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PREFACE

The development of the experimental and theoretical understanding of nuclear
reactions is one of the more important achievements in physics during the last
half of this century. It is an achievement which has been largely unrecognized
or celebrated, even by the nuclear physicists themselves. It was accomplished
without detailed knowledge of the underlying governing nuclear forces.
Nevertheless, through ingenious use of physical principles and analogies and
through the synergism of experiment and theory, a coherent and powerful
methodology has evolved, one capable of interpreting the wide range of
experimental nuclear studies and providing at the same time insights into the
nature of the nuclear Hamiltonian. We have learned to distinguish and treat
various types of reactions. We have learned how a reaction proceeds, which
reactions and projectiles are most suitable for probing the structure of the
nucleus, how the various degrees of freedom of nuclear systems such as the
giant resonances manifest themselves in reactions, what the influence the Pauli
principle is, when statistical methods are applicable touching in this way on
nonequilibrium statistical mechanics, and so on. The power of these procedures
is revealed when new areas of interest come under study, for one finds that one
can apply them, adjusted for the new circumstances and in a suitable range of
kinematic parameters, to obtain a quantitative understanding. This is not meant
to imply that the theory is complete. As nuclear physicists become involved
with quark-gluon degrees of freedom, new procedures, which may or may not
be generalizations, may be required. The incorporation of relativity and of
quantum fields form major challenges. But we do have a firm, well-understood
base from which to begin.

These results are not of value only for nuclear collisions. They are valid and

xi



xi PREFACE

have been applied to collisions between atoms, between molecules, and to
collisions of these systems with electrons and photons. Some have recently
become of interest to students of mesoscopic systems. It is this universal
applicability which gives nuclear reactions its seminal importance.

Following the introductory Chapter I, Chapters II and III (Multiple
Scattering and the Formal Theory of Nuclear Reactions) set the stage for the
applications which follow. These two chapters provide the theoretical foundation
which in the subsequent chapters is generalized and approximated as needed.
Chapter IV (Compound Nuclear Resonances) deals with reactions involving
long interaction times, while Chapter V and Chapter VI consider the limiting
short interaction time reactions as seen in elastic and inelastic scattering and
in particle and cluster transfer. In Chapter IV statistical approximations are
introduced, while in Chapter V and Chapter VI the optical model and single-step
direct reactions play dominant roles. Reactions involving interaction times
which are intermediate, neither so long as those which prevail in the resonance
region nor so short as implied by the single-step direct interactions, are
considered in Chapter VII. This chapter is concerned with coupled equations
and the statistical multistep compound and direct theories, which can be thought
of as an approximate way of solving systems of many coupled equations.
Chapters II through VII provide a formalism, together with examples, which
enables one in principle to deal with most nonrelativistic reactions. This account
of course reflects my own personal point of view and experience.

Chapters VIII through X differ in character from the earlier chapters in that
they deal with subjects rather than with reaction types. Examples of the use of
the analysis of the preceding chapters and generalizations thereof, as well as in
some cases special methods which have been proved to be of value, are described.
Chapter VIII considers heavy-ion reactions, Chapter IX reactions with high
energy projectiles including electrons, nucleons, and heavy ions briefly, and
Chapter X the interaction of pions and kaons with nuclei.

It is not possible to be complete or up to date. After all, the Treatise on
Heavy lon Science, edited by D. A. Bromley, consists of four large volumes and
even it is not complete. A selection had to be made. In each case 1 try to present
an overview of the subject together with a number of topics which I think are
important and which in addition illustrate concepts and methods described in
the earlier chapters. It is my hope that this will make the current literature and
review articles accessible to the reader.

I have assumed a good understanding of nonrelativistic quantum mechanics,
especially of scattering theory. A summary of that theory is presented in an
appendix. The appendix also contains a general formalism for polarization
phenomena. In the main body of the book only the polarization variables which
occur in the scattering of spin-1/2 particles by spin-zero systems are discussed
in detail.

The reader will find many references to the book with de Shalit entitled
Theoretical Nuclear Physics: Nuclear Structure. That book has been reissued
(with some major errors removed) in a paperback edition in the Wiley Classics
Library (1990).
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No attempt has been made to determine priorities. In view of the enormous
relevant literature this just by itself would be a major project. The bibliography
contains references to publications which I found useful and to papers referred
to in the text. At the beginning of most sections I have listed the principal
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discussion of the subject of the section.
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thank Viki Weisskopf, a dear friend and teacher, for his inspiring example and
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of his review article on pion physics with F. Lenz, to L. Ray for his advice on
the proton—nucleus discussion in Chapter IX, and to J. Negele for several helpful
suggestions. The supportive atmosphere of the MIT Center for Theoretical
Physics, the friendship I have enjoyed with its faculty for many years, and the
wide range of available expertise within the group and in the MIT Department
have been of inestimable value as I pursued the writing of this book for more
than a decade while undertaking and carrying out many other responsibilities.
Roger Gilson helped to prepare most of the manuscript for publication. I am
indebted to him for his thoughtful and expert assistance.

Most importantly I want to thank my wife, Sylvia, who for more than fifty
years has been my companion and friend. Her understanding and encourage-
ment were essential ingredients in executing and completing this project.
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INTRODUCTORY REVIEW

1. INTRODUCTION

Nuclear reactions present an extraordinarily rich and diverse set of phenomena.
They are the principal source of information regarding nuclear systems. Their
discovery and investigation are made possible because of the large number of
projectiles available, each of which can interact with nearly all the stable nuclei,
because of the precision with which the energy and general quality of the
projectile beams can be controlled, because of the sensitivity of the detectors,
and because of the theoretical framework available for the analysis of the data
obtained.

A list of elementary particles most of which can and have served as projectiles
is given in Table 1.10.1 in deShalit and Feshbach (74). The strongly interacting
projectiles of interest include the elementary bosons, such as the pion and kaon;
the elementary baryons, such as the nucleons; the antiprotons and strange
baryons; and an expanding number of the atomic nuclei, ranging from the
deuteron to uranium. Clearly, these projectiles provide a wide range in mass,
charge, isospin, strangeness and internal structure. Electromagnetic probes
include y-rays and charged particles such as.the electron, the muon, the a-
particle, and heavy ions—to mention those that have been used for this purpose.
Reactions in . which electron or muon neutrinos (or antineutrinos) are projectiles
or are produced are used to study the effects of the weak interactions. These
interactions are also responsible for symmetry violations, which are investigated
by means of reactions sensitive to parity conservation or time-reversal
invariance.

In most cases the projectiles are stable or have a relatively long life. The
question arises: Can the interactions of very unstable particles whose lifetimes

1



2 INTRODUCTORY REVIEW

are very short, such as the n°(t ~0.83 x 107 1%5), the p(t ~ 4.3 x 107 2%s), or
the A(t ~ 5.7 x 107 2%5), be studied? The distances these particles travel before
decay is far too small for it to be possible to prepare a beam. The distance
between the source and the target is, under ordinary circumstances, far too
large. However, this distance can be reduced if the source is inside the target
for n° or inside a nucleus for the p meson or the A. In the first case, the n° can
travel a distance on the order of the interatomic distances in matter before
decaying. In the second, the p (or A) produced by the interaction of an energetic
particle with a nucleon inside a target nucleus will live long enough to interact
with a neighboring nucleon and thus permit a measure of the p-nucleon cross
section.

An important measure of the quality of an experimental arrangement is the
energy resolution that can be obtained. The first excited state of nuclei varies
in energy above the ground state from a few MeV in light nuclei to a few tens
of keV in rotational nuclei. These energy spacings decrease as one goes to higher
excitation energies. As one can see from compound nuclear resonances observed
with neutrons, near the separation energy the spacing is on the order of eV. To
investigate reactions in which only a particular state of the final residual nuclei
is excited, it is necessary to have a sufficiently good energy resolution, AE/E,
where AE is the effective uncertainty in our knowledge of the value of the
energy. To observe states that are separated by the order of 10keV, the value
of AE/E for, say, a 10-MeV beam energy is on the order of 1073, while for
100 MeV it is 10~* and for 1GeV it is 10~ °. Eventually, as the level spacing
becomes too small, it becomes impossible to resolve levels and one obtains
cross sections that are averages over a number of levels.

Energy resolution is also required to observe resonances and other structure
in the energy dependence of the cross section. Clearly, their unambiguous
identification and their investigation become possible only if AE is less than
the width of the resonance or, more generally, less than the range in energy
over which interesting structure is present.

