ,  classification of the hadronic spectra, the isospin 
vector T is represented in this manner. The operator n3 = E(m3, m,) commutes 
with T, and the states belonging to a given representation [f] of U ,  can therefore be 
classified by the eigenvalue of n3 ( = 0, 1, 2, . . .) in addition to  T and M,. In terms of 
the generators of SU, , the additional quantum number is conventionally defined by 

Y = + n - n 3  (1C-55) 

representing the hypercharge (see Eq. (1-62)). An alternative choice of the U ,  sub- 
space gives the quasispin U and charge 2 instead of T and Y (see p. 40). 
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The different ways of forming angular momentum-like operators from the 
generators of the unitary groups correspond to different ways of choosing R, (or 
SU,) subgroups of Ug . The problem is part of the more general one of classifying the 
states belonging to a given representation if] of U ,  in terms of the representations of 
subgroups of U,. The different decompositions of Ug correspond to different choices 
of basis states, that is, to different coupling schemes for the n-particle system.’ 

A complete chain of subgroups can always be obtained in terms of the set 
of unitary groups U,- ,  . . . , U,, U, formed by successively removing single- 
particle states from the basis m, (a = 1, 2, . . . , g). The “ m-coupling scheme,” repre- 
sented by the states with specified tableaux p, (see Sec. 1C-2b), corresponds to such a 
reduction of U,.  For U,, this reduction yields the magnetic quantum number. For 
U,, we obtain a labeling in terms of Y,  T, and M , .  Such a reduction of U,  into 
products of U,, and U,, with g = g1 + 9, can be obtained from the rules for decom- 
posing outer products of partitions. Another reduction into products of U,, and Ug2 
occurs if the single-particle states are products of functions having the dimensions g, 
and g,, with g = g1g2. (See the spin-isospin states in Table 1C-5.) This decomposition 
involves the Clebsch-Gordan series for the inner product of representations of S, . l o  

If it is desirable to employ eigenstates of the total angular momentum operator 
(1C-54), one is faced with the problem of finding additional subgroups of U, that 
contain this R, group as a subgroup. For odd g (and g 2 5) ,  one such additional sub- 
group is the group R, of orthogonal (real and unitary) transformations in g dimen- 
sions; these transformations have the property of leaving invariant the two-particle 
state ( 1 ) 2 ;  L = 0, with (21 + 1) = g. For even g, a corresponding subgroup is provided 
by the group Sp, of symplectic transformations, which leave invariant the two-particle 
state ( j ) ’ ;  J = 0 with ( 2 j  + 1) = g. 

The representations of R, and Sp, are labeled by a set of quantum numbers 
that include the seniority number. (For a discussion of the representations of R, 
and Sp,, see Hamermesh, 1962, pp. 391 ff., and de-Shalit and Talmi, 1963, pp. 389 ff.) 
Only in special cases do there exist additional subgroups containing the R ,  group 
with the generators (1C-54), and it is therefore in general not possible in this manner 
to give a complete classification of the n-particle states, which requires $g (g - 1) 
quantum numbers, in addition to the set (fi, . . . ,f,). For example, in the U ,  scheme, 
the third quantum number, /i; employed on p. 133, has no group theoretical significance. 

While the states with specified permutation symmetry, describing systems of 
equivalent particles each occupying one out of g substates, provide a simple construc- 
tion of all the representations of U,, it should be emphasized that it is also possible to 
consider the unitary symmetry directly in terms of the algebra of the generators 
without any reference to permutation symmetry. 

The group theoretical approach to the classification of many-particle states in terms of U, and 
its subgroups has been especially exploited by Racah (1951). For a discussion of the reduction of 
U,, see also Boerner (19631, Nagel and Moshinsky (1965), and references contained therein. 

Multiplication tables for outer and inner products of representation of S, , yieldingdecom- 
positions of U, , are given by Itzykson and Nauenberg (1966). 
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Thus, for example, a system consisting of nucleons and pions may be character- 
ized by SU2 symmetry (isospin) and systems t h a t  in addi t ion involve strange parti- 
cles, by SU,  symmetry, without any obvious role f o r  the  permutation symmetry. How- 
ever, one may also a t tempt  to view such systems as built out o f  basic entities that 
each carry the  fundamental g-dimensional representation of  SUg (nucleons in  t h e  case 
of SU,; quarks  in the  case of SU,). T h e  symmetric group then again appears as an 
equally valid starting point  for the  symmetry classification. 

v 
ILLUSTRATIVE 

EXAMPLES T O  

APPENDIX 1 C  

Four-particle wave functions of dejnite symmetry (Table 1 C-1) 

Functions illustrating the different permutation symmetries for four-particle 
wave functions are listed in Table IC-I. 

The dimensions of the different representations may be obtained by counting 
the different ways in which the given function may be formed by coupling the fourth 
particle t o  a three-particle state of definite symmetry. A completely symmetric 
function, [4], can be formed only by adding the fourth particle t o  the symmetric 
three-particle state [3], and so [4] is one dimensional. The symmetry [31] can be formed 
by adding the fourth particle t o  a state of type [3] or  to  either of the two states of a 
representation of type [21]; hence, the representation [31] is three dimensional. The 
representation [22] can only be formed from three-particle states of type [21] and so 
is two dimensional. The representation [21 I ]  can be built from [21] or  [I 1 I ]  and thus 
has the dimensions 2 + 1 = 3. Finally, the totally antisymmetric representation [ I  11 I ]  
can only be built from [ 1 1 I ]  and so is one dimensional. 

As discussed on p. 11  1, one may systematize the counting of the dimensions 
in terms of the Young tableaux. This method of enumeration is shown in the third 
column of the table, which gives the complete set of  tableaux for each symmetry type. 

The functions illustrating the symmetries [4] and [31] correspond to  a configura- 
tion of the type (s’p). Assuming the s-state wave function t o  be a constant and the 
p state to  be proportional to  x, these functions are linear in the coordinates xl, xz , 
x 3 ,  x., . The representation [4] contains the unique linear function that is symmetric 
in all four coordinates, while [31] contains the three functions that are orthogonal t o  . .  - 
the symmetric functions. The Young tableaux have been assigned t o  the basis functions 

following the rules given on p. 112. Thus, implies a function that is symmetric 

in the coordinates of I ,  2, and 3, while @ has the symmetry 

to  the coordinates of the first three particles. 
I t  is impossible to generate the lower symmetries with the configuration s3p 

since, for this configuration, the functions must be symmetric in the three s-state 
particles, and so configurations of the type (s2p2) have been used to  illustrate [22] 
and [21 I]. For [22], both p orbits are taken to  be in the x direction, while for [211], 
the antisymmetry among three particles makes it necessary t o  employ two different 

with respect 

A 
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Young Young 
[fl diagram tableaux, r Illustrative functions 

x1 + Xz + x3 - 3x4 P 
Y 

U u 

p.r P I  

XI YI i:: ;: 

Table 1 C-1 Permutation symmetry for four-particle states. 

p orbits (which are taken to  be proportional to  x and y ,  respectively). For [ I  1 1  I], the 
chosen configuration sp’ with three different p orbits is the simplest possible. 

The last column in Table 1C-I gives the quantum number tableaux p,”, which 
may be used to  label the different states of symmetry [f’lr, belonging to  a given con- 
figuration. Such classifications are discussed in Section I C-2. For the configurations 
chosen, there is only a single state with specified [ f ] r  and therefore only a single tableau 
p,,, for each configuration and [/I. A 



v 

A 

v 

A 

Multiplication table for  inner products of representations of S3 (Table I C-2) 

The representations contained in the inner product [f"'] x [f"'] for the dif- 
ferent representations of S3 are shown in Table 1C-2. The order of the factors has no 
effect on the inner product and so the table is symmetric about the main diagonal. 

[f ( ' 'I 
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Table 1 C-3 Classification of states belonging to p 3  configuration. 

Table 1 C-2 Inner products of representations of S 3 .  

The table may be constructed by explicitly writing out the products of functions of 
definite symmetry, such as the examples in Eq. (1C-7), and then projecting out product 
functions of definite symmetry by means of the operators d, Y , ~ I ,  and PZ. 

The entries in the table can also be obtained from simple features of the inner 
product. Thus, [n] x [f] = [f], since multiplication by the completely symmetric 
function [n] cannot change the symmetry of the function [f]. Similarly, [111  . . . 11 x 
[f] = [f], since multiplication by a completely antisymmetric function interchanges 
symmetric and antisymmetric pairs, and this is just the relation of [f] to its conjugate 
[f]. The inverse of these two results also hold: [f] X [f] always contains [n] just 
once and [f] x [f] contains [ I  1 1  I . . . 1 ] once. 

A count of dimensions yields further results. For example, since [21] is two 
dimensional, the product [21] x [21] must give representations whose dimensions add 
to four; thus, after we have recognized from the above rules that the one-dimensional 
representations [3] and [ I  1 I ]  each appear once, we may conclude that [21] also appears 
once in the product. (For a systematic discussion of inner products, see, for example, 
Hamermesh, 1962, p. 254; tables of inner products, for n 1 8 ,  are given by Itzykson 
and Nauenberg, 1966). 

The connection between the irreducible representations of the symmetric groups 
S. and the unitary groups U, implies that the decomposition of inner products of 
representations of S. corresponds to the reduction of U,,,, in terms of the product 
of the groups U,, and U,, . (See the discussion in connection with Table 1C-5.) 

Quantum numbers and wave functions for  states of configuration p 3  (Table 1 C-3) 
The states of definite permutation symmetry that can be constructed from 

product states of the type p 3  are enumerated in Table 1C-3. The configurations are 
specified by the m values (= 1 ,  0, and -1) and are arranged according to the total M 
value (=mi + mz + m,). 

M Configuration 131 1211 u 1 1 1  

3 1 3  1 
2 l 2  0 1 1 
1 l 2  - 1 1 1 

1 o2 1 1 
0 1 0 - 1  1 2 1 

03 1 



130 P1.f PERMUTATION S Y M M E T R Y  App. ZC 

v The number of times each symmetry occurs for a given configuration can be 
found by writing out the possible Young tableaux p m  in rn space (see p. 117). We shall 
adopt the order rn = 1, 0, -1 for writing the rn values into the tableaux. 

For M = 3, we have only the configuration (m = 1)3, which must be a symmetric 
function 

q p " ,  = I'l) = (1 1 1) 

with the notation 

(MlrnZ md'E pni(l)Vm,(2)Fm3(3) 

for three-particle product states. 
For M = 2, the configuration ((m = I)', m = 0) yields a single symmetric state 

1 
@ ( p m  = P]) = 2/5 [(l lo) + (101) + (01 l)] 

The same configuration also yields the symmetry type [21] once, corresponding to 

the tableau in m space ; this representation is two dimensional under permutation 

of the coordinates and, hence, there are two states of this symmetry distinguished by 
the two different tableaux r in particle number space 

The two different configurations for M = 1 are each like the M = 2 configuration 
(are of the type mfm,) and thus yield [3] and [21] each once. 

For M = 0, the configuration (rn = 0)3 must be symmetric ([3]), corresponding 
to the wave function (000). The wave functions for the configuration ( m  = 1, rn = 0, 
m =  -1) are 

+ ( O -  1 1 ~ + ~ - 1 1 0 ~ 1  

- (1 - 10) - (0 - 11) - (-110)l 
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'I @( y = Fl p," = Fl) = -& [2(10 - 1) - 2 (01 - 1) + ( - 101) + (1 - 10) 

- (0 - 11) - (-  1lO)l 

+ (- 11011 

In assigning the tableaux pm to definite basis functions, we have followed the same 
principle as employed in the tableaux r ;  thus, if we neglect the last orbit (with the 
assumed standard order, this means neglecting the orbit m = -1 in the present 
example), the remaining function has definite symmetry under exchange of the two re- 
maining orbits (in = 1 and 0), and this symmetry corresponds to the Young diagram 
obtained by removing the block a from the in-space tableau. (The general con- 
struction of states with specified r and pm is given by Eq. (lC-31).) 

From the different M values associated with each symmetry, we can conclude 
that, for the configuration p 3 ,  we obtain symmetric states [3] with L = 3 and 1 ,  states 
of mixed symmetry [21] with L = 2 and 1, and a single antisymmetric state [ l l l ]  with 
L = 0. The [ I 1  I] state may be recognized as the unique Slater determinant that can be 
formed out of the configuration p 3  (closed shell configuration). The wave functions of 
definite L may be obtained by starting with the M = L component given by the expres- 
sions above and acting with the lowering operator L, - iL,, which can be written 
in terms of the shift operators E(m'= m -  1, m). Thus, from Eq. (1C-54), we obtain 
the relation L,  - iLy = 2'" (E(0, 1) + E( - 1,O)). 

The generators (IC-37) of the unitary group, U 3 ,  change the configuration (the 
mi values) and the tableau p,,, , but leave the permutation symmetry [flr unchanged. 
Thus, in the present example, the states of symmetry [3] form a ten-dimensional repre- 
sentation of the group U 3 ,  while each such state is a one-dimensional representation 
of the permutation group S3. Similarly, the states of type [21] form an eight-dimensional 
representation of U, and a two-dimensional representation of S 3 ,  while the represen- 
tation [ I  111 is one dimensional in both U 3  and S, . 

Classijication of states rrYth conjigurations p" (Table 1 C-4) 

The states belonging to the configuration p" can be classified by the orbital 
symmetry [f] and the total angular momentum L. (The full specification of the states 
in general requires an additional quantum number besides [f] LM, such as the quantity 
A considered below.) Because there are three substates of the p orbital, the partition [f] 
can contain at most three numbers [fif2f3] (the wave function can be antisymmetric 
in at most three particles at a time). 

6. In 
constructing the table, it is simplest to start with the low values of n and successively 
add particles. 

For n = 2, we immediately obtain the listed result from the symmetry properties 
of the vector addition coefficients. 

For n = 3, we can obtain the L structure by counting the number of states with 
given [f] in the m representation (see Table 1C-3). We can give an alternative derivation 
of the L structure for n = 3, which is also instructive. We start by noting that the state 

The classification in terms of [f] and L is shown in Table 1C-4, for n 

A 



132 P1.f P E R M U T A T I O N  S Y M M E T R Y  App. IC 

n [ f l  L values 

1 

02 
1 

13 
12 
0 

024 
123 
02 
1 

135 
1234 
123 
02 
1 

0246 
12345 
02'34 
13 
13 
12 
0 

~~ 

Table 1 C-4 D" configurations. 
- ~ 

with symmetry [l 1 11 must be the Slater determinant formed of the three p substates; 
this unique state is the only totally antisymmetric state of p 3  that we can form, and 
may be thought of as a closed shell structure. The uniqueness of the state (a one- 
dimensional representation in U 3 )  immediately implies L = 0. The L content of [21] 
may now be obtained by noting that the outer product of [ l l ]  and [ l ]  contains 
[21] once and [ l l l ]  once (see the rules for multiplying symmetries, p. 116). When we 
combine this result with the rules for coupling angular momenta, we obtain 

[21] = [ l l ]  0 [l] - [ l l l ]  

+ ( L  = 1) 0 (L = 1) - ( L  = 0) 

=(L=O, 1,2)-(L=O) 

so [21] contains L = 1 and 2. Continuing in the same manner, we obtain 

131 = P I  0 11 1 - 121 I 
+ ( L  = 0,2) 0 (L = 1) - (L  = 1,2) 
= ( L  = 1,3) 

A check on these results is provided by the dimension formula (1C-27), which gives 
A h[21]=8andh[3]=10, for  Us. 
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v For t7 = 4, again we may either use an explicit count of M values for each [f] 
or we may start with the most antisymmetric type of state [211] and notice that this is 
like a single particle outside the closed shell [ I l l ]  (it is the only state obtained by 
multiplying [ I  1 I]  @ [ I ]  since [111 I ]  is impossible for p') and thus this symmetry has 
the single L value L = 1. The other symmetries may then be obtained by using simul- 
taneously the rules for multiplying symmetries and for coupling angular momenta. 

Having worked out these examples, we can now obtain the general rule for the 
L content of the configurations p". It is convenient to start with the completely sym- 
metric states [n] .  The enumeration of these states is the same as that of a single particle 
in a harmonic oscillator with principal quantum number N = n, for which we have the 
well-known result 

L = n, n - 2,  . . . , 0 or 1 [n] (1 C-56) 

From this result the L content of [n l ]  follows by methods similar to those em- 
ployed for ( P ) ~ ,  

[nl] = [ n I O  [I1 - In + 11 

+ ( L  = n, n - 2, . . . , 1 or 0) 0 (L  = 1) - (L  = n  + 1, n - 1, . . . , 0 or 1) 

Thus, [ n l ]  contains 

L = n , n - l , n - 2  ,..., 1 [rill (1 C-57) 
Continuing in this way we can obtain the general rule for the L content of 

[ f i f z f 3 ] .  Since the closed shell [fff]  has zero angular momentum, we may remove 
such completed columns from the Young diagram without affecting the angular mo- 
mentum properties of the state. Hence, the L content only depends on the two numbers 
fi -f3 and f2 - f 3 .  To exploit the symmetry between particles and holes (particles 
removed from closed shells), it is useful to express these two numbers in terms of 

A =f, -f* 
p = f z  -f3 

(1C-58) 

The interchange of A and p is equivalent to a particle-hole conjugation and thus gives 
rise to symmetries with the same L content. The final result for the L structure belonging 
to the symmetry (Ap) can be expressed by introducing a quantity A which takes the 
values - 

A = min(A, p), min(A, p) - 2,  . . . , 0 or 1 (1 C-59) 

Then, for each value of A, there is a series of L values 

L = X , X + I  ,..., K + m a x ( ~ , p )  ( X P  0) 
(1C-60) 

L = max(A, p), max(A, p) - 2, . . . , o or 1 (X = 0) 
In the nuclear p-shell configurations, we are restricted to partitions with 

fi 5 4 (A + p 5 4), since we must combine these functions with spin-isospin wave 
functions to form totally antisymmetric wave functions. However, the general classi- 
fication of states according to U 3  finds application in the characterization of states 
in a harmonic oscillator potential (see Appendix 7B). 

Classifcation of spin-isospin functions (Tuble I C-5) 

The decomposition of states with definite permutation symmetry [f] in spin- 
isospin space (and conjugate symmetry [f] in orbital space) into components (T, s) A 
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n tfl 

Table 1 C-5 Isospin-spin components of supermultiplets (U,  classification). 

with total isospin T and total spin S is shown in Table 1 C-5, for i? I 6. The construction 
of the table follows lines very similar to those employed in Table 1C-4. 

For n = 2, we shall enumerate the tableaux p,,, in m space corresponding t o  the 
different values of M r  and M s ;  we write + for m = + 1/2 and - for in = -1/2 and 
adopt the standard order + +, + -, - f, - - for filling out the tableaux. The first 
quantum number is always m, while the second is nz,. The following tableaux occur: 

M r = l  ~ s = l  litl++l 

A 
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Thus, we obtain the well-known result that the symmetric spin-isospin functions [2] 
have (T,  S)  = (1, 1) and (0, 0), while the antisymmetric functions [ l l ]  have (0, 1) and 
(1,O). Writing out the rn space tableaux for n = 3, we obtain 

I + + I + + I - - I  

F' 
M" 
M" 
EF + +  - +  - +  

which leads to the (T, S )  structure listed in the table. 
We may also give an alternative derivation of the result for n = 3. Starting from 

[ I  1 1  J we note that this symmetry lacks just one particle from forming the unique con- 
figuration [ I  1 1 I ]  of the closed shell. Thus, [ I  111 may be thought of as a single hole in the 
closed shell and has the same quantum numbers as a single particle, (T, S )  = (1/2, 1/2). 
Now we may construct the other symmetries by taking products of two-particle states 
and the states of the third particle 

The rest of Table 1C-5 can be constructed by means of the continued application 
of the methods indicated above. 

Since there are four basis states of a nucleon in spin-isospin space, the classi- 
fication involves the representations of U.,, referred to as supermultiplets. The A 
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v assignment of T and S quantum numbers corresponds to the reduction of U4 in terms 
of the product of two Uz groups. 

Table 1C-5 can also be read as a table of inner products of representations 
of S.. For example, for n = 3, a U2 representation with T = 1/2 or S = 1/2 refers to the 
partition [21], and the fact that (T, S )  = (1/2, 1/2) occurs for all the symmetries 
[3], [21], and [ l l l ]  corresponds to the fact that the product [21] x [21] contains 
each of these symmetries (see Table 1 C-2). A 
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2-1  B U L K  P R O P E R T I E S  O F  N U C L E I  

%la Nuclear Size 

At an early stage in the study of nuclear structure, evidence from cc-decay 
lifetimes and scattering cross sections for cc particles on light nuclei suggested 
that nuclei are characterized by an approximately constant density within a 
volume that increases roughly in proportion to the mass number, A (see Ruther- 
ford et al., 1930, pp. 280,331). This conjecture has been tested in greatest detail 
by means of high-energy electron scattering experiments (as illustrated in Fig. 
2-1, p. 159), which yield 

p(0)  = 0.17 nucleon fm-3 (2-1) 
for the value of the central density. The density decreases from the value (2-1) 
to zero over a distance of the order 2-3 fm, and thus, with the exception of the 
lightest nuclei, the surface thickness is appreciably smaller than the radial ex- 
tent of the nucleus, and it is useful to describe the density in terms of a radius, 
R, which varies approximately as 

R = ro A l l 3  (2-2) 

The electron scattering data determine the value of yo = 1.1 fm for the radius 
parameter that describes the distance at which the nuclear density has de- 
creased to half of the central value (2-1) (see Fig. 2-1). This value of the radius 
is also consistent with the evidence on the nuclear charge distribution obtained 
from p-mesic atoms. (For summaries and reviews of nuclear radius determin- 
ations, see Stanford Conference, 1958; Elton, 1961 ; Hofstadter, 1963.) Since 
the nuclear surface is not sharp, but, as indicated in Fig. 2-1, has a finite “dif- 
fuseness,” the definition of the nuclear radius depends somewhat on the property 
considered. (See p. 160 for a discussion of the various moments of the nuclear 
charge distribution, as determined from the electron scattering data.) 

The available evidence on the nuclear matter distribution is mainly con- 
fined to the proton density. In heavy nuclei, because of the Coulomb forces 
and associated neutron excess, there may be some difference between the density 
distributions of neutrons and protons. Tentative evidence bearing on this 
interesting problem is discussed in connection with the isotope shift data in 
Fig. 2-2 (p. 163) and the isospin mixing produced by the Coulomb force illus- 
trated in Fig. 2-6 (p. 174); see also the discussion by Elton (1961, pp. 93ff.) of 
the evidence from the scattering of fast TC+ and n- mesons, and the recent 
evidence derived from the capture of K -  mesons (Davis et al., 1967; Burhop, 
1967). 
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The almost constant density of nuclear matter is associated with the finite 
range of the nuclear forces; the range of the forces is of the order of r,, and thus 
small compared with the nuclear size. This “ saturation ” of nuclear matter is 
also reflected in the fact that the total binding energy of the nucleus is roughly 
proportional to A .  In a minor way, these features are modified by surface 
effects and the long-range Coulomb forces acting between the protons (see 
below). 

2-lb Mean Free Path of Nucleons 

A fundamental characteristic of any many-body system is the mean free 
path for collisions between constituent particles. A wide variety of evidence 
testifies to the fact that, in the nucleus, this mean free path is large compared to 
the distance between the nucleons and even, under many circumstances, is 
larger than the dimensions of the nucleus. 

A very direct way to explore the nuclear opacity is provided by scattering 
experiments involving incident neutrons and protons. Figure 2-3, p. 165 shows 
typical examples of the energy dependence of the total cross section for inter- 
action of neutrons with nuclei. For a system with a mean free path small com- 
pared to the radius, the total cross section would vary monotonically with 
energy, decreasing slowly over the eneirgy region considered, toward the 
limiting value 2nR ’. (For a discussion of general scattering theory as applied 
to nuclei, and for the estimate of cross sections for totally absorbing systems, 
see, for example, Blatt and Weisskopf, 1952, Chapter 8.) The pronounced 
variations in the observed cross sections must be attributed to the interference 
between the incident and transmitted waves, and thus establish the fact that the 
mean free path is at least comparable with the nuclear radius. (We later return 
to the more quantitative analysis of such scattering experiments (Sec. 2-4c); 
see also the discussion in connection with Fig. 2-3.) 

The relatively long mean free path of the nucleons implies that the inter- 
actions primarily contribute a smoothly varying average potential in which the 
particles move independently. As a first approximation of heavy nuclei, we may 
neglect surface effects, and the resulting Fermi gas model provides a useful 
starting point for the discussion of many of the bulk properties of nuclei. 

2-lc Momentum Distribution (Fermi Gas Approximation) 

If we consider a volume Q of constant potential, the individual-particle 
states are described by plane waves, 

V exp(ik . r ) X m ,  <Inc (2-3) cp = Q - I P  

where and are the spin and isospin wave functions specified by the 
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“magnetic” quantum numbers describing the nucleon spin, m, = rrt 1/2, and 
isospin, m, = + 1/2 (neutron) and m, = - 1/2 (proton). 

The allowed values of k are determined by periodic boundary conditions 
(since we are neglecting surface effects) 

c~(x,  .Y, 2 )  = CP(X + L,  .Y, 2 )  = c~(x,  Y + L,  Z) = c~(x,  .Y, + L)  (2-4) 

where L is the length of the volume element in which the particles are quantized 
(52 = L3).  The boundary conditions (2-4) lead to the eigenvalues 

2n 271 2 x  
L L L ”  

k ,  = - n, k ,  = - ny k ,  = - n 

and the label v in Eq. (2-3) thus represents the set of quantum numbers n,, 
ny  , ? I , ,  m, , and m, , 

The average one-particle level density in k space is 

d n = 4  - Q d 3 k  u3 
where the factor 4 reflects the fact that there are four different spin-isospin 
states for each eigenvalue k. 

The ground state of the Fermi gas is obtained by forming a product state 
in which the lowest-energy one-particle states (2-3) are filled (the effects of 
the antisymmetrization are considered in Sec. 2-lh). The dividing line between 
the filled and unfilled states is referred to as the Fermi surface, and the corre- 
sponding wave number is denoted by kF(n)  and k F ( P )  for the neutrons and protons, 
respectively. The value of k ,  is determined from the condition that the total 
number of occupied orbits must be equal to the number of particles ( N  for 
neutrons and 2 for protons). Thus, we obtain from Eq. (2-6) 

Using the observed particle density (2-l), we obtai n 

k F  NN 1.36 fm-’ (2-8) 
as an average value for neutrons and protons ( N  = Z = A/2 ) .  

A measurement of the momentum distribution of the nucleons in a nucleus 
would provide an especially direct test of the Fermi gas model. Various experi- 
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ments utilizing high-energy incident particles have attempted to explore this 
distribution, but the results, so far, have been mainly confined to light nuclei, 
and a quantitative analysis is plagued with difficulties in the description of the 
reaction mechanism. (See, for example, the discussion of the high-energy 
(p ,  2p) experiment shown in Fig. 2-27; for a critical review of the available 
evidence on the momentum distribution in nuclei, see Gottfried, 1963.) 

The Fermi energy, obtained from Eq. (2-7), represents the maximum 
kinetic energy of a particle in the Fermi gas, 

EF=-- ( B k F ) 2  - 37 MeV 
2M (2-9) 

The total kinetic energy of the Fermi gas is obtained by summing over all the 
occupied orbits, 

(2-10) 

The magnitude of the Fermi energy implies that, under normal experi- 
mental conditions, the nucleus is a highly degenerate Fermi gas. Only for 
excitation energies of order - lo3 MeV will an appreciable fraction of all 
the nucleons be excited. 

€kin = +(NE$') + Z E ~ ) )  % 

2-ld Nuclear Binding Energies 

The total nuclear binding energy, B, represents the difference between the 
observed mass, A (or, equivalently, the total nuclear energy S), in the ground 
state and the masses of the separated nucleons, 

1 1 
Jt'(N, Z )  = - B ( N ,  Z )  = NM, + ZM, - 7 B ( N ,  Z )  

C2 C 

The main trends in 93 are illustrated in Fig. 2-4, p. 168, and can be understood 
in terms of a simple expression (the semi-empirical mass formula), the separate 
terms of which can be motivated on the basis of the gross features of nuclei 
as described above (Weizsacker, 1935; Bethe and Bacher, 1936) 

(2-1 1) 

(2-12) 

That the main term in the nuclear binding energy should be linear in A is 
strongly suggested by the approximate A independence of the nuclear density. 
Thus, the first term in Eq. (2-12) is the volume energy representing the binding 
i n  the limit of large A, for N = Z,  and in the absence of Coulomb forces. 

The second term in Eq. (2-12) represents the surface energy, which is a 
general feature of finite systems reflecting the fact that particles .in the surface 
have fewer neighbors than at normal density. However, in contrast to classical 
liquids and crystals, the structure of the nuclear surface and the associated 
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energy are also affected in an important manner by the kineticenergy. The surface 
energy term is responsible for the increase in binding energy per particle with 
increasing A ,  which can be seen for the lighter nuclei in Fig. 2-4. 

The binding energy term proportional to A2I3 represents, quite generally, the 
leading-order correction to the linear term describing the energy of a saturating system. 
Thus, the observed coefficient, bsurf, might contain contributions from many effects, 
such as an A dependence of the density or of the correlations, which need not be pro- 
portional to the surface area of the nucleus. An experimental test of the interpretation 
of this term as a surface energy is provided by the data on the height of the potential 
energy barrier for the fission process. The barrier height is a very sensitive function 
of the ratio between the nuclear surface energy and Coulomb energy. (See the dis- 
cussion of the fission process in Chapter 6.) The surface energy parameter determined 
from the observed fission “ thresholds ” is bsurf = 17 MeV, in excellent agreement with 
the value (2-14) determined from the systematics of the nuclear masses (Burnett et d., 
1964; Myers and Swiatecki, 1966). 

The tendency toward stability for N = 2 (the nuclear symmetry energy) is 
expressed by the third term in Eq. (2-12), which represents the leading effect for 
small values of ( N  - Z ) / A .  The symmetry energy may be divided into a kinetic 
and a potential part. For given A ,  the kinetic energy of the nuclear Fermi gas is 
a minimum for N = 2. The kinetic part of b,,, may be estimated by expanding 
the energy (2-10) in powers of ( N  - Z), which yields 

(bsyrnlkin = + ( & F ) N = z  M 25 MeV (2-13) 

The potential energy part of b,,, is associated with a specific feature of the 
nuclear forces, which implies that the neutron-proton interaction is on the 
average stronger than that between like particles (see Sec. 2-5b). The empirical 
value of b,,,, which is about 50 MeV (see Eq. (2-14)), together with the estimate 
(2-13) implies that the potential energy part of b,,, is about 25 MeV. 

The last term in the semi-empirical mass formula (2-12) is the Coulomb 
energy corresponding to a uniformly charged sphere of radius R, . The Coulomb 
repulsion is responsible for the gradual decrease in the binding energy per 
particle that is observed for heavy nuclei (see Fig. 2-4). 

The observed binding energies are fitted rather well by the semi-empirical 
mass formula if one chooses the parameters (see Fig. 2-4) 

bvo, M 16 MeV 

bsurf M 17 MeV 

b,,, M 50 MeV 
(2-14) 

R ,  M 1.24 A1’3fm 

These values of the parameters also account for the observed neutron excess of 
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the /I-stable nuclei (see Fig. 2-18). More exacting tests of the semi-empirical 
mass formula are encountered when one tries to predict the masses of nuclei 
far from the line of /I stability (as is of special interest in connection with the 
theories of nucleogenesis; see Sec. 2-3b) and of nuclei much heavier than those 
so far studied. It is likely that for these purposes additional terms in the mass 
formula may be required, describing, for example, a dependence of the surface 
energy and of the average nuclear density on the charge symmetry parameter, 

A more detailed examination of the nuclear binding energies reveals 
systematic deviations from a smoothly varying function of Z and N ,  which may 
amount to about 10MeV in the total binding, as indicated in Fig. 2-4. A 
quantitative treatment of these quantal effects requires a rather complete 
description of the nuclear structure, including detailed configuration assign- 
ments, evaluation of correlation effects, and so on. The largest of the quantal 
effects are associated with the shell structure and the nuclear deformations, as 
discussed in Sec. 9-1. For attempts to generalize the binding energy formula to 
include quantal effects in terms of a number of average parameters, see 
Zeldes et rrl. (1967); Myers and Swiatecki (1966). We consider in the next 
section a part of the quantal effect, the pairing energy, which has an especially 
simple structure. 

N - Z .  

2-le Pairing Energy 

The nuclear binding energies are found to exhibit a systematic variation 
depending on the evenness or oddness of 2 and N 

A Zeven N even 
a&?=[ 0 Aodd 

- A  Z odd N odd 
(2-15) 

From the Fermi gas model, we expect an odd-even difference (pairing energy) 
resulting from the fact that each orbit, k, can be occupied by two protons and 
by two neutrons. Thus, we obtain an odd-even parameter A that is of the order 
of the spacing between the one-particle energies in the neighborhood of the 
Fermi energy 

(2-16) 

The observed pairing energies are shown in Fig. 2-5, p. 170, and are seen to be 
almost an order of magnitude larger than the estimate (2-16). 

The large observed odd-even effect may be described in terms of a pair- 
wise correlation of identical particles, which contributes an additional binding 
energy of 24 per pair (for nucleons near the top of the Fermi distribution). 
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This interpretation is supported by the paucity of levels in even-even nuclei for 
excitation energies less than that required to break a pair. (The experimental 
evidence for this energy gap is presented in Chapter 8.) The correlation of the 
particles in the pair is associated with a superposition of single-particle states 
within an energy interval of order A .  Thus, the transition from occupied to 
unoccupied states, which in a noninteracting Fermi gas takes place sharply at 
the energy E ~ ,  is smeared out over an interval of order A .  

The pairing effect plays a very important role in the low-energy nuclear 
phenomena. It can be treated in terms of a simple generalization of the inde- 
pendent-particle description, which will be considered in Chapter 8, following 
the analysis in Chapter 7 of correlations between two particles moving in orbits 
outside the Fermi distribution. The correlation effect is brought about by the 
predominantly attractive character of the nucleonic force ; thus, in atoms with 
the repulsive Coulomb interactions of the electrons, no similar pairing effect is 
observed (see Fig. 2-13). 

2-lf Isospin Quantum Number 

Isospin dependence of nuclear binding 
The expression (2-12) describes the binding energy for the ground state of 

a nucleus with given Z and N ,  that is, with given A = Z + Nand M ,  = +(N - 2). 
The ground state of the Fermi gas is obtained by filling the lowest neutron 
orbits up to the neutron Fermi energy, and similarly for the protons. The 
resulting state has a total isobaric spin T = M T  . In fact, a neutron and a proton 
in the same orbit form a system with zero isospin, since the wave function is 
symmetric in spin-orbital space. Thus, in the ground state, the isospin of the 
Fermi gas is contributed entirely by the extra neutrons, and we obtain a totally 
“ aligned ” isospin, T = MT . 

By exploiting the charge independence of the nucleonic interactions, we 
can also obtain, from Eq. (2-12), the binding energy for the lowest state with 
any given higher value of T. Such a state is the isobaric analog of the ground 
state of the nucleus with M ,  equal to the T value considered. 

In order to express the binding energy as a function of T and M ,  , we note 
that the only M,-dependent term is the Coulomb energy, which is a function 
of Z = $A - M ,  . The remaining part of the binding energy can only depend 
on T (and A ) .  The term proportional to (N - Z)’ may thus be regarded as the 
leading term in an expansion in powers of the isospin, 

T 2  . e2 + +(+A - M T )2 - 
Rc 

&‘(A, T, MT) = B,(A) + 2b,,, (2-17) 

The symmetry energy may also contain a term linear in  T ;  this term is associated 
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with neutron-proton exchange interactions and involves more detailed features 
of the nuclear structure. Thus, the potential (2-29) gives a contribution propor- 
tional to  T(T + l), while the assumption of the full supermultiplet symmetry 
gives an interaction energy proportionaj to T(T+ 4)  (see Bfatt and Weisskopf, 
1952, p. 243). The experimental evidence on the masses of nuclei with small 
values of T provides support for the existence of a linear term (see, for exam- 
ple, Myers and Swiatecki, 1966); however, we have retained the somewhat 
simpler form, T2, in Eq. (2-17), since this gives the main effect for heavy 
nuclei. 

The difference in binding energy for states in the same nucleus having 
different values of T (but the same M ,  and A )  is given by the symmetry energy. 
Thus, the lowest states with T = M T  + 1 occur a t  an excitation energy of about 

(2-18) ( T +  3) &(A, T +  1, M ,  = T )  - &(A, T, M ,  = T )  4b,,, - A 

This estimate represents an average neglecting the effects of shell structure and 
pairing. 

The binding energy difference between isobaric analog states (which have 
the same A and T, but different M , )  is given by the Coulomb energy. The 
estimate of the Coulomb energy in Eq. (2-12) is based on a very simple descrip- 
tion of an averaged nuclear charge distribution. However, the interaction of each 
charge with itself is included in the rest mass of the proton, and the nuclear 
Coulomb energy should therefore only include the interaction with the 2- 1 
other charges. Thus, one may obtain a slight improvement by replacing the factor 
2' by Z(2-  1). 

In a quantal description of the Coulomb energy, one must take into account the 
correlation of the protons that is implied by the antisymmetrization of the wave func- 
tion. The estimate of this effect is considered below (see Eq. (2-45)), and one finds, for 
a heavy nucleus, 

(2-19) ZZ 
% 0.70 A'/3 [ 1 - 0.762- 'I3] MeV 

(R, = 1.25A1/3 fm; A 2 40) 

Since the correlation produced by the antisymmetry of the wave function extends over 
distances of order kF1 - r,, (see below), the second term in the quantal estimate 
(2-19) is larger by a factor of order All3  than the classical correction obtained by 
replacing Z 2  by Z(Z  - 1). The radius parameter in  Eq. (2-19) has been determined 
from the observed energy differences between isobaric analog states (see, for example, 
Anderson et a/ . ,  1965; Batty er a/., 1966). This value of R, is significantly larger than the 
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value (2-66) describing the total charge density, as determined from the electron scatter- 
ing data. Such a difference may be expected from the fact that the isobaric displace- 
ment energy represents the Coulomb energy of an extra charge having a radial density 
distribution corresponding to that of the excess neutrons; these neutrons have some- 
what larger average radii than the total proton distribution. 

In lighter nuclei ( A  5 20), the Coulomb energy cannot be described by a simple 
expression such as Eq. (2-19), partly because the diffuseness in the charge distribution 
is comparable to the nuclear radius and thus R, does not vary as A and partly 
because the exchange term becomes increasingly important and depends on the more 
specific details of the nuclear configuration. (Discussions of the Coulomb energies in 
light nuclei have been given by Carlson and Talmi, 1954; Sood and Green, 1957; 
Harchol et al., 1967.) 

Violation of isospin conservation by Coulomb potential 

The primary effect of the Coulomb forces is to add to the nuclear Hamil- 
tonian a term depending only on MT (and A) .  This energy splits the components 
of the T multiplets by large amounts but is diagonal in T (conserves isospin). 

The Coulomb interaction, however, also contains T-violating effects. 
Thus, the Coulomb repulsion between the protons implies that the ratio of 
proton to neutron density increases slightly as one moves from the nuclear 
center toward the surface. An estimate of the resulting isospin mixing is given 
in Fig. 2-6, p. 174. It is seen that, even in heavy nuclei, the average Coulomb 
field implies admixed components with T > M ,  with a probability of only a 
fraction of a percent in the nuclear ground state. 

In the higher-energy part of the spectrum, there occur approximate de- 
generacies between states of different isospin. In such situations, even a very 
small isospin-violating coupling can produce large admixtures of near-lying 
states with different isospin (see, for example, p. 50). 

2-lg Nuclear Potential 

Average potentia1,for particles at Fermi surface 

From the observed binding energies, we can approximately estimate the 
magnitude of the potential energy of a single nucleon in the nucleus. If we assume 
that the nucleonic interaction energy can be represented in terms of the potential 
energies of the individual particles, the energy required to remove a neutron 
from the nucleus (the neutron separation energy) is 

S"(N,  2)  = B ( N ,  2) - 4?(N - 1,Z)  = -( v, + E F )  (2-20) 

and a similar expression for protons. Since S is of order 10 MeV, and cF is 
N 40 MeV (see Eq. (2-9)), the potential V is about -50 MeV. We shall see later 
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that this estimate is compatible with that obtained from nucleonic scattering 
experiments (Sec. 2-4c). It may be noted that the separation energy represents a 
relatively small difference between the larger kinetic and potential energies of 
the nucleon. 

Velocity dependence of potential 

The above estimate of the potential energy refers to particles at the top of 
the Fermi distribution. It is to be expected that the effective potential, V, de- 
pends somewhat on the momentum of the particle, as a result of the velocity 
dependence of the nucleonic interaction and of the correlations in the nucleonic 
motion. 

Indeed, it follows from simple arguments that a saturating system like the 
nucleus, with an independent-particle structure, must be described in terms of 
a velocity-dependent potential (Weisskopf, 1957). Thus, the nuclear binding 
energy per particle is 

The factor + arises from the fact that the interaction is assumed to result from 
a two-body force and thus should be counted once for each pair. (If there were 
significant n-body forces, the corresponding factor would be l/n.) The mean 
values of the potential and kinetic energies in Eq. (2-21) refer to averages for the 
occupied orbits. The velocity dependence of the potential V is obtained by 
combining Eqs. (2-20) and (2-21) with the relation S = .%?/A, which applies to an 
infinite saturating system, where the separation energy S is independent of A .  
(Comparison of Fig. 2-4 with Figs. 2-15 and 2-16 shows that this relation is 
approximately true for heavy nuclei along the line of p stability.) Using the 
Fermi gas value (2-10) for the mean kinetic energy, we then find 

L4? 
A ( V )  % V(&F) - f&, - - (2-22) 

where V ( E ~ )  is the binding field for the most weakly bound nucleons (which is 
the potential appearing in Eq. (2-20)). Thus, the average binding potential must 
be deeper than V ( E ~ ) .  (Remember that V is a negative quantity.) 

Efective mass 

The state dependence of the average potential is sometimes described 
approximately in terms of an effective mass. This approximation is obtained by 
expanding V in powers of and keeping only the first two terms 

v =  v ( & k i n  = 0) + a & k i n  (2-23) 

(which is probably a very crude approximation for & k i n  -+). If the relation 
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(2-23) is combined with the usual kinetic energy term, we obtain a Hamiltonian 
describing motion in a constant static potential; the velocity dependence is 
expressed through a modified kinetic energy term, in which the nucleon mass M 
is replaced by the effective mass M * given by 

M 
- = l + a  
M *  

From Eqs. (2-23) and (2-22) we obtain 

(2-24) 

(2-25) 

which implies an effective mass, M *  -MM/2. Such an energy dependence of the 
potential is similar to that observed in the scattering experiments (see Figs. 2-3 
and 2-29) and in the analysis of bound states (see Fig. 3-5). 

It should be emphasized that the use of an effective mass is simply a device 
for expressing the state dependence of the binding field appearing in the effective 
one-particle. Hamiltonian. The consequences of this state dependence for other 
properties cannot, in general, be obtained by replacing the nucleon mass, M ,  by 
M * in the expressions appropriate to a static binding field. (See, for example, 
the comments on the magnetic moments on p. 394 and on the moment of 
inertia in Vol. 11, p. SO.) 

Symntetry potential 

In heavy nuclei, the neutron excess implies that the neutrons and protons 
are subject to somewhat different average nuclear potentials. The effect is re- 
lated to the symmetry energy, and we can write 

+ neutron 
t: = - 4  proton 

N - Z  
A 

v= v, + i t Z  - (2-26) 

for the nuclear potentials acting on the protons and neutrons. In the indepen- 
dent-particle approximation, the total potential energy is obtained as one- 
half the sum of the one-particle potential energies (for two-body forces) and 
thus 

(2-27) 

Combining Eq. (2-27) with Eqs. (2-13) and (2-14), we obtain the estimate 

vl z 4(bsym)pot = 4Cbs.ym - ( b s y m ) k i n l z  100 MeV (2-28) 

Thus, for a heavy nucleus ( A  - 200; 2 - SO), the symmetry term in the potential 
(2-26) amounts to about 5 MeV. In the case of protons, the total potential is 
obtained by adding to Eq. (2-26) the Coulomb potential which, for a heavy 
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nucleus ( A  -200), is about 20 MeV at the nuclear center, decreasing to about 
13 MeV at the nuclear surface. 

Charge exchange potential 

The isobaric invariance of the forces responsible for the symmetry term in 
the nuclear potential implies a corresponding neutron-proton exchange potential 
(Lane, 1962). The expression (2-26) involves the product of the z components of 
the isospins of the nucleon and the nucleus, and the generalized potential that 
is invariant to rotations in isospace has the form 

(2-29) Vl V =  V, + - t 1 TA- 
A 

where t is the nucleon isospin and T A - l  that of the rest of the nucleus. 
The exchange terms in Eq. (2-29) (the terms involving t +  = t ,  i i t y )  have 

no effect for the low configurations of a nucleus, which are fully aligned in iso- 
space, but in higher configurations these terms are of significance in ensuring the 
constancy of the total nuclear isospin. (See, for example, Fig. 3-1 and Eq. 

The exchange potential can be studied directly by means of the charge 
exchange scattering of nucleons ( (pn)  reactions on nuclei with neutron excess). 
The quantitative information on the symmetry potential obtained from the 
analysis of scattering experiments is discussed in Section 2-4c. 

(3- 19).) 

2-lh 

A proper quanta1 description of a Fermi gas introduces certain refinements 
of the semiclassical treatment. The antisymmetrized wave function for a system 
of independent nucleons is a Slater determinant, constructed from the wave 
functions of the individual particles (Slater, 1929). The calculation of matrix 
elements for such determinantal wave functions can be carried out especially 
simply by exploiting a formalism based on operators that create or destroy a 
nucleon moving in a single-particle orbit. The main features of this formalism 
are described in Appendix 2A. 

The structure of the antisymmetrized state 1 v1 v 2  - * * v ~ ) ~  constructed from 
the one-particle states (2-3) may be exhibited in terms of the different density 
functions. The one-particle spatial density operator is 

Antisymmetrized Fermi Gas Wave Functions 

A 

d r >  = 1 G(r - r k )  (2-30) 
k =  I 

The expectation value of this density operator in the ground state of the 
Fermi gas may be obtained by a direct evaluation in the Slater determinant 
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constructed from the states (2-3). One finds, as a general result applying to any 
one-particle operator, that the expectation value is equal to the sum of the 
expectation values for the individual occupied particle orbits and is thus not 
affected by the antisymmetrization (see Eq. (2A-26)). We therefore have 

< v l  v 2  ’ ‘ . vA Idr)] v 1  v2 ‘ . ‘ vA)a 

where the average density can be expressed by means of Eq. (2-7), 

(2-31) 

(2-32) 

Since the plane wave states (2-3) ignore surface effects, we obtain a constant 
density equal to the value (2-32). 

The effect of antisymmetrization appears when we consider the two- 
particle density functions, such as 

p(r, r’) = C [6(r - rj)6(r’ - rk) + 6(r - rk)6(r’ - rj)] (2-33) 
j < k  

whose expectation value gives the probability of finding one particle at r and 
another at r’. Again, we may evaluate the operator (2-33) directly in the Slater 
determinant, or may employ the general relations obtained in Appendix 2A. 
According to Eq. (2A-32), the expectation value of p(r, r’)  is given by 

< v l  ~ 2 . .  . V A  Ip(r, r’)l v 1  vz 1 . .  vA). 

(2-34) 

On inserting the one-particle wave functions (2-3), we obtain for the antisym- 
metrized two-particle matrix elements in Eq. (2-34) 

( V l V Z  M r ,  r’)l V I V Z ) .  

= (VIVZ Mr,  r’)l VlVZ) - (VZVI IAr, r‘)l VlVZ) 

= - (1 - d(m(l),  %(2))6(~(1),  mQ)) cosC(kl - k2) . (r - r‘)]} (2-35) 
1 

Q2 

Replacing the sums in Eq. (2-34) by integrals, and using Eqs. (2-6) and (2-32), 
we obtain 

where 
(Ar,  r’))gr.s*. = - SC2(k ,  lr - r’l>l (2-36) 

3 sin x 
C(X) = -5 ( - - cosx)  

x x  
(2-37) 
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The second term in Eq. (2-36) describes the correlation of the nucleons 
resulting from the antisymmetrization; the factor 1/4 results from the fact that 
the spatial correlation occurs only for nucleons with the same spin and isospin 
orientation (see Eq. (2-35)) and such pairs represent one fourth of the total 
(for simplicity, we assume N = 2 = 4 2 ) .  This correlation implies that, in the 
neighborhood of each nucleon, there is one less nucleon than would have been 
expected for a homogeneous uncorrelated system, 

= -- po C2(k , r )  d3r = -1 (2-38) 4 l I  
This correlation effect is sometimes referred to as the “ exchange hole.” The 
function 1 - C2(kFr)  is plotted in Fig. 2-7, p. 177. 

We may also be interested in two-particle density functions characterizing 
pairs that are specified by additional quantum numbers beside the positions r 
and r’. For example, the operator describing the density of pairs having spatially 
symmetric wave functions is 

p(r, r’, 7t = + 1) 

= C [6(r - r j )  d(r’ - rk) + 6(r - rk)d(r’ - rj)llz[l + c k ]  (2-39) 
j < k  

The matrix elements of this operator may be evaluated in exact analogy to the 
derivation of Eqs. (2-34) and (2-35), 

(VIVZ Mr, r‘, = + 1)l V I V 2 ) .  

Summing over the occupied orbits in the ground state of the Fermi gas, we 
obtain 

M r ,  r’, 71 = + l)>gr.st. = %pX1 + C2(kF Ir - r‘I)I (2-41) 

In a similar manner, we may evaluate the two-body density function for nucleons 
with spatially antisymmetric wave functions, 

(p(r, r’, n = - l ) > g r . s t ,  = $pX1 - C 2 ( k F  Ir - r’l)] (2-42) 

We could also have characterized the pairs by their total spin, S, and 
isospin, T. The 7t = - 1 pairs contain ( S  = 0, T= 0) and ( S  = 1, T= 1) states 
with probabilities (proportional to (2s  + 1)(2T + 1)) in the ratio 1 to 9, while 
the IL = + 1 pairs contain the states ( S  = 1, T = 0) and ( S  = 0, T = 1) with equal 
probability. Thus, the coefficients 3/8 and 5/8 in Eqs. (2-41) and (2-42) represent 
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the relative statistical weights of the spatially symmetric and antisymmetric 
two-particle states. 

The pair correlation function can, in principle, be determined from various 
scattering and reaction processes, but there is at present little direct evidence on 
this point. The correlations associated with the antisymmetrization play an 
important role in the evaluation of matrix elements for two-particle operators, 
such as the nucleonic interactions (the exchange contributions). 

As an example, we consider the effect of the exchange hole on the estimate 
of the total Coulomb energy. For this purpose, we need the two-particle 
density function for the protons, 

Ppp(rl  > I-2) = Pp(rl)Pp(rz" - +C2(k$')r1 2)1 (2-43) 

The correlation occurs for protons with the same spin orientation, and since 
these represent one half of all proton pairs, the coefficient of the function C2 
is 1/2. The Coulomb energy is 

(2-44) 

and thus the first term in the density (2-43) yields just the classical expression 
(2-3). The second term in Eq. (2-43) gives the exchange contribution which may 
be easily evaluated for a system with constant density (Bethe and Bacher, 1936) 

27 Z2e2 
16 (k$'))'R3 

- -- - (2-45) 

Using the value of k, given by Eq (2-7), we obtain the Coulomb energy corrected 
for exchange, as given in Eq. (2-19). 

2-li Statistical Features of Excitation Spectrum 

The bulk properties of nuclei, discussed above, serve to define certain 
important qualitative features, but the main source of evidence on nuclear 
structure is provided by the rich body of information relating to the nuclear 
spectra and the properties of individual levels. As we shall discuss in the fol- 
lowing chapters, the low-energy spectra are dominated by correlation effects 
that give rise to pair correlations and collective modes of rotational and vibra- 
tional type, superimposed on the single-particle motion. However, the number 
of collective modes is small compared with the total number of degrees of 
freedom of the particles. Thus, at sufficiently high excitation energies, it is 
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expected that the particle degrees of freedom will dominate and that the Fermi 
gas model may provide useful guidance in the discussion of average properties 
of the spectrum. 

Level density of Fermi gas 

The calculation of the density of states for the Fermi gas amounts to 
counting the number of different ways in which the excitation energy 

E = 8 - &ground state (2-46) 

can be distributed among the single-particle states (2-3). This is a well-defined 
combinatorial problem, which is the same as that encountered in the charac- 
terization of the equilibrium state of a large system by means of statistical 
mechanics. The mathematicai toois employed in the soIution of this probIem 
are summarized in Appendix 2B. As compared with the usual macroscopic 
systems described by statistical mechanics, there are relatively few particles in 
a nucleus, and this implies that, in evaluating the thermodynamic functions, it is 
necessary to be somewhat more careful in treating certain terms that are often 
neglected in statistical mechanics. 

The result of the calculation of the total level density for the Fermi gas 
is (see Eq. (2B-42)) 

6114 

p ( N ,  Z ,  E )  = - - go e ~ p ( 2 ( ~ g ~ E ) ’ ’ ~ )  N X Z  (2-47) 
12 (g0E)514 

where E is the excitation energy and go is the one-particle level density at the 
Fermi energy, representing the sum of the proton and neutron level densities, 

3 A  
go = g(EF) z - - 

&F 
(2-48) 

In Eq. (2-47), we have assumed that 2 = N = A/2; the corrections for neutron 
excess can be evaluated by the same methods, but are found to be negligibly 
small. 

In obtaining the expression (2-47), it is necessary to assume 

E < cF All3 (2-49) 

This limit results from the fact that the one-particle level spacing (2-48) is a 
function of the one-particle energy (g(&) cc E ’ ” ) .  This variation can be accounted 
for by employing the methods described in Appendix 2B, but the level density 
then becomes a more complicated function of the excitation energy (non- 
degenerate Fermi gas). In addition, the derivation of, Eq. (2-47) assumes 
E & eF A - ’, which is simply the condition that the excitation energy be great 
compared to the energy of the first excited state. (There must be many excited 
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levels in order that the level density be defined.) However, the Fermi gas model is 
inappropriate for a much larger region of the low-energy spectra due to the 
neglect of various systematic correlation effects associated with collective modes 
of excitation. 

The most striking feature of the level density expression (2-47) is the very 
rapid increase in the number of levels with increasing excitation energy. This is 
a reflection of the increasing number of degrees of freedom, which can be 
excited at higher energies. In discussing this increase, it is often useful to employ 
the concept of the nuclear temperature,’ T, which is the inverse of the log- 
arithmic derivative of p ;  for the Fermi gas, we have 

(2- 50) 

The condition go E 9 1 ,  mentioned above, implies that the second term in 
Eq. (2-50) will be larger than the first, but the first term may still be a significant 
correction in many cases of interest. 

The significance of the temperature may be seen in a somewhat different 
light if we ask for the average occupation numberftv) of a given one-particle 
state of the Fermi gas, as a function of the excitation 
Sec. 2B-3) 

energy E ;  we find (see 

(2-51) 

Thus, the temperature determines the region around the Fermi energy in which 
the average occupation number is significantly different from that in the ground 
state of the system. The average number of particles excited with respect to 
the ground state is 

n e x  = c (1 -S(v>) + c f ( v >  
V < V F  v >  v p  

112 
= g o T l n 4 %  (-$goE) In4 (2-52) 

One can also recognize, in the relation (2-51), the origin of the main features 
of the level density given in Eq. (2-47). Thus, the single particles that occupy 
excited orbits with respect to the ground state of the Fermi gas are mainly 

Thermodynamic concepts were introduced into the discussion of the nuclear excitation spectra 
by Frenkel (1936), Bohr and Kalckar (1937), Weisskopf (1937), Landau (1937), and Bethe (1937). 
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confined to an energy region of width - T around E ~ ,  which implies an average 
energy per excited nucleon 

E 
"ex 

- T  - (2-53) 

The number of orbits in the interval -T determines the number of excited 
nucleons 

"ex  - Tgo (2-54) 

in agreement with Eq. (2-52). The estimates (2-53) and (2-54) give 

E-goT2  (2-55) 

corresponding to the leading term in Eq. (2-50). The total number of levels is 
of the order of the number of ways in which the nex particles can be distributed 
over a number of levels of order 2n,,, and thus the main term in the level 
density is 

(2-56) 

where a is a parameter of order g o .  
One may also be interested in the density of states characterized by a 

definite value of the total angular momentum, 1, and parity n ;  the calculation 
for the Fermi gas with N = Z  = A/2 is carried out in Sec. 2B-6 and yields 
(see Eq. (2B-62)) 

Z(I + q2 21 + 1 n2 h2 h2 
p ( ~ , ~ , l n ) =  - 24 /hg0)1'2(-)3'2[~-K 2yrig 

h2  112 
x exp(2[;g0(E - - Z(I + l))] ) 

2yrig 
(2-57) 

where the coefficient of the Z-dependent term depends on the moment of 
inertia for rigid rotation, 

Yrig = 3 lp(r)r2 d3r (2-58) 

The approximations made in obtaining the expression (2-57) imply a range of 
validity similar to that of Eq. (2-47). 

The enumeration of the levels on the basis of the Fermi gas ascribes to 
each level a definite configuration specified by the orbits of the individual 
particles. In any experiment aimed at measuring the total nuclear level density, 
it is crucial to know whether the actual levels represent pure configurations or 
involve configuration mixing that will remove the selection rules associated 
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with single configurations. We shall, therefore, in the following section, consider 
the evidence relating to configuration mixing in highly excited states. 

ConJguratic,, mixing and the compound nucleus 

The first evidence on nuclear level densities at high excitation energies came 
from the discovery of densely spaced, sharp resonances in the slow neutron 
capture reaction. (The development leading to this discovery has been reviewed 
by Bethe, 1937, pp. 113ff.) The density of these levels is of the order lo6 times 
greater than that corresponding to single-particle motion (in a nucleus with 
A - 100); see, for example, the levels of 233Th shown in Fig. 2-8, p. 178. This 
evidence implies that the neutron, on entering the nucleus, can share its energy 
with a large number of degrees of freedom of the target, and thus establish a 
highly complex state of motion, the compound nucleus (Bohr, 1936). In 
terms of the Fermi gas model, the compound nucleus corresponds to very 
extensive configuration mixing in the stationary states and resonances. Such 
configuration mixing implies that the component representing one-particle 
motion with respect to the target is distributed over the wave functions of a 
large number of different resonance states. All these resonances may therefore 
be excited in neutron scattering, and at the same time the neutron width of each 
resonance will be small, when measured in single-particle units. (The analysis of 
resonance scattering and the estimate of single-particle units for resonance widths 
are discussed in Appendix 3F.) 

The occurrence of configuration mixing leading to the compound nucleus 
can be understood in terms of the increasing importance of small perturbations 
in the independent-particle motion, with increasing excitation energy of the 
system. Partly, the number of excited particles, and thus the number of possible 
interactions, increases; partly, there is an increase in the excitation energy per 
particle and therefore of the density of final states available in a collision 
between two particles. Thus, at sufficiently high excitation energy, each con- 
figuration will be strongly coupled to some similar configuration. In turn, this 
second configuration is strongly coupled to a third, and in this manner the 
properties of any given configuration become distributed over the quantum 
states lying within some characteristic energy region. 

A more detailed picture of the compound nucleus may be obtained from a 
statistical analysis of level spacings and widths. As a limiting case, one may 
consider the spectrum resulting from the diagonalization of large matrices with 
random elements. This model represents the extreme case of complete mixing 
between all the available degrees of freedom within an appropriate energy 
interval. Some of the properties of such systems are considered in Appendix 2C. 

Such a more detailed model makes possible a discussion of the probability 
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distributions and correlations between the various properties of the nuclear 
levels. For example, the distribution P(s) ,  for spacings s between adjacent 
levels of the same In, is given to a good approximation by the Wigner distri- 
bution 

where D is the average level spacing. 
The distribution (2-59) may be contrasted with 

1 
D P(s )  = - exp( - ;) 

(2-59) 

the Poisson distribution 

(2-60) 

which follows from the assumption that the eigenvalues Ei are randomly 
distributed, as would be approximately true, for example, in the Fermi gas 
model with no configuration mixing. The greatly reduced fluctuations in the 
spacings implied by the distribution (2-59) as compared with the Poisson dis- 
tribution (2-60) reflect the fact that the configuration mixing effects included 
in the random matrices imply a tendency for neighboring levels to repel each 
other. 

As discussed in connection with Fig. 2-9, p. 180, the spacing distributions 
of the resonance levels observed in the slow neutron capture reaction are con- 
sistent with the expression (2-59) obtained from the model of random matrices 
and disagree with the distribution (2-60). A similar analysis of the distribution 
of neutron widths of these resonance levels lends further support to the assump- 
tion of extreme configuration mixing, as embodied in the model of random 
matrices (see Fig. 2-10, p. 182). 

Thus, the present evidence is compatible with the picture of complete 
mixing between all configurations that are sufficiently close in energy; this 
mixing implies that, in the slow neutron resonance studies, it is possible to ob- 
serve all the levels permitted by angular momentum and parity selection rules. 
(These selection rules are discussed in connection with Fig. 2-8). One therefore 
obtains a measure of the total density of levels p(E, In) at the excitation energy, 
E, corresponding to the neutron separation energy. 

Evidence on the nuclear level density over a much wider range of energies 
can be obtained by exploiting the compound nucleus concept to interpret the 
yields of nuclear reaction processes (evaporation spectra). The example shown 
in Fig. 2-1 1 ,  p. 183, exhibits the striking exponential increase in level density that 
has been found in all such measurements. The Fermi gas level densities (2-47) 
and (2-57) contain this important qualitative feature, and the coefficient in the 
exponent is of the same order of magnitude as the estimate (2-48); see Figs. 2-1 1 
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and 2-12. However, as illustrated in Fig. 2-12, this coefficient is found to exhibit 
marked variations as a function of the nucleon number A .  This variation can be 
associated with the shell structure, which implies a departure from a uniform 
single-particle spectrum with a resulting modification in the form of the level 
density expression (see Sec. 2B-2). At the present time, the detailed variation of 
the nuclear level densities as a function of energy and angular momentum is not 
well understood; thus, it is sometimes found that the Fermi gas expression 
(2-57) gives a very good description of the available data (see, for example, 
Fig. 2-12), while in other nuclei the temperature varies more slowly (T m const) or 
the effective moment of inertia is considerably smaller than .Yrig. 

It should be emphasized that the available evidence on nuclear level 
densities is still of a rather qualitative nature and thus leaves open many im- 
portant questions concerning correlation effects in the high-energy nuclear 
spectra. Because of the many possible ways in which such correlations might 
occur and manifest themselves in the properties of the nuclear levels, the subject 
is one of great potential scope. 

' 1 ILLUSTRATIVE 

EXAMPLES TO 

SECTION 2-1 

Determination of nuclear charge distribution from electron scattering 
(Fig. 2-1) 

The primary source of information on the nuclear charge distribution has 
been the study of electron scattering on nuclei. Low-energy electrons are mainly 
scattered by the Coulomb field outside the nucleus and the cross section is 
approximately described by the scattering from a point charge (Mott scattering). 
For higher energies, the electron wavelength 

(2-61) 

becomes comparable with or smaller than the nuclear dimensions, and the 
scattering is sensitive to the spatial distribution of charge within the nucleus. 

Figure 2-1 shows the differential cross section observed for electrons of 
153 MeV scattered from a gold target. It is seen that, for the angles studied, the 
intensity of the scattering is at least an order of magnitude weaker than for a 
point charge of 2 = 79. The angular distribution exhibits mild oscillations 
characteristic of scattering by a system with a rather well-defined radius. A simple 
estimate of the radius can be obtained by observing that in such diffraction 
patterns the successive maxima or minima are separated by angles corresponding A 
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'I 

A 

to A ( 4 R )  z n, where h4 is the momentum transfer associated with the given 
scattering angle (9 z 22-' sin(0/2)). From the existence of minima at  0 w 45" 
and 0 M 85", we obtain R % 7 fm. 

Rg=6.38fm=1.10A 'h fm 

a = 0.53 fm 

.. 
c , , ,K,, 

TO - o 2 4 6 8 10 r (UNITS OFfm) 
Q 

POINT CHARGE 

SCATTERING OF 153 MeV 
ELECTRONS ON A u  

SCATTERING ANGLE 
Figure 2-1 The experimental data and the theoretical analysis are taken from B. Hahn, 
D. G. Ravenhall, and R. Hofstadter, Phys. Reu. 101,1131 (1956); D. R. Yennie, D. G. Raven- 
hall, and R. N.Wilson, Phys. Rev. 95,500 (1954); R. Herman and R. Hofstadter, High Energy 
Electron Scattering Tables, Stanford Univ. Press, Stanford, California, 1960. We wish to 
thank G. Jacob for help in the preparation of the figure. 

'I A more detailed interpretation of the scattering may be obtained by 
assuming a charge distribution, calculating the resulting potential, and then 
solving the Dirac equation for scattering in such a potential. (A collection of 
articles describing the experiments and their analysis is contained in Hofstadter, 
1963.) The solutions are usually obtained with the help of electronic computers, A 
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v since more than 100 partial waves may be significantly involved. Figure 2-1 shows 
the best fits to the experimental points that can be obtained if one assumes ( A )  
a uniform charge distribution or ( B )  a distribution of the form 

(2-62) 

These two distributions and the parameters obtained are shown in the insert to 
the figure. It is seen that the experiments provide definite evidence for a finite 
surface thickness. A satisfactory fit can also be obtained from distributions 
differing somewhat from (B), as, for example, a distribution with a slight increase 
or decrease in density at the center of the nucleus. These scattering data, thus, 
primarily determine two parameters, the mean radius and the surface thickness. 
The thickness of the surface region is often expressed in terms of the interval, f ,  

in which the density falls from 90 % to 10 % of the central value po . For the 
distribution (2-62), we have 

t = (4 In 3)a x 4.40~ (2-63) 

It may become possible to determine finer details in the charge distribution by 
employing electrons of still higher energy. 

The distribution (2-62) is used extensively in the discussion of nuclear 
charge distributions and, for convenience, we give some of the moments of this 
distribution, which are encountered in the analysis of various nuclear properties. 
The central density po is determined by the normalization integral 

j p  dr = po? 3 R 3  (1 + T?(:)') 

In this expression, we have neglected terms of relative order exp(-R/a}. The 
radial moments of p are conveniently expressed as an expansion in u/R, 

(2-653 

where the neglected terms in the expansion are of order ( u / R ) ~ .  The Coulomb 
self-energy of the charge distribution p can be expressed in terms of the effective 
Coulomb radius, R,  , 

The derivation of these expressions involves the evaluation of the same integrals 
as encountered in Eq. (2B-10) (see, for example, Elton, 1961). Since the expan- 
sions in powers of (a/R)' are rapidly convergent (except for the lightest nuclei), one A 



52-f B U L K  P R O P E R T I E S  OF N U C L E I  @ 161 

v may, for many purposes, employ the expansion of the density (2-62) in the form 

(2-67) 1 7r2 

6 S(r - R) - -u26'(r - R) + .. * 
where S is the step function 

S(x)= 1 x t o  
= o  x > o  

(2-68) 

and 6' is the derivative of the 6 function. The coefficient of the 6' function may 
be found, for example, from Eq. (2-64), and one may then immediately derive 
the moments (2-65) and (2-66). 

As discussed on p. 138, the experimental scattering data and the measure- 
ments on p-mesic atoms are consistent with the parameters 

P O  = 0.17 nucleon f m - 3  

u = 0.54 fm 
(2-69) 

for all nuclei with A > 16. From Eqs. (2-69) and (2-64) we obtain 
R x (l.12A1/3 - 0.86A-'l3+ ...) fm (2-70) 

for the radius parameter appearing in the distribution (2-62). From Eqs. (2-69) 
and (2-65) we thus obtain 

3 
5 

3 
5 

( r 2 >  = -(l.12A1/3)2(l + 3.84A-2/3 + .-.) (fm)z 

x -(l.2A1/3)2 (fm)2 (2-71) 

and similarly, from Eq. (2-66), 

R , x  l.2A1/3 fm (2-72) 

for a medium heavy nucleus ( A  x 1 0 ) .  

Evidence on nuclear charge distribution obtained from isotope shvt in atomic 
spectra (Fig. 2-2) 

A very sensitive measure of the changes in the nuclear charge distribution 
resulting from the addition of neutrons to  the nucleus is provided by the measure- 
ments of the isotope shifts in the atomic spectra. Since the electron wave function 
is approximately constant over the nuclear volume, the effect of the finite nuclear 
size is mainly determined by the mean square radius ( r 2 )  of the nuclear charge 
distribution, that is, 

27r 
3 AE = E - Emin, n Y E I C U I  = -Ze2  ( r 2  >p,(O) (2-73) 

where p,(O) is the electron density in  the region of the nucleus. The expression 
(2-73) is readily obtained by comparing the binding energy for a charge located 
at the nuclear center with that of a charge distributed on a spherical surface with 
radius r .  The electron density p,(O) may be calculated from a knowledge of the A 
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v Coulomb field in which the electron moves; in  heavy atoms one must include the 
enhancement of p,(O) by relativistic effects (Breit, 1958; Kopfermann, 1958). 

The evidence discussed in connection with Fig. 2-1 suggests that, on the 
average, the nuclear charge distribution varies with atomic number as 

(2-74) 
3 
5 

<r'> x - ( r o A 1 / 3 ) 2  

I I I I I I I I 

STANDARD ISOTOPE SHIFT 
CALCULATED WITH ro = 1.2 fm - 

- 

- 

9 - Ce 

4-0 $w 
Hf 0s 

ko L- 
Xe Yb 4 Pt 

- R' wy 
Sr I 0 - b  I I I I I 

LO 50 60 70 80 90 100 110 120 130 

with 
ro x 1.2 fm (2-75) 

The variation in the charge distribution described by Eqs. (2-74) and (2-75) is 
appropriate to the overall trend among the stable nuclear species, that is, to 
variations in A by which roughly equal numbers of neutrons and protons are 
added to the nucleus. The isotope shift involves the variation of the charge 
distribution when only neutrons are added to the system and is thus a quite new 
property. The observed shifts are conveniently expressed in terms of a standard 
unit obtained by assuming the variation (2-74) 

(2-76) 

A In Fig. 2-2, the observed isotope shifts of the even-even nuclei are 
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v given in terms of the standard unit. In  most cases, the shifts are of the order of 
one-half the standard unit, but striking variations are also observed. 

The fact that the radius of the charge distribution increases less rapidly 
than A l l 3 ,  when neutrons are added, can be understood in terms of the dependence 
of the proton potential on the neutron excess (Perey and Schiffer, 1966; Swift 
and Elton, 1966; Uher and Sorensen, 1966). Thus, the addition of neutrons to 
the system implies that the proton potential is increased (see the symmetry 
potential given by Eq. (2-26)), and, with increasing binding, the protons are com- 
pressed in the nucleus. As a rough estimate, we have, for the change, 6R,, in 
the proton radius associated with an increase, 6 V,, in the depth of the proton 
potential, 

(2-77) 

where the radial derivative of the one-particle potential is taken at the nuclear 
surface. Taking 

(2-78) 

where t is the surface thickness (the estimates (2-63) and (2-69) yield t = 2.5 fm), 
and 

sv, % I liN I/, 
4 A  

(2-79) 

where V ,  is the isovector part of the one-particle potential (for an estimate, see 
Eq. (2-28)), we have 

(2-80) 

This compression of the protons is about one half as great as the standard ex- 
pansion (see Eq. (2-76)) 

(2-81) 

(since R x 6 fm in a heavy nucleus). The symmetry effect as revealed in the isotope 
shift implies a tendency for the mean radius of the protons to be somewhat smaller 
than that of the neutrons in a nucleus with N > Z. The Coulomb force provides 
an effect in the opposite direction. 

The striking maximum in the isotope shift at N =  90 can be understood 
in terms of the effect of deviations of the nuclear shape from spherical symmetry 
(Brix and Kopfermann, 1949). The effect of the nuclear deformations on the 
isotope shift may be simply evaluated if we assume (see Sec. 9-1) 

(a) the surfaces of constant density enclose a constant volume as the system is 
A deformed, 
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'I (b) the surfaces of constant density all have the same eccentricity, 
(c) the deformations are mainly of quadrupole type. 

The charge density distribution of a deformed nucleus (in the intrinsic coordinate 
system) can then be written (to order p2)  

(2-82) 

and the mean square radius of the charge distribution is 

where ( r ' ) ,  represents the mean square radius of the charge distribution for a 
spherical nucleus ( p  = 0). The above derivation has assumed a deformation of 
axial symmetry ; other components of quadrupole deformation are included by 
taking p to be the total deformation parameter. Since the change in  ( r 2 )  is 
proportional to /3', not only the static deformation (as revealed in the quadrupole 
moments or E2 transition probabilities between rotational states), but also the 
fluctuations in the nuclear shape (as revealed in E2 transition rates to vibrational 
states) contribute to the effective charge radius. For example, ' :!$m,, appears 
to be a spherical nucleus with ( p  ') = 0.032 as determined from the €2 transition 
to the first excited 2+  vibrational state (see Fig. 4-1 and Chapter 6), while 
:;Sm,, exhibits the rotational spectrum characteristic of a statically deformed 

nucleus with Q,  = 5.9 x cm2, which implies 8' = 0.094, since Qo = 

3 ( 5 7 ~ ) - ' / ~  ZR ' p  for a uniformly charged nucleus (see Chapter 4). The variation 
in p' between '"Sm and '52Sm thus implies a contribution to the isotope shift, 

(2-84) 

In Nd, Eu, and Gd, the change in p2 between isotopes with N = 88 and 
N = 90 is found to be very similar to that in Srn, and thus accounts for the 
strikingly large isotope shifts observed in all these nuclei. 

The observed isotope shifts exhibit large odd-even staggering (not shown 
in Fig. 2-2), which we may characterize by the parameter 

(2-85) 

where ( r 2 ) *  represents the mean square radius of an even-even isotope, A.  I f  
the radius increased smoothly with increasing neutron number, as in  the relation 
(2-76), the parameter y would be unity. The observed values are usually some- 
what less than unity, and in some cases negative values have been observed 
(see, for example, Kuhn and Turner, 1962). The origin of the odd-even staggering 
is not well understood, but it has been suggested that the effect may be related 
to the nuclear deformations and reveal a systematic tendency for odd-A nuclei 
to exhibit smaller values of ( p 2 )  than even-even isotopes (Sorensen, 1966). A 
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v Recently, the isotope shift has been detected in x-ray transitions (Cheder 
and Boehm, 1968, and references given there) and in the spectra of muonic atoms 
(see the review by Wu, 1967). The new evidence has confirmed the main qualita- 
tive features discussed above. However, the comparison between ratios of 
isotope shifts in the same element has revealed unexpectedly large specific mass 
effects in the electronic spectra, which imply significant corrections to some of the 
values in Fig. 2-2 (Wu, 1968). Additional detailed information on the variation 
of the nuclear charge distribution has been obtained from the study of electron 
scattering on separated isDtopes (see Van Oostrum et a/. 1966). 

Estimate of mean free path from neutron total cross sections (Fig. 2-3) 

Information on the mean free path of nucleons in a nucleus can be obtained 
from a study of cross sections as a function of energy. The measured total cross 
section for the interaction of neutrons with Cu, Cd, and Pb are shown in Fig. 2-3. 

I I I I I 1 I I I - MEASURED NEUTRON TOTAL CROSS 
SECTIONS 

--- TOTAL CROSS SECTION FOR A 
BLACK NUCLEUS“ 

8 
ul 
c 
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m 
n 6  
c 
0 

% 
2 

t n  R = 1 . l ~  

----_ 

r 
I 1 I I I I I I I I 
1 2 5 10 20 50 100 200 500 1000 

E,,MeV 
Figure 2-3 The experimental data for En < 100 MeV are taken from the review by J. M .  
Peterson, Phys. Rev. 125, 955 (1962) and from the compilation Neutron Cross Sections, BNL 
325, Sigma Center, Brookhaven National Laboratory (1964). For energies above En = 100 
MeV, the data are taken from V. A. Nedzel, Phys. Rev. 94, 174 (1954) and T. Coor, D. A. Hill, 
W. F. Hornyak, L. W. Smith, and G. Snow, Phys. Rev. 98, 1369 (1955). We wish to thank 
J. M .  Peterson for help in the preparation of the figure. 

The dotted lines give the cross sections that are calculated for a “ black nucleus,” 
that is, by assuming a boundary condition for r = R expressing that neutrons 
may enter the nuclear volume, but that there is no outgoing flux approaching 
the nuclear surface from the inside (for the details of this calculation, see Blatt 
and Weisskopf, 1952, Chapter V111). A 
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v The marked oscillations in  the measured cross sections result from the fact 
that the scattering nuclei are not opaque and thus the transmitted wave is able 
to interfere with the incident wave. (A similar effect is observed in  the scattering 
of electrons on atoms and is referred to as the Ramsauer-Townsend effect; see, 
for example, Massey and Burhop, 1952, pp. 8ff., 113ff.) The atom-atom inter- 
action (molecular forces) can also be represented, for sufficiently low energies, 
by a real potential of finite range, and thus the cross sections exhibit marked 
oscillations of similar origin; see, for example, the review by Pauly and 
Toennies, 1965.) 

A qualitative interpretation of the interference effect may be very simply 
obtained on the basis of a semiclassical approximation appropriate to high 
energies. The propagation of the neutron inside the nucleus is described in terms 
of the inside velocity, r i n ,  and a mean free path A ;  these parameters can be 
expressed in terms of a complex wave number K ,  or in terms of motion in a 
complex potential V + i W ,  

- Mu, .  i 
-- 

fi +2x (2-86) 

Since we shall consider incident energies large compared with the potential 
energy and wavelength small compared with the nuclear radius, we may calculate 
the amplitude of the transmitted wave assuming a straight line orbit through the 
nucleus. A ray that passes a distance b from the nuclear center thus emerges 
with an amplitude 

exp{2i(K - k ) ( R 2  - b Z ) 1 1 2  } (2-87) 

relative to the incident wave, which moves with the wave number k ,  where 

k = ( , )  2 M E  ‘ I 2  = F  Mu,,, 
(2-88) 

Summing over the different impact parameters, b, we obtain for the scattering 
amplitude in the forward direction, 

ik 
f(0) = [1 - exp{2i(K- k ) ( R 2  - h’)”’ 112xh db 

0 

2 
1 +--$I - =Y 2 

k )  R (2-89) 

The expression for f ( 0 )  may be obtained from the partial wave expansion 
(3F-33) by replacing the variable I by kh. 

The total cross section may becalculated from the scattering amplitude i n  the 
forward direction, since the attenuation of the incident beam (proportional to 
the total cross section) is the result of interference between the incident wave A 
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v and the wave scattered in the forward direction. The relation, usually called the 
optical theorem, is 

(2-90) 

When the transmitted wave (2-87) is 180" out of phase with respect to the 
incident wave, there is a maximum in the cross section, while minima correspond 
to the situation in which the transmitted and incident waves are in phase. Since 
the parameter x that determines the relative phase is a decreasing function of 
energy and an increasing function of R,  the corresponding maxima and minima 
shift to higher energy as R is increased. (This variation with E and R is the 
opposite of that characterizing the one-particle resonances in a potential well ; 
see Sec. 3F-2. The relation of the interference phenomena discussed above 
to the one-particle resonances has been discussed by McVoy, 1967a.) 

Examination of Eqs. (2-89) and (2-90) shows that the last maximum in the 
cross section is expected when the real part of x is about 4.1 ; the fact that this 
maximum occurs for an incident energy of about 90 MeV for Pb implies that 
the real potential Vis about -22 MeV, using R = 1.4 x = 8.3 fm. This value 
of the radius seems the most appropriate for the present estimate, since the 
potential extends somewhat beyond the charge distribution. (The maxima and 
minima of the cross section given by Eqs. (2-89) and (2-90) have been tabulated 
by Franco, 1965, who has also discussed the validity of this simple approxima- 
tion.) The increase in otor for En 7 400 MeV is associated with meson production. 