Energy resolution on the order of several parts in 10° has been achieved
with primary beams of charged particles produced directly by accelerators. In
Fig. 1.1 an extreme example is shown, demonstrating resolution on the order
of 100eV achieved for proton beams of about 2 MeV. Figure 1.2 illustrates an
example of a similar resolution achieved with high-energy electron beams.
Energy resolution of secondary beams of particles, such as neutrons, pions, and
y-rays, produced when a primary charged particle beam collides with nuclei, is
steadily improving. The development of semiconductor detectors such as
lithium-drifted germanium has been particularly useful for y-ray detection
(Fig. 1.3), while the development of electronics capable of picosecond timing
has been of great value for the determination of neutron energies by the
time-of-flight method. Better secondary beams and better precision can be
obtained as well by increasing the intensity of the primary beam. Some facilities
of this type have recently been built.

These improvements in the control of projectile beams and the detection of



1 INTRODUCTION 3

52 52 .
18000 Crip,p)"“Cr 160" ]
12000}
€000
0 Iz 3260 2350 * 700
:szooL
o
1 18000
~
}_U} 12000 —r‘»r
Z oo} J
-
8 0w 7800 Z7%0 7600
18000
o WMWM '
5350 000 50 55

Ep (MaV)

FIG. 1.1. High-energy resolution (AE ~ 100eV) achieved for proton beams for proton
energies of a few MeV. [From Moses, Newson, et al. (71).]

reaction products make possible the discovery of relatively rare phenomena
such as narrow isobaric analog resonance, observation of the structure of the
broad giant electric dipole resonance (Fig. 1.4), and elucidation of nuclear
structure as exemplified by the study of nuclei in the lead region, to cite a few
examples.

A large variation in the energy of the projectiles, which has been substantially
expanded in recent years, is possible, permitting the study of nuclear reactions
under a variety of kinematic circumstances. For the most part (there are a few
exceptions) the energies of projectiles employed have been less than a few GeV,
although beams of nuclei with energies of 200 GeV per nucleon have recently
become available.

Perhaps the most important insight to be gained from this discussion of the
capabilities presently available to experimental nuclear physics is that they make
it possible to conduct a systematic study of an entire class of phenomena,
observing its dependence on the Z and A4 values and the structure of the target
nucleus; the properties of the projectile, including its charge, mass, isospin, hyper-
charge, and structure; and on the projectile energy. Such multipronged
investigations are necessary in strong interaction physics to unravel the various
structural and dynamical elements determining the course of a reaction.

Nuclear theory plays an important role in this process. Its principal
achievement in this regard has been to furnish a framework permitting a
dynamical interpretation of the experimental data and the extraction of nuclear
structure information. Calculations to predict nuclear reactions, based directly
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6 INTRODUCTORY REVIEW

on the underlying nucleon—nucleon forces, called the microscopic theory, have
been rather few. However, as our understanding of the many-body problem
grows, it may be expected that the methods used to predict the properties of
nuclear matter and the low-lying states of finite nuclei will be extended to the
“many-body problem in the continuum,” which is just another way of describing
nuclear reactions.

2. NOMENCLATURE AND ELEMENTARY KINEMATICS

Nuclear reactions involve the collision of an incident projectile with a target
nucleus. As a consequence, the initial system is transformed into the final system,
consisting of the products of the reaction. Symbolically,

a+X-oY+btc+ - @.1)

where a is the incident projectile, X the target nucleus, and Y the residual
nucleus. A more succinct notation is often used: X(a, bc,...)Y. The initial system
is typically a two-body system. The target nucleus is in its ground state, while
the incident projectile is generally stable or sufficiently long-lived. The final
system may consist of several particles, so that one speaks of two-body, X(a, b)Y,
three-body, X(a,bc)Y; and so on, final states. The residual nucleus or any of
the emergent particles may be in its ground state, or it may be excited. The
latter condition will be indicated by an asterisk.

The words initial and final describe the system when its constituents are
spatially separated and noninteracting. The interacting system is referred to as
the compound system. When the initial system is brought together so as to be
interactive, it forms the compound system, which eventually comes apart into
various possible final states. When a compound system lives a sufficiently long
time so that it has well-defined quantum numbers such as energy, angular
momentum, parity, and so on, the compound system is referred to as the
compound nucleus and the corresponding long-lived state as the compound
nuclear state.

In describing these reactions several conservation principles are employed.
Conservation of charge and baryon number are directly applicable to the reaction
equation, (2.1). The value of the total charge and the baryon number in the
final state must equal their values in the initial state. The baryon number B is
defined by the equation

B=A—A (2.2)

where A represents the number of baryons and A is the number of antibaryons.
Conservation of nucleons is the special case of conservation of baryons
appropriate for most nuclear reactions which do not usually involve strange
particles or antibaryons. Generally, the baryon number and charge are known
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for the initial system. Under these circumstances, observation of these numbers
for a part of the final system (e.g., the emergent particles) immediately determines
their values for the remainder of the system (e.g., the residual nucleus).

Conservation of charge and baryon number are considered absolute
conservation principles, as indicated by the very long bounds to the lifetimes
of the electron and proton. Moreover, the magnitudes of the charge of the
electron and the proton are known to be equal to a very high accuracy. Other
conservation rules are not as strongly obeyed. As has already been discussed
in deShalit and Feshbach (74), because of the action of the electromagnetic field,
isospin is not conserved. Hypercharge is not conserved in the weak interactions
that induce the decay of strange particles, such as

Asp+a”

However, it does appear to be conserved in the strong interactions. Violation
of the conservation of lepton number [see deShalit and Feshbach (74), Chapter IX]
has not been observed (e.g., the u— e + y reaction has not been seen), but it is
not as firmly established as the conservation of baryon number and charge.

Space—-time symmetries and their corresponding conservation principles must
also be preserved in nuclear reactions. Linear and angular momentum as well
as energy are conserved. Parity is conserved and time-reversal invariance is
valid for both the strong and electromagnetic interactions, which play the
principal roles in nuclear reactions. The weak interactions, which lead to parity
nonconservation in the hadron—hadron interaction [see deShalit and Feshbach
(74), Chapter IX], or the neutral current of the Salam—-Weinberg standard model,
which leads to weak parity conservation violations in the electromagnetic inter-
action, have very little effect on nuclear reactions. Unless we are specifically
investigating the weak interactions, there is no need to consider their effects.

There are some simple consequences of these invariance principles that it
will be convenient to develop now. In most circumstances the target nucleus is
stationary.! The colliding beams experiment, for which both the target and
projectile are moving, is an exception. But so far this device has been used only
for proton-proton, proton-antiproton, and electron—positron collisions. One
can expect that heavy-ion colliding beams will become available in the future.
The reference frame in which the target nucleus is at rest is referred to as
the laboratory frame. Quantities associated with it will be designated by a
subscript L.

From conservation of momentum we know that in the absence of any external
forces the total momentum of the system is unchanged during collision and
that its center of mass moves with a constant velocity. It is therefore convenient
to use a uniformly moving coordinate system in which the center of mass is at
rest. The position of the center of mass R with respect to an arbitrary reference

“The target is, in fact, not at rest because of thermal motion. This is of importance for reactions
induced by slow neutrons.
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frame for a projectile of mass m and velocity v, striking a target of mass M
and velocity v, is given nonrelativistically by

mr, + Mr
R=¥
m+M

where r, and r, are the positions of the projectile and the target, respectively,
with reference to some fixed origin. The velocity of the center of mass is

V:mv1+Mv2
m+ M

In the laboratory frame of reference (v, = 0)

v, = mv. _ P 2.3)
m+M m+M

where p, is the momentum of the projectile. In the center-of-mass frame, V =0,
so that p, = —p,. Thus the center-of-mass frame can be referred to as a
zero-momentum frame. The relations between the momentum and energy in the
two frames, laboratory and zero-momentum, are needed. The two physical
situations are compared in Fig. 2.1. In the figure, p is the common magnitude
of p, and p,. The center-of-mass frame is moving to the right with the velocity
V,. Hence

pL=p+mV,
or using (2.3),
M
= 24
iy 2 24

Thus the kinetic energy in the center-of-mass frame, E, and the kinetic energy

Target Nucleus

7. / 3 N
_/ > *
Incident Incident Projectile Target
Projectile Nucleus
Laboratory Frame Center of Mass Frame

(a) (b)
FIG. 2.1
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in the laboratory frame, E,, are related by

M
E=——E 2.5
m+M - 23)
Finally,
E= L (2.6)
2u P '
where u is the reduced mass:
_ Mm
H= M4+ m

The energy of the center of mass in the laboratory frame,

Ecm: " .
m+ M

EL

remains constant and is thus not available for the reaction.

The final and initial systems are related by the conservation principles. It is
most useful at this point to discuss some of the consequences of the conservation
of momentum and energy for two-body final states as illustrated in Fig. 2.2.
The reaction is

a+X—-Y*+b*
where the asterisks indicate the possibility that the residual nucleus, Y, and the

emergent particle, b, might be excited. In the center-of-mass frame, the energy

Emergent Particle Emergent

/ Particle
/

Incf:lent \ -
iden Incident -
Projectile Target Nucleus Projectile PLy
3, /
\ Residuol
Nucleus

Restdual Nucleus

Center of Mass Frame
(a)

FIG. 2.2

Laboratory Frame
(b)
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of the initial system is, in the nonrelativistic limit, (m, + my)c? + T;, where the
first two terms give the rest energy and T; is the kinetic energy (2.6), with the
momentum p equal to the initial momentum p;. The energy of the final system
is, similarly,

(m,+ my)c* +e,+ ey + T,

where ¢, and &, are the excitation energies of the particle b and nucleus Y,
respectively. The value of the momentum p, can be obtained from T, using
(2.6). Conservation of energy requires that the energies of the initial and final
systems be equal. Hence

Tf_TEEinz(mx+ma_mY_mb)cz_£b_8Y 2.7)

where Q ,, referred to as the Q value, gives the kinetic energy released by the
reaction. If Q , is positive, the reaction will proceed even if T;, the initial kinetic
energy, is zero. The reaction is then said to be exogeric. If Q ,, is negative, T;
must at least equal |Q |, the threshold energy, before the reaction can proceed.
The reaction is then endoergic. In a typical case, the masses are known, and the
emergent particle is not excited (¢, = 0). Then by measuring Q ; the value of ¢y,
the excitation energy of the residual nucleus, can be determined.

Of course, in practice, laboratory energies are measured directly and it
sometimes is useful to express the energy difference T, — T; as given by (2.7) in
laboratory-frame variables. It is an easy matter to obtain Q. by applying
conservation of momentum and energy in the laboratory frame. The result is

1
Q=T+ ﬁ(pm —P)’ —Tp, (2.8)
Y
or

1
Qp= —[Lmy+m)T,, —(my—m))T,,—2./mm,T,,T;,cos6,] (2.9)

my

where 8, is defined in Fig. 2.2. The mass m, may be eliminated using its approxi-
mate value my+ m, —m,. Since O, depends only on intrinsic energies [see
(2.7)], its value is independent of the angle 6,. Thus T, must vary with angle
6, so as to cancel out the explicit 8§, dependence in the right-hand side of (2.9).
The angle variation of T, can be obtained from (2.9) by solving for T,, in
terms of Q ;.

3. CLASSIFICATION OF REACTIONS

Each of the projectiles can induce reactions of various kinds. We begin with
the examples schematically illustrated in Fig. 3.1. This gives the energy spectrum
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s Quasielastic peak

4

Yol

Elastic/

scattering

(a)

Muitistep compound

_9%0_ | Evaporation
dS2 de

Multistep

/ direct
/ Direct

(®)
FIG. 3.1. (a) Energy spectrum of a particle scattered with a momentum transfer Aq and
an energy loss Aw; (b) energy spectrum of a nucleon emitted with an energy, ¢, as the
consequence of a reaction.

of a projectile scattered with a given momentum transfer #q and energy transfer
. hw in the center-of-mass reference frame, where

q=k,-—kf pl.'f=hki,f (3.1)

and
ho=E,—E, (3.2)
where E; and E, are the energies of the target and residual nuclei, respectively.
The peak in the intensity for zero energy loss is produced by elastic scattering,

designated by X (a, a)X. Elastic scattering is defined to be a collision in which the
colliding particles only change their direction of motion, and possibly spin
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orientation if they have spin. None of the kinetic energy of the system is used
to excite the colliding systems internally; that is, Q ,; = 0. The projectile and the
target nucleus remain in their ground state, simply changing their direction of
motion as illustrated in Fig. 3.2 but not the magnitudes of their momenta. The
cosine of the angle of scattering, 6, is given by k;-k ;- Itis related to q as follows:

g=2ksini6 (3.3)

where k is the common magnitude of k; and k.

If both or either the projectile and target nucleus are complex, inelastic
scattering can occur with the excitation of either or both, as indicated by
X(a,a*)X*. The reaction is endoergic. The sharp peaks for nonzero values of
w in Fig. 3.1a correspond to the excitation of sharp discrete levels in, for example,
the target nucleus. Figure 3.2 still applies, but in contrast to elastic scattering,
p; no longer equals p,. The energy transfer Aiw equals the excitation energy e,
so that

1
ho=e= - (p2 —p2 34
5 (pi —py) (34)

where it has been assumed that the change in the kinetic energies of the target
can be neglected. Relation (3.3) is replaced by

q* = (k; — k,)? + 4k;k  sin>16 (3.5)

Since ¢ is fixed, the magnitude of k, does not vary with angle. However, the
value of g, for a given ¢, does vary with angle, increasing as 6 increases. The
significance of g can be seen from the Born approximation, which states that
the amplitude for the process will be proportional to

Je ~e Ty (r)eth T dr = Je""" V(r)dr

where V is the effective potential which induces the transition, elastic or inelastic
as the case may be. V will generally depend on the properties of the nuclear
systems undergoing the transition. We see that the reaction will serve as a probe

Scattered Projectile \

Pt

- d

pP; -Pi

Incident Target Nucleus
Projectile
-

FIG. 3.2 -Pt
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of V(r) for distances on the order of #/g. Thus the larger the g, the more sharply
the short-range properties of V are probed.

For larger energy transfers (Fig. 3.1b), the spectra lose their discrete character
and become continuous. For one thing the density of levels of the target nucleus
becomes so large that it is no longer possible to distinguish individual levels.
It should also be realized that the approach to the continuous energy spectrum
will differ with differing types of excitation. States of the excited nucleus with
high angular momentum, J, will, for example, achieve the requisite high-level
density at comparatively high excitation energies. At the lower energies the
spectrum may thus be, effectively continuous as far as small values of J are
concerned but will have a superimposed discrete character characterized by
large values of J.

For sufficiently large energy transfers, those exceeding the separation energy
for a nucleon, deuteron, or other fragments, the target nucleus can emit a
particle,. The corresponding reactions are referred to as (p,2p), (p,p'd), and
(p,p'a) when the incident particle is a proton. The final states consist of the
residual nucleus; the incident proton, which has lost energy; and the particle,
which has been knocked out of the target nucleus-—and are thus at least
three-body final states.

An important feature in this regime is a consequence of the quasi-elastic
scattering mechanism. In quasi-elastic scattering the incident particle is assumed
to collide elastically with a nucleon (or a complex cluster) within the target
nucleus, the remainder of the target nucleus acting as a “spectator.” If the
nucleons (or clusters) in the nucleus were at rest and free, one would see a sharp
peak in the cross section at an energy loss, Aw, corresponding to the energy
acquired by the nuclear nucleons. Using definitions (3.1) and (3.2), this implies
that

—hzqz

hw = ——
2m

(3.6)

where m is the mass of the nuclear nucleons (or clusters).

However, the nucleons in the nucleus move with a momentum p. In a
Fermi-gas model the maximum value of p is pg, the Fermi momentum. The
conservation of momentum requires that the momentum #q [see (3.1)] lost by
the incident particle is acquired by the target nuclear nucleon of mass m*, where
m* the effective mass, is a function of the momentum, taking into account to
some extent the effect of the interaction with other nucleons in the nucleus.
Therefore, more accurately,

p2 2
——t hy=—— P=p+h 3.7
2m*(p) 2m*(P) P
This equation neglects the recoil energy of the residual nucleus, whose maximum
value is on the order of ¢r/(A — 1), where A is the mass number of the target
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nucleus and &5 is the Fermi energy. This approximation is valid only when ho
and hq are sufficiently large. From (3.7) one obtains a relation between w and
g, neglecting the difference between m*(p) and m*(P):

1 h2q2>
ho = —| hpq+—— 38
w m,,( A (3.8)

Hence hw is bounded as follows:

h hl 2 — h hz 2
Pr q+ q > ho > 143 q+ q
m*  2m* m* 2m*

(3.9)

The free nucleon peak at (hq)?/2m is shifted to #2g%/2m*. Moreover, it spreads
out, acquiring a width of the order of Aippq/m* as a consequence of the internal
motion of the nucleons of the target nucleus. It should be noted that the peak
energy depends on the angle 8 between the initial and final momenta, p; and
P, in a characteristic way. This fact can be used to differentiate the quasi-elastic
peak from others. The energy difference hw = Q; for inelastic excitation, for
example, does not vary with the center-of-mass angle 6 [see (2.7)].