From the magnitude of the oscillations, we may also estimate the mean free 
path and thus the magnitude of the imaginary potential, W .  I f  the potential were 
purely real (A = a), the relations (2-89) and (2-90) would imply a difference of 
about a factor of 2 between the last maximum and minimum in the cross section. 
The observed difference in Pb is only about 15 "/, and thus implies an attenuation 
of about a factor of 5 in the transmitted wave. From this we may conclude that 
R / I  z 1.6 or W z - 10 MeV, as may also be confirmed by more detailed fitting 
of the experimental cross sections with the expressions (2-89) and (2-90). 

Further comparisons of the theoretical expressions with the observed cross 
sections show that the real and imaginary potentials change with the bombarding 
energy. Thus, the minimum before the last maximum should occur when the real 
part of x is 7.7. The observation of this minimum at about 50 MeV in Pb implies 
that the potential has increased in strength to about 34 MeV. Indeed, the poten- 
tial is found to increase steadily with decreasing energy, approaching a value of 
about 45 MeV for zero bombarding energy. 

If the imaginary part of the potential were constant, the oscillations would 
become weaker as one went to lower energies, since the oscillatory term in the 
amplitude (2-89) varies inversely with x. I n  fact, the observed oscillations in 
the cross section get larger as the bombarding energy is decreased, implying a 
decrease in  the imaginary potential. At low bombarding energies, the imaginary 
potential has decreased to about a fifth of its high-energy value. 

4n 
k utor = - Irnf(0) 

A 
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v In  Sec. 2-4c, we shall consider the more quantitative description of the 
nucleon-nucleus cross sections and the potentials that are deduced from this 
analysis. 

Binding energy per nucleon as function of A (Fig. 2-4) 

A The experimentally determined binding energy per nucleon (&?/A) of the 
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Figure 2-4 The experimental binding energies are taken from the compilation by J. H. E. 
Mattauch, W. Thiele, and A. H. Wapstra, Nuclear Phys. 67, 1 (1965). The smooth curve 
represents the semi-empirical mass formula, Eq. (2-12), with the constants given by A. E. S .  
Green and N. A. Engler, fhys. Reu. 91,40 (1953). 
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v most stable isobar for each even value of the mass number A is plotted in Fig. 2-4. 
The restriction to even A avoids the systematic odd-even variation which is 
illustrated in Fig. 2-5. 

The smooth curve in Fig. 2-4 is calculated from the mass formula (2-12) 
with the constants 

bvol = 15.56 MeV 

b,,,( = 11.23 MeV (2-91) 

b,,, = 46.51 MeV 

R, = 1.24 All3 fm 

Besides the general trends described by the mass formula (2-12), one can 
see, in the measured binding energies, a number of significant local variations. 
Thus, in  the light nuclei, the binding energy is systematically greater for mass 
numbers A = 4n than for A = 4n + 2 (n  an integer). These "short periods" are 
associated with the fact that the nuclear interactions favor states that are 
spatially symmetric (see, for example, Chapter 7). In heavier nuclei, the binding 
energies exhibit local maxima, which are associated with the completion of major 
shells. 

Pairing energies (Fig. 2-5) 

The odd-even mass parameter A defined by Eq. (2-15) can be determined 
from the empirical masses of a sequence of isotopes or isotones. Assuming that 
the masses are a smooth function of 2 and N except for the pairing effect, we can 
define a local average of the masses of odd-A nuclei, and by comparing this 
value with the observed masses of the even-even nuclei, we obtain A .  Thus, for 
even N ,  we may define 

A ,  = 4 { B ( N -  2, Z )  - 3B(N- 1 ,  Z )  + 3B(N, Z )  - B ( N +  1 ,  Z ) }  

= - t  {S.(N - 1 ,  Z )  - 2SnW Z )  + S"(N+ 1 ,  Z )  f (2-92) 

S. (N ,Z)  = B ( N , Z ) - B ( N -  1,Z) 

while, for odd N ,  the negative of the expression (2-92) is taken as the neutron 
pairing energy. Similarly, for even 2, we define the proton pairing energy 

d, = * { B ( N ,  z - 2) - 3B(N, z - 1) + 3L?#(N, Z )  -L?#(N, z + 1)) 

= -t{S,(N, z- 1) - 2S,(N Z )  + S,(N, z+ 1) 1 (2-93) 

S,(N, Z )  = B ( N ,  2)  -B(N,  z - 1) 

while, for odd 2, the negative of Eq. (2-93) is used. The pairing energies (2-92) 
and (2-93) obtained from the empirical masses are plotted in Fig. 2-5 as a 
function of the number of neutrons or protons in the nucleus. It is seen that the 
general trend in the observed pairing energies is fit by the simple expression 

12 A % - -  A l / 2  MeV (2-94) 

A although significant local variations occur and appear to be correlated with the 
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Figure 2-5 The odd-even mass differences for neutrons and protons are based on the 
analysis of N. Zeldes, A. Grill, and A. Simievic, Mat. Fys. Skr. Dun. Vid. Selsk. 3, No. 5 
(1  967). 

shell structure. There is a slight tendency for A ,  to  exceed A , .  This fact leads to 
a predominance of odd-N nuclei among the /?-stable species as compared with 
odd Z (53 odd-2, compared to 68 odd-N /?-stable nuclei with A < 238). In 
Chapter 8, we shall consider the origin and more detailed interpretation of the 
pairing energy. 

The simple description of the pairing energy used in Eq. (2-15) implies that 
the extra energy of an odd-odd nucleus, as compared with an even-even con- 
figuration, is 

Comparison with the observed masses of odd-odd nuclei reveals that this re- 
lation is approximately fulfilled, but that there is a systematic tendency for the 

godd-odd  - 8even .even  X A n  f A ,  W 24 (2-95) 
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v odd-odd masses to be slightly lower than this estimate. This extra binding of the 
odd-odd nuclei amounts on the average to about 20A-' MeV (see, for example, 
Zeldes et al., 1967), and may be thought of as resulting from the attractive 
residual interaction between the unpaired neutron and the unpaired proton. 

The expression (2-92) represents an average pairing energy for the neutron 
number N and N - 1. In order to avoid this averaging, one may attempt to 
derive A from a second difference of energies rather than the third difference 
employed in Eq. (2-92). Thus, for even N ,  we may define 

& =  - t { ~ ' ( N - l 1 , Z ) - 2 ~ ( N , Z ) + ~ ' ( N +  1 , Z ) )  
(2-96) 

= + 3 { S . ( N , Z ) - S S , ( N + 1 , Z ) }  

However, because the average energy (2-12) contains significant terms that are 
not linear in N ,  the linear interpolation (2-96) yields an estimate of A that is 
systematically too small. The correction may be approximately estimated by 
taking the second derivative of Eq. (2-12) with respect to N (for fixed Z),  and in 
this way one obtains contributions to A,, of about 1 MeV for A = 40 and 0.1 
MeV for A = 200. The estimate (2-96), corrected in this manner, is very similar 
to that obtained from Eq. (2-92) (see Nemirovsky and Adamchuk, 1962). 

It is essential in the above estimate of A that the nuclear masses vary in a 
smooth manner except for the odd-even pairing effect. This condition is badly 
violated as one goes from one major shell to the next (see Fig. 2-14), and in such 
cases the quantity A obtained from Eqs. (2-92), (2-93), and (2-96) does not have 
any simple significance. 

Isospin mixing caused by the Coulomb potential (Fig. 2-6) 

The isospin mixing in the nuclear ground state resulting from the Coulomb 
interaction can be estimated in terms of the nuclear polarization associated with 
the tendency of the Coulomb potential to push the protons towards the nuclear 
surface. 

We first consider a nucleus with N = Z and describe the polarization by 
the local isovector density 

pl(r) = pn(r) - p h )  (2-97) 

Variations in the isoscalar density, p,,(r) f p , ( r ) ,  will be neglected, since they do 
not affect the isospin. The Coulomb energy is given by 

The tendency of the Coulomb potential to polarize the nucleus is counter- 
acted by the same effects as those responsible for the symmetry term in the 
nuclear energy (see Eq. (2-12)). We therefore express the symmetry energy in A 
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v terms of a local energy density, 

(2-99) 

where po is the average particle density. Minimizing the sum of the energies (2-98) 
and (2-99) with respect to  variations 6p,(r) = -26p,(r), we obtain the polariza- 
tion produced by the Coulomb potential 

We have subtracted the mean value ( Vcou,)  of the Coulomb potential in order 
to ensure that the integral of pl(r) over the nuclear volume vanishes. 

To determine the isospin mixing connected with the density difference 
(2-loo), we must express the polarization effect in terms of quantized excitations. 
For this purpose, we shall employ a collective description in which the excitations 
associated with nuclear polarization are viewed as normal modes of oscillation 
similar to those in a liquid drop consisting of two fluids. The properties of such 
normal modes are discussed in Appendix 6A. 

The main nuclear polarization is of monopole type (we neglect the relatively 
small quadrupole effects in deformed nuclei), and the expansion of pl(r) into 
normal modes takes the form (see Eq. (6A-62)) 

pl(r) = po(4n) - 'Iz C ccnjo(k. r )  (2- 101) 

where the values of k, are given by the boundary condition (6A-63) at the nuclear 
surface, which yields (for ;1 = 0) 

n 

tan k.R = k , R  

4.49 n = I 

k . R =  1.72 n = 2  i 10.8 n =  3 

From Eqs. (2-100) and (2-lOl), we obtain 

(2- 1 02) 

(2-103) 

A In the last expression, we have inserted the Coulomb potential produced by a 
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v uniformly charged sphere, 

(2-104) 

The amplitude ci, given by Eq. (2-103) represents the mean value in the 
polarized state of the nth mode. Since a, is small compared to  the zero point 
amplitude the polarized state is represented by the ground state of the 
oscillator on which is superimposed the state with one quantum of excitation, 
with amplitude c, = +ci,,(cc,)~'. The zero point amplitude ( C I , ) ~  can be expressed 
in terms of the eigenfrequency w, and the restoring force parameter C, for the 
nth vibrational mode (see Eqs. (6A-67) and (6A-68)), and for the probability, 
P, = c:, for excitation of the nth mode, we therefore obtain 

C" 
2fi W" 

P, = - cr.' 

with 

1 ( sORj,(k. r>r4 dr 
E n  = - 

k,R *K  R7 [jO(k.r)I2r2 dr 
0 

4.36 x 10-3 n =  1 

2.98 x n =  2 

(2-105) 

(2- 106) 

In Eq. (2-105), we have used the relations (6A-60) and (6A-64) for the eigen- 
frequencies. 

Each excitation carries a unit of isospin (7 = l), and the polarized nuclear 
state thus contains T = 1 components with a total probability 

P ( T =  1 )  = P(T = 1 )  = c P, = 3.50 x 10-722~2 '3  (2- 107) 
n 

as illustrated in Fig. 2-6. 
For nuclei with a neutron excess, the ground state has T = To = M ,  = 

f ( N  - Z )  in the absence of the Coulomb interaction, and the polarization effect 
introduces small components with T = To + 1. The intensity P(To + 1) of these 
components can be simply obtained from the above results, provided the pro- 
perties of the collective polarization modes are only little affected by the neutron 
excess. The estimate (2-107) then continues to give the total probability P(T = 1) 
for excitation of polarization modes. The isospin (T  = 1) of the excitation can 
couple with the isospin To of the excess neutrons to form states with T = To A 
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Figure 2-6 The figure shows the isospin impuritiesinnuclear ground states estimated onthe 
basis of the hydrodynamical model (A. Bohr, J. Damgaard, and B. R. Mottelson, in Nuclear 
Structure, p. 1, eds. A. Hossain, Harun-ar-Rashid, and M. Islam, North-Holland, Amster- 
dam, 1967.) 

v and To + I ,  and we obtain 

P(To$- I ) =  (ToTolol To+ 1 ,  To)’P(T= 1 )  

= (To + 1)-lP(7= 1) (2- 108) 

This result, shown as a dotted line in Fig. 2-6, is, however, an overestimate 
because of the neglected interaction between the neutron excess and the polari- 
zation modes. Partly, this interaction produces a splitting between the excitations 
with T = To and To + 1, which pushes the T = To + 1 state toward higher 
energies and thus reduces the probability for exciting this state. (An estimate of 
the coupling energy can be obtained from the isovector nuclear potential (see 
Eq. (2-29).) Partly, the presence of the excess neutrons, by more specific quantum 
effects, decreases the strength of the (To + 1) mode; this can be seen by analyzing 
the polarization modes in terms of the excitation of individual protons. The 
excitations lifting the protons to orbits that are occupied by neutrons cannot 
change the total isospin, since the system remains fully aligned in isospace. Thus, 
only the excitations to higher orbits can lead to an increase in the isospin. The 
xain proton excitations contributing to the monopole mode are associated 
with an increase of the radial quantum number by one unit and, on account of 
the Pauli principle, only the protons in the two last major shells are therefore effec- 
tive. In a heavy nucleus, the neutrons fill one more major shell than the protons, A 
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v and thus the number of effective isospin-raising transitions is reduced by about 
a factor of 2. (An analysis of the modes with T = To + 1, in terms of the effect of 
the nucleonic interactions in correlating the single-particle excitations, can be 
formulated by means of the methods discussed in See. 9-3.) 

Estimates of the isospin admixing have also been made on the basis of an 
independent-particle description (MacDonald, 1956; Sliv and Kharitonov, 1965). 
The estimates obtained on this basis exceed those given in Fig. 2-6 by an order 
of magnitude. The reduction obtained by the present estimate may be attributed 
to the forces between the nucleons, which act against a separation of neutrons 
and protons. Thus, the eigenfrequency of the lowest collective monopole polari- 
zation mode given by the “hydrodynamic model” is 170A-1’3 h-’  MeV (see 
Eq. (6A-65)), while the single-particle excitations with change of radial quantum 
number by one unit have a frequency of the order of 20, M 80A-’13h-1 MeV 
(see Eq. (2-131)). 

It may be added that the dipole polarization mode has been studied in 
connection with the nuclear photoeffect (see Chapter 6). For this mode, the 
collective “ hydrodynamical ” eigenfrequency is also about twice the average 
single-particle frequency, and is found to account rather well for the observed 
frequency of the dipole resonance. 

An especially sensitive test of the presence of isospin impurities is provided 
by the f t  values for p transitions between isobaric analog states with Z = 0. 
The transition operator for these p decays is proportional to a component 
T ,  = Tx +_ iTy of the total isospin, and the matrix element is therefore indepen- 
dent of internal nuclear properties. Accurate ft measurements are available for 
a number of O+ -, O+ transitions between members of isobaric triplets having 
two nucleons in addition to a “core” with N = 2 and T = 0 (see Fig. 1-10). 

The above estimates yield admixtures of components with T = 0 and 2 into 
the predominantly T = 1 states with intensities 

P(T)= (lMj-101 TMT) ’P (T=  1) 

where P ( T  = 1) is given by Eq. (2-107) and is plotted in Fig. 2-6. Even these small 
admixtures, however, are only partially effective in modifying the transition 
matrix elements. In fact, in the approximation considered, in which the inter- 
action between the excess nucleons and the excitations of the core is neglected, 
we can describe the nuclear states in terms of two independent components, the 
core and the extra particles with T =  1, M,. The core state is predominantly 
isoscalar with small isovector components admixed by the Coulomb field, but 
these admixtures are independent of the M ,  value of the extra nucleons. The 
operators T ,  can therefore only affect transitions between members of the triplet 
by acting on the extra nucleons carrying unit isospin, and the matrix element 
retains its unperturbed value. 

An estimate of the modification in theft value can be obtained by taking 
into account the splitting between the T = 0, 1 ,  2 states formed by coupling the A 
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'I isospin T = 1 of the core excitation to the isospin To = I of the excess neutrons. 
If we assume the probability for virtual excitation of the various T components 
to be inversely proportional to the square of the excitation energy (corresponding 
to a matrix element unaffected by the interaction), and if we employ the estimate 
(2-29) for the coupling between T and To ,  we obtain for theft value 

Vl x 100 MeV 1' P(T = 1)  (2-1 09) 

where (ft)o is the unperturbed ft value. The excitations with T = 0 and 1 do not 
contribute to  the f i  decay, since the T = 1 component is missing in the nucleus 
with M ,  = 0. The T = 2 component has a transition probability three times 
larger than for T = 1 (see Eq. (1-70)). For a nucleus with A FZ 50, the factor 
2Vl(Ahon=,)-' is of the order of 10%. It should be emphasized that additional 
interaction effects between the core and the two extra nucleons may affect the 
Fermi matrix element by amounts comparable to the correction term estimated 
in Eq. (2-109). 

Two-particle correlation function for Fermi gas (Fig. 2-7) 

The antisymmetry of the wave functions of a Fermi gas implies correlations 
in the motion of the particles. The two-body correlation for nucleons in anti- 
symmetric orbital states is proportional to the quantity 1 - C2(k ,  r ,  2), which is 
plotted in Fig. 2-7 (see Eqs. (2-37) and (2-42)). The other two-body correlation 
functions in the Fermi gas can also be simply expressed in terms of this quantity 
(see Eqs. (2-36) and (2-41)). 

The oscillations and long-range character of the correlation function 
(C2(x) - x - ~  cos2 x for large x) are a consequence of the assumption of a sharp 
Fermi surface for the occupied momentum states. Whether or not such a sharp 
Fermi surface can ever be maintained in the presence of two-body interactions 
is an intriguing general question (see, for example, Kohn and Luttinger, 1965). 

Average spacing and widths for  resonances in low-energy neutron inter- 
action (Fig. 2-8) 

The principal source of evidence on the nature of the nuclear states at high 
excitation energy has been the study of the resonances observed in the interaction 
of low-energy neutrons with nuclei (En < a few keV). As an example, Fig. 2-8 
shows the total cross section for the reaction n + 232Th in the region of 
En - 100 eV. 

The centrifugal barrier implies that, in the low-energy region, the 1 = 0 A 
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v resonances are much stronger than those with I > 0. Thus, from Eq. (3F-51) and 
Table 3F-1, we expect that on the average an I =  1 resonance in Th at 100 eV 
will have a neutron width about times that of an 1 = 0 resonance (as- 
suming similar one-particle parentage coefficients for the two resonances). A 
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Figure 2-7 The two-particle density correlations in a Fermi gas involve the function C(x) 
illustrated in the figure. 

v The existence of very clear interference between the resonance and potential 
scattering in Fig. 2-8 provides further support for the 1 = 0 assignment to all of 
the strong resonances. Further improvements in the experimental resolution have 
revealed additional very weak resonances (not visible in Fig. 2-8), which are 
believed to arise from I =  I interactions (see, for example, Bollinger and 
Thomas, 1964). 

The restriction to I = 0 implies that the angular momentum and parity A 
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v I ,  n, of the resonance states are limited by the selection rule 

I ,  = l o  k 3 (2-1 10) 

7r, = no 

A where I ,  no are the angular momentum and parity of the ground state of the 
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Figure 2-8 The figure gives the total cross section for the reaction n + Z3ZTh as a function 
of the neutron energy, E n ,  in electron volts; the data are taken from the compilation Neutroti 
Cross Sectiotis ( 1  964). 
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v target nucleus. For an even-even target, such as 232Th, we have Iono = 0+,  and 
thus the resonances are characterized by I,n, = l / 2+ .  

I t  is seen that the average spacing of the resonances is about 16 eV. This is 
about lo6 times smaller than the single-particle spacing (Dsp  x 2n:V0(K0R)-' x 
102A-1/3 MeV for orbits of the same spin and parity in a square well 
potential). This high density of resonances is clear evidence that the states in this 
region of the spectrum involve the excitation of many degrees of freedom of the 
nucleus. 

In  the interpretation of the observed spacings of the levels, it is useful, as 
a first orientation, to compare with the expression (2-57) describing the level 
spectrum of a Fermi gas. The Fermi gas level density is very sensitive to the one- 
particle level density go ,  and therefore we may determine the value of go that is 
necessary in order to give the observed level density. For 233Th at  an excitation 
energy of E = S,  = 5.1 MeV, we have [p(In = 1/2+)]-' = 16 eV, which 
implies go = 16 MeV-'. This value is of the same magnitude as the estimate 
go = 3A/2&, x 10 MeV-' obtained from the Fermi gas model. The values of go 
obtained from this and other estimates are discussed in connection with Fig. 2-12. 

The observed neutron widths of the resonances fluctuate considerably from 
level to level (see Fig. 2-10), but the average is about 

F, x 1.2 x 10-3(~.(ev))llz eV (2-1 11) 

where both the width and the resonance energy are in electron volts. This value 
is about times the single-particle estimate (3F-51). The small widths of the 
resonances are directly connected with the high level density of the resonance 
states and provide additional evidence for the many-particle aspect of these 
states. The average of the neutron width divided by the level spacing provides a 
measure of the one-particle strength function and is further discussed in connec- 
tion with Fig. 2-26. 

Beside neutron emission, the resonance states may decay by pray emission 
to any of the lower-lying levels of 233Th. The total width for y emission is found 
to be ry x 2.5 x lo-' eV and to be approximately the same for all the resonances 
that have been measured in 'j3Th. It is generally believed that the most important 
transitions contributing to the radiative decay are E l ,  although the available 
experimental evidence is not very conclusive (see, for example, Bartholomew, 
1960). A detailed interpretation of Tr would involve partly a discussion of the 
spectrum of the emitted y radiation and partly an estimate of the E l  strength 
function for transitions of a few MeV. 

Distribution of level spacings observed in neutron resonances (Fig. 2-9) 

The statistical distributions of the resonance energies and widths provide 
information on the structure of the states involved. As an example, Fig. 2-9 
shows the distribution of the observed spacings between adjacent resonances in A 



180 IN D E P E N D  ENT- PART I C LE M 0 T I 0  N Ch. 2 

v n + 232Th. There is some uncertainty in the construction of the figure because 
of the observation of the very weak resonances mentioned in the discussion of 
Fig. 2-8 and believed to be I = 1 resonances. Since we are interested in the spacing 
distribution for levels of the same spin and parity, these weak levels have been A 
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2 2 3  LEVELS n D = 17.6 eV 

3 

X = =/D 
Figure 2-9 The figure plots the probability distribution of the observed spacings,s, between 
adjacent resonance levels in the reaction n + 232Th up to an energy En = 3.9 keV (223 reso- 
nances). The average level spacing is denoted by D. The data are taken from J. B. Garg, 
J .  Rainwater, J. S. Petersen, and W. W. Havens, Jr., Phys. Rev. 134, B985 (1964). 

omitted, but the conclusions drawn from the present analysis must be regarded 
as somewhat tentative, until the spin and parities of the weak levels have been 
directly determined. The Wigner distribution (2-59) and the Poisson distribution 
(2-60) are also drawn in the figure. It is seen that the data clearly exhibit the 
absence of small spacings, as expected in a situation where there is extensive con- 
figuration mixing, and are inconsistent with the Poisson distribution, which would 
apply if there were a large number of conserved quantities besides Zrc character- 
izing the resonance states. 

The description of the configuration mixing in terms of random matrices 
also implies the occurrence of a long-range crder in the sequence of resonance 
energies (Dyson, 1962). Thus, if we let N ( E )  be the function that gives the 
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v total number of levels up to the energy E, we may construct the quantity A that 
measures the mean square deviation of N from the best fitting linear function 
of E. 

(2-112) 

where the experimental data on the resonance energies are assumed to span the 
interval ( - L ,  L). The model of random matrices implies that, in the limit in 
which the number of resonances n included in the sample is very large, 

(2-1 13) 
1 

7r2 
= - [In n - 0.06871 

(Dyson and Mehta, 1963). The long-range order in the level spacings is revealed 
in the logarithmic variation of A with n (compare with a random distribution of 
levels, which yields A = n/l5). The value of A has been computed for the first 
154 resonances in 233Th (Dyson and Mehta, loc. cit.) and yields A = 3.12compared 
with the value A = 0.50 obtained from Eq. (2-1 13). The rather large disagreement 
between these values may represent a serious deviation from the model of com- 
plete configuration mixing (random matrices), but some caution is necessary 
before drawing this conclusion, since the value of A is sensitive to the inclusion 
of resonances that may have been incorrectly assigned (impurities or 1 = 1 
resonances) and the omission of weak 1 = 0 resonances. To be in agreement with 
the model of random matrices, about 25 % of the observed resonances in 233Th 
would have to represent incorrect assignments. 

The analysis of the 233Th resonances is especially simple because the target 
nucleus has I ,  = 0, in which case, for I = 0, all the resonances have Z, = 112. 
For odd-A target nuclei ( I ,  # 0), the resonance states can have either of the 
values I ,  = I ,  f 1/2. Unless the spins of each resonance have been experimentally 
determined, it becomes necessary to analyze the statistics of resonance properties 
in terms of the superposition of two resonance sequences that are uncorrelated 
with respect to each other. The available data on the spacings of resonances 
observed in the reaction t? + (odd-A nucleus) seem to be consistent with such an 
interpretation if the Wigner distribution is assumed for the spacings in the 
separate sequences (see, for example, Desjardins et al., 1960). 

Distribution of neutron widths (Fig. 2-10) 

Additional evidence on the structure of the neutron resonance levels can 
be obtained from an analysis of the distribution of the neutron widths. As an 
example, the probability distribution of the reduced widths, r!,'), observed for 
the resonances in n + 232Th, is plotted in Fig. 2-10. From the discussion in A 
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v Appendix 3F, we can obtain the one-particle parentage P ( r )  of a resonant state, 
r ,  from the neutron width, 

(2-1 14) 

where E J r )  is the neutron energy at resonance. Thus, the intrinsic property of 
the resonance is proportional to the reduced width rA0) = E-"' n (1.1 rn ( r ) .  A 

" 
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Figure 2-10 The figure plots the probability distribution of the reduced neutron widths 
observed in the reaction n + 232Th (TAo)(E,) = Tn(E,)E,- "'(eV)). The data are taken from 
J. B. Garg, J.  Rainwater, J. S .  Petersen, and W. W. Havens, Jr., Phys. Rev. 134, B985 (1964). 

v The theoretical distribution obtained in the limit of extreme configuration 
mixing (Porter and Thomas, 1956) is a x2 distribution with v = 1. Since such 
a distribution varies as for small values of T,!') (see Eq. (2C-28)), 

it is convenient to plot the distribution of (T,!o))1'2. The observed widths in 
Fig. 2-10 follow the distribution (2-1 15) rather well, but are in disagreement with 
the Poisson distribution (a x' distribution with v = 2; see Eq. (2C-29)). 

The good agreement with the expression (2-1 15) provides some support for 
the exclusion from the analysis in Figs. 2-9 and 2-10 of the very narrow levels 
mentioned in connection with Fig. 2-8. These levels all have values of r!,') of the A 
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v order 10-3(r!,0’) or smaller, and thus one may conclude that they are I = 1 or 
are characterized by some other quantum number that effectively excludes 
coupling to the channel corresponding to neutron emission. 

Nuclear level density function from neutron evaporation spectra (Fig. 2-1 I )  

The detailed study of neutron resonances provides information on the 
nuclear spectra that is confined to a very narrow energy interval above the 
neutron separation energy. Evidence on the nuclear level density over a much A 

EXCITATION ENERGY U(MeV) 
Figure 2-11 The figure gives the level density p ( U ) ,  in relative units, deduced from the 
energy distribution of neutrons inelastically scattered from Ag. The data are taken from 
K. Tsukada, S. Tanaka, M. Maruyama, and Y .  Tomita, Nuclear Phys. 78, 369 (1966). 

v wider interval can be obtained from the analysis of the energy distribution of 
nuclear reaction products. As an example, Fig. 2-11 shows the level density 
function obtained from neutron inelastic scattering on Ag. 

The level density p ( U ) ,  at the excitation energy U, is deduced from the A 
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v yield of neutrons, N(E,,), of energy En,  by employing the statistical relation 

N(E.) = const p(U)E.o,(E., U )  (2-1 16) 

where ac(En, U )  is the cross section for formation of the compound nucleus 
when the final nucleus at excitation energy U is bombarded by neutrons of 
energy E n .  (The physical basis of Eq. (2-1 16) will be further discussed below.) 

The cross section ac(E,, , U )  is not directly observable but is expected to be 
approximately equal to o,(En, 0); in the analysis, the latter cross section has 
been calculated from the optical model. Owing to the exponential variation of p, 
the main features of the results of the analysis are not very sensitive to the values 

Since the yield predicted by Eq. (2-1 16) decreases approximately as 
exp( - En/T),  where T is the nuclear temperature, reactions that do not proceed 
through the compound nucleus (direct interactions) are often found to contribute 
significantly for En 9.T. Thus, in the present study, the level density has been 
deduced from a series of experiments, in each of which only the low-energy part 
of the neutron spectrum (En I 1.9 MeV) has been employed to determine the 
variation of p. By employing different bombarding energies, Ei,,, the whole 
range of excitation energies 2 MeV < U < 8 MeV has been covered. The separate 
results for each bombarding energy are shown at the bottom of the figure, while 
the upper part represents a composite result obtained by normalizing successive 
experiments in the region of mutual overlap. 

The level density that is determined by this experiment is a weighted average 
of p(U, I ) ,  corresponding to the angular momenta I of the final states that are 
populated. As discussed below, we expect a simple expression of the type (2-1 16) 
only if p(U, I )  is approximately proportional to p(U,  I = 0) (see Eq. (2-122)) for 
the relevant I values. Therefore, the smooth curve in the figure has been drawn 
to represent the Fermi gas expression for the density of levels with angular 
momentum I = 0 (see Eq. (2-57)), 

of 6,. 

1 
U 

p(U, I =  O)F.,. = c o n s t ~ e ~ p { 2 ( a U ) ’ ’ ~ ]  (2-1 17) 

in which the coefficient a has been adjusted to fit the data as well as possible. 
The level density function obtained from the present data is described 

rather well by Eq. (2-1 17), but it is found that in other cases there are significant 
deviations (Tsukada et al., loc. cit., Fig. 2-1 1). In a detailed analysis one might 
attempt to relate these effects to the shell structure (see Sec. 2B-2) and to 
the pair correlations (see Chapter 8). It is likely that more detailed studies of 
nuclear level densities may reveal the effects of still other correlation phenomena 
in the high-energy nuclear spectra. 

The essential assumption underlying the above relation (2-1 16) is that the 
reaction can be described as a two-stage process of which the first is the formation 
of a definite state, the compound nucleus, which subsequently decays in a manner A 
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v that is independent of the mode of formation (Bohr, 1936; Weisskopf, 1937). 
The cross section for going from channel a to channel /? can thus be written 

(2-1 18) r8 a(a -+ p )  = u,(a) - 

where a,(a> is the total cross section for forming the compound nucleus in a 
channel a. The decay probability per unit time to the channel p is denoted Ts , 
while the total decay rate of the compound nucleus is r. The inverse reaction 
can be written in a similar manner, 

r 

(2-1 19) 
r. 4 + 4 = 4) r 

and thus, from the reciprocity relation (see Eq. (1-43)), 

(2- 1 20) 

we obtain for the energy spectrum of emitted particles in the channel 

dlV0 = 4~ -+ P)p(P) ~ E P  
= f(a)kiuc(P)p(P) dEB (2-121) 

wheref(a) depends only on the channel a, and where p(p)  is the density of states 
of the residual nucleus in channel p. The practical application of Eq. (2-121) 
requires the additional assumption, noted above, that the cross section o,(p) is 
approximately the same for each of the channels fi of given energy; some direct 
support for this assumption is provided by the observation that the total reaction 
cross sections depend in a smooth way on Z and N of the target, and are 
independent of the detailed configuration of the target state. 

The assumption of a unique compound state, depending only on the energy 
and nucleon numbers, is violated by the conservation of angular momentum and 
parity. One must therefore consider the above relations for each channel speci- 
fied by the appropriate angular momentum and parity quantum numbers (for 
example, f'j of the particle, In of the nuclear state, and the total angular momen- 
tum of the compound system). One thus obtains the total number of emitted 
particles per unit energy in terms of a sum of terms of the type (2-121) describing 
the contribution of each of the angular momentum channels. In order to evaluate 
this sum and obtain an expression proportional to the total compound nucleus 
cross section as in Eq. (2-1 16), it is necessary to make the additional assumptions 
(see, for example, Goldstein, 1963) that the compound nucleus cross section for 
specified ljm of the projectile and IM of the target does not depend on the angle 
between the angular momentaj and I ,  and further that the angular momentum 
dependence of the level density of the final nucleus can be approximated by the 
simple leading-order expression (see Eq. (2-57)) 

(2-122) 

These additional assumptions imply that the emitted particles in the channel p 
have an isotropic angular distribution. 

p(EP 7 18)  = (218 + 1 > 18 = 0) 

A 
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v The fundamental assumption in the statistical analysis is that the cross 
section can be factored as in Eq. (2-118). Such a factorization would result 
automatically if the reaction proceeded through isolated (nonoverlapping) reso- 
nance states; the close connection of such resonance states to the bound stationary 
states of the many-particle system implies the independence of formation and 
decay in this case (see Sec. 3F-1). However, this picture is rarely applicable in 
situations where the expression (2-1 16) may be employed; the existence of many 
decay channels involving particle emission usually implies that the widths of the 
resonances are large compared with the spacings of the levels with the same 
angular momentum and parity. In  such cases, when the compound system is 
formed, there are definite phase relations between the many overlapping reso- 
nances that are excited, and in general these phase relations may influence the 
mode of decay of the system. The relation (2-116) results only if we make the 
assumption that a truly chaotic (statistical) state of motion is established when 
the incident particle interacts with the target. We may then expect the memory 
of the initial formation to rapidly fade away in the subsequent evolution of the 
compound system (Bohr et al., 1939). The precise significance of the concept of a 
nuclear level in this region of the spectrum raises interesting questions for further 
investigation. 

Experimental evidence, testing the validity of the statistical assumptions 
discussed above, is obtained from comparison of the level densities deduced 
from Eq. (2-1 16) with a direct count of the number of nuclear levels (see below) 
from comparison of the yields of reaction products from the same compound 
system produced through different channels (see, for example, Goshal, 1950; 
Tanaka, 1960), and from comparison of the reaction yields leaving the final 
nucleus in definite resolved quantum states (see, for example, Barnard et al., 
1966). While this evidence seems to indicate that in most cases the dominant 
mode of nuclear reaction processes involves the formation of compound systems 
with statistical properties, a fraction of the total reaction products (typically of 
order 10 %) exhibits energy and angular distributions that imply a completely 
different mechanism. (See, for example, Appendices 3E and 5A for a discussion 
of some of the features of these direct interaction processes.) In the analysis of 
statistical reactions it is thus important to verify that the observed yield is not 
significantly contaminated by direct reaction products. In the experiments dis- 
cussed above, the possibility of such contamination was reduced by restricting 
the measurements to the dominant reaction products. In other studies, the data 
have been found to seriously violate the statistical assumption (see Wood er al., 
1965, and references quoted there.) 

Systematics of nuclear level densities (Fig. 2-12) 

following: 
The main sources of evidence on the nuclear level density function are the 

(a) the resonance spectra of slow neutrons (see, for example, Figs. 2-8 and 2-9); A 
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A (b) the direct count of levels populated in charged particle reactions such as 
(pp ' ) ,  (ap), and so on; in  such studies it has been possible to establish the first 
one or two hundred levels in a number of nuclei with mass numbers up to about 
A z 60 (examples of this approach have.been discussed by Ericson, 1959); 

(c) the analysis of evaporation spectra (see, for example, Fig. 2-1 1). 

The evidence on nuclear level densities from sources (a) and (c) is summa- 
rized in Fig. 2-12. It has been assumed that the level densities follow the Fermi A 

" 30 50 70 90 110 130 150 170 190 210 230 250 
A 

Figure 2-12 The parameter a appearing in the Fermi gas level density formula has been 
determined by comparison with the average spacings observed in slow neutron resonances 
(values indicated by 0), and from evaporation spectra (values indicated by x). The figure is 
based on the analysis of E. Erba, U. Facchini, and E. Saetta-Menichella, Nuooo cimento 22, 
1237 (1961). This analysis also confirms the consistency with direct level counts. 

v gas expression, Eq. (2-57), and the measurements determine the parameter 
571 

6 
a = -go  (2-1 23) 

which appears in the exponent of the Fermi gas expression. 
In the analysis in Fig. 2-12, a very rough correction for pairing effects has 

been included. Thus, in the level density formula (2-1 17), the excitation energy 
U has been replaced by an effective energy U*,  which is taken as 

U* = U -  24 for even-even nuclei 
= CJ -A for odd-A nuclei (2-124) 

= u  for odd-odd nuclei 
where A is the odd-even mass parameter given in Fig. 2-5. This correction implies 
20-40% increases in a for the even-even nuclei, and the resulting values do not 
show any systematic odd-even variation. The more systematic treatment of the 
effect of pair correlations on level densities is discussed in Chapter 8. A 
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v Tt is seen that the different methods of estimating a give reasonably con- 
sistent results. However, it must be emphasized that, as discussed above, the 
form of the Fermi gas level density expression is not expected to be quantitatively 
correct, and in some cases the experimental data seem to establish the existence 
of deviations. Figure 2-12 should thus be regarded as a very rough summary of 
the present, very preliminary knowledge of nuclear level densities. 

A most striking feature in Fig. 2-12 is the marked decrease in a for con- 
figurations near to closed shells. This effect can be understood qualitatively in 
terms of the appreciable energies required to excite particles from one shell into 
the next. However, we are not aware of any detailed estimates of the effect using 
the observed level spacings. The significant dependence of the effective a on the 
shell structure may also be expected to imply deviations from the simple ex- 
pression (2-1 17) for the energy dependence of the level density. 

For a uniform Fermi gas, the value of a is given by 

(2-125) 

It is seen that the observed values of a are systematically larger than the estimate 
(2-125). However, g(eF),  as given in Eq. (2-125), represents a considerable under- 
estimate of the one-particle level density, Since it is based on the particle density 
at the center of the nucleus and fails to take into account the effect of the sloping 
sides of the actual nuclear potential (larger effective volume for the motion of 
particles near the top of the Fermi distribution). An estimate based on the 
harmonic oscillator potential gives 

n' 2(Nmax + 3/21' A 
6 J ~ W O  10 

a = -  z -  (MeV)-' (2-125a) 

where N,,, is the total oscillator quantum number of the last filled shell and coo 
the oscillator frequency. (See Eqs. (2-131), (2-151), and (2-158) for estimates of 
hcoo and of the degeneracy of the oscillator shells.) Despite the rather good 
agreement between this estimate and the observed level densities, it is not clear 
that the main physical effects have been properly included in this very simple 
description of the level density. Further attention should be directed at 

(a) the effects of shell structure; 
(b) the effects of velocity dependence in the one-particle potential; 
(c) a more proper treatment of pair correlations (see Sec. 8-6); 
(d) the contribution of collective excitations. 

Since both (b) and (c) are expected to systematically reduce the level density as 
compared with the above estimates, it may be suspected that the independent- 
quasiparticle description, when properly treated, will lead to an underestimate of 

A the observed level densities. 



5 2-2 EVIDENCE FOR NUCLEAR SHELL STRUCTURE 189 

2-2 EVIDENCE F O R  NUCLEAR 
SHELL S T R U C T U R E  

While a mean free path larger than the average distance between the 
nucleons is sufficient to ensure the approximate validity of the Fermi gas 
model, a mean free path larger than the dimensions of the whole system, as 
indicated by the scattering experiments referred to above (see Fig. 2-3), leads to 
regularities associated with the quantized orbits of the individual nucleons. 
Especially striking effects occur if the system has a spherically symmetric shape. 
One can then characterize each orbital by the total nucleonic angular momentum 
j ,  and such orbits have a (2j + 1)-fold degeneracy associated with the different 
spatial orientations of the angular momentum vector j. Just as in the electronic 
structure of atoms, the degeneracy of the single-particle orbits leads to marked 
discontinuities in many nuclear properties (shell structure effects). 

We shall consider in this section a few very direct manifestations of the 
nuclear shell structure. (A more systematic presentation may be found in Mayer 
and Jensen, 1955.) The analysis of the nuclear spectra considered in the following 
chapters provides, almost at each step, further evidence for the shell structure. 

It should be emphasized that the deviations from a uniform spacing of the 
single-particle levels have a significant effect on the binding of only the last few 
nucleons and are therefore of rather minor importance for the bulk properties 
of nuclei. In terms of the expansion of the total binding energy (2-12), the shell 
structure appears as a small correction compared to the surface energy, and the 
observed fluctuations in the binding energy function amount to only about 
1 % (see Fig. 2-4). Despite the smallness of these effects on the scale of the total 
nuclear energy, they are of decisive importance for the structure of the low- 
energy nuclear spectra, which are especially sensitive to the configurations of the 
few most weakly bound nucleons. This circumstance made it relatively difficult 
to discern the nuclear shell structure as long as the main information on nuclei 
was confined to binding energies. With the systematic measurement of nuclear 
moments and excitation spectra, the evidence for shell structure became over- 
whelming (Haxel, Jensen, and Suess, 1949; Mayer, 1949). 

2-2a Binding Energies 

Nuclear separation energies show discontinuities of the same type as those 
observed in the atomic ionization potentials, as is illustrated in Figs. 2-13 to 
2-16, pp. 191ff. The major discontinuities in the nuclear binding energies occur 
for nucleon numbers 2, 8, 20, 28, 50, 82, and 126. These numbers are the 
counterpart in nuclear structure to the atomic numbers ( Z =  2, 10, 18, 36, 54, 



190 2 INDEPENDENT-PARTICLE MOTION Ch. 2 

and 86) characterizing the noble gasses. As in the atomic case, these numbers 
correspond to the closing of shells that have an especially large energy separa- 
tion from the next higher orbital (major shell closings). When other shells are 
completed, smaller effects are sometimes observed (subshell effects), as for the 
atomic numbers 4, 12, 30, 48, and 80 and nucleon numbers 6, 16, 40, and 58. 
The fact that the shell closures for protons and for neutrons occur at the same 
nucleon numbers implies that the shape of the binding field of the protons is 
similar to that for the neutrons. 

From Figs. 2-13, 2-15, and 2-16, it is seen that the relative discontinuities 
in the nuclear binding energies are somewhat smaller (by a factor of about 2 
or 3) than those observed in the atomic ionization potentials. This may be 
attributed to the ditTerent radial shapeof the binding potential in the two systems. 

2-2b Excitation Energies of Even-Even Nuclei 

A very sensitive measure of the stability of the nucleus is the energy 
required to excite the nuclear ground state. On account of the pairing effect, the 
even-even nuclei (even 2 and even N )  show the simplest systematics. All such 
nuclei have vanishing total angular momentum and even parity in the ground 
state (Zn = O+),  and with very few exceptions the first excited state has In  = 2+. 
We shall later see that these rules are simple consequences of the nucleonic 
interactions. The known excitation energies of the first (2+) excited states of 
even-even nuclei are given in Fig. 2-17, p. 197. It is seen that the excitation 
energies exhibit dramatic maxima at the shell closings superimposed on the 
gradual decrease with increasing A ,  which is a consequence of the increase in 
nuclear size. 

The systematically occurring 2 + states represent the most easily excited 
nuclear degrees of freedom. For the nuclei with closed shells in both neutrons 
and protons, the excitations are associated with transitions of nucleons from 
the filled shells into higher orbits, while, for nuclei with particles in unfilled 
shells, the 2+ states involve rearrangements of the particles within the degen- 
erate orbits. 

2-2c Level Densities 

Most of the evidence for the nuclear shell structure refers to the detailed 
features of the low-energy spectra. However, it is also found that, at excitation 
energies of 5-10 MeV, the total density of states is affected in a major way by 
the shell structure (see Fig. 2-12). I n  particular, nuclei with approximately 
closed shell configurations have level densities that are several orders of magni- 
tude smaller than in other nuclei at similar excitation energies. Such an effect 
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can be understood in terms of the large energy required to excite a particle 
from one shell to another, which in closed shell nuclei implies an effective 
reduction of the degrees of freedom available for a given total excitation energy. 

ILLUSTRATIVE 

EXAMPLES TO 

SECTION 2-2 

Ionization potential of neutral atonis (Fig. 2-13) 

The separation energy (ionization potential) of the last electron of the 
neutral atoms is plotted in Fig. 2-13 as a function of the atomic number 2. The 

25 
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3 6  54 86 

. I z  
80 90 11 

4 
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4 
10 20 30 4 0  

I I I 
0 

2p . . 3p . Ls,3d . bp . 55,bd * 5p . 6s,5d,hf . 6p . 7s,6d,5f 

Figure 2-13 The values of the atomic ionization potentials are taken from the compilation 
by Moore (1949). The dots under the abscissa indicate closed shells. 

Is 2s 3s 

v shell structure is strikingly exhibited i n  the decrease of the separation energy after 
the completion of each major shell. Subshell structure is also discernible. (See, 
for example, the maxima at Z = 4 and 12 associated with the filling of the 2s 
and 3s orbits. and at Z = 30 and 48 associated with completion of the (4s + 3 4  
and (5s + 4 t l )  shells.) The small maxima at Z = 7, 15, and 33 occur at the middle 
of the filling of the p shells, and reflect the fact that in these configurations it is 
possible to achieve a maximum number of antisymmetric bonds between the p A 
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10 

5 -  

v electrons, and therefore a minimum in the Coulomb repulsion (see the more 
detailed discussion of these configurations in Chapter 7). This effect is analogous 
to the increased binding of the light nuclei with A = 4n (see Fig. 2-4). 

A rough measure of the adequacy of a shell model description of the atomic 
states may be obtained by comparing the energy differences between shells (as 
indicated by the magnitude of the discontinuities in  Fig. 2-13) with the inter- 
action energy of two electrons in a given configuration. The latter interaction 
effects are typically a few electron volts (see Chapter 7) and thus less by a factor 
of 3 to 10 than the major shell separations. 

- 

Separation energies of neutrons and protons (Figs. 2-14, 2-15, and 2-16) 

The variations in the neutron and proton separation energies reveal the 
nuclear shell structure just as the variations in the ionization potentials reflect 
the corresponding shell structure of atoms. The nuclear counterpart to the plot of 
ionization potentials (Fig. 2-13) is illustrated in Fig. 2-14; the lines connect A 

82 

70 75 80 85 90 N 
Figure 2-14 
J. H. E. Mattauch, W. Thiele, and A. H. Wapstra, Nuclear Phys. 67, 1 (1965). 

The neutron separation energies, S., are taken from the compilation by 

7 nuclides of constant neutron excess. Figure 2-14 differs most strikingly from 
Fig. 2-13 because of the rapid variations associated with the pairing energy 
effect in nuclei. These variations are of similar magnitude to the energy discon- 
tinuities associated with closed shells, and thus the shell structure effect is rather 
difficult to discern in Fig. 2-14. 

In order to avoid the rapid oscillations exhibited in Fig. 2-14, the neutron A 
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v separation energies of nuclei with odd N and even Z are plotted in Fig. 2-1 5 (the 
nuclei with odd Z are omitted only in order to slightly simplify the figure). Again, 
the lines connect nuclides with constant neutron excess. The neutron shell struc- 
ture is exhibited, as in the corresponding plot for atoms (Fig. 2-1 3), by the maxima 
in the separation energies corresponding to closed shell configurations. 

I n  estimating the magnitude of the energy differences between the major 
closed shells, it is necessary to take into account the fact that the pair correlation 
is much less effective in lowering the energy of a closed shell configuration than 
of other configurations with even nucleon numbers (see Chapter 8). Thus, the 
energy difference 6~ between shells, as obtained directly from the present figure, 
is an underestimate. For 6~ % A ,  a better estimate is obtained by adding 24 to 
the observed discontinuity in the masses. I n  this way, we estimate values of 
68 that are about 3 or 4 MeV between the major closed shells at N =  50, 82, 
and 126. 

The proton separation energies for odd 2 and even N are plotted as a 
function of the proton number Z in Fig. 2-16, and, as in Fig. 2-15, the lines 
connect nuclides with constant neutron excess. The proton shell structure is 
revealed by the sharp drops in the separation energy at the beginning of each new 
shell. I t  is seen that the proton closed shells occur for the same nucleon numbers 
as for neutrons and that the energy separations in the one-particle spectra are of 
similar magnitude. 

The addition of equal numbers of neutrons and protons leads eventually 
to the limit S,, = 0 as a result of the Coulomb energy and therefore, in  Fig. 2-16, 
the systematic trend of the lines is downward. Thus, the closed shells appear as 
sharp inflections in  the curves of proton binding energies, rather than as maxima, 
in contrast to the corresponding figure for neutrons. 

Systeiiiatics of excitation energies of 2+ states (Fig. 2-17) 

I n  Fig. 2-17, the energy of the lowest state with In = 2 + in  each even-even 
nucleus is given as a function of the number of neutrons and protons, Nand Z. 
The systematics of these levels not only reveals the shell structure in a dramatic 
manner, but is an important key to many features of the nuclear structure and 
will be a recurring theme in almost every chapter of the present work. Especially 
significant in this connection is the fact that the quadriipole transition probabili- 
ties connecting the 2 +  states with the ground state are found to be strongly 
enhanced in comparison with the single-particle unit (see Fig. 4-5). This striking 
evidence for collective behavior provides the starting point for the analysis in 
terms of rotational and vibrational motion. 

The 2+ states represent the first excited state in  almost all even-even nuclei. 
The known exceptions are 4He(O+), I4C(l -), l 6 0 ( O + ) ,  40Ca(O+), "Ge(O+), 

A 90Zr(O+), and 208Pb(3--). 
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2 - 3  N U C L E A R  SPECIES A N D  A B U N D A N C E S  

On the basis of the energy systematics derived from the Fermi gas model 
with the added refinements of shell structure and pairing effects, it is possible 
to obtain a rather detailed interpretation of the stability of nuclei and the relative 
abundances of the naturally occurring nuclear species. 

2-3a Nuclear Stability 

Figure 2-18, p. 203, shows the known P-stable species. The broad variation 
of the P-stable region is determined by the competition between the symmetry 
and Coulomb energies. Superimposed on this smooth trend, the shell structure 
implies a tendency for the region of greatest stability to follow along the lines 
associated with closed shells of protons or neutrons. Another aspect of the 
same effect is the especially large number of stable isotopes or isotones that 
occur when the stability line crosses a closed shell line away from a region of 
doubly closed shells. (See especially 2 = 50 and N = 82.) 

The pairing energy, although small compared to binding energies, plays 
an interesting role in determining the naturally occurring nuclear species. For 
odd-A nuclei, there is only a single P-stable isobar, although in a few cases the 
P-decay energy is so low or the spin difference so high that the lifetime for ,8 
transformation becomes comparable with the age of the elements ("Rb, 
'I3Cd, Il5In, '*'Re). For even-A nuclei, the pairing energy implies that the 
energies of even-even nuclei are systematically lower than those of odd-odd 
nuclei by the amount 24, which, except for the lightest nuclei, is somewhat 
larger than the energy difference 2(6,,, / A  + 3e2/5R,) associated with going 
one unit in 2 away from the energy minimum in N - Z (combine Eq. (2-12) and 
Fig. 2-5). As a consequence, there are no P-stable odd-odd nuclei after I4N ; 
the natural occurrence of 40K, 50V, '38La, 176Lu ,  and lsoTa is associated with 
the very high spins of these nuclei, implying P-decay lifetimes comparable with 
the age of the elements. On account of the very long lifetime associated with 
double P decay (see Appendix 3D), all the even-even isobars whose masses are 
lower than the odd-odd neighbors are effectively P stable. Thus, one commonly 
finds two or three naturally occurring even-even isobars in the regions of heavy 
elements. 

Estimates are also given in Fig. 2-18 of the domain of expected stability 
against proton or neutron emission, beyond which the experimental conditions 
for studying nuclear properties are radically altered. Although, in principle, 
this whole domain of semistable nuclei is available for nuclear spectroscopic 
studies, at the present time such evidence is practically confined to the P-stable 
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isotopes and those immediately adjacent (see, for example, Fig. 2-17). In de- 
fining the upper limits of 2 and N for the domain of nuclei that is in principle 
available to spectroscopic studies, the occurrence of spontaneous fission becomes 
of importance for nuclei with large 2. With increasing Coulomb energy, the 
spontaneous fission half-lives rapidly decrease. For sufficiently large A ,  spon- 
taneous fission is expected to occur almost instantaneously even for nuclei near 
the neutron emission line, and thus to terminate the domain of semistable 
nuclei. Attempts to estimate the extent of the semistable region have been made 
on the basis of extrapolations of available systematics (Wheeler. 1955, and other 
references quoted in connection with Fig. 2-18). It has been suggested that the 
increased stability of expected new closed shell configurations may make 
possible the study of nuclei in the region around A - 300 (Myers and Swiatecki, 
1966). 

2-3b Relative Abundances and Nucleogenesis 

The relative abundances with which the different nuclear species occur in 
our part of the universe are found to have many striking features that can be 
correlated with properties of the individual nuclei and which thereby have 
provided important clues regarding the processes by which the elements have been 
formed. The detailed examination of the different evidence seems to indicate 
that a multitude of nuclear processes occurring in stars at different stages of 
evolution have contributed to element formation. Without attempting to enter 
on a systematic description of these mechanisms, we shall briefly mention a 
few conclusions that appear to follow rather directly from the nuclear 
physics evidence. For a detailed discussion of this exciting chapter of nuclear 
astrophysics, see Burbidge et a/.  (1957), and, for more recent developments, the 
reviews by Burbidge (1962) and Stromgren (1968). 

The empirical abundance curve for A > 50 exhibits two striking features 
(see Fig. 2-19, p. 206). First, the pronounced peak in the region of Fe and, 
second, a gradual decrease toward the heavier elements on which are superim- 
posed a number of smaller peaks. 

The peak near Fe has been explained as essentially reflecting the position 
of "Fe and the neighboring nuclei, as the most stable of all nuclear species; 
these nuclei would therefore acquire a maximum abundance under conditions 
of nuclear processes in thermal equilibrium. It is envisaged that the steps leading 
toward equilibrium involve first the collection of primordial matter resulting 
from the early development of the universe into stars and the nuclear " burning" 
of hydrogen to 4He at temperatures of around lo7 OK (kT - I keV). With the 
exhaustion of hydrogen in the core, the star contracts, and the associated rise in 
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temperature makes it possible for a particles to react and to form "C and 
l6O (at about kT-  10 keV). With a still further rise in temperature, these nuclei 
in turn react and ultimately produce the most stable nuclei in the region of 
A -60. The detailed structure of the abundance peak at Fe is sensitive to 
temperature, density, and the duration of the extreme conditions in which the 
equilibrium has been established. The duration is important, since initially the 
material retains the equality N = 2 characteristic of the lighter elements from 
which it has been formed. With the passage of time, P' processes, and especially 
electron capture, create a neutron excess, which is characteristic of the most 
stable nuclei around A -60. Indeed, the maximum binding energy occurs at 
60Ni (see Fig. 2-4), but of the N = 2 nuclei, the most stable is probably 56Ni (as 
a result of the doubly closed shells, N = 2 = 28). Detailed analysis of the ob- 
served abundances suggests that the elements around Fe were produced under 
the conditions kT 2 300 keV, p 2 3 x lo6 g/cm3, and that these conditions pre- 
vailed for a time of order t - 3  x lo4 sec (Fowler and Hoyle, 1964). The 
appearance of this material in the earth and sun requires that some violent 
disruptive event terminated the approach to equilibrium and distributed some 
of the highly evolved stellar material into interstellar space, from where it has 
been reassembled to form the solar system. 

The formation of nuclei heavier than Fe appears to involve principally 
the successive capture of neutrons followed by P-decay processes. This con- 
clusion is partly suggested by the conspicuous peaks in the abundance curve 
associated with the closed shell neutron numbers 50, 82, and 126 (see Fig. 2-19). 
Additional support comes from the asymmetry in the observed abundances 
with respect to the line of greatest stability. Thus, there are a number of stable 
nuclei on the neutron-deficient side that cannot be formed by the neutron 
capture processes, and, as illustrated in Fig. 2-20, p. 207, these nuclei have 
abundances that are invariably smaller by more than an order of magnitude 
than the neighboring stable isotopes. On the contrary, the isotopes on the 
neutron excess side, which could not be formed by proton capture processes, 
are found to have abundances comparable with those on the stability line. 

The isotopes produced in the neutron capture chain depend on the rate 
of the capture processes as compared with the P-decay rates, which are typically 
of order hours to days near the stability line and which decrease to a fraction of 
a second near the limits of stability for neutron emission shown in Fig. 2-18. 
Under conditions of low neutron flux, where /3 stability is established at every 
step before the next neutron capture can occur, the process follows the path 
shown in Fig. 2-20. The abundances along this path will depend inversely on 
the neutron capture cross sections, which determine the waiting time at each 
point. Since these capture cross sections are abnormally small for nuclei with 
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closed neutron shells, a characteristic feature of the neutron capture process 
on a slow time scale (the s process) is the appearance of peaks in the abundance 
curves at the neutron numbers N =  50, 82, 126. 

The smallness of the capture cross sections for closed shell nuclei may be under- 
stood from the fact that, in the relevant energy region En - kT - 10 - 100 keV, the 
capture is due to many well-separated resonances with I-. > I-?. In such circumstances, 
the contribution of each resonance is simply proportional to r,,, and the average cross 
section for any nucleus is proportional to I-,,/D, where D is the average spacing of the 
resonances. The total radiation width, I-,, , does not vary very much from nucleus to 
nucleus, corresponding to the fact that it represents a sum of many contributions from 
the different possible transitions to lower-lying states. Thus, the most important factor 
in the capture cross sections is the level spacing, D, at excitation energies approximately 
equal to the neutron separation energy. In closed shell nuclei, D is exceptionally large, 
partly because of the reduced binding energy of the added neutron, and partly because 
of the large energy required to excite a particle from the filled shells into the next empty 
shells (see Sec. 2-2c and the data in Fig. 2-12, p. 187). 

The systematic measurement of capture cross sections has made possible a rather 
detailed correlation with abundance data for the nuclides produced in the s processes. 
(The cross sections are reviewed by Macklin and Gibbons, 1965 and 1967, while a 
“Handbuch der s-Prozesse” has been written by Seeger et al., 1965.) This correla- 
tion has in turn provided information on the astrophysical conditions (temperature, 
neutron density, duration of exposure, and so on) in which these elements were 
synthesized. 

If the neutron capture proceeds more rapidly than the corresponding p 
decays, the process leads initially to isotopes on the neutron excess side of the 
stability line, which subsequently decay, producing the most neutron-rich 
isobars. In this manner, many nuclides can be produced that are not reached 
by the slow process. The appreciable abundance observed for these neutron- 
rich isotopes indicates that such more rapid capture processes (r processes) 
have also played an important role in the evolution of the material found in the 
solar system. 

For sufficiently great neutron fluxes, neutron capture continues at  a given 
2 until the line of instability for neutron emission is approached. The relative 
abundances in such a process depend on the P-decay lifetimes of these extremely 
neutron-rich nuclides, since these lifetimes determine the waiting times for 
neutron addition. In Fig. 2-20, a tentative capture path is indicated for such a 
fast process. The shell structure, implying an exceptionally weak binding of 
the 83rd neutron, here manifests itself by the vertical break in the capture 
path. As a consequence, the path approaches rather close to the stability line 
near A - 130. The relatively low p-decay energies at  this point thus imply a 
relatively long waiting and large abundance of nuclei with mass numbers in 
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this region. In this way, the observed abundance peaks at A - 80, 130, and 
194 have been correlated with the neutron shell closings at N = 50, 82, and 126. 

The observed abundances for the elements above Fe thus suggest the 
operation of two essentially different synthesizing processes, the slow and fast 
neutron capture reactions. A number of finer details in the abundances and 
more quantitative theoretical estimates support this interpretation. Another 
mechanism is required for the production of the small amounts of very neutron- 
deficient nuclides, and it has been suggested that ( p ,  ?) and (y, n)  processes are 
involved. 

Considerable progress has been made in correlating the postulated element- 
synthesizing nuclear processes with astronomical evidence regarding the physi- 
cal conditions and evolution of the stars. Thus, the slow neutron capture is 
supposed to take place in the Red Giant stage. In these rather highly evolved 
stars in which hydrogen has been exhausted in the core, the main source of 
energy is the burning of a particles. The neutrons for the s process may be 
produced by exothermic (a, n) reactions, such as 3C(a, n)160and 2'Ne(a, n)24Mg, 
and in the slightly endothermic 22Ne(a, n)25Mg, as well as in the heavy ion 
reactions 12C(12C, r ~ ) * ~ M g  and 160(160, n)31S. The short duration and violent 
conditions of the equilibrium process responsible for the Fe group have sugges- 
ted an association with supernovae (see the extensive discussion by Fowler and 
Hoyle, 1964). There exists much greater uncertainty concerning the site of the 
r process, but it may be that the necessary conditions are found in the extended 
and quasistellar radio objects (Hoyle and Fowler, 1963; Seeger et al., 1965). 

It should be emphasized that many of the deductions mentioned above 
are somewhat speculative, involving considerable extrapolation of the observa- 
tional data. The great richness in the nuclear phenomena, however, opens wide 
perspectives for elucidating the events of cosmological evolution. 

In connection with such cosmological considerations, it is of interest to 
bear in mind that the study of nuclear collisions at very high energies (> lo9 eV) 
has led to the discovery of antinucleons, the existence of which had been antici- 
pated on the basis of Dirac's relativistic theory of spin l j 2  particles. The sym- 
metry between particles and antiparticles, which appears to be a basic law of 
nature, implies that antinucleons will interact with each other with the same 
forces as observed for nucleons. One thus expects that there can exist anti- 
matter built from antiparticles, with properties corresponding to those of 
ordinary matter. The two types of matter, however, annihilate each other and 
thus cannot coexist in the same domain of space. The asymmetry between the 
abundance of matter and antimatter in the immediate neighborhood of the 
earth may perhaps be related to the special history of this region of the uni- 
verse (see AlfvCn, 1965, and references given there). 
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ILLUSTRATIVE 

EXAMPLES TO 

SECTION 2-3 

b-stable nuclides (Fig. 2-18) 

Some of the qualitative trends in the nuclear stability are illustrated in 
Fig. 2-18. The boxes (both solid and open) represent the known P-stable species 
plotted as a function of the number of neutrons, N,  and number of protons, 2. 
The general trend of this “valley of fl stability” may be obtained by minimizing 
the total mass 4 for fixed total number of nucleons A ,  
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Using Eq. (2-12) for the binding energy g ( N ,  Z )  we obtain 

3 e 2  
5 R,  
- - A - ( M n - M p )  

b,,, 3 ez 2 - + - -  
A 5 R,  

( N  - Z)/7.s ,able  = 

z 6 x 1 O - j  A5’3 

(2-126) 

(2-127) 

P-STABLE SPECIES 
T 1 / ~ > 1 0 ~ y r  (czDECAY) 
T1/,<lOgyr (cxDECAY) 

82 

P-STABLE SPECIES 
T 1 ~ ~ > 1 0 ~ y r  (czDECAY) 
T1/,<lOgyr (cxDECAY) 

20 40 60 80 100 120 160 160 180 N 
Figure 2-1 8 The p-stable nuclear species are plotted as a function of N and Z .  The data are 
taken from the Table of Isotopes by D. Strominger, J. M. Hollander, and G.  T. Seaborg, 
Rev. Mod. Phys. 30, 585 (1958). 
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v Superimposed on the smooth trend described by Eq. (2-127), the valley of 
B stability exhibits a number of significant twistings and turnings. These local 
variations are mainly the result of the special stability associated with closed 
shell configurations (see, for example, the discontinuity at Z = 20 and 50 and at 
N =  82). 

Another stability limit of significance for nuclear physics as well as for 
astrophysics is the value of the neutron excess for which the neutron separation 
energy is equal to zero (S,, = 0). This limit may be estimated from the average 
mass formula (2-12) by solving the equation 

(2-128) 

and the resulting curve is drawn in Fig. 2-18. The limit for S, = 0 has been esti- 
mated in a similar manner. These average estimates ignore the Local deviations 
caused by shell structure as well as the interesting structure of the transition 
region (where S, or S, z 0), which is influenced by odd-even effects. For more 
detailed estimates of these limits, see Wheeler (1955), Baz et al. (1960), Kar- 
naukhov and Ter-Akopyan (1964), and Myers and Swiatecki (1966). It should 
be emphasized that these estimates of stability with respect to particle emission 
represent rather extreme extrapolations of the available mass systematics, and 
therefore direct experimental measurements in the regions of particle instability 
would be very valuable. 

In connection with the particle stability regions, it is important to recognize 
that expressions such as (2-12) represent expansions that are only valid in the 
neighborhood of the P-stable valley. Such expansions cannot answer questions 
concerning the possibility of particle-stable nuclear systems with very different 
composition and structure, as, for example, the possibility of a system consisting 
entirely of neutrons. Available estimates indicate that a pure neutron system 
would be unbound (Levinger and Simmons, 1961), but the question is a difficult 
one, since such a system might have a rather different structure from that of con- 
ventional nuclei. 

In this connection, it should also be remembered that, for an electrically 
neutral system, the very weak, but long-range, gravitational forces will even- 
tually come to dominate, with increasing nucleon number. The critical nucleon 
number for which the gravitational potential energy per nucleon ( -  G A M 2 R - '  - 
G A 2 1 3 M 2 r ; 1 )  is of the same magnitude as the nuclear energy ( - h 2 ( M r i ) - ' )  is 

(2- 129) 

where G is the gravitational constant ( = 7  x lo-* g-' cm3 secC2). The nucleon 
number (2-129) corresponds to a total mass A C r i ,  M - 2 x g - lo-' M,, 
where M ,  is the mass of the sun. Such neutron stars may represent a stage in  the 
evolution of stellar systems, and the problem of locating and identifying these 
objects presents a challenging question for theoretical and observational astron- A 
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v omy. Because of the nonsaturating character of the gravitational interaction, 
the stability of systems with mass numbers appreciably greater than Acri t  poses 
questions that cannot be answered within the framework of our present under- 
standing of gravitation and nuclear systems. (See Wheeler, 1964, and the more 
detailed review by Harrison et al., 1965.) 

Spontaneous fission and instability with respect to a emission provide 
additional limitations to the available nuclear species. All nuclei heavier than 
about A z 100 are unstable with respect to fission, but the lifetime of this process 
is so long that it is unimportant, except in the heaviest nuclei. As discussed in 
Chapter 6, the liquid drop description of the fission process suggests that fission- 
ability depends on the ratio of the Coulomb energy ( E Z ~ A - ' / ~ )  to surface 
energy (cc Thus, the lifetime for spontaneous fission depends on theparam- 
eter Z' IA,  and the locus Z 2 / A  = 41 drawn in Fig. 2-18 is expected to corre- 
spond to lifetimes in the region of seconds (compare Ti:; (260104) zz 0.3 sec 
(Flerov ef a/., 1964)). It should be emphasized, however, that there are many 
features of the spontaneous fission lifetimes that are not understood. In particular, 
it appears that the fission barriers are strongly affected by the nuclear shell 
structure, and predictions concerning the stability of the heaviest nuclei, 
therefore, require a more detailed analysis of the potential energy of deformation 
(Gustafson et a/., 1967; Strutinski, 1967). It may also be noted that the fission- 
ability of the heavy elements is rather sensitive to a possible symmetry-dependent 
term in  the surface energy, which may imply a more severe limit resulting from 
fission instability in the heaviest elements. 

Many nuclei throughout the periodic system are unstable with respect to  
a emission. However, below "*Pb, only 5He, *Be, I4%m, 1 4 * ,  "'Gd, and ls4Dy 
have lifetimes so short that this decay mode affects their abundance in nature or 
use in nuclear physics experiments. /?-stable nuclides with a-decay half-lives less 
than lo9 years are drawn in Fig. 2-18 as open boxes. The lowered stability of 
the nuclear configurations with only a few particles outside of closed shells is 
exhibited by the sudden drop in a-decay half-lives after the closed shells of 
N = 82 and especially after N = 126, Z = 82. 

Abirndances of e i w - w e n  nuclear species with A > 50 (Fig. 2-19) 

The relative abundances of the different nuclear species are derived from 
a many-sided analysis of available evidence concerning terrestrial abundances, 
solar wind, meteoric composition, and solar spectroscopy. The relative isotopic 
abundances, obtained from terrestrial and meteoric samples, play a special 
role in  the analysis. A smooth curve has been drawn in Fig. 2-19 to approxi- 
mately follow the experimental points. Considerable uncertainty still attaches 
to many of the determinations. 

For elements lighter than those plotted in Fig. 2-19, the most conspicuous 
feature is the great preponderance of 'H and 4He. In the units employed, 
H('H) z 4 x lo", and H(4He) z 3 x lo9. A 
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7 The odd-A species for the region of elements considered have abundances 
that are systematically somewhat less than those of neighboring even-A nuclei, 
which can be understood in terms of the tendency for neutron capture cross 
sections to be greater for odd than for even nuclei. (See the discussion of the A 

lo5 

l o 3  
I 
w 
u 
Z 

Z 
3 

2 lo1 

m a 
1 cil 

1 o3 

Figure 2-19 The relative abundance, H, in terms of numbers of atoms, for the different 
even-even nuclear species is plotted as a functiorr of the atomic number A (for A > 50). 
The conventional unit is adopted, in which the abundances are measured relative to Si 
(H(Si) = lo6). The data are based on the critical compilation of H. E. Suess and H. C. Urey, 
Rev. Mod. Phys. 28, 53 (1956). More recent analyses have been reviewed by Aller (1961), 
Urey (1964), and Cameron (1968). 

synthesizing reactions on p. 200). In order not to complicate the figure, only 
abundances of even-A nuclei are shown. 

The abundances in Fig. 2-1 9 refer to the solar system. The evidence on other 
stars or galaxies usually indicates qualitatively similar abundances of the ele- 
ments, but in some cases striking differences are observed. Attempts have been 
made to relate these differences to the special stage of evolution of these systems 
or to their previous history. (See, for example, Burbidge, 1962.) 

Details of abwidances and capture paths for 105 < A < 145 (Fig. 2-20) 

The interpretation of the heavy element abundances in terms of neutron 
capture processes is illustrated in Fig. 2-20. The solid staircase line indicates the 
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v limits, toward neutron deficiency, of isotopes that can be produced by neutron 
capture. This limit can be obtained by following the indicated path appropriate 
to neutron capture processes on a time scale sufficiently slow that P-decay equi- 
librium is established at each point. 

The line far to the neutron-rich side of the stability line represents a 
suggested path for element synthesis by neutron capture on a fast time scale 
(for details, set Burbidge et al., 1957). It has been constructed by assuming that 
the neutron capture proceeds until the neutron binding energy has fallen to 
2 MeV, representing the estimated equilibrium point for the combined action of 
(n, 7) and (7, n) processes. The estimated neutron binding energies are obtained 
from the extrapolation of the empirical data on nuclear masses, including esti- 
mates of closed shell effects. Available evidence still leaves considerable uncer- 
tainty as to the details of this path. 

In the interpretation of the relative abundances, it is of considerable im- 
portance that one can distinguish some isotopes that are only produced in the 
slow process ("shielded" from the fast capture products by a P-stable isobar of 

1 3 4 , 1 3 6 ~ ~  , 14*Nd, etc.) and other isotopes which can only be produced in the 
fast process (see, for example, '"Pd, '16Cd, 124Sn, 13'Te, 'j6Xe, 142Ce, etc.). 
The abundances of neighboring isotopes on the slow capture path are similar; 
typical variations are of the order of a factor of 2, reflecting the fact that the 
neutron capture cross sections for En z 10-100 keV do not vary strongly from 
isotope to isotope (see also the discussion on p. 201 in the text). The very low 
abundance of '''Cd is an exception to this rule and has been interpreted in  terms 
of the long P-decay half-life of lo7Pd (T,,,(107Pd) z 7 x lo6 years). If the mean 
time for capture of a neutron is short compared with this period, the capture 
path will be lo6Pd (n )  lo7Pd (n) '''Pd (n) "'Pd ( P - )  '"Ag (n )  I1'Ag ( P - )  "'Cd, 
and thus losCd will be bypassed. Other evidence on the slow capture process is 
also consistent with the assumption that the mean time for neutron capture in 
the region of A = 108 is considerably shorter than lo6 years. Indeed, analysis of 
a similar branch at 5'Sm (not shown in Fig. 2-20) suggests that the mean capture 
time in this region is of order lo2 years. Thus, the P-decay lifetime of '"Sm is 
TI,* = 80 years; if '"Sm decays before capturing a neutron, '"Gd will be pro- 
duced in the s process, while '"Gd will be bypassed if the capture time is shorter 
than the decay. The observed abundance of 152Gd suggests that the neutron 
capture and P-decay lifetimes are comparable (Burbidge et al., 1957, p. 558). 

lower charge; see, for example, los, l loCd, l16Sn, 122,123, 124Te, 1 2 8 , 1 3 0  Xe, 

A 

2-4  A V E R A G E  N U C L E A R  P O T E N T I A L  

2 4 a  Sequence of Single-Particle Levels. Spin-Orbit Coupling 

As a first step in the study of the consequences of the nuclear shell structure, 
we must obtain the wave functions and eigenvalues corresponding to one-particle 
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motion in the nuclear potential. The short range of the nucleonic forces suggests 
that the potential should approximately resemble the density distribution and, 
thus, as a rough first approximation, we might consider a square well potential. 
Still simpler and qualitatively similar is the harmonic oscillator potential, which 
is therefore widely used and plays a role in nuclear physics somewhat like that 
of the Coulomb potential in atomic physics. Some of the significant features of 
the binding states in the harmonic oscillator potential are summarized in Fig. 
2-21, p. 221. It is usual to adjust the oscillator frequency wo in order to repro- 
duce the observed nuclear mean square radius. This requires 

(2-130) 

which yields (see the more detailed derivation based on Eqs. (2-157) and 
(2-158)) 

(2-131) 

We have neglected higher-order terms of relative magnitude A - 1 / 3  as well as the 
neutron excess, and have employed the value ro = 1.2 fm, which represents the 
effective radius for the estimate of ( r 2 )  (see Eq. (2-71)). 

It is seen from Fig. 2-21 that, if the nuclear potential were very close to 
that of a harmonic oscillator, the major shell closings would occur at nucleon 
numbers 2, 8, 20, 40, 70, 112, and 168. The first three members of the series, 
but not the higher ones, correspond to observed major shell closings. 

The choice of a more realistic radial dependence somewhat modifies the 
detailed sequence of orbits (see Fig. 2-22, p. 223). The main effect is to remove 
the harmonic oscillator degeneracy in such a sense that the orbits of highest 1 
are depressed with respect to the low 1 orbits. This effect is schematically illus- 
trated in Fig. 2-23, p. 224, from which is it seen that the observed major shell 
closings are still not accounted for. 

A decisive step in the development of the nuclear shell model was the 
recognition that the assumption of a relatively strong spin-orbit interaction in 
the nucleonic motion leads to a natural explanation of the major shell closings 
(Haxel, Jensen, and Suess, 1949; Mayer, 1949). This coupling splits the levels 
withj = 1 i 1/2, which are degenerate in a spin-independent potential, and if the 
sign is such as to lower the levels with j = 1 + 1/2, the observed shell closings 
are obtained (see Fig. 2-23). 

The sequence of single-particle levels that results when the spin-orbit 
force is added to the central potential is confirmed by a large body of evidence. 
The interpretation of the nuclear levels is particularly simple for low-lying 



210 A I N D E P E N D E N T - P A R T I C L E  MOTION Ch. 2 

configurations consisting of closed shells of neutrons and protons with only a 
single additional particle or with a single particle missing from such a closed 
configuration (a single hole). The spectra of these nuclei are considered in detail 
in Chapter 3 (see especially the comparison of the calculated and observed 
single-particle spectra shown in Figs. 3-3 and 3-5). 

The observed spacings between the spin-orbit partners ( j  = I & 1/2) can be 
approximately represented by an energy term of the form 

A E , ~  z -20(1 . s ) A - ~ / ~  MeV (2-132) 

although, especially in the light nuclei, there are individual variations that are 
not fitted by such an average term. For orbits in the last shell, the maximum 
value of 1 is of order A’’3 .  Thus, the spin-orbit splittings are an appreciable 
fraction of the harmonic oscillator separation, ho, , and of a sufficient magnitude 
to cause the level sequence implied by the major shell discontinuities (see Fig. 

Another direct consequence of the spin-orbit interaction is the occurrence 
of polarization phenomena in the nucleon-nucleus scattering process. Thus, the 
potential acting on a nucleon depends on the orientation of its spin with re- 
spect to the scattering plane. As a result of this interaction, unpolarized beams 
become partially polarized in the scattering process; if polarized beams are 
employed, the scattered intensity may exhibit azimuthal asymmetries. These 
polarization effects have been systematically observed and have been found to 
imply a spin-orbit coupling of the same sign as the estimate (2-132) and of similar 
magnitude (see, for example, Fig. 2-28b). 

For nuclei with several particles outside closed shells, one might expect a 
rather complicated pattern of levels associated with the different ways of coupling 
the angular momenta of these particles. However, because of the pairing effect, 
one can obtain a qualitative description of the lowest states of an odd-A nucleus 
in terms of the orbits available to the unpaired odd particle. In this approxi- 
mation, the degrees of freedom of the rest of the nucleons are neglected and 
these nucleons are assumed to remain as in the ground state of an even-even 
nucleus, that is, in the paired state with In  = O+.  As indicated in Fig. 2-24, 
p. 225, many of the properties of the low-lying levels receive an immediate 
interpretation in terms of such a one-particle model. The occurrence of other 
levels in the low-energy spectra (circled in Fig. 2-24) indicates the limitations of 
this simple description. 

It should be emphasized that the single-particle spectra discussed in this 
section depend essentially on the assumption of a spherical nuclear potential. 
While this assumption is appropriate to many nuclei and especially to configura- 
tions near closed shells, there is also an extensive group of nuclei that possess 

2-23). 
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a nonspherical equilibrium shape. Even though the anisotropic component of 
the potential is relatively small compared to the spherical part (eccentricity 5 
0.3), it produces level shifts that are comparable with the distance between 
shells. The low-lying states in odd-A deformed nuclei bear no simple relation 
to the one-particle spectra in a spherical potential and no assignments have been 
attempted in Fig. 2-24. The classification of single-particle orbits in such de- 
formed potentials is considered in Chapter 5. 

2-4b Single-Particle Strength Function 

With increasing excitation energy, the nuclear level density rapidly in- 
creases owing to the increasing number of nucleons that may participate in 
the excitation. Thus, in a heavy nucleus at an excitation energy of a few MeV, 
there are several hundreds of levels per MeV. Under such conditions, even a 
very small coupling between the motion of an individual nucleon and the modes 
of excitation of the rest of the nucleus is sufficient to produce strong mixings of 
near-lying configurations. As discussed in connection with the concept of the 
compound nucleus (pp. 156ff.), the stationary states of the entire nucleus then 
acquire a more complicated structure and any single state contains only a small 
amplitude of the wave function describing the single-particle motion with the 
rest of the nucleus in a definite configuration, such as the ground state. 

We can consider such a situation by using a time-dependent description; 
the state of simple single-particle motion is now a wave packet built out of all 
the stationary states that contain an appreciable amplitude of the single-particle 
component. Since these stationary states spread out over an energy interval, the 
wave packet will decay in time as its different components come out of phase 
with each other. Denoting by r the energy spread in the wave packet,’ the decay 
time for the single-particle motion will be of the order fi/r. When the single- 
particle motion continues undisturbed for a time long compared with that 
required for traversal of the nucleus, we have r< D,, rn nfiv/R, where D,, is 
the spacing between successive single-particle states with the same values of 
( I j ) .  Thus, the persistence of the single-particle motion manifests itself in a 
“gross structure” in the spectrum; the amplitude for single-particle motion is 
mainly concentrated in the stationary states lying within the energy interval f 
around the position that would have corresponded with the undisturbed single- 
particle state. The probability amplitude that a nuclear statefcan be decomposed 
into single-particle motion with quantum numbers (nl)jm relative to a parent 
state 0, is represented by the parentage factor ( f l  at(jm) lo), where at(jm) 

The notation r for the width should not be taken to presuppose a Breit-Wigner shape for 
the strength function. Indeed, the line shape is in general more complicated, and the precise definition 
of r must be specified in each case. 
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is the nucleon creation operator (see Appendix 2A). If the parent state has 
angular momentum I ,  =0, the single-particle strength of the level f, with 
angular momentum Zf =.j, is characterized by the probability 

(2-133) 

(For arbitrary spin of parent and final states, the single-particle strength can 
be defined in terms of the reduced matrix element, Pj(f) = (2j+ l)-' 
(If Ilat(j) llZi)2; see Appendix 3E.) If the single-particle orbit j is empty in 
the parent state, the sum of the single-particle strengths is unity, 

(2- 134) 

In regions of high level density, the gross structure can be described by the 
strength per unit energy interval, D,:'(Pj (f)), where D j  is the average spacing 
of levels with I ,  =j ,  and where the average of Pj(f) is taken over levels within 
a small energy interval. The theoretical problem of characterizing the line 
shape and width of such strength functions involves an analysis of the coupling 
between the one-particle motion and the degrees of freedom of the parent 
nucleus. A schematic model illustrating some features of this problem is dis- 
cussed in Appendix 2D. 

Examples of strength functions determined by neutron transfer in the deut- 
eron stripping reaction are illustrated in Fig. 2-25, p. 228. The value of the 
1 = 0 neutron strength function at an excitation energy equal to the neutron 
separation energy, has been systematically measured by means of the neutron 
resonance studies, and the available data are summarized in Fig. 2-26, p. 230. 

Strength functions can also be defined for hole states produced by taking 
a particle from a specified one-particle orbit in the nucleus. In this case, the 
creation operator a+(jm) in Eq. (2-133) is replaced by the annihilation operator 
a(jm). Figure 2-27, p. 232, provides illustrations of strength functions for hole 
states measured by means of the ( p ,  2p) reaction. Additional evidence on strength 
functions is discussed in Chapter 3 in connection with the problem of locating 
the one-particle excitations in the closed shell nuclei (see Fig. 3-2 and Tables 3-7 
and 3-8). 

With increasing energy, the rapid increase in the number of degrees of 
freedom that can be coupled to the particle motion implies a decrease in the 
lifetime for the one-particle state; correspondingly, the width r of the strength 
function increases. (See, for example, the very large width of the highly excited 
1s hole configuration studied in the ( p ,  2p) reaction (Fig. 2-27).) 

When the single-particle levels are unbound, they acquire an additional 
width owing to the possibility of the particle escaping from the nucleus (emission 
process). This broadening is to be added to that associated with the gross struc- 

p j ( f )  = (zf = j ,  M /  = m I a+(jm) I I ,  =to)' 

C p j ( f )  = 1 
f 
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ture effect. For excitation energies comparable with the magnitude of the poten- 
tial, the lifetime for escape becomes comparable with the traversal time, and it is 
no longer convenient to talk in terms of nucleon levels. The characteristic 
manifestation of the single-particle motion is now in terms of the interference 
phenomena like those discussed in Fig. 2-3. 

2-4c Optical Potential 

Extensive experimental studies have been made of the scattering of neu- 
trons and protons on nuclei through the whole region of elements. The measure- 
ments include total cross sections, differential elastic scattering cross sections, 
and polarization studies for energies ranging from electron volts up to the high- 
est available energies (-10'' eV). The analysis of these data provides a rather 
detailed determination of the main features of the nuclear potential. 

To a first approximation, the phenomena can be described in terms of 
nucleon motion in a spherical potential to which an appropriate spin-orbit 
coupling is added. (The effects of nuclear distortion, important for a certain 
class of nuclei, are considered separately in Chapter 5 . )  For the detailed analysis, 
the coupling of the nucleon motion to the internal degrees of freedom of the 
target nucleus plays an important role. It is often a good approximation to 
represent this coupling by an imaginary potential added to the one-particle 
Hamiltonian. This corresponds to the physical assumption that the energy 
exchange between the nucleon and the target, which may initially involve 
simple modes of excitation, usually leads by further interaction effects to con- 
figurations so complicated that no detailed features of their spectrum need be 
considered. Under such conditions, the coupling acquires an irreversible charac- 
ter and can be described as an effective damping of the one-particle motion 
(see Appendix 2D). 

The damping effect of an imaginary potential can be seen directly from 
the time-dependent Schrodinger equation 

(2-1 35) 

Multiplying on the left by $* and taking the imaginary part, one obtains 
a 2 

div j(r, t )  + - p(r, t )  = - W(r)p(r, t )  
at h 

where the particle density p(r, t )  and current j(r, t )  are defined in the usual way, 

(2- 1 36) 

p(r, t>  = $*$ 

j(rt t>  = 
A (2-  1 37) 

($*v$ - P$*> 
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From Eq. (2-136) it is seen that the particles are being absorbed at a rate 

2 
h 

-- W(r) 

which corresponds to a mean free path I given by 

1 2 
= - - W(r) 

hu 
(2-1 38) 

In  a nuclear scattering experiment, the nucleons are, of course, not absorbed in 
the sense that would violate baryon conservation, or the overall conservation 
of probability for the total reaction process. However, since the wave function 
$(r, t )  describes the motion of a single nucleon in the average potential of the 
target, interactions that lead to more complicated states of motion imply a 
reduction in the probability of the state $, and it is this decay of the one- 
particle state that is approximately represented by the imaginary potential. 

The description of nucleon propagation in nuclei in terms of a complex 
potential is called an optical model in view of the analogous use of a complex 
index of refraction in the analysis of the transmission of electromagnetic waves 
through matter. 

The coupling described by the imaginary potential is the same as that 
responsible for the gross-structure phenomena considered above (Sec. 2-4b). 
The description of this coupling in terms of a simple absorption process implies 
that the one-particle motion decays exponentially with time. One then obtains 
a Breit-Wigner line shape for the strength function representing the probability 
for finding a given single-particle state j in the wave function of the stationary 
states lying in an energy interval around the value E, 

(2-1 39) 

where r is the average of -2W(r) for the one-particle resonant state. 
In some situations, it is necessary to consider the more detailed structure 

of the coupling between the particle motion and the internal nuclear degrees of 
freedom. In such cases, the simple imaginary potential is inadequate and the 
line shape has more structure than Eq. (2-139). (See, for instance, the coupling 
to rotational motion discussed in Chapter 5.) 

Parameters of the optical potential 

The description of the nuclear one-particle motion involves a potential 
having a number of components; one must specify the strength and radial 
dependence of the real and imaginary parts of the central nuclear potential as 
well as of the spin-orbit force. Finally, in the case of protons, one must add 
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the Coulomb potential for an appropriate charge distribution. In the analysis 
of the empirical data on the basis of the optical model, one usually solves the 
Schrodinger equation by a partial wave expansion. The parameters of the poten- 
tial are varied to obtain a best fit to the experimental cross section. Since ex- 
tensive numerical work is involved in obtaining such solutions, the analysis is 
usually performed with the aid of high-speed electronic computers. 

Some examples of optical model fits are illustrated in Fig. 2-26, p. 230, 
Fig. 2-28, p. 234, and Table 2-1, p. 235. The best fits are remarkably good in 
representing many detailed features in the experimental cross sections and 
serve to define rather accurately the main parameters of the optical model. 
The parameters are found to vary smoothly with A and E, as expected. Indeed, 
if this were not the case, there would hardly be any direct physical significance 
to the potentials obtained. In the following paragraphs, we discuss the param- 
eters of the nuclear potential as determined from these analyses. 

The real potential V(r) is expected to follow roughly the density distri- 
bution. A convenient radial dependence, which is found to account satisfactorily 
for both the nuclear potential and density distribution, is the Woods-Saxon 
potential, shown in Fig. 2-22, p. 223. This potential involves three parameters, 
V o ,  R, and a, describing, respectively, the central strength of the potential, the 
range, and the surface thickness. 

The surface thickness a is found to be approximately the same as that 
characterizing the charge distribution (a = 0.6 fm), but the radius R of the poten- 
tial is found to be approximately 1 fm larger than the corresponding extension 
of the charge density as determined from the electron scattering analysis (see 
Fig. 2-1). This difference has been interpreted in terms of the finite range of the 
nucleon-nucleon interaction (see, for example, Kerman et al., 1959). 

It is more difficult to anticipate the radial dependence of the imaginary 
potential, and many different forms have been employed. The simplest assump- 
tion, which is often made, is to take W ( r )  as a multiple of V(r).  Absorptive 
potentials that are stronger in the region of the nuclear surface have also been 
extensively investigated. The calculated cross sections are relatively insensitive 
to the location of the absorptive potential (provided that other parameters are 
appropriately adjusted) and, thus, it has been difficult to establish the radial 
dependence of W ( r )  (Hodgson, 1964); the most recent analyses seem to lend 
tentative support to a predominant surface absorption for incident nucleons 
with energies less than 40-50 MeV (see, for example, Figs. 2-26 and 2-28). 

Various arguments have been advanced, attempting to justify a stronger ab- 
sorption in the surface region than in the interior of the nucleus. In this connection, 
there are two aspects of the surface that must be considered. First, there are various 
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collective excitations of the nucleus that are associated with density changes in the 
surface regions (see the surface vibrations and collective rotations that are discussed 
in Chapters 6 and 4, respectively). The coupling between these modes and an incident 
nucleon is expected to be approximately localized in the surface. Although these 
couplings are often of considerable importance for the damping of the one-particle 
motion, for many purposes it may be a rather poor approximation to replace them 
by an absorptive potential. (The coupling to the rotational and vibrational motion is 
discussed in Chapter 5 and Chapter 6, respectively.) 

A second aspect of the surface that has often been emphasized is the fact that, 
in this region, the nuclear density is considerably reduced as compared with the central 
regions. Since the exclusion principle plays an important role in inhibiting collisions 
between a low-energy projectile and the nucleons of the target (see Sec. 2-5b), a decrease 
in the Fermi momentum, as in a Fermi gas with lower density, would lead to a re- 
laxation of this inhibition and might imply stronger absorption. In addition, the lower 
Fermi momentum implies smaller velocities relative to the incident nucleon, and hence 
larger collision cross sections. However, since in the surface region the nuclear density 
changes appreciably in a distance of the order of the Fermi wavelength, it may not 
be appropriate to consider this region in terms of a local Fermi gas of reduced density. 
Thus, a more detailed description of the structure of the nuclear surface is required 
in order to properly assess the contribution of this region to the absorptive potential. 
In this connection, it may also be noted that the treatment of the real potential in the 
surface region in terms of a diffuseness parameter may be an oversimplification in 
view of the nonlocal effects expected to result from the finite range and velocity 
dependence of the interaction (see Sec. 2-5b). 

The experimentally determined strengths of the different components of 
the nuclear potential are summarized in Fig. 2-29, p. 237. I t  is seen that the 
magnitude of the central real potential V ( r )  decreases with increasing energy 
of the incident nucleon. Indirect evidence for such a velocity dependence has 
already been discussed in connection with the analysis of the nuclear binding 
energies (p. 147). As will be discussed in more detail below (Sec. 2-5b), this 
effect is in part associated with the short-range repulsive element in the nucleonic 
interaction, which manifests itself in two-nucleon scattering at  high energies 
( E  > 100 MeV). 

The absorptive potential W also has a marked energy dependence. For 
small energies of the incident particles, only a few degrees of freedom of the 
target can be excited and, thus, the configuration mixing (damping of the one- 
particle motion) is relatively inhibited as compared with higher energies, where 
a much richer spectrum of the target may be involved. This effect is often de- 
scribed using the Fermi gas model, in which case one may visualize the absorp- 
tion in terms of the collisions between the incident nucleon and the nucleons 
of the filled Fermi sea. The exclusion principle requires that the collisions lead 
to  final states in which the scattered projectile and the recoiling nucleon of the 
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target are both outside the occupied Fermi distribution. For nucleons with 
total kinetic energy E only a little greater than c F ,  the phase space for such col- 
lisions is reduced by a factor of order ( E -  cF)’cF2 as compared with free 
collisions (see Eq. (2-221)), and this damping effect goes to zero as E + cF.  How- 
ever, it cannot be concluded from this argument that the strength function col- 
lapses to a single line for the single-particle states in the neighborhood of the 
Fermi surface. In fact, for energies smaller than the separations between single- 
particle levels, it is necessary to take into account the finite size of the system. 
Thus, in the nucleus, the structure of the strength functions depends essentially 
on the coupling to the few low-lying collective modes associated with deforma- 
tions of the nuclear shape (see Chapters 5 and 6). The observed strength functions 
for single-particle states within a few MeV of the Fermi surface are often found 
to have widths greater than 1 MeV (see Fig. 2-25). 

The energy variation of the nuclear potentials can also be described in terms of 
energy-independent but nonlocal interactions, replacing the potential energy term in 
the wave equation, 

V(r)+(r) +jV(r, r’)+(r? d3r‘ (2-140) 

It is readily seen that the nonlocality of V(r, r’) (the dependence on r - r’) is equivalent 
to a momentum dependence. Thus, if we expand the wave function in momentum 
eigenstates, we obtain 

I.(., r’)+(r’) d3r’ = U(r, p)v(p) expl; p . r) d3p (2-141) i 
with 

#(r) = ( 2 ~ ) - ~ / ~  exp - p * r ~ ( p )  d3p 

(2-142) 
s (6 ) 

U(r, p) = ( 2 ~ ) -  sexp( f p . x) V(r, r + x) d3x 

The form (2-141) exhibits the momentum dependence of the interaction. For instance, 
if V is confined to a domain of x small compared to the wavelengths contained in t,b(r), 

one can expand U(r, p) as a power series in p, and Eq. (2-141) becomes equivalent to 
a local potential depending on powers of the momentum. 

The observed energy dependence of the potential is fairly moderate, in the sense 
that it corresponds to a nonlocality with an extension somewhat less than kF1. 
Hence, to a first approximation, the effect may be taken into account by simply letting 
the potential depend on the energy of the incident particle. (For analyses using non- 
local potentials and comparison with energy-dependent local potentials, see Wyatt 
et al., 1960; Perey and Buck, 1962; Wilmore and Hodgson, 1964.) 
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The spin-orbit coupling is of necessity a surface term since, in a region of 
constant density, the only direction with local significance is that of the particle 
motion and, thus, it is impossible to define a pseudovector that can be 
coupled to the nuclear spin. In the surface region, however, the density gradient 
defines the radial direction and makes it possible to introduce a local potential 
of the form 

(2- 143) 

While the proportionality of V f ,  with V p ( r )  follows from the above arguments, 
if the range of the force is small compared with the distance over which the 
nuclear density changes appreciably, the rapid density variation in the region of 
the nuclear surface implies that V,,(r) may have a somewhat different radial 
dependence. However, since the main effect is still concentrated near the surface, 
it has been found sufficient to employ spin-orbit potentials of the simple form 

(2-144) 

wheref(r) is a radial function of the type describing the central real potential 
(Woods-Saxon form with R=r,A'13) ,  and where the strength of the spin- 
orbit potential is characterized by the constant V,, . 

One can make contact with the estimate (2-132) for the spin-orbit splitting 
of bound orbits by approximating V J r )  by a 6 function at the nuclear surface 
(that is, takingf(r) to be a step function). The estimate (2-144) then gives 

< U r > >  M &,(I * s )  6 R W 2 ( R )  (2-145) 

where g ( r )  is the radial wave function of the nucleon. For nucleons bound by 
5-10 MeV, the quantity R3W2(R)  is fairly independent of the particular orbit 
involved and is on the average about 1.4 with fluctuations of 10-20%. (See the 
wave functions in Fig. 3-4.) In this simple approximation, the spin-orbit coupling 
implies energy shifts in the bound states 

A c f ,  M 1.4&,(1 * s)A-'13 (2- 146) 

which agrees rather well with (2-132), when the strength of the spin-orbit poten- 
tial, V f s ,  is that obtained from the analysis of the scattering experiments (see 
Eq, (2-179)). The spin-orbit coupling may also involve an imaginary term, but 
the present experimental evidence is barely sufficiently detailed to exhibit such 
an effect. 

The parameters of the nuclear potential are expected to depend on the 
nuclear species primarily through the variation of R. The simple proportionality 
to Al l3  has been found to be adequate in most analyses. In addition, the neutron 
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excess implies somewhat different potentials for neutrons and protons; most 
important is the effect of the nuclear symmetry energy in producing a stronger 
central real potential V(r )  for protons than for neutrons (see the discussion on 
p. 148). The symmetry term in the nuclear potential obtained from the scattering 
data is of similar magnitude to that deduced from the binding energies (see 
Eqs. (2-26) and (2-28)). The available data, however, are inconclusive concerning 
the possible symmetry dependence of the spin-orbit and absorptive terms in the 
nuclear potential. 

Optical potential for other particles 

We have considered so far only the potentials describing the interactions 
of nucleons (and electrons) with nuclei. Scattering and reaction measurements 
have been performed for a large variety of other particles, such as d, t ,  3He, a, 
heavier ions, p,  ?I*, and K'. These results have also been interpreted in terms of 
optical potentials with parameters depending on the particle in question. The 
absorptive potentials used to describe the scattering of composite particles are 
very large, corresponding to the fact that such particles are not able to travel 
as a single entity over appreciable distances in the nucleus. (For example, for 
deuterons with an incident energy of 10 MeV, the imaginary potential needed to 
fit the elastic scattering is of the order of 10 MeV, which corresponds to a 
mean free path of about 3 fm, that is, less than the average distances between the 
particles in the deuteron.) The potentials employed in such analyses therefore 
have a less well-defined significance than for the scattering of " elementary " 
particles. 

We here briefly mention a special effect, which has been observed in n-nucleus 
scattering, and which exhibits an important limitation in the form of the optical model 
employed above. The description of the elastic scattering from a composite system, 
such as the nucleus, in terms of a potential approximately proportional to the density 
distribution, is valid if the scattering results from elementary processes (the collisions 
with the individual particles) each giving a small angle scattering, as in the description 
in terms of the index of refraction of the medium. If large angle individual scatterings 
are involved, which may especially be the case for backward scattering at large energies, 
the optical model assumes that the individual scattering process is approximately 
isotropic. (See the discussion of the relation between optical potential and scattering 
amplitude in Sec. 2-5b.) The n-nucleon scattering involves a very strong p-wave com- 
ponent, and it has been found that the n-nucleus scattering at large angles cannot be 
fitted by an optical potential with the usual shape. The p-wave component in the 
n-nucleon scattering can be taken into account by adding to the optical potential a 
term proportional to the gradient of the density and to the direction of the 7t momentum 
(Kisslinger, 1955); such a generalized potential is found to account rather well for the 
empirical n-nucleus scattering and the level shifts observed in pionic atoms (see 
Ericson and Ericson, 1966). 
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In the nucleon-nucleus scattering, the spin-orbit coupling is an effect of similar 
type, but there is as yet no definite evidence for the contribution of velocity- 
dependent surface interactions in the spin-independent interaction of nucleons with 
nuclei. This may be associated with the relative weakness of the p-wave nucleon- 
nucleon scattering (see Sec. 2-5). 

Relation of scattering potential to energies of bound states 

The detailed information on the radial dependence of the nuclear potential, 
as obtained from the scattering data, provides the starting point for a more 
quantitative calculation of the nucleon bound state orbits. Results of such a 
calculation are illustrated in Fig. 2-30, p. 239. It is found that one can obtain 
a rather good fit to the experimental binding energies using potential parameters 
consistent with those indicated by the scattering experiments. (See especially 
the analysis of binding energies for single-particle and single-hole configurations 
in Figs. 3-3 and 3-5.) The detailed radial wave functions obtained in these 
calculations should provide a significant improvement over the simplified har- 
monic oscillator or square well wave functions often employed. 

A 
ILLUSTRATIVE 

EXAMPLES TO 

SECTION 2-4 
I 

Some properties of the harmonic oscillator potential (Fig. 2-21) 

The spectrum of the three-dimensional oscillator potential is drawn in 
Fig. 2-21. The nucleonic motion in  this potential has the properties 
Hamiltonian 

1 1 
H = -p2 + - Mw$r2 2M 2 

(2-147) 

Quantum numbers : rectilinear coordinates 

n, , ny , n, , rn, N = n, + ny + n, (2-148) 

polar coordinates 
n,, I ,  m, m, N =  2(n, - 1 )  + 1 

I =  N, N -  2, . . . , 0 or 1 j =  I & &  

(2-149) 

(2-150) 

Spectrum 

Degeneracy 
E =  (N+ $)tiw, 

C 2(2I+ 1 )  = (N+ l ) ( N +  2) E ( N +  3)’ (2-151) 
1 N %  1 A 
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v Total number of states 

Dimension of orbits 

(2-152) 

(2-153) 

Matrix elements 

112 

= ( ( N + ; *  (/+;))&-) 
The number of radial nodes equals n, - 1, and we employ a phase convention 
such that the radial wave functions are all positive for r greater than the outer- 
most nodal point. I n  the rectilinear coordinates, the one-dimensional oscillator 
functions are taken to be positive for large positive x. A 

N 1 DEGEN. TOTAL 

5 143,5 42  112 

4 04 2 4  4 3 0  70 

3 1 4 3  2 0  4 0  

2 04 2 12 20 

1 1 6 8 

0 0 2 2 
Figure 2-21 Harmonic oscillator spectrum. 

v In attempting to visualize the shape of the radial wave function, it is 
useful to bear in mind the classical turning points, which correspond to the 
major and minor axes of the classical elliptical orbits 

(2-155) 
fi 

(rm,z)2 z - { N  + ( N  - /2)1/2 } 
MU 0 

A The estimate of the oscillator frequency coo given in Eq. (2-131) is obtained 
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v by summing the relation (2-153) over the occupied orbits 

fi Nmax fi 
M W O  N = O  2 M ~ o  A ( r 2 >  = - 2 C ( N +  3)(N+ 1)(N+ 2) w - ( N m a x  + 2)4 

where the factor 2 reflects the fact that there are both neutrons and protons 
included in the total particle number, A .  In a similar manner, we may employ 
Eq. (2-152) to relate A to the maximum principal quantum number N,  

A = 3 ( N m a x  + 2)3 (2-158) 

Combining Eqs. (2-158) and (2-157), we obtain the relation (2-131). 

Radial shape of nuclear potential (Fig. 2-22) 

In Fig. 2-22, the harmonic oscillator potential is compared with a 
potential of more realistic shape, often referred to as the Woods-Saxon potential. 
The parameters correspond to a nucleus with A = 100. It is seen that the 
corrections to the oscillator potential involve a repulsive effect for short and 
large distances and an attractive effect for intermediate distances. These correc- 
tions, therefore, favor orbits of large I (circular orbits) as compared with those of 
small 1 (penetrating orbits) ; the radial density distributions are shown in the 
lower part of the figure for two representative orbits. 

Schematic diagram of nuclear one-particle level sequence (Fig. 2-23) 

The level sequence corresponding to one-particle motion in a spherical po- 
tential with a strong spin-orbit coupling is represented schematically in  Fig. 2-23. 
On the extreme left, the levels of the harmonic oscillator potential are indicated 
by the total oscillator quantum number N and the parity n = (- l)N. The next 
column in Fig. 2-23 shows the splittings of the harmonic oscillator degeneracies 
obtained by using a somewhat more realistic spherical potential (see Fig. 2-22); 
the quantum numbers labeling the orbits are (n, 1). Finally, the spin-orbit coupling 
is turned on to obtain the level sequence indicated in the center, where the orbits 
are labeled by (n, 0). The degeneracy (2j + 1) of each orbit is given in parenthesis 
on the right, while the total nucleon number obtained by summing the degenera- 
cies of all lower-lying orbits is given in brackets. The numbers on the far right 
are the observed nucleon numbers corresponding to the completion of major 
shells. 

The schematic nature of the figure must be emphasized. The ordering of 
neutron orbits and proton orbits is known to be slightly different and, in addition, 
the sequence of orbits changes somewhat as a function of the nuclear size. (See 
the theoretical spectra in Fig. 2-30; experimental evidence on the one-particle 
level sequence is summarized in Figs. 3-3 and 3-5.) A 
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Figure 2-23 Sequence of one-particle orbits. The figure is taken from M. G.  Mayer and 
J. H. D. Jensen, Elementary Theory of Nuclear Shell Structure, p. 58,  Wiley, New York, 1955. 

v Spectra of odd-A nuclei compared with predictions of one-particle model 
(Fig. 2-24) 

The evidence on the spins and parities of the low-lying states of odd-A 
nuclei is summarized in Fig. 2-24 and is compared with the predictions of the 
simple one-particle model described in the text. 

Since the one-particle model assumes that the core remains in the In = 0 + 
configuration of the even-even ground state, we must expect to find states foreign 
to this model at excitation energies of the order of the energy, E ( 2 + ) ,  of the 
first excited 171 = 2 + states of even-even nuclei (for the observed values of E ( 2  +), 
see Fig. 2-17). Thus, we have included in Fig. 2-24 only the states with excitation 
energies less than + E ( 2 + )  in the case of states with the same parity as the ground 
state; for states of the opposite parity, the highest excitation energy included A 
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Figure 2-24 One-particle interpretation of low-energy levels in odd-A nuclei. The data for 
the figure are taken from Nuclear Data Sheets. The regions of  stable ellipsoidal deformations 
are excluded, as indicated by the wavy lines. We wish to thank G. T. Ewan for help in the 
preparation of the figure. 
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v corresponds to E ( - )  + 4E(2+), where is the excitation energy of the lowest 
state having a parity opposite to that of the ground state. 

A solid mark is entered in Fig. 2-24 for each state of given spin and parity 
observed in any isotope (or isotone) with the given 2 (or N )  value. Thus, Fig. 2-24 
represents a composite of data corresponding to each odd nucleon number. If 
two states of the same In are observed in a single nucleus (within the energy 
interval described above), two marks are entered. 

The approximate sequence of single-particle orbits is indicated along the 
left-hand axis of Fig. 2-24 (compare with Fig. 2-23), and the broken diagonal 
line in the figure passes through the configurations that would represent the 
ground states if the orbits were filled in exactly this sequence. It is seen that the 
spins and parities of most of the observed low-lying states are indeed consistent 
with an interpretation in terms of the expected one-particle orbits. 

Tests of the one-particle interpretation are provided by other known pro- 
perties of the levels, such as magnetic moments and one-particle transfer cross 
sections. In most cases, these properties confirm the qualitative validity of the 
assignments. Levels for which these properties are in qualitative disagreement 
with the predictions have been circled in Fig. 2-24, as have also the levels with 
spin and parity values not expected on the basis of the one-particle spectrum. 
Similarly, circles have been assigned in cases where two states of the same spin 
and parity occur in the low-energy spectrum, since at least one must then corre- 
spond to a more complicated configuration. It should be added that, since many 
of the levels have been rather incompletely studied, it is possible that further 
investigation will reveal a somewhat larger proportion of significant disagreement 
with the one-particle model. 

It is remarkable that so many of the low-lying states can be given a quali- 
tative interpretation in terms of the one-particle model, despite the highly 
simplified nature of this description. This fact played a major role in the early 
development of the shell model, since it implies that the consequences of the 
one-particle level sequence are much more strikingly apparent than would be 
the case if more complicated coupling schemes prevailed for the many- 
particle configurations. In particular, it was possible on this basis to give the 
first interpretation of the ground state spins and magnetic moments (Mayer, 
1950; Haxel et al.,  1950), the occurrence of isomerism in certain regions of 
nuclei (Goldhaber and Sunyar, 1951), and the data on /3-decay transition rates 
and selection rules (Nordheim, 1951). 

Since the one-particle spectrum used in this figure refers to  a spherical 
potential, we omit from the figure the nuclei for which an appreciable deviation 
from spherical shape is well established. (The evidence for these nonspherical 
shapes is discussed in Chapter 4). For these nuclei the one-particle spectrum of 
Chapter 5 should be employed. It may be noted that many nuclei seem to exhibit 
properties suggestive of intermediate forms between spherical and nonspherical, 
and most of the deviations from the simple one-particle model indicated in the A 
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v figure appear to be associated with these transition forms. (Methods for treating 
this intermediate coupling scheme are discussed in Chapter 6, but there remain 
important aspects of this problem that are not well understood.) 

Strength functions obtained from (dp) studies (Fig. 2-25) 

The cross section for the (dp) reaction depends on the extent to  which the 
final state can be obtained from the target ground state by the simple addition 
of a single particle in an orbit with angular momentum quantum numbers lj 
(see Appendix 3E). Thus, from the observed yields, it is possible to  obtain the 
one-particle parentage probability (2-133). The angular distribution of the 
protons resulting from the reaction is sensitive to the orbital angular momentum 
1 of the transferred neutron, but in many cases it is not possible on this basis to  
distinguish between reactions with j = I rt 4. The reaction cross section then 
determines the product (2j + l ) P l j ( f ) ,  which is the quantity plotted in Fig. 2-25. 

I n  nuclei with configurations of approximately closed shells and at low 
excitation energies, the entire ( d p )  strength of given (0) may go to a single levelf, 
and thus the level may be identified with the corresponding one-particle con- 
figuration (see, for example, Table 3-7). However, in nuclei with several particles 
outside of closed shells, and quite generally at higher excitation energies, there 
may be many levels with the same(0) and comparable (dp) yield. The distribution 
of the probabilities Pl j (Ex)  as a function of the excitation energyE, is referred 
to as the strength function for that value of (0). 

Figure 2-25 gives the strength functions for 1 = 0, 1, and 2, as deduced from 
the reaction ::Ni32(dp)$ANi33. In the region above the neutron binding energy, 
Sn(6 'Ni) = 7.82 MeV, the neutron resonance analysis provides additional infor- 
mation on the s-wave strength function (see Fig. 2-26). Since the target has spin 
zero, t h e j  value of the transferred particle equals the total angular momentum, 
J,  of the final state. 

It is seen that the 1 = 0 strength is concentrated in a region centered at  
Ex z 5 MeV with a total width of r - 5 MeV. This location for the 3s,,, orbit 
is in qualitative agreement with the results of calculations using the one-particle 
model (see Fig. 2-30). The width is a consequence of couplings between one- 
particle motion and other low-energy degrees of freedom in the nucleus. (See 
especially the particle vibration coupling discussed in Chapter 6.) 

The I = 1 strength in Fig. 2-25 is concentrated on relatively few levels at 
low excitation energy in 61Ni. A simple filling of the one-particle orbits would 
suggest the neutron configuration (f,12)8 (p3/J4 for the neutrons in excess 
of N = 20, in the ground state of 60Ni, and thus one might expect all of the 
strong 1 = 1 transitions in 61Ni to be associated with the p l l z  orbit and to  
populate states with J = 112. However, the ground state of 61Ni has J = 3/2 and 
is strongly populated in the (dp) process. Thus, one must assume an appreciable 
amount of configurations such as (f,/*)' ( ~ 3 1 2 ) '  (fslz)z in the ground state of 
60Ni and the corresponding configuration ( f , , J 8  ( p 3 / 2 ) 3  (fSi2)' as an important A 
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v component in the ground state of 61Ni. The cause of this type of configuration 
mixing is to be found in the pair correlation (see Chapter 8). Since the pIl2 
strength is expected in the region around 2 MeV above the p 3 / 2  level in 61Ni 
(see Eq. (2-132)), most of the remaining strong I = 1 transitions may be tentatively 
assigned to the p l j 2  orbit. The width of the p I l 2  strength function is thus about 
r N 2 MeV. 

The I = 2 strength is spread over a region starting from about Ex z 3 MeV 
and extending at least up to levels with Ex z 8 MeV. (It is possible that some 
I = 2 strength will be found in the region above 8 MeV, which has not yet been 
investigated.) Since the expected spin-orbit splitting ( ~ 3  MeV) is less than the 
width of the strength function, it is difficult, in the absence of direct experimental 
assignments, to separate the d5,2 from the d3/2  components. 

The s-uiave strength function (Fig. 2-26) 

The study of the resonances in the interaction of slow neutrons with nuclei 
has provided systematic data on the neutron widths of these resonance levels 
(see the example illustrated in Fig. 2-8). The reduced neutron width rL0) ( r )  of 
the resonance level r (see Eq. (2-1 14)) is proportional to the one-particle paren- 
tage of this level (see Appendix 3F), and thus the average of rLo) divided by 
the average level spacing D is a measure of the total amount of one-particle 
parentage per energy interval of the spectrum, that is, the strength function. The 
observed values of rLo)/D are plotted in Fig. 2-26 as a function of the mass 
number A .  

The value of the strength function can be estimated from a description of 
the neutron-nucleus interaction that predicts the average value of the cross 
section for compound nucleus formation (the average of the total cross section 
for processes going through resonance states). In the low-energy region, the 
resonances are well separated (r < D), and thus we may integrate over the 
independent contributions of each resonance to obtain (see Eq. (3F-13)) 

= 7rh2 ( 2 4 )  (2-159) 

where I, and I ,  are the spins of the resonance level and the target nucleus, 
respectively. 

The " black nucleus " estimate of r , /D is obtained by assuming that the 
neutron wave function has an incoming, but no outgoing flux at the nuclear 
surface (see Blatt and Weisskopf, 1952, pp. 351 ff.) An equivalent derivation of 
the black nucleus result can be obtained from the fact that, in this model, the 
one-particle strength is uniformly distributed over the whole spectrum and, thus, 
r , /D  is equal to the value r,,/D,, corresponding to single-particle motion. For a A 
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OPTICAL MODEL 
V = 52MeV 
W = 3.1 MeV 
R = (1.15A1h+0.6)fm 
a = 0.52fm 

K = 1.58frr-i' 

- 

"BLACK NUCLEUS" ---- 
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Figure 2-26 We wish to thank J. E. Lynn for a prepublication copy of his compilation of 
strength functions to appear in his book The Theory of Neutron Resotlance Reactiorw, Claren- 
don Press, Oxford (1968). The optical model calculations are from E. J. Campbell, H .  Fesh- 
bach, C. E. Porter, and V. F. Weisskopf, M.I.T. Tech. Rept. 7 3  (1960). 

v square well potential and I = 0, we have (see Eqs. (3F-51) and (3F-53)) 

and thus 

(2-160) 

(2-1 6 1) 

Taking K = 1.58 fm-' (corresponding to a potential depth of z 52 MeV) and 
k = 2.19 x fm-' (corresponding to a neutron energy of 1 eV), we obtain 
the estimate given in Fig. 2-26 (dotted line). 

The solid curve in Fig. 2-26 is the estimate of r , / D  obtained from a cal- 
culation of the absorption cross section corresponding to an optical model 
potential. Both the real and imaginary potentials are assumed to have the Woods- 
Saxon form with the parameters given in the figure. The fact that the area under 
the solid curve considerably exceeds that of the " black nucleus " results from 
the fact that the latter estimate has been obtained from a potential with a sharp A 
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v surface. (See Sec. 3F-2f for estimates of the effect of a diffuse surface on the 
value of rsp .) 

The maxima in the strength function at A z 50 and A x 160 correspond 
to the nuclei for which the 3s and 4s levels occur approximately at an excitation 
energy equal to the neutron binding energy (see also Fig. 2-30). The significant 
overestimate of r , /D  in the region 150 < A < 190 can be ascribed to the major 
influence of the static deformations that characterize nuclei in this region (see 
Chapter 5).  

The overestimate of r , / D  in the region A z 110 may in part be related to  
the radial distribution of the imaginary potential. In this region, which is approxi- 
mately half-way between the 3s and 4s single-particle resonances, the neutron 
wave function has a node near the nuclear surface. Thus, if the absorption is 
mainly concentrated in the surface region, the resulting compound nucleus cross 
section is reduced. 

It may be noticed that, in some cases, the s-wave strength function appears 
to exhibit considerable variations between adjacent nuclei. If confirmed, such 
fluctuations would be indicative of additional structure in the shape of the 
strength function, going beyond the picture of a simple damping mechanism 
represented by an imaginary potential. The possibility of such an intermediate 
structure (“doorway ” states) in the process of compound nucleus formation is 
a matter of considerable current interest. (See, for example, the review by 
Feshbach, 1967.) 

Recently, data have become available on p-wave resonances in the low- 
energy neutron interaction. Although, at the present time, these data are much 
less complete than for the s-wave strength function, it appears that there is a 
maximum at A %  90, as expected from the position of the 3p single-particle 
orbit (see Fig. 2-30; the experimental data on the p-wave strength function is 
reviewed by Newson, 1966). 

Hole states from ( p ,  2p) reaction (Fig. 2-27) 

While the stripping reactions give information on the strength functions 
for one-particle states above the Fermi energy (particle states), the knockout 
processes, such as ( p ,  2p), and the pickup reactions provide the corresponding 
information for the states below the Fermi energy (hole states). 

Figure 2-27 illustrates the study of hole states in l60 by means of the ( p ,  2p) 
reaction. In this experiment, the incident proton energy, E , ,  is 460 MeV and 
the two outgoing protons are detected in a symmetrical geometry. Thus, the 
directions of the two protons lie in  the same plane as the incident beam and 
make equal angles, 9, with it. In  addition, the spectrometer selects equal energies 
for the two protons. In this geometry, the momentum of the recoiling nucleus is 

p i c c o i l  = PO ~ 2 ~ 1  cos 9. (2-162) 

A wherep, is the incident momentum and p 1  the momentum corresponding to the 
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Figure 2-27 The data are taken from H. Tyren, S. Kullander, 0. Sundberg, R. Ramachan- 
dran, P. Isacsson, and T. Berggren, Nuclear Phys. 79, 321 (1966); for a review of the ( p ,  2p) 
reaction, see Jacob and Maris (1966). 

v energy, E l ,  selected for each of the final protons. The binding energy B of the 
ejected proton is obtained from the energy balance 

B = E o  - 2E1 - E r e c o i l  

with 

(2-1 63) 

where M ,  is the mass of the recoiling nucleus. In the upper part of Fig. 2-27, 
the yield of coincident protons is plotted as a function of the binding energy 
obtained from Eq. (2-163). The maxima in the curve correspond to the one- 
particle binding energies of protons in the target nucleus l6O. 

Protons can be ejected from the Ip,,, , Ip,,,  , and Is,,, orbits in I6O. The 
two highest energy peaks in Fig. 2-27 correspond to population of the ground 
state (l/2-) and 6.3 MeV (3/2-) state in "N. (It is possible that some part of 
the lower-energy peak corresponds to population of other states in the neighbor- 
hood of the 6.3 MeV state, but the observed intensity and angular distribution A 



52-4 A V E R A G E  N U C L E A R  P O T E N T I A L  233 

v suggest that the main part of the yield corresponds to the 3/2 - state. The evidence 
from the pickup reaction l 6 0 ( d ,  3He)15N further supports this conclusion 
(Hiebert et al., 1967).) Thus, it appears that for both thep,,, andp,,, transitions, 
the strength is mainly contained in a single level (one-hole level). 

The broad peak in Fig. 2-27a corresponding to a binding energy of about 
45 MeV may be tentatively identified as the 1s strength function. The width of 
the 1s peak (r z 15 MeV) is considerably greater than the instrumental resolu- 
tion. This width is a measure of the couplings of the 1s hole to other degrees of 
freedom of the system, which eventually damp the simple independent motion of 
the hole. 

Figure 2-27 also illustrates the angular distribution of the protons corre- 
sponding to the two high-energy peaks (p, , ,  and p3iz orbits). The distribution 
can be interpreted in terms of the momentum distribution of the protons in the 
corresponding one-particle orbit. The symmetry in the detection geometry 
implies that the recoil momentum is directed along the beam direction ( z  axis), 
and thus the struck proton must have p ,  =py = 0. The observed minimum in 
the yield at 9 = 40" corresponds to the angle for precoil = 0. (The fact that this 
angle is not 45" is due, partly, to the relativistic increase in the mass of the incident 
proton and, partly, to the binding energy of the struck proton.) The minimum 
forprecoi, = 0 results from the fact that the bound proton has I = 1 and therefore 
vanishing probability for zero momentum. The maxima in the distribution cor- 
respond to the maxima in the probability distribution for pz . Since the incident 
momentum is Po = 1040 MeV/c, the displacement of the peaks by A9 z 6" 
implies (p,),,x = p o  A9 z 110 MeV/c. Assuming harmonic oscillator wave 
functions cp(p,) ocp,  exp{ -p;(2hMw0)-' }, we obtain (p,),,, =  MU,)"^ and, 
thus, the observed spacing of the maxima implies ho, z 13 MeV. This is close 
to the value deduced from the observed charge distribution of l60 (Hofstadter, 
1957) and thus provides significant support for the independent-particle descrip- 
tion of the I6O ground state. 

In the above discussion, we have completely ignored the deflection and 
attenuation of the incoming and outgoing protons resulting from their inter- 
action with the other nucleons of the target. These distortion effects are important 
in a more quantitative analysis of the experiments (particularly in the inter- 
pretation of the absolute yield), but leave unaltered the main conclusions of the 
above discussion (Berggren and Jacob, 1963). 

Optical model analysis of 30 MeV proton scattering (Fig. 2-28 and 
Tables 2-1 and 2-2) 

An example of the optical model analysis of proton scattering is shown in 
Fig. 2-28. The available data include differential cross sections (Fig. 2-28a), 
polarization (Fig. 2-28b), and total reaction cross sections (Table 2-1) for 30 MeV 
protons incident on a variety of elements ranging from Ca to Pb. A 
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40Ca 56Fe 58Ni 5 9c0 60Ni c u  120Sn 208pb 

a,(exp.) 915138 1140*43 1038+32 1169539 1053&51 1124540 1638k68 1865k98 
a,(calc.) 941 1137 1117 1162 1174 1215 1604 1838 

Table 2-1 Reaction cross sections for 30 MeV protons. The calculated cross sections correspond 
to the total compound nucleus cross section obtained from the potentials listed in Table 2-2 since, 
for 30 MeV bombarding energy, it is expected that the compound nucleus decays predominantly 
to the many nonelastic channels with only a very small fraction appearing as compound-elastic 
scattering. The cross sections are given in millibarns cm2). The data and analysis are taken 
from the references given in Fig. 2-28. 

v The curves drawn in the figure correspond to the calculated cross sections 
obtained from an optical potential containing the following components : 

(a) Central real potential 
V f ( r ,  Rv , av) (2-165) 

(b) Central imaginary potential with volume term W,, and surface term W,, 

W,f ( r ,  R w ,  a w l  - 4aw Ws- f ( r ,  Rw, a w )  (2-166) 1 d 
dr 

(c) Spin-orbit potential 

(2-167) 
I d  

V,,(1 . s) r21s - - f ( r ,  R,, , a d  r dr 

(d) Coulomb potential (corresponding to a uniformly charged sphere of 
radius R,) 

c ' [ 3  Rc 2 -(&)*I r l R c  

Ze - r 2 R c  r 

(2-1 68) 

The Woods-Saxon form is chosen for the radial functions 

(2-1 69) 

i n  fitting the experimental data, it is found that the results are not very 
sensitive to the Coulomb radius R, , and in the calculations this parameter has 
been set equal to the radius of the real potential, 

The adjustment of the parameters of the potential has been carried out under 
the simplifying assumption that the diffuseness parameters, a, are the same for 

Rc = Rv (2-170) 

A 

Figure 2-28 The data for 30 MeV protons are from B. W. Ridley and J. F. Turner, Nuclear 
Phys. 58, 497 (1964); J. F. Turner, B. W. Ridley, P. E. Cavanagh, G. A. Gard, and A. G.  
Hardacre, Nuclear Phys. 58, 509 (1964); R. M. Craig, J. C. Dore, G. W. Greenlees, J. S. 
Lilley, J. Lowe, and P. C. Rowe, Nuclear Phys. 58, 515 (1964). The optical model analysis 
is that of G. W. Greenlees and G. J. Pyle, Phys. Rev. 149, 836 (1966). 
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v all nuclei, while the radius parameters, R ,  have a simple A l l 3  dependence, 

R, = rv Al l3 ,  etc. (2-171) 

The best values found for these averaged geometrical parameters are 
r y  = 1.2 fm av = 0.7 fm 
rw = 1.25 fm aw = 0.7 fm 
rlr = 1.10 fm a,, = 0.7 fm 

(2-172) 

With these values for the geometrical parameters, the well depth parameters 
were adjusted for each nucleus to give an optimum fit to the observed cross 
sections (shown in Fig. 2-28 and Table 2-1); the resulting values of these A 

- V 46.1 46.4 47.0 47.5 47.6 47.7 51.1 53.4 
- W ,  0.4 2.7 3.4 2.8 2.8 1.8 1.2 4.0 
- W, 5.96 5.2 4.4 5.7 5.5 6.1 8.7 7.6 
v,, 20.1 19.5 14.8 19.5 18.2 19.5 20.2 17.2 

~ ~ 

Table 2-2 Optical model parameters for 30 MeV protons. The table lists the well depth 
parameters (in MeV) used to generate the theoretical cross sections given in Fig. 2-28 and 
Table 2-1 ; the geometrical parameters in the potentials have the values given in Eq. (2-172). 
The analysis is taken from Greenlees and Pyle, loc. cit . ,  Fig. 2-28. 

v parameters are shown in Table 2-2. Slight improvements in the fits to individual 
nuclei can be achieved by separate variations of the geometrical parameters for 
each separate nucleus. The use of a pure surface absorption (W,  = 0) leads to 
theoretical cross sections that fit the experimental data almost as well as those 
shown, while pure volume absorption (W, = 0) leads to fits that appear to be 
somewhat poorer. 

Systematics of optical model potential (Fig. 2-29) 

Optical model potentials have been determined from analyses of a wide 
variety of data corresponding to neutron and proton interactions with many 
different nuclei and at different incident energies (for examples, see Figs. 2-3, 
2-26, and 2-28). 

Figure 2-29 contains a summary of some of the systematic features of the 
optical potentials determined by these analyses. In  order to compare parameters 
corresponding to different bombarding energies, E, the figure contains only the 
results of analyses using especially simple and standard forms for the potentials. 
Thus, the central real potentials are of the Woods-Saxon type, 

A 

V(r)  = - V f ( r )  
with 

(2-173) 

(2-174) 
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REAL POTENTIAL V,, 

I I I I I I I I 1 I I I I I I I 
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INCIDENT ENERGY (NEUTRONS) MeV 

Figure 2-29 The figure is based on the optical model analyses by L. Rosen, J. G. Beery, 
A. S. Goldhaber, and E. H.  Auerbach, Aiiii. Pbys. 34, 96 (1965) (real potential for E,, < 22 
MeV), G. W. Greenlees and G. J .  Pyle, Phys. Reu. 149, 836 (1966) (E,, = 30 MeV), P. H. 
Bowen, J .  P. Scanlon, G. H. Stafford, J. J .  Thresher, and P. E. Hodgson, Nuclear Phys. 
22, 640 (1961) (15 MeV < En < 120 MeV), P.G. RoosandN. S .  Wal1,Pbys. Rev. 140,B1237 
(1965) ( E ,  = 160 MeV), and the compilation by Winner and Drisko (1965) (E,  < 30 MeV). 

The abscissa corresponds to the bombarding energy, En, for neutrons; for incident 
protons, the corresponding bombarding energies, En, are larger by the Coulomb energy, 
since it is the kinetic energy inside the nucleus that determines the strength of the average 
potential. 

v The radius and diffuseness parameters have the values 

R = V ~ A ' ' ~  ro = 1.25 fm 

a = 0.65 fm 
(2-1 75) 

The values of the potential V in the figure correspond to the isoscalar part of the 
interaction V ,  and thus represent an  average of neutron and proton potentials, 
where such data are available; where these data are not available, the potentials 
for different elements have been extrapolated to small values of Z and A ,  where 
symmetry and Coulomb energy corrections are negligible. 

It is seen that the potential V ,  gradually decreases with increasing incident 
energy and can be approximately represented by 

Yo 52 - 0.3E (2-1 76) 

in the energy region u p  to E z 80 MeV. 
The isovector part of the real central potential has been determined from 

the difference of the neutron and proton potentials (for targets with Z f  N ) ,  A 
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v from the 2 and A dependence of the potential for protons or neutrons, and from 
the cross section for the direct (pn )  process producing the M ,  = To - 1 isobaric 
analog state of the target nucleus. These different analyses are consistent with a 
potential of the form 

(2-1 77) 

with geometrical parameters as in Eq. (2-175) and with values of V ,  ranging from 
70 to 110 MeV (Hodgson, 1964; Greenlees and Pyle, 1966). The available 
analyses are not sufficiently accurate or consistent with each other to establish 
the energy dependence of the potential parameter V , .  

The available data are best fitted by an absorptive potential that is strongest 
in the surface region for low incident energies, while volume absorption (an 
imaginary potential proportional t o f ( r ) )  fits best at high energies. For 30 MeV 
protons, the potential is still dominated by surface absorption (see, for example, 
Table 2-2). In order to compare the variation of the absorptive potential with 
energy, we have somewhat simplified the description, giving in the figure the 
magnitude of the pure volume absorption, - iWf(r ) ,  that best describes the 
cross sections at each energy. It is seen that the values of W increase steadily 
from values of a few MeV at the lowest energies to values of order 10 MeV for 
E - 100 MeV. 

The spin-orbit potential is approximately determined for nucleons with 
incident energies up to 30 MeV (Rosen et al., 1965; Greenlees and Pyle, 1966). 
I n  this energy range, the data can be fitted by a potential of the form 

with 

V,, z 17 MeV 

(2-178) 

(2-1 79) 

The difference in radii suggested for the spin-orbit and central potentials (see 
Eq. (2-172)) has been interpreted (Greenlees et d., 1966) in terms of the very 
short range of the two-body spin-orbit interaction (see Fig. 2-35). 

Binding energies of single-particle orbits in a static nuclear potential 
(Fig. 2-30) 

The systematics of the spectra obtained by solvingthe Schrodinger equation 
for one-partic!e motion in a spherical potential are shown in Fig. 2-30. The 
one-particle orbits are labeled by the quantum numbers nrQ, where the number 
of nodes in the radial wave function is n, - 1. The potential employed has the 
form 

I d  
r dr U = Vf(r) + VrS(1 . s)rt - -f(r) (2-180) 

A withf(r) given by Eq. (2-174). The radius is assumed to vary as A l l 3 ,  while the 
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Figure 2-30 Energies of neutron orbits calculated by C. J.  Veje (private communication). 

surface thickness parameter a is taken to be A independent. 
R = ro  Al l3  rg = 1.27 fm 

a = 0.67 fm 
(2-181) 

The potential strengths include a term depending on the neutron excess, 
in order to describe approximately the potential acting on a single neutron, 

(2-182) 

and the neutron excess for each A has been chosen to correspond to  the 
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minimum in the valley of p stability. (For Z = 82 and A = 208, the parameters 
are those used by Blomqvist and Wahlborn (1960).) 

The parameters chosen give a rather good description of the overall 
patterns observed in the low-energy bound state spectra (see, for example, 
Figs. 3-3 and 3-5), and also agree with the average potentials found from the 
optical model analysis (see Fig. 2-29). However, no attempt has been made to 
obtain an optimum fit and, in any particular nucleus, small adjustments in the 
potential may improve the agreement. The neglect of the velocity dependence in 
the potential implies that one expects corrections of the order of 30% in the 
energy scale when comparing with the excitation energies of single-particle orbits 
that are far away from the Fermi surface (see, for example, Figs. 2-29 and 3-5). 
The description of one-particle bound states with a velocity-dependent potential 
has been discussed by Ross et al. (1956), Wyatt et al. (1960), and Meldner et al. 
(1965). 

The magnitude of the symmetry potential is somewhat larger than that 
estimated from the binding energies (see Eq. 2-28)), which may possibly reflect 
a velocity dependence of the symmetry potential. 

The general trend observed in Fig. 2-30 reflects the increasing binding 
energy of each orbit with the growth of the size of the binding field, as A increases. 
The orbits with small angular momentum and small binding energy spend an 
appreciable amount of time outside the nucleus and thus benefit less from an 
increase in the size of the potential than do the weakly bound orbits with 

A large 1. 

2 - 5  N U C L E O N I C  I N T E R A C T I O N S  A N D  
N U C L E A R  POTENTIAL 

In  the preceding parts of this chapter, we have seen that a description in 
terms of independent-particle motion provides an  appropriate basis for the 
analysis of many nuclear properties. We have also seen how the observed 
sequence of the nucleonic binding states and the nuclear scattering data can 
be used to  determine the parameters that characterize the average nuclear 
potential. In  this section, we consider the relationship of these parameters to 
the nucleonic interactions as revealed in the analysis of the two-nucleon system. 
The problem is one of considerable complexity and reaches into many aspects 
of the nuclear structure. In  the present chapter, we are mainly concerned with 
exploring the basic physical aspects of the problem and establishing the simple 
qualitative features. 

2-5a 

There has been very substantial progress in recent years in the determin- 
ation of the nucleonic interaction. We shall not attempt here to  present syste- 

Main Features of Nucleonic Interaction 
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matically the detailed methods of analysis or the varied experimental data that 
have contributed to this progress. Rather, the discussion will be confined to a 
summary of the main results of the analysis. These results provide the starting 
point for a comparison of nuclear properties with the two-body interaction. 
(For reviews of the experimental data and of the analysis see, for example, 
Wilson, 1963 ; Moravcsik, 1963; Amati, 1964.) 

Low energies ( E  < 5 MeV)  

A strongly attractive, short-range nuclear interaction can be inferred 
directly from the low-energy np and pp scattering experiments and from the 
bound state of the deuteron. Because of the centrifugal barrier, these low- 
energy experiments primarily give information on the S-wave interaction. As 
is well known, the low-energy experiments can be described by the effective 
range expansion of the phase shifts, which depends on two parameters, the 
scattering length a and the effective range r e ,  for each spin-isospin channel. 
(See, for example, the textbook by Blatt and Weisskopf, 1952, pp. 56ff., and, for 
more details, the review article by Jackson and Blatt, 1950.) For np scattering, 
we have 

1 
a 

k c o t 6 =  - -++r ,k2  (2-183) 

The observed low-energy scattering (and the deuteron binding energy) determines 
the parameters for the S-wave interaction 

\re = 1.703 fm 

The presence of the Coulomb interaction in thepp scattering implies some modi- 
fications in the pp effective range expansion, but again the effect of the nuclear 
interaction is described in terms of the two parameters a and r e .  Since the phase 
shifts are described by two parameters, the low-energy scattering determines 
only two parameters of the potential, such as depth and range. 

The comparison of the ' S  scattering in the np system with the low-energy pp  
scattering provided the first evidence for charge independence of the nuclear forces 
(Breit et al., 1936). Because of the large scattering length, it is possible to make a very 
sensitive comparison of the two interactions. It is found that the np interaction is about 
1.5 % stronger than the p p  interaction, although the exact value depends somewhat on 
the shape of the potential (Schwinger, 1950). More recently, evidence on the ' S  
scattering length in the nn system has been obtained from an analysis of reactions 
involving two neutrons in the final state (see, for example, Baumgartner et al., 1966, 
and the references given there). The tentative conclusion from these experiments is 
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consistent with charge symmetry, V,,, = V p p .  Attempts have been made to relate the 
small difference between V,,, and V p p  to the mass difference between charged and 
neutral n mesons (see, for example, Henley, 1966), but, in pressing charge indepen- 
dence to this level of accuracy, one is faced with a rather difficult problem resulting 
from the interweaving of electromagnetic and strong Interaction effects. 

The fact that a is negative and almost an order of magnitude larger than 
re for ‘ S  scattering implies that, in this channel, there is an attractive interaction 
with a strength slightly less than that required to give a bound state at  zero 
energy. For rough estimates, it is often convenient to use a square well potential 
with strength Vo and range b, determined so as to give the observed effective 
range and a bound state at  zero energy, 

b = re = 2.7 fm 
(2-1 8 5 )  

The existence of the quadrupole moment of the deuteron implies that, in 
the low-energy triplet interaction, the 3S ,  and 30, channels are coupled, and 
a tensor force component must therefore be present. The expansion (2-183) 
now describes the “ eigenphase ” in the coupled channel. 

If we use the parameters of Eq. (2-184) to determine an “effective” 
square well potential for the 3S interaction, we find a potential with b z 1.9 fm 
and Vo z 35 MeV (see, for example, Blatt and Weisskopf, 1952, Fig. 3.3, 
p. 64). However, it must be emphasized that the use of such an effective potential 
may be very hazardous in estimating interactions in the nucleus, since the 
tensor and central components of the force contribute very differently to the 
average nuclear potential and to the binding in the deuteron. Indeed, the 
tensor force averages to zero in the first approximation to the nuclear potential. 
Thus, for the estimate of the nuclear potential, it is very important to know 
the relative contribution of the tensor and central interactions to the observed 
low-energy attraction; the low-energy data alone do  not provide this infor- 
mation. 

Higher energies. Exchange potential 

The investigations at low energy determine only a relatively small part of 
the nucleonic interaction and, in particular, are completely silent as to the nature 
of the repulsive element that is so important in determining the equilibrium 
density and average interaction in the nucleus (see Sec. 2-5b). Analysis of the 
high-energy scattering experiments is, therefore, essential in order to define the 
interaction sufficiently for it to be compared with the properties of nuclei. 
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Neutron-proton scattering experiments in the energy range from En = 

50 MeV to En = 700 MeV have revealed strong backward scattering and thus 
confirm the idea of an important exchange interaction, as originally suggested 
by Heisenberg (1932) and Majorana (1933) (see Fig. 2-31). In fact, since the 

0' 3 0' 60' 9 0' 120' 150' 180' 
c.m. SCATTERING ANGLE 

Figure 2-31 The experimental dataon the np differential scattering cross sections are taken 
from R. H. Stahl and N. F. Ramsey, Phys. Reu. 96, 1310 (1954) (91 MeV data) and Yu. M. 
Kazarinov and Yu. N. Simonov, Exptl. Theoret. Phys. U.S.S.R. 43, 35 (1962) (translation 
Soviet Phys. JETP 16, 24 (1963)) (200 MeV data). The figure gives only a small sample of the 
available measurements; see, for example, the compilation by Moravcsik (1963). 

wavelength of the incident .particle is shorter than the range of the interaction, 
an ordinary force would lead to a predominantly forward scattering. The ob- 
served backward scattering can, however, result from a process in which the 
incident neutron emits a n meson, transforming into a proton, which continues 
forward, while the target proton absorbs the n meson, becoming a neutron and 
going backward (in the center-of-mass system). Such an " exchange " scatter- 
ing can be described by a potential of the form V(r)P ', where P' is an operator 
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that exchanges the space coordinates, rl and r2, of the two colliding particles, 

A pure space exchange force, V(r)P', would lead to an angular distri- 
bution strongly peaked at 180", while a nonexchange force, V(r) ,  would lead to 
a maximum at 0". It is thus possible to obtain a simple explanation of the 
approximately equal maxima at 0" and 180" (see Fig. 2-31) by assuming a force 
depending on (1 + P') (called the Serber exchange mixture). The plus sign in 
this linear combination is necessary in order to obtain the strong interaction 
observed in S states. Such a potential acts only in states of even orbital angular 
momentum. The more detailed analysis has shown that this simple interpretation 
is only partially true; there are significant interactions in odd states (see below), 
but the odd-state interactions almost vanish when averaged over the relative 
orientations of spin and orbit, and thus it is often useful to employ the Serber 
mixture to obtain a rough estimate of the effect of the symmetry dependence of 
the central interaction between nucleons. 

The Serber mixture does not contain any repulsive elements, and thus 
this first result of high-energy studies failed to substantiate the long favored 
belief that nuclear saturation would be accounted for in terms of the symmetry 
dependence of the nuclear force. 

The systematic unraveling of high-energy nucleon-nucleon scattering has 
required more than a decade; the interaction has turned out to be so compli- 
cated that it has not been possible to anticipate an adequate simplifying 
theoretical model. In this situation, there has been no substitute for the slow 
accumulation of very detailed experimental data involving total cross sections 
and angular distributions, as well as measurements of the polarizations and spin 
correlations of the scattered nucleons. Even after a great wealth of data was 
available, many ambiguities remained in the analysis; these ambiguities were 
finally resolved only after it became possible to calculate a part of the scattering 
from meson theory (see below) and after data at different energies were combined 
under the assumption that the phase parameters would vary smoothly. 

As a result of this work, there is now available a rather unique phase shift 
analysis, which describes the observed scattering up to several hundred million 
electron volts of energy (see Fig. 2-34, p. 264). It is also possible to find potentials 
that approximately reproduce these scattering cross sections, but the potentials 
involve a very great number of parameters, and the question of uniqueness of 
the description is not yet sufficiently studied (see Fig. 2-35, p. 266, for examples 
of such potentials). In particular, it is not yet clear to what extent the nucleonic 
potential contains important nonlocal elements or explicit velocity dependence; 
possible evidence for such terms has been presented by Giltinan and Thaler 
(1 963). 

P'f(r1, rz)=.f(r2, r1). 
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Despite the uncertainty as to the uniqueness of the available potential 
fits, it is possible to deduce almost directly from the phase shifts a number of 
qualitative features of the interaction that are of great significance for the 
questions of nuclear structure. 

Hard core 

The fact that the ' S  phase shift becomes negative at  about 200 MeV 
shows that the interaction in this channel, which was strongly attractive at  low 
energies, has become effectively repulsive at  the higher energies ; we see here, 
for the first time, clear experimental evidence for a replusive component in the 
nucleonic interaction, which can account for the nuclear saturation. One way 
of introducing a repulsive interaction, which is relatively unimportant at low 
energies but dominates at  higher energies, is in terms of a very strong repulsive 
potential of very short range-"the hard core".3 From Fig. 2-34 it is seen that, 
at  high energies, the S phases are decreasing at a rate dd/dk w -0.6 fm, and thus 
the radius of the hard core, c, must be of this magnitude. (The detailed potential 
fits seem to work best with values in the range c = 0.4 to 0.5 fm; see Fig. 2-35.) 

The presence of a hard core changes somewhat the interpretation of the low- 
energy effective range parameters. The square well potential that gives binding at 
zero energy (as is approximately the case for the 'Schannel) still has V ,  = ( 3 ~ ) ~  h2/Mb2,  
where b is the range of the attractive region extending beyond the core. The effective 
range, however, is considerably greater than b (see Fig. 2-32) and thus, if we use the 
value c = 0.5 fm for the hard core, the low-energy ' S  data (2-184) now imply b = 1.7 fm 
and V,  = 34 MeV. 

It should be emphasized that an infinite, short-range repulsion is only one, rather 
extreme, way of accounting for the observed change in sign of the S-wave phase shifts. 
Finite repulsive potentials (soft core), as well as interactions depending explicitly on 
the relative velocity, can also account for the observed scattering phase shifts (Rojo 
and Simmons, 1962; Green and Sharma, 1965; Tamagaki, 1967). 

Another method of parameterizing the effect of the violent interactions at short 
distances is to replace the interior region by appropriate boundary conditions at some 
finite radius (Lomon and Feshbach, 1967). As long as the interactions responsible for 
these boundary conditions involve energies much greater than the bombarding energy, 
it may be expected that the boundary conditions will be approximately energy inde- 
pendent. 

Although the possibility of accounting for nuclear saturation by means of a very short-range 
repulsive interaction was recognized from the first discussions of the nucleonic interaction, this 
possibility was given rather little attention, since it conflicted with the notion of a simple structure of 
the nucleons. The idea was revived by Jastrow (1950) as a possible explanation of the rather low total 
cross section observed in high-energy np scattering. The first unambiguous evidence for this repulsion 
was provided by the detailed phase shift analysis of the extensive scattering and polarization measure- 
ments made on p p  scattering at  310 MeV (Chamberlain et d., 1957: Stapp et d., 1957; Cziffra et d, 
1959). 
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Figure 2-32 
state at zero energy. 

Square well potential with repulsive core and with Vo adjusted to give a bound 

The 3P phases. Spin dependence of interaction 

The average of the 3P phases 

( s ( 3 ~ ) )  = &[ss(3~,) + 3 s ( 3 ~ , )  + s(3~,,)1 (2- 186) 

remains quite small at all energies, suggesting a relatively weak central inter- 
action in the 3P states, as for a Serber exchange mixture. The relative magnitude 
of the 3P phases gives important information on the nature of the spin-dependent 
forces. Indeed, we can immediately conclude from these phase shifts that both 
a spin-orbit force and a tensor force are required in the nucleonic interaction. 

In analyzing the effect of spin-dependent forces in the two-nucleon system, 
it is convenient to employ the helicity operator 

1 
H = - (S . r) 

r (2- 187) 
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which represents the component of the total spin in the direction of r. The eigen- 
values of the helicity are H = 0, Al. In states of given parity, opposite helicities 
( H  = f 1) must occur with equal probability, since H changes sign under space 
inversion. (The helicity representation for single-nucleon motion in the nuclear 
potential is employed extensively in the following chapters (see Sec. 3A-1).) 

The triplet states of given total angular momentum J and parity n can be 
labeled by the orbital angular momentum L, or by the magnitude of the helicity, 
(HI,  and we have the following channels: 

J = O  n = - 1  L = l  H = 0 ( 3 ~ 0 )  

H = O  ( J 3 3 ~ l + J j 3 ~ 1 , . . . )  
IHI = 1 (,,/i3S1 -A3DI, ... ) 

J # O  ~ = ( - 1 ) ~ + '  L = J f l  

J f O  . = ( - l ) J  L = J  11-11 = I ( 3 P , ,  3D, ,  . . .) 
(2- 1 88) 

The transformation from the L J  to the HJ representation is given by Eq. 
(3A-9) and involves the vector addition coefficient (LOSH 1 J H )  describing 
the coupling of the helicity to the orbital moment. Thus, for L = J ,  we have 
]HI = 1 ,  while H=O for L =  1, J=O. For the states with ~ = ( - l ) ~ + '  and 
J # 0, there are two channels for given n and J,  and one can choose as a basis 
either the channel with specified L or with specified \HI.  The kinetic energy 
operator commutes with L, but not with H ,  and for spin-independent inter- 
actions, the eigenstates therefore have definite L. The spin-orbit force also 
commutes with L, and not with H. However, the tensor force operator S , ,  , 
given by Eq. (1-89), commutes with H,  but not with L,  and thus, the tensor 
force tends to produce states with specified /HI.  The eigenvalues of S,, are 
seen to be 

3 
S 1 2  = - * 2  . r)(a2 r) - . o2 

6 
r2 = - (S . r)2 - 2 ( ~ ) ,  

0 S = O  
=[4 S = l  H = O  (2- 189) 

+ 2  S = l  H = f l  

The 3P0 and 3P, states have (HI = O  and 1 (see Eq. (2-188)) and, hence, 
have S12 = -4 and +2, respectively. Since 3P2 is coupled by the tensor force 
to 3 F 2 ,  the diagonal effect of the tensor force in this channel must be inter- 
mediate between the extreme values characterizing the 3P0 and 3P1 channels. 
The observed phase shifts at high energies, however, have the relative mag- 
nitudes 6( 3 P 2 )  > 6( 3 P 0 )  > 6( 3P,)  (see Fig. 2-34) and, hence, are inconsistent 
with an interaction consisting only of central and tensor forces. 
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The spin-orbit force has an expectation value proportional to 2(L-S) = 

J ( J +  1) - L(L + 1) - S ( S  + 1) and, therefore, if this is the only spin-depen- 
dent interaction, the magnitude of the 3P1 phase must be intermediate between 
that of 3P0 and 3 P 2 .  We thus conclude that both a tensor and a spin-orbit 
force are required to describe the observed 3P phases. 

The sign of the required spin-orbit force is seen to be attractive for the 
parallel alignment of spin and orbit ( 'P2) .  This spin-orbit force in the nucleonic 
interaction contributes in an important way to the spin-orbit force observed in 
the average nuclear potential (see p. 259). In a similar manner, the sign of the 
tensor force required by the 3P phases is seen to be such as to give repulsion in 
the 3P, state (]HI = 1) and attraction in the 3P0 state ( H =  0). In the deuteron, 
the positive quadrupole moment shows that the helicity is predominantly 
\HI = 1 ; for the even states, therefore, the tensor force is attractive for IHI = 1 
and repulsive for H = 0. The overall sign of the tensor force is thus opposite 
for even and odd states (as in the one-pion exchange potential (2-190)). 

One-pion exchange potential 

The structure of the nucleonic force is intimately related to the properties 
and interactions of the whole family of strongly interacting particles. I t  has not 
so far been possible to derive the forces between these particles, or their masses, 
from simple assumptions regarding the basic structure of the strong interactions. 
However, certain relations between the interactions and masses of the strongly 
interacting particles can be established. Of particular significance is the relation- 
ship between the nucleonic force at large distances and the pion-nucleon inter- 
action. 

The force at large distances (peripheral interaction) can be described in 
terms of an exchange of mesons, in a similar manner as the electromagnetic 
interaction can be analyzed in terms of photon exchange. The special role of the 
pion exchange is due to the smallness of the pion mass as compared with that 
of other strongly interacting particles. The interaction associated with the 
exchange of a particle of mass m is limited to a range of the order of the Compton 
wavelength 1, = h/mc, as can be seen from elementary arguments. In fact, the 
intermediate states involved in such an exchange have an energy of at least 
mc2 and so are limited to a duration of order A/mc2. During this time, the emitted 
particle cannot travel farther than h/mc and, thus, the interaction is expected 
to decrease strongly for distances greater than 1,. If we wish to exchange n 
particles simultaneously, the corresponding intermediate energies are nmc2 and 
the range is 2, in. The interaction at the largest distances is therefore determined 
by the exchange of single 

The asymptotic form of the one-pion exchange potential is uniquely 
mesons. 
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specified by the mass and symmetry properties of the pion (In = 0-, T = I), 

1 f2 v =  -- m,cZ(zl .Z’) 

(2-190) 
3 hc 

mn C f’ p = - = 0.70 (fm)- - = 0.081 0.002 
h hC 

The strength of the potential is determined by the coupling constant f for the 
process N + N  + n. The quoted value fo r fhas  been obtained from the analysis 
of n-nucleon scattering (see Table 1-1, p .  4). 

The n-nucleon coupling constant represents the reduced width for the process 
N-i  N + n and is thus a measure of the strength of the meson field surrounding a 
nucleon. This field is pseudoscalar, since In = 0-, and isovector, since T = 1, and 
satisfies the field equation 

(V2 - p*)>cp(r) = - 4 4 r )  (2-191) 

where the field cp and the nucleonic source density p are isobaric vectors. The nucleon, 
which produces the field, is considered to be at rest at the origin. (We are here exploiting 
the smallness of mn as compared with the nucleon mass.) 

Outside the source region, the field has the form 

1 
(2-192) 

cp(r) = f -T(G. V);exp{-pr} 
P 

In fact, the only isovector that can be constructed from the nucleon variables is the 
nucleon isospin 2 ,  and the only pseudoscalar is the product of the nuclear spin 0 and 
the radius vector r; the requirement that cp satisfies the free field equation (and decreases 
for large r )  specifies the radial dependence in Eq. (2-192). The coupling constantfmay 
be regarded as defined by Eq. (2-192); it is a measure of the total source strength of 
the nucleon. The factor p in (2-192) has been insertcd in order to givefthe dimension 
of an electric charge. 

It is seen that Eq. (2-192), apart from the isospin dependence and the factor 
exp{ - p r } ,  has the same form as the magnetic potential surrounding a dipole. The inter- 
action between two nucleons, at such large separations that the overlap of their source 
densities can be neglected, is therefore similar to the interaction between two point 
dipoles, 

1 

P 2  t-1 

where V, and 0, represent differentiations with respect to rl and r 2 ,  respectively. 
(The potential (2-193) has a sign opposite to the magnetic potential between dipoles; 
this is a consequence of the (pseudo) scalar character of the meson field, as distinct 
from the vector character of the electromagnetic field.) 

If the differentiations in  Eq. (2-193) are carried out, one obtains the potential 
(2-190). (The expression (2-193) contains in addition a contact term, proportional to 
6(r, - rz), but this can be neglected, since we are considering the form of the interaction 
at  large distances.) 

v =  - f’ -(T~.T~)(o~ .VI)(az . Vz)-exp{-pr12 1 (2- 193) 
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Since Eq. (2-190) is only intended to describe the peripheral interaction, 
any tests of this term depend on isolating the small effects of the distant colli- 
sions from the stronger scattering due to the potential at shorter distances. 
Such a separation is usually based on the fact that the relative motion of two 
nucleons with angular momentum L corresponds classically to a collision with 
impact parameter 

(2-194) 

Thus, if we choose L sufficiently large (for given E ) ,  we can be sure that the 
projectile has passed at a rather great distance from the target nucleon, and so 
only the peripheral interaction has been involved. 

Many different methods of implementing this idea have been employed. 
For a review of the attempts to test (2-190) in the low-energy phenomena, see 
Taketani et al. (1956). Perhaps the most direct tests of the pion exchange poten- 
tial are provided by phase shift analyses in which the phases with large L are 
calculated from Eq. (2-190), while the low phases are taken to be phenomeno- 
logical parameters as in the usual phase shift description (Cziffra er al., 1959). 
It is found that an accurate description of the experimental data is achieved in 
this way with fewer parameters. The range of L values adequately described by 
the potential (2-190) implies (see Eq. (2-194)) that this potential is the dominant 
interaction for r-2 3 fm. (See also the comparison of the one-pion exchange 
potential with the phenomenological potentials shown in Fig. 2-35.) In such 
a “ modified ” phase shift analysis, one can also adjust the n-nucleon coupling 
constant, f, to find the value that best describes the observed scattering. In 
this way, the analysis shown in Fig. 2-34 yields the valuef2/hc = 0.074 f 0.010, 
which agrees well with the more accurate determination (2-190) based on pion- 
nucleon scattering. 

Since the n-nucleon coupling constant is relatively small, the interaction 
(2-190) is rather weak and, in most nuclear phenomena, is overshadowed by 
the additional interaction effects associated with the exchange of two or more 
pions as well as with the virtual production of other mesonic and baryonic 
states. In many of these processes, the coupling constants are found to be large. 
The analysis of these effects presents a problem of great complexity owing to 
the many degrees of freedom involved and the great strength of the interactions 
at the shorter distances (see, for example, Fig. 2-35). (For a review of such 
analyses, see, for example, Bryan, 1967.) 

The important role of the higher-order processes in the nucleonic inter- 
action, together with the fact that ,Ic is comparable with the average distance 
between particles in the nucleus, suggests some caution in the use of potentials 
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such as those of Fig. 2-35 in the description of interactions in nuclei; it is pos- 
sible that three-body forces and other higher-order effects are not completely 
negligible in determining the nuclear structure. Such effects have not yet been 
definitely identified, but the subject requires further investigation. 

2-5b Relation of Nuclear Potential to Nucleonic Interactions 

Saturation problem and equilibrium density 

A basic property of nuclear structure is the approximate constancy of the 
density in the interior of all nuclei. This equilibrium density reflects a balance 
between attractive forces, which hold the system together, and an internal pres- 
sure, which prevents any further reduction in the volume. One source of such an 
internal pressure is the kinetic energy term. As a consequence of the exclusion 
principle, the kinetic energy per particle is proportional to p2/3 (see Eq. (2-7)). 
Such a term, however, is not strong enough to resist the compressive effect of a 
purely attractive force between nucleons, since the corresponding potential 
energy per particle increases linearly with p. Thus, a system with purely attractive 
forces would collapse to a state with a radius of the order of the range of the 
interactions. 

The nuclear saturation must therefore be attributed to important repulsive 
elements in the nucleonic interaction. The search for the expected repulsive 
elements has been a point of considerable interest since the first discussions of 
nuclear structure. For a time, the saturating feature was sought in the exchange 
properties of the force.4 Indeed, the average forces in states of odd parity are 
appreciably weaker than those for even parity; if one weights the interactions 
by their statistical weights, the average odd-state potential 

(2-195) 

is found to almost vanish (see Fig. 2-35). To prevent collapse, however, the 
nuclear force must contain strong repulsive elements, and it now appears that 
the main effect involved is that of the " hard core ", which is revealed in the 
S-wave phase shifts at high energy (see the discussion on p. 245). 

Some of the properties of a system saturating as the result of short-range 
repulsions may be seen from an analysis of a simplified schematic model (Gomez 
et al., 1958). As a first step, we consider the hard-sphere Fermi gas, a system in 

For a review of the early discussions of the saturation problem, see Rosenfeld (1948), and 
Blatt and Weisskopf (1952). 
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which the only interaction between the particles is an infinite repulsion pre- 
venting the particles from approaching closer than the distance c. The properties 
of this system depend on the ratio of c and the density parameter ro (R = ro 
from Eq. (2-7) we obtain ro = 1.52k;’). For c < y o ,  the system approaches the 
free particle gas while, for c m 2 r 0 ,  the structure of the system approaches that 
of close packing of hard-spheres (close packing with a lattice distance c implies 
c = (3271’ /9)1/6r0 m l.81r0). The actual nuclear force is characterized by c m 
0.5 fm, while ro m 1.1 fm, and thus the structure of nuclear matter is much closer 
to that of the free gas than to the crystalline state of closely packed spheres. 
The energy of a low-density hard-sphere gas can be expanded in a power series 
in c/ro ; the first few terms in this expansion have been evaluated, and the re- 
sulting energy function is shown in Fig. 2-33. (This expansion is further discussed 
in the fine print below.) 

The attractive part of the nucleonic interaction has a longer range and is 
appreciably weaker than the repulsion. Thus, one may obtain a qualitative 
estimate of the binding by employing a simple first-order perturbation calcu- 
lation based on undisturbed particle motion. If we first neglect the effect of 
exchange forces and of the two-particle correlations implied by the antisymmet- 
rization, the binding energy per particle is simply proportional to the density, 
and thus varies as r i 3 .  Adding the kinetic energy, with inclusion of the effects 
of the hard cores, to the potential energy, we obtain a total energy that is 
schematically illustrated in Fig. 2-33. It is seen that, in order to obtain a bound 
system, the attractive potential must exceed a minimum value; correspondingly, 
the equilibrium value of ro has an upper bound (rO)max. It follows from dimen- 
sional arguments that is some multiple of c. 

We can estimate (rO)max by employing the approximate expression for the 
energy &kin of the hard-core gas given on p. 256, 

The value of (rO)max is defined by the relations 

&kin + &pot = 

and, for gPot proportional to y o 3 ,  we obtain 

(2-196) 

(2- 197) 

(2-198) 
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Figure 2-33 The curve grin represents the energy of the hard-sphere gas, Eq. (2-196). The 
curve (a) represents the total nuclear energy with the attractive component (2-1 99) adjusted 
to give a minimum with zero binding energy (Yo  = 15 MeV, c = 0.5 fm, b = 1.7 fm). The 
curve (b) is the same as (a), except that Yo = 25 MeV. In curve (c), the attractive interaction 
is estimated by means of Eq. (2-200), and the parameters of the square well potential are 
V, = 34 MeV, c = 0.5 fm, b = 1.7 fm. 

We wish to thank R. Lipperheide for assistance in the preparation of the figure. 

A hard-core radius of c = 0.5 fm (see Eq. (2-225)) thus corresponds to ( Y ~ ) ~ ~ ~  = 

1.2 fm and a kinetic energy about twice the value for the noninteracting Fermi 
gas. 

The attractive potential, gpot, employed in the above discussion can be 
related to the attractive part of the nucleonic interaction. To illustrate this 
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relation, we employ the simple, central force, square well interaction of the type 
illustrated in Fig. 2-32, and assume the same interaction in T = 0 and T = 1 
states. The potential energy per particle is then, in the approximation considered, 

b,,,= --V0 1 ( b  + c)3 - c3  
A 2 4 (2-199) 

For c = 0.5 fm and b = 1.7 fm, corresponding to the effective range de- 
duced from low-energy singlet scattering, the minimum value of Vo needed to 
give binding is (Vo)min w 15 MeV and the correspoiiding total energy function 
is drawn as (a) in Fig. 2-33. 