Problem. Discuss how these conclusions are changed because of a possible
difference between m*(p) and m*(P).

The presence of the quasi-elastic peak is shown in Fig. 3.1a. Its shape depends,
at least in the noninteracting Fermi-gas or shell model, on the distribution of
momenta within the nucleus or more generally on the state of the struck particle.
The energy of the emergent particle is not given by p?/2m* since that is its
energy relative to the bottom of the potential well, as shown in Fig. 3.3. The
observed energy is p?/2m* —¢,, where ¢, is the binding energy, the minimum
energy required to remove the struck nucleon from the nucleus.

Some experimental results for the (e, e X) cross section, in which only the
inclusive cross section in which only the emerging electron and not X is observed,
are shown in Fig. 3.4. The solid lines give the fit obtained with the quasi-elastic
mechanism using the Fermi-gas model of the target nucleus. The values of ¢,

3 »
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FIG. 3.3. Quasi-elastic scattering.
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and py are indicated in the figure and are also given in Table 1.15.1 in deShalit
and Feshbach (74).

More information can be obtained if the emergent proton in the (e, ep) and
(p,2p) reactions are also detected in a coincidence experiment. In these
experiments it becomes possible to determine ¢, for different single-particle
orbitals and to obtain information on the momentum distributions for each.

In Figs 3.1a and 3.4, note the minimum at the low-A®w end of the inelastic
spectrum, lying between the quasi-elastic peak and the region where discrete
levels are excited. This minimum is a consequence of the competition with the
many other reactions that can occur in this region. At the upper end of the
peak, we see that the spectrum shows a rise that is not predicted by the Fermi-gas
model. This is a consequence of pion production.

Reactions in which the residual nuclei differ in either their mass number A,
atomic number Z, or hypercharge Y, are called transmutations. When the mass
number does not change but the atomic number or hypercharge do change, the
reactions are referred to as charge exchange (CEX) or hypercharge exchange
scattering (HCEX). Examples of charge exchange reactions include the (p,n),
the (*He, *H), and so on, reactions. With pion projectiles one can observe both
single and double charge exchange reactions,

nt 4+ (Z,A)>n’+(Z+1,A4)
nt +(Z,A)>n* +(Z+2,A)
where (Z, A) denotes a nucleus with atomic number Z and mass number A.
The second of these reactions can lead to nuclei relatively far from the “stable”
valley. For example, if the target is 160, the resulting nucleus produced by the
double charge exchange reaction (n*,n7) is °Ne.
Hypercharge exchange reactions can involve either incident kaons or the

production of kaons. In the first the hypercharge of the kaon is transferred to
anucleon in the target converting, for example, a neutroninto a A. For example,

K‘+12C—»1A2C+7t7

where '2C consists of six protons, five neutrons, and one lambda and is referred
to as a hypernucleus. Associated production can also lead to hypercharge
exchange. The elementary processes can be

at+n-K*+A
—»K*+x°
etc.

The nuclear process corresponding to the first of these reactions is, for example,

nt+12C->2C+K”
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Particle transfer reactions form a most important class of reactions leading
to transmutations. The stripping (d, p) and pickup reactions (p,d) in which a
neutron is transferred to or from the target nucleus played an important role
in establishing the nuclear shell model. The (d, p) reaction was found to populate
the single-particle neutron shell model states selectively, while the (p, d) reaction
was found to be sensitive to the orbital of the neutron, which is “picked up”
to form the deuteron. It proved possible in both these cases to correlate the
angular distributions of the protons or deuterons in the two cases with the
properties of the single-particle orbital from or to which the neutron is
transferred. In Fig. 3.5 the values of / labelling each curve indicate the orbital
angular momentum in question. As is apparent, the value of / can be deduced
immediately from the shape of the angular distribution. Single proton transfer
reactions with deuterons such as the (n,d) or (d, n) reactions are most difficult
since at least until recently, neutrons have proven to be more difficult to manage.
It has been necessary to turn to reactions with 3He, such as the (*He,d) or
(d, >He) to investigate single proton transfer reactions.

The transfer of two neutrons is studied in the (*H, p) and (p, H?) reactions.
In this case it is believed that the two neutrons transferred are in a 'S, state
since that is for the most part their state within the 3H nucleus. It may be
expected that the pickup reaction ( p, *H) reactions will proceed most vigorously
when the target nucleus ground state is superconducting, being built up of
precisely such correlated pairs. An example is shown in Table 3.1. This reaction
is clearly useful for the discovery and study of pairing correlations.

Reactions in which a larger number of nucleons are transferred have been
 observed using a-particles and most recently, heavy-ion projectiles. The transfer
of as many as eight nucleons has been seen; in this way the production of many
new nuclei away from the stable valley has become possible.

Still another class of reactions occurs when the incident projectile is a boson.
When the projectile is a photon, a pion, or a kaon, it can be absorbed by the
target nucleus. This process, referred to as absorption, can result in the transfer
of a relatively large amount of energy but with a relatively small amount of
momentum transfer. This is obvious in the case of photon absorption. In that
case the absorption by a single nucleon of the target nucleus is reduced since
the recoil energy of the nucleon A%w?/2mc? is very small compared to the energy
transfer #w for photon energies hw « mc?. As a result, the absorption is by a
pair of nucleons in which the nucleons move in antiparallel directions so that
their energy can be appreciable while their net momentum is small. A similar
phenomenon can occur when pions and (to some extent) kaons have small
momentum, as in the case of pionic and kaonic atoms, in which = and K~
are captured in atomic orbits by the attractive Coulomb field of the nucleus.
In that situation the momentum of the pion or kaon is small, while upon
absorption by the nucleus, an energy equal to m,c* or mgc? is released. In the
case of kaon absorption there is a finite probability that a hypernucleus is
formed. Indeed, it was through this process that the first hypernuclei were
observed.
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FIG. 3.5. Angular distribution for the °°Zr(d, p) reaction with 12-MeV deuterons in
which the neutron transferred to °°Zr carries an orbital angular momentum of [ =0, 2, 4.
[From Satchler (66).]

Photon absorption with the emission of a single nucleon [e.g., (y,n)] also
occurs. The underlying process may be the two-nucleon absorption, with one
nucleon captured before it emerges from the nucleus. Of course, this capture
must occur if the photon energy is below the threshold for the production of
two nucleons. In that event it may become more convenient to describe the
process as the excitation of the target nucleus into the continuum. The effect
of the other nucleons is then contained in the high-momentum components of
the single-particle wave function of the absorbing nucleon.
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TABLE 3.1 Yield Y for the '*Sn(t,p)
Reaction Forming '26Sp®

{t,p) E,

group (MeV) L Y
0 0 0 100
1 1.164 2 5
2 2.070 >2 3
3 2.185 4
4 2.236 7
5 2.377 5
6 2,659 2
7 2,732 6
8 2.905 3
9 3.439 4

10 5.226 4

11 5.282 9

12 5313 11

13 5.762 10

Source: (Bjerregaard Hansen, et al. (69)).
“L is the transferred angular momentum.

The inverse of photon absorption is called radiative capture, such as (n,y),
(p,y), (m, ) and so on. The neutron capture process, for example, is very useful
for determining the presence and properties of low-lying levels of the final
nucleus, which are readily connected via the electromagnetic interaction to the
capturing energy region. In the neutron case, the first step in the capture of the
neutron can be the formation of a compound nuclear resonance. In the proton
case, the use of polarized protons* in the (p,y) reaction has led to a more
complete understanding of the contribution of the various multipole momenta
in the giant dipole resonance region.