The value of the attractive potential implied by the low-energy scattering 
is Vo = 34 MeV, and the energy function corresponding to the potential energy 
(2-199) with Vo = 2 x 34 MeV is drawn as (b) in Fig. 2-33. The factor 3/4 
represents the reduction of the density at small relative distances resulting from 
the antisymmetrization of the wave function (see Eq. (2-36)). The increase by 
70 % in the strength of the attraction as compared with (a) implies an increase 
in the density by a factor of 2 and a very large binding energy. The function (b), 
however, represents an overestimate of the potential, since the attraction is 
assumed to be equally strong in even and odd states. A somewhat improved 
evaluation is given in (c), where the attractive interaction is assumed to have a 
Serber exchange character and is thus effective only in states of even orbital 
symmetry. Including the correlations implied by the antisymmetrization of the 
wave functions, we thus obtain the contribution (see Eq. (2-41)) 

\ 
I 

(b + c)3 - c3 + p JV(r)C2(r)  d 3 r  
A 16 r,” 

(2-200) 

where p is the average density (pR = A )  and C ( r )  is the two-body correlation 
function of the Fermi gas (see Eq. (2-37)). As is seen from the curve (c), the 
equilibrium density ( y o  = 1.2 fm, p = 0.14 (fm)-3) in this approximation is 
slightly less than the experimental value, p = 0.17 fm-3, as given in Eq. (2-1), 
and the binding energy of 7 MeV/nucleon is only about half of the observed 
value of bvo, (see Eq. (2-14)). Since the binding energy represents the small 
difference between the much larger kinetic energy (2-196) and attractive con- 
tribution (2-200), the discrepancy in this simple model represents only a 15% 
underestimate of the attractive contribution to the total energy. 

The above discussion of the nuclear equilibrium density and saturation 
is somewhat modified by the presence of the rather strong tensor force in the 
nucleonic interaction (see Fig. 2-35). The expectation value of the tensor force 
vanishes for the uncorrelated Fermi gas owing to the spin saturation of the 
system ( S  = 0). In second order, the tensor force contributes an attraction; 
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however, this attraction becomes relatively less effective with increasing density, 
since the exclusion principle implies that the intermediate energies in the second- 
order calculation must increase with increasing k, . This density dependence of 
the binding due to the tensor force contributes, together with the repulsion of 
the hard core, to determine the equilibrium density of nuclei (Bethe, 1967). 

The smallness of the total nuclear binding energy (in units of + A )  implies 
that the density is much lower than the critical density corresponding to close 
packing. Ascribing a core radius c/2 to each nucleon, we ensure that no pair of 
nucleons approaches closer than the distance c. Thus, the fraction of the total 
nuclear volume, Q,,,, occupied by the hard cores is only 

3 
QCO,, - = (&) w 10-2 
G o 1  

(2-201) 

Under such circumstances, the violent interactions produced by the singular 
force occur only rarely and the system can be described, to a first approximation, 
in terms of independent-particle motion. The hard core collisions do give an 
important contribution to the total energy of the system and are thereby re- 
sponsible for the saturation. However, this energy is carried by a small fraction 
of the particles ( -  (c /r0)’) ,  each having an energy of the order of several 
hundred MeV ( - h 2  / M c 2 ) .  

If the attractive interactions in the nucleus were stronger than those ob- 
served, the density would increase and eventually would approach the close 
packing limit. The characteristic parameter describing the interaction is the 
strength of the attraction measured in units of fi2 /Mc2 (assuming that the range 
of the attraction is comparable with c). Examples of systems, where this pararn- 
eter is large, are provided by aggregates of atoms, which form crystalline or 
rigid molecular structures (see Fig. 2-36, p. 269). The nature of the transition 
from independent-particle motion to the crystalline state and the associated value 
of the characteristic parameter present significant unsolved problems. The ex- 
ample of liquid 3He suggests that the independent-particle description may still 
provide a useful approximation even for values of c/rO that are appreciably 
larger than encountered in the nuclear system. (For a discussion of the validity 
of the independent-particle description for 3He, see, for example, Wheatley, 
1966.) 

The above discussion has been based on highly schematized forces, which 
in particular do not include the very strong attractive components that have 
been inferred for distances slightly greater than the hard-core radius (see Fig. 
2-35). The qualitative interpretation of the saturation and the validity of the 
independent-particle motion can, however, be maintained for more complex 
interactions, since one can distinguish between the violent interactions at a 
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short distance (r 5 1 fm) and the much weaker and smoothly varying inter- 
actions at  larger distances. The short-range components can be treated in terms 
of an expansion similar to that employed for the hard-sphere gas; the small 
parameter in this expansion represents the range of these interactions compared 
with typical internucleon separations. The long-range components are weak 
compared with the Fermi energy (see Fig. 2-35) and thus can also be treated in 
terms of an  appropriate perturbation expansion. 

Further details of the schematic model 
The hard-sphere gas. If the range, c, of the hard-core interaction is sufficiently 

small, its effects may be obtained by means of an appropriate perturbation expansion 
starting from the noninteracting Fermi gas. The first term in this expansion may be 
obtained very simply by usiag the pseudopotential 

fi’ 
M V2’ .  = 47rc - S(r) (2-202) 

which, when treated in Born approximation, gives, to first order in c, the same 
scattering amplitude as the hard-core interaction (see, for example, Blatt and Weiss- 
kopf, 1952, pp. 73ff). The expectation value of the interaction (2-202) for two nucleons 
in the Fermi gas is 

1 fi2 
! 2 M  <V%> = -4nc-(1 - s(mdl),  42))8(m:( l ) ,  m:(2))) (2-203) 

where SZ is the nuclear volume. The last term in Eq. (2-203) results from the anti- 
symmetrization, which prevents two nucleons with the same spin and isobaric spin 
orientations from coming very close to each other. Averaging Eq. (2-203) over a 
Fermi gas with equal numbers of neutrons and protons, we obtain 

2 
= - AEFCkF (2-204) 

7r 

The evaluation of the higher-order terms in the expansion in powers of k, c involves 
both the improvement of the simple first-order pseudopotential (2-202) and the evalua- 
tion of the higher-order perturbation effects resulting from the modifications in the 
wave function. The next few terms have been evaluated (Huang and Yang, 1957; 
de Dominicis and Martin, 1957) and yield 

A convenient approximate expression for the sum of the unperturbed kinetic energy 
(2-10) and the contributions (2-205) is given by 

8 k h  3 97r 2’3 fi’ 
7 5 (8) 2M(r0 - 0 . 8 ~ ) ~  (2-206) 

where r,, is the radius parameter in the nuclear volume. The expression (2-206) repro- 
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duces the expansion (2-205) to within a few percent over the range k, c < 0.8. The 
function (2-206) is plotted in Fig. 2-33. 

We can also obtain an estimate of the nuclear compressibility 
from the simple model in which the total nuclear energy is described by the energy of 
the hard sphere gas (2-206) and the estimate (2-200) of the attractive interactions. The 
compressibility coefficient is defined by the relation 

Compressibility. 

(2-207) 

where, in the second line, we have introduced the parameter K that is often found in 
the literature. From Fig. 2-33, one obtains bcomp % 13 MeV. There is at present little 
direct empirical evidence on the nuclear compressibility, but more detailed theoretical 
estimates give similar values. (Bethe, 1967, gives the estimate bcomp x 15 MeV.) 

In the above discussion of the equilibrium density, we have neglected the effects 
of the Coulomb repulsion, which tends to  increase ro slightly. The effect can be esti- 
mated from the compressibility 

(2-208) 

and is found to amount to a few percent in heavy nuclei, assuming bcomp z 15 MeV. 
An opposite and slightly larger effect results from the surface energy, which provides 
a pressure tending to contract the nucleus. 

The above discussion has been 
concerned with the relation of the nucleonic interactions to the total nuclear binding 
energy and density. The simple model may also be employed to illustrate features of 
the average nuclear potential, such as the velocity dependence. It is convenient to  
express the velocity dependence in terms of the effective mass M* defined by (see p. 148) 

Velocity dependence of the one-particle potential. 

(2-209) 

for states with k in the neighborhood of k ,  . 
As for the total energy, we begin by considering the contribution to Eq. (2-209) 

implied by the hard core alone, and expand this contribution in powers of the hard- 
core radius c. Since the linear term (2-203) is independent of the relative momenta of 
the two states, the leading-order contribution to  M* is of order cz, and the expansion 
yields (Bund and Wajntal, 1963) 

= 1 - 0 . 6 3 ( k ~  c)’ + 0 . 1 6 ( k ~  c ) ~  + . . . (;I kin 

X 0.75 for kFC = 0.69 (2-21 0) 

The increase in M *  obtained in Eq. (2-210) implies that the repulsive core interactions 
contribute an energy term that decreases with increasing velocity of the particles; such 
a term results from the fact that particles deep in the Fermi distribution must use more 
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highly excited components than particles near or above the Fermi surface, in estab- 
lishing the correlations whereby they avoid the hard cores of the other nucleons. 

The effect of the attractive Serber interaction can be evaluated in terms of an 
expression similar to Eq. (2-200). For the values of the attractive potential correspond- 
ing to the curve (c) in Fig. 2-33, we obtain a positive contribution 

8(g)po, % 0.41 (2-21 1) 

which, together with Eq. (2-210), implies a total effective mass at the Fermi surface 
about 15 % smaller than the free mass. 

Spin- and isospin-dependent components of nuclear potential 
Some of the more detailed features of the nuclear potential can be directly 

related to the spin and isospin dependence of the nucleonic interactions. 
An important contribution to the nuclear symmetry potential arises from 

the exchange character of the nuclear forces. Thus, if we assume the Serber 
exchange mixture for the central interaction, we can write 

w, 2) = t(1 + P')W,Z> 

= ic1 - $(I + 71 + 4 ( 1  + 0 1  . ~ z > l W , z )  (2-2 12) 

Averaging over the coordinates of particle 2, and neglecting correlations be- 
tween the particles, we obtain the average single-particle potential 

(2-2 13) 

where t = 4 z is the isospin operator of the single particle and T the total iso- 
spin of the rest of the nucleons. 

The potential (2-213) is of the form (2-29), and the ratio of -4/3 between 
isovector and isoscalar components is of the order of magnitude of, although 
smaller than the observed ratio of about -2 (see Eq. (2-28) and Fig. 2-29). 

The result (2-213) expresses the fact that a force acting only in even orbital 
states is three times more effective in isosinglet states than in isotriplet states. 
The factor 3 corresponds to the ratio between the statistical weights (2S+ l), 
since T = 0 states with even L have S = 1, while T = 1 states have S = 0. We 
also note that such a force is twice as strong for unlike particles (which corre- 
spond to T = 0 and T = 1 with equal amplitudes) as for like particles (T=  1). 
Thus, the potential (2-213) acting on a proton is proportional to N + & Z ,  
while the potential acting on a neutron is proportional to 2 + 

The predominance of the even-state interaction, which characterizes the 
Serber force, is also a feature of short-range interactions, since these are mainly 

N .  
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effective in relative S states. Thus, for example, the leading-order effect of the 
hard core, which can be obtained as the expectation value of a &type pseudo- 
potential, see Eq. (2-202), gives the same ratio between isovector and isoscalar 
components as in Eq. (2-213). For such a force with no exchange components, 
the isospin dependence of the average potential derives exclusively from the 
correlations associated with antisymmetrization. These correlations reduce the 
probability for finding like particles close together (by a factor of 2 for rlz+O). 

The occurrence of a rather strong spin-orbit force in the nucleonic inter- 
action gives rise to a spin-orbit coupling in the average one-body potential. 
Writing the two-body spin-orbit force 

(2-214) 
1 

VLS(1, 2) = 6 ~Ls(rlAr1 - rz) x (P1 - PZ) . (s1 + s2) 

we obtain a rough estimate of the resulting average potential acting on particle 
1 by averaging over the coordinates of particle 2, neglecting correlation effects, 

(2-215) 

Expanding the density around the point (rz = r 

~ ( r z ) = ~ ( r , )  + (TZ - r ~ ) * ( V ~ ) r z = r ,  + 1 . .  
(2-2 16) 

we obtain from Eq. (2-215), assuming the range of interaction to be small com- 
pared with the surface thickness of the density distribution, 

with 

(2-217) 

(2-218) 

On account of the rather short range of the spin-orbit force, the main 
interaction is expected to take place in the relative P state. The potential in 
Eq. (2-218) should thus be the odd state spin-orbit force VLs(odd). Using the 
potentials of Fig. 2-35, we obtain from Eqs. (2-217) and (2-218) a spin-orbit 
force of the type (2-144) with the coefficient V,, rn 30 MeV. This value is of 
the same sign and magnitude (but somewhat greater) than the average spin- 
orbit force observed in nucleon-nucleus interaction (see, for example, Table 2-2). 

The estimate (2-217) is, of course, very crude. In a quantitative calculation, 
one must include the effect of antisymmetrization (which increases the 3P 
state interaction for like particles by a factor of 2 and thus leads to an effectively 
stronger spin-orbit potential for neutrons than for protons in a heavy nucleus). 
In addition, one must take into account that the violent interactions at short 
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distance appreciably modify the wave functions in the region where the spin- 
orbit force is acting. (For recent analyses, see Elliott et al., 1967.) Finally, the 
tensor force contributes in second and higher order to the effective one-body 
spin-orbit potential. (See, for example, Terasawa, 1960, and references given in 
this article.) 

Estimate of high-energy optical potential f rom two-body scattering amplitude 

The relation of the average potential and the two-body scattering becomes 
especially simple for incident energies large compared to those of the particles 
in the bound system. If, in addition, the interactions are sufficiently weak so 
that the wave number in the medium differs only slightly from that of the 
incident wave, one can estimate the optical potential in terms of the additive 
effect of the collisions with each particle in the medium, considering these 
collisions as taking place between free particles (impulse approximation). 

The propagation through a uniform medium is obtained by considering 
the forward scattered wave pfL(0)dz generated by each volume element ds. 
The density of the medium is p,  and fL(0) is the forward scattering amplitude 
for a free-particle collision described in the laboratory system. The forward 
scattering produced by a potential Vextending over the volume dz is -(27ch2 ) - l  

M V  dT, and we can thus represent the scattering of the medium by the potential 

(2-219) 

We can also recognize that this expression is equivalent to the well-known 
expression for the index of refraction n of a gas, 

(2-220) 

where n is defined as the ratio of the wave number in the medium to the wave 
number k of the incident wave. 

The imaginary part of the potential (2-219) has a very simple interpreta- 
tion in terms of the connection between the total cross section for the two- 
particle scattering and the mean free path in the medium. The optical theorem 
relates the total cross section to the imaginary part of the forward scattering 
amplitude (see Eq. (2-90)), and thus, for the mean free path A = (pa)-', we 
obtain the relation (2-138). 

The simple relation (2-219) may be expected to be approximately valid 
for the interaction of nuclei with nucleons having energies large compared with 
e F .  The optical potentials obtained from this relation, using the measured 
nucleon-nucleon phase shifts, are shown in Fig. 2-37, p. 271. 
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Even for nucleon energies of the order of a hundred MeV, there are im- 
portant corrections associated with the finite velocities of the particles in the 
nucleus. In particular, the exclusion principle plays a significant role in inhibiting 
collisions with small momentum transfers and thus reducing the imaginary 
part of the potential. A correction for this effect may be based on the Fermi 
gas model of the target nucleus. Thus, the total cross section determining A 
and Wmay be expressed as an integral over the angular distribution for the 
scattering of the projectile on each of the target nucleons in the Fernii distribu- 
tion. An approximate correction for the exclusion principle is obtained by omit- 
ting from this integral all contributions, in which either the projectile or the 
recoil nucleon has wave numbers lying within the occupied Fermi sphere k < k,  . 
As a rough approximation indicating the magnitude of this effect, we give the 
effective cross section, (a), obtained by assuming that the elementary two- 
body cross section a. is a constant independent of energy and angle (Clementel 
and Villi, 1955) 

E > 2~~ r. 7 4  

The more detailed evaluation of this correction has been discussed by Shaw 
(1959). 

The high-energy limit of the optical potential is also instructive in illus- 
trating some of the assumptions underlying the use of a simple local potential. 
Thus, the relation (2-219) applies to the propagation through a region of uni- 
form density. Variations in the density imply elastic scattering with finite 
momentum transfer. The use of the potential (2-219) with a density p ( r )  leads 
to the correct large-angle scattering only if the two-body scattering amplitude 
is independent of the angle. One can take into account the dependence off on 
the momentum transfer fiq by replacing fL(0) by fL(q) in the relation (2-219), 
considered as a relation between the Fourier components of density and poten- 
tial. This nonlocal relation between V(r) and p(r) expresses the consequences of 
the finite range of the two-body interaction in regions where the density is 
changing. We also note that a dependence of the scattering amplitude on the 
incident momentum k implies thatf, in Eq. (2-219) is a momentum-dependent 
operator acting on the wave function, corresponding to a nonlocal velocity- 
dependent potential (see Eq. (2-1 41)). Such generalized optical potentials have 
been employed in the analysis of the interaction of 7c mesons with nuclei (see 
the comments on p. 219). 
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2-5c Theory of Nuclear Matter 

The extension of the Fermi gas model to include the effects of the 
correlations produced by the nucleonic interactions has led to a highly developed 
theory of nuclear matter. Because of the simple geometry of such an infinite 
system, these studies have provided an important testing ground and source of 
invention for new tools with which to treat the quantitative relationship between 
the two-body forces and the nuclear properties. 

The earliest studies of nuclear matter (Euler, 1937) employed nonsingular 
interactions, with saturation ensured through the choice of appropriate exchange 
mixtures. For such potentials, one may attempt a straightforward perturbation 
expansion in powers of the interaction. The calculations indicated a moderately 
rapid convergence of the power series for the ground state energy. (For a re- 
view of these early developments, see Rosenfeld, 1948, Chapter XII, and Brown, 
1967, Chapter X.) 

The growing evidence for independent-particle motion in the nucleus, as 
well as the increased knowledge of the two-nucleon interaction, provided the 
impetus for a reexamination of the theory. A central problem has been the 
development of appropriate perturbation methods applicable to a system in 
which the interactions contain singular elements (" hard core "). The physical 
basis for independent-particle motion in the presence of such interactions has 
been discussed in connection with the qualitative considerations in the previous 
section (Sec. 2-5b). The quantitative treatment has involved the development of 
a rather elaborate formalism (see, for example, Brueckner, 1959, and Brown, 
1967, Chapters XI and XII). The problem is similar to those encountered in 
other many-particle systems, such as the electron gas, superfluids, and inter- 
acting quantum fields, and there has been a fruitful interplay of the efforts in 
these various domains. (An introduction to the formal methods of many-body 
theory is given in the texts by Thouless, 1961, and Nozibes, 1964.) 

The main applications of the theory of nuclear matter have so far concerned 
the nuclear binding energy and equilibrium density. At the present time, there 
still remains considerable uncertainty concerning the quantitative relationship 
of these properties as deduced from the empirical systematics of heavy nuclei 
and the evidence on the two-body interaction as obtained from the scattering 
experiments (see, for example, Bethe, 1968). Thus, it is not yet clear to what 
extent the remaining discrepancies are to be ascribed to the approximation 
methods employed, to uncertainties in the interaction, including the possible 
role of three- and four-body forces, or to the extrapolation of the empirical data 
to infinite nuclear matter. 

Considerable current effort is being devoted to the study of these problems 
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and to the further development of the methods employed in the theory of 
nuclear matter in order to treat the varying density and finite geometry of 
nuclei. It may be expected that this development will lead to important insight 
into many nuclear properties, such as the various components in the nuclear 
optical potential, the effective interactions in the nucleus, and the structure of 
the nuclear surface. However, the development is still in a preliminary stage, 
and we have not attempted to include a systematic treatment of the formalism 
in the present text. 

1 ILLUSTRATIVE 

A 

EXAMPLES TO 

SECTION 2-5 

Phase shgt analysis for nucleon-nucleon scattering (Fig. 2-34) 

The scattering amplitude for two spin one-half particles is a 4 x 4 matrix 
in the spin variables, as well as a function of the energy E and scattering angles 
9, q. Since the nucleon-nucleon interaction commutes with the total spin S as 
well as with the parity n and the total angular momentum J (see p. 68), it is 
convenient to expand the scattering matrix in terms of channels labeled by these 
quantum numbers. The channels with S = 0 ( J  = L, n = (- l)L) and S = 1, 
J = L (n = (- l)L) are uncoupled and thus the scattering matrix is described by 
a single real parameter, the phase shift 6. The centrifugal barrier implies that, 
at low energies (ka < L1”, where a is a measure of the range of interaction), the 
phase shift 6(L) is proportional to k2L+1 (see, for example, Eq. (3F-37) and 
Table 3F-1). In the present analysis, we shall neglect the possibility of inelastic 
reactions, which may occur for energies above the threshold for meson produc- 
tion (ELab > 280 MeV); in practice, the meson production cross sections near 
threshold are sufficiently small so that the elastic scattering amplitudes remain 
approximately unitary up to laboratory energies of about 400 MeV (see, for 
example, Hama and Hoshizaki, 1964, and Azhgirey et al., 1963). 

The channels S = 1, L = J - 1 and S = 1, L = J + 1 are coupled by the 
tensor force and thus the scattering amplitude is a 2 x 2 matrix in these channels. 
A unitary 2 x 2 matrix requires three independent parameters. The analysis 
shown in Fig. 2-34 employs two real phase shifts (6(L = J - 1, J ) ,  6(L = J + 1, J ) )  
and a real mixing parameter c J .  In terms of these parameters, the S matrix is 

1 cos 2&J i sin 2&J 
exp{i8(L = J +  1,  J ) }  N i sin 285 cos 2&J 

= J -  1, J ) )  0 

1 (;p{iS(L = J - 1, J>> o 
exp{i8(L = J +  1 ,  J ) }  

(2-222) 
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v This parameterization was introduced by Stapp el al. (1 957), and is often referred 
to as the “nuclear bar” phase shifts. At low energies, E~ z const kZJ ,  6(L, J )  x 
const kZLf’. In general, each of the phases 6(L = J - 1, J )  and 6(L = J + 1, J )  
describes scattering involving both L = J 5 1 ; only in the limit E --t 0, where 
cJ -+ 0, does the quantum number L have a simple significance for the wave 
function of the scattered particle. 

The phase parameters shown in Fig. 2-34 are obtained from an analysis 
involving a large variety of different experimental data taken at  many different 
energies. The phases are expanded in terms of assumed energy-dependent func- 
tions, which are chosen so that the contribution of the one-pion exchange 
potential (2-190) dominates at sufficiently low energies (except for the S and P 
wave channels). The coefficients of the energy-dependent functions are then 
varied to fit the experimental data; 58 adjustable parameters were employed in 
the analysis, which utilized 704 different pieces of experimental data. The phases 
fit the experimental data with a sum squared error of x 2  = 646. 

The phase parameters in Fig. 2-34 describe the scattering due to the nuclear 
forces ; to obtain the experimentally measured scattering amplitude, one must 
add the Coulomb phase shifts in the case ofpp scattering. 

Phenomenological nucleon-nucleon potentials (Fig. 2-35; Tables 2-3, 2-4) 

The nucleon-nucleon potentials shown in Fig. 2-35 are parametrized in 
terms of the following functions: 

(2-223) 

and thus contain central ( Vc), tensor (V,), spin-orbit ( VLs), and second-order 
spin-orbit ( VLL) components. The radial functions are restricted by the condition 
that, at large distances, the central and tensor potentials should be described by A 

Figure 2-34 The figure illustrates the phase parameters for nucleon-nucleon scattering in 
the channels with L I 2. The low-energy behavior is determined by the effective range param- 
eters (2-183); the data for E > 24 MeV are taken from the analysis by R. A. Arndt and M. H. 
MacGregor, Phys. Rev. 141, 873 (1966); similar analyses have been given by Breit et a/. (1962), 
Hull et al. (1962), and, more recently, by MacGregor et af. (1968). The definition of the phase 
parameters in terms of the scattering matrix is given by Eq. (2-222). 
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Figure 2-35 The phenomenological nucleon-nucleon potentials shown in the figure are 
taken from the analysis of T. Hamada and I. D. Johnston, Nuclear Phys. 34, 382 (1962); 
similar potentials have been obtained by Lassila et al. (1962). The dotted potentials (OPEP) 
correspond to the one-pion exchange potential (Eq. (2-190)). For an example of a soft-core 
potential, see Reid (1968), and for a nonlocal potential, see Tabakin (1964). 
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v the one-pion exchange interaction (2-190). The assumed radial forms are 

Vc = Uo(T1 * Tz)(a1 . Q2) Y(x)[l  + acY(x) + bcY'(x)] 

V T  = ~ o ( ~ 1  . T ~ ) ( O I  . az)Z(x)[l + ar Y(x) + br Y 2 b ) ]  

V L S  = g L s  uo YZ(X)[l + b L S  Y(.>] 

If' 
3 fic 

vo = - - m,cZ = 3.65 MeV 
(2-224) 

and, in addition, the potential has been assumed to contain a component giving 
rise to infinite repulsion at the radius 

c = 0.49 fm (x,  = 0.343) (2-225) 

The optimum adjustment of the 29 parameters in the above functions 
yields the parameter values given in Table 2-3 and the potentials shown in 
Fig. 2-35. The values of the different potential components at the hard-core 
radius, c, are listed in Table 2-4. A 

Singlet Triplet Singlet Triplet 
even even odd odd 

8.7 
10.6 

- 

-0.033 
0.2 

-0.2 

6.0 
-1 .o 
-0.5 
0.2 
2.77 

- 0 . 1  
0.10 
1.8 

-0.4 

-8.0 
12.0 

- 
-0.10 
2.0 
6.0 

-9.07 
3.48 

0.55 
7.36 

-7.1 
-0.033 
-7.3 

6.9 

-1.29 

Table 2-3 Parameters of the Hamada-Johnston potential illustrated in 
Fig. 2-35. 

v 

A 

It should be emphasized that the fit to the experimental data obtained with 
the potential of Fig. 2-35 is appreciably poorer than the fit with the phase param- 
eters given in Fig. 2-34, and thus there remains some uncertainty concerning 
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v 
A 

the correct form of the nucleonic interaction. (For a discussion of the goodness 
of fit of the potential models, see Amati, 1964.) 

Potentials (MeV) 

VC VLS VLL 
- -42 

Triplet even -207 -642 34 668 
Singlet odd 237 1 - - -6683 
Triplet odd -23 173 -1 570 -1087 

Singlet even - 1460 - 

Table 2-4 Values of the Hamada-Johnston potential at r = c = 0.49 fm 
(see Table 2-3.) 

T In Fig. 2-35, the one-pion exchange potentials (2-190) are also drawn. 
These components represent the main part of the nucleoriic interaction for 
r 5  3 fm. 

Comparison between atomic and nuclear binding forces (Fig., 2-36) 

It is instructive to compare the nuclear two-body forces with those acting 
in the diatomic molecule H, (see Fig. 2-36). An appropriate unit of energy for 
such a comparison is h’/Mc’, where c is the extension of the repulsive short- 
range potential. For molecules, c is of the order of the atomic radius a - H’/e‘m, 
where m is the electron mass; more precisely, we choose c to be the distance at 
which the potential vanishes. Figure 2-36 also shows the radial density distri- 
bution, ‘p’ = ( r 9  (r))’ ,  for the lowest bound states. 

The chemical forces between the atoms are determined by the electronic 
structure, and the strength of the potential is thus 

ez  t iz  Vmo, - - - - 
a maz (2-226) 

which is of order M / m  on the scale considered. Such a very strong binding poten- 
tial implies that the ground state wave function is strongly peaked at the minimum 
of the potential, and the binding energy is large compared with the zero-point 
kinetic energy; such a system possesses a vibrational-rotational spectrum. When 
more particles are added, one obtains a closely packed system with a density 
Z C - ~ .  At low temperatures, such systems usually crystallize. (An exception is He, 
where the forces are relatively weak and the density relatively low; see de Boer, 
1957, for a comparison of the properties of condensed systems as a function 
of the dimensionless interaction parameter (MVc’fi-’).) 

The nuclear forces are relatively weak. The attraction close to the core, 
which is of order unity on the scale considered, is not sufficient to produce a 
bound state; the deuteron state only arises as a consequence of the tail of the A 
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v interaction, which is very weak, on the scale considered. The weak 
attraction is barely strong enough to produce bound many-body systems, and 
the resulting density is z x c - ~  ; these systems can to a good approximation 
be described in terms of independent-particle motion. 

Impulse appioximation estimate of nuclear potential (Fig. 2-37) 

For sufficiently great incident energies, the nuclear optical potential can be 
directly related to the nucleon-nucleon scattering amplitude (see pp. 260 ff.). 
Taking account of the spin and isobaric spin of the nucleons, the relation (2-219) 
for the central potential can be written 

(2-227) 
2Th2 1 v =  -- P(r){$(3fi +fo) + 2 t . T(fi -fo)l 

where we have assumed that the ratio of neutron to proton density is constant 
throughout the nucleus; the total nucleon density is denoted p(r ) ,  while t and T 
represent the isobaric spin of the projectile nucleon and the target nucleus. The 
amplitudes fi and ,fo are the " no spin-flip " nucleon-nucleon forward scattering 
amplitudes in the T = 1 and T = 0 channels. (The no spin-flip amplitude is 
obtained by taking the trace of the scattering matrix with respect to the spin 
polarization quantum numbers.) In terms of the " nuclear bar " phase shifts 
employed in Fig. 2-34, these amplitudes are 

M 

1 
fT = p+ l)a(LJT> (2-228) 

where, for the singlet channels, 

a(LT) = exp {2i8(LT)}  - 1 (2-229) 

and similarly for c((LLT), which describes the triplet channels with L = J ;  for 
the other triplet channels 

or(L.fT) = exp { 2 i 8 ( u T ) }  cos 2cJ - 1 L = J f 1 (2-230) 

where E~ describes the coupling of the two channels with the same J (see Eq. 
(2-222)). It should be noted that, as discussed in the text, the expression (2-228) 
represents the two-body scattering amplitude in the laboratory system and is 
thus twice the usual expression that refers to the center-of-mass coordinate 
system (compare, for example, the expression (3F-33)). The expression (2-227) 
has been evaluated, using the experimentally determined phase shifts as a 
function of the kinetic energy T of the nucleon when inside the nucleus, and the 
resulting potentials are plotted in Fig. 2-37 as a function of the incident energy, 
E, = T + V ( T ) .  The potentials in Fig. 2-37 correspond to a density p = 0.18 
nucleon fm-3 (corresponding to k ,  = 1.38 fm-'). In order to approximately 
describe the effect of the Pauli principle in reducing the magnitude of the nuclear 
absorption, the imaginary potentials have been multiplied by the factor given in 

A Eq. (2-221). 
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v 

A 

The impulse approximation is only expected to apply when the incident 
energy is large compared with the Fermi energy of the target nucleons, and thus 
the extent of the agreement between the potentials estimated in the present figure 
and those obtained from the phenomenological analyses is quite remarkable 

V=Vo+iWo+ (V,+iW,)- t-T 
A 

- 2 0 1  

Figure 2-37 The nuclear potentials obtained by means of the impulse approximation are 
taken from J. Dqbrowski and A, Sobiczewski, Phys. Letters 5,87 (1963). The phase parameters 
used by these authors are taken from the analyses of G. Breit, M. H. Hull, Jr., K. E. 
Lassila, K. D. Pyatt, Jr., and H. M. Ruppel, Phys. Rev. 128,826 (1962) and of M. H. Hull, Jr., 
K. E. Lassila, H. M. Ruppel, F. A. MacDonald, and G. Breit, Phys. Rev. 128, 830 (1962), 
which differ in only minor details from the values given in Fig. 2-34. We wish to thank 5. 
Dqbrowski for discussion and correspondence concerning these potentials. 

v (see Fig. 2-29). A critical review of the approximations involved and estimates of 
higher-order corrections have been given by Kerman et af .  (1959) and, from a 
different point of view, by Glauber (1959). 

The analysis can be extended to  include the terms in the potential associated 
with the finite extent of the nucleus, by considering the two-body scattering 
amplitude for slightly nonforward directions. In this manner, estimates have 
been made of the nuclear spin-orbit force and of the difference between the radial 
extent of the optical potential and that of the density distribution (Kerman et al., 

A foc. cit.). 



APPENDIX 

2A 

Antisymmetrized Product States 
Creation and Annihilation 
Operators 

2A-1 Antisymmetric Wave Functions 

For a system, such as a nucleus or an electron gas, which can be described in 
first approximation in terms of independent-particle motion, the wave function can 
often be conveniently expressed in terms of a linear combination of product functions 
of the type 

@VlVZ...VA(Xl X Z  ' .  'XA) = ~Y1(xl)p)VZ(xZ) ' ' ' P)V/L(XA) (2A-1) 

or, in the state vector notation, 

< X l X Z " ' X A I ~ l ~ Z " ' ~ A > =  < x l l v l > < x Z l v Z > . "  < x A l  v,4> (2'4 2) 

where the quantum numbers v are a complete set of labels for the one-particle orbits, 
such as nljmm, . The coordinates of a particle, including spin and isospin variables, are 
denoted by x. 

Since the nucleons are fermions, the wave function must be antisymmetric under 
interchange of the coordinates of any pair; this implies that the component (2A-1) 
always occurs in a definite combination with the other components that are obtained 
by redistributing the A different particles among the A orbits vlvz ... v A .  There are 
altogether A !  such components for each configuration vlvz ... vA and the antisym- 
metrized combination can be written as a Slater determinant, 

@ V l V z  ... VA(X1X2 ' ' ' XA)a = <x1xZ ' ' ' XA I V l V Z  ' ' '  v A > ,  

(2A-3) 

Such determinants are thus the basic elements in any description of a many-particle 
system of fermions that is based on independent-particle motion. 

The antisymmetrized wave function (2A-3) is completely characterized by the 
enumeration of the occupied orbits v1v2 - .  - vA without any reference to how the 

272 
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particles are distributed among these orbits. The set of antisymmetrized states 
lvlvz . . . vA).  may thus be referred to as an occupation number representation. The 
antisymmetry under interchange of particle coordinates implies that the state is also 
antisymmetric under the interchange of any two of the occupied one-particle orbits. 
Such an interchange amounts to a transposition of two columns in the determinant and 
thus multiplies the state by - 1. For example, we have 

[ v l v Z v 3 . " v A ) a = - I  v Z v l V 3 " ' v A ) , ,  (2A-4) 

2A-2 

In working with the antisymmetric states, one may exploit the simple features of 
the occupation number representation by introducing the operators at(v) that create 
a particle moving in the one-particle orbit ( p y .  Thus, we define 

Properties of Creation Operators for Fermions 

U t ( V )  10) = I v >  (2A-5) 

where 10) is the vacuum, the state with no particles present. More generally, at(v) 
acting on an antisymmetric A-particle state creates an ( A  + 1)-particle state, in which 
the orbit v is occupied, 

vlvz * .  1 V A  v ) ,  if v # v 1 ,  v 2 ,  . . . , and v A  

if v = v 1 ,  v 2 ,  . . . , or vA 
(2A-6) 

" 0  
a+(.) 1 V l V Z  . . . V A ) .  = 

The relations (2A-6) define the operators at(v), and the algebraic properties of these 
operators, which we shall derive below, follow from this definition. 

We can create the entire A-particle state by starting from the vacuum and adding 
the particles in the occupied orbits, 

I V l V Z  . . . V A ) .  = U t ( V . 4 )  . . . U + ( V , > U t ( V , ) ~  0 )  (2A-7) 

The antisymmetry of this state thus implies (see Eq. (2A-4)) that 

Q t ( v i ) U t  ( V k )  = - a t ( v k ) a t  ( v i )  (2A-8) 

The Hermitian adjoint to a'(v) is written a(v), and thus the adjoint to the state 
(2A-7) is 

o < V l v Z  ' ' ' V A  I = (01 a(vl)U(vZ) ' ' ' a ( v A )  

From Eq. (2A-S), we obtain immediately 

(2A-9) 

a ( v i ) a ( v k )  = - a ( v k ) a ( v i )  (2A-10) 

Since the operator at creates a particle, the adjoint operator a (when acting to the 
right) destroys a particle. Thus, the above definiticjns imply 

u ( v ) [ 0 > = 0  (2A-11) 

(We can also verify the relation (2A-11) by taking matrix elements with all possible 
states on the left; letting the a(v) act to the left, we obtain states in which the orbit 
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v is occupied, but such states must all be orthogonal to the vacuum.) More generally, 
the matrix elements of a ( v )  are given by the relation 

if v # vl, v z  , . . . , and v A  
(2A-12) l o  IvIvz ... v,-l) ,  if v =  v A  

a ( v ) J v , v 2  ... v.4>.= 

and the additional relations obtained by interchanging the occupied orbits until the 
state is brought to the form (2A-12). 

The operator a+(vi)a(vk) with vi z vk , is nonzero only if acting on a state in which 
the orbit vk is occupied and v i  is empty. Acting on such a state, we obtain 

at(vA)a(v.4 - 1) 1 Y I  . . . v.4 - 2 v.4 - 1 >a = a'(v.4) I Y l Y Z  . . . v.4 - 2 >. 
= 1 v1v2 . . ' v.4 - 2 v A ) a  (2A-13) 

The transposed combination acting on the same state yields 

a(v.4-l)at(v.4) I v I v 2  ' ' ' v A - 2  v A - 1  >a  = a(v.4-1) I vIvZ ' " v.4-2 v.4- lv.4). 

= - a ( v A  - 1) I vIvZ ' ' ' v.4 - 2 v.4 v.4 - 1). 

= -1vlvZ " '  v A i - 2 v . 4 > o  (2A-14) 

It is easily verified that the change in sign in going from Eq. (2A-13) to 
Eq. (2A-14) is independent of the order in which we write the occupied states, and thus 
we have the operator relation 

at(vi)a(vk) = -a(vk)a'(vi) vi # v k  (2A- 15) 

If v i  = v k ,  we obtain an operator with the properties 

if v # v I ,  v 2 ,  . . . , and v A  
a'(v)a(.) I v1vz . . . v.4)o = (2A-16) 

l v i v z  . . . v A > .  if v =  v1, v z ,  ..., or v A  

For the transposed combination, the matrix elements are given by 

0 

I v 1 ~ 2  . . . V A > ~  

if v = vl, vz , . . . , or v A  

if v # v l ,  v2 , . . . , and v4 
a(v)a'(v) I v1v2 ' . . v.4 ). = ( (2A-17) 

Thus, 

a'(v)a(v) + U(")U'(") = 1 (2A-18) 

The rules derived above for transposition of the a and at operators are conveni- 
ently written in terms of the anticommutation relations. Defining the anticommutator 
of any two operators A and B, 

we have 
(2A-19) 

(2A-20) 

The algebraic properties of the a(v) and at(v)  operators are completely deter- 
mined by the relations (2A-20), and it is possible to present a derivation of the for- 
malism that takes these relations together with the definition (2A-5) as the starting 
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point. The mathematical structure of this algebra was extensively studied by mathema- 
ticians in the latter half of the past century and is referred to as a Grassmann algebra. 
The creation operator formalism is sometimes called second quantization; however, 
the algebra of these operators follows directly from their relation to the antisymmet- 
rized many-particle states and involves no new physical assumptions. 

The matrix elements (2A-16) imply that the expectation value of the operator 
at(v)a(v) measures the probability for finding the orbit v occupied. Thus, the operator 

n(v) = d(v)a(v)  (2A-21) 

is referred to as the occupation number operator for the orbit v, while 

n = C n ( v )  V (2A-22) 

is the number operator whose eigenvalue is the total number of particles. 
The a and at operators can appear in the formalism in two different contexts. 

Above, we have mainly considered their role as the creation operators that can be 
used to generate a complete set of A-body wave functions. In the following, we shall 
exploit the fact that the a and at  form a complete set of variables in terms of which 
any operator can be expanded. Indeed, one of the principal advantages of the creation 
and destruction operator formalism derives from the fact that the operators corre- 
sponding to most physical measurements act on only a few particles at a time and there- 
fore can be expressed in terms of rather simple combinations of the a and at operators. 

The description in terms of creation and annihilation operators is especially 
convenient for expressing the relationship between particles and holes. Since a hole 
state is obtained by removing a particle from closed shells, the creation operator for a 
hole is equal to a destruction operator for a particle, and vice versa (see Appendix 3B.) 

2A-3 One-Particle Operators 

An operator acting on the individual particles separately is referred to as a 
one-particle operator. For a system of identical particles, such an operator has the 
form 

(2A-23) 

Since F can change the quantum state of at most a single particle, and since F does not 
change the number of particles, it must be possible to express such an operator in 
terms of a sum of terms of the form at(v,)a(v,), 

(2A-24) 

(An operator leaving the number of particles unchanged and acting on only a single 
particle may also contain terms proportional to a(v2)at(vl) .  However, because of the 
relation (2A-20), these terms only differ from those included in Eq. (2A-24) by a 
constant (c number). Since most operators corresponding to physical measurements 
give zero when evaluated in the vacuum, this c number usually vanishes.) 
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The coefficients (v2 IF I vl)  in the expansion (2A-24) can be obtained by evalua- 
ting F for a one-particle state; we thus obtain 

<vz I FI v1) = p z ( x ) F ( x ) % ( x )  dx (2A-25) 

where the integration over x also implies a summation over the discrete variables m, 
and m, . 

The matrix elements of the one-particle operator (2A-24) between states in the 
occupation number representation (2A-7) may be evaluated by means of the expres- 
sions (2A-13) and (2A-16); we thus obtain the nonvanishing matrix elements 

A 

(viv2 ' ' ' vA1 FI vlvZ ' * ' v A ) o  == < v ; l  FI v1) (v; # 111) 

Other nondiagonal matrix elements of F may be obtained by first permuting the order 
of the quantum numbers vk, until the matrix element is brought into the form (2A-26). 
The result (2A-26) can be checked by a direct evaluation of the operator (2A-23) in the 
states (2A-3). Indeed, these results are almost obvious and essentially express the fact 
that the matrix elements of a one-particle operator are unaffected by the antisym- 
metrization of the state. 

2A-4 Two-Particle Operators 

A two-particle operator acting in a system of identical particles has the form 

(2A-27) 

and may change the state of two particles. Since G preserves the total number of 
particles, the expansion in terms of the ut and u operators can be written 

(2A-28) 

where we have assumed the states v i  to be numbered in some (arbitrary) order, so that 
we can impose the restriction that each pair of levels vlvz (and v3v4)  is only counted 
once in the sum. The coefficients in Eq. (2A-28) are seen to represent the matrix 
elements of C between antisymmetrized two-particle states and can, therefore, be 
written 

< v 3 v 4 1 G / v 1 v z ) . =  ( v 3 v 4 I G I v i v z )  - ( ~ ~ V ~ I G I V I V Z )  (2A-29) 

with 

(v3 ~ 4 1  GI "1 vZ>=lp.t3(x1)~!4(x2)G(x1, x2)pv,(x~)pv,(x~) dxl dxz (2A-30) 

The appearance of two terms in the matrix element (2A-29) is a consequence of the 
antisymmetrization and is sometimes referred to as the exchange effect. 
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The expression (2A-28) for G can also be written in terms of an unrestricted sum 
over the four single-particle levels, 

where (v3v4 (Glvlv,), changes sign under the exchange of v1 and 
exchange of v j  and v 4 .  

(2A-31) 

v 2  and under the 

From the expression (2A-28), it is simple to evaluate the matrix elements of a 
two-particle operator in the occupation number representation. Thus, the expectation 
value is given by 

This result differs from that obtained for an unsymmetrized wave function by the 
exchange term in the matrix elements (2A-29). The nondiagonal matrix elements of G 
involve a change of state of one or two particles, 

(v;v;  ~3 * ' .  V A  I GI Y ~ Y Z  ~3 . . . Y A ) ~  = (v;v;  I GI v ~ Y Z ) .  

Other matrix elements may be obtained from these by permuting the order of the 
quantum numbers. 

2A-5 Particle Transfer Operators 

The one- and two-particle operators discussed above preserve the number of 
particles, but the operators measured in particle transfer reactions go between nuclear 
states with different numbers of particles. In the description of such processes, 
therefore, the creation and annihilation operator formalism is especially convenient. 
For example, the matrix element 

referred to as the parentage coefficient, directly measures the probability amplitude for 
forming the ( A  + 1)-particle state specified by the quantum numbers a A f l  by trans- 
ferring a particle in the orbit v to the target state aA (see Appendix 3E). 

2A-6 x Representation 

The properties of the antisymmetrized states can also be described in terms of the 
operators at(x) which create a particle at the point x( = r, m,, m,). The x representation 
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is related to the v representation by a change of basis of the one-particle states, and we 
thus have 

U t ( X )  = c <vl x>a'(v) 
V 

= c yyt(x)a'(v) (2A-34) 
V 

as can be verified by letting the operators in Eq, (2A-34) act on the vacuum state. 
In terms of the at (x)  operators, the antisymmetric state (2A-7) can be written 

I ~ i ~ z  . . ~1 ), =I dxi dx2 . . dxl P ) ~ ~ ( X I ) C ~ ~ Z ( X ~ )  . . . ~ p v A ( ~ r )  u'(x,) . . . a'(xz)at(xi) 10) 

(2A-35) 

where the integral sign implies a summation over spin and isospin orientations as well 
as an integral over r. A one-particle operator takes the form 

and other operators can be expressed in a similar manner in the x representation. 

2A-7 Density Matrices 

The occupation number operator (2A-21) (and the corresponding expres- 
sion in the x representation) may be viewed as the diagonal elements of the matrix 
operator 

(2A-3 7) 

which is referred to as the one-particle density matrix. (We here consider the elements 
of the density matrices as operators; often, the density matrices are defined as the 
expectation value of the operator (2A-37) for the total A-particle state considered.) 

The one-particle density matrix suffices to express all the properties of the many- 
particle system that receive additive contributions from the individual particles. 
Thus, the one-particle operator (2A-24) or (2A-36) can be written 

F= C <vzIFI v i ? < v i l p l  v 2 >  
V I V 2  

= p x l  dX2(XzIFI X l > < X I I P l  X Z )  

= tr(Fp) (2A-38) 

where tr denotes the trace of the product of the two matrices F and p.  In a similar 
manner, the two-particle operators can be expressed in terms of the two-particle 
density matrices 

(2A-39) 

The local particle densities are described by matrix elements of the density 
operators that are diagonal in the space variables. Thus, the local one-particle density 
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may be represented by the operator p(r, s, t), which is a 4 x 4 matrix in the spin- 
isospin variables, 

(2A-40) 

Such a matrix in m,, m,  space can be expressed in terms of the PauIi spin and 
isospin matrices, 

(2A-41) 

where Po&) is a scalar in spin space as well as in isospin space, while p lo  is a vector 
in spin space and a scalar in isospin space, and so on. 

The 16 different density components in Eq. (2A-41) represent probabilities for 
finding particles at the space point r with various specifications for the spin and isospin 
orientations, 

(2A-42) 

2A-8 Creation Operators for Bosons 

The treatment of bosons in terms of creation and annihilation operators can be 
developed in a similar manner as the treatment of fermions considered above. Since 
several bosons may occupy the same one-particle state c p v ,  the basis states for the 
occupation number representation are specified by the number n, of particles or 
quanta in the state v l ,  the number n2 in the state v 2 ,  and so on, and such a state can 
be written J n l n 2 . .  .). For the boson state, the normalization constant-which equals 
( A  !)-''2 for the fermion state (see Eq. (2A-3))-depends on the individual occupation 
numbers n 1 n 2 . .  . . The magnitude of the nonvanishing matrix elements of the creation 
operators, ct(v), therefore depends on the state on which they act, and the defining 
equation (2A-6) is replaced by 

C'(",) I n1n2 . . . n, . . .> = (n, + 1)1'2 I n1n2 . ' ' ni + 1 ' ' .> (2A-43) 

With the definition (2A-43), all the properties of the boson system can be expres- 
sed in terms of the creation and annihilation operators, following essentially the same 
line of arguments as employed above for the fermion system. The symmetry of the 
wave function and the normalization (2A-43) imply that the anticommutation rela- 
tions (2A-20) are replaced by commutation relations for the boson operators. 
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It is also possible to view a system of bosons in terms of a system of quantized 
harmonic oscillators associated with the individual single-particle states v. In such a 
description, the creation operator ct(v) corresponds to a linear combination of the 
position and momentum coordinates of the vth oscillator, and the factor (n + 1)'12 in 
Eq. (2A-43) represents the familiar factor expressing the increase in the amplitudes of 
these coordinates with increasing excitation of the oscillators. 



APPENDIX 

Statistical Calculation of 
Level Densities 

2B-1 Level Density Function and its Laplace Transform 

In this appendix, we consider the methods for calculating the average level 
density for a system described in terms of independent-particle m ~ t i o n . ~  The density of 
levels, regarded as a function of energy &, and particle number A,  is given by 

(2B-1) 

where &,(n) is the energy of the ith quantum state of the n-particle system. In the inde- 
pendent-particle approximation, we can write 

(2B-2) 

V 

in terms of the occupation numbers, (n(v>),, for the one-particle state v in the 
quantum state i of the n-particle system ( ( n ( ~ ) ) ~  = 0 or 1 as a result of the exclusion 
principle). 

The function (2B-1) has singularities at each of the eigenvalues (2B-2), but we are 
interested in the average value of this function when integrated over an interval in A 
and 8. Because of the additive nature of the relations (2B-2), which determine the 
eigenvalues of A and &, it is convenient to work with the Laplace transform of p,  

(2B-3) 

Using Eq. (2B-2) to write the sum over i and n in terms of a sum over n(v), we 
express Eq. (2B-3) as a product 

Z(a, PI = n(1 + exdo: - B&(v))) (2B-4) 
V 

The Darwin-Fowler method employed here has been especially applied to nuclear physics 
problems by Strutinski (1958) and Ericson (1960). A somewhat different approach has been employed 
by Bloch (1954) and in Lang and Le Couteur (1954). 
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In each factor, the term 1 comes from n(v) = 0, and the exponential term comes from 
n(v) = 1. In order to evaluate the product (2B-4) in terms of a sum over the one- 
particle states, we take the logarithm 

In Z(a, /3) = C ln(1 + exp{a - / ~ E ( v ) } )  
V 

=Jig(&) In(I + exp{a - Be}) d& (2B-5) 

The function g(E) describes the density of one-particle states 

g(4 = c a(& - 44) (2B-6) 
V 

and we use an energy scale such that E ( V )  3 0 for all v. 
In the integral (2B-5), the logarithmic factor approaches zero for E > alp, while 

for E < a/p it approaches the value (01 - BE). Thus, we write the integral in the form 

+r”g(E)[ln(l 0 + exp{a - P e } )  - (a  - PE)] de 

(2B-7) 

By a change of variable we can combine the last two integrals 

since g(E) = 0 for E < 0. The logarithm in this integral vanishes except in an interval 
of width - lip around x = 0. If this interval is wide compared with the spacing of the 
single-particle levels ~(v), we can treat the density functions g in Eq. (2B-8) as smooth 
functions equal to the average of the expression (2B-6). If, at the same time, the interval 
1/p is small compared with the region over which g varies, we may expand the g 
functions in a power series in x and carry out the integration, term by term, to obtain 

where g” is the second derivative of g. 
The integrals to be evaluated in obtaining the expansion (2B-9) are of the form 

I,, =lorn x“ ln(1 + exp{-x}) dx (2B- 1Oa) 
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o = a o . 8 = 8 0  

with n an even integer. Expanding the logarithm, we obtain 

(2B-lob) 

where r ( x )  is the Riemann zeta function. For even integer n, this function can be 
expressed in terms of the Bernoulli numbers, and thus we obtain 

(2B-11) 

where 
1 30' 1 

B 2 = 6 '  B4=-- 
1 

42 
Be = -, . . . 

2B-2 Inversion of Laplace Transform 

Having obtained an approximate expression for Z ,  we now invert the Laplace 
transform (2B-3) in order to obtain the level density 

(2B-12) 

In evaluating this expression, we shall employ the saddle-point approximation, 
exploiting the fact that the integrand is a rapidly varying function of a and 8. Thus, the 
main contribution to the integral comes from a small region around the point (ao Po), 
where the integrand is stationary. The conditions that determine this stationary point 
are 

(2B- 1 3) 
a In Z 
-+d=O at!3 

Expanding the exponent in the integrand to second order around the point determined 
by the conditions (2B-13), we obtain a Gaussian integral which can be evaluated to 
yield 

where the determinant D is given by 

D =  

(2B-14) 

(2B-15) 
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In differentiating the function (2B-9) to obtain the stationary point determined 
by Eq. (2B-13), we shall consistently neglect all terms depending on derivatives 
of g (see, for example, the last term in Eq. (2B-9)). Thus, we obtain 

The relations (2B-2) imply that in the ground state 

1; g(e) dc: = A 

jr g(c:)e de = 60 

where eF is the Fermi energy. Thus, the conditions (2B-16) can be written 

a0 = P O  E F  

(2B-16) 

(2B-17) 

(2B-18) 

Introducing these relations into the expression (2B-14), and carrying out the evaluation 
of the determinant (2B-15), we finally obtain the level density as a function of A and 
the excitation energy E, 

(2B-19) 

The derivation of this result has involved the following approximations : 

(2B-8). This approximation is valid, provided 
1 .  The replacement of g(e) by a smooth function in the evaluation of the integral 

Po ” ( E d  %- 1 (2B-20) 

which, on account of the relation (2B-18), is equivalent to 

g(&F)E% 1 (2B-21) 

This condition simply reflects the fact that the average level density p is not defined 
until we come to excitation energies E large compared with the energy, g - ’ ,  of the 
first excited state. 

2. The neglect of terms depending on derivatives of g .  The last term in Eq. (2B-9) 
is typical of these contributions. From the relation (2B-18), we find that this term may 
be neglected, provided 

(2B-22) 

For a Fermi gas, g - A.511Z~;3/2, and thus the condition (2B-22) becomes 

E <  FA'/^ (2B-23) 
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The neglect of the higher-order terms in p-’ amounts to treating the Fermi gas 
as “ degenerate.” Thus, one might have expected the much weaker condition E < cF A 
which, indeed, is sufficient to ensure that the exponent in the level density is accurate 
to within a factor 2. However, to obtain p itself to such an accuracy, we must estimate 
the exponent with an accuracy of one unit, and then the region of validity of the 
expression (2B- 19) is restricted by the more severe condition (2B-23). 

For a system exhibiting shell structure, the one-particle level density may vary 
much more rapidly and irregularly than for a Fermi gas, and it may be important to 
improve on the present approximation. 

3.  The use of the saddle-point approximation in evaluating the inverse Laplace 
transform (2B-12). The accuracy of this approximation may be estimated from the 
magnitude of the neglected terms in the expansion of the integrand. These terms are 
small provided the condition (2B-20) is fulfilled. 

2B-3 Average Occupation Numbers for One-Particle States 

The solution to the level density problem given above can also be used to charac- 
terize the structure of the excited states in terms of the average occupationf(v) of the 
one-particle states v,  

where the average is taken over the excited states i in a small energy interval. Since the 
total level density is proportional to Z(a,, Do) ,  and since Z is a product of contributions 
from each one-particle state, the level density associated with all configurations in 
which the state v is not occupied is obtained from Eq. (2B-4) by omitting the factor due 
to the state v, 

The total level density is the sum of the density with n(v) = 0 and n(v) = 1, and we 
obtain (see Eq. (2B-18)) 

This distribution goes over into the ground state distribution (n(v) = 1 for E ( V )  < cF 
and n(v) = 0 for E(V) > cF) as the excitation energy E goes to zero (Po -+ 0 0 ;  see Eq. 
(2B-18)). In obtaining the relations (2B-25) and (2B-26), we have assumed that the 
occupation of the orbit v has no effect on the stationary values a. and Po determined 
by Eq. (2B-13). This approximation is justified if there are many particles excited 
with respect to the ground state distribution, which in turn requires the condition 
(2B-20). 
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2B-4 

It is often convenient to discuss the structure of excited states in terms of the 
change in the occupation numbers as compared with the ground state. Thus, we may 
characterize a state in terms of the quantum numbers of holes (unoccupied orbits with 
E ( V )  < E ~ )  and particles (occupied orbits with E ( V )  > E ~ ) .  We refer collectively to the 
holes and particles as quasiparticles. The average occupation, f, of the quasiparticle 
state is 

Description of Spectrum in Terms of Quasiparticle Excitations 

(2B-27) 

Employing Eq. (2B-26), we obtain 

P(v) = [ 1 + exp{~ok(v)}l-l (2B-28) 

in terms of the quasiparticle energies 

k(v) = I E(U) - &*I (2B-29) 

It is also possible to carry out the evaluation of the level density in terms of 
quasiparticle excitations. In such a description we may begin by considering the 
density function 

B(E) = c &E- Ed (2B-30) 
i 

with 

(2B-3 1) 

where (n,(~))~ are the occupation numbers for the quasiparticles in the state i. We 
may obtain the Laplace transform 2(p) of the density (2B-30) and express it as a 
product over the quasiparticle states as above, 

2 0  = I l ( 1  + exp{-Ps(4}) 
V 

In 2(B= Ch(1 + exp{-Pk(u)}) 
V 

(2B-32) 
7r2 

= - P o p - '  + - * -  

go = S ( E F )  

Inverting the Laplace transform, we now find that the level density p^ has the correct 
exponential dependence on E, but is greater than the value (2B-19) by a factor 
(24g,E)'I4. This excess of levels in the quasiparticle spectrum results from the fact 
that we should have restricted the excitations to those in which the number of particles 
is equal to the number of holes. Another way of expressing this is to say that, in the 
quasiparticle spectrum, there are spurious states corresponding to excitations that 
change the total number of particles. 
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We shall discuss two ways of correcting for this error in the quasiparticle level 
density. First, we calculate the fluctuation in the particle number associated with the 
occupation numbers (2B-28). Denoting the number of particles by n(p) and the number 
of holes by n(h), we have 

(2B-33) 

The distribution of A = n(p)  - n(h) in the ensemble (2B-28) is Gaussian since, in any 
given state, A is the algebraic sum of many independent contributions from the 
different single-particle orbits. The distribution function for A is therefore 

(2B-34) 

and (see Eq. (2B-18)) 

P(0) = (24go I??) (2B-3 5) 

Another method of eliminating the spurious states in the quasiparticle spectrum 
is to go back to the calculation in which we average over different numbers of particles 
in the nucleus and rewrite the expression in terms of quasiparticles. Thus Eq. (2B-4) 
can be written in the form 

= exp{aN- 

where N and 8, are functions of a and p defined by 

(2B-37) 

The quantity N is the number of orbits with energy less than the Fermi energy alp, 
while I, is the ground state energy of the system with N(c(/P) nucleons. The function 2 
depends on p, partly through the explicit appearance of the factor p multiplying the 
quasiparticle energies (compare with Eq. (2B-32)), partly through the implicit 
dependence of the quasiparticle energies on the Fermi energy (see Eq. (2B-29)). In the 
approximation where we neglect the derivatives of g, the latter dependence can be 
ignored and the factor 2 is given by Eq. (2B-32). The expressions (2B-36) and (2B-32) 
are thus equivalent to (2B-9) and imply the level density (2B-19). 
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2B-5 

The above calculation has been performed without any of the usual references to 
thermodynamic concepts. We have followed this presentation in order to emphasize 
that no additional assumptions or approximations have been made beside those 
discussed above. However, it is useful to recognize that the whole calculation has been 
borrowed from the theory of statistical mechanics and that the function Z(c1, p) has a 
simple interpretation in terms of the grand canonical ensemble. In such an ensemble, 
the probability of the n-particle nucleus in the state with the eigenvalue d,(n) is 
proportional to expian - Pdi(n)>. The numbers c1 and P appear as adjustable para- 
meters, which permit us to specify the average values of the number of particles and of 
the energy. The relations (2B-13) are thus recognized as the equations defining go 

and Po such that (n) = A and ( H )  = 8, where the expectation values mean ensemble 
averages. The function Z is called the partition function and Z -' is recognized as the 
normalization constant for the probabilities (see Eq. (2B-3)). 

The distribution of energies and particle numbers in the ensemble is strongly 
peaked around the average values, and so we can employ a Gaussian approximation in 
this region. The width of the Gaussian is determined by the derivatives appearing in 
Eq. (2B-15). Since the probability per unit area of the &-A plane is equal to the pro- 
bability per single state times the density of states, the level density is equal to the 
inverse probability of a single state (= Z exp{ - a0 A + Po 6)) divided by the effective 
area in the &-A plane that contains most of the states of the ensemble. Carrying out 
this calculation, one comes to exactly the expression (2B-14). 

The quantity (a/P),, is called the chemical potential (= cF for the Fermi gas) and 
p i '  is interpreted as the temperature. The exponent in the level density formula 
(2B-14), which measures the logarithm of the statistical weight, is the entropy S, which 
satisfies the general relation 

dS = P o  d 8  (2B-37a) 
Employing Eq. (2B-13), 

Thermodynamic Interpretation of Level Density Calculation 

= A dao - d dPo (2B-37b) 

and integrating Eq. (2B-37a) from zero temperature, for fixed A ,  we obtain 

s= - aoA + ,& d + In Z ( Q ,  P o )  (2B-37~) 

corresponding to the exponent in Eq. (2B-14). 
The temperature PO' differs somewhat from the temperature Tgiven on p. 154, 

where T-' is defined as the logarithmic derivative of the level density with respect to 
excitation energy. The two definitions differ as a result of the energy dependence of the 
denominator in the level density expression (2B-14), but the differenceis small in regions 
where the condition (2B-20) is well satisfied. The definition in the text has the advan- 
tage that it refers directly to a physical property of the system that is readily sus- 
ceptible to experimental determination. 
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2B-6 Calculation of Level Densities Specified by Additional Quantum Numbers 

The calculation of the level density given above may be generalized in order to 
treat level densities that are characterized by further quantum numbers, provided 
only that these are composed additively of contributions from each of the one- 
particle states. 

As the simplest example of an additional quantum number, we consider the 
consequences of the fact that the nucleus is composed of two kinds of particles, 
neutrons and protons. The partition function must now depend on three parameters in 
order that we be able to specify the average values of the energy 8, the neutron 
number N ,  and the proton number Z, 

Z(a., a), PI = C exp {a, N + a,Z - BbdN, Z)l (2B-38) 
N , Z , i  

Proceeding as in Eqs. (2B-4) to (2B-9), we obtain 

where g, and g p  are the one-particle level densities for neutrons and protons, respec- 
tively. The generalizations of Eqs. (2B-16) to (2B-18) are easily obtained from the 
expression (2B-39), 

(a.)o = &:“)Po 

(2B-40) 

w2 E = - g  
6% O 

where 

go = gP(W + gn(EP)) (2B-41) 

in terms of the Fermi energies EP)  and EY) of the neutrons and protons. Since the inverse 
Laplace transform involves integration over three variables, the determinant of 2” 
is 3 x 3 and the resulting level density is 

The expression (2B-42) has the same exponential dependence on E as does (2B-19), 
with g(EF) replaced by the total density g o ,  but the coefficient in front of the exponen- 
tial is somewhat modified by the presence of two different kinds of particles. 

A slightly more complicated calculation yields the level density as a function of 
the total angular momentum of the states. It is convenient first to consider the distribu- 
tion as a function of the component M ,  which is the sum of the m values of the indi- 
vidual particles. We are here assuming the one-particle potential to be invariant with 
respect to  rotations about the axis of quantization. For simplicity, we consider a 
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Fermi gas with only one kind of particle. Thus, the partition function must again have 
three parameters, 

Z(a, 8, y )  = C exp {an -- W d n ,  M )  - Y MI (2B-43) 
i , n , M  

The generalization of the expressions (2B-4) to (2B-9) can be written down immedi- 
ately, 

In Z(Q, B, Y) = 11 g(E, m)(a - Be - rm) dc dm 
a- f l z -  ym)O 

+ $ j j g ( c ,  m)S(a - - ym) dc dm + * * (2B-44) 

where the one-particle level densityg is now a function of both E and m. We shall find 
below that, except for extremely large values of M ,  the parameter y is sufficiently small 
so that it is a good approximation to expand the expression (2B-44) in powers of y ;  
keeping only the terms up to y z  and neglecting, as above, all terms depending on the 
derivatives of the one-particle density, we obtain 

where 

and 

P+m 

(2B-46) 

(2B-47) 

Thus, (m2) represents the average value of m2 for the one-particle orbits at the Fermi 
surface. We have assumed ( m )  = 0 as would follow, for example, from time reversal 
symmetry or invariance of the one-particle potential with respect to a rotation of 
180" about an axis perpendicular to the symmetry axis. 

The stationary point in the integrand of the inverse Laplace transform is deter- 
mined from the equations 

a I n Z  
-+& = o  88 (2B-48) 

alnZ 
- + M = O  
aY 
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which, on employing the expression (2B-45) and neglecting derivatives of g, yields 

A = J;”)’g(&) d& 

Using the definition of the Fermi energy, we obtain 

a0 = E F P O  

(2 B-49) 

(2B-50) 

Introducing these expressions into the generalization of Eq. (2B-14), we obtain 

9 0  d&F) 

In the derivation of this result, the only new approximation is that associated with the 
expansion of (2B-44) in powers of 7. The neglected terms in In Z are of the magnitude 

which, on using the relations (2B-50), implies the condition 

(2B-52) 

For a Fermi gas, g(E) - A E ~ ” E F ~ / ’  and g 0 ( m 2 )  = 9rig fi-’ (see below), and thus the 
condition (2B-52) is satisfied, provided 

(2B-53) 

The inequality is always fulfilled under the condition (2B-23), if h’1W’/29~~, 5 E. 
The above calculation may be viewed in a somewhat different light by employing 

the probability distribution of the quasiparticle occupation numbers. Thus, the 
partition function (2B-43) corresponds to an ensemble in which the probabilities are 
proportional to exp{an - PS - y M } ,  and this, in analogy to Eq. (2B-28), implies that 
the probability of occupation of the quasiparticle states is given by 

f ( v )  = (1 + eXP{PO~(v) + yo m(v)>>-l (2B-54) 
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Expanding f in a power series in y o ,  we obtain 

(2B-55) 

Calculating the average value of M ,  we obtain to leading order 

= - yo <mz >g(EF)P; (2B-56) 

in agreement with the last of the equations (2B-50). Similarly, the calculation of the 
average excitation energy for the ensemble yields 

< E  ) = C f ( 4  .̂ (v) 

(2B-57) 

in agreement with the second of the equations (2B-50). In this derivation, one sees 
especially clearly the role of the parameter y as a constraint on the ensemble necessary 
in order to specify the average value of M .  With the constrained ensemble, the average 
energy is higher for the same P o ,  by the amount M2(2g0(m’))-’, which can thus be 
identified as an average rotational energy for the system. 

To complete the calculation of the M distribution for a Fermi gas, we must now 
evaluate the quantity (m’) defined by Eq. (2B-47). The distribution of the single- 
particle angular momenta may be obtained from a semiclassical approximation based 
on the function g(p, r) that describes the density of one-particle states in phase 
space 

(2B-58) 

The average (m’) involves a sum over one-particle states with energy approximately 
equal to E ~ ,  

p F ( y )  = ti(37~’p(r))’/~ (2B-59) 

where Mn is the mass of a nucleon. Since the momenta are isotropically distributed 
at each point in space, the cross term involving p x p y  does not contribute, and the 
integral (2B-59) becomes 

(2B-60) 
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Inserting the value (2B-59) for the Fermi momentum, we obtain 

g0<m2> = $ [p(r)(x' + Y') d3r 

= 9 r , g / h 2  (2B-61) 

where Yrig is the moment of inertia of a rigid body with the same density distribution as 
the nucleus. The physical interpretation of the rigid moment of inertia for the Fermi 
gas model is further discussed in Sec. 9-2. 

The density of states with given total angular momentum Zcan be obtained from 
a differentiation of p(E, M ) ,  

p(E, Z) = p(E, M =  Z) - p(E, M =  Z+ 1) 

(2B-62) 

In taking the derivative, we have neglected the relatively weak A4 dependence of the 
coefficient in front of the exponential. 

In order to somewhat simplify the calculation, we have considered the distribu- 
tion of M values for a Fermi gas of only one kind of particle. The treatment of a 
system with neutrons and protons follows exactly the same lines as above; the result is 
quoted in the text (Eq. (2-57)). 



APPENDIX 

2c 

Fluctuations in Terms of 
Random Ma trices 

In this appendix, we consider some features of the spectrum that results from a 
Hamiltonian matrix in which the individual matrix elements are assumed to have a 
random probability distribution. 

2C-1 Random Distribution of Elements of Two-Dimensional Matrix 

We start by considering the 2 x 2 matrix 

(2C-1) 

The Hamiltonian is assumed to be Hermitian, rotationally invariant, and invariant 
under time reversal, and the matrix (2C-1) describes the coupling between two states 
with the same values of 1 and M (and other conserved quantum numbers, such as 
parity, isospin, etc.). Time reversal implies that the matrix elements of H are real in 
the standard basis (see Eq. (I-42)), and hermiticity adds the relation H I ,  = H,,  . 

We consider an ensemble of matrices of the type (2C-I), in which the probability 
of a given matrix is specified by some function P ( H ) .  We must first characterize the 
function P ( H )  so that it reflects some model of randomness for the matrix elements, 
and then we shall study the statistical properties of the eigenvalues and eigenfunctions 
corresponding to the ensemble. 

The distribution P ( H )  that we shall study below will be characterized by the 
following two properties6 : 

Other characterizations of the distribution P ( H )  have also been considered either because of 
their mathematical simplicity, or because they express a somewhat different version of randomness 
(see the review by Rosenzweig, 1963, and references given there). In the limit of large matrices, these 
other ensembles lead to the same distribution of nearest-neighbor spacings as the Gaussian ensemble 
considered here, provided we assume that H is Hermitian and real. The Gaussian ensembles were 
first considered by Wigner (1958). The derivation of the Gaussian ensemble on the basis of the two 
assumptions employed below is due to Porter and Rosenzweig (1960). 
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(1) We assume that the three matrix elements, H,,,  H12, and H2,  are uncorrelated 

(2C-2) 

(2) Since the original basis states 11) and 12) employed in defining Eq. (2C-1) were 
arbitrarily chosen, we assume that the distribution (2C-2) is invariant under an 
arbitrary unitary transformation of the basis states. 

and, therefore, 

P(H)  = Pi i(Hi i)Piz(Hiz)Pzz(Hzz) 

Since we restrict ourselves to transformations that leave the matrix elements 
real, the unitary transformation becomes an orthogonal transformation in the two- 
dimensional vector space. It is sufficient to consider infinitesimal transformations, since 
a finite rotation of the basis can always be composed of a sum of infinitesimal 
transformations, 

11') = I l > +  E12) 

12') = - E l l > +  12) 

The matrix elements in the new basis are to order E, 

Hi.1, = Hi1 + 2 ~ H i z  

Hi*z* = Hi2 + ~ H Z Z  - Hid 

Hz,z* = Hzz - 2EHiz 

Invariance with respect to change of basis implies 

(2C-3) 

P ( H )  = P(H') 

The coefficient of E must vanish and, hence, 

where C is a constant, since the function on the far left depends only on H,, , while the 
function in the middle depends only on H,, and H 2 , .  We thus obtain 

-- - -CHI z dHi 2 
dPi z 
Pi2 

p I 2  = (2)"' exp(-- T C Hfz}  
(2C-7) 

The constant in front of the Gaussian is determined from the normalization condition. 
Similarly, we obtain 

(2C-8) 
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a(Hii, H i z ,  H22) - 
ER 3 e, 

where A is a constant. A change of A merely shifts the zero point of the energy scale. 
We can therefore set A = 0 and obtain 

aHii aHiz aHzz --- 
aE. aE. aE, 

~ H I I  ~ H I Z  ~ H Z Z  
aE8 aEp aEp 

- - - -  

aHii aHi,  aHz2 --- 
ae ae ae 

pi, = (2)”’ exp{-- 4 C H h )  

p Z 2  = (4)’” exp( - 4 c H A ]  
(2C-9) 

The constant C specifies the average magnitude of the matrix elements and thus 
determines the average value of the level spacing. 

2C-2 Distribution of Eigenvalues and Eigenvectors 

The matrix (2C-1) can also be characterized by its eigenvalues 

and eigenfunctions 

(2C-10) 

(2C-11) 

where 

1 7T 7T 
cot 8 = - - ( H z 2  - H i l  - [ (HZ2 - Hi1)’  + 4 H ? z ] 1 / 2 )  - - < 0 < + (2C-12) 

2Hi z 2 

We now transform the distribution function from the variables Hll, H12, and H22 to 
the variables E,, EB , and 6. Since 

H:i + 2H:2 + Hi2 = E.‘ + E i  (2C-13) 

(2C-14) 

which is most easily obtained from the expressions for Hl ,, H12, and H22 in terms of 

H i t  = E. cos2 0 + Ep sin2 0 

H I ,  = (Em - Ep) sin 0 cos 0 

E,, EB, and 8, 

(2C-15) 

H z 2  = E. sin2 0 + Ep cos2 8 

Calculating the Jacobian (2C-14) from these expressions, we obtain the joint probabi- 
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lity distribution in the new variables, 

(2C-16) 

(Notice that the definition (2C-10) implies that we have labeled the eigenvalues so that 
E, > EB .) The probability of the spacing E between the two eigenvalues may be 
obtained by integrating over (2C-16), 

The constant C can be related to the mean spacing D, 

and thus the normalized distribution is 

(2C-17) 

(2C-18) 

(2C-19) 

The result (2C-19) is referred to as the Wigner distribution. This distribution has 
vanishing probability for E --t 0, whjch reflects the fact that, in order for the matrix 
(2C-1) to give a degenerate pair of eigenvalues, we must satisfy both H I ,  = H z 2  and 
HIz = 0. The probability of two such special values is vanishingly small. 

From Eq. (2C-16), we see that the distribution of the eigenvectors is such that all 
angles 0 are equally probable and that the eigenvectors are uncorrelated with the 
spacing. We are often interested in the probability distributions for the amplitude of a 
particular basis state; this can be obtained by integrating Eq. (2C-16). For example, the 
amplitude of the state, 1, in the eigenfunction, a, is C, = cos 8, and the probability 
distribution for this amplitude is 

P(C1) =P(O) ($ 1 ) 
(2C-20) 

We could, indeed, have argued directly for the result (2C-20) from the fact that the 
original ensemble has been chosen to be invariant to a rotation of the basis vectors 
this implies that the joint distribution function for the amplitudes must be 

1 = - (1 - c:>-1/2 

,lr 

(2C-21 
1 P(C1, C,) = - 6(1 - c: - c:) 
7r 

Integrating (2C-21) over C, , we obtain (2C-20). 
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The linear dependence of P(E) on E for small E is a consequence of the symmetries 
assumed for the Hamiltonian matrix (2C- 1). Somewhat different results are obtained 
if H has a lower symmetry (Dyson, 1962 and 1962b). 

Thus, if we had not assumed time reversal invariance for the Hamiltonian, the 
hermiticity of H would ensure that H,, and H Z 2  were real, but H,, would have a real 
and imaginary part, each of which would have an independent Gaussian distribution. 
In this case, the degeneracy of the eigenvalues would require the three conditions 
H I ,  = H,, , H,, = H:, = 0. We therefore obtain P a E‘ for small values of the 
spacing, E .  

If H is invariant under time reversal but not rotationally invariant, one must 
consider separately the case of even-A and odd-A nuclei (see Sec. 1B-2). For even-A 
systems, we can choose a basis of eigenstates of 9- and, in this basis, the Hamiltonian 
is real; we therefore obtain the distribution (2C-19). For odd-A systems, the eigenstates 
are two-fold degenerate and one can employ a basis lap), where p = k 1 labels the 
degenerate states, which are conjugate under time reversal. In this basis, H is a matrix 
in c1 space with the symmetry properties (1 B-25) and (1 B-26), and the coupling between 
two pairs of conjugate states involves four real parameters associated with the matrices 
H,,, HI, H,, and H ,  . Thus, in the absence of additional symmetries, P(E)  is pro- 
portional to c4 for small E .  The result is modified in the presence of further sym- 
metries. Thus, axial symmetry would imply that the degenerate levels can be labeled 
by f M and that H is diagonal in p space (Hi = H, = 0); hence, .the coupling involves 
two real parameters and P(E) a 6’. If H is invariant with respect to a rotation W of n 
about an axis, one can employ the standard basis with 2.9- = + 1 ; the invariance of 
H with respect to W (= - i p ,  ; see Eq. (1B-22)) then implies Hi = H3 = 0, and again 
the coupling involves two real parameters. If both axial symmetry and 9 invariance 
apply, the situation is the same as for full rotational invariance. 

The formulation of ensembles corresponding to Hamiltonians with partial 
breakdown of the various symmetries has been discussed by Dyson (1962a). The 
possibility of observing a small departure from time reversal invariance in terms of 
statistical properties of highly excited levels has been considered by Favro and 
MacDonald (1967) and Rosenzweig et al. (1968). 

2C-3 Matrices of Large Dimensions 

The simple 2 x 2 matrix discussed above illustrates the physical arguments and 
the type of result that can be obtained from the analysis of random matrices. However, 
in order to properly treat level spacings that are not small compared with the average, 
as well as many other questions involving correlations and distributions for properties 
that go beyond nearest neighbors, it is necessary to consider matrices for which the 
dimension N is large. 

The two conditions employed above (p. 295) may be easily extended to charac- 
terize the probability distribution for the matrix elements of the general N x N 
random matrix. By carrying out the rotation (2C-3) successively in each of the 
N ( N  - 1)/2 two-dimensional subspaces, we find that all the nondiagonal matrix 
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elements have the probability distribution (2C-7), while all the diagonal elements have 
the distribution (2C-9).. Thus, the total function P ( H )  can be written : 

N ( N + 1 ) / 4  

P ( H )  = 2-"2 (g) exp( - tr H i )  (2C-22) 

If we diagonalize the N x N matrices, we can transform the distribution (2C-22) 
from the variables H i j  to new variables comprising the eigenvalues E, (with c1 = 1 to N )  
and N(N - 1)/2 other parameters characterizing the structure of the N eigenfunctions. 
The exponent in Eq. (2C-22) is expressed in a form that is independent of the repre- 
sentation, and so we have 

t r H 2 =  CE,2  (2C-22a) 

As for the 2 x 2 matrices, the evaluation of the volume element (the calculation of the 
Jacobian) is the most difficult part of the calculation. However, it is possible to 
determine the dependence of the Jacobian on the Ea from a dimensional argument. 
We first note that for degenerate eigenvalues the eigenfunctions are undetermined; 
the inverse transformation is therefore also undetermined and the Jacobian must 
vanish. Furthermore, the H i j  are linear functions of the Ea , and thus the Jacobian must 
be a symmetric polynomial of order N ( N -  1)/2 in the E,. These conditions are 
sufficient to determine the joint distribution function 

N 

a= 1 

p(El ... E ~ ,  el -.- e,) 

(2C-23) 

where el, . . . , 8, are the N ( N  - 1)/2 parameters describing the structures of the N 
eigenfunctions. The function p will, of course, depend on how these additional para- 
meters are chosen. 

The distribution (2C-23) is by no means easy to work with and indeed the first 
useful information on the distribution of successive eigenvalues for the ensemble 
(2C-22) was obtained by employing an electronic computer to diagonalize a large 
number of matrices, the elements of which had been generated by a random process 
governed by the probability distribution (2C-22) (Rosenzweig and Porter, 1960). Later, 
it was found possible to give closed expressions for the distribution and correlation 
functions characterizing the eigenspectra of these matrices (Mehta, 1960; Mehta 
and Gaudin, 1960; Gaudin, 1961 ; Dyson, 1962; Dyson and Mehta, 1963. A system- 
atic presentation is given in the text by Mehta, 1967.) 

We shall not attempt to review the ingenious mathematical devices that have 
been employed in solving this problem, but shall only quote some of the most signifi- 
cant results obtained SO far. The distribution of nearest-neighbor spacings is remarkably 
close to the expression (2C-19) obtained from the ensemble of 2 x 2 matrices; the 
absolute error in P(E) is nowhere greater than 0.01 D-' over the whole range of E ,  

though for large values of E the relative error in the simple expression (2C-19) increases 
(Gaudin, 1961 ; Dyson, 1962). 
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A striking feature revealed by the study of random matrices of large dimensions 
is the tendency to long-range order in the distribution of eigenvalues (Dyson and 
Mehta, 1963; this feature is further discussed on p. 181). 

The distribution of amplitudes in the eigenvectors may be obtained directly from 
the assumption that the Hamiltonian ensemble is invariant to an orthogonal change of 
bases. Thus, the joint distribution function for the N amplitudes is 

The normalization constant S Z ,  is the total volume element of solid angle on an 
N-dimensional sphere 

(2C-25) 

where r is the gamma function. By employing polar coordinates in the ( N -  1)- 
dimensional space defined by C2 . C,, we can easily integrate the distribution 
(2C-24) over the coordinates of Cz - * .  C,  to obtain the distribution for the amplitude 
Cl 9 

For very large N,  we can employ Sterling’s formula for the gamma function and 
exploit the fact that, almost always, CIz 6 1, 

(2C-27) 

An important application of the result (2C-27) occurs in the discussion of the 
distribution of the reduced widths for neutron or y emission to a definite final state. 
Such a reduced width, r ( O ) ,  is proportional to the probability (C,)’ of a single com- 
ponent 11) in the compound state. Thus, we obtain the distribution of rcO) by expres- 
sing (2C-27) in terms of C12, instead of C1, 

where (rco)) is the average value of Po). The factor 2 in Eq. (2C-28) arises from the 
fact that both positive and negative C1 contribute to the same value of r ( O ) .  The 
distribution (2C-28) is referred to as the Porter-Thomas distribution and is seen to 
imply large fluctuations in the partial widths of the individual resonances. 

The very large fluctuations in the distribution (2C-28) result from the fact that 
only a single channel is assumed to contribute to the width. In situations where two 
or more channels are involved, such as in the total width for y emission or for fission 
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well above threshold, the distribution may be obtained by summing the contributions 
from each of the contributing channels. If the contributions of the v different channels 
are independent and have the same average value, one obtains a x2 distribution with 
v degrees of freedom, 

The fluctuations in this distribution are 

(2C-29) 

(2C-30) 

and thus decrease with increasing v.  



A P P E N D I X  

2D 

Model for Strength 
Function Phenomena7 

We shall consider in this appendix a simple problem in quantum mechanics, 
which may illuminate some features of the strength function phenomena. We wish to 
describe how the amplitude for a particular channel a may be distributed over the 
many stationary states of a complicated system. The state a may, for example, describe 
a configuration with one nucleon in a definite orbit, while all the other nucleons form 
the ground state of the system with A - 1 particles. We may also think of the state 
a as representing a single electron moving through a metal, a collective vibrational 
excitation of a nucleus or of an electron gas, etc. 

2D-1 Choice of Representation 

To represent the additional configurations, we shall employ a set of states u, 
chosen in such a manner that these states would be eigenstates of the Hamiltonian if we 
could neglect their coupling to the special state a. We can thus write the Hamiltonian 
in the form 

where the states a and ci are eigenstates of Ho , 
H = H o +  V (2D-1) 

Ho la> = En la> 

ffo I.> = Ea la> 

and where the coupling V only has matrix elements connecting a with a, 

va== < a ~ V ~ . > = ( L ( ~ V ~ a >  

< a I V l a > =  <.~v~cc>=o 

(2D-2) 

(2D-3) 

(We are assuming 9- invariance and a choice of phases such that the coupling matrix 
elements are real; see Eq. (1-42).) 

’ The model considered in the present appendix is very similar to that discussed by Bohr and 
Mottelson (1953, pp. 147ff.), where the special state a is taken as a single-particle scattering resonance 
in the continuum. The same problem has been considered by Lane, Thomas, and Wigner (1955). 
Strength function phenomena of a similar type arise in connection with the photoexcitation and 
resonance electron scattering involving autoionizing states of atoms (Fano, 1961). 

302 &I$ 
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2D-2 Diagonalization 

The Hamiltonian in the form (2D-1) can be easily diagonalized. If we denote the 
eigenvalues by E ,  , the eigenvalue equation is 

which possesses a root between each successive pair of eigenvalues Ea . The eigenstates, 
i, are given by 

li> = cdi )  la> + C c d i )  la> (2D-5) 
a 

with 

(2D-6) 

The amplitudes c,(i) describe the distribution of the properties of the state a over the 
spectrum i. Often this spectrum is so dense that it becomes appropriate to define a 
continuous strength function P,(E) representing the strength per unit energy, obtained 
by averaging over the states i in a small energy interval around E. 

We have chosen the above representation of states, corresponding to a division 
of the total Hamiltonian of the form (2D-1), in order specifically to study the effect of 
the coupling on the state a. In order to evaluate the strength function (2D-6), however, 
we must have further information regarding the properties of the states a, so that we 
may determine the matrix elements V,, . 

2D-3 Strength Function for Constant Matrix Elements 

The simplest situation is that in which the coupling matrix elements V,, are on 
the average independent of the energy of the state a. The matrix elements may fluctuate 
greatly from state to state, but their total strength over the averaging interval AE is 
assumed to be constant. Such an assumption may be employed if the width of the 
strength function is small compared to the characteristic energies associated with 
systematic variations in V,, (see further below). 

If we are not interested in investigating the fluctuations around the average, we 
can most conveniently introduce the assumption of a constant coupling by considering 
the spectrum of Ea to be uniformly spaced with a spacing constant D, 

E , = a D  a=O, 51, f2 ,  (2D-7) 

and assuming an exactly constant value for all the matrix elements of V, 

v,. = u (2D-8) 

(We can choose phases for the states u so that V,, is positive for all u.) With these 
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assumptions, the sums appearing in Eqs. (2D-4) and (2D-6) may be directly evaluated 
to give 

(2D-9) 

The strength function, which gives the probability of the state a per unit energy inter- 
val of the spectrum, has the simple Breit-Wigner form 

with the width, r, given by 
V 2  

D 
~ 2 ~ -  

(2D-10) 

(2D-11) 

In going from Eq. (2D-9) to Eq. (2D-10), we have assumed that v > D and thus neglec- 
ted the first term in the brackets; indeed, v > D is necessary in order that the state a be 
found with appreciable probability in more than a single one of the states i, and, hence, 
that it be possible at all to define a strength function. 

We see that the Breit-Wigner form for the strength function is an immediate 
consequence of the assumption of a constant coupling to the other degrees of freedom 
of the system. Such a situation is similar to that of an unstable particle decaying to a set 
of continuum states, with coupling matrix elements that do not vary appreciably over 
the line width. Indeed, the width r, given by Eq. (2D-1 l), has the familiar form charac- 
teristic of the width for a decay process. 

2D-4 

The effect of the coupling of the state a to the other degrees of freedom can also 
be studied in a time-dependent description, and the assumption of constant coupling 
matrix elements is then seen to be equivalent to the assumption of a simple exponential 
decay in time. Thus, if we assume the system at time t = 0 to be in the state a, the 
probability amplitude A,(t)  for finding the system in the state a at a later time t is 

Time-Dependent Description of Coupling Process 

A.(t ) = ( a  I exp( - f Hf ) 1 u )  = C c:(i) exp( - i El t ] 
i 

(2D-12) 

where we have used the expansion of a into the set of stationary states i. In the approxi- 
mation of constant energy spacings and matrix elements (Eqs. (2D-7), (2D-8), and 
(2D-9)), the sum over i in Eq. (2D-12) can be simply evaluated and yields 

(2D-13) 

where t.he decay probability r is given by Eq. (2D-11). 
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2D-5 

Quite generally, without introducing assumptions concerning the states a, one 
can express the second moment W, of the strength function as a sum over the square of 
the matrix elements V,, , 

Second Moment of Strength Function 

WZ = C (Et - E,)’Cc.(i>l’ 
i 

= C ( a l i >  (i l(H-EJ’Ii)  < i j a >  
i 

= <a I(H - EaY1 a> 

=C <a IH - E.1 a> <alH - E. la> 
a 

=C (Vaa)’  
a 

(2D-14) 

If the average coupling matrix element is energy independent, the sum (2D-14) 
becomes infinite. Indeed, the second moment of a distribution with a Breit-Wigner line 
shape is infinite. Thus, the second moment does not in general determine the width of 
the strength function but rather reflects other features of the distribution. 

2D-6 Intermediate Coupling Stages 

The coupling described above in terms of the simple initial state a and the highly 
complex compound states a may be analyzed in more detail by considering intermediate 
stages in the coupling process. For example, if a represents a one-particle configuration, 
the initial interaction effect involves a coupling to certain rather simple configurations 
b (the “ doorway” states), representing a particle and a vibrational (or rotational) 
quantum of excitation, or configurations with two particles and a hole. The matrix 
elements V,, can thus be expressed in terms of the matrix elements v,b and the ampli- 
tudes c,(b) of the states b in the spectrum a, 

V., = c V.*c.(b) (2D-15) 
b 

An extreme situation giving constant average V,, is one in which the states b are spread 
approximately uniformly over the spectrum and in which each a contains several com- 
ponents b leading to an averaging of the matrix elements v,b. This situation can be 
described as one in which the first stage in the coupling process (the b stage) has 
already lost specific structure; the coupling is then equivalent to a simple damping of 
the channel a. 

In nuclear strength function phenomena, however, one often faces situations in 
which it is necessary to consider explicitly the behavior of the system in intermediate 
stages of the coupling process (the b stage, the subsequent c stage, and so on). Examples, 
where such a more detailed treatment is required and where the strength function does 
not have the simple Breit-Wigner form, are provided by the coupling of a particle to the 
rotational motion (see Chapter 5 )  and the coupling between vibrational modes (see 
Chapter 6).  
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2D-7 Evaluation of Strength Function for Nonconstant Matrix Elements 

From Eq. (2D-6), one can evaluate the strength function in terms of the quantities 
V,, and E, also in situations where the matrix elements and energy spacings are not 
constant. We define the strength function as the weighted average, 

= C p(Et - E)[c.(i)I2 (2D-16) 
I 

where p(x)  is some function peaked around x = 0 and falling off for large 1x1. For 
convenience, we choose p to have the form 

(2D-17) 
1 A 

27r x 2  + (4/2)2 p(x) = - 

where A represents the energy interval around E over which the averages are taken. 
The weight function is so normalized that 

W 1 p(x)dx= 1 
-00  

The expression (2D-16) with c,(i) given by Eq. 
be written as a contour integral, 

(2D-18) 

(2D-6) and p by Eq. (2D- 17) may 

(2D-19) 

with the contour given in Fig. 2D-1. The same integral extended over the contour 
V2 (see Fig. 2D-1) vanishes, since the integrand is proportional to 2- j  for large A, and, 
therefore, 

(2D-20) 

where r is now the natural generalization of the expression (2D-1 l), 

V& r = A C  (2D-21) 
u ( E  - EJ2 $. (Ai2)' 

while the energy shift AE, is defined as 

(2D-22) 

If the coupling V,, is on the average about equally strong for all states LY, then I' 
becomes independent of E, and AE, small compared to I', since the sum (2D-22) 
contains approximately equal positive and negative contributions. Thus we see that, 
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aside from the extra width A introduced by the averaging, we obtain again the result 
(2D-10). 

lMAG I NARY 1 AXIS 

Figure 2D-1 Complex plane for the integrals (2D-19) and (2D-20). The integrand has 
poles along the real axis at X = Ei , and at X = E f iA/2 .  

The expression (2D-20) for the strength function also applies to situations in 
which the average coupling matrix elements vary with energy, in which case the 
quantities r a n d  AE, become energy dependent. (Also the average level spacing D may 
vary with energy.) It must be emphasized, however, that in the above evaluation 
of the strength function (2D-20), we have assumed the matrix elements V,,, and the 
energy values E, to be known quantities. If the average properties of the c1 states 
exhibit variations with energy, the determination of this structure will usually require 
an analysis of intermediate stages in the coupling process, 





C H A P T E R  3 

Single-Particle 

Configurations 



310 SING LE - PA R TI C L E C 0 N FI G U R A T  I 0  N S Ch. 3 

The spectra of nuclei consisting of closed shells with an additional single 
particle, or with a single hole, provide especially detailed and quantitative 
evidence on the nuclear independent-particle motion. 

A closed shell contains (2j + 1) particles, each with an angular momentum 
j .  Such a configuration forms only a single antisymmetric state (the Slater 
determinant). This state must then have total angular momentum J =  0, since 
any state of total angular momentum J possesses (2J+ 1 )  degenerate substates. 
Moreover, the parity of the closed shell is even. 

Thus, for a configuration of a single particle, in addition to closed shells, 
one expects a number of low-lying states having angular momentum and parity 
determined by the quantum numbers of the orbits available to the single particle. 
Additional properties, such as the moments involved in electromagnetic and p 
transitions and the matrix elements characterizing various nuclear reaction pro- 
cesses, provide further information regarding the adequacy of the single- 
particle description of these states. 

Configurations obtained by removing a particle from closed shells (single- 
hole configurations) are expected to have properties related in a simple manner 
to those of single-particle configurations. 

3-1 QUANTUM NUMBERS AND WAVE FUNCTIONS 
PARTICLE-HOLE SYMMETRY 

3-la One-Particle States 

The closed shells form a spherically symmetric density distribution and 
produce an isotropic nuclear potential. The motion of a particle in such a 
potential can be characterized by the quantum numbers nljm (see Sec. 2-4), and 
the parity is 

71 = ( -1 )J  (3-1) 

The particle motion separates into a radial component and a component 
involving the angular and spin variables, whicn are coupled by the spin-orbit 
force (see Eq. (2-132)). The wave function is thus a product 

$ni jm(ry  ms(h)) = ~ n J j ( ~ ) C ~ j m ( ~ ~  CP, rns(k)) (3-2) 

of a radial part 92 and a spin-angular part i. The notation m,(h) for the spin 
variable refers to two different ways of expressing the spin dependence of the 
wave function (3-2). 

In the m, representation, the spin orientation is characterized by the 
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component s, along the fixed z axis, and the motion is decomposed into orbital 
and spin components, each specified by an m-quantum number, m , = l ,  and 
m, = s,. Thus, the part of the state vector referring to the angular and spin 
degrees of freedom becomes 

Il jm) = I(fs = 3)jm) 

where (lm,fm, 1 jm) is a vector addition coefficient (see Sec. I A-2). The angular 
wave function associated with the orbital state lm, is the spherical harmonic 

The spin orientation can also be specified by its component h (the helicity) 
Y l m ,  * 

in the direction of the radius vector of the particle 

1 
11 = - (s . r) 

r (3-4) 

(We use the same notation, h, for the operator and its eigenvalue.) In collision 
problems, it is often convenient to employ a helicity referring to the projection 
of s on the momentum vector p (see Appendix 3F). The two helicities represent 
different characterizations of the spin orientation. 

The helicity is a rotational invariant and hence commutes with the total 
angular momentumj. The spin-angular part of the one-particle state can thus be 
expressed in terms of components specified by the quantum numbers hjm, 

Under spatial reflection, the helicity changes sign (r +- - r, s -+s; see 
Eq. (1-22)), and B acting on Ihjm) therefore produces the state 1-hjm), with 
a phase factor depending on the choice of relative phase for the helicity states. 
Thus, the states Iljm) with definite parity contain components with h = +$ 
and h = -f in equal intensity, and the spin-angular wave functions in the states 
l=j-j-+ differ only in the relative phase of the two helicity components. 
The angular wave function for the helicity state hjm involves the function 
9i,, , an element of the rotation matrix. The detailed form of the wave function 
(3-1) in the m, and h representations, and a discussion of the phase conventions, 
are given in Sec. 3A-1. 

The total state corresponding to a single particle outside closed shells is 
often conveniently expressed in the form 

(3-6) 

where at(jm) is the operator creating a particle in the orbit (nl)jm. (The proper- 
ties of creation and annihilation operators are discussed in Appendix 2A.) 

IJ = j ,  M = m )  = at(jm) 16) 
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The closed shell state denoted by 16) plays the role of a generalized vacuum 
state. 

3-lb Hole States. Particle-Hole Conjugation 

The states obtained by removing a particle with angular momentum j 
from closed shells can be described in terms of the configuration ( j ) ' j  of the 2 j  
particles, each having an angular momentumj. Because of the exclusion principle, 
there is a one-to-one correspondence between the states of this configuration 
(hole states) and the states of a single particle with angular momentum j .  
Moreover, matrix elements between hole states are related by a symmetry 
transformation to the matrix elements between corresponding particle states. 
We consider below a few simple features of the particle-hole symmetry; a more 
detailed discussion is given in Appendix 3B. (The particle-hole conjugation for 
nuclear configurations is similar to that employed in the atomic shell model; 
see Condon and Shortley, 1935; Racah, 1942.) 

The formalism based on creation and annihilation operators is especially 
appropriate for expressing the symmetry between particles and holes (Bell, 1959). 
The creation of a hole state with quantum numbers nljm is equivalent to the 
annihilation of a particle in the state with quantum numbers nlj -m (conjugate 
state). It is convenient to choose the phases of the hole states such that the 
conjugate states are related by the time reversal operation. For the operator 
bt(jm) creating a single hole, we then have 

(3-7) 
- 

bt ( jm)  = aGm) = (-  I ) j + m u ( j  - rn) 

where the statej%is obtained fromjm by time reversal (see Eq. (1-40)), 
- 

~ j m )  = Fljrn) = (-  l ) j+ " l j  - rn) (3-8) 

The inclusion of the phase factor (- 1)" in Eq. (3-7) implies that the oper- 
ators bt ( jm)  with different m form the components of a spherical tensor of rank 
j (see Sec. 1A-5e). Thus, the single-hole states 

(3-9) 

The matrix elements for hole states are related to those for single-particle 

I j - l m )  = b+(jrn)lO) = a(jm>lO> 

have the standard phase relations for angular momentum states. 

states by 

( j ;  m 2  I Flj ; rn 1 ) 

= - < J 7 1 l ~ l G 2 )  + ( 6 l m  q ~ 1 4 ) ~ 1 ~ 1 ?  (n2 [ 2 ) j 2 ? n 2 )  (3-10) 

where F is an arbitrary single-particle operator. Thk expectation value (61 FI6) 
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for the closed shells vanishes unless Fis  rotationally invariant (or contains scalar 
components). The relation (3-10) can be obtained by straightforward evaluation, 
using Slater determinants to describe the hole states, and follows directly if one 
expresses F in terms of creation and annihilation operators and introduces 
the equation (3-7); (see Sec. 3B-2). 

The first term in Eq. (3-10) can be transformed as follows (see Eq. (1-34)): 
- -  

- ( j l m 1 \ F ~ j 2 m 2 )  = - ( j l m l ~ F - 1 F F / j 2  m2)* 

= - ( j 2  m 2 ~ ( F - 1 F F ) t ~ j l m , )  

= ( j 2  ~ ~ 2 1 F c l j l m l )  (3-11) 

where the conjugate operator F, is defined by 

F, = - (F-~FT)+ (3-12) 

The matrix elements of F for hole states are therefore equal to the matrix 
elements of F, for the corresponding particle states, if we neglect the closed shell 
expectation value. 

An operator satisfying the relation 

F , = c F  C =  k1 (3-13) 

is referred to as even (c = + 1) or odd (c = - 1) under particle-hole conjugation. 
(Any function of the one-particle variables can be divided into even and odd 
parts.) Examples of even and odd operators are 

(3-14) 

The particle-hole conjugation can also be expressed in terms of a unitary 
operator %,, which transforms at(jm) into bt(jw) for the single-particle orbits 
contained in the closed shells (see Appendix 3B). 

3-lc Isospin for Particle and Hole States 

If the nucleus contains neutrons and protons filling the same shells, the 
resultant isospin of the closed shells is To = 0, and the state formed by adding 
a particle has T = t = 3 

l jm,  T = t = +, M ,  = m,)  = at(jm, m,)lO> (3-15) 

with m, = +* for a neutron and m, = -; for a proton. 
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The single-hole states also have T = +, with M ,  = + for a proton hole and 
MT = --+ for a neutron hole. However, the states formed by acting with the 
proton-hole operator bt  ( j p m )  = a( jpm)  = a(jm, m, = -3) and the correspond- 
ing neutron-hole operator do not have the conventional phase relationship 
for an isospin doublet. For the angular momentum, the appropriate phasing of 
the hole states was ensured by the phase factor (- l)j+, in Eq. (3-7). In a similar 
manner, we can form hole states with the standard transformation properties in 
isospace, 

- 

Ij-lm, rn,) = b+(jin, m,)16> 

- b+(.j, nf)l6) = - lj; ' m )  =i +b+(j,m)lO) = +lj,'m) 

m, = + i 
m f -  - -1 2 

(3-16) 

In some situations, we shall find it convenient to employ the hole states labeled 
j,-l and jn-'. However, the hole states labeled by m, present advantages in 
situations where isospin coupling and isospin transformation properties are 
involved. 

The hole operators bt(jm, m,) are related to the a operators by - 
bt( jm, m,) = a(jm,  m,) 

(3-17) 

where the transformation 9 involves the charge symmetry operation gC, given 
by Eq. (1-59), in addition to time reversal, 

9 = &?;'9- 

= exp{ inT,,}F (3-18) 

The transformation of operators under the 9-type particle-hole conjugation is 
considered in Appendix 3B. 

If the nucleus contains more filled shells of neutrons than of protons, the 
closed shells have a resultant isospin To = (LV,)~ = 4 ( N -  2). The single- 
particle and single-hole configurations can then form states with T = To & $. 
The T structure of the various possible configurations is illustrated in Fig. 3-1, 
p. 315, and the associated state vectors are given in the adjoining text. It is seen 
that the low configurations contain only a single T value (T= To + 3 for n or 
p - l  and T = To - 4 for p or n-'). The higher configurations of the type p and 
n-' give rise to a T doublet (T = To & +), and the states involve components in 
which the closed shells are rotated in isospace and have M ,  = To - 1. 
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v 
ILLUSTRATIVE 

EXAMPLES TO 

SECTION 3-1 

Total nuclear isospin for single-particle and single-hole configurations 
(Fig. 3-1) 

The ground state configuration of a nucleus with N > 2 is illustrated in 
Fig. 3-1. The shaded area refers to the occupied orbits, comprising the N lowest 
neutron levels and the 2 lowest proton levels. The orbits are labeled by a set of 
quantum numbers v (for example, v =nrj , ) ,  and are ordered according to their 
energy. The last orbit that is occupied (the Fermi level) is denoted by (vF)" and 
( v ~ ) ~  for neutrons and protons, respectively. A 

t 

X 

0 

-Z  2T0 

PARTICLE 

HOLE 

PROTONS NEUTRONS 

Figure 3-1 
outside of closed shells with T = To.  

Total isospin for configurations with a single particle or a single hole 

v For any configuration, such as the ground state configuration, in which all 
the orbits occupied by protons are also occupied by neutrons, the total isospin 
T is equal to that of the excess neutrons, T = To = MT = f(N - 2). In fact, such 
a state vanishes when acted upon by the total isospin component T ,  = 

1, ( t ,  + itJk which raises MT by one unit. The state is, therefore, fully aligned in 
isospace, M ,  = T. (We are here neglecting the small difference between proton A 
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and neutron orbits caused by the Coulomb potential; the resulting isospin 
admixtures are discussed in connection with Fig. 2-6, p. 174). 

The isospin quantum numbers associated with one-particle and one-hole 
configurations are shown in Fig. 3-1. The corresponding state vectors have the 
form 

Iv-'; To 4 4, TO - 4) same as 1 v ;  T = To f 3, To - 3) with at(,, m,) + b t ( v ,  m,) 

The state vectors are expressed in terms of the particle and hole creation 
operators, defined by Eqs. (3-15) and (3-16). The states (3-19c) contain com- 
ponents involving the isobaric analog state of the closed shells 

[To, To- 1)=(2To)-"z(T,--T,)ITo, To) 

= C (2T0)-"~a'(~p)a(v.)lTo, To> (3-20) 
( v F ) p c v s  (VF), 

The state (3-20) is a coherent superposition of components obtained by trans- 
forming one of the 2T0 excess neutrons into a proton. 

Additional states with single-particle or single-hole configurations can be 
obtained by forming isobaric analog states of those considered above. These 
additional states, however, cannot be reached by adding or subtracting a 
nucleon from a nucleus that is fully aligned in isospace ( M T  = To). A 
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3-2 ENERGY SPECTRA 

The available experimental data on the energy levels of nuclei with single- 
particle or single-hole configurations are illustrated in Figs. 3-2 (a-f), pp. 319-324. 
It is seen that all the nuclei that have been sufficiently well studied do possess 
low-lying levels just corresponding to those expected from the single-particle 
level spectrum (see Figs. 2-23 and 2-30). This constitutes a decisive confirmation 
of the general ideas underlying the shell structure description of the nucleus. 

The observed binding energies are compared in Figs. 3-3, p. 325 and 3-5, 
p. 328 with those calculated for a static potential with inclusion of a spin-orbit 
coupling. The strength and radius parameters of the potential are consistent 
with those deduced from the scattering experiments. The levels near the Fermi 
surface are rather well reproduced by such a calculation, but the observed deep- 
lying hole states provide evidence for a velocity dependence of similar magnitude 
as for the optical potential. 

While the main features of the observed single-particle spectra can be well 
accounted for in terms of a potential with parameters smoothly varying with A 
and 2, one observes smaller variations in level positions, some of which may be 
due to detailed structure in the radial shape of the average potential, reflecting 
the nuclear shell structure, or to a more specific state dependence of the average 
potential. Moreover, the energy separation between particles and holes is found 
to be somewhat larger than calculated for a potential, especially for the light 
nuclei. Such an effect may arise from the isospin dependence of the nuclear 
binding energy, which implies a depression of the closed shell state (T = 0) 
relative to the one-particle and one-hole configurations, which have T = f. 
(See the discussion of this and other effects that may contribute to the increased 
separation between particle and hole states, pp. 329 ff.) 

For the closed shells with To # 0, the higher-lying proton and neutron-hole 
configurations give rise to an isospin doublet with T =  To & $ (see Fig. 3-1). 
The energy separation is given, to a first approximation, by 

(3-21) 

in terms of the radial matrix element of the isovector potential V,(r) in Eq. 
(2-29). An additional effect may arise from the isovector part of the spin-orbit 
coupling in the nuclear potential. The empirical evidence on the separation 
between isospin doublets for single-particle configurations is shown in Table 3-1, 
p. 331, and is found to imply a strength of the isovector potential consistent with 
that obtained from other evidence. 

The single-particle or single-hole description of the spectra of nuclei 
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obtained by adding or removing a particle from closed shells applies only to the 
lowest levels. At energies comparable to those associated with the f k t  excited 
states of the closed shell nuclei, one expects the occurrence of additional 
levels involving the degrees of freedom of the closed shell core. Such an increased 
complexity in the spectrum is indeed observed. In some of the lighter nuclei 
(such as A = 17, 41, 47, and 49), the onset of the spectrum involving core 
excitations is found to occur appreciably below the energy gap in the closed 
shell nuclei, indicating that the stability of the closed shells is significantly 
affected by the interaction with the single particle (or hole). 

In the energy region above the onset of the core excitations, the level density 
is found to increase rapidly (see the well-studied spectra of 1 7 0  and 41Ca). 
The single-particle states occurring in this part of the spectrum may couple 
to neighboring levels of the same spin and parity with a resulting sharing of 
the single-particle properties. Illustrations of such strength function effects 
are provided by the spectra of 41Ca and 49Sc shown in Figs. 3-2c and 3-2d, by the 
analysis of proton resonance scattering on l6O (Table 3-8), and by the hole 
states in I 6 0  excited in the ( p ,  2p) reaction (Fig. 2-27). 

An important area of current investigation is the relationship between 
the one-particle potential and the nucleonic interactions. For nonsingular 
interactions, this relationship is provided by the Hartree-Fock self-consistent 
field calculations extensively employed in atomic physics. (The equations 
determining the self-consistent potential are given in Sec. 3B-3b.) The pre- 
liminary investigations that have been carried out so far for nuclear systems have 
in particular helped to elucidate the state dependence of the one-particle 
potential. (For a review of these studies, see Baranger, 1966.) 

'I 
ILLUSTRATIVE 

EXAMPLES TO 

SECTION 3-2 

Spectra of nuclei with single-particle or single-hole 
configurations (Figs. 3-2a to 3-2f) 

The available evidence on the spectra of the nuclei obtained by removing 
or adding a nucleon from configurations in which the neutrons as well as the 
protons form closed shells is shown in Figs. 3-2a to 3-2f. We have chosen only 
the configurations with major closed shells ( N  or 2 equal to one of the numbers 
in the sequence 2, 8, 20, 28, 50, 82, and 126). 

For the observed energy levels, the excitation is given in MeV, and the 
available evidence on the spin and parity quantum numbers (In) is also exhibited. A 
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' Uncertain values are given in parenthesis. In addition, the figures show the 
absolute binding energy .LB for the closed shell nuclei and the binding energy 
differences A93 between the neighboring nuclei and the corresponding closed 
shell nucleus. These binding energy differences represent separation energies for 
neutrons and protons in the closed shell nuclei and in the nuclei with one addi- 
tional particle. 

For nuclei based on closed shells with isospin To = 0 ( N  = Z ) ,  the low- 
lying states in the neighboring nuclei have T = 1/2. We therefore only list the T 
quantum number for those higher-lying levels for which the evidence indicates 
T = 3/2. For closed shells with To differerit from zero, the addition or removal of 
a particle can lead to states with T = To &- 1/2 (see Fig. 3-l), and the spectra with 
different T values are shown separately. Spectra with the same values of A and T, 
differing only in M,, show the expected similarity associated with isobaric 

A invariance. 

24.3 2-,T=1 

22.4 WHM,W%H 2-,T=0 
21.4 , 0-,T=O 
20.2 - I O+,T=O 20.0- , 20.0 wm%H%(3/+,5/2+) 

16.63- ,3/2+ 16.65 9 2  + 

-7 '/2 - 

L.6 v2 - 

A d  = - 2.0 - A 3  = 19.8 - A 2  ~ 2 0 . 6  53 = 28.3 A b  = - 0.9. 
3 I 5 5 

1H2 ,He 1 ,He 2 Z H e  3 3 L i 2  
3 

Figure 3-2a The experimental data on the spectra of 5He and 5Li have been sum- 
marized by T. Lauritsen and F. Ajzenberg-Selove, NucIear Phys. 78, 1 (1966). The 
evidence concerning the excited states of 4He is taken from the review by W. E. 
Meyerhof and T. A. Tombrello, Nuclear Phys. A109 (1968). The binding energies listed 
in Figs. 3-2a to 3-2f are taken from the compilation by J. H. E. Mattauch. W. Thiele, 
and A. H. Wapstra, Nuclear Phys. 67, 1 (1965). All the excited states in the figure are 
unstable with respect to particle emission and have rather large widths, as indicated by 
the cross hatching. For the single-particle levels,p312 andpl,Z, the hatched area approxi- 
mately represents the width of the resonances. 
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v The levels which have properties corresponding to single-particle and 
single-hole configurations are labeled by the single-particle quantum numbers 
Zj. The identification of these levels is based partly on the fact that the spin- 
parity values and energies correspond approximately to those expected for single 
particles or holes (see Fig. 2-23). Further tests of the assignments are provided 
by the electromagnetic moments and transition probabilities (see Tables 3-2, 
3-3, and 3-4) and by the @-decay rates (see Tables 3-5 and 3-6). Additional 
important evidence is provided by the single-nucleon transfer reactions and by 
the scattering of single nucleons on closed shell nuclei. (Examples are discussed 
in Tables 3-7 and 3-8.) 

Spectra adjacent to 4He (Fig. 3-2a) 

The A = 5 system contains no state that is stable with respect to 
particle emission. This may be seen as an especially dramatic consequence of 
the saturation properties of the nuclear forces. The single-particle character 
of the p 3 / 2  and plj2 levels is confirmed by the analysis of nucleon scattering 
on 4He. 

Spectra adjacent to l60 (Fig. 3-2b) 

The two lowest levels in the A = 17 system appear to be well described in 
terms of single-particle configurations (see the analysis of electromag- 
netic moments and @-decay rates given in Tables 3-2, 3-3, and 3-5). Starting at  
approximately 3 MeV, however, a rather complex level structure is observed, 
which must involve the excitation of the closed shells. The structure of these 
states has been studied by nucleon scattering on l60, which shows that only 
the 3/2+ states at 5.1 MeV in 1 7 0  and 17F can be approximately described 
in terms of single-particle configurations (see Table 3-8). This conclusion 
is confirmed by the evidence from stripping reactions leading. from l60 to 
1 7 0  and 17F. 

In I5N and 150, the lowest excited states involve excitations of the closed 
shells, but the 3/2 states at 6.33 MeV and 6.16 MeV appear to be predominantly 
of single-hole nature, as evidenced by the pickup reactions on l60 (Warburton 
et al., 1965). 

In addition to the hole states shown in Fig. 3-2b, the ( p ,  2p) reaction has 
provided evidence for the occurrence of the s;/: proton configuration in a broad 
energy region (width of about 10 MeV) centered on a mean excitation energy of 
about 30 MeV (see Fig. 2-27). 

The rather large difference in the excitation energies of the slI2 levels in 
170 and 17F can be accounted for in terms of the reduction in the Coulomb 
energy associated with the loose binding of the proton (Thomas-Ehrman shift). 
Thus, a simple calculation of neutron and proton levels in a nuclear potential A 
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Figure 3-2b The figure is based on the syntheses of the available data given by 
T. Lauritsen and F. Ajzenberg-Selovein Landolt-Bornstein, NeueSerie, Band 1, Springer 
Verlag 1961, and in Nuclear Data Sheets, 1962, except for the revised spin assignment of 
the 3.8 MeV levels in 1 7 0  and 17F (see R. E. Segel, P. P. Singh, R. G .  Allas, and S .S. 
Hanna, Phys. Rev. Letters 10, 345, 1963). The levels in 1 7 0  above 4 MeV and those in 
17F above 0.6 MeV are unstable with respect to particle emission and, thus, some of 
these levels have appreciable natural widths (see Table 3-8). 

with the parameters employed in Fig. 2-30 and a Coulomb potential correspond- 
ing to a uniformly charged sphere with radius R = 3.2 fm gives a difference in 
the binding energies of the d5,2 and s l j2  levels that is smaller for protons than 
for neutrons by 0.40 MeV (C. J. Veje, private communication). 

Spectra adjacent to 40Ca (Fig. 3-2c) 

The single-particle assignments for the excited states is based on the 
evidence from single-nucleon transfer reactions and nucleon scattering. The 
results obtained from the study of the (d,  p )  reaction leading to  41Ca are given in 
Table 3-7. It is found that the excited single-particle configurations are distributed 
over several levels, although the first excited state contains the major part 
(80-90%) of the p3,2  strength. A similar structure for 41Sc is exhibited by the 
proton scattering on 40Ca. The pickup reactions leading to  39Ca and 39K 
indicate that the major s,: strength is associated with the first excited states. A 
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Figure 3-2c The level schemes in the figure are based on the references quoted in 
Nuclear Data Sheets and by Chen and Hurley (1966). Additional information is 
obtained from the study of the reactions "'Ca(f, CX)-'~K (S. Hinds and R. Middleton, 
Nuclear Phys. 84, 651, 1966) and 39K(3He, (J.  R. Erskine, Phys. Reu. 149, 854, 
1966). 
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Figure 3-2e The information on the spectra shown in the figure has been obtained 
from the references quoted in Nuclear Data Sheets and by Chen and Hurley (1966). 

v Nuclei adjacent to 48Ca (Fig. 3-2d) 

The T = 912 levels in 49Sc were observed in the resonance scattering of 
protons on 48Ca; the properties of these levels (energy separations, spin-parity 
quantum numbers, and single-particle parentage factors) correspond to those of 
the isobaric analog states in 49Ca. The T = 912 levels occur at  high excitation 
energies in  49Sc (Eex 2 I 1.5 MeV), where the T = 712 level density is very great. 
The width of the T = 912 single-particle strength function is associated partly 
with proton emission and partly with the coupling to the T = 712 levels caused 
by the Coulomb interaction. (The analysis of isobaric analog states excited 
by proton scattering is discussed for the case of p +  Il6Sn in connection with 

A Fig. 1-9, p. 48.) 

Figure 3-2d The level schemes in the figure are based on the references quoted in 
Nuclear Data Sheets and by Chen and Hurley (1966). Additional information is 
obtained from the study of the reactions 48Ca(d, 3He)47K (E. Newrnan, J .  C. Hiebert, 
and B. Zeidrnan, Phys. Rev. Letters 16,28, 1966), 48Ca(p, (T. W. Coulon, B. F. 
Bayman, and E. Kashy, Phys. Rev. 144, 941, 1966), “Ca(p,p) (K. W. Jones, J. P. 
Schiffer, L. L. Lee Jr., A. Marinov, and J. L. Lerner, Phys. Rev. 145, 894, 1966), and 
48Ca(t, a)47K (J. H. Bjerregaard, 0. Hansen, 0. Nathan, R. Stock, R. Chapman, and 
S. Hinds, Phys. Letters UB, 568, 1967). 
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v From the observed single-particle and single-hole states in A = 49 and 
A = 47, one can obtain evidence regarding the isobaric spin dependence of the 
single-nucleon binding energies (see Table 3- 1). 

Spectra adjacent to 56Ni  (Fig. 3-2e) 

The nuclei illustrated in Fig. 3-2e are all j3 unstable and the spectroscopic 
evidence is therefore as yet rather incomplete. The single-particle assignments are 
based mainly on the spin-parity values and the position of the levels. For the 
ground state of ' 'Co,  the measured magnetic moment provides additional evi- 
dence (see Table 3-3). 

Spectra adjacent to 208Pb (Fig. 3-2f) 

The single-particle assignments for the low-lying levels are consistent with 
all the known information on these states (parentage factors from transfer 
reactions, see references quoted in caption to Fig. 3-2f; electromagnetic moments, 
see Tables 3-2, 3-3, and 3-4; /3-decay rates, see Table 3-6). The only states A 

h$ 9 7;: 
3.47 - V2- 348 - 72. 3A7- 4- 

2.71 - (9/2 +) 

2.34 - 7/2 -- 
f 7;: 312 + 

7/2 + 

0.89 - f7/2 7 2 -  ' 11/2 p%; 3/2- 1.89 - 
1.57 - 512 - 

0.80 - "/z+ 0.78-%+ f5;: 

P g2 s i;: 
d 3;: 

0.35 - 312 + 

hgh 9/2- - g9'2 9/2+ - g9/2 9/2+ '/2+ - o+ - - 1/2- - --- - 

T = L3/2 T = 45/2 T = L5/2 T =  2 2  T = %  T = 4512 T=45/2  

- A d  = 7.38 - ~ 9 3 = 8 . 0 3  X3=1636 A b = 3 . 8 0  A.B=-14.7 A d = 3 . 9 4  

P . Y I 

207 201 208 209 209 
8ZPb 125 81TL126 82 Pb126 8 3 B i 1 2 6  82Pb 127 

Figure 3-2f The experimental data are taken from Nuclear Data Sheets, from the 
references quoted by Chen and Hurley (1966), and from the following reaction studies: 
208Pb(3He, d)'09Bi (C. Ellegaard and P. Vedelsby, Phys. Letters 26B, 155, 1968, and 
the references quoted therein), '09Bi(d, d') (R. M. Diamond, B. Elbek, and P. 0. Tjom, 
priv. comm.), '08Pb(a, t)'OgBi (J. S. Lilley and N. Stein, Phys. Rev. Letters 19, 
709, 1967), 208Pb(p,p') (P. von Brentano, W. K. Dawson, C .  F. Mooer, P. Richard, 
W. Wnarton, and H. Wieman, Phys. Letters 26B, 666, 1968), and ""Pb(t, a)  (S. Hinds, 
R. Middleton, J. H. Bjerregaard, 0. Hansen, and 0. Nathan, Phys. Letters 17, 302 
1965). 
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v observed in the nuclei with A = 207 and A = 209, with energies appreciably below 
the energy of the first excited state of 208Pb, are the single-particle and the single- 
hole states. Above this energy, a rather high density of levels is observed, of which 
only a few are included in the figure. As an  example, the multiplet a t  about 
2.6 MeV in '09Bi is classified as an  octupole excitation similar to that observed 
in '08Pb, superposed on the 11912 ground state of '09Bi. (A further discussion of 
this assignment will be given in Chapter 6.) 

The T = 4512 states of '09Bi, which are observed as resonances in elastic 
and inelastic proton scattering on '08Pb, have total widths of 2-300 keV. A 

Figure 3-3 

P '/2 

i13/2\ 

calc. obs. 

NEUTRON STATES 

calc. obs. 

PROTON STATES 

N = 126 Z= 82 

The empirical value for the binding energies of single nucleons with 
respect to 208Pb are taken from the data shown in Fig. 3-2f. The calculated values 
are taken from J. Blomqvist and S. Wahlborn, Arkiu Fysik 16, 545 (1960). 
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v Energies and wave functions for single-particle states 
in 208Pb (Figs. 3-3 and 3-4) 

The observed binding energies for neutrons and protons with respect to 
2osPb are compared in Fig. 3-3 with those calculated for a potential with the 
parameters employed in Fig. 2-30. For the protons, a symmetry potential of 
opposite sign to that for the neutrons, and a Coulomb potential corresponding 
to a uniformly charged sphere of radius R = 1.27 All3  fm have been added. (The 
parameters of the potential were chosen (Blomqvist and Wahlborn, 1960) to give 
the best fit to the then available data on the position of single-particle states for 

The wave functions gnlj(r), calculated for the neutron orbits, are illustrated 
in Figs. 3-4a and 3-4b. We employ a phase convention for radial wave functions 
that requires g n l j ( r )  to be positive for large r .  The radial wave functions of 
spin-orbit partners ( j  = I f 1/2) are very similar, and only for the example of the 

Many effects depend mainly on the value of the wave functions in the 
region of the nuclear surface. For orbits with binding energies from a few MeV 
up to 10 MeV, it is seen that the radial wave function at the mean radius 
Ro = 7.5 fm is approximately independent of no, and given by 

A = 208.) 

and i1312 orbits are both wave functions drawn. 

Binding energies for neutron states in I6O, 40Ca, 48Ca, and 56Ni (Fig. 3-5) 

The empirical binding energies for states of a single neutron and a single- 
neutron hole with respect to the closed shells of A = 16,40,48, and 56 are shown 
in Fig. 3-5. For a few cases, the proton levels but not the neutron levels have been 
observed, and the neutron levels, shown by dotted lines, have been estimated by 
subtracting the Coulomb energy calculated for the proton orbits. For the higher- 
lying configurations whose properties are found to be distributed on more than a 
single level (strength function effects), we have plotted an average position of the 
single-particle (or single-hole) state, obtained by weighting the components with 
the observed one-particle strengths. 

The calculated level positions correspond to a potential with the parameters 
employed in Fig. 2-30, which were chosen so as to give the best fit to  the observed 
levels for A = 208. Only the bound states have been calculated. In 48Ca with 
To = 4, the hole states below the f , , 2  level can give rise to states with T = 712 and 
912. The observed levels shown in Fig. 3-5 have T = 712, and their calculated 
position includes the effect of the charge-exchange term in the potential (see 
Eqs. (2-29) and (3-21)). This gives rise to an upward shift of the levels by about 

A 1 MeV. 
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Figure 3-4 Neutron radial wave functions for A = 208 and Z = 82 (based on calcula- 
tions by Blomqvist and Wahlborn, luc. cir., Fig. 3-3). 
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'I The calculated spectra reproduce approximately the observed positions of 
the single-particle levels close to or above the Fermi surface, but underestimate 
the binding of deep-lying hole states (see especially the s l / i  level in l60). The 
increased binding of these states may be interpreted in terms of a velocity A 
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Figure 3-5 The experimental binding energies of the neutron states are derived from 
the spectra shown in Figs. 3-2b to 3-2e and from the references quoted there. The 
s1,2 level in l6O at 47 MeV is derived from the observed average position of the slIz 
proton-hole level (see Fig. 2-27, p. 231). 

v dependence of the potential. We can approximately allow for this effect by 
considering the potential strength V,  as a function of the energy E of the state 
considered. Thus, the velocity dependence observed for the optical potential 
(see Eq. (2-176)) accounts fairly well for the observed trend of the binding energies. 
The velocity dependence can also be described by a nonlocal, energy-independent 
potential (see references quoted in connection with Fig. 2-30). A 
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v Superimposed on the smooth trend of the level positions with A and Z, one 
observes smaller variations that are not reproduced by the simple potential 
considered. 

An example of such a " fine structure " in the level positions is provided by 
the shift of the f 5 / 2  level relative to the pj12 and p l j 2  levels as one goes from 
A = 48 to A = 56. In this region, the f 7 / 2  proton level is filling, and the depres- 
sion of the f 5 / 2  neutron level has been interpreted in terms of the similarity of the 
radial wave functions of the f 7 / 2  and f 5 / 2  orbits. Thus, the contribution to the 
average potential from the f 7 , 2  protons has a radial shape favoring the f 5 / 2  orbits. 
(The empirical evidence for fine-structure effects of this type has been discussed 
by Cohen, 1963 and 1968. Theoretical estimates of such level shifts were con- 
sidered by de-Shalit and Goldhaber, 1953, in connection with the interpretation 
of the systematics of isomeric transition energies pointed out by Goldhaber and 
Hill, 1952; for a more recent analysis, with the inclusion of pair correlations, 
see, for example, Silverberg, 1962 and 1964.) 

An opposite but smaller effect is exhibited by the relative positions of thef 
and p levels for A = 40 and 48. In this region, the f 7 , 2  neutrons are filling and, on 
account of the symmetry (isospin dependent) part of the potential, the neutron 
levels are being weakly repelled. 

The empirical energy separations between particle and hole states are found 
to be somewhat larger than those calculated for the potential. The effect is 
especially pronounced for the light nuclei and amounts to about 5 MeV in l60. 

An increase in the energy separation between occupied and unoccupied orbits is 
implied by the isospin dependence of the nuclear binding. Thus, a particle added 
to closed shells with N = Z moves in a potential produced by a nucleus with 
To = 0, while each of the particles in the closed shells moves in a potential 
produced by the rest of the particles, which form a To = 1/2 state. We can 
estimate the associated extra binding AE of the hole state from the expression 
(2-29) for the nuclear symmetry potential; with TA-l  = 1/2 and the total isospin 
T = 0, and with the value (2-28) for V ,  , we obtain 

3 VI 

4 A  
AE z - - z 15A-' MeV (3-23) 

which is of the order of magnitude of the observed energy shifts. Similar 
effects may arise from the spin dependence of the nuclear binding and the 
favoring of states with high orbital symmetry (see, for example, the discussion 
in Chapter 7). 

In a quantitative analysis of the energy separation between particle and 
hole states, several additional effects must be taken into account, including the 
velocity dependence of the potential and the increased interaction between 
particles in the orbits with similar radial wave functions. An increase in the 
binding of holes relative to particles may also arise from correlations in the A 
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v ground state of the closed shell nuclei with an associated energy depression of 
these states. An effect in the opposite direction arises from the fact that the A 
value for the particle states is greater by one unit than for the hole states. The 
resulting increase in radius produces an energy shift of the particle states of 
order of magnitude 2(6R/R)Eki, % 25A-I MeV. A more detailed estimate of this 
effect based on Fig. 2-30 yields a shift of 0.75 MeV for the particle states in "0. 
(The energy gap between occupied and unoccupied single-particle orbits has 
been discussed by Kelson and Levinson, 1964, and by Kerman et al., 1966, in 
connection with an analysis of the self-consistent nuclear potential.) 

In the comparison between the empirical separation energies and the 
binding energies determined from a particle in a potential, a correction must be 
added for the fact that, if a nucleon is suddenly removed from the nucleus A ,  the 
residual nucleus is not in a self-consistent state for the ( A  - 1) system (rearrange- 
ment energy). The effect of readjustment of the radius can be estimated from the 
compressibility (see Eq. (2-207)) 

(3-24) 

assuming 6ro z ro/3A. For bcomp % 20 MeV, we thus obtain 6E % 10A-' MeV. 
This simple estimate neglects the dependence of the self-consistent field in the 
( A  - 1) system on the orbit of the particle that has been removed. In particular, 
the velocity dependence of the field may imply an especially large rearrangement 
energy for the deep-lying hole states (J. Svenne, private communication). 

Isospin dependence of nucleonic binding states (Table 3-1) 
If the closed shells have a nonvanishing isospin T o ,  the single-particle and 

single-hole configurations may give rise to two different nuclear states with 
T =  To f 1/2. The energy splitting between such doublets provides a measure 
of the strength of the one-particle isovector potential. 

The separation energies for the single-particle configurations in 49Sc and 
for the single-hole configurations in 47Ca are listed in columns two and three of 
Table 3-1. (For the hole configurations, S is the energy required for removal of 
a single particle from 48Ca, leaving 47Ca in the single-hole state.) For the p 3 / 2 ,  
p1 ,z , and f512 configurations, the single-particle strength is distributed over 
several levels and the energies listed represent weighted average energies for the 
strength functions determined from stripping and scattering reactions (see 
references quoted in caption to Fig. 3-2d). For the hole configurations with 
T = 912, only the M ,  = 912 levels in 47K have been observed, and the position of 
the M T  = 712 levels in 47Ca was inferred by assuming a Coulomb energy 
of 6.8 MeV. This value was determined from the observed Coulomb energy 
of 7.0 MeV for A = 49, T = 9/2 by an extrapolation based on the relation (2-19). 

The last column of Table 3-1 shows the calculated separation of the T 
doublets given by Eq. (3-21). The radial wave functions of the single-particle A 
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v states are determined for a potential of the type (2-180) and the parameters 
employed in Fig. 2-30. While, on the average, there is rather good agreement 
between the empirical and theoretical values of the splitting, the f5/2 level shows 
an especially large separation; this effect reflects the fact that the isovector 
potential results from the excess neutrons, which occupy the f7/2 orbit, and thus 
we may expect this potential to act more strongly on f than on p orbits. (See the 
discussion in connection with Fig. 3-5.) If the average potential energy of the 
nucleon orbit in the field produced by the filled f7/2 neutron shell is denoted by 
U ,  + t ,  U, ,  the potential energy in the field of the f,,2 proton shell will be A 

S 
h . Configuration T =  712 T = 912 (AE),,,  (Wd 

f 5 / 2  5.0 - 5.9 10.9 9.4 
P 1 / 2  3.6 - 3.9 7.5 8.2 
P 3 / 2  6.1 - 1.9 8.0 8.2 
d31; 12.5 22.4 9.9 9.8 
s;,: 12.6 22.1 9.5 9.0 

Table 3-1 The separation energies S are taken from Fig. 3-2d and references quoted in 
caption to this figure. The quantity A E  represents the energy difference between the iso- 
doublets, which have the quantum numbers T =  912, MT = 712 and T =  712, MT = 712, 
respectively. 

v U ,  - t ,  U1.  From the relative positions of they5/, and plj2 levels in A = 40, 48, 
and 56, we may therefore estimate that Ui(f5j2) - Ul(pliz) z 3 MeV, which 
implies a difference of 9/8 x 3 MeV z 3.5 MeV for the T splittings in the two 
orbits, in agreement with the data in Table 3-1. 

An additional, though less direct, estimate of the isovector potential can be 
obtained by comparing the binding energies for the f7/2 and f7;: configurations 
in 49Sc and 47Ca. The binding of the f7I2 proton in 4 9 S ~  and the f,/2 neutron in 
48Ca involves the symmetry potential 

.- 

The empirical binding energies in Fig. 3-2d and the above quoted value of 
7.0 MeV for EcoU, give AE % 6.7 MeV, while the potential V,(r) employed in A 
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v Table 3-1 gives AE x 8.9 MeV. It may be noted that the estimate of AE from the 
comparison of the binding energies of the f7,2 and f 71; configurations is sensitive 
to the energy of the closed shell state. A depression of this energy decreases 
S( f7,2) and increases S( f,;:). In the above comparison of the binding energies we 
have also neglected the small increase of S( f7,2) associated with the increase in 
radius resulting from the presence of an extra particle. (See the discussion of the 
separation between particle and hole states in connection with Fig. 3-5.) A 

3-3 M A T R l X  ELEMENTS O F  E L E C T R O M A G N E T I C  
M O M E N T S  

Because of the simple and well-known structure of the electromagnetic 
interaction, the study of electric and magnetic moments and transition probabili- 
ties provides the opportunity for detailed tests of nuclear wave functions. In this 
section, we shall especially consider electric quadrupole and magnetic dipole 
effects, which have yielded important information regarding the properties of 
individual nucleons moving in the nuclear potential. 

3-3a Quadrupole Moments and E2-Transition Probabilities 

The electric quadrupole moment is a measure of the extent to which the 
nuclear charge distribution deviates from spherical symmetry. The moment is 
defined by 

and the quadrupole operator is given by 

Q = ( I ,  M = IIQoplI, M = I )  (3-25) 

eQop = Ipe(r )r2(3  cos’ 9 - 1) d z  (3-26) 

in terms of the charge density p,(r). 
For a single proton in an orbit (nl)j, one obtains (see Eqs. (3A-14) and 

( 1 A-60)) 
Qsp = ( j ,  m = j l r2(3  cos’ 9 - l ) ] j ,  in = j )  

= 2 W O l j j )  ( j  t 201j  B> ( j l r ’ l j )  

(3-27) 

where the radial average is given by 

( j lr21j)  = l r 4 W : l j  d r  (3-28)  

A neutron carries no electric charge, and therefore the quadrupole moment 
vanishes for a single-neutron configuration. 
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The negative sign in Eq. (3-27) reflects the concentration of the particle 
density in the equatorial plane for the state rn = j .  For j B 1, the value of Qsp 
approaches - ( r 2 >  characterizing a charge distribution completely concentrated 
in the equatorial plane. 

For a single-proton hole, the quadrupole moment is - Q s p .  In fact, the 
state with M = j represents a closed shell with the orbit rn = -,j lacking, and 
this orbit has the same quadrupole moment as the one with m = j .  The opposite 
signs of the quadrupole moments for a particle and a hole correspond to the fact 
that the quadrupole operator, being a function of the position coordinates, 
transforms under particle-hole conjugation with the phase c = - 1 (see Eq. 
(3- 14)). 

If the closed shell core has a neutron excess, the particle and hole configura- 
tions may involve components with a charge exchange between the core and the 
particle or hole. For such states, the quadrupole moments become linear 
combinations of proton and neutron moments, with coefficients given by the 
state vectors (3-19). 

The quantity Q represents the diagonal element of the quadrupole operator 
(the static quadrupole moment). Nondiagonal elements (transition moments) are 
involved in electric quadrupole (E2) processes (y decay, Coulomb excitation, 
etc.). The amplitudes and transition rates for such processes depend on the 
matrix elements of the electric quadrupole tensor 

of which the p = 0 component is proportional to Qop . 
The matrix elements of a spherical tensor, such as (3-29), between states 

with specified angular momentum quantum numbers, can be expressed in terms 
of reduced (double bar) matrix elements (see Sec. 1A-5). Thus, from Eqs. (3-25) 
and (3-26), together with (1A-60), we have 

1 / 2  

eQop = (F) A ( E 2 ,  p = 0) 

The total transition rate (that is, the decay constant for a y decay, the cross 
section for Coulomb excitation, etc.) involves the reduced transition probability 

(3-31) 
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For a transition of a single proton (or a proton hole), one obtains (see Eq. 
(3A- 1 4)) 

c 
(3-32)  

The available experimental data on the electric quadrupole moments and 
transition probabilities for single-particle and single-hole configurations are 
listed in Table 3-2, p. 341. It is seen that the experimental values for proton 
configurations have the same sign (and order of magnitude) as those calculated 
from the one-particle wave functions. As to the quantitative comparison, some 
uncertainty arises from the estimate of the radial matrix element. Still, it may be 
concluded that the observed quadrupole effects are somewhat larger than those 
associated with the orbit of the single proton, indicating a significant contribu- 
tion from the protons in the closed shells. Such an effect isdramatically illustrated 
by the electric quadrupole moments and transition probabilities associated with 
the singie-neutron configurations. These moments have the sign and the order 
of magnitude to be expected for single-proton configurations. 

The distortion of the closed shells by the added particle can be simply 
understood as a consequence of the nonspherical field generated by the extra 
particle.’ The order of magnitude of the effect can be estimated by observing 
that the eccentricity of the density distribution is of order A-’  and, hence, the 
potential should acquire a similar shape. The orbit of each proton in the closed 
shell is thus slightly distorted and acquires an extra quadrupole moment of 
order A - ’  QSp and of the same sign as the mass quadrupole moment of the 
polarizing particle. The total induced quadrupole moment is of order 

(3 -33)  

which roughly corresponds to the magnitude of the observed effect. (It should be 
emphasized that, since the induced moment is of the same order of magnitude as 
the polarizing single-particle moment, a quantitative estimate must also consider 
higher-order terms associated with the polarizing effect of the induced moment. 
The analysis of the self-consistent field associated with the response of the closed 

The renormalization effects for single-particle excitations are similar to the polarizability and 
dielectric phenomena that modify the electric and magnetic fields generated by electrons in atoms 
and metals. The recognition of such phenomena in the nucleus came partly from the analysis of the 
coupling between the particle and collective degrees of freedom (Rainwater, 1950; Bohr and Mottelson, 
1953), and partly from the efforts to reconcile independent-particle motion with the strong nucleonic 
interactions. (See, for example, Brueckner, Eden, and Francis, 1955.) The description in terms of 
renormalized particle-like excitations (sometimes referred to as quasiparticles) has been formulated 
for infinite systems in the theory of Fermi “liquids” (Landau, 1956, 1958; for the application of this 
approach to nuclei, see Migdal, 1967). 
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shells to the presence of a single particle is discussed in Sec. 9-1. The polarization 
effect can also be treated in terms of the coupling between the particle and the 
collective oscillations associated with deformations of the core (see Chapters 6 
and 9). 

The polarization of the closed shells involves virtual excitations of particles 
into higher shells, and the associated frequencies (AE M 2fio M 80A-'/3 MeV; 
see Eq. (2-131)) are therefore very high compared with the transition energies 
(AE - 1 MeV) involved in the transitions in Table 3-2. Thus, the polarization 
follows adiabatically the motion involved in these transitions, and the static 
polarizability employed in the discussion of Q should also act in renormalizing 
the transition moments, as is observed. 

The renormalization of the quadrupole moment of the particle repre- 
sents only a small perturbation of each of the particles in the closed shells. 
Hence, the effects are expected to be simply additive in the case of configura- 
tions involving several particles outside of closed shells, and may conveniently 
be regarded as a correction to the intrinsic properties of each individual nucleon 
outside of the closed shells. 

One often refers to the E2-polarization effect as giving rise to an effective 
charge eeff associated with quadrupole processes, 

( 1 2  = j 2 1 1 ~ ( ~ 2 ) 1 1 ~ 1  = j 1 >  

~ j 2 ~ ~ ~ 2 ~ 2 1 b 1 )  

= 44 - t z )  + (epol)EZ 

( e e f J E 2  = 

(3-34) 

The difference between the effective charge and the charge of the single nucleons 
is referred to as the polarization charge. The effective charge values deduced 
from the observed static and transition moments are listed in Table 3-2. It is to 
be noted that the value of eeff may depend somewhat on the orbit of the nucleon; 
in particular, the polarization effect decreases when the binding energy of the 
nucleon becomes small, since the nucleon, when outside the nuclear surface, is 
less effective in polarizing the core. (See the transition in 209Pb discussed in 
connection with Table 3-2.) 

The question also arises as to whether the polarization charge is equal for 
neutrons and protons, that is, whether epol is an isoscalar or whether it contains 
an isovector component. Such a component is expected as a consequence of the 
isovector nuclear potential, which implies that a neutron outside of closed 
shells acts more strongly on the protons of the closed shells than does an extra 
proton; hence, the polarization charge is expected to be somewhat larger for 
a neutron than for a proton. The empirical data are inconclusive on this inter- 
esting point. 
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3-3b Magnetic Moments 

The nuclear magnetic moment provides a sensitive test of the nuclear 
coupling scheme, on account of the great difference between the g factors as- 
sociated with the various components of the total nuclear angular momentum 
(orbital and spin angular momenta of neutrons and protons). 

The magnetic moment is defined as 

p = ( I ,  M = I lpzlI ,  M = I )  (3-35) 

where p z  is the z component of the vector operator p. For a single nucleon, we 
have 

in terms of the orbital and spin g factors 

5.58 proton 
” = (h ” = (-3.82 neutron (3-37) 

(in units of efi/2M, c). The expression (3-36) represents the magnetic dipole of a 
point nucleon moving in a static binding field. Corrections to this expression may 
arise from the nucleonic interactions, which somewhat modify the intrinsic 
structure of the nucleons ; further, the velocity dependence of these interactions 
gives rise to additional terms in p. There is little direct evidence on these 
interaction effects ; the available, rather tentative, theoretical estimates indicate 
magnitudes of a few tenths of a magneton (see Sec. 3C-6). 

For a nucleon in a shell model orbit, the matrix element (3-35) may be 
evaluated in terms of the vector model. The vectors 1 and s precess about the 
constant j and the average value of p is therefore 

(3-38) 

where the quantity (s . j) has been evaluated by squaring the identity j - s = 1. 
For a single-hole configuration the magnetic moment is the same as for a 

single particle, since the orbit m = -j lacking in the closed shells has a moment 
opposite to the orbit with m =j .  (We may also note that the spin and angular 
momentum operators transform under particle-hole conjugation with c = + 1 ; 
see Eq. (3-14)) 
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The nondiagonal matrix elements of the magnetic moment operator deter- 
mine the amplitudes of MI-transition processes. The matrix elements are 
usually expressed in terms of the magnetic dipole tensor 

(3-39) 

where (p), denotes the spherical component (p  = -1, 0, +I )  of the vector p. 
Thus, the magnetic moment for a state I is related to the reduced matrix 
element of &(MI)  by 

1/2  eh 
2Mc 
- p = (f) (21 + 1)-1’2(1 z 1 0 IZ Z) (Z~~&(Ml)~~Z)  (3-40) 

For a single particle or hole, the M1 matrix elements have the selection rules 
An = 0, A1 = 0,  A j  = 0, 1 and the only allowed transitions therefore take place 
between spin-orbit partners j = 1 f t .  For such a transition we obtain (see 
Eq. (3C-37)) 

( j ,  = 1 + + ~ ~ A ( M l ) / ~ j ~  = I - 4) 

neglecting the small difference in the radial functions for the two orbits. 
The empirical moments of nuclei with single-particle or single-hole 

configurations are listed in Table 3-3, p. 343. For the lighter nuclei ( A  5 40), 
the agreement with the value (3-38) is rather good; the deviations amount to 
only a few tenths of a magneton. The excess moments in 3H and 3He are difficult 
to account for in terms of configuration mixing and may indicate the presence of 
interaction terms in the moment operators.2 In view of this effect, the very close 
agreement between pObs and psp for A = 15 and 17 may be somewhat fortuitous. 
In fact, other evidence suggests the presence of significant configuration mixings 
in the region of l60 (see the analysis of P-decay rates in Table 3-5 and the dis- 
cussion in Chapter 7). 

In the heavier nuclei, the observed magnetic moments deviate appreciably 
from psp . This marked difference in the behavior of the light and heavy nuclei 
makes it unlikely that we are dealing with a modification of the intrinsic pro- 
perties of the nucleon. The observed trend, however, finds a simple explanation 
in terms of a polarization effect of the closed shells, somewhat similar to that 
discussed for the electric quadrupole moments. The polarization effect for 

The measurement of the moments in the A = 3 system led to the study of charge exchange 
contributions to the nuclear magnetic moments (Villars, 1947; see also references quoted in Sec. 
3C-6). 
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magnetic moments is expected to depend decisively on the configuration of the 
closed shells, since the main effect is associated with the presence of unsaturated 
spins in the closed shells, which can be partially aligned by the interactions with 
the spin of the extra nucleon (Arima and Horie, 1954; Blin-Stoyle and Perks, 
1954). 

If the closed shells are composed of filled levels of both spin-orbit partners 
( j =  I f  +), as is the case for the closed shells up to 40Ca, the nucleon spins are 
coupled together to a state with S = 0. In fact, disregarding minor differences in 
the radial wave functions of the j = I i + orbits, such closed shells have a wave 
function identical to that which would be constructed if there were no spin- 
orbit coupling. Therefore, L and S are, separately, constants of the motion 
(L-S coupling) and the uniqueness of the state ensures L = S = 0. In such a 
situation, the perturbation produced by the extra nucleon to first order leaves 
(L,) = ( S , )  = 0 for the core, and thus leads to corrections to the magnetic 
moment only in higher orders. 

If the closed shells contain a filled orbit withj = I + +, but not the partner, 
the unsaturated nucleon spins may be partially aligned in first order through the 
spin-dependent components in the nucleonic force. For simplicity, we shall 
consider a central force (al .az)Vu(rIz). The order of magnitude of the resultant 
spin-dependent field acting on the closed shells is ( Vu>,  which represents an aver- 
age matrix element of Vo(rl 2) involving the particle outside closed shells and one 
of the particles in the filled j = I + + shell. The wave function of a nucleon in a 
j = 1 + 3 orbit will thus have admixed components withj = I - +, 

aext.  ( j  = 1 - 3, rnlalj = I + 4, m)cp,-+,, (3-42) 

to first order in the perturbing potential. The spin of the external polarizing 
nucleon is represented by aeXt, and Acls is the energy difference between the 
j = 1 & 3 single-particle levels (the spin-orbit splitting). The magnetic moment 
generated by the perturbation (3-42) is proportional to aext and can thus be re- 
garded as a renormalization of gs by the amount 

(VU> 

A &Is 
( P l + + , m  + ( P ~ + + , r n  -- 

(3-43) 

where gs and g l  are the g factors of the nucleons in the closed shell. The reduced 
matrix element of cr occurring in Eq. (3-43) can be obtained from Eq. (3A-22). 
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(The spin-dependent central forces favor (LS) coupling rather than ( j j )  coupling, 
and the correlations leading to a renormalization of the spin magnetic moments 
constitute a partial trend away from ( j j )  and towards (LS) coupling (see the dis- 
cussion in Sec. 9-3).) 

In a heavy nucleus, there are about as many neutrons with unsaturated spin 
as protons and, for an isospin-independent interaction, the total polarization 
term (3-43) is thus rather small owing to the opposite sign of (gs - gJ for neu- 
trons and protons. (The magnetic moment operator is approximately an iso- 
vector; see Eq. (1-65).) 

However, a force of the type (cl . cz)(zl . z,)V,,(r,,) will induce a polariza- 
tion of neutrons and protons with opposite sign; thus, the main magnetic 
moment correction in heavy nuclei is expected to come from such an isospin- 
dependent force. (On account of the antisymmetry in the wave function, an 
effective isospin-dependent interaction may also result from a short-range force 
that does not explicitly depend on the isospin variables; see Sec. 2-5b, p. 258.) 

An estimate of the order of magnitude of (V,,) can be obtained by 
performing an average similar to that leading to the estimate (2-213) for the 
symmetry potential ; thus, a nucleonic force with Serber exchange mixture 
yields (V,,) w - +VoA-l  m + 15A-' MeV. The estimate (3-43) therefore 
gives Sg, m 2~~ for the polarization effect in the '08Pb core, which involves the 
h,,/, protons and the i13/2 neutrons with A E , ,  w 5 MeV (see Fig. 3-3). A similar 
(though somewhat larger) value for Sg, is obtained for the 56Ni core with the 
filledf,,, neutron and proton shells. 

The observed magnetic moments in the nuclei around A = 56 and 208 
indicate polarization effects of the estimated order of magnitude (see Table 3-3), 
although it hardly needs to be emphasized that the above discussion is only 
intended for qualitative orientation. In addition to the neglect of higher-order 
terms of the type mentioned in connection with the polarization effect in the 
quadrupole moment, the forces assumed are highly oversimplified and the 
exchange effects between the interacting particles have not been included. 

The total polarization effect cannot be described simply in terms of a 
renormalized g, factor. Not only may the effect depend somewhat on the radial 
distribution of the polarizing particle, but the polarization magnetic moment 
may also involve a " tensor component " of the form 

(W, = SgXr)(Y, S > L = l , ,  (3-44) 

(For small r, the leading term in Sgl(r) is expected to be proportional to rz.)  
The expression (3-44) and a term proportional to s are the only axial vectors 
that can be constructed from the spin and position coordinates of a nucleon. 
Moment contributions of the type (3-44) arise when we take into account the 
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dependence of the polarizing field on the position of the external nucleon. 
Such a dependence is implied by a spin-dependent central interaction as well as 
by noncentral nucleonic forces. 

While the operator (3-44) is an effective moment, representing the contri- 
bution of the polarized core particles, each assumed to have the moment (3-36), 
a term of the form (3-44) may also occur in the moment operator itself, if the 
particles move in a velocity-dependent field such as a potential with a spin- 
orbit coupling (Jensen and Mayer, 1952; see also the discussion in Sec. 3C-6). 

The magnetic moment contribution (3-44) has an l j  dependence quite 
different from that of the spin magnetic moment. (The expectation value of the 
operator (3-44) can be obtained from the relation (3A-22).) From the measure- 
ment of two moments (or MI-transition rates) in the same nucleus it may thus 
be possible to determine the polarization factors Sg, and Sg; separately. (See the 
example in Table 3-3.) The moment operator (3-44) is also distinguished from 
the operator (3-36) by its ability to cause MI transitions with A1 = 2 (transitions 
of Z-forbidden type). 

3-3c Other Electromagnetic Moments 

The electric quadrupole (E2) and magnetic dipole (Ml) moments axe 
examples of the electric and magnetic multipole operators &EA, p) and 
A ( M &  p), which characterize the interaction of the nucleus with the radiation 
field. Moments of similar structure are involved in nuclear excitation processes 
induced by charged particles. The general expressions for these moment operators 
and the evaluation of single-particle matrix elements are considered in Appendix 
3c. 

In addition to the information on E2 and M1 moments, some evidence is 
available on M4-transition rates for single-hole configurations (see Table 3-4, p. 
344). The observed rates are found to be 5 to 6 times lower than the single-particle 
estimate. This may indicate M4-polarization effects of a similar magnitude as 
for the MI moments. 

In '09Pb, the strength of the E3 transition j15,2 +g9,2 has been measured 
and is found to be 50 times larger than for a single-proton transition (Ellegaard 
et aZ., 1967). The large polarization charge can be understood in terms of the 
coupling between the single-particle motion and the octupole excitation of the 
'OaPb closed shell configuration occurring at 2.6 MeV (see the discussion in 
Chapter 6). Since the octupole excitation frequency is of the same order of 
magnitude as the single-particle transition frequency, the polarization charge is 
expected to be rather strongly dependent on the transition energy. 
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1 ILLUSTRATIVE 

EXAMPLES T O  

SECTION 3-3 

Electric quadrupole effects in single-particle configurations (Table 3-2) 
The available evidence On E 2  moments and transition probabilities for 

single-particle (and single-hole) configurations ( j  and j - ') is summarized in 
Table 3-2. The single-particle estimates Q,, and B,,(E2) refer to a single proton 
(or proton hole) and are obtained from Eqs. (3.27) and (3.32). A 

(a) Quadrupole moments 

Nucleus I j  Q0bs(iO-24 cm') Q,,(iO-24 cm2> eeiile 
- 

-1 ;o 4 2  - 0.026 - 0.066 0.40 
d3/ ; 0.09 - 0.052 1.8 
h9 /2  - 0.4 - 0.26 1.6 2 0 9 ~ i  

8 3  

(b) EZtransition probabilities 

Nucleus ( Z j ) i  (Zj), B(E2),,S(e2fm4) B(E2),,(e2fm4) eeff/e 
~ 

7.4 
6.3 

64 
66 

110 
70 
80 

150 
40 f. 20 

4.6 1.3 
35 0.42 
43 1.2 
40 1.3 
40 1.7 
81 0.9 

110 0.85 
866 0.42 

2.3 4 & 1.5 

Table 3-2 The experimental values of the quadrupole moments are from 
the compilation of Lindgren (1965). The B(E2) values are taken from the 
following references: for 15N, from G. A. Beer, P. Brix, H.-G. Clerc, and 
B. Laube, Phys. Letters 26B, 506 (1968); for I7O and 17F, from J. A. Becker 
and D. H. Wilkinson, Phys. Rev. 134B, 1200 (1964); for 4'Ca, from P. P. 
Singh, R. E. Segel, R. H. Siemssen, S. Baker, and A. E. Blaugrund, Phys. 
Rev. 158, 1063 (1967); for 4'Sc and 41Ca, from D. H. Youngblood, J. P. 
Aldridge, and C. M. Class, Phys. Letters 18, 291 (1965); for '07Pb and '09Bi, 
from D. S. Andreev, Ju. P. Gangrskij, 1. Ch. Lemberg, and V. A. NabiEvriiviIi, 
Izv. Akad. Nauk. 29, 2231 (1965) and references quoted in this article, and 
from H. J. Korner, K. Auerbach, J. Braunsfurth, and E. Gerdau, Nuclear Phys. 
86, 395 (1966); for 209Pb, from P. Salling, Phys. Letters 17, 139 (1965). 
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7 The radial matrix elements of r2 have been calculated for single-particle 
states in the potential considered in Figs. 3-3 and 3-5. The following values are 
obtained : 

I5N <p3/21 r2 Ip1/2> = 7.6 fm2 
1 7 0  <d5/21 r2  Id5,,) = 11.5 fm2 

<d5/21 r2  Islj2> = 12.0 fm2 
17F < d 5 / 2 1  r2 Is1/2) = 13.4 fm2 
39K <d3i21 r2  Id3/2> = 13.0 fm2 
41Ca < f 7 / 2 1  r2 Ip3/2> = 13.9 fm2 

207Pb < f 5 / 2 1  r2 Ip1/2> = 32 fm2 
< p 3 / 2 )  r2 Ip1 /2> = 37 fm2 

209Pb < S , / ~ I  r2  ld5/2) = 60 fm2 
< f 7 / 2 1  r2  lhgI2> = 16.5 fm2 
<h9/2) r2 lh9/2> = 35 fm2 

209Bi 

For 41Sc, the proton p3,2  state is unbound; we have used the same radial matrix 
element as for 41Ca. 

The effective charge found in 209Pb is small as compared to that in '''Pb. 
This appears to be a consequence of the loose binding of the last neutron in 
'''Pb. Thus, from the wave functions in Fig. 3-4 one finds that half the radial 
integral is contributed by distances greater than 9.5 fm, which is already signifi- 
cantly larger than the mean radius (7.5 fm). The neutron is therefore less effective 
in generating polarizations in the closed shell core. An effect of this type is also 
expected for the transitions in A = 17 and A = 41. 

For A = 41, the p3,2 levels in Table 3-2 refer to the first excited states in 
41Ca and 41Sc. As shown in Fig. 3-2c and Table 3-7, a part of the single-particle 
strength (of the order of 10-2073 is associated with higher-lying (312-) states. 
The levels considered therefore contain a corresponding amount of configura- 
tions involving the excitation of the closed shells. The observed large strength of 
the E2 transitions may possibly be associated with the magnitude of these 
admixtures. For the second 312- states at about 2.4 MeV, the E2 transitions to 
the ground state are found to be strongly hindered, with B(E2) values less than 
0.15 e2 fm4 (Bearse et al., 1968, and references quoted there). 

The quadrupole moment of a single-particle configuration may also receive 
contributions from the recoil of the closed shells. Thus, the total electric quadru- 
pole moment measured with respect to the nuclear center of mass is 

Q = c [2(zP - Z)' - (x, - A')' - ( 1 ~ ~  - Y)'] 
P 

= c (2z: - x: - y:> - 4 z x  2, + 2 x c  x ,  + 2 Y C y p  
P P P P 

+ ( A  - N)(2ZZ - x2 - Y2) 

P zn) ( P  " 
+ x  ( 2 : x p - C x . ) +  P n Y (p -p"  -NN(2Z2-XXz-  Y2> (3-45) 

= c (2z: - x: - y:)  - 2 2  1 z, -c 

where X ,  Y ,  2 are the center-of-mass coordinates. The sums over p extend over 
all the ( A  - N )  protons and the sums over n over the N neutrons. A 
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v The matrix elements of the operator (3-45) with inclusion of the correla- 
tions due to antisymmetrization can be simply evaluated if the nucleons are 
assumed to move independently in a harmonic oscillator potential, since then 
the motion of the system separates into center-of-mass motion and intrinsic 
motion (see Appendix 7B). For all the states of the lowest configurations (which 
have the minimum number of quanta), the center of mass is in the 1s state and 
the matrix elements of the quadrupole operator (3-45) thus receive no contribu- 
tions from the recoil terms. (In "0, for example, these lowest configurations 
comprise the 2slI2, Id,,, , and ld3,, single-neutron configurations.) 

Estimates of the recoil terms for more realistic potentials would be of 
interest, but the vanishing of these terms for the oscillator potential suggests 
that they are small in most cases. 

Magnetic dipole efects in single-particle configurations (Table 3-3) 

The available evidence on magnetic dipole moments for j and j - '  con- 
figurations is listed in Table 3-3. The single-particle values pSp are obtained from 
Eqs. (3-37) and (3-38). The only directly measured M1 transition rate for j"  
configurations refers to the p3/1 -.p;,: transition in 15N, determined from 
inelastic electron scattering (Beer et al., 1968). The observed transition rate 
interpreted in terms of Eq. (3-41) yields a value for gs - gl , which is 0.85 rt_ 0.1 A 

Nucleus I j  Pobs PSP 

3H 

I5N 
He 

1 5 0  

1 7 0  

"F 
j9K 
41Ca 

'07Pb 
*07Pb 
209gi 

f 7 / 2  

.f;; 
PF,: 
fs;: 
h9,2 

2.98 
-2.13 
- 0.28 

0.72 
- 1.89 

4.72 
0.39 

4.3 f 0.3 
0.59 
0.65 & 0.05 
4.08 

- 1.59 

2.79 
- 1.91 
- 0.26 

0.64 
- 1.91 

4.79 
0.12 

- 1.91 
5.79 
0.64 
1.37 
2.62 

Table 3-3 The experimental magnetic moments are from the compilation of 
Lindgren (1965), except for the moments of I7F (K. Sugimoto, A. Mizobuchi, 
K. Nakai, and K. Matuda, Phys. Letters 18, 38, 1965) and of the 5/2 state in 
'O'Pb (H. J. Korner, K. Auerbach, J. Braunsfurth, and E. Gerdau, Nuclear 
Phys. 86, 395, 1966). Where no error is given, the uncertainties are reported to 
be less than 0.01 magneton. 
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v times the value 4.58 for a free proton. Indirect evidence on the M1 component 
in thef;/i ---f f6):. transition in "'Pb is provided by the observed M1 - E 2  ratio 
for this transition. Assuming the E2 component to be given by the single-particle 
value with an effective charge of 0.9 (see Table 3-2), one obtains an MI-transition 
matrix element which is about a factor of two smaller than the single-particle 
value (see Chilosi et al., 1964). 

The renormalization of the magnetic moment due to the polarization of 
the closed shells involves two spin-polarization parameters, of which the first, 
Sg,, is a contribution to the spin g factor, while the second, Sgi, is associated 
with the moment (3-44). From the two measured moments in '"Pb and from 
the evidence on the A41 transition, one may attempt to determine the two polari- 
zation parameters. In such an analysis, one must bear in mind, however, that 
also additional effects, such as exchange moments and other interaction terms in 
the moment operator, are expected to  make small contributions to the observed 
moments (see Sec. 3C-6). Little evidence is available concerning the magnitude 
of these effects, but one must reckon with a contribution amounting to one or a 
few tenths of a magneton. In view of this uncertainty in the interpretation of the 
moments, an estimate of the spin polarization parameters from the available data 
involves considerable latitude. A consistent tentative interpretation of the two 
static moments and the transition moment can be obtained by taking 
Sg,/g, - -0.5 and the radial average (dg;(r))/g,  - 0.4, which implies , ~ ( p ~ / ~ )  = 

0.5, p( f ,12)  = 0.9, and a reduction of 0.5 for the MI-matrix element for the 
f7,' + j 5 / 2  transition. 

M4-transition probabilities for single-particle configurations (Table 3-4) 

The available evidence on M4-transition rates for j" configurations is 
shown in Table 3-4. The single-particle transition probabilities are obtained from A 

Nucleus (Ij)i (Ij), B(M4>,,de2fm8) Wf4>,,(e2fm8> 

'giPb '1312 f 5 7 :  2.8 x 103 1.7 x 104 
2g:T1 G 2  d31: 3.3 x 103 1.7 x lo4 

.- 1 

Table 3-4 The experimental data are taken from the Table of Isotopes by 
Lederer et nl. (1967) and include the redetermination of the lifetime for the 
z07Pb isomer by H. P. Yule, Nuclear Phys. A94, 442 (1967). 

v 

A and Wahlborn (1960). 