Fermions can be absorbed by the nucleus through the weak interactions.
For the electron the process is known as K, L, and so on, capture and results
in neutrino emission [see deShalit and Feshbach (74), Section IX.6]. In the case
of muons [see deShalit and Feshbach (74), Section IX.18], the final state can
consist of the muon neutrino and a nucleon as well, because of the large rest-mass
energy of the muon.

Absorption of antiparticles such as the antiproton, p, proceeds through the
strong interactions for the most part. In the case of antiprotonic atoms in which
the antiproton is in an atomic orbit about the attractive Coulomb field of the
nucleus, absorption of the antiproton involves the annihilation process. The

*Polarized projectiles are indicated by boldface.
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important elementary process is
p+p—(nm)

where (nn) refers to the emission of n pions. The analogous electromagnetic
system, positronium, decays by the emission of photons:

et +e —=(ny)

where n is 2 or 3, depending on the state of the positronium. Larger values of
n are not easily observable because of the weakness of the electromagnetic
interaction.

The inverse of boson absorption is boson production. When protons of
sufficient energy strike a nucleus, pions can be produced, as exemplified by the
reaction

p+EZ A (Z,A+)+n" (3.10)

The threshold for this process occurs at a lower energy than the elementary
processes:

p+p-on+tp+n’
—d+n*

For the first of these the kinetic energy in the center-of-mass frame is 1E,,
whereas, with the nuclear target the kinetic energy in the same frame is
[A/(A+ 1)]E,. Roughly (neglecting differences in the neutron and proton
masses, etc.), E, for the p—p reaction must be at least 2m,c?, while for the nuclear
target the threshold energy [1 + (1/4)Im,c? is considerably less. However, the
cross section will be very small in this limit, since the entire target nucleus must
be involved in the collision and production process. Intuitively, one would
expect that the critical parameter is the ratio of the momentum transfer, fq, to
the Fermi momentum pp. If this ratio is greater than 1, the probability of ejecting
a nucleon will be correspondingly large and the probability of (3.10) occurring
is reduced. If the produced pion is at rest, and if one neglects the momentum
of the neutron added to the target nucleus by the reaction, this ratio becomes
PL/Pr, Where p; is the momentum of the incident proton in the laboratory frame.
At threshold, nonrelativistically,

PL_ 2mm,,Ac2~2\/ A

pr NA+)pE N A+l

Since this ratio is greater than 1 for all nuclei, there will be a reduction in the
cross section of process (3.10). Indeed, as soon as it becomes energetically
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possible, the reaction
p+(Z,A)~(Z,A)+p+=

is expected to dominate.

When the energy deposited in a nucleus is sufficiently large, as can be the
case if the incident projectile is very energetic, or when the nucleus absorbs a
massive particle as described above, the nucleus may break apart into several
highly excited large fragments. This catastrophic event is referred to as
Sfragmentation. In response to relatively minor perturbations, heavy nuclei whose
stability is reduced by the repulsive electrostatic forces will fragment into two

Number of counts (arbitrary units)

.

Ecm (MeV)

(b)
FIG. 3.6. Energy distribution of the light products in the reaction (*°Ar + '°8Ag): (a) for
Z =12, 13, and 14 the spectra are identical at 25° and 40°; (b) for Z = 15, 16, and 17, the
deep inelastic process appears more clearly at 40°. [From Lefort (76).]
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or more massive fragements. This process is called fission. Fusion is an inverse
process in which heavy ions combine to form a single nucleus with perhaps the
emission of a few light particles. Recently, a process termed deep inelastic collision
has been discovered. It is found that in the process most of the kinetic energy
available in the initial system has been transformed into internal energy. The
observed kinetic energy of the final system is mostly a consequence of Coulomb
repulsion. That is, it can be understood to be equal to the Coulomb energy of
the two emerging nuclei making up the final system, in contact and at rest. As
an example, consider the reaction {5Ar + '9%Ag; the energy of the argon
projectile is 288 MeV. In Fig. 3.6 we plot the energy distribution of the fragments
Z =12, 13, and 14 at two angles, 25° and 40°. It will be seen that the energy
distribution at the two angles for the various fragments is nearly identical! This
is the signature for this remarkable phenomenon. The peak energy is about
72 MeV. Assuming a two-particle final state, the total energy of the final system
is 78 MeV, considerably less than the 288 MeV and reasonably close to the
Coulomb energy of the two final particles.

4. DIRECT AND COMPOUND NUCLEAR REACTIONS

The various processes discussed just above can proceed through a variety of
mechanisms. An early differentiation was made between “direct” and compound
nuclear statistical reactions. In Sections I.12 and 1.13 of deShalit and Feshbach
(74) it was emphasized that the two reaction types, the direct and that leading
to the formation of a compound nuclear state, could be distinguished by the
time delay caused by the reaction or equivalently, by the interaction time
required for the completion of the reaction. The direct reaction involves a short
time delay whose order of magnitude is the time it would take a projectile
and/or the emergent particle simply to traverse the nucleus. As pointed out
in deShalit and Feshbach (74), a short time delay is reflected in a relatively
weak dependence of the cross section on energy as well as a strongly anisotropic
angular distribution, indicating that the memory of the direction of motion of
the projectile has not been lost in the course of the reaction. In other words,
from the angular distribution it is possible to estimate the direction of motion
of the incident projectile. These properties of direct reaction have led to the
single-step description of the process referred to as the DWA distorted wave
approximation (DWA). In a single-step process, the projectile (e.g., a proton) in
one interaction forms the emergent particle (e.g., a deuteron). The matrix element
for this process (p,d) is therefore written as a matrix element of the effective
transition potential, ¥, acting directly on the initial state to produce the final
state. If the process is X(a, b)Y, the initial-state vector is the product of a state
vector |a, X >, giving the dependence on the internal variables of projectile a
and the target nucleus X, and the wave function x{*(k,, r), giving the dependence
on their relative coordinate r with #k; the incident momentum. x{*) is a
“distorted” wave in that it is not a plane wave but also takes into account the
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average interaction between the projectile and the target. The plus superscript
denotes the outgoing diverging wave boundary conditions satisfied by x!*. In
terms of this description of the initial state and an analogous one for the final
state, the DWA matrix element giving the amplitude for a direct reaction is
proportional to

Jdr[x(f’(kf,r)T(b, Y|Via, X >y (k1) (4.1)

In this equation y!~) is the wave-function describing the relative motion of the
final constituents, subject to the converging wave boundary condition. In the
X(p,d)Y case, x{* describes the dependence on the relative p—X coordinate,
while {7 is the wave function for the dependence on the relative d—Y coordinate.
The single-step nature of the process is indicated by the linear dependence of
the matrix element on the potential, V. This “theory” can give excellent
agreement with the appropriate experiment, as exemplified by Fig. 1.12.1 in
deShalit and Feshbach (74).

The compound nuclear resonance involves a very long interaction time, as
can be seen directly from the very rapid variation of the cross section with
energy, as indicated by its width, I" [see Fig. 1.12.3 in deShalit and Feshbach
(74)]. The resonance demonstrates the presence of a nearly bound state of the
compound nucleus, with well-defined quantum numbers such as energy, angular
momentum, and parity—the compound nuclear state, whose lifetime is given
by (#/T'). Clearly, the excitation of the compound nucleus state cannot be
described in terms of a single-step process. Rather, the incident projectile
completely loses its identity, amalgamating with the target nucleus to form a
compound nuclear state. The compound nuclear state lives for a finite (rather
than an infinite) time because it can decay by emitting a variety of products. If
the particle emitted is identical with the incident projectile, the process is elastic
or inelastic scattering. If the particle emitted is not identical with the incident
projectile, the reaction is a transmutation. If interference with the direct reaction
is unimportant, the angular distribution of a reaction product is symmetrical
about 90°. It is thus no longer possible to ascertain the direction of motion of
the incident projectile, although its line of motion is determined.

The isolated compound nuclear resonance is a spectacular phenomenon.
However, it can be observed in only a comparatively limited energy range. As
soon as the excitation energy increases sufficiently, the density of resonances
and the variety of accessible exit channels will become so large that it becomes
most unlikely that an isolated compound nuclear resonance will be present.
Rather, the resonances will overlap, their presence being reflected by fluctuations
in the energy dependence of the cross section away from a smooth average. In
this regime it becomes necessary to use statistical measures such as averages

!The quantities, the effective transition potential, and the average projectile—target nucleus
interaction are discussed and described in Chapter VI.
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over the fluctuations and mean-square deviations from the average. This theory
is referred to as the statistical theory of compound nuclear reactions.