Eq. (3C-37). The radial matrix elements ((lj),lr31(Ij)i) between initial and final 
states have been calculated by means of the wave functions given by Blomqvist 
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3-4 p-DECAY MATRIX ELEMENTS 
3-4a Allowed Transitions 

Transition operators 
decay depend on nuclear properties 

similar to those involved in electromagnetic transitions. The simplest type of p 
processes are those in which the nucleon undergoes a p transformation as if it 
were at rest; the wavelengths of the emitted leptons (electron and neutrino) are 
usually large compared to nuclear dimensions, and the decay amplitude is there- 
fore approximately independent of the position of the transforming nucleon. 

Transitions that can be described in this lowest approximation, in which 
the transition operator is independent of the positions and velocities of the 
nucleons, are referred to as allowed transitions. These may again be divided into 
two types. In Fermi (F) transitions, the operator (or p moment) is independent 
of the nucleon spin, while in Gamow-Teller (GT) transitions, the moment is 
proportional to the spin operator of the decaying nucleon. Hence, in F tran- 
sitions, there is no angular momentum transfer between nucleon and leptons, 
while in GT transitions, the decay involves a transfer of one unit of angular 
momentum. 

The transition rates for these two types of processes can be expressed in 
terms of the reduced transition probabilities 

The transition probabilities for 

d B(F; IT ,  MT IT ,  MT f 1) = - I ( I M T ,  MT k 11 T i  I I M T ,  M,)lZ 4n 

(3-46) 

where t* = tx  & it,, are the operators which transform a neutron into a proton, 
and tiice versa ( ( p  I t -  1 n )  = ( n  I t+  1 p )  = l), while 0, = 2s, is a spherical com- 
ponent of the Pauli spin vector. The coupling constants for F and GT transitions 
are denoted by gv and ga (referring to the vector and axial-vector character of 
the p currents involved in the interactions). The empirical values of these 
coupling constants are given by Eq. (3D-23). 

The transition operator for the Fermi processes is the component of the 
total isospin, and the matrix element therefore depends only on the isospin 
quantum numbers of the states involved (see Eq. (3D-41)). The observed F 
transition rates thus especially provide tests of the validity of the isospin quan- 
tum number for nuclear states (see Fig. 1-10 and Table 1-3). The Gamow-Teller 
matrix elements yield information regarding the coupling of the nucleon spins. 
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Closed shells with N = 2. Mirror transitions 

The single-particle G T  transitions have the selection rules A I =  0 and 
A j  = 0, 1 .  For a single particle (or single hole) outside closed shells with 
N = 2, the B values are given by (see Eq. (3A-22)) 

j ,  = j ,  = 1 + 1 - 2  

B,,(GT; l j ,  -+ lj,) = (3-47) 

A j  = 1 

The main evidence on GT transitions of the type considered is derived from 
the mirror transitions, that is, transitions between nuclear states obtained from 
each other by the interchange of neutrons and protons (charge symmetry 
conjugates). The empirical data on these transitions are listed in Table 3-5, 
p. 349. The observed values of B(GT) are found to be in qualitative agreement 
with the single-particle values (3-47), but to be systematically smaller than this 
theoretical estimate, except for A = 3. Polarization effects similar to those dis- 
cussed for the spin magnetic moments are expected to be small, since the nuclei 
in question have closed shells with saturated spins. The rather large reduction 
of the matrix elements, especially for A = 39 and 41, may thus indicate significant 
admixture of more complicated configurations or the presence of interaction 
terms in the GT operator. 

The GT moment is related by rotational invariance in isospace to the 
isovector part of the spin contribution to the magnetic dipole moment. Thus, 
for the static dipole moment, we have 

( J M ,  = 3 MTI c (%&)k Iv =$  M T )  
k 

( J M ,  T = 4 M ,  = 4 I c ( C z  t+ )k lJM,  T = 4 MT = -4) 
k 

(3-48) 

For example, the observation that B(GT) for 17F + 1 7 0  is about 15% smaller 
than the single-particle estimate (see Table 3-5) implies a reduction of about 8% 
in the isovector spin contribution to the magnetic moments of these nuclei. 
Such a reduction shifts the moments by about 0.2 of a magneton (see, for 
example, Eq. (3-38)). The fact that the magnetic moments of these nuclei differ 
from the single-particle values by less than 0.1 of a magneton (see Table 3-3) may 
thus indicate the presence of interaction terms in the M1 or GT moments, leading 
to an increase in the magnitude of the M1-matrix elements or a decrease in 
the magnitude of the GT-matrix elements. 
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Closed shells tvith N > Z 

For configurations with a single particle outside closed shells with N > Z, 
the P-transition rates differ by a T-dependent factor from those of Eq. (3-47), if 
the proton orbitj, is not occupied by neutrons. From Eq. (3-19), we obtain 

B(GT; j , ,  T = To + + + j P ,  T = To f +j  

j ,  occ. by n T = To - f r 
T = To - 4 (3-49) 

T = T o + f  

= B,,(GT; j ,  +j,) 
j ,  unocc. by 11 

2To + 1 

The presence of the neutron excess is expected, however, to strongly affect 
the P moment for single-particle transitions, on account of the coupling of this 
moment to the transition moments of the excess neutrons. The effect may be 
compared with the renormalization of the spin magnetic moments associated 
with the presence of unsaturated spins in the closed shells, but new features 
arise from the fact that the P-transition frequencies for the particles in the closed 
shells may be smaller or greater than, or degenerate with the single-particle 
frequency, depending on the P transition considered. (The reduction of GT 
moments for single-particle transitions, as a result of the coupling to the particles 
in the closed shells, has been discussed by Fujita and Ikeda, 1965, and by 
Halbleib and Sorensen, 1967; see also the discussion in Sec. 9-3.) 

The coupling effect becomes especially large for transitions by which a 
neutron transforms into a proton in the same orbit. Such a transition is degen- 
erate with the transitions by which one of the neutrons in the closed shells 
transforms into a proton without change of orbit, and the nucleonic interactions 
therefore give rise to major correlations among the degenerate daughter states. 
Thus, an exchange force proportional to (c, . c2)(tl . t2), such as considered in 
connection with the polarization effects in the M1 moments, tends to completely 
remove the G T  strength from the single-particle transition. A perturbation 
estimate analogous to Eq. (3-43) would give an infinite value for the ratio of 
SA(GT) to JL(GT), since A e  is to be replaced by a vanishing energy denomina- 
tor ; however, the induced moment SA'(GT) gives rise to additional polarization 
effects, which can be included by replacing A'(GT) by JZeff(GT) = A!(GT) + 
6A(GT). The inclusion of these higher order terms thus leads to a vanishing 
value for the effective single-particle moment. 

Evidence on G T  moments for single-particle transitions without change of 
orbit is provided by the decay of 49Ca (see p. 350). The transition probability 
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B(GT) is found to  be about 30 times smaller than the value given by Eq. (3-49). 
For transitions with change of orbit, the coupling to the closed shell 

moments may also lead to large reductions of the single-particle moments, but 
the magnitude of the effect is expected to  depend rather sensitively on  the trans- 
ition frequency. There is so far no experimental evidence of b moments for single- 
particle (or hole) transitions of this type. 

The correlation effect responsible for the quenching of the single-particle GT 
moments may be compared with the correlation effect that removes the Fermi 
strength from the single-particle transitions with Tf = Ti - 1. The total Fermi strength 
is concentrated on the isobaric analog state of the parent, which may be regarded as a 
coherent superposition of transitions (jm), -+ (jm), of all the excess neutrons (see 
Eq. (3-20)). In a similar manner, the interactions tend to concentrate the GT strength 
on a collective excitation at higher energy. 

While the selection rules for the Fermi transitions are direct consequences of the 
isobaric symmetry, the quantitative features of the corresponding correlation effects 
for the GT transitions depend on the more detailed properties of the interactions. 
Selection rules for GT transitions would follow from symmetry considerations, if 
the nucleonic interactions were independent not only of the charge variables but also 
of the spin coordinates. The nuclear states produced by such interactions form 
supermultiplets (orbital permutation symmetry or U,  symmetry; see p. 38 and 
Appendix 1C) and, since the GT as well as the F moments are among the generators 
of the U ,  symmetry group, allowed p transitions can only occur between states 
belonging to the same supermultiplet (Wigner, 1939). 

The supermultiplet symmetry has approximate validity for the spectra of light 
nuclei, but the symmetry is badly broken in heavier nuclei as a consequence of the 
strong spin-orbit interaction in the one-particle potential, which leads to ( j j )  coupling. 
The correlations responsible for the renormalization effects for the GT moments, as 
well as for the spin-magnetic moments, may be viewed, however, as a trend away 
from the ( j j )  coupling scheme toward LS coupling and supermultiplet symmetry 
(Fujita and Ikeda, 1965; see also the discussion in Sec. 9-3). 

3-4b Forbidden Transitions 

In the case of transitions for which the allowed matrix elements vanish 
(change of parity or  AZ >1), it is necessary to  take into account the dependence 
of the b-transition operators on the position and velocity of the nucleons. As in 
the case of the electromagnetic interaction, the general /? interaction can be 
expanded in terms of a series of multipole moments. While, however, for given 
transfer of angular momentum and parity, the photon emission is characterized 
by a single moment, the p process may depend on  several different moments. 
The structure of the b interaction and the expansion in terms of multipole 
moments are considered in Appendix 3D. 
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First-order forbidden p transitions have been studied for single-particle 
configurations in the region of 208Pb (see Fig. 3-6, p. 351). The analysis leads to 
estimates of the renormalization factors for the various /3 moments contributing 
to the transitions, but the conclusions are tentative in view of the incompleteness 
of the experimental data. 

ILLUSTRATIVE 

E X A M P L E S  TO 

SECTION 3-4 

Allowed f l  transitions for  single-particle conzgurations (Table 3-5) 

The available evidence on the P-decay rates for mirror transitions in single- 
particle configurations is listed in Table 3-5. The Gamow-Teller transition proba- 

n - + p  % / 2  1120+ 50 3 3 
3H -+ 3He s;,: 1060 rt: 100 3.3 k 0.3 3 

-+ "N p h i  44705 30 0.27 + 0.02 I 13 
"F -+ ''0 4 2  237Q-t 50 1.09 0.1 715 

39Ca --f 39K d3;i 4330 & 150 0.30 0.05 315 
41Sc -+ 41Ca fTI2 2780 100 0.83 5 0.1 917 

Table 3-5 The ff values are derived from measurements of lifetimes and 
decay energies given in the Table of Isotopes by Lederer et al. (1967). For the 
neutron, the half-life is from the recent measurement by C. J. Christensen, 
A. Nielsen, B. Bahnsen, W. K. Brown, and B. M. Rustad, Phys. Letters 26B, 
11 (1967). Theft  value for 3H is based on the discussion given by J .  N. 
Bahcall, Nuclear Phys. 75, 10 (1966). The B values in the table are given in 
units of (47r-l g:. 

bility B(GT) is obtained from theft  value by means of the relation (see Eqs. 
(3D-23) and (3D-38)) 

(3-50) 

D = 6260 i 60 e)'= 1.51 0.03 

The Fermi transition probability B(F) is assumed to have the value one, in units 
of (471)-'g;, as expected for transitions between isobaric analog states with 
T = 1/2 (see Eq. (3-46)). 
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v While the main contribution to the transitions considered is associated 
with the allowed 10 moments ( A ( p V ,  0) and &(jA ,  0, l ) ) ,  additional small con- 
tributions may arise from higher-order p moments. An estimate of the cor- 
rection may be derived from the expressions for the total transition probabilities 
B(An = 0+)  and B(An = 1 +) that can be obtained from Eq. (3D-47) by inter- 
changing V and A .  The numerically largest correction arises from the weak 
magnetic moment &(j,, ic  = 1, I I  = 1 )  given by Eq. (3D-37). The interference 
term between the weak magnetism and the Gamow-Teller moment is found to 
reduce the total B(An = 1 +) by the following relative amounts: - 2.3 % ( 1 5 0 ) ,  

- I%(l7F),  -5%(39Ca),and -1%(4*S~);forn-+pand3H-+3He,theeffect is  
less than 3%. It is to be emphasized that the present estimate is rather crude, 
since the approximation on which Eq. (3D-47) is based is not well fulfilled for 
the transitions considered because of the large transition energies and low Z 
values. A quantitative estimate must take into account the radial dependence of 
the moments and the departure from the allowed shape of the /3 spectrum. (See, 
for example, the discussion of these effects in the p decay of "B and "N, pp. 
414 ff.) 

Additional evidence on allowed p transitions for single-particle configura- 
tions has been obtained from the study of the decay of 49Ca (Chilosi et al., 1965). 
The energy spectra of 49Ca and 49Sc are illustrated in Fig. 3-2d. The ground 
state of 49Ca has Zn = 312- and the main p branch proceeds to the 312- level 
in 49Sc at 3.09 MeV and has logft = 5.1. The transition involves a change of 
isospin (T = 912 -+ T = 712) and the Fermi matrix element therefore vanishes. 
From Eq. (3-50) we thus obtain B(GT) = 0.035 (4n)-'g:; in comparison, the 
value of B(GT) for a single-particle p3/' configuration is 

B(GT; P S I ' ,  T = 912 -+ p3/', T = 712) = 40127 

in units of (4n)-'g: (see Eqs. (3-47) and (3-49)). 
The stripping reactions populating the states in 49Ca and 49Sc indicate that 

the p 3 1 2  neutron strength in 49Ca is predominantly associated with the ground 
state, while about 60 % of the pjIz proton strength to T = 712 levels in 49Sc goes 
to the lowest 312 state at  3.09 MeV (see Erskine et al., 1966). If we correct for 
such a dilution of thep,/, single-particle strength in the daughter state, the effec- 
tive GT moment for the p3,2  transition amounts to only about 20% of the 
single-particle value. (The moment is proportional to (B(GT))'/'.) 

Forbidden B decays for single-particle conJigurations (Fig. 3-6 and Table 3-6) 

Information on the forbidden p decays for single-particle configurations 
has been obtained from the study of the transitions 'O7TI -+ '07Pb and 
'O'Pb -+ '09Bi. The theoretical analysis on which the present discussion is based 
has been given by Damgaard and Winther (1964). 

The decay of '07Tl is illustrated in Fig. 3-6. The ground state decay in- 
volves matrix elements of multipolarity ;in = 0 - and 1 - , while the decay to the A 
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v 

A 

excited (3/2-) state is predominantly of 1 - type. The contribution from the 
An = 2- transition, which is permitted by the spins of the states, is estimated to 
be of the order of 1 %. 

56: 4.79m 

0.16% --\ log f t  = 6.47 

\ 0.90 MeV 99.8% 

0.57MeV 
Log f t  = 5.13 

Figure 3-6 The experimental evidence on the 6 decay of "'Tl is taken from H. D. 
Evans, Proc. Phys. SOC. (London) 63A, 575 (1950), and from P. R. Christensen, 0. B. 
Nielsen, and H. Nordby, Phys. Letters 4, 318 (1963). 

v In the 5 approximation, one obtains the following expressions for theft 
values of the two transitions (see Eq. (3D-46)) 

(gZi4x)D 
s1/2 + P l / Z  fot = 

B ( h  = 0- ; SI / 2  +pi (2) + E(An = 1 - ; s 1 1 2  +Pl/2) 
(3-51) 

(s:/477)D 
S l / Z + P 3 1 2  f o r  = B(hn= l-- ;s  

112  ' P 3 / 2 )  

in terms of the reduced transition probabilities given by Eq. (3D-47). This 
approximation is fairly accurate for the transitions considered, but it is important 
in the quantitative evaluation of the multipole moments to include the correc- 
tions due to the finite nuclear size (see Eq. (3D-25)). 

The A = 0- transitions involve two different matrix elements associated 
with the multipole moments A ( p A ,  I = 0) and A( j ,  , K = 1, A = 0), while the 
I = 1 transitions involve the three multipole moments A'(&, K = 0, I. = l), 
Jlc'(p,, I = l), and A(jA, K = 1, A = 1) (see Eq. (3D-47)). The two matrix 
elements associated with the vector interaction can be related by the continuity 
equation (3D-33). 

In the evaluation of the matrix elements A@,, I = 0) it is assumed that 
the single-particle states can be represented by motion in a central potential, 
which includes a spin-orbit coupling, (1 . s) uJr) ,  but is otherwise velocity inde- 
pendent. We then have the relation 

(3-52) 

It is found that the term proportional to the spin-orbit potential contributes only 
a few percent to the matrix element. A 
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v Assuming pure single-hole configurations for the states involved and 
employing the radial nuclear wave functions given by Blomqvist and Wahlborn 
(1960), one finds the matrix elements listed in Table 3-6. The coupling constant 
gv was taken to have the value (3D-23), while the ratio gA/gv was taken to be 
- 1.18. (The slight increase in the axial vector coupling implied by the recent 
neutron half-life measurement (see Eq. (3D-23)) has little effect on the present 

A analysis.) 

K = 0, 1" = 1) 

B(A = 1) 

-0.115 

0.083 

5.1 x 10-4 

-0.102 

0.039 

- 0.080 

102 x 10-4 

4.6 x 104 
1.3 x 105 

0.181 

- 0.022 

25 x 10-4 

0.135 - 0.004 

- 0.053 0.002 

- 0.057 0.019 

3.1 x 10-4 0.3 x 10-4 

1.6 x lo6 
3.0 x lo6 

2.0 x 105 
3.2 x 105 

Table 3-6 The ft values for 207Tl are taken from Fig. 3-6; for '09Pb, from A. H. 
Wapstra, Arkiu Fysik 6,263 (1953). The table lists reduced matrix elements, in units of 
g v ,  for the moments given in the first column. The reduced transition probabilities B(X) 
are in units of g:, and the ft values in seconds. The table is based on the analysis 
by J .  Damgaard and A. Winther, Nuclear Phys. 54, 615 (1964) and private communi- 
cation by Damgaard. 

From the comparison between the theoretical and the observed ft values 
one may attempt to estimate the renormalization factors for the p moments 
associated with polarization effects of the closed shells. Since both the p 
branches are predominantly of A = 1 multipolarity (see Table 3-6), theft values 
mainly depend on the renormalization of the two multipole moments A ( p v ,  
1 = 1) and A ( j A ,  K = 1, A = 1). The multipole moment A ( j v ,  K = 0, A = l), 
when expressed by means of the continuity equation, has a structure similar to 

A = l), and these two multipole moments are therefore expected to  be 
renormalized by approximately the same factor. The two renormalization factors 
can thus be determined from the observedft values, if we assume these factors to 
be the same for the sllz + p I l 2  and s1,2 + p 3 1 2  transitions. 
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v If we express the renormalization in terms of effective coupling constants 
(gv)eff and (gA)eff, the experimental ft values can be fitted by the two sets of 
values 

(2)  (*) = 0.7 
( j l ,  x = 1, 1 = 1 )  (Pv. A = ] )  

If the 5 approximation is employed, and if one neglects the energy 
dependence of the coefficients aL and PKL in the finite size corrections to the 
multipole moments (see Eq. (3D-25)), the electron spectrum has the allowed 
shape. When the higher-order terms are included, however, one finds small 
deviations from the allowed shape, associated mainly with A ( j A ,  ti = 1, A = 1) 
and therefore of different magnitude for the two sets of effective coupling con- 
stants obtained above. A measurement of the spectrum shape for the ground 
state transition may thus make it possible to distinguish between the two inter- 
pretations of theft values. 

An important point in the present analysis is the approximate cancellation 
of the two A = 0 matrix elements for the ground-state transition (see Table 3-6). 
This feature could in principle be tested by a measurement of the angular 
distribution of the electrons emitted from polarized "'TI nuclei, which would 
provide a measure of the relative contributions of the I = 0 and I = 1 matrix 
elements. 

The p transition to the first excited state, f s i z ,  has so far not been observed. 
It is expected to be very weak, not only because it involves the multipole order 
il = 2, but also because of its I forbiddenness. In fact, assuming pure con- 
figurations, the transition involves A1 = 3, and the leading-order matrix element 
A(jAr ti = I ,  I = 2) therefore vanishes. An analysis of such I forbidden tran- 
sitions would involve an estimate of polarization terms with ti = 3, A = 2, 
analogous to the tensor term (3-44) in the effective M1 operator. 

On the basis of the analogy between the vector p interaction and the 
electromagnetic interaction, one expects a close similarity between the vector 
part of the 'O7TI decay and the electromagnetic decay of the isobaric analog 
state in 207Pb (In = 1/2+, T =  45/2, M ,  = 43/2) to the low-lying p l l Z  and 
p j l Z  states. Thus, the El moment for the decay of the analog state (to which only 
the isovector component contributes, since AT = 1) is expected to be reduced by 
approximately the same factor as the P moment A('(pv, I = 1) in the 207Tl decay. 
(See the comment in connection with Eq. (3D-35).) 

The decay of 209Pb(g9i2) may be analyzed in the same manner as the T1 
decay and the results of this analysis are also shown in Table 3-6. It is found that 
the experimental ,ft value is about 50 percent greater than that obtained by A 
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v 

A 

assuming pure single-particle configurations and neglecting polarization effects. 
For this decay, the dominant transition moment is M ( p A ,  ,d = O) ,  and the 
analysis thus indicates that this moment is renormalized by a factor of about 0.8. 

3-5 REACTION PROCESSES. 
P A R E N T A G E  C O E F F I C I E N T S  

3-5a One-Particle Transfer Reactions 

Direct tests of the single-particle interpretation of a nuclear state can be 
obtained from the study of one-nucleon transfer reactions (stripping and pickup 
processes). The amplitude for a stripping process transferring a nucleon in an 
orbit jm to the target nucleus is proportional to the matrix element of at(jm) 
between the target state and the final nuclear state; similarly, the amplitude 
for a pickup reaction involves the matrix element of an a (or a bt) operator. 
These matrix elements are referred to as parentage coefficients. The determina- 
tion of parentage coefficients from cross sections for one-particle transfer 
reactions is discussed in Appendix 3E. 

For processes connecting a closed shell configuration with single-particle 
or single-hole configurations, the reduced parentage coefficients are 

for closed shells with To = 0 ( N  = Z ) .  If the closed shells have To f 0, we must 
distinguish between the various configurations illustrated in Fig. 3-1, 

j,, unoccupied j ,  unoccupied 

( j ;  TMTII at(j> mt> TO 9 M T  = TO) = (2j  + 1 > * ’ 2 ( T O T O h t  I TMT) 

j ,  occupied j ,  unoccupied 

( j - ’ ;  To - 4, MT = To - 3 IIbt(j, rn, = -4) 116; To,  MT = To) (3-54) 

= (2 j  + I ) ” ~  

= ( j ;  To - 3, MT = To - $ 1 1  at( j ,  in, = -+) 116; T O M T  = To) 

j,, occupied j ,  occupied 

( j -  ; TMTII bt(.j, in,) 116; To, M T  = To) = (2 j  + 1)1’2( To To tm, I T M T )  

The states identified as single-particle or single-hole configurations in the 
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spectra in Fig. 3-2 are populated with especially large probabilities in one- 
nucleon transfer reactions (see references in captions). This evidence is of major 
significance for the interpretation of the levels. The intensities of the transfer 
processes are consistent with the estimate (3-54), but a quantitative test of this 
relation is difficult at the present time owing to the problems involved in the 
detailed analysis of the reaction cross sections (see Sec. 3E-1). For the higher- 
lying single-particle configurations, whose properties are distributed over several 
nuclear levels, the transfer reactions provide a determination of the strength 
function. As an example, the evidence obtained from the analysis of the 
40Ca(d, P ) ~ ' C ~  process is considered in Table 3-7, p. 356. 

3-5b Resonance Reactions 

The spectrum above the threshold for nucleon emission can be studied by 
scattering processes. In the low-energy domain, one observes sharp resonances 
corresponding to the formation of metastable states with properties similar 
to the bound states. The amplitude g u  for forming the resonance state by a 
nucleon incident on the closed shell target depends on the component in the 
resonance state representing the target and a single particle in an orbit with 
quantum numbers Zj.  Thus, the ratio of g l j  to the single-particle amplitude 
( g l j ) s p  corresponding to the scattering of a particle in a potential, is equivalent 
to the parentage coefficient for the bound states. The analysis of resonance 
reactions in terms of the amplitude for formation and decay of the resonance 
state, as well as simple estimates of the single-particle amplitudes, are considered 
in Appendix 3F. The amplitudes g l j  are so normalized that their absolute 
squares are the resonance widths T u .  

The study of nucleon resonance reactions on closed shell nuclei has yielded 
important information on the location of the single-particle strength. The 
evidence obtained is consistent with, and supplements, that obtained from transfer 
reactions. An example is considered in Table 3-8, p. 358. 

For the closed shells with T # 0, the main evidence on the spectra with 
T =  To + f and M ,  = To - f (isobaric analog states) has been obtained from 
studies of proton resonance scattering on the closed shell nuclei. The resonance 
widths provide information on the parentage of the levels, which can be com- 
pared with that obtained from neutron transfer reactions to the M ,  = T = To + + 
components of the isobaric multiplets (see Table 1-2). By scattering protons on 
targets with a neutron-hole configuration, one may study the isobaric analog 
states ( M ,  = To - 1) of the closed shell nuclei and obtain information on their 
parentage with respect to the neutron-hole states. (See, for example, the analysis 
of thep + *07Pb reaction by Andersen et al., 1966.) 
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v 
ILLUSTRATIVE 

EXAMPLES T O  

SECTION 3-5 

Parentage coeficients from 4oCa(d, p)41 Ca reaction (Table 3-7) 
The ( d , p )  stripping process on 40Ca has been extensively studied with a 

view to determining the neutron parentage factors. A large number of proton 
groups are observed, corresponding to  the formation of different levels in 
41Ca, and many of the proton groups have angular distributions with pronounced 
maxima, mostly in the forward hemisphere, as is characteristic of a direct transfer 
reaction. 

In the example considered in Table 3-7, the observed angular distributions 
were analyzed by assuming the incident deuteron and the outgoing proton to 
move in an optical potential (Distorted Wave Born Approximation; see Appendix 
3E). The potential assumed consists of a real central potential of the Woods- 
Saxon shape, an imaginary potential proportional to the radial derivative of A 

0 
1.95 
2.02 
2.47 
2.68 
3.41 
3.62 
3.74 
3.95 
4.20 
4.62 
4.77 
4.98 
4.8-6.6 (4 states) 
4.9-5.8 (3 states) 
5.0-6.0 (4 states) 
5.4-6.2 (8 states) 

f 7 , 2  

P 3 / 2  

P 3 / 2  

s1/2 
s1 I 2  

P 
d 
P 1 / 2  

P 
P 
P l l 2  

d 3 / 2  

9912 

4 1 2  

f S I 2  

$112 

P 

(8) 
3.8 
0.8 
1 . 1  
0.04 
0.03 
0.2 
0.3 
1.5 
0.02 
0.2 
0.4 
0.8 
0.6 
2.8 
0.04 
0.4 

Table 3-7 The parentage factors, obtained from an analysis of the cross 
sections for the 40Ca ( d , p )  41Ca reaction with a deuteron energy of 7 MeV, 
have been given by T. A. Belote, A. Sperduto, and W. W. Buechner, Phys. 
Rev. 139B, 80 (1965). For the groups of states referred to in the last four 
entries in the table, the last column gives the sum of the observed parentage 
probabilities. 
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v the real potential (surface absorption), and the Coulomb potential. The para- 
meters of the potential were obtained from elastic scattering data for deuterons 
and protons on 40Ca. The effective np interaction was approximated by a 
zero-range force. The forward maxima in the observed angular distributions are 
rather well fitted by the analysis, and the positions of the maxima yield the 1 
values for the transferred particle; in some cases, the j value could be deduced 
from the structure of the cross section at backward angles (Lee and Schiffer, 
1 964). 

The magnitude of the observed cross section gives the parentage factor (see 
Eqs. (3E-2) and (3E-10)), and the values obtained are listed in Table 3-7. The 
absolute values have considerable uncertainty in view of the simplifying assum- 
tions involved (such as zero range of the np interaction and neglect of spin-orbit 
coupling in the nuclear potential). The cross sections were, therefore, normalized 
with respect to the ground state of 41Ca, which was assumed to have the full 
single-particle strength. For a more detailed analysis of the (d, p )  cross sections 
leading to the ground state and lowest excited states of 41Ca, see Lee et al. 
(1964). 

It is seen that even for the lowest excited orbit (P~,~), the single-particle 
strength is shared by two (or more) levels, although the main strength is con- 
centrated on the 1.95 MeV level. The major part of the p l 1 2  strength is also con- 
centrated on a single level, but the remaining part is distributed over a large 
number of levels. The strong 1 = 3 stripping in the region of 5-6 MeV of excita- 
tion is interpreted in terms of f5,2 transfer. Although the estimated total strength 
is only half of the single-particle value, the absence of other strongflevels in the 
region studied suggests that the main f S i z  strength is contained in the levels 
listed in the table. For the still higher-lying single-particle orbits, only a fraction 
of the total strength appears to have been found. 

The population of the positive parity states in the low-energy part of the 
spectrum indicates that the 2s and Id shells in 40Ca are not completely filled. 
Thus, the observed strength of the d3,2 transfer to the 2.02 MeV level has been 
interpreted as evidence that about 20% of the d3/2 shell is unoccupied. 

The reaction was found to populate many levels in addition to those listed 
in Table 3-7, but the angular distribution for the additional proton groups did 
not show any significant component corresponding to the stripping process. It 
may thus be concluded that the single-particle parentage factors for these levels 
are small. 

Reduced widths for proton resonance scattering on I6O (Table 3-8) 
The cross section for proton scattering on l60 exhibits a number of 

pronounced resonances, the analysis of which yields information on the single- 
proton parentage factors for the resonance states in 17F. The resonance param- 
eters shown in Table 3-8 are based on differential cross section measurements 
for elastic proton scattering. The contribution of the separate Z j  channels was A 
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v determined by a phase shift analysis, neglecting the minor contributions from 
inelastic reaction and capture processes. 

To a first approximation, the scattering amplitude in the region of the 
resonances can be represented by the single-level formula (3F-12). The energy 
variation of the resonance width was taken to be of the form (see Eqs. (3F-38) 
and (3F-44)) 

with a transmission factor v l  calculated for Coulomb wave functions at an 
interaction radius chosen to be R = 5.1 fm (see p. 444). The reduced width 
y obtained from Eq. (3-55) is given in Table 3-8 in percent of the unit h2/MR2.  

F, = 2kRv,y (3-55) 

A 

3.10 
3.86 
4.69 
5.10 
5.52 
5.67 
5.68 
5.82 
6.04 
6.56 
6.70 
6.77 
7.03 
7.36 
7.44 
7.45 
7.47 
7.48 
7.55 

112- 
512 - 
312 - 
312 + 
312 - 
712 - 
1/2+ 
312 + 
112 - 
112 + 
312 + 
312 - 

312 - 

312 + 
712 - 

0.020 
I 0.003 

0.24 
1.63 
0.07 
0.04 

<0.0006 
0.19 
0.03 
0.22 

< 0.003 
0.005 
0.004 

~ 

weak levels 1 
0.85 
0.03 

1.3 
I 2.8 

6.3 
76 

1.5 
5.3 

<0.013 
6.8 
0.6 
3.6 

< 0.04 
0.11 
0.04 

18.8 
1.32 

Table 3-8 The resonance parameters for the levels in I7F are from the 
analysis by S. R. Salisbury and H. T. Richards, Phys. Rev. 126, 2147 (1962). 

V For some of the resonances, the width is not small compared with the dis- 
tance to the nearest resonance with the same In. For these resonances, the 
phase shifts were fitted in terms of a two-level formula, which includes inter- 
ference effects between the resonances; the values of y thus obtained (and listed 
in Table 3-8) are similar to those derived from an analysis in terms of the one- 

A level formula. 
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'I The value of y in units of hZ/MR2 is a measure of the single-particle strength 
of the levels considered (see Eq. (3F-65)), but a quantitative analysis of the 
one-particle parentage coefficient involves the solution of the single-particle 
motion in the nuclear potential. (The interaction radius assumed in the analysis 
seems to be rather large, and thus the estimated values of the reduced widths y 
may be too small. On the other hand, the value of y for a single-particle resonance 
is expected to exceed h2/MR2, as a consequence of the diffuseness of the potential 
(see Sec. 3F-2f). 

Among the levels studied, the 3/2+ state at 5.10 MeV appears to be 
approximately of single-particle type, although significant d3,2 strength is also 
observed in the 5.82 and 7.48 MeV levels. The lowest negative parity state 
expected is f7/2, but only a small fraction of the f 7 / 2  strength is observed in the 
region studied. 

The analysis of neutron scattering on l60 leads to conclusions similar to 
those from proton scattering. (For references, see Nuclear Data Sheets.) It has 
been found possible to reproduce the width of the d3,2 neutron resonance at 
5.1 MeV by single-particle scattering in a potential (see Kolesov et al., 1963). 
However, the sensitivity of the width to the assumed parameters of the potential 
leaves considerable ambiguity in the quantitative determination of the parentage 
coefficient. With increased information on the nuclear potential, the resonance 
scattering may provide a rather precise tool for exploring the structure of the 

A nuclear states. 



APPENDIX 

3A 

One-Particle Wave Functions 
and Matrix Elements 

3A-1 

3A-la  m, representation 

The wave function for a particle with spin s = 3 moving in a spherically sym- 

Coupling of Spin and Orbit 

metric and parity-conserving potential can be written in the form 

*"ljrn = . 9 " l , W G 1  Yl x) 
( l % ) h  

= g n t j ( r )  C (/mlbms ljm>ilYimt(a, 9)>Xms  (3A-1) 
mimE 

where x is the spinor wave function specified by the component m, of the spin with 
respect to the fixed z axis. 

The radial function may be taken to be real (for a time reversal invariant poten- 
tial), and we choose the phase in  such a manner that .9 is positive for large r (for r 
greater than the outermost nodal point), 

(3A-2) 

This phase convention is motivated by the fact that radial matrix elements are frequently 
dominated by the region of the nuclear surface. Examples of radial wave functions are 
illustrated in Fig. 3-4. 

The factor i' has been inserted in Eq. (3A-1) in order to ensure the standard 
transformation under time reversal (see Sec. 1B-1) 

T Inom> = ( - l )J+m / n o  -m> (3A-3) 

3A-1 b h representation 

In the helicity representation, the spin orientation refers to a coordinate system 
X' whose z' axis is in the direction of r. The orientation of X' with respect to X 
will be denoted by i; the complete specification of X'  requires three Euler angles, the 
polar angles 9, cp of r and a third angle $, which may be chosen arbitrarily. (The 
definition of the Euler angles is illustrated in Fig. 1A-1; the redundance of $ will be 
further discussed below.) 

360 &kt 
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The transformation of the spinor xm, to the rotated frame 9' is given by (see 
Eq. (1A-34)) 

X m ,  = c 9 ! N ) X h  (3A-4) 
h 

The wave function (3A-1) can therefore be written in the form (see Eqs. (IA-42) and 
(1A-43)) 

where @(oh) is a phase factor, 

(3A-6) 

The angular part of the wave function (3A-5) is normalized with respect to integration 
over all three Euler angles (cp, 9, $) specifying the orientation P, and we have, therefore, 
inserted an extra normalization factor of ( 2 7 ~ ) - ' / ~ .  The wave function (3A-5) is 
independent of the redundant angle +, as follows from the derivation of this wave func- 
tion. It can be verified that, if A$ is added to 4, the gfunction in Eq. (3A-5) is multi- 
plied by exp (id$h), while X h  is multiplied by exp(- iA$h). (An alternative procedure 
would be to fix the Euler angle Ic/ by choosing, for example, the x' and y' axes of I' so 
that X ' i s  obtained from $by a rotation through an angle 6 about an axis with the 
direction of z x 2 ' ;  the Euler angles of $'would then be q, 6, $= - q; see Fig. 1A-1.) 

We can also derive the spin angular part of the wave function (3A-5) by trans- 
forming to the "intrinsic" coordinate system X'  with orientation P. An argument 
similar to that leading to Eq. (1A-97) gives 

(3A-7) 

Rotational symmetry specifies the f and m dependence of the transformation coefficient 
(3A-7) but leaves open the possibility of a phase factor which may depend on j and h. 
Since h -+ -11 under time reversal, we cannot employ the usual phase prescription, and 
the relation (3A-7) therefore involves an additional phase convention for the states 

For the amplitudes in the ]in? representation, the transformation to the intrinsic 
IhM). 

coordinate system yields 

(3A-8) 
2/+ 1 

<im, I Om> = if( -) <Imlsm, l j m > 2 ! d i >  

The phase factor i' is here determined (apart from a factor +_ 1) from the requirement 
that Iom) has the standard transformation under time reversal. From Eqs. (3A-7) 
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and (3A-8) together with (3A-4), we obtain the transformation coefficient 

(3A-9) 

It is seen that the relations (3A-9) and (3A-7) are equivalent to Eq. (3A-5). (The trans- 
formation coefficient (3A-9) is written in a form that is valid for particles of arbitrary 
spin as well as for the relative motion of two particles with total spin s and total 
helicity h.) 

The B and F transformations of the states Iljm) and Ihjm) are given by 
B Iljm) = (-l)* IQm) 

(3A-10) 

The transforms of Ihjm) can be obtained from those of lljm) by means of Eq. (3A-9). 
If we consider the B and Y transformations in the Ph representation, we must 

choose the third Euler angle for the transformed orientations. It is convenient to make 
this choice such that P is invariant under 9 while, under 9, P transforms into -P, 
obtained from P by a rotation through the angle - 7 ~  about the y' axis of X'.  We 
then have 

9- 1-i h )  = ( -1)"2+h I? - h )  
B p h )  = ( - l ) l / Z - h j - ?  -h> 

(3A-11) 

and 
--i = (p' + 77,T - 8, -7r - +) 

9 A h ( - ? )  = ( - l ) J + h 9 L h ( - i )  
(3A-12) 

The phase factor involved in the B transformation may be obtained by employing the 
rotation matrix (1A-47). The relation (3A-12) for the 9 function can be derived from 

The helicity representation (3A-5) for the wave function of a particle with spin is 
equivalent to the representation for rotational wave functions of a system whose 
intrinsic shape possesses axial symmetry but not reflection symmetry (see Sec. 4-2). 

Eq. (1A-45). 

3A-2 Evaluation of Matrix Elements for One-Particle Operators3 

3A-2a 

A tensor operator depending only on the position r of a particle has the general 

Operators depending only on spatial coordinates 

form 

For a self-adjoint tensor (which transforms into itself under Hermitian conjugation), 
T AP - - 1 ' A  f ( r >  YAP(8, p') (3A-13) 

The one-particle matrix elements are usually evaluated employing the ( Z S ) ~  representation 
(see for example, de-Shalit and Talmi, 1963). The present section especially exploits the helicity repre- 
sentation, which is often useful in exhibiting simple features of the matrix elements. The helicity 
representation has been employed by Raynal (1967) in the evaluation of two-body interaction 
matrix elements. 
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the radial functionf(r) may be taken to be real. We have added the factor iA so as to 
obtain the phase factor cg = cH = 1 for time reversal and Hermitian conjugation (see 
Eqs. (1A-74) and (1A-78)). In a representation with the standard phases, the matrix 
elements of TAP are then real (see Eq. (1A-75)). 

For the helicity wave functions (3A-5), the reduced matrix element defined by 
Eq. (IA-61) can be evaluated by means of the coupling relation (1A-43) for the 59 
functions (see also Eq. (1A-42)), and we obtain 

<nz Zzjz I I  i'f(r) YA llnlllil) 

= (2i2 + 1)112 <jzrnzl TA lil> 
( j d ) j z m z  

(3A-14) 

with the radial matrix element 

< j z  I flii > = J,"w.2~z~z(~)f(r>~.l,,r,(r>r' dr (3A-15) 

(We employ a notation by which radial matrix elements, such as (3A-15), are distin- 
guished from the matrix elements involving angular variables, since the latter are either 
labeled by magnetic quantum numbers or, in the case of the reduced matrix elements, 
have a double bar.) In Eq. (3A-14) we have inserted the phase factors (3A-6) and have 
used the symmetry relation (1A-10) for the vector addition coefficient. The parity 
conservation is ensured by the summation over h. 

One notes that the angular matrix element in Eq. (3A-14) depends only on t h e j  
quantum numbers (not on the 1 values). In fact, the angular density, averaged over the 
spin orientation of a single-particle state, depends only on j ,  as follows directly from 
the expression (3A-5) for the wave function in the helicity representation. 

We can also derive the matrix element of the tensor (3A-13) by means of the 
single-particle wave functions (3A-1). Performing a recoupling from the scheme 
(fl$)jl,  I ;  j ,  to the coupling scheme (llA)Z,, 3; j ,  and using the relations (1A-42) and 
(1A-43) for the coupling of the Y functions, we obtain 

<n21ziz I /  i A f ( r )  YA IlnlIljl> 

= (2iz + l)liZ<lzi~ mz I 7'2 Illi~> 
( l l + ) i t  ,A; jzmz 

x <(l lh) lz ,  + ; j 2  I ( l I + ) h ,  A ; i z >  ( i z l f l h >  (3A- 1 6) 

The recoupling coefficient can be expressed in terms of a 6jsymbol (see Eq. (1A-20)). The 
equivalence of the expressions (3A-14) and (3A-16) exhibits the possibility of expressing 
a 6j symbol in whch one of the angular momenta is 112 in terms of vector addition 
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coefficients. For even values of I ,  + A - I,, we have 

3 A-2b Spin-dependen t operators 

A spin-dependent (but velocity-independent) operator can be expanded in 
tensors of the form 

T,,,, = iY(r)( YdQs) (3A-17) 
(K 1 Ma 

We can also characterize the spin dependence in terms of the (spherical) components 
of s in  the intrinsic system X' ,  with the orientation 2. The basic tensors are then4 

(3A-18) 

(3A-19) 

In the helicity representation. we obtain the reduced matrix elements 

<i2 lIf(r)% = o sqE0 llil) 

<j211f(r)(%?=~ss=l 9 < = - l s q = - ~ )  llil) (3A-21) 

(il + 4 ) 1 / 2 < i l  - 4x1 l i z 4 > < i z l f l i l > : ( - l  i (-1)11+12-A 1 - - i l l  - l 2 ( -  1)12- 12- 1/2 

where 9; represents the spherical tensor of rank A with p component 9iy. 

Tensor quantum numbers are denoted by Greek letters. Since a Greek pronunciation of 
" helicity" presumably omits the h sound, we employ the quantum number 7. 
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For the tensors (3A-17), the reduced matrix elements can thus be expressed in 

( - l ) J 1 + A - ’ z  (A -t 1 ) ’ ” ( j l ~ X O  j j 2 4 )  - ( - l ) ’* - l z - l ’ z  (X)’/’<jl - 4x1 I jz+) X = K - 1 
( -1 ) j z - i z -1 /2  (2h + l)‘/’<j1 - 4x1 li2t) = K (3A-22) 

(-1)’1+A+j2 (X)1~2<jl~XOlj24) - ( A  + l)’”<jl  - Bhl Ij2B) X = K + 1 

The expressions (3A-22) can be further reduced by employing the recursion 

assuming 1, - I ,  + IC to be even. (For odd I ,  - I ,  + ti, the matrix element vanishes as a 
consequence of parity conservation.) 

relation 

i 
(3A-23) 

The vector addition coefficients ( j , t A O  I j ,  3) can be evaluated by means of the 
relations given in Appendix IA. 

In the special case of j ,  = j ,  , the coefficient (3A-23) vanishes for even A. There- 
fore, the diagonal matrix elements (3A-22) vanish for 2 = ti. (For odd A = IC, the 
diagonal matrix elements vanish as a consequence of parity conservation.) 

If one uses (1s)j coupled wave functions, the matrix elements of the operators 
(3A-17) can be obtained from the general formula (1A-70), 

<(f24)jZ It i“f( Y x . ~ h  I /  U L & ) ~ I )  
I I  b il k 4 j3 

=((2X+ 1)(2j1 + 1)(2jz + 1))’” 1 <i21fljl> <1211iliYx I l l ’>  <+lls l i+> (3A-24) 

where the angular and spin matrix elements have the values (see Eq. (1A-63)) 

The equivalence of the expressions (3A-22) and (3A-24) reflects special properties of 
the 9j symbols involving two j = 112 quantum numbers. 

Spin-dependent tensors can also be expressed in terms of the operator (s * V) 
acting on a function of the coordinates. Such expressions can be written in  terms of the 
tensors (3A-17) or (3A-18) by means of the relations 

(3A -26) 
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3A-2c Operators involving orbital momenta 

Tensors involving the orbital angular momentum 1 can be expressed in terms 
of j ( = I  + s) together with spin-dependent operators of the type already evaluated, 
and we thus consider tensors of the form 

(3A-27) 

Since j is diagonal in the single-particle quantum numbers nIj, only the term j’ = j ,  
contributes. We have employed the relation (1A-19) as well as the reduced matrix 
element (1A-63). The reduced matrix element in the last line of Eq. (3A-28) is given 

One can also express the angular momentum dependence in terms of the com- 
ponentsj,, of j in the intrinsic coordinate system X‘ with orientation 3. The transforma- 
tion from the component j ,  in X to the components j,, in X’  is given by 

by Eq. (3A-14). 

(3A-29) 

and the properties of the intrinsic components j,, are discussed in Sec. 1A-6. In 
particular, the action ofj,, on the single-particle wave function is given by (see Eqs. 
(1A-90) and (1A-93)) 

j q Q i h ( f ) ) ( h  = ( - 1 ) “ ( j ( j +  1))’”<jh1 - 7 Ijh - 7 ) 9 A . h - q ( f ) X h  (3A-30) 

The j-dependent tensors can be written in terms of the j ,  components by means of 
relations analogous to Eq. (3A-20). In this manner, the matrix elements are expressed 
in terms of vector addition coefficients, without involving 6j symbols. 



APPENDIX 

Particle-Hole Conjugation 

3B-1 Description of Fermion Systems in Terms of Particles and Holes 

3B-la Systems of identical particles 

We consider a system of identical fermions (neutrons, protons, or electrons) 
moving independently in an average potential. The potential may have arbitrary 
shape, but is assumed to be time reversal invariant. 

The single-particle orbits are then twofold degenerate (Kramers theorem, see p. 
19), and the degenerate orbits, conjugate under time reversal, are denoted by v 
and ij, 

(3B-1) 

since, for a single fermion, we have 9-' = - 1 (see Eq. (1-41)). If the system possesses 
spherical symmetry, the orbits may be labeled by v = nZjm. 

The particle orbits v are numbered according to their energy 8,; for degenerate 
orbits, the numbering can be chosen arbitrarily. A state obtained by filling the first 
s2 pairs of orbits ( v ,  7) will be referred to as a " normal state," provided SZ is chosen 
such that the state is nondegenerate. For a spherical nucleus, this implies that the 
normal state consists of closed shells (or subshells). For a deformed nucleus, the 
normal state may involve an arbitrary number of paired particles. The occupancy of 
the single-particle levels in a normal state is referred to as a normal distribution (or 
Fermi distribution) and the last filled orbit as the Fermi level, vF . 

For not too high excitation energies, the bulk of the particles remains in a normal 
distribution, and it is convenient to describe the system in terms of the addition or 
removal of particles from the normal state (" elementary excitations "). 

The states obtained by adding a particle in an unfilled orbit are represented by 

1.) =a'(.) 16) Y > YF (3B-2) 

where at(v) is the particle creation operator, while 16) is the normal state, which plays 
the role of a generalized vacuum. (When there is no risk of confusion, we employ the 
same notation Iv) for the state of a single particle as for the many-particle state 
(3B-2)) The states obtained by removing a particle from an occupied state, that is, by 

!f$ 367 
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acting with an annihilation operator a on the normal state, are referred to as hole 
states. (The properties of creation and annihilation operators are discussed in 
Appendix 2A.) 

The quantum numbers of a hole state are related to those of the annihilated 
particle by time reversal conjugation. In fact, to produce a hole state with angular 
momentum jm  (or linear momentum p), we must remove a particle with quantum 
numbers j - m (or -p). The basic relation between particles and holes can therefore 
be expressed in the form 

bt(") = u(F) 

b(v) = ~ ' ( p )  
(3B-3) 

where bt (and its Hermitian conjugate b) are the creation (and annihilation) operators 
for hole states, 

Iv-'> = b+(") 18> (3B-4) 

The inverse of Eq. (3B-3) is given by (see Eq. (3B-1)) 

a'(.) = --b(F) 

a(.) = -bt(q 
(3B-5) 

In the spherical representation, the operators bt(jm) form the components of a 

States with two or more particles and (or) holes are obtained by acting with 
spherical tensor of rankj,  as do the at(jm) (see Sec. 1A-5e). 

products of at and b t  operators on the normal state, 

I v r l . .  . v Y ' ~ k + i  ...v"> = ~ ' ( ~ ~ ) ~ . . ~ ~ ( ~ ~ + i ) b ~ ( ~ ~ ) . ~ . b ~ ( ~ i )  18) (3B-6) 

(In the representation of states in terms of particles and holes, all states are anti- 
symmetrized, and the subscript a is therefore usually not needed.) 

The transformation, by which the occupancy of the single-particle levels with 
v < vF are described in terms of (bt, b) operators in place of the (at, a) operators, is 
canonical, since the commutation relations for the (bt, b)  operators are the same as for 
the (ut, a) operators. The transformation can therefore be associated with a unitary 
operator 4 Y h ,  the particle-hole conjugation, with the properties 

(3B-7) 

The vacuum state with the property a(v) 10) = 0 for all v is transformed into the normal 
state with the property b(v) 16) = 0 for all v ,< vF . The phase of a,, is so chosen that 

%h JO> = 18) (3B-8) 

From this relation, together with Eqs. (3B-6) and (3B-7), follows 

Ivil.. . vr 1 V k  + 1 . . . v.> = a'(v,) . . . U t ( V k  . l ) b t ( Y k )  . . . b t ( V l )  (8) 
= %hUt(V,) . . . Ut(Vk + 1)Ut(Vk) . . . &,) lo> 
= 4 Y h  Iv1 . . . vJa (3B-9) 
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where the last state is the antisymmetrized n-particle state. Acting twice with a,, gives 
$ 2  h -  - (-1)- (3B- 10) 

where k is the number of holes and Q the number of paired single-particle levels in 
the normal state. 

Since the particle-hole conjugation changes a configuration with 2Q - k particles 
into one with k particles, the operator %,, commutes with the number operator 
only for a system with k = Q particles. In the special case of a configuration with a 
half-filled j shell, %,, may commute with the Hamiltonian, and the stationary states 
may then be labeled by an additional quantum number characterizing the symmetry 
under particle-hole conjugation (Bell, 1959). 

The particle-antiparticle conjugation (or charge conjugation), which plays a funda- 
mental role in relativistic quantum mechanics, is a transformation from a particle state V ,  

with positive energy, to a hole state obtained by removing a particle F, with negative energy, 
from the Dirac sea. The operation, therefore, exploits an equivalence between the particle 
states above and below the Fermi surface with no counterpart in the nuclear system. This 
symmetry makes it possible to define a particle-hole transformation which, in contrast to 
the operation Q k  given by Eq. (3B-7), leaves invariant the normal state and is a constant of the 
motion (see the reference to %', P%', and 9WT symmetry in Chapter 1 ,  pp. 16 and 21). 

Even though the nucleonic levels V ,  and v <  above and below the Fermi surface have 
different quantum numbers (such as nQ), the gross features of the single-particle spectrum, 
such as the level density, may in some situations be approximately the same for v, and V ,  . 
This similarity may give rise to symmetry properties of the nuclear excitations analogous to 
those associated with charge conjugation. An operation corresponding to charge conjugation 
is then obtained by combining the particle-hole conjugation with a transformation v <  2 v, 
between the approximately equivalent states (a+(v ,) 2 bt(v,). (Examples of this symmetry are 
discussed in Chapters 8 and 9.) 

3B-16 

For a system of neutrons and protons, we can define hole states in terms of the 

Systems of neutrons andprotons. Isospin for hole states 

relation (3B-3) for the neutrons and the protons, separately. We use the notation 

] Y h ' >  =by"") 10) 
b + ( V " )  = a(;.) 

(3B-11) 

for the neutron hole states, and a corresponding notation (v,, + vp) for the proton hole 
states. 

The isospin component of a hole is opposite to that of the annihilated particle 
(mi = -3 for n-', etc.), but the creation operators bt defined by Eq. (3B-11) do not 
transform as the components of an isospinor (a tensor of rank 1/2 in isospace). In 
fact, under Hermitian conjugation, a tensor component t mi transforms into a tensor 
component t - m, multiplied by a phase factor that changes sign when m, is raised 
or lowered by one unit (see Eq. (1A-76)). 

Hole states and hole operators with isospinor properties may be defined by 

(3B-12) 
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The relationship between the two sets of hole operators is given by 

b'(v, rn, = 4) = -bt(v,> = -a(~,> = -a(o, m, = -4) 
bt(v, m, = - 4) = b'(v.1 = a(?.) = a(o, rn, = 4) 

(3B-13) 

The particle-hole transformation (3B-12) can be expressed in terms of the 
transformation 

which is the product of time reversal and a rotation through the angle - n about the y 
axis in isospace (the inverse of the charge symmetry operation &?* (see Eq. (1-59)). 
Denoting the P-transformed states by a tilde, we have 

9 = exp(irrTy)F = 9; 'F (3B-14) 

(3B-15) 

The operator 9 is antiunitary, like F, but obeys the relation 

for a system of nucleons. The inverse of (3B-15) is, therefore, 

The particle-hole conjugation %!A, which generates the transformation at(v, m,) + 
bt(v, mt) ,  has properties similar to those of %,,; however, the relation (3B-16) implies 

If the normal state contains more neutrons than protons ((v,), > ( v ~ ) ~ ) ,  the total 
isospin of the system is obtained by coupling the isospins of the extra particles and 
holes to the isospin of the normal state (see, for example, Eq. (3-19)). 

P = + 1  (3B-16) 

z 
a+(v, m,) = b(v, m,> (3B-17) 

(a$ = I .  

3B-2 Matrix Elements of One-Particle Operators 

3B-2a v representation 

A one-particle operator, F, can be written in terms of the ( a f ,  a )  variables and 
the single-particle matrix elements (v21  F Iv,) (see Eq. (2A-24)). For the states below 
the Fermi level, we perform the transformation (3B-3) to  hole operators (replacing the 
summation variable v by V). In this manner, we obtain three different terms, corre- 
sponding to matrix elements with none, one, or two of the states having 

F = F o + F i + F 2  
Fo = C (vzl FIv,>a'(vz)a(vi> (particle scattering) 

FI = C {<v2 I F I fit  >at(v2)bt(vl) (pair creation) 

v I > V F  
V Z > V F  

V I S V F  
V Z  > V F  

+ < C I  I F I vz>b(v1)a(v2)} (pair annihilation) 
Fz = - < G I  I F IY2>bt(v2)b(v1) (hole scattering) 

V , $ V F  
V Z $ V F  

+ C < v I F l v )  (" vacuum" expectation) 
V Q V F  

The last term in F, is the expectation value of F in the normal state. This term arises 
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from the commutation of b(v,) and bt(v,), when the expression for F is reduced to the 
normal form with creation operators occurring to the left of annihilation operators. 

The different matrix elements of F are illustrated by the diagrams in Fig. 3B-1. 
The relationship between the matrix elements for the various processes can be expressed 
in terms of the following simple rule (the "crossing relation"): A hole state v-' in 

particle hole action of F 

(v;lv2 IFIS> = (V,IFl~l> '$IF1 V;'VZ> = (?I IF1 V Z >  

Figure 3B-1 
is read from bottom (initial state) to top (final state). 

The diagrams may be taken as a vivid notation for the matrix element, which 

initial (or final) state may be replaced by a particle state V in final (or initial) state; to 
obtain the correct sign, the state that is being transferred must first be brought all 
the way to the left by suitable commutations, each involving a factor of -1. For 
example, 

<vzll F l v i l >  = (61 F I ~ ~ Z V I ' >  = -<61 F / V I ' P ~ >  

= -<F11 FIGz> (3B-19) 

(The crossing relation leaves out a c-number term, the vacuum expectation value of F ;  
see Eq. (3B-18)) 
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The matrix elements between hole states can be expressed in terms of the 
conjugate operator F, with the property 

( ~ 2 1  Fc I Y ~ ) . ~  = < v Z ' l  F l v i ' )  - <dl FId)s(~i, YZ) 

(3B-20) 

We have here employed Eq. (1-34) for the matrix element between time-reversed states. 
The subscript sp has been added to stress that the matrix elements in question refer 
to single-particle states (and not to configurations with a particle added to the normal 
state). 

For self-conjugate operators, we have 

F c -  - - ( F F ~ - I ) +  = CF 

c = - C g C J j  = + I  
(3B-21) 

where the phase factors c? and cH characterize the transformation under time reversal 
and Hermitian conjugation (see Sec. 1A-5d). The quantum number c is an intrinsic 
property of the operator F and gives the relation between the matrix elements of F for 
particle and hole states. (The values of c for various operators are given in Eq. (3-14).) 

One can also express the matrix elements involving hole states in terms of the 
transformed operator 4?i1 F%h, which can be obtained from the decomposition (3B-18) 
by replacing all bt and b operators by ut and u operators. For example (see Eq. (3B-9)), 

(81 F l v i ' v z )  = (Ol%h'F@~ / ~ l v z ) ,  

<Pi I F I vz)sp (3B-22) 

(The conjugate operator F, gives the matrix elements of %; IF%,, connecting states 
below the Fermi surface, apart from the constant expectation value term.) 

The time reversal transformation affects the isospin components in an unsym- 
metrical manner ( t ,  + t,, t, -+ - t,, t, -+ t ,  , since t, and t, are real matrices, while 
t ,  is imaginary). For isospin-dependent operators, we may instead employ the particle- 
hole conjugation based on the F transformation (3B-14), which inverts all three 
components of the isospin. The F-type conjugate of a one-particle operator F is 
denoted by Fcf and has the properties 

(vzmt(2)l F,. lvimt(l))sp = (vT1171t(2)] FIvT'mt(1)) - <dI F1d>s((vmt>i, (vmt>z) - - 
= - <vimt(l)l FIVZ md2))Sp (3B-23) 

F,, = - ( F F F - ' ) '  

For self-conjugate operators, we have 

F,, = c'F C' = (- I)'c (3B-24) 

where 7 is the tensorial rank of P i n  isospace. Thus, if Fis isoscalar (isospin independent, 
z = 0), we have c' = c, while for an isovector operator (7 = l), which has the form 
F = tG, we have c'(F) = - c(G). 
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3B-2b Reduced matrix elements 

In the spherical representation v = (n l )  jni, we may express a tensor operator in 
the form (1A-86). By transforming the terms, as in Eq. (3B-l8), and using the rela- 
tions (1A-9) and (lA-80), we obtain 

<jF1l/TA l l j i l >  =(-1)"+'2-"  <jl!~TA!Ijz> 

(3B-25) 

(8'1 TA ll(jr ' j 2 ) J )  = - ( j l  I I  TA l l j ~>s (J ,  A) 

The hole states in Eq. (3B-25) are defined in terms of the F transform and the particle- 
hole states are phased according to the definition 

(3B-26) 

The first relation in Eq. (3B-25) could also have been obtained directly from 
Eq. (3B-20). Monopole operators (A = 0) of even parity may contain a constant term 
(the expectation value for the closed shells), which is not included in Eq. (3B-25). 

For isospin-dependent operators, matrix elements reduced in isospace (see Sec. 
1A-9) may be obtained from the relations involving the 9- type particle-hole conjuga- 
tion. 

3B-3 

The form of a two-particle operator expressed in terms of creation and annihila- 
tion operators is given by Eq. (2A-28). We shall especially consider the nucleonic 
interaction V,  although the relations in the first part of the present section apply to 
arbitrary two-particle operators. The scalar character of the interaction operator is 
exploited in subsequent parts of the section. 

The transformation of a two-particle operator to the particle and hole variables 
introduces terms having the structure of a one-particle operator. An analysis of these 
terms, for the two-particle interaction, leads to the Hartree-Fock potential. 

Matrix Elements of Two-Particle Operators 

3B-3a v representation 

In order to obtain the form of a two-particle operator in terms of the particle 
and hole variables, we proceed as for the one-particle operators, replacing the (at, a)  
operators for the filled orbits by (b, bt) operators, by means of Eq. (3B-5). After a 
reordering of the operators so that creation operators appear to the left of annihilation 
operators, the interaction takes the form (with the simplified notation 1, 2, . . . for the 
states vl, v 2 ,  . . .) 

v= vo + I.: + Vz + v, + v4 
(particle-particle scattering) (3B-27a) 1 

O - 4  
V - - C (341 Vj 12). a'(4)at(3>a( l)a(2) 
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1 1 
V, = 4 x(341 V112). ~~(4)~'(3>~(l)b'(2) + 4 (341 VIi2).~'(4)~'(3)b'(l)a(2) + H.c. 

1 
2 = - C(341 VIT2). at(4)at(3)bt(l)a(2) + H.c. (creation or annihilation of pair associated 

with scattering of particle) (3B-27b) 

1 
V, = - iC(341 VlTZ). at(4)a'(3)bt(2)b'(1) + H.c. (creation or annihilation of two pairs) 

(3 B-27~) 

- C(i4I V132). at(4)bt(3)b(l)a(2) (particle-hole scattering) (3B-27d) 

+ c < 2 4  VI a'(2)a(l) (single-part icle potential energy) (3B-27e) 

1 
V, = zZ(3ZI V114>. bt(4)b(3)b(2)a(l) + H.c. (annihilation or creation of pair associ- 

ated with scattering of hole) (3B-27f) 

(annihilation or creation of pair) (3B-278) + C(Zll VI li>. b(2)a(l) + H.c. 

1 (hole-hole scattering) (3B-27h) v4 = ,C<izl ~ 1 3 4 ) ~  bt(4)b+(3)b(i)b(2) 

-E:<Til VllZ>. bt(2)b(l) (single-hole potential energy) (3B-27i) 

(interaction energy of normal state) 1 
2 + -C<al V [ Z h  

(3B-27j) 

The summations extend over all occupied levels (v < vF) when the state in the matrix 
element has a bar, otherwise over the empty levels (v > vF). The factors 1/2 and 1/4 
in Eq. (3B-27) would disappear if, instead of summing independently over the different 
states v i ,  one would restrict the sum to a definite ordering, such as, for example, 
v1 < v 2  and v j  < v4 in Eq. (3B-27a). 

If the two-particle interaction V is Hermitian and invariant under Y, we have 
the relation 

<iq V I W  = (341 ~ 1 1 2 )  (3B-28) 

It then follows from Eqs. (3B-27a) and (3B-27h) that the matrix element for the 
scattering of two holes is the same as for two particles (invariance of the interaction 
with respect to particle-hole conjugation). Moreover, with the standard phasing of the 
states (see Eq. (1-40)), the interaction matrix elements are real provided V is invariant 
under 9?,(x)s (see Eq. (1-42)). For a Hermitian V, the matrix elements are therefore 
also symmetric, 

(341 V112) = (121 V134) (3B-29) 

The terms in Eq. (3B-27) involving four operators can also be arranged according 
to the numbers of creation and annihilation operators ; thus, V2,  represents scattering 
effects, while V13 and V31 are associated with the creation and annihilation of a pair, 
and Vo4 and V 4 0  with the creation and annihilation of two pairs. Examples of such 
terms are illustrated by the diagrams in Fig. 3B-2. 
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The decomposition (3B-27) applies to the particle-hole conjugation associated 
with time reversal (bt(v) = a(?)). If we employ the F transform (bt(v) = a(;)), the 
states v" in Eq. (3B-27) are replaced by v". 

1 %( 
<34 I VI 12). 

particle-particle scattering 

3-x: 1 - 1  

1<3-'4]V]1-'2).= <41vj31-'2>, 
= - (4 I v( 1-132). = - 041 VJ 52), 

particle-hole scattering 

<3-'4-'I P'J1-'2-')0= < i Z j  VlJ?-). <2-'34] V I  1). = (341 V I  Zi) .  
=(341 VI 12). pair creation 

hole-hole scattering 

2- '  3 

< 1 - ~ 2 - ~ 3 4 1  v l b =  vliZ), 
creation of two pairs 

Figure 3B-2 The figure illustrates the various matrix elements of a two-particle operator 
acting in a Fermi system. The notation is similar to that of Fig. 3B-1. The matrix elements 
involving hole states can be obtained from the two-particle matrix elements by means of the 
crossing relation given on p. 371. 

3B-36 Single-particle terms. Hartree-Fock potential 

The terms (e),  (g), and (i) in the transformed operator (3B-27), which arise from 
the commutation of the b and bt operators, represent an effective single-particle 
potential U, with matrix elements 

( V Z I  Ul.1) =c < v , v z l  V lv ,v1> .  (3B-30) 
v , < v p  

(The summation over i in Eq. (3B-27) is equivalent to a summation over i.) The 
operator U is seen to have the particle-hole symmetry c = - 1, assuming Y to be 
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Hermitian and invariant under F. If the occupied states form closed shells, the 
potential U is spherically symmetric, provided V is a scalar. 

The potential U represents the average field produced by all the particles in the 
occupied orbits. In a self-consistent treatment of the interactions (the Hartree-Fock 
approximation), the effective single-particle Hamiltonian is 

H,,=T+ U (3B-31) 

where T is the kinetic energy, and the single-particle states Iv) and energies E ( V )  are 
determined by the relation 

< Y ~ I  Tlvi)  + <vz\ Ulvi? = <vzI T l v i )  + C < v i ~ z I V / ~ i v i ) . = & ( ~ 1 ) 8 ( ~ 1 ,  112) (3B-32) 
v; < VF 

When the single-particle states satisfy the self-consistency relation (3B-32), it follows 
from Eq. (3B-27) that the total Hamiltonian takes the form 

where V' is the part of the interaction (3B-27) containing four fermion operators, 
while (01 H 10) is a constant term, representing the expectation value of H in the 
normal state lo), in which the particles occupy the states vi Q v F ,  

<bl HIb? <vi] TIvi) + iix <vivkl vlvtvx>u 
vi 6 V F  

V k  < Y F  
vi d V F  

The factor 1/2 in the last term in (3B-34) reflects the fact that the two-particle inter- 
action contributes to the average potential for both the interacting particles and is thus 
counted twice, if we sum the single-particle energies for the filled orbits. 

The self-consistency condition (3B-32) for the single-particle states implies that 
the Hamiltonian, when written in terms of the particle and hole variables, contains no 
terms connecting the normal state 16) with states involving a single particle and a 
single hole, 

<v i ' vx j  ~ 1 6 )  == o vi < V F  ~k > ~ , c  (3B-35) 

This criterion is in turn equivalent to a variational principle, which requires the 
expectation value of H in the normal state to be stationary with respect to variations 
in the single-particle states. In fact, if we vary an occupied state vi  by admixing a 
component proportional to the unoccupied state v k ,  the normal state 10) receives a 
component proportional to IV,''vk). As a consequence of Eq. (3B-39, such a variation 
of 16) does not affect the expectation value of H to leading order. (Variations involving 
only linear transformations among the occupied single-particle states have no effect 
on the many-particle wave function for the normal state.) 

3B-3c Matrix elements for  angular momentum coupled states 

For angular momentum coupled states, the relations between matrix elements 
involving particle and hole states (crossing relations) involve a recoupling of the 
angular momenta of the four particle states. The recoupling can be easily performed, 



6 38-3 TWO-PARTICLE OPERATORS BIJ 377 

if we write the reduced two-particle matrix element in terms of a coupling of all the 
four angular momenta to a resultant zero, 

<(j3jdJIIV I I ( i 1 j Z ) J )  = (U+ 1)1’2<(j3j4)JMI V l ( j l j 2 ) J M )  

= <j3j41 vlj!i?> 

We have used the notation (compare Eq. (1A-65)) 

( ~ I ~ z ) J . ( J ~ I ~ ) J ; O  
(3B-36) 

<;’&I = < j 3 m 3 j 4 m 4  ~JM>(-1)’3+m3+’4+m4<j3 -m,j4-m41 
(J3J4)JM m3m4 

= (- 1)’+’<j3j41 = <j3j41- (3B-37) 
( j3 j4 )J -M (j3j4)JM 

For example, the particle-hole matrix element is obtained as follows (see 
Eq. (3B-27d) and note that 17) = - Iv)): 

((j3Ij4)JIl v ii(ji I j 2 ) J )  = <jF ‘141 vlir ‘ j ~ >  
( j i j i )Js(j3j4)J;O 

= (jij41 v l j 3 j z ) a  
( j 1 j N V ( j 3 j d J ; O  

= C < ( h j J J t ( j 3 j 4 ) J ;  0 I ( j 3 j 2 ) J ’ ,  ( j l j 4 ) J ’ ;  0) <(jlj4)J’llY lt(jJzW)a 
J ’  

(3B-38) 

For states with a definite T quantum number, we may proceed in a similar 
manner, employing the 8- type particle-hole conjugation. For the particle-hole matrix 
element we then obtain (note that 15) = I v ) ) .  

((j~Ij4)JTllI vlIIK1jz)JT) = -1 < ( i l i z ) ~ ,  ( j 3 j 4 ) ~ ;  o Kj3 j2 )J ’ ,  ( j l j 4 ) J ’ ;  0) 
J’T’ 

x <(f112)T, ( 1 3  14)T; 0 I 0 3  r 2 ) T ,  (1114)T’; 0) <(jlj4)JIT’III ~ I l l ( j 3 j z ) J ’ T ’ > .  (3B-39) 

The triple-bar matrix elements are reduced in isospace as well as in spin-orbital space 
(see Sec. 1A-9). 

The interaction matrix elements for two-particle states and for particle-hole 
states, given by Eqs. (3B-36) and (3B-38), correspond to two different ways of coupling 
the four angular momenta of the single-particle states to a resultant zero. A third 
coupling scheme corresponds to the matrix element V,( j l j2 ,  jJ4) defined by 

(2h -k I)”’vdji]z ,]3j4) E < i 3 x I  v l j i j z ) n  (3B-40) 

The matrix elements V, may be regarded as expansion parameters for the antisym- 
metrized two-particle interaction matrix elements, 

(j1jdLAjzj4)A:O 

(25 -k 1)’ ”<(j3j4)JMI V I(jijz)JM)~ 

=I: (2h + 1) ’ ’ zV4jJz  , j 3 j 4 ) < ( j l j 3 ) X ,  (jZj4)h; 0 1 ( j l j z ) J ,  ( j 3 j 4 ) J ;  0) (3B-41) 
A 

and the inverse 

(2h  + l)l’zv~(j~jz , j 3 j 4 )  

=x (25 + I)’/’<(j3~4)JMJ V l ( j l j 2 ) J M ) .  < j l j 2 )J ,  ( j 3 j4 )J ;  0 J ( j l j3 )h ,  ( j2 j4)h;  0) 
J 

(3B-42) 





APPENDIX 

3c 

Matrix Elements for 
Electromagnetic Interactions 

3C-1 

The quanta1 theory of electromagnetic processes is based on Maxwell's equations 
for the propagation of the electromagnetic field and its coupling to the charge-current 
density. The electromagnetic interaction may be written in the form 

Coupling of Field and Current 

H' = - j,,(r, t)A,(r, t )  d3r 
(3C-1) 

J 
=/rp(r, t)p(r, t )  d3r - 1 j(r, t )  . A(r, t )  d3r 

C 

representing a local coupling between the four-vector potential 

A, = (v, A) (3C-2) 

and the four-vector charge-current density 

(3C-3) 

where cp and p represent the real parts of the time-like components of the correspond- 
ing four vectors. The conservation of electric charge is expressed by the continuity 
equation 

a a 
c --j,(r, t )  = V . j(r, t )  + - p(r, t )  = 0 (3C-4) 

The interaction (3C-1) is invariant under continuous Lorentz transformations 
and is also assumed, as in classical theory, to be invariant under space reflection and 
time reversal. The reflection symmetry of the four-current density is given by 

g(p<r, 0, j(r, t > ) 9 - '  = (p(-r,  0, -j(-r, t>) 

Y ( P ( ~ ,  0, j(r, 0)s - = (dr, - 0, -Xr, - I ) )  

ax, at 

(3C-5) 

and corresponding relations hold for the potentials. 
The description of the electromagnetic interaction in terms of the coupling 

(3C-1) with a current satisfying Eqs. (3C-4) and (3C-5) has been found to have a 

Ffj 379 
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range of validity extending to all the atomic and nuclear systems so far studied. (See, 
for example, the review by Gatto, 1966; as regards the possibility of F-violating 
terms in the electromagnetic current of strongly interacting particles; see also the 
comment in Sec. 3C-6, p. 389.) 

In the present appendix, we consider the structure of the charge-current density 
(3C-3) for nuclear systems and the general form of the nuclear matrix elements that 
can be determined from transition amplitudes and cross sections for radiativeprocesses 
and reactions with charged particles. 

3C-2 Radiative Processes 

The photons are particles with zero mass and unit spin. The spin orientation is 
either parallel or antiparallel to the momentum (the helicity is h = f l), and there are 
thus only two photon states of given momentum, hq. The possibility of restricting the 
polarization states in this manner is connected with the fact that, for a massless 
particle, the helicity is a Lorentz invariant. 

The photon states can also be specified by the angular momentum quantum 
numbers Ap together with the magnitude q of the wave number. There are no photon 
states with I = 0; for such a state, the component of angular momentum in any 
direction must vanish and the state would thus involve particles with helicity h = 0. 

For each set of values (q,  1.p) with I >, 1, there are two photon states, which can 
be specified either by the helicity, h = 1, or by the parity, n = f 1. States of definite 
n are linear combinations of states with h = k 1, occurring with equal intensity. 
Quanta with given I and x are referred to as electric ( E l )  and magnetic (MA) multipole 
quanta 

(3C-6) 

Since the photon has an intrinsic parity of - 1 ,  one can also characterize the MA 
photons as having orbital angular momentum IC = A, while the E l  quanta contain 
components with K = A f 1 ,  with relative amplitudes (l/A + l)1'2; see Eq. (3A-9). 

The vector potential A(r) is associated with the creation and annihilation of 
photons. The occurrence of only two polarization states for the photon corresponds to 
the fact that the radiation field, with a suitable choice of gauge, can be described by a 
purely transverse vector potential, satisfying 

V . A = Q  (3C-7) 

The coupling term in Eq. (3C-1) responsible for emission and absorption of 
photons is seen to be of the form (IA-120). Thus, the nuclear matrix elements for 
emission and absorption of multipole quanta can be expressed in terms of multipole 
moments of the type given by Eq. (1A-127). In view of the transversality condition 
(3C-7), only two combinations of multipole moments (1A-127) occur for given Ap. 
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The moments associated with electric and magnetic multipole quanta can be written 
in the form 

(3C-8) 

where the normalization has been chosen in such a manner that the moments reduce 
to the usual form for q -+ 0 (see below). 

The radial functionj,(qv) in Eq. (3C-8) is a spherical Bessel function of order A, 
which represents the radial wave function for freely propagating quanta. (See the 
analogous result for a scalar coupling in Sec. 1A-8a.) The radial structure of the 
moment (3C-8) thus reflects the fact that the propagation of the photons is not 
distorted during their passage through the nucleus. 

The multipole fields multiplying the current j in the moments (3C-8) are seen to 
obey the condition (3C-7). While &!(MA) is of the form (1A-127) with K = A (see 
Eq. (lA-125)), the relation 

V x (r x V)jA(qr)  Y A J ~  

(3C-9) 

shows that &!(&I) is a sum of two terms of the type (1A-125) with K = A k 1, corre- 
sponding to the orbital angular momentum assignment in Eq. (3C-6). 

From the relation (3C-5), it is further seen that the parity quantum numbers for 
the moments (3C-8) are equal to those in Eq. (3C-6), thus ensuring parity conservation, 
and that the time reversal phase is given by (see Eq. (1A-74)) 

(3C- 1 0) 

By employing the continuity equation (3C-4) together with the identity 

v x (r x V)jA(qr) yAu(f) = - (rjA(qr)) YAu(f) - qzrjA(qr) yAu(f) (3C-11) 
( a  1 

one can express the electric multipole moment in the form 

A ( E 4  P )  

I n  nuclear photoprocesses, the wavelength of the photon is usually large com- 
pared to the nuclear radius, 

qR =6.1 x 10-3A1'3E ,(MeV) (3C-13) 

( R  = 1.2 x A 1 / 3  fm) 
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and, for qr 6 1 ,  one can employ the expansion of the Bessel function 

(3C- 14) 

In most cases, it is a good approximation to retain only the leading term. The multi- 
pole moments then reduce to the simpler forms 

.&!(EX, p) = Jp(r)r" Y,&) d7 
(3C-15) 

A(MA, p) = ~ - J'j(r> . (r x v) ra  yA,,(i) dT 
c(h + 1 )  

The transition amplitude for emission (or absorption) of a photon of given 
multipole type is proportional to the matrix element of the multipole operator. The 
total decay rate, summed over the magnetic substates of the photon and of the final 
nuclear state, is given by 

874h f 1 )  I 
q2"fIB(E(M)X; 1 1  + l z )  

h[(2h + 1 )  ! !I2 z T(E(M)X; I ,  + 1 2 )  = (3C-16) 

where the reduced transition probability is 

B(E(M)h; 1, 1 2 )  = c 1 < I ,  Mz I A(E(M)h, p) l1lMl) I 

= (211 + 1 )  - I <I2 II-N(E(M)A) II 1, >I 
(3C-17) 

For the first few values of II  and 7c, the expression (3C-16) gives, for the decay rate 

P M 2  

per second, 
T ( E I )  = 1.59 x 1015 ( E ) ~ B ( E ~ )  
T ( E ~ ) =  1.22 x lo9 ( E ) ~ B ( E ~ )  
T(E3) = 5.67 x 10' (E)7B(E3) 
T(E4) = 1.69 x 10-4(E)9B(E4) 

(3C-18) 
T ( M I )  = 1.76 x 1013 ( E ) ~ B ( M ~ )  
~ ( ~ 4 2 )  = 1.35 x lo7 ( E ) ~ B ( M ~ )  
T(M3) = 6.28 x 10' (~5)~B(A43)  
T(M4) = 1.87 x 10-6(E)9B(M4) 

where E is in MeV, B(EA) in units of e'(fm)'', and B(MA) in units of (eh/2M~>~(fm)'"~. 
The form of Eq. (3C-16) can be understood from a dimensional argument. Since 

B(II) is proportional to ezL2', and since the factor multiplying B(II) can depend only 
on q, W ,  and c, it must involve the combination h-'q2'+'. A derivation of Eq. 
(3C-16) can be found in many textbooks; see, for example, Blatt and Weisskopf (1952), 
Moszkowski (1965), and Rose (1955), as well as texts on quantum electrodynamics. The 
expression for T(A) can be obtained from a correspondence argument, since the 
electromagnetic field generated by the nucleus is the same function of the nuclear 
charge-current density as in classical theory. Thus, the radiated power T(,l)ho is the 
same as for a classical system of oscillating multipoles; see, for example, Jackson 
(1 962). 

The angular distribution and polarization of the emitted radiation follows from 
the structure of the multipole fields; see, for example, Eq. (3F-4). General expressions 
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and tables of coefficients characterizing these distributions as well as the correlation of 
successive transitions can be found in the surveys given by de Croot et al. (1965); 
Frauenfelder and Steffen (1965); Dolginov (1961). 

The y-transition matrix elements can also be determined from the resonance 
scattering of photons as well as from nuclear reactions induced by photoabsorption. 
(Resonance scattering of y rays is discussed by Malmfors, 1965, and by Mossbauer, 
1965; for a review of photonuclear processes, see, for example, Levinger, 1960, and 
Hayward, 1964.) 