The principal assumption of this theory rests on the insight that the wave
function for the system is very complex, consisting of a large number of
components (e.g., the overlapping resonances). The amplitudes, both in magni-
tude and phase, of each of these vary rapidly as the energy changes. The
assumption is made that these amplitudes are random variables. The expression
for the reaction cross section, depending on the square magnitude of reaction
amplitude, will therefore depend on bilinear products of this set of random
variables. Upon averaging, the cross products of the random variables will
vanish. This result follows from the assumption that the phase of each com-
ponent amplitude is random. We provide a detailed discussion of the conse-
quences of this approach in Chapter IV.

Problem. Let f =), A (E)B,(E,), where A, and B,, are random variables.
Show that (| 1) = [, AE)*1[Z | BuE)I*].

For the present purposes it will suffice to quote the results that follow exactly
for the collision of spinless systems producing spinless reaction products, and
that follow approximately for reactions involving particles with spin. The
average cross section for exciting a specific level in the residual nucleus is

o AE)
<Ulf(Ef)> ac(l’ El)ZaAa(Eu)

This result is an expression of the Bohr independence hypothesis. The cross
section factors into two terms. The first, o (i; E;), gives the cross section for
forming the compound system when the available center-of-mass energy is E;
and the quantum numbers describing the target nucleus are symbolized by i.
The second factor, depending only on the final energy, is a branching ratio
giving the probability that the compound nucleus will decay to a particular
final state.

An approximate argument (which turns out to yield the correct result!)
provides the form for 4. A more precise discussion is given in Chapter IV. We
assume incorrectly (why?) that detailed balance is valid for the reaction
considered above. For spinless systems, detailed balance states that

4.2)

Ei<0'if(Ef)> = Ef<6fi(Ei)> (4~3)
Inserting (4.2) into this equation yields

Af(Ef) ~ EfUc(f; Ef)
Hence
_ ol E)E0(f3E))

2. E0 @ E) @9

_<U.'f(Ef)>
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Generally, in the energy region where this formula is to be applied, the final
states of the residual nucleus form a continuum, or the individual states are
not resolvable. Suppose that the density of states at the excitation energy of
the residual nucleus U ;; is wy(U ;). Then the spectrum {do,;/dE ;) is given by

<Z(;if> =odiE) #EodfEJoo(Uyp) 4.5)
f et J AEE,0a; EJoo(Ua)

where p,, is the reduced mass for the possible final systems. This formula applies
approximately to systems with spin if @, is the density of levels with zero total
spin. The value of the excitation energy, U, is given by

where Q; is the Q of the reaction [see (2.7)].

Despite the approximations involved in deriving (4.5), it has proved to be
of great utility, in part because it gives a very definite prescription for determining
an average cross section. The cross section for forming the compound nucleus
can readily be calculated from the optical model obtained from fitting elastic
scattering cross sections and angular distributions. In the short-wavelength limit
for a strongly absorbing nucleus and a neutral projectile, it is given roughly by
nR?*(1 — (V' )/E), where R is the nuclear radius, that is, the radius of the potential
acting between the target (residual nuclus) and the projectile (emitted particle)

.and (V') is the average strength of that potential.
Some consequences of (4.5) are immediately clear. The ratio

do;/dE,
o E)E;o(f;Ey)

depends only on the excitation energy U ;, that is, only on the difference E; — E
and not on either E; and E, separately. This assumes that the denominator on
the right-hand side of (4.5) is insensitive to E;. This is to be expected when there
are many channels into which the compound system can decay. Moreover, it
is possible to extract the level density w,, which is traditionally (Chapter IV)
parametrized as follows:

wo(U) = Cevay (4.7)

The empirical values of a for a number of nuclei are shown in Fig. 4.1. As one
can see, the density of states rises very rapidly as the excitation energy U
increases.

The function wy(U), where U is given by (4.6), can be expanded about the



26 INTRODUCTORY REVIEW

35
s -
£ sof X e
= T
s .
E 251 c. . o
e e T
& *2 S
> 20r . % en .
e RS :
8 5k R “u ]
- 10} s: 7" a=A/8 ¢
3 :‘.j{»"-
e
i o )~ S NV VA VAU USNS EEU WSO WDV NS BN S S |
o 4 60 80 100 120 140 60 180 200 220 240
A

FIG. 4.1. Level density parameter a versus A. The straight line corresponds to a = A/8
and dark points are experimental determinations. [From Lefort (76).]

maximum excitation energy for the nucleus, (E; + Q) = Uy,

o(E; + Qp; — E[) = Ce?aUng B/ TWs) (4.8)

U
T(U,) = 7“ (4.9)

T is referred to as the nuclear temperature,t given in energy units. The energy
spectrum (4.5) becomes, as far as its dependence on E[ is concerned,

where

do; _
<dEff > ~E;o(f;E;)e BT (4.10)

*One can obtain a more general formula by postulating
w, =5V

Expanding S(U) about U, yields

wO(U) = eS(UM)p—EfIT T !'= (?ﬁ
ou U=Ux
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This formula is similar to that which gives the energy distribution of molecules
evaporated from condensed matter. It suggests the picture that the incident
particle deposits energy in the system, which then heats to a temperature T
and then evaporates. For this reason the low-energy part of the spectrum for
which (4.10) is valid is often referred to as the evaporation and/or the equilibrium
region. An example of the determination of the temperature from experiment
is shown in Fig. 4.2.

The angular distribution of the reaction products in the eavaporation region
is predicted to be spherical. The derivation of this result employs the assumption
that the excitation of the residual nucleus will populate levels with all possible
values of and directions of the angular momentum. However, in the case of
some systems, particularly those involving the collision of heavy ions, for which
large angular momenta are selectively populated, isotropy will no longer be
predicted. We shall postpone the discussion of that case to Chapter VIIL

The dependence of the density of levels on angular momentum in the residual
nucleus has been derived by Bloch (54) using the independent particle model
for the nucleus: The z component of the total angular momentum M (z is in
an arbitrary direction) is obtained by adding up the z components of the angular
momentum of each of the nucleons making up the residual nucleus. Presuming
these components to be random, the probability distribution for a given total
M( = 0) is given by the central limit theorem as

F(M) ~ e—M(M-Fl)/Za’Z

where ¢ is the dispersion and M(M + 1) rather than M? has been put into the
exponent. The density of levels with a value of angular momentum equal to I,
wy, is given by F(I + 1) — F(I) since the M component of the angular momentum
in the range (I — 1,I) must be projected from total angular momenta greater
than I — 1 and less than I. Approximately,

JF(I) 2I+1 _ 2
FI—1—F~ = EW 4y _21H 1 ravina g 4.11
Hence

_ M e~ 10+ 120 4.12)

Wy
\/@63

where the the dependence on ¢ in the coefficient of the exponential has been
chosen so that

e—1(1+ 1)/202 ~1
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FIG. 4.3. Theoretical spin cutofl parameters o2 as a function of excitation energy for
nuclei in the 2°®Pb region (40). The calculations have been performed on the basis of
the Nilsson diagram. [From Huizenga and Moretto (72).]

Theoretical values of ¢ as a function of mass number are shown in Fig. 4.3.
Equation (4.5) (for spin-dependent systems) and the isotropy of the reaction
products is derived under the assumption that w, ~ (21 + 1)w,, that is, neglecting
the exponential in (4.12), an assumption that fails for the collision of heavy ions.
This exponential factor expresses the fact that for a given number of nucleons,
the number of ways one can construct a total angular momentum, I, from the
individual nucleon angular momenta must eventually decrease as I increases.

5. MULTISTEP DIRECT REACTIONS

A wide variety of nuclear reactions cannot be described either as a single-step
direct process, that is, by the DWA approximation (4.1), or as a compound
nuclear resonance reaction, as extended by the statistical theory of nuclear
reactions [see (4.5)]. In terms of Fig. 3.1b giving a typical energy spectrum of
particles emerging at a given angle (or of the corresponding residual nuclei),
the region of validity of these two descriptions is limited to the high-energy
region for the direct single-step process, while the statistical compound nuclear
process is limited to the low-energy end. The latter domain is characterized by
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spherical angular distributions and rapid fluctuations in the energy dependence
of the cross section, symptomatic of long interaction times. The direct reaction
involves short interaction times and thus is characterized by anisotropic angular
distributions and a slowly varying energy dependence of the cross section.