3C-3 Interactions with Charged Particles 

In reactions induced by the electromagnetic field of charged particles, the form 
of the nuclear matrix elements depends on whether or not the projectile enters the 
nucleus itself. If the particle remains outside the nucleus, such as in Coulomb excita- 
tion processes and, to  a first approximation, in internal conversion and atomic 
hyperfine structure, the nuclear matrix elements are the same as those involved in 
radiative transitions. For example, the cross section for a first-order Coulomb excita- 
tion process can be expressed as a product of B(EA) and a factor that can be evaluated 
in terms of the motion of the projectile in the nuclear Coulomb field. 

I f  the particle enters the nucleus, such as in electron scattering, the binding of 
p mesons to heavy nuclei, and, to a minor extent, in internal conversion and hyper- 
fine structure, two types of moments are involved. The first are similar to J&'(E(M)A) 
with the difference, however, that j A ( q r )  is replaced by a radial function depending on 
the motion of the particle inside the nucleus. (This function reduces to jL(qr)  with q 
representing the momentum transfer between the particle and the nucleus, if the 
particle motion is described in terms of plane waves (no distortion).) By varying the 
energy of the incident particle and the angle of zcattering, it is thus possible to obtain 
detailed information on the radial distribution of the multipole moments (form 
factors). 

In addition, the interaction with a particle inside the nucleus involves moments 
of the longitudinal type 

associated with the Coulomb field. The functionf,(r> depends on the radial motion of 
the particle inside the nucleus. The Coulomb moments (3C-19) include a monopole 
term (A = 0, n = + 1). I f  one expandsf,(r) in powers of Y, the leading term is a con- 
stant; to this approximation the moment is proportional to the total nuclear charge 
and does not give rise to intrinsic nuclear transitions. The next nonvanishing term is 
proportional to r 2 ,  and the monopole operator m(E0) defined by 

therefore becomes mainly responsible for transitions with 3.n = O + .  This moment is 
often given in dimensionless units, 

,A(CA, p) = Jp(r)fAr) Y d f )  d~ (3C- 1 9) 

rn(E0) = Jp(r)r2 d~ (3C-20) 

(3C-2Oa) 

(see Church and Weneser, 1956). 
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A treatment of the various types of interactions of nuclei with charged particles 
may be found in the following reviews and articles (and additional references quoted 
there). 

Coulomb excitation : Biedenharn and Brussaard (1965); Alder and Winther (reprint 
volume, 1966). 

Electron scattering: de Forest and Walecka (1966). 
Infernal concersion: Listengarten (1961); Rose (1965). Effects of finite size (penetra- 

tion effects) are discussed by Church and Weneser (1960) and by Gerholm and 
Pettersson (1965). 

Hyperfine structure : Kopfermann (1958); kamsey (1950). Penetration effects in the 
magnetic interaction are considered by Stroke et al. (1961). For a discussion of iso- 
tope (and isomer) shifts, see Wilets et al. (1953); Breit (1958); Shirley (1964). 

p-mesic atoms: See, for example, Wu (1967). 

3C-4 Charge and Current Density for Free Nucleons 

In order to evaluate the matrix elements of the multipole operators, one must 
express the charge and current densities in terms of the variables employed in the 
description of the nuclear structure. We first consider the charge and current densities 
for free nucleons. 

The internal structure of a nucleon extends over a domain that is small com- 
pared to the size of the nucleus, for A 9 1. To a first approximation, we may therefore 
regard the nucleons as point particles having a charge and a magnetic moment. 
Neglecting relativistic effects in the nucleonic motion, the charge-current density for 
such point particles is given by 

p(r) = 5 - rZ(k))5(r - rd 
(3C-21) 

where t ,  = + 1/2 for neutrons and - 112 for protons. The spin g factor is 

gb = H9" t 9,) -+ tz(gn - 9,) (3C-22) 

in terms of the proton and neutron g factors. 
The magnetic moment interacts with the magnetic field, which depends on the 

derivatives of the vector potential and so involves first-order terms in the size of the 
nucleon. 7 he charge-current density (3C-21) constitutes the most general expression 
that includes terms at most linear in the velocity or in the nucleonic size, and that 
satisfies the continuity equation (3C-4) and the space reflection symmetry (3C-5). The 
equality of the coupling constant for the charge and for the convection current (the 
term proportional to vk) can alternatively be viewed as a consequence of the four-vector 
character of j ,  . (The determination of the nucleon charge and current densities from 
invariance arguments has been discussed by Foldy, 1953.) 

I n  Eq. (3C-21), the only parameters, apart from the electric charge, are the 
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magnetic moments (p = +g,), which are found to be p,, = 2.79, p,, = - 1.91 (see Table 
1-1, p. 4). The moments of the nucleons differ considerably from the values 
(p,, = 1, p,, = 0) expected for a point particle satisfying the Dirac equation. The 
differences between the observed moments and the Dirac moments are referred to as 
the anomalous moments or the Pauli moments and are attributed to the intrinsic 
structure of the nucleons. The discovery of the large anomalous moment for the proton 
(Frisch and Stern, 1933) provided the first indication of a complex structure of the 
nucleons themselves, and has remained a challenge to the theory of the nucleons and 
the strong interactions. 

The expression (3C-21) for the charge and current densities is modified by the 
finite extension of the nucleons and by relativistic effects. The finite size can be taken 
into account by replacing the 6 functions in Eq. (3C-21) by electric and magnetic 
form factors 

p(r)  = efdlr - rxl) 

j(r) = j ( v k f E ( i r - r k l )  +fXIr - r k O v ~ ) + ~ ~ . V x s r f M ( l r - - r x l )  
(3C-23) 

e eh 

for a single proton or neutron. One may also express the neutron and proton form 
factors in terms of isoscalar and isovector form factors, 

fo = Hf, + f") f i  = W P  - A3 (3C-24) 

To a first approximation, one may describe the size effects in terms of the 
electric and magnetic mean square radii of the nucleons 

(3 C-25) , 2  
< I . ~ , ~ >  = j  r*fE,M d7 

The observed values of the radii are given in Table 1-1. (For the neutron, the value of 
( r ; )  is negative, and the quantity in Table 1-1 is the square root of the absolute value 

The relativistically invariant matrix elements of the charge-current density 
between states of free nucleons can be expressed in terms of electric and magnetic form 
factors G,,,(q2), which are functions of the four-momentum transfer hq between the 
nucleon and the electromagnetic field. For hq  4 M c  (in the nonrelativistic limit), these 
form factors represent the Fourier transforms of the form factors fE,+,(r) introduced 
above. With the conventional normalization, we have 

(3C-26) 

(3C-27) 

Alternatively, the electromagnetic structure of the nucleon can be characterized by the 
Dirac and Pauli form factors, associated with the charge and anomalous magnetic 
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moment terms in the Dirac equation. The relativistic expressions for the current 
operator, and the connection between the different sets of form factors, can be found, 
for example, in the review by Hand et al. (1963). 

The form factors G,,M(q2) have been determined from electron scattering experi- 
ments for a large domain of q values (q  5 5 to 10 fm-I). (See, for example, the review 
by Chan et al., 1966.) The present data can be approximately represented by the 
simple expressions 

h z =  18.1 fm-2 (3C-28) 

The electric form factor for the neutron is less than 0.2 for q > 2.5 fm-'. For 
smaller momentum transfers, GE,(q2) is poorly determined, but the slope for q = 0 is 
known from the neutron-electron scattering experiments (see Table 1-1). (A striking 
and challenging feature of the electromagnetic structure of the neutron is the vanishing 
of the mean square radius of the Dirac form factor (see Table I-I).) 

A number of far-reaching relations describing the electromagnetic properties of nucleons 
have been obtained on the basis of the extended isobaric symmetry for the hadrons (SU, 
and SU,; see Sec. 1-3b). It is found that the electromagnetic current transforms under SU,  
as a member of an octuplet with strangeness, S = 0, and U spin, U = 0. (The invariance of the 
electromagnetic interactions under the U-spin transformations is discussed on p. 40 and 
p. 61.) The implications of SU, symmetry for the electromagnetic properties of the nucleons 
are limited by the fact that the matrix elements of an octuplet tensor between two members 
of an octuplet (such as the nucleons) involve two reduced matrix elements. (The product 
(1 1) @ (1 1 )  contains the representation (hp)  = (1 1) twice; see the similar feature encountered 
in the discussion of the mass splitting, p. 59.) 

In the SU6 classification, the electromagnetic current is assumed to transform as a 
member of the 35-dimensional representation (as a generator of the SU, group), with the 
SU, quantum numbers given above. Since there is only one reduced matrix element of a 
35-dimensional tensor between states of a 56-dimensional representation (such as that of the 
nucleon), the relative magnitude of any electromagnetic moment for different members of 
this multiplet is given as the ratio of Clebsch-Gordan coefficients. Thus, for example, the 
electric neutron form factor GEn(q2) should vanish and GM,(q2) should be proportional to 
GMM,(qz), in agreement with Eq. (3C-28). 

Furthermore, one obtains the value -2/3 for the ratio of the magnetic moments of 
neutron and proton (Beg et a/., 1964), in remarkable agreement with the experimental values. 
A simple derivation of the magnetic moment ratio can be obtained on the basis of the quark 
model (see p. 41). In this model, we may assume the magnetic moment operator ofthenucleons 
to be the sum of the moments of the individual quarks, each proportional to the charge of the 
quark, since this operator has the required transformation properties under SU, and SU,  . 
The nucleons consist of the quarks n (with charge number - 1/3) andp (with charge number 
+2/3), each with strangeness zero, and coupled according to 

(3C-29) 

Since the states of the 56-dimensional representation are totally symmetric in the spin and 
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isobaric variables, the spins of the two identical quarks must be coupled to J = 1.  The mag- 
netic moment ratio is then obtained from the vector coupling model 

(3C-29a) 

3C-5 Single-Particle Matrix Elements 

If the nucleons are described as point charges with magnetic moments, the 
relations (3C-21) for the charge and current densities lead to the following expression 
for the multipole moment of a system of particles: 

u&(EA* p) =c e(& - t:(k))r: Y > . u ( a k ,  vk) 

(3C-30) k 

ei'i 29 ( k )  
A t 1  

&(MA, = Gc (gs(k)sk f 1,) ' vk(r: Y A W ( @ * ,  vk)) 

The spin part of the moment (3C-30) may be obtained from Eq. (3C-15) by using the 
identity 

V x (V x r)rAYA,, = ( A  + I ) V ~ ' Y ~ , ,  (3C-31) 

The second term in the magnetic moment (the orbital part) is proportional to the 
orbital angular momentum hlk = M(rk x vk) and involves the orbital g factor, 
g, = 4 - t ,  . One can also write the magnetic multipole moment in the form 

(3C-32) 

where j = 1 + s is the total angular momentum of the nucleon. In Eq. (3C-32), the 
vectors s and j are represented by tensors of rank 1, coupled to the spherical har- 
monic Y 2 - l  to form tensors of rank A. 

The matrix elements of the electromagnetic multipole moments for single- 
particle states can be evaluated from the expressions given in Sec. 3A-2. Thus, from 
Eq. (3A-14), we obtain for a proton 

< j z  I1 i"A(EA) iljl> 

(3 c-3 3) 

and the reduced transition probability is given by 

e2 

4n B,,(EA;j, - j 2 )  = - (2A + I)<jlgAO lj2:>2 <j21 rA  lj1>' (3C-34) 

The motion of a particle is associated with a recoil of the rest of the nucleus, 
since the total center of mass remains at rest. This effect is of special importance for 
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El transitions ; for these, the total moment in a one-particle transition can be obtained 
by replacing the charge of the particle in the expression (3C-33) by the quantity 

A e  proton 

- - e  neutron 
(e)BI = (4 - t,)e - - = (3C-35) 

ze A [ ; 
For higher electric multipoles and for magnetic multipoles, the recoil terms depend 
on the correlations between the particles and cannot in general be expressed as a 
renormalization of the single-particle moments. The effect, however, is of relative 
order A - ' ,  or smaller, and thus usually insignificant. (Recoil effects in E2 moments are 
discussed in connection with Table 3-2, p. 342.) 

For the magnetic multipole moment, we obtain from Eq. (3C-32), employing the 
formulas (3A-22), (3A-23), and (3A-28), 

<j2  II iA-  1A(hf4 llil) 

with the parity selection rule that I, - 1, + I. - 1 must be even. 
The matrix elements for MA transitions with j 2  = j l  + I can be given in a 

somewhat simpler form; in this case, the second term in Eq. (3C-36) vanishes and one 
obtains 

<j2 =il + XI/ iA-'A(hfh) !ih> 

with the selection rule I, = I, + II - 1. 
In order to have a somewhat simpler unit for comparison with observed electro- 

magnetic transition rates, one often uses an approximate version of the expressions 
(3C-34) and (3C-37) referred to as the Weisskopf units B,. In the EA - matrix elements, 
radial integrals are approximated by the values 3(A + 3)-' RA, as for a constant wave function 
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extending out to the radius R .  Moreover, the vector addition coefficients are evaluated for 
the transition j ,  = A ++, j ,  =*.  The M A  - matrix elements involve the g factors, and 
the unit B,(MA) is conventionally chosen to be equal to 10 ( t i /McR)’  B,(EA). 
Employing a radius of R = 1.2 fm, we obtain 

3C-6 Interaction Effects in the Current 

For a system of interacting nucleons, the expression for the charge-current 
density may differ from the corresponding expression for free nucleons. This is 
connected with the composite structure of the nucleons, which may be affected by 
their interaction, and the related fact that the nuclear forces are transmitted by 
charged quanta which themselves generate electromagnetic effects. 

If we restrict ourselves to electromagnetic matrix elements between nuclear states 
(excluding processes involving real mesons, hyperons, etc.), it is possible to consider 
the effects of the virtual degrees of freedom associated with the nucleonic structure in  
terms of operators depending only on the variables of the nucleons themselves (posi- 
tions, momenta, spins, and isospins). In fact, the matrix elements of any operator, 
between nuclear states, can be expressed in this manner if we include terms depending 
on the variables of two or more nucleons. (It is to be emphasized that we are con- 
sidering the electromagnetic moments of a nucleus, expressed in terms of the coordin- 
ates of all the nucleons. If, instead, one wishes to express the moments for configura- 
tions of one or more nucleons outside of closed shells in terms of the degrees of 
freedom of these nucleons only, the effective single-particle moments include polari- 
zation terms associated with the virtual excitation of the particles in the closed shells 
(see Sec. 3-3).) 

3C-6a Symmetry properties 

The part of the electromagnetic current associated with the interaction between 
the nucleons (the “ interaction current ”) may comprise a great variety of different 
contributions, and only limited guidance can be obtained from invariance arguments 
associated with the transformation of j,, under space-time reflections, Lorentz trans- 
formations, and rotations in isospace (Osborne and Foldy, 1960). 

While the experimental evidence establishes the B conservation and Lorentz 
invariance of the electromagnetic interaction of nuclear systems with very high 
accuracy, the evidence for .T conservation is much less precise (see Sec. 1-2, p. 21). In 
this connection, it is of significance that the transformation (3C-5) under time reversal, 
for the part of the current associated with an isolated nucleon, is a consequence of the 
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continuity equation together with B invariance (Bernstein et al., 1965), as can be seen 
from the fact that in the derivation of Eq. (3C-21) no assumptions were made regard- 
ing F invariance. For a nuclear system, therefore, a violation of time reversal 
invariance in electromagnetic processes would have to be associated with the interaction 
terms in the current; the present experimental data are hardly accurate enough to test 
the Y invariance of this part of the current. 

The electromagnetic current for a single nucleon consists of an isoscalar and an 
isovector part (see, for example, Eq. (3C-21)), and it is usually assumed that this is a 
general property of the electromagnetic current for strongly interacting particles, 
connected with the SU3 symmetry of the current (see p. 386). There is so far little 
evidence, however, concerning the possible existence of current components with 
higher tensorial rank in isospace, which might occur in the interaction terms in the 
nucleonic current. 

3C-6b Electric multipole moments 

The interactions are expected to have a relatively minor effect on the nuclear 
charge distribution, and thus on the electric multipole moments. When two (or more) 
nucleons interact, their charge may become redistributed over the interaction volume, 
but on account of the conservation of their total charge and the rather small distances 
over which the displacement of charge takes place, the low Fourier components of the 
charge distribution are almost unaffected. Thus, if we consider electric multipoles of 
not too high order (A < and restrict ourselves to wave numbers small compared 
to the inverse range of interaction and frequencies less than the average duration of the 
collision between two nucleons, we may to a good approximation employ the expres- 
sion (3C-21) for the nuclear charge density, derived for point nucleons. (The insensi- 
tivity of the electric moments to exchange interactions was first noted by Siegert, 
1937.) 

3C-6c Magnetic multipole moments 

The nuclear current distribution is more sensitive to the interactions. The large 
anomalous magnetic moments indicate the importance of the internal dynamics (meson 
couplings, quark structure, etc.) in determining the magnetic properties of nucleons. 
Since there is no conservation law for magnetic moments, one may expect the total 
moment for a pair of nucleons to be significantly modified when the particles are 
within the range of interaction. Still, the smallness of the nucleonic kinetic ener- 
gies compared with the characteristic energies for exciting nucleons (- 200 MeV, 
see Fig. 1-11) may suggest that the interaction terms in the nucleonic magnetic 
moments may be treated as corrections to the predominantly one-particle moments. 

An estimate of the additional terms in the nuclear current operator involves an 
analysis of the mesonic currents associated with the interactions in nuclei. An interest- 
ing specific effect, which has received much attention, is the possibility of a reduction in 
the anomalous nucleonic moments caused by the presence of neighboring nucleons, 
which inhibit certain virtual meson emission and absorpiion processes, as a con- 
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sequence of the exclusion principle (Miazawa, 1951). An estimate of the effect, 
based on available information on the interactions in pion nucleon systems and on 
the electromagnetic form factors of nucleons and mesons, has suggested a " quenching " 
of the nucleon anomalous moments by about a tenth of a magneton (Drell and Walecka, 
1960). The current rapid growth in the exploration of the nucleonic structure may be 
expected to further elucidate the many interesting effects that may be associated with 
interaction currents in the nucleus. 

The structural effects involved in the interaction moments are also responsible 
for the charge exchange and velocity dependence of the nucleonic forces. The 
relationship between the phenomenologically determined interactions and the exchange 
currents has been the subject of extensive discussion (see, for example, the review by 
Sachs, 1953), and in the following sections we consider some of the qualitative features 
of this relationship. As we shall see, only rather limited guidance can be obtained from 
an analysis at this level of phenomenology. 

3C-6d Efect of charge exchange interactions 

An important feature of the nucleonic interaction is the possibility of a charge 
exchange between the colliding particles (see pp. 242 ff.). Phenomenologically, the 
effect can be described in terms of charge exchange potentials. In the presence of such 
a potential, the charge and current density operators (3C-21) do not satisfy the local 
conservation law (3C-4), since charge can be displaced without being transmitted by 
particles. The actual processes involve the transfer of charge by quanta, such as x and 
p mesons, but can also be expressed in terms of an exchange current jeXch(r) depending 
on the variables of the interacting nucleons. In order that the total current, which is the 
sum of (3C-21) and jexch(r), satisfy the continuity equation, the divergence of jexch 
must obey the condition 

i V * jexch(r) = - ti [Verch, p(r)l 

ie 
= -- C (tz(i) - t,(k))V,(ik)P'(ik)(G(r -rJ - 6(r -rrr)) (3C-39) 

We are assuming the charge exchange interaction to be a function V,(ik) of space and 
spin coordinates of the interacting particles multiplied by the charge exchange operator 
P'(ik) (see Eq. (1-57)) and the charge density is taken to have the form (3C-21). 

In order to estimate the magnetic moment contributions from the exchange 
current, it is necessary to make further assumptions regarding the structure of the 
process, since Eq. (3C-39) determines only the divergence of jexch, but not its rotation 

A simple, semiclassical picture describes the exchange current as concentrated 
on the straight line connecting the two interacting point charges; the strength J of this 
current (the product of current density and the area of the current filament) is then 
equal to the factor multiplying (d(r - r i )  - 6(r - r k ) )  in Eq. (32-39). The associated 

fi i < k  

(V x jexch). 



392 H$ ELECTROMAGNETIC INTERACTIONS App. 3C 

magnetic multipole moment is given by (see Eq. (3C-15)) 

where ds is the line element on the straight path from ri to rk . 
The result (3C-40) may also be derived by expressing the charge exchange inter- 

action in terms of the space exchange operator P'(ik), which can be written in the form 

where the exponential operators are defined by 

(3C-41) 

(3C-42) 

s,ds +? ds, 

In these equations, S,  and S,  are arbitrary paths leading from ri to rk , and vice versa. 
In the presence of an electromagnetic field, p is to be replaced by p - ec-'(+ - t , )  A(r) 
(gauge invariant derivative), and we obtain a coupling to the electromagnetic field 
associated with the current J passing from one particle to another. Assuming S, and 
S, to coincide with the straight line connecting ri and rk, the resulting multipole 
moment has the value (3C-40). (This derivation is essentially the one given by Sachs, 
1948; see also Sachs, 1953, pp. 60 ff.) It is seen that the condition of charge conser- 
vation leaves the choice of the paths S, and S2 ambiguous, corresponding to the possi- 
bility of additional divergence-free currents. 

For the MI moment, the expression (3C-40) can be written 

(3 c-43) 

For most cases so far considered, the effect of the additional moment (3C-43) appears 
to be small (see Spruch, 1950). Thus, for the two-particle system (np), the moment with 
respect to the center of mass vanishes and, for A = 3, the contribution of &A? to the 
static moments vanishes in first approximation, since the orbital motion is predomi- 
nantly in an S state. In heavier nuclei, one may attempt to derive an effective single- 
particle moment by averaging the part of the expression (3C-43) associated with a 
definite nucleon k over the other particles in the nucleus; however, if one neglects the 
correlation between space and spin coordinates, such an average vanishes. The above 
schematic description of the exchange effect will be modified in a significant way 
owing to  the fact that the extension of the charge-current distribution around the 
individual nucleons is comparable to the separation between the interacting nucleons 
(both are of the order of the Compton wavelength for mesons). Hence, the 
ambiguity associated with the choice of the path for the transmission of the charge 
can only be resolved by a more detailed analysis of the meson processes responsible 
for the charge exchange. 
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3C-6e Efect of velocity-dependent interactions 

In the presence of velocity-dependent nucleonic forces, the relationship between 
velocity and momentum of a particle is modified. In particular, if the interaction con- 
tains a two-body spin-orbit interaction of the form (1-92), we have 

i 
vx = ti [H, rtl 

For simplicity, we shall consider an isospin-independent interaction ; the inclusion of 
charge exchange would modify the isospin dependence of the resulting moments and, 
in addition, would imply exchange terms of the type considered above. 

The nucleonic current is proportional to vk rather than to pk, as is required by the 
conservation law for the charge-current density. If one expresses j(r) in terms of the 
momentum variables, the current therefore contains two-particle terms obtained by 
inserting the expression (3C-44) into Eq. (3C-21). In particular, in the orbital magnetic 
moment in Eq. (3C-30), the quantity Mk is to be replaced by M(rk x vk), and we thus 
obtain the additional magnetic dipole moment (in units of eh/2Mc) 

If one averages the terms in Eq. (3C-45) involving a particular nucleon k, and 
assumes the particles i to form a spherically symmetric core (see the similar estimate 
(2-21 5) of the single-particle potential produced by a two-body spin-orbit force), one 
obtains 

(3C-46) 

(3C-47) 

where K is the average of the spin-orbit interaction given by Eq. (2-218). One thus 
gets partly a renormalization of the one-particle gs factor and partly a term propor- 
tional to the tensor ( Y,  s ) ~ .  The latter term has a magnitude that can be directly related 
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to the one-particle spin-orbit potential Vls(r) 

The estimate (3C-48) gives a contribution to the magnetic moments of the order of a 
tenth of a magneton, but cannot claim quantitative significance on account of the 
simplified averaging employed and the neglect of the isospin dependence of the 
two-particle spin-orbit force, whch is not expected to have the same effect on the 
interaction moment as on the average single-particle potential. 

One may attempt to estimate the magnitude of the interaction moment (3C-45) 
directly from the single-particle spin-orbit potential by inserting this potential into the 
Hamiltonian giving the relation between v, and pk, as in Eq. (3C-44) (Jensen and 
Mayer, 1952). The moment obtained in this manner differs from the expression 
(3C-46), which includes additional contributions from the particles in the closed shells. 
For closed shells consisting entirely of neutrons ( N  = A) ,  these additional terms vanish 
and the moment (3C-46) equals that derived from the one-body Hamiltonian. How- 
ever, for N 1: &A, the moment ~5p'~' is purely isovector and, in addition, one obtains 
an isoscalar moment 6p"'. The difficulty of deriving the nuclear magnetic moment 
operator from the effective one-particle potential may also suggest caution in deriving 
conclusions from the phenomenological two-particle interaction, without a more 
detailed analysis of the associated additional degrees of freedom. 

The absence of a general relationshb between interaction moments and the 
velocity dependence of the effective one-particle potential is evident from the fact 
that such a velocity dependence can be produced by velocity-independent two-particle 
interactions. For example, a tensor force acting to second order can give rise to a 
spin-orbit coupling, and a velocity-dependent central field can result from a short-range 
repulsion together with a long-range attraction (see Sec. 2-5b). A treatment of such a 
velocity-dependent central potential on the basis of Eq. (3C-44) would suggest an 
orbital magnetic moment with the effective mass M *  replacing M .  The spurious 
character of this effect may be seen by considering a model in which all the particles 
have the same gl  and gs = gl = g. For such a system, the magnetic moment equals 
p = gJ for all states, provided the basic two-particle interactions are velocity' inde- 
pendent. 
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3D 

Beta Interaction 

3D-1 Weak Interaction Processes and Weak Current 

For many years, the nuclear P decay appeared to occupy an isolated position 
among the known reactions of atomic particles, but more recent developments have 
revealed a great variety of elementary particle processes that are intimately related 
to the P-decay phenomenon. The associated interaction is characterized by a coupling 
strength many orders of magnitude smaller than for electromagnetic forces and is 
referred to as the weak interaction. 

3 D - l a  Classification of weak interaction processes 

One can divide the observed weak interaction processes into the following 
groups : 

( i )  PROCESSES INVOLVING ONLY LEPTONS. The Only process of this type so far 
studied is the p decay (p- -, e- + V, + v,, and the charge conjugate process). Intimately 
related processes are the inelastic neutrino scatterings, Ge + e -  + V,, + p- and 
v p  + e -  -+ v, + p-. 

These processes may be 
subdivided into strangeness-conserving processes and strangeness-violating processes. 
Examples of strangeness-conserving processes involving the lepton pair (e,  v,) are 

(i i)  PROCESSES INVOLVING HADRONS AND LEPTONS. 

(Z ,  A ) + ( Z +  1, A )  + e -  + V ,  

(2, A )  +(Z- 1, A )  + e+ + Y, 
18- decay 

18' decay 

electron capture 

inverse 18 decay (charge exchange 

e- + (Z, A )  + ( Z -  1, A )  + ye 

1 scattering of neutrinos) 
Y, + (2, A ) + ( Z +  1, A )  + e -  
C , + ( Z , A ) + ( Z -  l , A ) + e +  

T +  +no + e+ +v. 

2+ + A + e +  + y e  

n+ +e+ + Y. 
In addition, corresponding processes involving the lepton pair (p, v,J are found to 
occur, when sufficient energy is available. 

!w 395 
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Examples of strangeness-violating processes are 

A + p  + e -  + ee 

8- + A + e - + 5, 
K +  +no + e +  + Y, 

and corresponding reactions involving muons. 
(iii) PROCESSES INVOLVING ONLY HADRONS. Among the best studied processes of 

this type are 

A + p + n -  

K +  +n+ + n o  

K +  +n+ +7r+ + n -  

j H  + 4He + n- 

which are all characterized by unit change of strangeness ( A S  = 1). One also expects 
strangeness-conserving weak interactions of the purely hadronic type (see p. 397). 

3 D-lb Current coupling 

A comprehensive description of all the weak interaction processes can be based 
on the four-vector current 

jll(r) = ( j&))hadr + (jll(r)hept (3D-1) 

consisting of a hadronic and a leptonic part. The assumption of a coupling of this 
current to itself 

H ’  = k jb  (r)j,(r) d3r I 
= k ~ j ( i ~ ( r ) ) , ~ ~ , ( j l l ( r ) ) , ~ p l  d3r + il(it(r))hsdr(iy(r))ispld3r + H.c. 1 

+ j ( ib(r))h.d,( iU(r))hadr d 3 r )  (3D-2) 

is found to be compatible with all the evidenc: on the three different types of processes 
listed above. The constant factor k in Eq. (3D-2) depends on the normalization of the 
current and equals 2-’’’g;l for the normalization employed below. 

The fact that the weak interactions are generated by a four-current implies an 
analogy to electromagnetic interactions. Thus, in the j3-decay process, the hadronic 
current corresponds to the nuclear charge-current density, while the leptonic current 
is formally analogous to the electromagnetic 4-vector potential (see Eq. (3C-1)); this 
analogy was the original basis for the theory of j3 decay (Fermi, 1934). 

The analogy between weak and electromagnetic interactions may go still deeper. 
It has been suggested that the coupling (3D-2) is transmitted by a vector field corre- 
sponding to the photon field, though with a nonvanishing rest mass. There is no simple 
argument pointing to a particular value for the mass M ,  of such “intermediate 
bosons,” and present experimental evidence only allows the conclusion that these 
quanta, if they exist, must have M ,  > 2Mn,,,,,, . (For a review of the theory of inter- 
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mediate bosons and reference to  the experimental evidence, see Lee and Wu, 1965.) 
The presence of an intermediate field would imply a finite range of order h/Mw c for 
the interaction between nucleons and leptons, but would not significantly affect the 
nuclear /?-decay matrix elements, since the momentum transfer in such processes 
is very small compared with Mw c. 

3D-Ic 

The hadronic part of the current consists of a strangeness-conserving as well as a 
strangeness-violating part, and the last coupling term in Eq. (3D-2) therefore involves a 
strangeness-conserving interaction as well as the strangeness-violating interaction of 
which examples are quoted under (iii) in Sec. 3D-la. For example, the expression 
(3D-2) implies a contribution to the force acting between two nucleons. Although this 
force is very weak (- compared with the main components in the nucleonic 
interaction, it has the special property that it violates 9’ symmetry and hence produces 
a small parity admixture of nuclear states. 

The P-decay interaction (second term in expression (3D-2)), when taken to  
second order, also produces parity-violating nucleonic forces, but these are of order 
lo-” as compared with the strong interactions, and therefore of negligible significance 
in the present context (although one should bear in mind that the second-order 
coupling diverges for a leptonic current with point structure). The detection of parity 
admixtures of order therefore provides a significant test of the assumption under- 
lying Eq. (3D-2). Evidence for such parity admixtures is discussed on pp. 23 ff. 

Hadronic current. Parity-violating nuclear forces 

3 D-Id Leptonic current. Lepton conservation 

The main evidence for the four-vector character of the weak interactions is pro- 
vided by the study of leptonic processes, in particular of nuclear p decay. The analysis 
of the angular and spin correlations of the emitted lepton pair (e, v,) shows that the 
leptons are coupled, at least to first approximation, through a four-vector current 
constructed as a bilinear form in the lepton fields, taken at the same space-time point. 
The coupling involves predominantly, and perhaps only, neutrinos with negative 
helicity (h = s . @ = - 1/2) and antineutrinos with positive helicity (two-component 
neutrino theory). The leptonic current is thus a combination of polar vector and 
axial vector currents. (The experimental evidence defining the leptonic coupling is 
reviewed, for example, by Lee and Wu, 1965.) 

The assumption of the coupling (3D-2) implies the occurrence of a number of 
so far unobserved leptonic weak interaction processes, such as elastic neutrino-elec- 
tron scattering (V, + e- -+ V, + e - )  and the related electron-positron annihilation 
( e -  + e+ -+ v, + V,), which may play a significant role in determining the time scale 
for evolution of very hot stars. (See, for example, Fowler and Hoyle, 1964.) 

The leptonic current is governed by the laws of lepton conservation expressing 
the constancy of the number of electronic leptons N(e- )  + N(v,) - N(e+)  - N(V,) and 
of muonic leptons N ( p - )  + N(vJ - N(p+) - N(v,). 

Evidence for the conservation law for electronic leptons comes from the failure 
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to observe certain neutrino-induced processes, such as V, + n - + p  + e -  or double 
P-decay processes with no emission of neutrinos, (Z ,  A )  -+ (Z + 2, A )  + P- + e- .  
Double decay may proceed by the much slower channel ( Z ,  A )  + (Z  + 2, A )  + e -  
-t e-  + ve + V,, for which the rate is expected to be below the present limit of direct 
observations. A review of the experimental evidence favoring lepton conservation, 
together with a discussion of the relation between this conservation law and the two- 
neutrino theory, is given by Lee and Wu (1965); see also the more recent search for 
double decay of 48Ca by Bardin et al. (1967). Experimental evidence for the occur- 
rence of double decay of '"Te with a half life of about 1021 years has been obtained 
from the content of 13'Xe in tellurium ore (Kirsten et al., 1968). A half life of this 
magnitude is of the order of that expected for double P decay with emission of two 
neutrinos, implying conservation of leptons to a high accuracy. 

The study of processes involving high-energy muonic neutrinos (produced by 
n-p decay) places a low upper limit on the cross section for reactions such as 
v p  + n -'p + p -  and thereby tests the law of muonic lepton conservation (see the 
survey by Bernardini, 1966). 

The existence of two different types of neutrinos, associated with electrons and 
muons, respectively, was deduced from the observation that neutrinos from n-p decay, 
interacting with nuclei, give rise to p particles, but not to electrons. (For a review of 
these experiments, see, for example, Wu and Moszkowski, 1966, p. 291.) 

The separate conservation of electronic and muonic leptons implies that the 
leptonic current is a sum of two parts involving (e, v,) and ( p ,  V J  separately. The two 
parts are found to have identical structure. Experimental evidence for this equivalence 
is provided by the comparison between p capture and P-decay processes, and from the 
study of decay processes that proceed by emission of (e, v,) and ( p ,  vJ pairs, in com- 
petition. (See, for example, the determination of the branching ratio for the processes 
n+ -+e+ + v, and n+ -+p+ + v p  (Di Capua et al., 1964).) 

The expected large production of neutrinos in the interior of stars, together with the 
very small cross section for interaction of neutrinos with matter, has led to the suggestion 
(Pontecorvo and Smorodinski, 1961) of a significant neutrino density in the universe. These 
neutrinos may induce reactions (such as v, + n + p  + e - )  affecting the lifetime and spectra 
of the /I-radioactive nuclei. Since no effects of this type have yet been observed, an upper 
limit can be placed on the cosmic neutrino flux. The cosmological significance of this evidence 
has been discussed by Weinberg (1962 and 1962a). 

3D-2 

The study of the weak interaction processes has indicated a number of symmetry 
relations, which partly define the structure of the P current. The development in this 
field in recent years has been very rapid and has indicated a variety of intriguing 
connections. It must be stressed, however, that many of the relations considered 
below, though compatible with the available evidence, have not yet been subjected to 
accurate experimental tests. 

Symmetry Properties of p Current 
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The part of the current responsible for the nuclear transmutations (the strange- 
ness-conserving part of the hadronic current) is denoted by 

jXr> = (pP(r), j%>> (3D-3) 

The four-vector current is expressed in terms of a charge density and a three-vector 
current, as in the electromagnetic case. (Following the conventional notation, we 
omit in Eq. (3D-3) the factor c which appears in the analogous expression (3C-3).) 

3D-2a Rejection symmetry 

The weak interactions are found to violate 9 invariance (see Sec. 1-2b). The 
current (3D-3) is therefore a combination of polar and axial vector parts 

( P O ,  ja) = ( p v ,  jv) + ( p a ,  j.J (3D-4) 

with opposite reflection symmetries (see Eq. (lA-108)), 

(3D-5) 

The experimental data on fl decay are consistent with the assumption that the 
weak interactions are invariant under time reversal (see Sec. 1-2c) with the p current 
transforming as 

F ( p W ,  j W ) F  - = (p8(r), - j W )  (3D-6) 

in analogy to the relation (3C-5) for the electromagnetic current. (See, however, the 
evidence on K O  decay (p, 21), which may indicate a partial violation of time reversal in 
weak decay processes.) 

3 D-2b Charge sj~mmetry 

The opxator ,jE transforms a neutron into a proton, and has the quantum 
number pT = - 1 wit!i respect to rotations about the z axis iii isospace; similarly, the 
Hermitian conjugate (,if)+ has p r  = + 1 .4 The sign of pT can also be inverted by the 
charge symmetry operation .%?, and we can, therefore, characterize the p current by its 
transformation under the combination of 3Z’z and Hermitian conjugation. The available 
evidence is compatible with the assumption that j,” is odd under this transformation 

(3D-7) 

As will be discussed below, components in j,: with opposite transformation would not 
contribute to allowed decay and the present data are not very specific as regards the 
possible magnitude of such components (see Sec. 3D-3). 

One can also combine the relations (3D-6) and (3D-7) into the transformation 
under the operation 9 = gTF (see Eq. (1B-15)) 

We consistently employ the assignment m, = +1/2 for neutrons and m, == - 1/2 for protons, 
which is opposite to that conventionally used in elementary particle physics. 
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F ( p s ,  jfl)q- 1 = (- pD, jD>+ (3D-8) 

The symmetry property (3D-7) or (3D-8) is usually discussed in terms of the trans- 
formation G, which is the product of the charge symmetry operation W, and the particle- 
antiparticle conjugation %' (see, for example, Weinberg, 1958). The G invariance provides a 
relation between the matrix elements of the current for nucleons and antinucleons, but if, in 
addition, one assumes the Y%'F invariance, which is implied by a local relativistic theory 
(see Chapter 1, p. 21), one obtains restrictions on the nucleonic matrix elements themselves. 
Thus, the P%W invariance implies that any vector field F,(r) transforms under 9VF into 
-FL(-r) and the relations (3D-8) and (3D-5) together with the Y%'F symmetry are there- 
fore equivalent to the assumption that ( j V ) ,  is invariant under the G transformation, while 
( j A ) ,  changes sign. 

3 D-2c 

It is a remarkable feature of the vector current in p decay that the total vector 

Conservation of vector current 

transition " charge " for the decay of the nucleon (neutron + proton) 

(3D-9) 

is very close to the corresponding quantity for the p decay. (The quantitative compari- 
son is given below.) In view of the complex intrinsic structure of the particles 
involved, the constancy of the transition charges suggests the operation of invariance 
principles. 

A similar relationship is well known to apply to the electromagnetic interactions, 
and corresponds to the equality of the electric charge Qe' for the different charged 
particles. This fact is usually attributed to two basic properties of the electromagnetic 
interaction. One is the continuity equation (3C-4). On account of this conservation 
law, the total charge of a particle is unaffected by complexities in its internal structure. 
For example, the presence of virtual mesons in the nucleon leaves the total charge 
unchanged. (The electromagnetic interactions themselves, on account of their long- 
range character, can shift charge to infinity, and thus give rise to a charge renormaliza- 
tion similar to that of a charged particle in a dielectric medium. The renormalization 
factor, however, is the same for all charged particles and, hence, does not affect the 
present argument.) 

In addition, the electromagnetic phenomena appear to  be governed by a 
universality principle that requires all the primordial particles to have the same 
charge (or multiples thereof). 

The observed equality of the p-transition charges thus suggests that the vector 
current in p decay is subject to a continuity equation and a universality principle. An 
intriguing nypothesis, which encompasses these relations, envisages an intimate 
connection between the vector currents in the beta and electromagnetic interactions 
(Feynman and Gell-Mann, 1958). The hadronic part of the electromagnetic current 
consists of an isoscalar and an isovector component. Apart from normalization factors, 
these components represent the charge-current densities of hypercharge Y and isospin 
T, . (The charge Q equals 4 Y - T,, multiplied by the electric coupling constant e 
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(see Eq. (1-62).) Similarly, the vector (3 current (and its Hermitian conjugate) may be 
viewed as the charge-current densities of the isospin components TT multiplied by the 
vector coupling constant gv . The suggested relationship can be expressed in the form 

(3D-10) s v  ( jv )u  = - - [ T x  - iTy ,jill 

The isoscalar part of j e l  (and the leptonic part) commutes with T and thus does not 
contribute to the expression (3D- lo). (We have ignored a factor c in the three-current 
part of Eq. (3D-10) arising from the different conventions in the normalization of the 
currents.) For the total transition charge Q, we obtain, from Eqs. (3D-9) and (3D-10), 

(3D-11) 

= gv(Tx - iTy) 

The connection between the transition charge Q, and the isospin has been tested 
for widely different T = 1 triplets with I = 0 in the hadronic spectrum (nuclear iso- 
baric transitions and x +  -+ no + e+ + v,; see Fig. 1-10). The value obtained for gv is 
found to agree to within a few percent with the coupling constant in p decay; 
( (gv )p  - (gv)nuc, % O.O2g,, see Freeman, 1965; for an interpretation of the small 
difference, see p. 402.) Further evidence for the relation (3D-10) is obtained from a 
determination of the /3-transition moment that corresponds to the M1 moment (weak 
magnetism, see pp. 414 ff.). 

For the axial vector decay of the nucleon, the coupling constant g A  is found to 
differ by about 20 % from the corresponding transition charge in p decay. The differ- 
ence in the axial vector transition charges may be attributed to renormalization effects 
caused by the strong interactions and can be related to other processes involving these 
interactions (Adler, 1965 ; Weisberger, 1965). 

3 D-2d Violation of continuity equation by electromagnetic interactions 

If we neglect the effect of the electromagnetic interactions on the hadronic 
systems (and assume isospin invariance of the strong interactions), we obtain from 
Eqs. (3D-10) and (3C-4) the continuity equation 

a 1 apv - ( jv )u  = V . j, + - - = 0 
ax, c at 

(3D-12) 

This conservation law, however, is violated by the electromagnetic interactions. A 
modificd continuity equation can be obtained if we assume the general validity of the 
relation (3D-10). If the Hamiltonian (with the neglect of the weak interactions) is 
written in the form H = H o  + He*,  where H o  commutes with T, we find 

iTy , He‘] ,  p“] (3D-13) 
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3 D-2e 

One may attempt to relate the strangeness-violating and strangeness-conserving parts of 
the hadronic weak current within the framework of the S U 3  symmetry scheme for the strong 
interactions. 

The strangeness-conserving current and its Hermitian conjugate are characterized by 
the same quantum numbers (T, M T ,  S, and A) as the 7r+ and 7r- mesons. One may therefore 
envisage an octuplet of weak currents corresponding to the octuplet of the pseudoscalar 
mesons ( T * ,  TO), ( K + ,  KO), ( K - ,  R O), and 7. Such an octuplet current also comprises strange- 
ness-violating charged components with the same quantum numbers as the K + and K - 
mesons. (There is so far no empirical evidence for the existence of the neutral currents.) 

In the application of the principle of universality of the hadronic current, the question 
arises as to whether each octuplet member has the full universal strength or whether it is some 
measure of the total hadronic current that should be equated to the strength of the leptonic 
current as observed in the p decay. 

The experimental evidence indicates an appreciably weaker coupling for the strangeness- 
violating leptonic decays, as compared with the strangeness-conserving transitions. For 
example, thefi value for the leptonic decay ( A  + p  + e -  + Se) is observed to be an order of 
magnitude larger than the ft value for the neutron decay. Therefore, it has been suggested 
(Cabibbo, 1963) that it is the sum of the squares of the hadronic coupling constants that 
equals the universal value. Thus, we write for the total hadronic current 

Strangeness-violating current ( S U ,  symmetry) 

(jJhadr = j,,(dS = 0) cos 8 + j,,(OS = 1) sin 8 (3D-14) 

where the components j ( d S  = 0) and j ( d S  = 1) (and their Hermitian conjugates) behave 
under SU, transformations as the TI-+ and K +  (and r- and K -) components of a unitary 
octuplet. With a current of the form (3D-14), an approximate description of all the leptonic 
decays of the baryons and mesons can be obtained. The best fit to the empirical data is 
obtained by taking the angular parameter 8 to have the values 8, = 0.21 and 8a = 0.27 for the 
vector and axial vector currents, respectively. (See, for example, Brene et a/., 1966.) 

The formulation of the universality principle leading to the expression (3D-14) implies 
that the vector transition charge for the neutron decay denoted by gv in Eq. (3D-9) is to be 
compared with the quantity cos 8y(gy)u  = 0.98 (gY)#, where (gY),, is the vector coupling 
constant in p decay. This correction is seen to be of the right sign and magnitude to account 
for the small discrepancy mentioned above. It should be noted, however, that some uncertainty 
attaches to the estimates of the radiative corrections to /3 decay, which have been applied in 
the determination of (gY)nucl. These corrections amount to a few percent. (For a discussion 
of this point, see, for example, Lee and Wu, 1965. The possibility of estimating these cor- 
rections from experimentally measurable form factors has been discussed by Kallen, 1967.) 

3D-3 Nonrelativistic Form of jl Current 

In the present section, we consider the form of the /3 current for individual 
nucleons; as in the case of the electromagnetic current, we restrict ourselves to a non- 
relativistic approximation, valid to first order in the nucleonic velocity, and include 
only terms linear in the size of the nucleon. For a system of nucleons, the interactions 
may modify the properties of the particles and thus give rise to interaction terms in the 
fl current depending on the coordinates of two or more nucleons. (See the discussion in 
Sec. 3C-6 of similar terms in the electromagnetic current.) There is so far little evidence 
regarding the structure and significance of these interaction terms in the f l  current, and 
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we shall therefore confine ourselves to a discussion of the P current for free nucleons. 
(The general form of the nonrelativistic P current, for free nucleons as well as for 
nucleons moving in nuclear matter, has been discussed, on the basis of invariance 
arguments, by Winther, 1962; see also the formulation by Stech and Schulke, 1964.) 

As a first step, we consider the most general form of the velocity-independent 
terms describing the charge and current densities associated with a single nucleon. The 
leading terms that do not involve the size of the nucleon are 

(3D-15) 

where gv and ga are the vector and axial vector coupling constants. The coordinates 
of the nucleon are labeled by k .  The operator t -  = t ,  - it, = +7- transforms a neutron 
into a proton with the matrix element (p l t - In)  = 1 .  (We express the nucleon spin in 
terms of the Pauli spin vector CT = 2s, as is conventional in P-decay theory.) 

The .F invariance (Eq. (3D-6)) requires gv and ga to be real quantities. The 
terms in Eq. (3D-15) then also satisfy 9 invariance, as defined by Eq. (3D-8). (The 9 
transformation is a combination of charge symmetry and time reversal, and we have 
.Fr- F-’ = t -  since t ,  is a purely imaginary matrix, and Br(rx - it,)B;’ = 
- t ,  - it, = - t+ = --rT). 

The possible terms that are linear in the nucleonic size and independent of velocity 
are 

g A  fi pa = i - t-(k)a,o, . VS(r - r,) 
2Mc 

(3D-16) 
g f i  

*Y - -L t-(k){pq(V x o,)S(r - rk) + icc2 VS(r - rk)} ’ - 2 M c  

involving three new dimensionless quantities, a l ,  a 2 ,  and pD . The term proportional to 
pD is the analog of the magnetic moment term in Eq. (3C-21). With the choice of phase 
factors in Eq. (3D-16), the Y invariance requires all three parameters a l ,  a 2 ,  and p p  
to be real. The .Bz transformation (3D-7), however, is seen to imply that the charge- 
current densities are Hermitian, apart from the factor t - ,  and hence requires a, and a2 
to be imaginary (and pD to be real); the assumption of both F and Bz(or 9) invari- 
ance thus implies al = a2 = 0. The terms in Eq. (3D-16) proportional to a, and a2 
arz therefore usually omitted, although there is little direct experimental information 
on their magnitude. 

From the velocity-independent terms in the charge-current density, we can obtain 
the terms proportional to vk by using the four-vector character of j ,  = ( p ,  j). If we 
transform to a coordinate system X’  moving with a velocity u = vk with respect to the 
laboratory system, so that the nucleon is at rest in X’ ,  we have, to first order in u/c, 

(3D-17) 
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Neglecting terms involving both vk and the derivative V, and omitting the cil and ci2 

terms in Eq. (3D-16), we obtain for a system of free nucleons 

P V  = g Y c  t - (k)s (r  - r k )  
k 

1 
k 2c 

P A  = g A  c r - (k)  - ( u k  ' v k 6 ( r  - r k )  + 6(r - r k ) u k  ' v k )  

j A  = 9.4 t - ( k ) u k  6(r - r k )  
k 

We have symmetrized the terms in vk , as in Eq. (3C-21), to ensure the relation 
(3D-7) for the Hermitian conjugation. (The difference between the symmetrized and 
unsymmetrized terms is equivalent to  a derivative term independent of vk and thus to  
the addition of terms of the type proportional to cil and a2 in Eq. (3D-16).) 

In order to make clear the distinction between the operator V k  (whose eigenvalue changes 
somewhat in the process) and the transformation velocity u, which is a c number, we shall 
consider the transformation (3D-17) in more precise terms. The charge and current densities p 
and j are operators depending on the space point, r, as well as on the nucleonic variables, and 
translational invariance implies p = p(r - r k ,  v k ,  s k )  and similarly for j. If we perform a 
Lorentz transformation to a coordinate system X' moving with a velocity u with respect to 
X ,  we may think of p, j as a four-vector field with the transformation (see the corresponding 
expression (1A-106) for rotations) 

(3D-19) 

to first order in ujc. (It is sufficient to consider the situation for t = 0 at which X and X' 
momentarily coincide.) Alternatively, we may regard p and j as functions of the particle 
variables and, thus, 

(3D-20) 

since, to first order in u, the particle coordinates transform as in a Galilean transformation 
(see Eq. (1-13)). Performing the two transformations (3D-19) and (3D-20) in succession, we 
obtain 

u 
C 

dr - r k ,  vk 3 s k )  = p(r - r k  9 VX - u, s k )  + -'  j(r - r k r  v k  - u, s k )  

(3D-21) 
U 

C 
j(r - r k ,  V k ,  s k )  = j(r - r k ,  V k  - u, s k )  + -P(r - r k ,  V k  - u, s k )  

which yields the desired relations. (A somewhat similar argument would be involved in a 
derivation of the expression Mv for the momentum P from the four-vector character of 
(E, cP) and the fact that, for v +- 0, we have E = Mcz and P = 0.) 



5 30-3  NONRELATIVISTIC BETA C U R R E N T  WJ. 405 

The vector charge-current density in Eq. (3D-18) is seen to obey the continuity 
equation (3D-12), provided t - ( k )  is time independent, as for a system of free nucleons. 
Conversely, the form (3D-18) for j, follows from the continuity equation, since the 
term proportional to a2 in Eq. (3D-16) violates this relation. For the vector current, 
one cannot therefore, to the approximation considered, distinguish between the conse- 
quences of (F, 9) invariance and of the continuity relation. (For a system of interacting 
nucleons with isospin-dependent forces, the time variation of t - (k )  must be compensa- 
ted by interaction terms in the current (see p. 409).) 

The suggested relationship between (j,), and the electromagnetic four-vector 
current, implied by Eq. (3D-IO), is fulfilled by the expression (3D-I8), provided the 
parameter p p  takes the value (see Eq. (3C-21)) 

ps = Ng,), - ( g h n  1 = 4.7 (3D-22) 

Experimental support for this value of p p  has been obtained from the analysis of the 
decays of "B and "N (see pp. 414 ff.). 

The coupling constants gv and g A  are found to be 

gv = (1.40 & 0.02)10-49 erg cm3 

e2h2 
M:c2  

= (1.36 f 0.02)io-3 - (3D-23) 

g A  -= - 1.23 f 0.01 
Bv 

These values are obtained from the measured half-life of the neutron (Christensen et al., 
1967), which depends on the combination g$ + 3g; (see Eq. (3D-38)), together with 
the observed transition rate for O+ -+ O+  decays within T = 1 triplets, which is pro- 
portional to g: (see Fig. 1-10). Moreover, the analysis of polarizations and angular 
correlations for the decay of polarized neutrons establishes the ratio gA/gv to be 
approximately real (which provides evidence for the assumed time reversal invariance), 
and to have a negative sign. (For a review of the evidence on the j-decay coupling 
constants, see Kofoed-Hansen, 1965; Lee and Wu, 1965.) 

The p current discussed in the present section is expected to apply not only to 
processes involving (e, ve) but also to processes involving (p, v,J, although there is so 
far little evidence to test this consequence of the assumed coupling (3D-2). In muonic 
nuclear processes, such as p capture, the momentum transfer is usually much larger 
than in the P-decay processes, and it may therefore be necessary in the expression for the 
current to include higher-order terms in the nucleon initial and final velocities (that is, 
in v and V) than those contained in Eq. (3D-18). Among these terms is the so-called 
induced pseudoscalar coupling. (For a review of the evidence on the coupling of 
muons to nucleons, see Lee and Wu, 1965. See also the surveys by Rood, 1966; 
Balashov and Eramzhyan, 1967, and the article by Foldy and Walecka, 1965). 

With inclusion of higher-order terms in the size of the nucleon, the j current 
can be expressed in terms of form factors similar to those characterizing the electro- 
magnetic structure of nucleons. The relationship (3D-10) implies that the form factors 
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of the vector p current are the same as the isovector form factors for the electro- 
magnetic current, discussed in Sec. 3C-4. 

3D-4 Multipole Moments 

The coupling (3D-2) contains a scalar and a vector part (in the sense of spatial 
rotations) and can be expanded in multipole components, as described in Sec. 1A-8. 
The nuclear multipole matrix elements have the form 

where the radial functions aA(r) and bKA(r) depend on the momenta and polarization of 
the emitted (or absorbed) leptons. If one neglects the effect of the nuclear Coulomb 
field on the electron motion, the functions aA and bKA reduce to spherical Bessel func- 
tions ( j A  and j,), as in the electromagnetic case (see EQ. (3C-8)). 

The functions aA(r) and bKA(r) can be obtained from a solution of the Dirac 
equation in the Coulomb field of the nucleus. To a first approximation, one may 
employ an expansion of a, and b,, for small r, 

(3D-25) 

We have here chosen a normalization of the radial functions, which gives the coefficient 
unity for the leading terms. The expansion (3D-25) is the analog of Eq. (3C-14). 
However, the Coulomb field may greatly increase the wave number of the electron in 
the nuclear region, and the values of ci and p may amount to as much as 0.2 in the 
heaviest nuclei. (See the example discussed on p. 350 and the reference quoted there.) 

The moments (3D-24) refer to p- processes; for fl' processes and electron 
capture, the corresponding moments involve the Hermitian conjugate charge and 
current densities, obtained by replacing t -  by t ,  in the currentjP. The radial factors 
are different for p - ,  p+,  and electron capture processes. 

If we retain only the leading term in Eq. (3D-25), the multipole moments (3D-24) 
take the form 

(3D-26) 
KAP) = J rx(Yx(f)j",A(r)) d~ 

fK 1 ) d P  

From Eqs. (3D-5) and (3D-6) it is seen that the moments have the parity quantum 
numbers 
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and the time reversal phases (see Eq. (1A-74)) 

(3D-27) 

(333-28) 

Although a large number of moments may contribute to a given transition, the 
main effects usually arise from a small number of terms. The relative contribution of 
the different moments depends on the leptonic matrix elements as well as on the nuclear 
matrix elements. The magnitude of the transition matrix element associated with a 
given multipole moment is partly characterized by the leading power of r in the multipole 
density (A for A ( p ,  A) and K for A(j, K A ) ) ;  each extra factor r reduces the total matrix 
element by a factor of the order of the nuclear radius R multiplied by the wave number 
of the leptons (inside the nucleus). Moreover, the nuclear moments associated with 
p A  and j, involve a factor u/c relative to those of p ,  and j, or, in the case of the spin 
magnetic moment term in j,, a factor of order ps vjc (see Eq. (3D-18)). 

It is customary to classify the transitions according to the order of forbiddenness 
n, defined as the sum of powers with which r and u occur in the moment (considering 
the spin part of j, comparable to the orbital part). Thus, the parity change is always 
71 = (- 1)". For given 71 and AZ= Zi - Z,-, the moments of leading order are 

7 7 =  (-1)"' 

n = A Z  

p v ;  h = AZ 
j v ;  K = AZ- 1 ,  X = AZ (AZ # 0) 
j A ;  K =  Az, h = ( A z #  0) 
j A ;  K =  AZ, h= AZ+ 1 

77 = ( - l ) A ' + I  (AZ # 0) 
j A ; K = A r -  1 , h = A Z  n = A Z - l  (3D-29) 

n = - l , A Z = O  
p A ; h = o  
p v ; h =  1 
j V ; K = O , X =  1 
j A ;  K = 1 ,  h = 0, 1 ,  and 2 

Although the listed terms are usually responsible for the main transition strength, 
additional terms may contribute significantly, in particular in cases where the leading- 
order nuclear matrix elements are small because of special features in the structure of 
the states. If we employ the charge current operators (3D-18), the multipole moments 
in the approximate form (3D-26) become 

(3D-30) 
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In the evaluation of the j ,  moments with IC = 1 - 1 one may exploit the con- 
tinuity equation (Fujita, 1962; Eichler, 1963 ; Damgaard and Winther, 1966). Using the 
spherical tensor relation (1A-129, we obtain 

d ( j y ,  K = x - I ,  ~ p )  = ( A ( ~ A  + 1))-1/2/( j, . V)r"Y*,, d7 
(3D-31) 

= - (x(~A + I ) ) - ~ / Z ~ ( V  . jv)rAYA, dT 

where the divergence of j, can be expressed in terms of pv by means of the continuity 
equation (3D-13). If we approximate He' by the Coulomb interaction between the 
protons in the nucleus, we obtain (since He' commutes with pel), 

(3D-32) 

In the last step, we have employed the expression (3D-18) for p, and have assumed that 
the main effect of He' is associated with the average Coulomb field (pcoul. The 
modified continuity equation (3D-32) can also be obtained (Veltman, 1966) from the 
principle of minimality, which assumes that the electromagnetic coupling can be 
derived by replacing derivatives in the dynamical equations, such as (30- 12), which 
are valid in the absence of electromagnetism, by the gauge invariant derivative, 

a a ie 
ax, ax, fic 

where A ,  is the four-vector potential. From Eqs. (3D-31) and (3D-32) we obtain 

- + - - - A ,  

d ( j v ,  K = h - 1 ,  hp)  - (h(2h + I))-"' t-(k)(e~c~ui(rk)+dE)r:Y,,(ik) (3D-33) 
k 

where AE = Ei - E, is the transition energy representing the mass difference between 
the initial state, i, and the final state,f. The relation (3D-33) refers to p- decay. For 
/?' decay, the moment is obtained by inverting the sign of (pcoul and replacing t -  by t ,  . 

If the Coulomb potential energy is replaced by its average value dEC,,, , the relation 
(3D-33) can be written 

i 
f iC 

M(j,,, K = h - 1 ,  hp) = - - (X(2h + l ) ) - l ~ ' ( ~ E ~ o u l  + El - E f ) d @ ,  , hp) (3D-34) 

It must be noted, however, that the radial variation of the Coulomb field may be important 
especially in cases where the overlap of the radial wave functions in the initial and final state 
is small due to oscillations in sign. For example, in the cases considered in Table 3-6, the term 
involving the Coulomb potential was found to be decreased, as a consequence of the radial 
variation of p)coul, by factors of 0.9 and 0.3 for "'Tl and 'OsPb, respectively. 

hp) for the transition i+ f The matrix elements of d ( j v ,  K = h - 1, hp) and 
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are related by isobaric symmetry to the matrix elements of corresponding electromagnetic 
moments for the transition i '+f,  where i' is the isobaric analog of i. From the relation 
(3D-10) it follows that the ratio of the two B-matrix elements is equal to the ratio of the 
matrix elements of the electromagnetic moments obtained by replacing p, , j, by pc l ,  jcl (and 
gv by e), provided the states i and i' are exact isobaric analog states. We then have 

(3D-35) 

assuming (MT)I = T, and (MT), = T, . The electromagnetic moments involving je' and p" are 
connected by the continuity equation for the electromagnetic current, and we therefore obtain 
a relation for ,6 moments, which corresponds to Eq. (3D-34) with the energy factor 
E,,,, + EL - Ef replaced by El' - Ef . The two energies are equal, if Ecoul is taken to be the 
Coulomb energy difference EL'- EL between the isobaric analog states. In order to 
obtain the more general relation (3D-33), one must include the effect of the Coulomb field 
in violating the isobaric relationship between the states i and i'. Indeed, the difference between 
e~coul(r) and its average value represents the nondiagonal effect of He1,  which distorts the 
nuclear wave functions. 

One may also attempt to derive the expression (3D-33) directly from the expression 
(3D-18) for the current j, . The magnetic moment term in j, does not contribute to themoment 
(3D-31), and the term in V k  can be transformed by employing the relation 

d 
t -(k)(vk ' v k  r i  Y A p ( f k ) ) s y m  = t -(k) - ri y A p ( F k )  

dt 

If the time derivative of t - (k )  results only from the Coulomb forces acting on the nucleon, 
the relation (3D-36) leads again to the result (3D-33), corresponding to the fact that the 
continuity relation (3D-13) is implied by the expression (3D-18), if we are dealing with free 
nucleons or if only electromagnetic forces act on t-(k).  However, if charge exchange forces 
are present, (d/dt)t-(k) receives additional contributions, and the relation (3D-36) is then no 
longer equivalent to Eq. (3D-33). For example, if the nuclear states are described in terms of 
one-particle motion, the isovector term in the average potential (symmetry term; see Eq. (2-29)) 
gives a contribution to the time derivative o f t -  , which may be as large as that of the Coulomb 
potential. In such a situation, the continuity relation implies the presence of interaction terms 
in j, , depending on the coordinates of two nucleons, and of such a magnitude as to account 
for the difference between the relations (3D-33) and (3D-36). (See the analogous interaction 
term in the electromagnetic current associated with charge exchange interactions and velocity- 
dependent forces (Sec. 3C-6).) 

The j ,  moments with IC = I are the analogs of the magnetic multipole moments, 
and can be written in  a form corresponding to Eq. (3C-30), 

(3D-37) 
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The j ,  moments with K = 2 + 1 are usually too small to be of significance. 
Many different notations have been used for the nuclear matrix elements in /? 

decay. In Table 3D-1, we compare the multipole moments as defined above with some 
of the notations that are employed in the literature. 

Present notation Konopinski and 
Uhlenbeck 

Konopinski 
and Rose 

C V O >  

- iRCA<iO . P) 

id3RCv(i3> 

-i(3/2)’I2 RCA<O x i) 
id4?r RCA(U. Ti) 

CA<O> 

-cA<y5) 

G < a >  

Table 3D-1 Notations for /? moments. Column 2 gives the notation for /%matrix 
elements (E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 60, 308, 1941), which 
is most frequently used in the current literature. Column 3 shows the notation 
introduced by E. J. Konopinski and M. E. Rose in Alpha-, Beta- and Gamma-Ray 
Spectroscopy, K .  Siegbahn, ed., vol. 2, p. 1327, North-Holland, Amsterdam, 
1965. The quantities in columns 2 and 3 represent reduced matrix elements of the 
operators in column 1 ,  multiplied by the factor (4.rr/(2Zi + 1 ) ) l l 2 ,  where Zi is the spin 
of the initial state. (Notations used by different authors often differ by an overall 
phase factor.) It is further to be noted that the matrix elements in columns 2 and 
3 represent the leading-order moments with the radial dependence (3D-30). 

3D-5 ft Values 

The absolute transition rates of a /? process, as well as the energy spectrum, 
polarization, and angular correlations of the emitted leptons, depend on the leptonic 
matrix elements of the current (jfl)lept in Eq. (3D-2). We here confine ourselves to 
listing the expressions for the transition probabilities for some of the relatively simple 
types of p processes. (For a general survey of the theory of /? radioactivity, including 
tabulations of the various spectral and correlation functions, see Chapters 19, 22, 23, 
and 24 in Siegbahn, 1965, and the texts by Konopinski, 1966; Schopper, 1966; Wu and 
Moszkowski, 1966.) 

In order to compensate for the dependence of the decay rate on the transition 
energy, it is customary to express the transition probability for a /? process in terms of 
the product f t ,  where t is the half life while f is a dimensionless quantity depending on 
the charge of the nucleus and the energy and multipolarity of the transition. This 
quantity represents the phase space for the leptons and is thus analogous to the 
factor ( L ~ E ) ~ ” + ’  in the electromagnetic transition rate (see Eq. (3C-16)). The f functions 
are obtained as integrats over the electron spectra and their evaluation involves the 
treatment of the electron motion in the Coulomb field of the nucleus and the atomic 
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electrons. (For a detailed discussion of the effect of the screening by the atomic 
electrons, see, for example, Durand, 1964; Buhring, 1965.) 

For the allowed transitions (n = 0), the only moments that contribute are 
M ( p v ,  A = 0) and M ( j A ,  IC = 0, ,I = 1) referred to as Fermi and Gamow-Teller 
moments, respectively. The transition rate can be expressed in the form 

7r2h7 In 2 
fo t(B(F) + B(GT)) = - 2m: c4 

(3D-38) 

27r3fi7 In 2 
g: m: c4 

D E  = 6250 sec 

wheref, is theffunction for allowed transitions. (The index 0 forf, is often omitted if 
it is clear from the context that one is dealing with the allowed f function.) The 
reduced transition probabilities in Eq. (3D-38) are given by 

The Fermi moment is proportional to the total transition charge and can thus be 
obtained directly from Eq. (3D-11) without any assumptions concerning the more 
detailed structure of the system, 

The matrix element of Q ,  is nonvanishing only for transitions between isobaric 
analog states, for which we obtain 

B(F; TM, -+ TM, 5 1 )  = ?! ( T F  M,)(Tf MT + 1 )  (3D-41) 
477 

The Gamow-Teller moment is given by 

Since the allowed transitions represent an approximation that neglects the variation 
of the lepton wave functions inside the nucleus, the allowed p moments are independent 
of the positions of the nucleons. 

The first forbidden transitions (n = 1) are governed by the matrix elements of the 
moments 
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I (3D-43) 

hrr= 1 - 1 A ( j v , K = O , h =  1,p)=(4.rr)-1129vCt-(k)(vk)l ,  
C k  

A ( j . 4 ,  K = 1, = 1, p) = gA 7 t-(k)rr(Y~(Pr)a(k))i, 

A(j.4 9 K = 1, = 2, p) = 9.4 C t-(k)rk( YI(fk)u(k))t, h = 2 -  
k 

The moments that are independent of the position of the nucleons are coupled 
to the part of the lepton current that is constant over the nuclear volume. The lep- 
tonic matrix elements for these moments are exactly the same as for the corresponding 
O+ and 1 + moments (with A and V interchanged) since, for the parity-violating 
p interaction (3D-2), the coupling to the leptons is independent of the parity of the 
nuclear moments. 

The 0 - and 1 - moments that are linear in r are coupled to the leptons through 
the derivative of the lepton wave functions and are thus multiplied by the factor ik, 
where k is the lepton wave number inside the nucleus. The dependence of k on the 
energy of the emitted leptons implies a deviation of the electron spectrum from that of 
allowed transitions. 

In nuclear transitions, however, the Coulomb energy of the electron inside the 
nucleus is often rather large compared with the transition energy as well as with the 
electronic rest mass. Under these conditions, the electron spectra as well as polarizations 
and angular correlations for the transitions considered depend only on the multipole 
order. In fact, if we can disregard the effect of the rest mass on the motion of the elec- 
trons inside the nucleus, the leptonic current creates electrons as well as neutrinos in a 
state of definite helicity (h = -1/2 for e -  and v,; h = +1/2 for e+ and V,). For the 
transitions of multipole order A = 0 and 1, the leptons are predominantly created in 
states of angular momentum j = 1/2; for j = 3/2, the leptons must penetrate the centri- 
fugal barrier, which reduces the amplitude by a factor of order pR,  where p is the 
momentum of the lepton measured at infinity. The total state of the lepton pair is 
therefore uniquely specified by the quantum numbers j e  = j ,  = 1/2, he ,  h , ,  Ap, 
together with the energy of the emitted electron ; hence, polarizations and angular 
correlations depend only on A and are the same for first forbidden as for allowed 
transitions. Moreover, when the transition energy is small compared with the Coulomb 
energy, the wave number of the electron inside the nucleus is large compared with that 
of the neutrino, and is approximately independent of the total energy of the electron. 
The main contribution to the coupling of the r-dependent moments therefore involves 
the electron wave number, and the energy dependence of the spectrum remains the 
same as for the allowed transitions. 
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The magnitude of the Coulomb energy may be represented by the dimensionless 
parameter 

(3D-44) 

involving the nuclear charge Z and radius R M 1.2 All3  fm, and the conditions stated 
above correspond to 

(3D-45) 

In the " 5  approximation", terms of relative order 5-'AE/rn,c2 and 5 are 
neglected, and the decay rates for 0- and 1 - transitions can be expressed in terms 
of the f function for allowed transitions, 

(3D-46) 
DgB f o r ( B ( h 7 r = O - ) t B ( X i T =  1 -))=- 
4v 

where 

It must be emphasized that, even if the conditions (3D-45) are fulfilled, there may be 
significant corrections to the 5 approximation, especially if the different terms in 
Eq. (3D-47) tend to cancel each other. 

In Eq. (3D-47), the upper and lower signs refer to p- and p' decays, respectively. 
The different behavior of the various terms with respect to interchange of p- and 6' 
is related to the G parity of the /3 current (see p. 400). Thus, we first note that, as a 
consequence of 9V symmetry, the p- decay Zi + Z, + e -  + V, has the same energy 
spectrum and decay rate as the p' decay of the antinucleus (Zi)anti -+ + e' + v, . 
Next, the nuclear matrix elements for antinuclear p' decay can be related to matrix 
elements for nuclear p' decay by the transformation G = g9Z7, under which the nuclear 
vector /3 current (j"),, is invariant while the axial vector current (jA),, changes sign. 
For the matrix elements of the p moments, we therefore have 

<(TfMf)anti lJ l(P',  A ) I ( T i M O a m t i >  <Tf  M f I % - ' A ( v ,  A)%ITt Mi> 
= i <T,MfI9 ' ,A(V,  A)9C1IT[Mi> 

= *(--l) <Tf - Mf IA(v,  A)/  Ti - Mi> 
T[ + M i +  T f + M f  

(3D-48) 

where the upper and lower signs refer to vector and axial vector moments, respectively. 
In addition, we must take into account that the Coulomb potentials for antinuclear 
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and nuclear p' decay have opposite signs. Hence, the terms in Eq. (3D-47) that are 
independent of ( change sign for A ,  but not for V, while the terms proportional to ( 
change sign for V,  but not for A ,  when p- decay is replaced by p' decay. 

If A and V are interchanged in Eq. (3D-47), one obtains an expression for 
In = O +  and 1 + transitions, which includes the higher-order terms neglected in 
Eq. (3D-39). Among these, the transition moment A'(&, K = 1 ,  I = 1) is the analog of 
the magnetic dipole moment; see Eq. (3D-37). 

For An = 2- first forbidden transitions and for transitions with n 2 2, the 
electron spectra deviate considerably from those of allowed processes. Transitions 
with I = n + 1 are referred to as unique n-forbidden transitions, and their decay rate 
can be expressed in the form 

(2n + l)!! 
(3D-49) 

with 

1 
21, + 1 B ( h = n +  1)= - I <I, I I 4 j A  , K = n, = n + 1) II Z d l  (3D-50) 

Expressions for and tabulations of the Fermi functionsf, are given by Zyryanova (1963) 
and in the references quoted on p. 410. 

When the conditions (3D-45) are fulfilled, the decay rate for transitions with 
Iz  = n (and n > 1) can be expressed in terms of f n - l ,  as in the case of I = n = 1. 

ILLUSTRATIVE 

EXAMPLES TO 

APPENDIX 3D 

v 

Test of relation between /3 decay moments (weak magnetism) and electromagnetic 
transition moments (Fig. 30-1). 

As discussed in Section 3D-2c, the observed equality between the total vector 
charge Qv as determined in nuclear f i  decay and in the decay of the p meson has led 
to the suggestion that the vector part of the strangeness-conserving hadronic f i  current 
can be obtained by a rotation in isospace of the electromagnetic current (see 
Eq. (3D-10)). A significant test of this hypothesis is provided by a comparison of the 
moment A(jy, K = 1, h = 1) and the magnetic dipole operator A'(M1) (Gell-Mann, 
1958). 

A measurement of the matrix elements of the weak magnetic moment 
&(jv, K = 1, h = 1) is rather difficult, since the transitions with h = 1 and w = + 1 are 
usually dominated by the Gamow-Teller moment &(jA,  0, l), which is of allowed 
type (n = 0), while A ' ( j v ,  1, 1) is of second forbidden type (n = 2). However, the 
energy dependence of the electron spectrum is different for the two moments, and a 
contribution from the weak magnetic moment therefore implies a deviation from the A 
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v allowed spectrum. Conditions for determining the moment &(jv, 1 ,  1) are favorable 
if the ,f? transition has a large Q value and if the isobaric analog y transition has a 
large M1 moment. Such a case is provided by the decay of the (177 = 1 +) isobaric 
triplet in A = 12, illustrated in Fig. 3D-1. A 

Figure 3D-1 Comparison between f i  and y transitions from analogous T = 1 states 
in A = 12 nuclei. Both the ,f? and y transitions have other branches (not shown), which 
populate exited states in 12C (see, for example, Ajzenberg and Lauritsen, 1968). 

V The y width for the ground state decay of the 15.1 MeV level in lZC is found 
to be r, = 39.4 & 1.5 eV (see the compilation by Ajzenberg-Selove and Lauritsen, 
1968), and we therefore obtain, by means of Eq. (3C-18), 

B(M1; 1+ -j O f ) =  l . o ( g ) 2  

(3D-51) 

The relation (3D-37) gives, for = 1, 

<O+, T=O l l M ( j v ,  1 ,  1)111+, T=  1 ,  MT= 1 )  

= 2 i @ < O + ,  T=OIIM(Ml)I/l+, T =  l ,MT=O) (3D-52) 
e 

and, hence, 

(3D-53) 

In the analysis of the ,f? spectrum with the accuracy required to determine the 
&(jY, 1 ,  1) moment, we must also include the other n = 2 moments contributing to the 
transition (Cell-Mann and Berman, 1959; see also the recent analysis by Huffaker 
and Laird, 1967). These comprise the moments A ( p A ,  h= 1) and A(ja, K = 2, 
A =  l), and, to the same order, we must consider the modification in the allowed 
moment M ( j A ,  0, 1) associated with the variation of the lepton wave functions inside A 
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the nucleus; the leading-order variation is proportional to r 2  (see the expansion 
(3D-25)) and can be expressed in terms of the moment 

A ' ( j A ,  K = 0, h = 1, p) = ( 4 ~ ) - ' / ~  r2(jA(r))ndT J (3D-54) 
= (47)- ' / 'gA C t-(k)rk2an(k) 

k 

The electron spectrum is obtained by evaluating the lepton matrix elements and 
averaging over the direction of the neutrino and the polarization of the electron (see 
the references quoted on p. 410). The correction factor to the allowed spectrum is 
found to be (J. Damgaard, private communication) 

P(E,)= <O+IlA(ia,0,1)I11+)-2 < O + l l A ( j A , O , l ) I I l + >  

(3D-55) 

where the upper sign refers to f i -  and the lower sign to f i+  decay. The expression 
(3D-55) represents an approximation appropriate for a transition with large energy 
and small nuclear charge (which is an opposite extreme to the f approximation dis- 
cussed on p. 413). Thus, we have neglected terms proportional to the electron rest mass, 
and in the radial expansion of the lepton wave functions we have included only the 
leading terms, except for the allowed moment. 

In Eq. (3D-53, we have used relativistic units (me = c = ti = 1). The electron 
and neutrino energies are denoted by E. and E, , and we have 

27.2 me c2 2B(fi-) 
32.9 m,c2 12N@+) 

Ee+Ev=WO= (3D-56) 

where Wo is the transition energy. 
The first correction term in Eq. (3D-55) arises from the difference between the 

electron wave function at the nuclear center and the wave function conventionally 
employed in the evaluation of the allowed spectrum. (For a detailed derivation, see 
Huffaker and Laird, Zoc. cit.) The Coulomb potential has been assumed to be that of 
a homogeneously charged sphere of radius R, and we employ the value 

(3D-57) 
fi 
me c 

R = 1.22 All3 fm = 2.8 fm = 0.72 x 

which implies 

A 0.20 12B@-) 

0.24 "N(p+) 
R Wo= (3D-58) 
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v The behavior of the terms in Eq. (3D-55) with respect to interchange of 8- and B+ 
is related to the G parity of the p current, as discussed on p. 413. Thus, the interference 
between vector and axial vector contributions has opposite sign for p- and p+,  
while the axial vector correction terms are the same for p- and ,8+, except for the 
contributions from the Coulomb field. The symmetry of the terms with respect to 
interchange of electron and neutrino energies can be understood from the same argu- 
ment. In fact, apart from the Coulomb effects, the emitted leptons are only distinguished 
by their opposite helicity; the helicities are also inverted when p- decay is replaced 
by decay and, hence, the 2-independent terms must have the same symmetry 
with respect to interchange of E. and E, as for interchange of p- and p+.  

The correction factor (3D-53, with E, = Wo - E, , involves terms independent 
of the electron energy (which will be neglected), terms linear in E, , as well as quadratic 
terms in E, .  The experiments are not sufficiently accurate to detect the quadratic 
dependence, and we therefore represent the quadratic terms by their slope at the mean 
energy <Ee) for the measured part of the energy spectrum. One then obtains 

P(E,) = 1 + aE, (3D-58a) 

with 

(3D-59) 

In order to estimate the various contributions to a, we first note that the matrix 
element of A’( jA,  0, 1) can be obtained from theft values (Kavanagh, 1964) 

ft (lZB) = (1.180 f 0.007) x lo4 sec 

ft (lZN) = (1.306 f 0.009) x lo4 sec 
(3D-60) 

Taking the average value, ft = 1.24 x lo4 sec, we obtain the G T  matrix element (see 
Eqs. (3D-38) and (3D-39)) 

l < O + l l A ( j ~ , O ,  1)II1+)1 ~ 0 . 3 4 5 g v  (3D-61) 

and, hence, from the estimate (3D-53), 

(3D-62) 

= 10.58 x 10-2(MeV)-1 

The observed 10% difference between the ft values for lZB and ”N presents 
an interesting problem. The difference cannot be attributed to the contribution of 
A ’ ( j v ,  1, 1) in Eq. (3D-59, since the factor (E, - Ev) approximately vanishes when 
integrated over the electron spectrum. Moreover, the Coulomb correction terms in 
the spectrum are too small by an order of magnitude. The difference in ft values must 
therefore be attributed to a violation of charge symmetry in the nuclear states involved, 
possibly connected with the rather large difference in the nucleonic binding energies. 
(For a discussion of the ft-value difference in terms of a small violation of isospin A 
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symmetry, see for example, Eichler et a/.,  1964, and Mafethe and Hodgson, 1966. 
The possibility of attributing the effect to a violation of G invariance has been discussed 
by Blin-Stoyle and Rosina, 1965.) 

The sign of the ratio (3D-62), although not directly determined by the r, and 
ft values, can be inferred from the magnitude of these transition rates. The matrix 
elements of the M1 and A ( j v ,  1 ,  1) transition moments involve an orbital and a spin 
part (see Eq. (3D-37)), and from the value (3D-53) we obtain 

The spin part of this matrix element is determined by the moment (3D-61), which 
gives 

I < O f  lit t-(k)~klll+)l = 1.0 (3D-64) 

The approximate equality of these two matrix elements implies that the orbital con- 
tribution to the weak magnetism is either small compared to the spin contribution, in 
which case the two matrix elements (3D-63) and (3D-64) have the same sign, or 
approximately twice as large as the spin contribution, with negative sign for the ratio 
(3D-62). However, the latter assumption would imply an orbital matrix element 
L- = I @ +  1 1  x k  t-(k)lkIll +)I  = 10 and can therefore be rejected. (For example, 
jj-coupling wave functions, which imply enhanced orbital matrix elements, give a value 
of about 1.15 for L - ;  calculations based on wave functions representing a coupling 
intermediate between ( j j )  and (LS)  give smaller values for L- (see, for example, 
Weidenmuller, 1960).) We may therefore conclude that the ratio (3D-62) is positive. 