However, in the energy region between high and low energies, large deviations
from the predictions of these two mechanisms are found. For example, in Fig.
5.1 the *®7Au(a, xn) cross section integrated over angles are compared with the
statistical compound theory [see (4.5)] for x-particle energies ranging from 20
to over 70 MeV. Clearly, a rapidly growing discrepancy appears in each of the
cross sections shown in the figure.

-
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FIG. 5.1. Calculated and experimental excitation functions for the reactions '°7 Au(a, xn).
The heavy solid curves represent experimental yields. The thin solid curves represem
equilibrium statistical model calculations. [From Blann (72).]
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FIG. 5.2. Experimental data for the reaction '7Yb(p, t) compared with the single-step
DWA calculation (solid line). [From Ascuitto, Glendenning, and Sgrensen (72).]

The single-step direct process can fail to describe reactions at the high-energy
end of the spectrum, as illustrated by the reaction 176Yb(p, t)!’#Yb. In Fig. 5.2
the DWA is compared with the experimental result and does not provide an
explanation of the angular distribution for the excitation of the 2 state by a
wide margin.

Both the statistical compound and the direct reaction theories are limiting
descriptions, the former involving very long interaction times, the latter, very
short reaction times. It is now necessary to retreat from these extremes and
consider processes involving intermediate interaction times.

In the case of direct reactions, the procedure to be used is rather obvious.
The single-step reaction is described in terms of the DWA. This is a perturbation
theory where the perturbing interaction is, according to (4.1), given by
{b,Y|V]a,X ). The amplitude given by (4.1) is an approximation to the more
precise amplitude to be obtained from the coupled equations

[Ei— T = Vopla, X)1¥(a, X) = (a, X|V|b, Y ¢(b, Y) (5.1a)
[E; — T = Voplb, Y)1(b, Y) = <b, Y|V |a, X ) {(a, X) (5.1b)

where V,(a, X) is the optical potential between the target X and projectile a
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and T is the kinetic energy operator for their relative motion. The amplitude
equation (4.1) is obtained by dropping the terms on the right of (5.1a).

However, this result still leaves out possibly important physical processes,
consequences of the polarizability of the target (residual) nucleus by the projectile
(emergent particle). For example, the target nucleus and/or the residual nucleus
may be excited, permitting the reaction to the final state to proceed by several
intefering routes, as indicated in Fig. 5.3. In addition to the one-step process,
there are several two-step amplitudes. In one, the target nucleus is excited and
then makes the transition to the final state of the residual nucleus; in another,
the transition is from the initial target nucleus to an excited state of the residual
nucleus which in the second step of the process is deexcited. In a reaction such
as (3H, p), in which several nucleons are transferred, interference between the
direct route and one in which the nucleons (neutrons in the example) are
transferred one at a time is possible. Indeed particle transfer can play a role
even in the case of an inelastic scattering (p, p’) reaction. It might be the case
that the two-step process X(p,d)Z(d, p)X* is important for some special reason.
For example, a collective state (or set of collective states) of nucleus Z might
be accessible in the energy, charge, and angular momentum range under
investigation.

The two-step process illustrated in Fig. 5.3 is described by the following
equations:

[Ei —T— Vopl(a,X)](p(a’ X) = <a’ X| V|a’ X* >'//(a’ X*)

+4a, X|VIb, Y U(b,Y) + (a, X |V b, Y* (b, Y*) (5.2a)
[E.— T —¢&,— Vopla, X*) J(a, X*) = {a, X*|V|a, X >y(a, X)
+<a, X*|V|b, Y (b, Y) (5.2b)

FIG. 54. (a) Cross sections for the 2 state that correspond to the individual transfer
processes shown. Note that the direct and indirect routes are comparable in magnitude.
Each of these overestimate the cross section and interfere destructively to produce the
final result. (b)) Cross sections for members of the ground band of '’*Yb. Calculations
include all transitions connecting all three states in both nuclei. The 0* curve was
normalized to the data and the same normalization was used for the other two. [From
Ascuitto, Glendenning, and Sgrensen (72).]
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[E;—ey— T — Vol b, Y*)JY(b, Y*) = (b, Y*[V|a, X ) Y(a, X)

+<{b, Y*VIb Y yb,Y) (5.2¢)
[Ef -T- Vopt(b9 Y)]w(b’ Y) = <b’ YIV"LX)!I/(Q, X)
+ (b, Y| V]aX*Y(a, X*)+ (b, Y| Vb, Y* (b, Y*) (5.2d)

The coupled-channel Born approximation (CCBA) follows the prescription
dictated by the arrows in Fig. 5.3. It is obtained by putting the right-hand side
of (5.2a) equal to zero, retaining only the terms in y/(a, X) on the right-hand
side of (5.2b) and (5.2¢).

Note that the optical potential V,,(a,X) in (5.24) is not identical to the
Vo8, X) of (5.1a). The optical potential takes into account, in an average way,
the effects of channels that are not explicitly considered. Since these differ for
the two cases (5.2a) and (5.1a), the corresponding V,,(a, X) cannot be equal.

Obviously, the number of coupled equations can be made infinitely large.
Practically, what one should do is to take into account the couplings that are
felt to be most important for some physical reason; even then there may be a
great number of equations. Under these circumstances it often proves more
appropriate to use a statistical approach. The statistical theory of multistep
direct processes is discussed below.

As an example of the use of multistep processes, consider the reaction
discussed earlier, 7Yb(p,t)'’*Yb to the 2* state in the residual nucleus. By
including the excitations of the !7Yb ground-state band up to 4* and the
174Yb ground-state band, we see in Fig. 5.4 that the theoretical predictions now
follow the experimental results much more completely than in the single-step
DWA theory case. In particular, in the transition routes illustrated in the figure,
ground state to ground state with subsequent transition to the 2%, and excitation
of the ground state in the target nucleus to the 2* followed by a two-particle
transfer to the 2* of the residual nucleus, were especially important, as important
as the direct excitation.

6. STATISTICAL DOORWAY STATE REACTIONS

We consider now that portion of the spectrum which borders on the low-energy
region dominated by the evaporation process. A clue to the mechanism involved
is provided by the experiments of Grimes, Anderson, et al. (71) shown in
Fig. 6.1. The reaction is *?Co(p,n)**Ni. The ordinate is the excitation energy
of the residual nucleus *°Ni, so that a large U value corresponds to small
neutron energies. As expected from evaporation theory, the lowest-energy
neutrons had an isotropic angular distribution. However, as the energy of the
neutrons increases, the angular distribution became anisotropic but remained
symmetric around 90°. Eventually, this symmetry also disappeared, as indicated
on the figure. We pay special attention to the regime in which the angular
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FIG. 6.1. Neutron spectrum for the 3'V(p, n)>'Cr reaction. U is the excitation energy of
the residual nucleus. [From Grimes, Anderson, et al. (71).]

distribution is symmetric but no longer isotropic. An examination of all the
data reveals that in this excitation region, there are a greater number of
higher-energy neutrons than would have been predicted from evaporation
theory using the state density Equation (4.7). The symmetry about 90° suggests
a statistical mechanism analogous to that discussed in the preceding, section
involving compound nuclear resonances, and indeed, Grimes, Anderson, et al.
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(71) propose that the resonances now involved are the doorway state resonances.
A statistical theory of such doorway state nuclear reactions had been suggested
earlier and used explicitly by Block and Feshbach (63).

The concept of the doorway state and the doorway state resonances is
described briefly in deShalit and Feshbach (74, pp. 99-104), with particular
attention being paid to the isolated doorway state such as the isobar analog
state [which by the way, is visible in the data of Grimes, Anderson, et al., (71)
shown in Fig. 6.1)]. In the present context, we shall be energy averaging over
a number of doorway state resonances, again using the random-phase
assumption of Section 4.