The contributions to the shape factor (3D-59) involving the moment A’(jA, 0, 1) 
are rather small compared with those involving A ( j v ,  1 ,  1). If we can assume 
A(jA’, 0, 1) as well as the leading-order moment A ( j A ,  0, 1) to be mainly associated 
with the nucleons in the p shell, we have 

using the value < r 2 ) l i 2  = 2.40 fm = 0.62 x lo-’ fi/m,c, obtained from the electron 
scattering data (see, for example, Ajzenberg-Selove and Lauritsen, 1968), together with 
the estimate 

1 2 13 
3 

< r 2 )  = 5 < r 2 > I , o  + - <r’>t=l = < r 2 > r = l  (3D-66) 

based on the value of < r 2 ) l = l  :   IT')^=^ = 513 for the harmonic oscillator potential 
(see Eq. (2-153)). The experimental daat referred to below are based on measurements 
in an energy range with mean values (E , )  x 9 MeV (12B) and <E,> x 10 MeV (12N).  
For the contribution to a from the moment A ’ ( j A ,  0, l), we thus obtain the values 
-0.10 x (MeV)-’ and +0.02 x lo-’  (MeV)-’ for ” B  and 12N, respectively. 
The second term in Eq. (3D-59), which is independent of the higher moments, amounts 
to F0.054 x (MeV)-’. 

The matrix element <0+ IIA(jA, 2, 1)111+) is expected to be comparable with, 
or smaller than, <0+ l lA”(jA,  0, l) l l l+).  (For example, if the O+ state is represented 
by a filled p3/2 subshell and the I t  state by a p 3 / : p 1 / 2  configuration, Eq. (3A-22) 
yields <0+ llA(j~, 2, l ) l l l+)  : <0+ llA’(jA, 0, l ) l l l+)  = -2- 3/2.) If the matrix 
elements of A ( j A ,  2, 1) and A ’ ( j A ,  0, 1) are taken to be equal, the magnitude of A 
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the last term in Eq. (3D-59) is less than 0.02 x 
neglect this term. 

(MeV)-', and we shall therefore 

For the shape correction factors, we finally obtain 

f0.43 x lo-' (MeV)-' "B(p-) 
-0.51 x (MeV)-' "N(p+) (a)ca,c = (3D-67) 

The measurements of the spectral shapes (corrected for electromagnetic radiative 
effects) have given the correction factors (Wu, 2964) 

(+0.55 i 0.10) x lo-' (MeV)-' 
(-0.52 f 0.06) x lo-' (MeV)-' 

l2B(p-) 
12N(P+) 

(3D-68) 

and are thus consistent with the theoretical prediction. 
In view of the small orbital contribution to the moment A'( jy ,  1, l), the agree- 

ment between the experimental and theoretical values of the shape correction factor 
primarily constitutes a test of the predicted value 4.7 for the spin coupling constant pB.  
For point nucleons obeying the Dirac equation with no anomalous moments, one 
would expect the value pa = 1, but the structural effects revealed by the anomalous 
magnetic moments lead to an increase of pa by almost a factor of 5 .  A 
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3 E  

Nucleon Transfer Reactions 

The electromagnetic and beta interactions are weak compared with typical 
nuclear energies, and the effects of these couplings on nuclear structure may be treated 
as perturbations. Nuclear processes induced by these interactions can therefore be 
described in a straightforward manner in terms of definite, often fairly simple, nuclear 
matrix elements (see Appendices 3C and 3D). When strongly interacting particles 
collide with nuclei, however, they may become temporarily integrated into the nuclear 
structure in such a manner that the collision is best described as a scattering state of the 
compound system, involving the many degrees of freedom needed to describe the 
complexity of the states at the rather high excitation involved. 

In certain nuclear processes, however, the projectile may directly excite some 
simple degree of freedom of the target, or transfer one or more nucleons, without inter- 
acting significantly with the other internal degrees of freedom of the target. Such 
direct processes may represent either peripheral interactions, in which the projectile 
passes just at the nuclear surface, or reactions involving single nucleons, which have an 
appreciable probability for traversing the nucleus without becoming absorbed. In the 
analysis of nuclear reactions, the direct processes have been identified by means of 
their characteristic angular distributions and excitation functions. 

There is a great variety of different possible types of direct reaction processes 
corresponding to the freedom in the choice of projectiles and in the choice of outgoing 
subunits detected. Each of these processes is expected to provide a tool for specifically 
exploring certain aspects of the nuclear structure. So far, only a few of the simplest of 
the direct reactions have been extensively studied, but these have already contributed 
in an essential manner to our knowledge of nuclear properties. 

The direct inelastic excitation of collective nuclear states can be described by a 
natural generalization of the concept of the average nuclear field, and these processes 
are discussed in connection with the consideration of the fields associated with the 
different collective modes. (See, for example, Chapter 6 (vibrational excitations), 
Appendix 5A (rotations), and the charge exchange potential (2-29) for excitation of 
isobaric analog states.) In the present appendix, we consider the matrix elements 
determined from nucleon transfer reactions. 
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3E-1 Single-Nucleon Transfer 

3E-Ia 

A great variety of processes has been studied, in which the projectile loses or gains 
a single nucleon as a result of the interaction with the target. It is found that many of 
these reactions ((d, p ) ,  ( p ,  d) ,  (3He, a), etc.) lead with appreciable probability to the 
formation of definite states in the final nucleus and that the angular distributions of the 
outgoing particle often show pronounced maxima and minima, especially in the for- 
ward direction. These features of the reaction suggest that a process, such as (d, p ) ,  can 
be viewed as a direct transfer of a neutron from the projectile to a one-particle orbit in 
the final nucleus, while the proton proceeds without exciting the internal degrees of 
freedom of the target (Butler, 1951). 

Even such a simplified view of the reaction leads in general to a three-body 
scattering problem involving the coordinates of the target, the neutron, and the proton. 
However, in the interpretation of nucleon transfer reactions, it has been found 
possible to achieve a remarkable degree of success by employing a simple approximate 
description in which the process is considered as proceeding in three stages : 

(a) the projectile moves in the average field of the target, as in an elastic scattering 
process; 

(b) a nucleon is transferred from the projectile to an orbit in the target; 
(c) the outgoing particle proceeds in the average field of the final nucleus. 

Fuctorization of amplitude. Parentage factors 

The essential point in this description is the assumption that the scattering 
processes, defined by (a) and (c), are separated by a single action (b) in which the final 
state of the residual nucleus is created by the addition of the transferred nucleon to the 
initial state of the target. In stages (a) and (c), only the average properties of the target 
are involved; the detailed structure of the nuclear states enters only in stage (b). 

The total scattering amplitude for a stripping reaction is the sum of the ampli- 
tudes for depositing a nucleon with specified values of the quantum numbers jm,  

f ' + l ) ( I ~ M ~ ~ ~ h ~  + Z z M 2 ~ z h z ) =  C f ' + " ( j m ;  I I M I P I ~ I  +Iz Mzpzh2) (3E-1) 
Jm 

The superscript (+ 1) indicates a transfer process in which a single nucleon is added to 
the target, while the quantum numbers of the target and final state are indicated by Il 
and I,,  respectively. The momentum and helicity of the incident projectile are denoted 
by p1 and h,, and the corresponding specification for the outgoing particle is p,h,. 
(The helicity quantum numbers refer to the component of the spin in the direction of 
the momentum; some general properties of scattering amplitudes in the helicity repre- 
sentation are considered in Sec. 3F-la.) 

If we assume that the transferred particle enters an orbit specified by definite 
radial quantum number, the partial amplitude in Eq. (3E-I) can be expressed in 
factored form 

The amplitude fsb' ' ) ( jm)  describes the stripping process for the idealized situation in 
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which the final nuclear state corresponds to a simple one-particle motion of the 
transferred nucleon in the binding field of the target. The factor multiplying.f,'dt I)(jm) 
is the parentage coefficient and is expressed as a matrix element of the operator 
at(jrn), which creates a nucleon in the one-particle orbit jm (the properties of creation 
operators are discussed in Appendix 2A). In the amplitude (3E-2), the detailed structure 
of the nuclear states Z, and Z2 is reflected only in the parentage factor. 

The amplitudef(-') for the inverse reaction (pickup) can be expressed in amanner 
similar to the relation (3E-2), 

where a(jrn) is the annihilation operator andf,',-')(jrn) the amplitude for picking up a 
nucleon initially occupying the one-particle orbital jm. Since pickup and stripping 
processes are related by time reversal, we have (see Eq. (IB-35)) 

f ( - l Y j m ;  IIMI + z z  Mz) = <ZzMzIa(jm) lzlMl>h;-')(jm) (3E-3) 

-- - 
f g l Y j m ;  Plhl -+PZhZ) =fS(P"(jm; Pzhz +Plhl) 

=(-l)'+"'&$-')(j -m;  -pZhz --f -plhl) (3E-4) 

(The transformation of helicity states under time reversal is given by Eq. (3F-6).) 
In general, the radial motion of the deposited particle will not correspond to 

that of a single shell model orbit nljm. One may then employ a description in which 
the nucleon is deposited at the radial distance r ,  with the angular momentum quantum 
numbers Zjrn, 

f '+')( l jm,  ZIMl +ZZ M2) = r2 dr <Z2Mz lat(rlim)l ZIMl)f,b+ l)(rlim) (3E-5) 

The operator at(rQrn> creates a nucleon with the coordinates rZjm (compare the 
operator at(x) considered in Sec. 2A-6). The matrix element (Z2M2 I at(rljm)l ZiMl) 
represents the radial wave function of the transferred nucleon and in situations, such 
as that considered above, where this wave function is approximately proportional to 
the one-particle radial wave function 9n,j, we have 

corresponding to Eq. (3E-2). However, especially when the binding energy of the nuc- 
leon differs appreciably from those of the shell model orbits, the radial wave function 
of the transferred particle may depend on the more detailed structure of the nuclear 
states involved, and the approximation (3E-6) may not be justified. 

I 

<Zz M z  lat(rljm)l Il Ml) w <Iz MZ Iat(nrim)l z&fl>9n,,(r) (3E-6) 

The matrix elements of the tensor operators at(jm) can be written 

<I2 Mz lat(jm) 111 MI> = <ZI MI la(jm) IZzMz)  

= (2Zz + l)-l'z<ZIMljm~Z~M~) <Zz llut(j)llZl) (3E-7) 

We are assuming the standard phases which imply real matrix elements for a+(jm) 
and a(jm);  see Sec. 1A-5e. 

For deformed nuclei, the parentage factor may be evaluated by a transformation 
to the intrinsic frame (see Eq. (1A-98)) 

af( jm) = c 9An(w)at(jQ) 
R 

(3E-8) 
0 . V  
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where SZ represents the component of angular momentum along the intrinsic 
axis, while v specifies the one-particle states in the deformed potential. 

The simple factorization (3E-2) of the transfer amplitude is only valid if the 
entrance (and exit) channels are not strongly coupled to any simple excitation of the 
target (and final nucleus). Considerable success has been obtained on the basis of this 
approximation, but efforts have also been made to extend the treatment to include the 
coupling to the rotational and vibrational degrees of freedom in the entrance and exit 
channels. 

3E-lb Cross sections and sum rules 

In the approximations (3E-2) and (3E-3), the stripping and pickup cross sections 
for unpolarized targets, summed over m and over the orientation M ,  of the final state, 
are given by (see Eq. (3E-7)) 

du'+c"(j; I1 +Zz) = ( 2 2  + 1)-1 c du""(jm; Z1Ml +ZZMZ) 
M N z m  

= ( 2 j t  1)-~(21~ + l)-l(zzll a+(j)llz1>' du!,+"(j) 

du$,+')(j) = C du$,+')(jm) 
m 

= ( 2 j +  1)-'(2Z1 + l)-'<Zl Ilat(j)llZz>2 duS;')(i) 

do$ " ( j )  = c du$ l ) ( jm) 
m 

(The cross sections are related to the scattering amplitudes by Eq. (1B-34) and may be 
taken for specified values of plh,, p2h, or may be summed (or averaged) over the 
polarization values.) In the definition of the single-particle cross sections dot$ ' ) ( j ) ,  it 
has been assumed that the target nucleus has I, = 0, and the product nucleus I, = j .  
For stripping, the single-particle cross section corresponds to a target with no nucleons 
in the orbitsjm while, for pickup, the single-particle unit refers to a closed shell target 
containing 2 j  + 1 nucleons in the orbits jm. (In the literature, a single-particle transfer 
cross section is sometimes employed, which represents an average rather than a sum 
over m, and which is therefore smaller than that defined in Eq. (3E-9) by a factor 
(2j  + 1). 

If several j values contribute to the same transition, the transfer cross sections 
summed over M,, M 2 ,  and m are obtained as the sum over the partial cross section 
(3E-9) for the various values of j .  In correlation experiments, involving, for example, 
the angular correlation between the outgoing particle and a y ray resulting from the 
decay of the product state, the amplitudes for the transfer with different j must be 
added coherently. 

The nuclear matrix elements involved in the one-particle transfer reactions are often 
expressed in terms of the spectroscopic factor 9 (Macfarlane and French, 1960), which is 
related to the parentage coefficient by 

9 = (212 + l)-'<ZzIl a+(i)l14>z (3E-10) 
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If the coupling of the isospins is included, the spectroscopic factor is defined by 

9 =(2Tz + 1)-Y212 + 1)-'(zzTZIll~+(~~)lllL~l)2 
(3E-11) 

= ( 2 1 2  + I ) - ~ < T ~ ( M T ) ~ ~  = h i  Tz(Mr)z)-'(TZ(Mr)z1zI:at(jt, w ) I ' T ~ ( M T ) ~ Z ~ ) ~  

For completely parallel coupling of isospins (as in the case of (d, p )  reactions on target nuclei 
with M r  = T ) ,  the vector addition coefficient in Eq. (3E-11) is unity and the spectroscopic 
factors defined by Eqs. (3E-10) and (3E-11) are identical. 

The simple commutation rules and tensor properties of the operators a+(jm) 
and a(jrn) can be exploited to obtain sum rules for the parentage coefficients and the 
stripping cross sections (Macfarlane and French, 1960). For example, when summing 
over all the final states CYZ, in a pickup reaction, we can use the completeness relation 
to express the result in terms of the number operator 

I: <f, liat(j)l:a12)2 = (211 + l)<I1M1 1 I: at(jrn)a(jrn)l IIM1) 
ali m 

= (211 + l)n(j) (3E-12) 

where n ( j )  is the number of nucleons occupying the shell model orbital j in the initial 
state I ,  (see Eq. (2A-21)). Similarly, for the parentage coefficient appearing in the 
stripping reaction, we may use the anticommutation relations (2A-20) for a,  at 

= (211 + 1 ) ( 2 j  + 1 - 4 j ) )  (3E-13) 

Combining Eqs. (3E-12) and (3€-13), we obtaina sum rule involving both stripping and 
pickup cross sections, which is independent of the structure of the state I ,  and therefore 
may be useful in testing the consistency of the analysis of the empirical cross sections. 

The above sum rules are especially simple because they depend only on the 
scalar combination of at(jm) and a(jm), which is proportional to the number operator 
for particles in the orbit j .  More general tensor operators of the form (at(j')a(i>),, (see 
Eq. (IA-85)) can be evaluated by means of a recoupling (French, 1964) 

( ~ , ~ l l ( u + ( ~ ' ) u ( ~ ) ) ~ ~ ~ ~ l l ~ l )  = ( -  ] ) ' + " - A  x (212 + l ) - I ' Z  

x < ( j j ' ) ~ ,  (I~I~'P; o I(jll)12, ( ~ ' I ~ V Z ;  O)<a~zIla(/'l)ii~l~><a~~lla(j)tI1l) 

(3E-14) 

Thus, for example, taking I ;  = I ,  and j '  = j ,  we obtain the contribution of the nucleons 
in the orbi t j  to the 2'-pole moment of the initial state Zl in terms of asum overpickup 
cross sections, in which each transition is weighted by a recoupling factor that de- 
pends on the spin I2 of the final state. 

3E-Ic  Single-particle amplitude 

The factorization of the amplitude, as expressed by Eq. (3E-2), represents the 
main result of the present section and makes possible the interpretation of the 
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measured transfer cross sections in terms of the parentage factors, provided the single- 
particle amplitudes are known. These may often be approximately obtained from 
measurements involving states that have relatively simple configurations, or from sum 
rules. Even in the absence of such measurements, the relative transfer cross sections 
may provide important information on the structure of the states involved. 

Considerable progress has also been made in the theoretical calculation of the 
absolute values of the single-particle transfer amplitudesf," as well as the dependence 
of these amplitudes on the I j  quantum numbers, the Q value, and so on. The most 
extensively studied approximation is based on the success of the optical model in 
treating elastic scattering processes not only of single nucleons but also of composite 
particles, such as deuterons. Thus, in the distorted wave Born approximation, it is 
assumed that the initial and final stages of the reaction can be described in terms 
of the motion of the projectile and outgoing particle in the optical potentials. The use of 
first-order perturbation theory corresponds to  the assumption that the transfer takes 
place as a single action (see p. 421). The transfer process itself is caused by the effective 
interaction responsible for the dissociation of the projectile into transferred nucleon 
and outgoing particle (in the case of stripping). The effective interaction to be employed 
in such a calculation may be affected in an important manner by the distortion of the 
composite particles moving in the nuclear potential. 

The treatment of nuclear transfer reactions by means of the distorted wave Born 
approximation has been reviewed, for example, by Austern (1963) and Satchler (1966). 
(See also the detailed analysis of the 40Ca(d,p) reaction by Lee et al., 1964.) Similar 
approximation methods have been used to describe atomic rearrangement collisions 
(see, for example, Bransden, 1965.) The estimates of j;b' l ) ,  which have been given 
on the basis of the distorted wave Born treatment, involve a considerable number of 
approximations, and the critical examination of these approximations as well as 
efforts to  provide improved treatments are subjects of active current interest. 

3E-2 Two-Particle Transfer 

In processes involving the transfer of two nucleons, a great variety of different 
reaction mechanisms may be involved and, at the present time, rather little is known 
about the possible contributions of these different mechanisms. The available data, 
however, seem to indicate that, especially for low-lying states, an important contribu- 
tion arises from processes in which the two nucleons are transferred as a single entity. 
Such a process can be formulated in close analogy to the one-particle transfer reactions 
discussed above (see, for example, Glendenning, 1965). 

For definiteness, we consider the ( t , p )  process, in which case the transferred 
entity is a dineutron in a ' S  state of relative motion, corresponding approximately 
to the internal motion of the neutrons in the triton. Expanding the reaction amplitude 
in terms of components corresponding to the insertion of the dineutron at the point r, 
we have 

f'+2'(Z1M1 -kZzMz) = I ( Z 2 M z  1,4t(r)I ZIMl)hL+z)(r) d3r  (3E-15) 
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where the operator At(r) creates a dineutron at the point r and can be written 

x xs = d d l ) ,  ms(2))a+(r2 m,(2))a+(rl mdl)) (3E-16) 

in terms of the wave function c p 2 n ( r , 2 ) ~ , = ,  describing the relative motion of the two 
neutrons in the triton. (We are here neglecting the fact that the relative motion of the 
two neutrons may depend on their position with respect to the proton and target 
nucleus; such effects would imply a dependence of the wave function of the dineutron 
on the coordinate r.) 

The operator At(r)  may be expanded in terms of the operators at(v), which 
describe the transfer into specified single-particle orbits in the nuclear potential 

The specification v may, for example, refer to the set of quantum numbers nljm The 
coefficient ( v,v2 I 2n, r), gives the overlap between the dineutron at point r and the 
antisymmetrized two-particle state Iv1v2), . Since the dineutron state is antisymmetric 
(‘S), we can write 

< v I v 2  I ~ ~ Z ,  r>, = 2/Z<v1v2 l2n, r> (3E-18) 

where the overlap factor without the subscript a refers to the unsymmetrized two- 
particle state Ivlv2).  

The transition amplitude for transfer of a dineutron with specified angular 
momentum JM is obtained by expanding the amplitude for transfer at the point r 
in spherical harmonics. Thus, we write 

where 

A ~ ( ~ J M )  = J dQiJ YJM(i)At (r )  

In terms of the shell-model orbits, we have 

(3E-20) 

(3E-2 1 )  

For a deformed nucleus, the transformation to the intrinsic frame yields 

At(rJM) = C GB&.(u)At(rJM’) 
M‘ 

(3E-22) 1 
A+(rJM’) = - C ( v1u2  j2n, rJM’).at(v,)at(v,) 

2 V I V 2  
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where M’ is the component of angular momentum with respect to the intrinsic 3-axis, 
and where v specifies the single-particle orbits in the deformed field (intrinsic states). 
The component M’ is equal to  the sum of the D values for the orbits v1 and v 2 .  

Additional discussion of the transition operator for two-particle transfer 
reactions is given in Chapter 8, in connection with the analysis of experiments testing 
the pair coupling scheme. 
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Resonance Reactions 

In a variety of nuclear scattering and reaction processes involving projectiles of 
not too large energy, the cross sections exhibit sharp resonances. These resonances can 
be associated with the formation of metastable compound systems with a lifetime long 
compared with typical periods of the internal motion. The stability of the resonance 
states may be due to centrifugal or Coulomb barriers impeding the disintegration 
process, or to a complexity in the intrinsic structure implying a small amplitude for the 
configurations associated with the decay channels. Such resonance structure is a 
characteristic feature of most many-body systems and has been observed, for example, 
in electron-atom scattering and in the interactions of " elementary " particles. 

In the first section of this appendix, we consider the general structure of reso- 
nance cross sections and the relationship between the resonance parameters and the 
properties of the metastable compound states. The discussion also includes an analysis 
of resonance effects in averaged cross sections. In the following section, we study in 
some detail a simple potential scattering model illustrating some of the significant 
features of nuclear resonance reactions and providing estimates of the single-particle 
units for the resonance widths. 

3F-1 

3F-la Decay amplitudes 

The decay of a nuclear resonance state, like decay of an unstable particle, can be 
characterized by the amplitudes for transitions into the various open channels. We 
shall consider the decay as a two-body process by which a particle is emitted leaving 
the residual nucleus in a definite state. The particle may be a nucleon, a photon, a 
composite particle (d, a, etc.), or may represent a system with a continuous mass 
spectrum (pair of nucleons, electron-neutrino pair, etc.) 

The resonance state will be labeled by the angular momentum quantum numbers 
I,  M , ,  and the decay channels may, for example, be specified by the quantum numbers 
I ,  I, and j referring to the spin of the residual nucleus, the orbital angular momen- 
tum of relative motion, and the total angular momentum obtained by coupling I and 
the spin s of the emitted particle. The decay amplitude will be denoted by g(Z, -+ Ilj) 
and is so normalized that the absolute square is the partial width 

428 

General Features of Resonance Scattering 
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rcr, -+ 10) = jg(zr -+ zt i> l2  (3F-1) 

which gives the probability per unit time (multiplied by h)  for decay into the channel 
considered. The total width r, is the sum over all partial widths 

r, = c r(z, -+I&) (3F-2) 
I I j  

and gives the lifetime of the metastable state. The exponential decay implies that the 
time dependence of the wave function is the same as for a stationary state with com- 
plex energy E, - tir,. 

We can also describe the decay in terms of amplitudes specifying the direction 3 of 
the emitted particle and the orientations M and m, of the spins I and s, 

g(1, M ,  --f IMBmS) = C <Immz, l jm) <IMjm I 1, M,> Ylml(B) g(1, --f IQ)  (3F-3)  

If the polarization of the emitted particle is specified by the helicity h = s .fi, we obtain, 
with a normalization of the helicity amplitudes to solid angle 8n2 (see below), 

I j  

The latter expression, in  which the decay channels are labeled by h instead of 1, is 
especially appropriate to y emission. For given multipolarity and parity (EA or MA), 
the decay involves a combination of the two amplitudes g(Z, + I ,  h = 1 , j  = A) with 
equal magnitude. 

The relation (3F-4) can be obtained by the same procedure as employed in the 
derivation of the helicity wave functions in coordinate space (see Sec. 3A-1). It is to be 
emphasized that the helicities referring to the directions of p and r are distinct quanti- 
ties, although we employ the same notation h when there is no possibility of confusion. 
(The scattering formalism in the helicity representation was developed by Jacob and 
Wick, 1959; the notation of this reference differs from that employed here by a 
complex conjugation of the 9 functions (see footnote on p. 77) and by the choice of a 
fixed value for the third Euler angle (I) = - cp ; see Sec. 3A- 1 b).) 

In analogy to Eqs. (3A-4) and (3A-5), we have 

1 P ms> = g k s h ( p )  1 P h> 
(3F-5) 

where represents three Euler angles of which the third, 4, is redundant. The angular parts of 
the amplitudes (3F-4) and (3F-5) are thus normalized with respect to integration over 8r2. 
We note that transformation coefficients, such as that in Eq. (3F-4), referring to momentum 
space, do not contain the phase factor i' appearing in Eq. (3A-5) (see comment on p. 97). 

The transformation of the momentum states under space reflection and time reversal is 
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f l p r n , )  =(-l)"'"s~-p -m,> 

9 I p h )  =(-1)"-"-p --h> 
(3F-6) 

Y I P h )  = I-Ph) 

where -p denotes the orientation obtained by rotating p about the intrinsic y' axis through 
the angle -T. (The corresponding transformation of the helicity states in the space repre- 
sentation is given by Eq. (3A-11)). 

The time reverse of the decay process 1, + I + s is a process by which the state I, 
is formed in a collision between the particles Z and s. Hence, time reversal invariance 
relates the decay and formation amplitudes (see Sec. 1B-4), 

g(Zzj + I , )  = g(Z, + Zzj) 

(3F-7) 

- - ( _ ~ ) ~ , + M , + I + M  g ( I , - M , + I - M - f i h )  

It is often convenient to view the decay (and formation) of the metastable state, 
r, as caused by a perturbation H ' ,  a small part of the Hamiltonian, in the absence of 
which the state r would be completely stable (see also the discussion in Sec. 1B-4). The 
decay amplitude is then given by the matrix element of H' coupling the unperturbed 
state r to the out-state describing the scattering of the products in the absence of H'  
(nonresonant scattering), 

The proportionality factor corresponds to a normalization of the continuum states per 
unit energy. 

For photon or lepton emission, the interaction H'  can be expressed as an 
integral over a local interaction density proportional to the electromagnetic and 
weak currents (see Appendices 3C and 3D). For nuclear reactions, the quantity H '  has 
a more complicated nonlocal structure. We shall not need the explicit form of H ' ,  
however, since we only wish to exploit the possibility, implied by the metastability of 
the resonance state, of describing the decay and formation processes as first-order 
perturbation effects. 

g(I,  + ZQ) = (2T)"~<(Ilj)Zr outlH'l I,)  (3F-8) 

The question has been raised (Dirac, 1935, p. 201) whether it is justifiable, in the case of 
nuclear processes as distinct from photoprocesses, to treat the system in terms of independent 
sets of states for the bound levels and the decay products. The problem of overcompleteness 
in the total degrees of freedom, however, does not seem to present serious difficulties in the 
present context; for example, one may quantize the continuum states in a volume 
excluding that occupied by the nucleus. It may also be remarked that, at the present time, it 
may be difficult to maintain a sharp distinction between photoprocesses involving the creation 
of a particle and processes involving the emission of a particle already present in the system. 

3F-16 Resonance scattering 

The resonance reaction may be viewed as a two-stage process, 1 + r + 2, involv- 
ing the formation and subsequent decay of the resonance state r.  The entrance and 
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exit channels, 1 and 2, will be specified by the direction of relative motion and the 
polarizations of the particles involved. The resonance scattering amplitudef,,,( 1 -+r-+2) 
involves the product of the formation and decay amplitudes g( 1 --f r )  and g(r  --* 2) and 
can be obtained by a second-order perturbation treatment. 

The transition matrix element for the second-order process is (see Eq. (3F-8)) 

(3F-9) 
1 g(1 + z, M,lg(Zr M, 4 2) =-x 

2n M, E - E, + tir, 
By using the complex energy E, - +irr for the intermediate state in the second-order 
perturbation treatment, we have taken into account the damping of the resonance state 
caused by the coupling to all the different decay channels; the virtual transitions 
associated with this coupling also produce a small energy shift of the resonance state 
(self-energy effect) which is included in E, . In the perturbation calculation leading to 
Eq. (3F-9), we are therefore using a representation in which the effects of the coupling 
H ’ ,  apart from the infinitesimal parts that couple to the selected exit and entrance 
channels 1 and 2, are incorporated in the properties of the resonance state. (For an 
explicit treatment of the coupling H’ acting between a sharp intermediate state with 
real energy and the complete set of decay channels, see, for example, Dirac, 1935, 
pp. 203 ff., and Heitler, 1954, pp. 196 ff.) 

The total scattering amplitude can be written 

f ( l  + 2) = f a 4 1  --f 2) + hedl + 2) (3F- 10) 

where the first term (the nonresonant amplitude) describes the scattering in the absence 
of the coupling H ‘ ,  while the resonant term represents the effect of the perturbation 
H ’ .  In the neighborhood of a sharp resonance, the nonresonant amplitude is expected to 
be approximately constant. In some situations, the nonresonant scattering may be 
associated with potential scattering or with direct reaction processes. 

The resonant amplitude is proportional to the transition matrix element (3F-9). 
With f normalized according to Eq. (1 B-3 l), we have 

f res( l  +2) = - 4 T Z h ( p ~ p ~ ) - ” 2 < 2  out I I/( 1 in> (3F-11) 

(The proportionality factor can be obtained from the familiar expression for the transi- 
tion probability per unit time, 2nh-’1(2 out (  VI 1 in)12dQ, together with the 
relations ( I  B-33) and ( I  8-34). From Eqs. (3F-9) and (3F-1 l), we thus obtain the general 
form of the resonance scattering amplitude (Breit and Wigner, 1936), 

hes((ZMDh)1 -+ (ZMDh),) 

For definiteness, we have employed the helicity representation for the incoming and 
outgoing particles. The cross section is related to the scattering amplitude by Eq. (1 B-34). 
(Note the extra factor 2n in the helicity representation with normalization (3F-4).) 
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In the absence of nonresonant scattering, the total resonance cross section for 
unpolarized target and projectile becomes 

1 
(2sl + 1)(22 + 1) 

where T(r + 1) is the width for decay of the resonance state into channel 1, specified by 
the nuclear state Il and the projectile with spin sl, and, correspondingly, for T(r -+ 2). 

The interference between resonant and nonresonant scattering depends on the 
phases of the decay amplitudes, which can be related to  the phase shifts in the non- 
resonant scattering through the unitarity of the scattering amplitude together with 
the time reversal condition for the decay and formation amplitudes (see Sec. 1B-4). 
The result has an especially simple form in the representation B, that diagonalizes 
the amplitude for the nonresonant scattering (the eigenchannels of the nonresonant 
scattering). From Eq. (1B-39) we then have 

g ( I ,  --f B )  = exp(ia.)(r(I, ->B))”’ (3F- 1 3a) 

where 6, is the phase shift of the nonresonant scattering in the eigenchannel B. 
The general form (3F-12) of the resonance scattering amplitude is seen to follow 

directly from the assumed existence of a metastable state with a lifetime large compared 
with the characteristic periods of the internal motion. Such a metastability implies 
that the state could be made stationary by a small perturbation. One can therefore 
employ the general results of perturbation theory, even though the form of the 
perturbation is not specified and may have a complex structure. In fact, the explicit 
construction of the appropriate perturbation operator for metastable nuclear states, 
in terms of the coordinates of the emitted particle, appears to be an as yet unsolved 
problem. 

One can also formulate the relationship between the resonance scattering ampli- 
tude and the properties of the decaying state in terms of the analytic properties of the 
scattering amplitude, considered as a function of a complex energy variable E.’ The 
existence of a decaying state with only outgoing waves implies a pole in the scattering 
amplitude at the energy E,. - +irr of the decaying state (see, for example, Eq. (1R-27) 
defining the scattering matrix); in a similar manner, the bound states correspond to 
poles in the scattering amplitude for real values of the energy. The residue of the pole 
must have the factored form as in Eq. (3F-12), since each pole, if assumed to be single, 
occurs in a definite eigenchannel, 3, of the scattering matrix; hence, the residue for the 
amplitudef(1 + 2 )  involves the product (2 out 1.) (.I 1 in). 

In the neighborhood of a pole, the general expression for the scattering matrix 

ti Such a formulation of the theory of nuclear resonance reactions has especially been exploited 
by Humblet and Rosenfeld; see, for example, the survey by Humblet (1967). See also the review by 
McVoy (1967). 
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consists of an approximately constant term and a pole term. In the eigenchannels B 
for the constant term, the S matrix can therefore be written in the form 

g(B’lg(B) 
E -  E, + air’, 

<B’ISI B )  = exp(2i6.)6(B, B’) - i (3F-14) 

The formation and decay amplitudes are equal, as a consequence of .%?F invariance. 
In fact, time reversal symmetry implies (B’lSlB) = (BISIB’) (see Eq. (IB-29)) and, 
with the standard phasing, we have I B in (out)) = I B in (out)); see Eq. (1-39)). 
Hence, (B’( SIB) is a symmetric matrix. Further, the unitary condition 

(B”ISSt1 B )  = C (B”lS1 B’> <BISI B’>* = 6(B”, B )  (3F-15) 
B’ 

which is to be satisfied for all E with energy-independent parameters g(B) ,  E, , and I’, , 
implies that g ( B )  has the phase 6, and satisfies the relation 

C I.dB>12 = r r  (3F-16) 
B 

corresponding to the phase relation (3F-13a) for the decay amplitude and the relation 
(3F-2) equating the total width with the sum of the partial widths. The arguments 
based on  the pole structure and unitarity thus lead to the same form of the resonance 
scattering amplitude as that derived above. 

The crucial point in both the above derivations of the resonance formula is the 
existence of a long-lived metastable state. One can also express this metastability in 
terms of the operator that gives the time delay in the scattering process and in this 
manner derive the general expression for resonance scattering (Goldberger and 
Watson, 1964). 

While the resonance amplitude can always be cast in the form (3F-12), different 
parametrizations of the cross sections for resonance reactions are frequently used in the 
literature. Thus, in the Kapur-Peierls and Wigner-Eisenbud formulations of nuclear 
reaction theory, the response of the nucleus to  the incident radiation is analyzed in 
terms of the formation of discrete compound states defined by boundary conditions at  
some suitable radius R representing the nuclear surface. (See the reviews by Brown, 
1959, and by Lane and Thomas, 1958.) 

The description of the resonance reaction in terms of energy-independent decay 
amplitudes is valid in the limit of sharp and well-isolated resonances, where the only 
energy dependence of the cross section in the region of the resonance is that implied by 
the denominator in Eq. (3F-12). Even for rather narrow resonances, however, it may 
be necessary to take into account the energy dependence of the amplitudes g, especially 
when the formation and decay involve the transmission through a large potential 
barrier, associated with centrifugal or Coulomb forces. To a first approximation, one 
can write g as the product of a constant factor (the reduced amplitude) containing 
the information about the structure of the resonance state, and an energy-dependent 
transmission coefficient whose square represents the probability for the particle to 
penetrate through the potential barrier from the nuclear surface to infinity, with an 
additional factor proportional to the relative velocity u, which determines the flux at  
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infinity. Such a description also applies if the state r is a weakly bound state (negative 
energy resonance) or if it is unbound but with an energy E, in the threshold region for 
the channel considered. Estimates of the transmission coefficient will be considered in 
Sec. 3F-2. 

It must be recognized that, in situations where it is important to take into account 
the energy variation of the resonance parameters, the separation of the total scattering 
amplitude into resonance and direct terms is no longer unambiguous. This is a reflec- 
tion of the fact that, in such circumstances, the properties of the decaying state are a 
function of the energy with which it is formed. 

The problem of the interference of nearby resonances is another question that 
goes beyond the simple treatment discussed above, since it involves the coupling of the 
decaying states ; moreover, the unitarity condition implies more complicated expres- 
sions for the phase of the decay amplitudes and for the relation of the total and partial 
widths (see, for example, the treatment of the two-level model in the R-matrix theory, 
discussed by Lane and Thomas, 1958). The problem associated with interfering reson- 
ances becomes especially acute in the region of high excitation, where the widths 
become comparable with or larger than the spacings of the levels. Indeed, the choice 
of appropriate physical concepts for the description of the highly excited region of 
the spectrum, where the levels are strongly overlapping, presents important questions 
for future investigations. 

3F-lc 

The resonances considered above are associated with metastable states of the 
compound system, which decay into the various open channels. A somewhat different 
type of resonance phenomena may occur when a metastable state is formed in the 
initial stage of the reaction (" door-way " state), representing, for example, the motion 
of the projectile in the average potential generated by the target. Such metastable states 
may decay partly into the open channels (direct reactions), and partly through the 
coupling to the internal degrees of freedom of the colliding particles (compound 
nucleus formation). 

The direct and compound reactions are distinguished by the time scales involved. 
Resonance effects associated with the direct reactions can therefore be studied by 
considering wave packets that define the duration of the collision with a latitude A t  
small compared with the periods and lifetimes of the compound states, but sufficiently 
large to permit the occurrence of resonance in the direct stage of the reaction. The 
analysis in terms of such wave packets corresponds to  averaging the cross sections over 
energy domains A E  small compared with the width of the direct resonance, but large 
compared with the spacings D and widths r of the compound states. Thus, the direct 
resonances are associated with the gross structure of the cross sections ; with higher 

Resonances in average cross section. Gross structure6 

Resonance effects in energy-averaged nuclear cross sections were considered by Feshbach, 
Porter, and Weisskopf (1954). The physical significance of the averaging was further elucidated 
by Friedman and Weisskopf (1955). 
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resolution, the cross sections exhibit fine structure, the nature of which depends on the 
relative magnitude of D and T. For D 9 r, the cross sections have well-isolated 
resonances of the form discussed above. For D 5 r, there is strong interference 
between resonances, and the cross sections show fluctuations associated with the 
superposition of the compound states and characterized by energy intervals of the 
order of r. (For a review of such fluctuation effects, see Ericson and Mayer-Kuckuk, 
1966.) 

The cross sections for the direct reactions are given by the average scattering 
amplitude (f(1 --+ 2)) obtained by averagingS(1 -+ 2) over the energy distribution of 
the wave packet. The total average cross section is the sum of the direct cross section 
and the cross section for reactions proceeding through compound nucleus formation, 

<du(l -+ 2)) = d u d  --f 2) + ducomp(l --f 2 )  (3F-17) 
with 

dUdir(1 -2)=e I(f(1 +2))I2df2 
P1 

P2 

P1 

The fluctuating part of the scattering amplitude is denoted by A f  = f - (f). The total 
average cross section for compound nucleus formation corresponds to the damping 
of the direct scattering and can be determined from the average amplitude (f) by 
means of the unitarity relation (the optical theorem). This relation, which can be 
obtained, for example, from Eqs. (IB-31) and (1B-34) and the unitarity condition for 
the S matrix, gives the total cross section in terms of the imaginary part of the forward 
elastic scattering amplitude, and yields 

(3F- 18) 
ducomp(l - f 2 )  = - <IAf(l --f2)/2) dsz 

ucomp(1) 1 C docomdl + 2) 
2 

= <utot(l)> - Udir(1) (3F-19) 

where the cross sections ccomp(l) and cdir(1) are obtained by integration over all final 
channels, 2. 

The general form of the average scattering amplitude in the neighborhood of a 
well-isolated and sharp gross structure resonance can be found by the same procedure 
as employed for the fine structure resonances, except for the modifications arising 
from the lack of unitarity of the averaged scattering matrix. Thus, the scattering 
amplitude (f(1 -2))  can be expressed as a sum of a nonresonant and a resonant 
term, as in Eq. (3F-10), and the resonance amplitude has the form (3F-12) with the 
time reversal relation between amplitudes for formation and decay. However, the total 
width r, is no longer the sum of the partial widths for the decay into the various open 
channels for the direct reaction, but receives an additional contribution P, representing 
the probability for the resonance state to decay by compound nucleus formation, 

r,= cr(y+i)+rc (3F-20) 
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The label i refers to the open channels for the direct reaction. (In the analysis of door- 
way resonances by Feshbach et al., 1967, the width r, is denoted by r4 while the widths 
I'(r --t i) to the open channels are labeled riT.) 

The lack of unitarity in the scattering matrix, resulting from compound nucleus 
formation, further implies that the phase of the decay amplitude is no longer related 
to the phase shift of the nonresonant scattering by Eq. (3F-13a); the difference in phase 
is associated with the damping of the particle motion in the decay channel. 

The total cross section for compound nucleus formation is given by Eq. (3F-19) 
and may be divided into two parts 

Deomp(1) = (ucomp(1))nr + (ucomp(1))res (3F-21) 

The first term is the cross section in the absence of the resonance, while the second term 
gives the contribution from the resonance and includes the effect of interference 
between the nonresonant and resonant scattering. In deriving the cross sections, it is 
convenient to write the average scattering amplitude in the form (see Eqs. (3F-10), 
(3F-12), and (1B-31)) 

< f ( l  + 2)) = (f(1 + 2))nr  + <f(l + 2 ) ) r e s  

(3 F-22) 

where (21 (S)nr 11) is the nonresonant part of the S-matrix element. For the resonance 
part of the cross section for compound nucleus formation, we then obtain from 
Eq. (3F-19), using also Eqs. (3F-18) and (3F-20), 

where the amplitude h(l + r )  is defined by 

If the nonresonant scattering, describing the motion of the in- and outgoing 
particles, is not damped by coupling to the compound states, the nonresonant average 
compound cross section vanishes; moreover, (S)nr is unitary, and the sum over 
the direct channels, i, in Eq. (3F-24) is a complete sum, giving h(1 --f r) = g(l + r )  
(see Eq. (1 B-37)). The resonance cross section (3F-23) is then of the Breit-Wigner form 

(3 F-25) 
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For unpolarized target and projectile, the cross section (3F-25) can also be written 
(see Eq. (3F-3)) 

(In the helicity representation, the normalizatjon (3F-4) requires an additional factor 
2n in the cross sections (3F-23) and (3F-25); see the comment in Sec. 1B-3.) 

A damping in the nonresonant scattering occurs, for example, when the incident 
particle moves in an optical potential with an imaginary part. The amplitudes h and g 
then differ and we may write 

h(1 + r )  = g(l -+r)bl exp{ial} (3F-27) 

where b, and u1 are real parameters. (The rotational invariance implies that b, and a, 
depend only on the scalar parameters of the entrance channel.) The cross section 
(3F-23) now takes the form 

(3F-28) 

If the phase or, differs from 0 (or n), one obtains an asymmetric shape of the resonance 
cross section. (Such an asymmetry has been considered for the isobaric analog reson- 
ances by Robson, 1965.) 

3F-2 Resonance Parameters Calculated for Single-Particle Motion 

The considerations in the previous section involve no specific assumptions 
regarding the structure of the resonating system and provide general expressions by 
means of which the resonance parameters may be extracted from the measured cross 
sections. Appropriate units for the decay amplitudes for emission of nucleons are the 
single-particle amplitudes gJZj), which correspond to a situation in which the reso- 
nance can be described in terms of motion of a nucleon in the nuclear potential. The 
ratio of g to gsp characterizes the parentage of the resonance state with respect to the 
decay channel considered, and is analogous to the parentage factor for bound states 
(as determined, for example, from nucleon transfer processes ; see Appendix 3E). 

The present section gives an analysis of resonance effects in potential scattering 
and provides estimates of the amplitudes gsp . For simplicity, we shall assume a spherical 
square well potential, which makes possible a simple explicit evaluation of the scatter- 
ing amplitude. For the actual nuclear potentials, the diffuseness of the surface is of 
considerable importance (see the estimate on p. 449,  and the present model is mainly 
intended for illustrative purposes. For a quantitative estimate of the single-particle 
resonance parameters, a numerical integration of the wave equation may be required. 
(For nonspherical nuclei, the determination of the single-particle units for resonance 
scattering involves a treatment of the coupling to the rotational motion; see Appendix 
5A.) 
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3F-2a 

We consider first the scattering of a spinless neutral particle. For distances r 
greater than the range R of the potential, the radial motion for angular momentum 1 
is determined by the equation 

Scattering of spinless neutral particles 

($ + k 2 - -  + l ) )  ul(r)  = o 
r 2  (3 F-29) 

(3F-30) 

The regular and irregular solutions to Eq. (3F-29) are denoted by F1 and G, and can 
be expressed as 

(3F-31) 

in terms of the spherical Bessel and Neumann functions. 

write 
The general solution for r > R is a linear combination of Fl and G, , which we can 

uI(r)  = cos& Fl(r) + sinS1Gl(r) 

%sin k r + S 1 - l -  k r $ l  (3F-32) ( 2 “1 
The phase shifts 6, determine the scattering amplitude through the usual relation 

1 
f(8) = F (exp{2iSl1 - 1)(21+ 1)Pl(cos8) (3F-33) 

and the scattering cross section is 

du= If(8)I’dn (3F-34) 

The phase shift in Eq. (3F-32) may be determined from the condition that the 
wave function and its derivative be continuous across the surface r = R.  Denoting the 
logarithmic derivative of u, at r = R by L 1 ,  we have 

cosal F1 + sinsl G1 
cosSl F1‘ + sinsl G1’ 

with 

(3 F-3 5) 

(3 F-36) 

The quantity L, may be obtained from the solutions of the have equation for r < R, 
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and its properties will be considered below; for the present, we have only to notice that 
L, is a function of the total energy E of the scattering system. 

The phase shift obtained from Eq. (3F-35) is conveniently written in the form 

Ll - A ,  + isl 
Ll - d l  - isl exp{2is1} = exp Pitl I 

with the notation 

= kRul(kR) Gi Fi' - Fi GI' = k R  
GiZ + Fi2 Giz + Fi2 

s1 = 

(3F-37) 

(3F-38) 

G1 - iFl exp(2itl} = ~ 

G1 + iFl 

where all quantities are evaluated at r = R.  Explicit expressions for the scattering 
parameters defined by Eq. (3F-38) are given in Table 3F-1. 

0 1 0 - X  

1 
X 2  

1 +xZ 
1 

1 +xz 
-- - X  + 4 sin-' - 2x 

1 + x z  

x4 - 18 + 3x2 - x  + & sin-' 1 8 ~  - 6x3 
9 + 3 2  + x4 9 + 3x2 + x4 9 + 3x2 + x4 

2 

x< 11'2 z ____ z -1  [ (21 - xi l)!! 1' =--[ X x i  ] 
21+ 1 (21- I)!! 

Table 3F-1 
The quantities u l ,  d l  , and ti are defined by Eq. (3F-38). We use the abbreviation x = kR. 

Parameters characterizing the scattering of a neutron from a square well potential. 

The quantity u, gives the transmission through the centrifugal barrier, corre- 
sponding to the ratio of the intensities at infinity and at r = R ,  for the outgoing wave 

ul+)(r)  = G l  + iFl z exp i kr - I - (3F-39) ( (  31 
k R 9  1 

The phase factor t, may be recognized as the phase shift that would describe 
scattering by an impenetrable sphere (L,  = a). Thus, the form (3F-37) expresses the 
total phase shift 6, as the sum of the smoothly varying part 5 ,  , associated with the fact 
that the wave number suffers an abrupt change at r = R, and the additional part 
depending on the details of the motion for r < R ,  as expressed by L,.  

Resonance effects occur only if the lifetime of the nuclear state is long compared 
with the time for the particle to cross the nucleus. Such a long-lived state can occur in 
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the present one-particle model only if the centrifugal barrier is large compared to the 
incident particle energy. In such circumstances, GI % F, , and we have sl < 1 and 4 ,  < I .  
The total phase shift is therefore small (the centrifugal barrier prevents the particles 
from coming within the range R), except in the neighborhood of the energy values E, , 
for which 

W E , )  - di(E,) = 0 (3F-40) 

When this relation is fulfilled, we have 6, z n/2, and the contribution to the scattering 
cross section from this angular momentum channel approaches the maximum value 
4n(2Z + l ) l ~ - ~ .  

If we wish to study the energy variation of the cross section in a small energy 
interval around the resonance energy E, , we may expand L, - A ,  in a power series 

(3F-41) 1 
Y 

where the expansion coefficient y may be calculated from a knowledge of L, and d , , 
Li(E) - di = - - ( E  - E,) +. . - 

E = E p  

Inserting the expansion (3F-41) in Eq. (3F-37), we obtain, to leading order, 

E -  E, -  isly 
E-E,+isly e~p(2i8~)  = exp{2i&} 

(3F-42) 

(3F-43) 

where 

r, = zysr (3F-44) 

The scattering amplitude (3F-33) is therefore of the form (3F-10), 

f(9.) = fres(9.) + f.49.) 
(3F-45) 

(exp{2iSt,} - 1)Pl,(cos9.) 21f 1 21'+ 1 
f k  = - (exp {Zit, } - 1 )P,(cos 9.) + C - 2ik I , + [  2ik 

The resonance part is equivalent to the expression (3F-12) with decay amplitudes given 
by Eq. (3F-3), with 

gl  = IY2 exp{itl} (3F-46) 

It is seen that t l  is the phase shift of the nonresonant scattering on which the resonance 
scattering is superposed. The phase of the decay amplitude (3F-46) is that implied by 
the general arguments involving unitary and the time reversal invariance of the inter- 
action (see Eq. (3F-13a)). 
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The resonance width (3F-44) is the product of a factor 2y depending on the 
internal structure of the resonance state (a reduced width) and a factor s,, which 
represents the transmission through the centrifugal barrier u,, multiplied by kR (see 
Eq. (3F-38)). The factor kR is proportional to the outgoing flux. 

We now evaluate the logarithmic derivative L, from the solution of the wave 
equation in the interior region (r < R) .  If V, is the constant potential, the “ inside wave 
number ” K is given by 

and the wave function and its logarithmic derivative at the surface are 

ul cc KRjl(KR) 

(3 F-47) 

(3F-48) 

The resonance width depends on the derivative of L,  with respect to E. Using 
the wave equation (3F-29) for u, and the resonance condition (3F-40), we find 

(3F-49) 
1 MR2 [ ( I  + 1) - d,(di - 1) 

- (%)...,--- i i2  [ I -  K 2 R Z  

MRZ 
fi” 

The last expression is exactly valid for I = 0 (in which case A ,  = 0) and, for I > 0, is 
approximately valid if kR < I l l 2 ,  since then A ,  % - I  (see Table 3F-1). In a similar 
manner, we obtain from Eqs. (3F-29) and (3F-38) 

ad, I M R 2  -- l > O ,  k R  < P I 2  
aE 
- %  ti2 21-1 (3F-50) 

I 0  I = O  

From the relations (3F-42), (3F-44), (3F-49), and (3F-50), we finally obtain the single- 
particle estimate for the width 

3F-26 Semiclassical interpretation of r,, 
The structure of the single-particle width (3F-51) may be simply understood in 

terms of the physical effects that determine the particle emission rate in a single- 
particle model. Quite generally, we expect 

ii r = - p  
7 

(3F-52) 
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where z is the period for the radial motion of the particle inside the potential and P is 
the barrier penetration factor that gives the magnitude of the flux at infinity for unit 
flux incident on the nuclear surface from the inside. 

We first discuss the emission rate for 1 = 0. The radial period is 

(3F-53) 

and the value of P, = may be obtained by considering the one-dimensional problem 
of a particle incident on a potential wall, 

F = A e x p { i K x } + B e x p { - i K x }  x<O, V =  Vo 

q~ = C exp{ikx}  x > o ,  v=o 
K - k  2K 
K + k  K + k  

B = -  A C=- (3F-54) 

Thus, the width r,, for I = 0 has just the value (3F-51), for k 4 K. 
It should be noted that, in the simple one-body scattering of neutrons with 

I = 0, there are no sharp resonances since, for kR < 1, we have r,, > E. This result 
simply reflects the fact that, in the absence of some restraining barrier or some com- 
plexity in the internal motion, the decay time of the resonant state is not longer than 
the time required for the incident particle to travel a distance equal to the nuclear 
dimensions. The estimate (3F-51) is still useful, however, since it gives correctly the 
decay time for the one-particle state. 

For 1 > 0, a similar interpretation of r,, may be given, but the corresponding 
factors are slightly more complicated. The classical period of the radial motion may be 
calculated by integrating over the orbit 

(3F-55) 

The radial velocity is denoted by u,, and ro is the classical turning point, given by 
K2rOZ = Z(1+ 1). Actually, the period is somewhat longer than this classical estimate 
owing to the fact that the particle spends a certain fraction of the time in the classically 
forbidden barrier region. For the case of a resonant state close to zero energy, we can 
easily estimate this correction, since the wave function in the barrier region is propor- 
tional to r -'. The normalization integral thus becomes 

where we have employed standard expressions for the integral of the Bessel function 
and the continuity of the wave function at r = R, 
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- (Krjl(Kr)) = - (: LR IKjdKR) (3F-57) 

The effective period is thus 

21+ 1 
21- 1 Ti = ( 7 1 ) c ~ a s  - (3F-58) 

(The increase in z corresponds to the contribution to y resulting from the derivative of 
d l  (see Eqs. (3F-42), (3F-49), and (3F-50).) 

It is convenient to consider the barrier penetration PI  as a product of three 
factors. First, there is the factor PI that gives the intensity of the outgoing wave just 
outside the nuclear surface (in units of the incident intensity just inside the surface). 
This “mismatch factor” corresponds to the ratio ICI2 : IAI2 given by Eq. (3F-54) for 
I = 0. For I # 0, the wave numbers just inside and outside the surface are modified by 
the centrifugal barrier, and we obtain 

(3F-59) 

The next factor, P ,  , in the penetration problem is the ratio of the intensity of the 
wave at infinity to the intensity of the wave just outside the nuclear surface, and equals 
the transmission factor v I .  

To obtain the ratio of incident to transmitted flux, we must finally multiply by the 
ratio P, of the wave number at infinity, k, to the wave number Kin just inside the 
nuclear surface. Combining the various factors, we thus obtain the estimate 

4k ( &I+ K 2 R ’ )  1)  ‘I2 Vi(kR) P,=P,PzP,=- 1 - -  
K 

(3F-60) 

and this value of P I ,  together with the above estimate of z I  , just yields the expression 
(3F-5 1) for the single-particle width. 

3F-2c Effect of spin 

If we consider the scattering of a particle with spins, the potential may depend on 
j as well as on I (spin-orbit force). For each channel I j ,  however, the radial motion 
will have exactly the same structure as that discussed above, and we obtain again the 
one-particle estimate (3F-51) for the single-particle width. 

3F-2d Coulomb efsects 

For a charged incident particle, the above treatment remains valid with only 
minor changes. The outside solutions Fl and GI must be replaced by the appropriate 
wave functions describing motion in a Coulomb field. Thus, 
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where 

zZe 7)'X 

(3F-61) 

(3F-62) 

is the parameter that measures the strength of the Coulomb distortion. The charge 
numbers of the incident particle and the target nucleus are denoted by z and 2, and the 
asymptotic velocity is u. The Coulomb phase shift is denoted by 0, and is given by 

JW + 1 + iq) - ( I  + iT)(/ - 1 + iq). . . (1 + i?) exp(2ia1} = - 

r(I+ 1 - iq) ( I  - iq)(/ - 1 - i q ) .  . . (1 - iq) 
exp {2iao}  (3F-63) 

The phase shift introduced by Eq. (3F-32) is the additional nuclear phase shift; the 
total phase shift a,, which should be employed in the scattering amplitude (3F-33), is 
therefore the sum of the nuclear phase shift and the Coulomb phase shift 0 , .  Thus, we 
obtain again the expression (3F-37) where, however, d, and s, are defined with the 
regular and irregular Coulomb wave functions replacing the Bessel functions in Eq. 
(3F-38), and where the potential scattering phase [, includes the Coulomb phase shift 

G l  - iF1 
exp{2i f l }  = - + iF1 exp (3F-64) 

For r < R, the particle moves in a potential consisting of the constant term Vo 
and the Coulomb potential depending on the distribution of the nuclear charge. An 
approximate estimate of the single-particle width may be obtained by assuming 
constant potential (a Coulomb potential equal to the surface value) and employing the 
WKB approximation to evaluate the energy derivative of A , .  This estimate gives 

( ( I  + 3)' + 2 k R ~ ) - ~ ' ~ ]  (3F-65) 

where v ,  is the transmission factor (see (3F-38)) calculated with Coulomb functions. 
(A collection of formulae and graphical data for evaluating Coulomb penetration 
factors in the WKB approximation is given by Morrison, 1953.) 

3 P 2 e  Isospin dependence of potential 

For nuclei with a neutron excess, the nuclear potential involves an isovector 
component, with the possibility of charge exchange between the nucleon and the 
nucleus. In the absence of the Coulomb interaction, the eigenstates of scattering would 
be labeled by the total isospin quantum number T, which can take the values To f 1/2, 
where To is the isospin of the target nucleus. However, the Coulomb interaction may 
imply significant couplings between components in the nuclear motion with T = To + 1/2 
and T = To - 1/2; such couplings are of importance, for example, in the analysis of 
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isobaric analog resonances in proton scattering (see the discussion and the references 
quoted on pp. 46 ff.). 

3F-2f EfSect of difuseness of nuclear surface region 

The above estimates of r,, have the advantage of simplicity, but suffer from the 
extreme assumption of a completely sharp nuclear surface. As is well known from the 
corresponding optical problem, such a surface implies a much greater reflection (and 
consequently a smaller decay probability) than if the potential goes more gradually to 
zero. We may obtain an approximate estimate of this effect by treating a modification 
of the penetration problem defined by Eq. (3F-54), in which we allow the potential to 
decrease linearly over a distance d. 

The solutions in such a region of constant force may be expressed in terms of 
Bessel functions of order 1/3. For simplicity, we confine ourselves to zero energy and 
again consider waves incident from the negative x axis, 

v = A exp{iKx} -i- Bexp{-iKx} x < 0 V =  Vo 

X O < x < d  V = z V o  ~ = 1 - - -  (3F-66) 
d 

v = cz‘/2J-,/3(sKdz”/’) 

q ’ = D  x > d  v=o 
By matching the wave functions at x = 0 and x = d, we find 

I $1’ = 4[(J2,,(w4)Z + ( J -  , , , ( w ) ) Z I -  y+m)-Z/yr(3))-  2 (3F-67) 

This factor is to be compared with the value 4 obtained for d + 0, and the ratio is 
plotted in Fig. 3F-1. The diffuseness of the nuclear potential is of the order d = 2.5 fm, 
which gives Kd zz 4 and thus implies an  increase by about a factor 2 in  the value of rsp. 
(For estimates of the penetrability corresponding to a Woods-Saxon potential, see, 
for example, Vogt, 1967.) 

Figure 3F-1 Transmission coefficient for a trapezoidal potential. The figure gives the ratio 
of the transmission coefficient P(d)  for a trapezoidal potential with surface thickness d (see 
Eqs. (3F-66) and (3F-67)) to that for a step potential (d = 0, see Eq. (3F-54)). The inside wave 
number is denoted by K ,  while the transmitted wave is assumed to have zero energy ( k  = 0). 
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3F-2g Eflect of velocity dependence of potential 

A velocity dependence of the potential will affect the value of the resonance 
widths. If we consider the potential as a function of the incident energy, the energy 
derivative of L,  will be multiplied by (1 + d Vo/aE)  and the width will be reduced by the 
same factor. The nonlocalities in the potential may also affect the transmission through 
the surface. 

3F-2h Efect of imaginary potential 

In the analysis of gross structure resonances, the single-particle units for the 
resonance parameters refer to particle motion in a complex potential 

U =  V +  iW (3F-68) 

For such a potential, the inside wave number and, hence, the logarithmic derivative 
LI to be inserted into the expression (3F-37) for the scattering phase shift a,, has an 
imaginary part. The phase 6, therefore takes complex values corresponding to the lack 
of unitarity resulting from the damping of the particle motion in the optical potential. 

The general nature of the modifications in the resonance scattering produced by 
the imaginary potential may be readily seen by considering the leading-order effects 
associated with small values of W. Denoting by LI0'(E) the logarithmic derivative for 
W = 0, we have 

L I ( E )  = Lto)(E- iW) 
a L p  

m LIo)(E) - iW - (3F-69) aE 

With the resonance parameters E, and y defined in terms of Lie) (see Eqs. (3F-40) and 
(3F-41)), we thus obtain from Eq. (3F-37) 

where 

r, = 2ys, 

r, = r, + r, 
aL 

1 7 , = 2 ~ -  w 
aE 

(1 = 0) 
\-2w 

(3F-70) 

(3F-71) 

The width T I  for particle emission is not affected by W, to the order considered, but the 
total width F, receives an additional contribution r,, which represents the decay of 
the resonance state caused by the absorption (see Eq. (2-138)). For I # 0, the reduction 
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of the absorption width corresponds to the fact that the particle spends part of the 
time in the barrier region, where the potential is real (see Eq. (3F-56)). 

The phase of the decay amplitude is not influenced by the absorption since, for 
the model considered, the nonresonant scattering is that of an impenetrable sphere and 
therefore not affected by the internal potential. 

The reaction cross section associated with the absorption (compound nucleus 
formation) is 

This result is of the form (3F-25), which holds when there is 
resonant scattering. 

(3F-72) 

no damping in the non- 

If higher-order effects of W are included, the relations (3F-70) and (3F-72) 
remain valid, except for the modified values of the parameters E,, r,, and rl .  The 
rather large imaginary potentials used in the optical model analyses (see, for example, 
Fig. 2-29) imply values of r, large compared with rl and, under such conditions, there 
may be little effect of the resonances in the elastic channel (McVoy, 1967a). Provided 
re remains small compared with the single-particle level spacing, one may still expect 
the existence of well-defined metastable states with consequences for other reaction 
cross sections. 

In the proton scattering involving isobaric analog states, the value of r, is 
determined by the rather weak isospin-violating Coulomb interactions, and one there- 
fore observes sharp resonances with widths much smaller than those associated with 
compound nucleus formation in the absence of isospin selection rules. (See, for example, 
the discussion related to Fig. 1-9.) 
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References to individual nuclei are collected at the end of the index. See also more detailed index in 
Volume 11, covering both volumes. 

Abundance of nuclides, 199, 205 
Angular momentum matrices, 70 
Annihilation operators, 273 
Antisymmetric wave functions, 115, 272 
Antiunitary transformation, 17 
Average potential, 146, 208 

absorptive part, 166, 213 
effective mass, 147 
fine structure of, 329 
impulse approximation estimate, 260, 

isovector part, 148 
estimate of, 258 

from neutron cross sections, 166 
nonlocal, 217 
parameters of, 214, 236 
pion-nucleus interaction, 219 
from proton scattering, 233 
radial shape, 222 
spin-orbit coupling, 209, 218 

estimate of, 259 
surface effects, 21 5 
velocity dependence, 147, 167, 237 

270 

effect on single-particle resonance 
widths, 446 

Averaged cross sections, 434 

Baryon spectrum, 57, 65 
Baryon trajectories, 65 
/? current of nucleons 

charge symmetry, 399 
conservation of, 400, 401 
coupling constants, 405 
G symmetry, 400, 413 

multipole moments, 406 
nonrelativistic form, 402 
reflection symmetry, 399 
SU, structure, 402 

/?-decay moments, 406 
notations for, 410 
stability of nuclei, 203 

,8 transitions of O +  - t o+  type, 51 
Binding energies, 141, 168 
Black nucleus, 165, 230 
Breit-Wigner formula, 432 

Casimir operators, 124 
Charge conjugation, relation to particle- 

Charge distribution 
hole transformation, 369 

from electron scattering, 138, 158 
from isotope shifts, 161 
moments of, 160 
from muonic spectra, 165 
from x-ray spectra, 165 

Charge exchange operator, 34 
Charge exchange potential, 149 
Charge independence (see Isospin in- 

variance) 
Charge symmetry, 35 

selection rules, 46 
Chemical potential, 288 
x2 distribution for level widths, 301 
Clebsch-Gordan coefficients, 71 
Clebsch-Gordan series 

for symmetric groups, 114 
for unitary groups, 123 

Closed shells, 189 

465 
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Compound nucleus, 156, 184 

Compressibility, 257 
Conserved vector current for f i  decay, 400, 

relation to strength function, 305 

408 
effect of Coulomb field, 401, 408 
test of, 414 

Continuity equation for electromagnetic 
current, 379 

Correlation in Fermi gas, 150, 176 
Coulomb energy, 142, 145 
Coulomb energy difference, 47 
Coulomb phase shifts, 444 
Coupling of angular momenta, 71 
Creation operators, 273 

Crossing relation, 371 

9 functions, 77 

tensor properties of, 86 

coupling of, 78 
group property of, 79 
orthogonality of, 78 

Darwin-Fowler method, 281 
Decay processes, 102, 428 

structure of amplitude, 429 
unitary relation, 103, 433 

Decay rate for electromagnetic radiation, 

Deformation, effect on isotope shift, 163 
Density matrices, 278 
Density, nuclear, 138 

estimate at equilibrium, 251 
Dipole moment (see E l  and M1 moment) 
Direct reaction processes, 420 
Door-way states, 305, 434 

(see also Strength function) 
Double ,6 decay, 398 

Effective charge, 335 
(see also Renormalization) 

Effective mass, 147 
effect on orbital magnetism, 394 
estimate of, 257 
(see also Average potential, velocity 

382 

dependence) 
Effective range expansion, 241 
Electric dipole moment (see E l  moment) 
EO moment, definition of, 383 
E l  moment 

center-of-mass effect, 388 
of neutron, 15 

E2 moment 
center-of-mass effect, 342 
definition of, 332 

Electromagnetic current 
for free nucleons, 384 
interaction effects, 389 
nucleonic form factors, 385 
space-time symmetry, 379, 389 
unitary symmetry, 386 

Electromagnetic mass splittings of hadrons, 

Electromagnetic multipole moments, 381 
Electron scattering, evidence on charge 

Entropy, nuclear, 288 
Euler angles, 76 
Evaporation spectra, 183 
Even-even nuclei, energies of 2+ states, 

Exchange currents, effects on magnetic 

Exchange effect in two-particle interaction, 

Exchange forces (see Nuclear forces) 
Exchange hole, 151 
Exchange integral of Coulomb interaction, 

Exclusion principle, effect on absorption, 

61 

distribution, 138, 158 

190, 194 

moments, 391 

276 

152 

216, 261 

F transformation, 314, 370 
Fermi energy, 141 
Fermi gas, 139 

correlation in, 150, 176 
level density, 153 
occupation number, 154, 285 

Fermi liquid, 334 
Fermi momentum, 140 
Fermi transitions in ,6 decay, 345, 411 
Field operators, transformation under 

Fissionability, 205 
ft values, 410 

rotations, 90 

allowed transitions, 41 1 
forbidden transitions, 41 3 
unique n-forbidden transitions, 414 

Galilean invariance, 11 
Galilean transformations, 11 
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Gamow-Teller transitions in j3 decay, 345, 

Gaussian ensemble, 294 
Grand canonical ensemble, 288 
Grassmann algebra, 275 
Gravitational collapse, 205 
Gross structure (see Strength function) 

41 1 

Hadronic current for weak interactions, 
397 

SU, symmetry of, 402 
(see also /3 current of nucleons) 

Hard-core interaction, 245 
(see also Nuclear forces) 

Hard-sphere gas, 252,256 
Harmonic oscillator potential 

frequency, 209 
properties of, 220 

Hartree-Fock potential, 318, 375 
Helicit y 

of bound states, 311, 360 
momentum representation, 429 

definition of, 312, 368 
isospin of, 313, 369 
(see also Particle-hole) 

Hole states 

Hypercharge, 39 
Hypernuclei, 39 

binding energies of, 55 

Impulse approximation, for average poten- 

Independent-particle (see Single-particle) 
Independent-particle model, validity of, 

Independent quark model, 42 
Inner products, 114, 129 
Intermediate bosons in weak interactions, 

Intrinsic coordinate system 
angular momentum in, 87 
tensor operators in, 89 
wave functions for, 88 

Ionization potentials, 191 
Iron peak, 199 
Isobaric analog resonance, 46 
Isobaric spin (see Isospin) 
Isospin 

tial, 260, 270 

255, 268 

396 

coupling of particle and closed shells, 315 
definition of, 33 

doublets, 317, 331 
effect on binding energy, 144 

Isospin invariance, 3 1 
El selection rule, 44 
evidence for, 35, 42, 46, 51 
Fermi transitions, 51, 53, 176 
M1 selection rule, 45 
of nuclear forces, 241 
relation to permutation symmetry, 37 
violation of, 36, 51, 53, 146, 171, 417 

effects of deformation, 163 
odd-even staggering, 164 

Isotope shifts, 161 

Kramers’ theorem, 19 
Kronecker product, 114 

A-nucleon interaction, 56 
Lepton conservation, 397 
Leptonic current for weak interaction, 397 
Level density 

experimental evidence, 179, 183, 186 
of Fermi gas, 153, 281 
spin dependence, 155, 289 
thermodynamic analysis, 288 

distribution of, 157, 179, 296 
effect of symmetry, 298 
long-range order, 181 
Poisson distribution, 157 
Wigner distribution, 157, 297 

Level spacing 

Magnetic moment (see M1 moment) 
M1  moment 

definition of, 336 
interaction terms, 337, 392, 393 
tensor component, 339, 394 

Mass formula, nuclear, 141 
Maximal weight, state of, 118 
Mean free path, 139, 214 

estimate of, 165 
Meson spectrum, 63 
Molecular forces, 268 
Moment of inertia, in level density for- 

mula, 293 
Moments of Fermi distribution, 282 
Momentum distribution from (p, 2p) reac- 

Monopole moment (see EO moment) 
tion, 233 
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p-capture process, 405 
Multipole components of interaction, 378 
Multipole moments 

for /3 decay, 406 
electromagnetic, 381, 383 
of scalar field, 92 
of single-particle states, 387 
of vector field, 93 

tribution, 165 
Muonic spectra, evidence on charge dis- 

Neutrinos 
cosmic flux, 398 
electron- and muon-, 398 
two-component theory, 397 

tribution, 138, 163 
Neutron-proton difference in density dis- 

Neutron resonances, 156, 176 
Neutron star, 204 
Neutron widths 

average, 179 
distribution of, 181 

Neutrons, properties of, 4 
9 j  symbol, 74 
Nuclear forces, 240 

charge exchange, evidence for, 242 
effective range expansion, 241 
exchange properties, 66, 242 
hard core, 245 
invariance conditions, 65 
isospin invariance, evidence for, 241 
low-energy scattering, 241 
nonlocal, 244 
one-pion exchange, 248 
phase-shift analysis, 244, 263 
phenomenological potentials, 265 
spin-orbit interaction, 68, 246 
tensor interaction, 67, 247 

Nuclear matter, 262 
Nucleogenesis, 199, 206 
Nucleonic form factors, electromagnetic, 

Nucleonic interactions (see Nuclear forces) 
Nucleons 

385 

excited states of, 57 
properties of, 4 

Occupation number representation, 273 
Occupation numbers of Fermi gas, 154,285 
Odd-even mass effect (see Pairing energy) 

Odd-even staggering, in isotope shifts, 

One-particle (see Single-particle) 
One-particle model, 210 

sequence of energy levels, 224 
spectra of odd-A nuclei, 224 

evaluation of matrix elements, 362 
particle-hole transformation, 370 

parentage coefficient, 354, 422 
single-particle amplitude, 421, 424 
spectroscopic factor, 423 
structure of amplitude, 421 
sum rules, 423 

164 

One-particle operators, 275 

One-particle transfer, 354, 421 

One-pion exchange potential, 248 
Opacity of nuclei, 139, 166 
Optical potential (see Average potential) 
Optical theorem, 167 
Outer products, 115 

9' symmetry (see Space reflection and 

9'%? symmetry, 16 
Y%?Y symmetry, 21 
p ", permutation symmetry, 131 
p 3 ,  permutation symmetry, 129 
Pairing energy, 143, 169 
Parentage coefficient 

definition of, 354 
sum rules, 423 

Parentage factor (see Parentage coefficient) 
Parity conservation 

Parity conservation) 

evidence for, 15, 21 
violation of, 15, 23, 25 

Parity, definition of, 14 
Particle-hole transformation 

conjugation operator, 368 
one-particle operators, 31 3, 370 
two-particle operators, 373 

Partition function, 288 
Partition quantum numbers, 105 
Permutation symmetry, 104 

conjugate representations, 1 14 
dimensions o f  representations, 11 1 
inner products, 114, 129 
outer products, 115, 132 
partitions, 105 
p" configuration, 129, 131 
product states, 117, 129 
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projection operators, 1 13 
standard representation, 112 
Young diagram, 106, 128 
Young tableaux, 108, 128 

Phase convention, from time reversal, 19 
Phase shift analysis of nucleonic scattering, 

263 
Photon states, 380 

Pickup process (see One-particle transfer 
and Two-particle transfer) 

Pion-nucleus interaction, 219 
Poisson distribution of level spacings, 157 
Polarization-asymmetry relation, 29 
Polarization charge, 335 

Polarization produced by Coulomb field, 

Porter-Thomas distribution, 182, 300 
Potential, nuclear (see Average potential) 
Protons, properties of, 4 

angular distribution, 429 

(see also Renormalization) 

171 

Quadrupole moment (see E2 moment) 
Quarks, 41 
Quasiparticle description of Fermi gas, 286 

r process, 201, 206 
Racah coefficients, 73 
Radius, Coulomb, 142, I61 
Radius of nuclear density, 138 
Ramsauer-Townsend effect, 166 
Random matrix, 156, 295 
Rearrangement energy, 330 
Reciprocity relation for inverse reactions, 

Recoupling coefficients, 72 
Reduced matrix elements 

for coupled system, 83 
definition of, 81 
in isospace, 95 
symmetries of, 85 

27, 101 

Reduced transition probability, 83 
Refractive index from scattering amplitude, 

260 
Regge trajectory, 13 
Renormalization 

of E2 moment, 335, 341 
of GT moment, 347 
of M1 moment, 337, 339, 344 

Representations 
of S 3 ,  106, 129 
of S4, 127 
of s,, 110 
of U3, 133 
of U4, 135 
of U,, 123 

Resonance reactions, 428 
analytic structure of amplitude, 432 
gross structure, 434 
relation to decay, 430 
scattering amplitude, 431 
in single-particle motion, 437 
unitarity relation, 432 

Rotation matrices, 75 
Rotational invariance, 9, 70 
Rotational spectra, 12 

S matrix, 100 
s process, 200, 206 
Saturation of nuclear density, 139, 251 
Scattering amplitude, definition of, 101 
Second-order spin-orbit potential, 265 
Second quantization, 275 
Semiempirical mass formula, 141 
Separation energies, 192 
Serber exchange forces, 244 
Shell structure, 189 
Siegert theorem 390 
Single-particle 

allowed ,6 transitions, 346 
analysis, 349 

binding energies in static potential, 238 
E2  moments, 332 

analysis, 341 
E2 transition probability, 334 
electromagnetic matrix elements, 387 
energy levels, 31 8 

analysis, 326 
isospin splitting, 330 
separation between shells, 194, 329 
shifts with N and Z, 329 

forbidden ,B transitions, analysis, 350 
M1 moments, 336 

analysis, 343 
M1 transition probability, 337 
M4 transitions, analysis, 344 
magnetic moment (see M1 moment) 
matrix elements, evaluation, 362 
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parentage factors 
from (d, p )  reaction, 356 
from proton resonances, 357 

potential (see Average potential) 
quadrupole moment (see E2 moment) 
radial wave functions, 223, 326 
resonance parameters, 437 
schematic energy spectrum, 222 
strength function for, 21 1 
transfer matrix elements, 354 
wave function in helicity representation, 

wave function in m, representation, 360 
360 

(see also One-particle) 
6 j  symbol, 73 
Slater determinant, 272 
Space reflection, 13 
Spectroscopic factor, for transfer reactions, 

Spherical harmonics 
423 

addition theorem, 79 
relation to 9 functions, 78 
transformation under rotations, 79 

Y symmetry and hermiticity, 85 
Spherical tensors, 80 

Spin-isospin wave functions, 133 
Spin-orbit coupling (see Average poten- 

Stability of nuclei, 198, 203 
Statistical analysis of level density, 281 
Statistical model, 184 
Strangeness, 38 
Strength function 

from (d, p) reaction, 227 
model for, 302 
from neutron resonances, 229 
from (p, 2p) reaction, 23 1 
second moment, 305 
for single-particle motion, 21 1 
time-dependent description, 304 

tial) 

Stripping process (see One-particle trans- 
fer and Two-particle transfer) 

SU symmetry (see U symmetry) 
Subshells, 190 
Supermultiplet symmetry, 38 

symmetry of hadrons) 
(see also U4 symmetry and Unitary 

Surface energy, 141 
Surface thickness, 160 
Symmetric wave functions, 115 

Symmetry energy, 142 
Symmetry potential, 148 
Synthesis of elements, 199, 206 

T symmetry (see Time reversal invariance) 
Temperature, nuclear, 154, 288 
Tensor operators, 80 
Thermodynamic analysis of level density, 

Thomas-Ehrman shift, 43, 320 
3j symbol, 72 
Time displacements, 9 
Time reversal invariance, 16, 96 

288 

collision processes, 100 
decay processes, 102 
evidence for, 20, 27, 29 
phases, 19 
quaternion representation, 99 
transformation of many-particle states, 

transformation of one-particle states, 

violation of, 21 

98 

96 

Translational invariance, 7 
Transmission coefficients 

effect of diffuseness, 445 
for neutron resonances, 439 

Triple bar matrix elements, 95 
Two-particle density functions, 150, 176 
Two-particle operators, 276 

Two-particle transfer, 425 
particle-hole transformation, 373 

U3 symmetry, 133 

U4 symmetry, 38, 135 

U spin, 40, 62 
Unitary symmetry of hadrons 

/3 decay, 402 
classification, 40 
electromagnetic current, 386 
electromagnetic mass splittings, 61 
mass formula, 59 
SU, classification, 58, 64 
SUs classification, 62, 64 
U spin, 40, 62 
weak current, 402 

Unitary transformations, 121 
Casimir operators, 124 

(see also Unitary symmetry of hadrons) 

effect on decay, 348 
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dimensions of representations, 118 
infinitesimal, 123 
relation to permutation symmetry, 122 
shift operators, 121 
special, 123 

Vector spherical harmonics, 94 
Vectors, spherical components of, 81 

Weak interaction, 395 
current, 396 
intermediate bosons, 396 
between nucleons, 23, 397 
unitary symmetry, 402 

Weak magnetic moments, 409, 414 
Weisskopf units, 389 
Wigner coefficients, 71 
Wigner distribution, 157, 297 
Wigner-Eckart theorem, 82 
Woods-Saxon potential, 222 

6 approximation, 413 
x-ray spectra, evidence on charge dis- 

tribution, 165 

Young diagram, 106, 128 
Young tableaux, 108, 128 

NUCLEI 
3H, 319 
3He, 319 
4He, 319 
5He, 319 
5Li, 319 
"B, 415 
"C, 415 
"N, 415 

14N, 43,44 

15N, 231, 321 
1 5 0 ,  321 

14c, 43 

140,43 

l60, 22,321 
70, 321 

17F, 321,358 
39K, 322 
39Ca, 322 
40Ca, 322 
41Ca, 322, 356 
41Sc, 322 
47K, 322 
47Ca, 322 
48Ca, 322 
49Ca, 322, 350 
49Sc, 322, 350 
55Ca, 323 
56Ni, 323 
"Ni, 323 
61Ni, 228 
Io7Ag, 183 
Io9Ag, 183 
ll'Sn, 48 
'17Sb, 48 
181Ta, 24 
Ig7Au, 159 
'07Tl, 324, 325, 351 
'07Pb, 324, 325, 351 
208Pb, 324 
'09Pb, 324, 325, 352 
'O9Bi, 324, 325, 352 
233Th, 178, 180, 182 

Additional information on special proper- 
ties of nuclei may be found in the com- 
pilations of data referring to 

Average potential, 236 
E2 moments, 341 
Even-evep nuclei, energies of 2+ states, 

196, 197 
GT moments, 349 
Isotope shifts, 162 
M1 moments, 343 
M4 moments, 344 
Single-particle energies, 328 