The importance of the doorway state in the present context should, in
retrospect, not have been surprising. It seems rather obvious tha the interaction
time for reactions leading to the domain lying between the low-energy part of
the spectrum of Fig. 3.1b with its long interaction time and the high-energy end
with its short interaction time is intermediate, lying between these two extremes.
The intermediate range of interaction times corresponds exactly with the domain
in which doorway states should be of importance. As expressed in deShalit and
Feshbach (74, p. 99), a cross section can have energy dependence, that is,
“structure,” which varies (1) over a scale on the order of the compound nuclear
width I'cy, which applies to the evaporation region; (2) over the much broader
scale of the single-particle width I'yp, which applies to the direct reaction region;
and (3) over an intermediate scale I",, which is appropriate for the region lying
between:

Fep»Ty»Ten
The interaction times, 7, vary inversely, so that

Tair K Tg << T

evap (6.1)

The dynamical mechanism responsible for the intermediate structure
presumes the existence of simple excitations of the system. A simple example is
shown in Fig. 6.2. The well and the black dots represent schematically the shell

To
- Compound
Nucleus

Ip 2p -lh 3p-2h

FIG. 6.2. Successive steps in a nuclear reaction leading to the formation of « compound
nucleus. [From Blann (73).]
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model potential and particle filling levels of that potential, respectively.
The incident particle is shown with an incident energy E. It is readily able to
excite, via an assumed two-body residual nucleon—nucleon potential,
two-particle-one-hole states (2p—1h), which are next in complexity to the incident
channel, which in this language is a one-particle (1p) state. The two-body
residual potential acting on the (2p — 1h) hole states can mix these, can return
the system to the simpler 1p state, or can generate (3p—2h) states of still higher
complexity. In this way a description of the components of the states of the
system in terms of a hierarchy based on increasing complexity can readily be
formulated. Obviously, if it is appropriate for the system in question, a model
other than the shell model might be used and a different set of definitions would
be involved in defining the hierarchy of complexity. It is necessary, perhaps to
emphasize that this choise of model is not a matter of convenience. It is a
statement regarding the nature of the excitations of the system.

To emphasize that point, we replace Fig. 6.2 by Fig. 6.3, in which the set of
states next in complexity to the incident channel have been labeled as doorway
states and the remaining states have been grouped together in the box entitled
“states of higher complexity.” The word doorway was originally suggested by
Block and Feshbach (63) to indicate an additional assumption employed
to give the partition of Fig. 6.3 a dynamical significance. That assumption states
that with the system starting in the incident channel to excite the states of
higher complexity (the third stage in the figure) it is first necessary for the system
to involve states of lower complexity, that is, the doorway states. This
assumption implies that if the probability of forming doorway states from the
incident channel is small, the probability of forming compound nuclear states
will be reduced correspondingly. The doorway state assumption can be stated
analytically: The matrix elements of the Hamiltonian between the incident
channel and the second boxes in Fig. 6.3 are assumed to be zero. This assumption
can be justified for the case of the shell model hierarchy classification for a
two-body residual interaction. It is not expected that this assumption is obeyed
exactly.

We are now ready to exploit the interaction time differences expressed by
(6.1). It permits energy averaging over a range AE, which is large compared to
[cn but still small compared to I'y, thus preserving the intermediate structure
associated with doorway states but smoothing out the fluctuations caused by
the compound nuclear state resonances. The average cross section for a doorway
state resonance reaction i— f, omitting the effects of spin and direct reactions

s

+
/ <
Incident i \
Channel Doorway More Complex

States FIG. 6.3
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Sor simplicity is

riri
Tig = 12 e s (6.2)
k“(E—E»)" +(31)

In this formula, '], is the width measuring the probability of forming the
doorway state from the incident channel i, while l"jf, the escape width, is
proportional to the probability that the doorway state will decay into the final
channel. Equation (6.2) resembles the expression for the cross section for the
same process proceeding through a compound nuclear resonance. With the same

assumptions as those which apply to (6.2), that cross section is given by

n r,r

o= A 6.3
T TR (E— Ep)? + (AT, ()

where E, is the resonance energy, I', its width, and I',, are the partial widths
proportional to the probability that a system in the resonant state, denoted by
the subscript 4, will decay into channel a. The width of the resonance I'; when
the resonance is isolated is related to the partial widths as follows:

F=3T (6.4)

The corresponding relation does not hold for the doorway state width I',. It
is not just the sum of I'},. The physical reason is that the doorway state can
decay not only into the open channels but also can make a transition into a
more complex state, as indicated by Fig. 6.3, and one must add in the width
for this process. Therefore,

r,=yr),+r¥ (6.5)

where I'} is called the spreading width.* It is a width that increases the doorway
state width because of coupling between the doorway and more complex states.
It reflects the fact that the doorway state is not an exact eigenstate of the nuclear
Hamiltonian. The compound nuclear resonance would be an exact bound state
if all the exit channels were closed. The doorway state would also be an exact
bound state if, in addition, the probability of a transition to any more complex
state were reduced to zero. In the example of Fig. 6.2, the doorway state becomes
an exact bound state composed only of 2p—1h wave functions if the probability
of transitions to the simpler 1p state, and to the more complex states such as
the 3p—2h states, were zero. _

We note that the form of the cross section for a doorway state resonance
and that for the compound nuclear resonance are identical. The only difference

T’y is used for this width in deShalit and Feshbach (74).
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is that exhibited by (6.5): namely, the addition of the spreading width. It is thus
possible to use all the results developed for the compound nuclear resonance
reaction theory. It is only necessary to bear in mind the “extra” channel, the
transition to more complex states, with the width I'}. In particular, it is possible
to take over the results of the statistical theory of compound nuclear-nuclear
reactions [see (4.5)] to obtain for the zero-spin case,

<d0-,‘j> =0 (l E) k}ad(f’Ef)wd(Ufi)
dE; /4 VY JdEK2 0 a; EJw (U,) + 2n* (T},

(6.6)

In this expression, o, is the cross section for the formation of a doorway state,
w, the density of doorway states, and (I'}> the average spreading width.
Although the density of doorway states can be large, it is generally much smaller
than the density of compound nuclear states. All the quantities appearing in
(6.6) depend on the initial energy and the other quantum numbers for the
incident channel, since these features are decisive in determining the nature of
the doorway states. The corresponding quantities in (4.5) are not dependent on
the initial state since the full complexity of the compound nuclear states is
achieved only after many steps beyond the doorway stage, at which stage the
memory of the incident situation has become very faint. One important
conclusion that can now be drawn is that the Bohr independence hypothesis
[see (4.2)] is not valid for the statistical doorway state reactions.

7. STATISTICAL THEORY OF MULTISTEP DIRECT
AND MULTISTEP COMPOUND REACTIONS

The system of equations, (5.2) describes a comparatively simple situation.
However, as the energy of the projectile increases, the excitations of larger
numbers of intermediate states become more probable, with the consequence
that the number of coupled equations required for an adequate account of the
reaction increases rapidly. One can question the usefulness of solving these even
if it were practical and even if the coupling potentials were well known. A more
fruitful approach—one that proves to be insightful—asks for statistical quanti-
ties (as discussed in Section 4) such as energy-averaged cross sections. Such a
theory is referred to as the statistical theory of multistep direct reactions.
Similar remarks apply to the generalization of the statistical theory of
doorway state reactions. In such a development, the stages beyond the primary
doorway stage play an important role and thus must be considered explicitly
(see Fig. 7.1). Each stage contains wave functions of a given degree of complexity,
as discussed in Section 6. Emission into the reaction channel is possible at each
stage, as indicated. The statistical theory of doorway state reactions considers
emission only at the doorway stage, while the compound nucleus resonance
reaction involves emission far down the chain. With so many steps involved in
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the latter case, it is not surprising that the nature of the initial state is not
important for the emission process, thus recovering the Bohr independence
hypothesis. Since this chain of stages (Fig. 7.1) can be used to describe the
compound nucleus, the reaction type is designated the multistep compound
reaction to which the adjective “statistical” is added if statistical assumptions
are employed in evaluation of the reaction cross sections. As might be expected
from the results for the statistical theory of doorway state reactions discussed
in Section 6, the statistical theory of multistep compound reactions predicts an
angular distribution symmetric about 90°.

This cross section must be added to that obtained for the statistical multistep
direct reaction. The latter, with some approximation, can be described as a
sequential series of one-step energy-conserving direct reactions. The cross section
then consists additively of the contributions from each possible value, n, of the
number of steps. However, for a given energy of the emerging particle, there is
a most probable value of n, depending on the average energy loss per single-step
direct reaction. The angular distribution will generally be anisotropic and
asymmetrical. If the angular distribution for the single-step process peaks in
the forward direction with the angular width 86, the statistical multistep direct
reaction process is predicted to lead again to a forward peak, but the width

would now be given by \/;150.

8. DIRECT NUCLEAR REACTIONS AND SPECIFICITY

Much of the present-day understanding of nuclear structure, particularly the
properties of low-lying states, has been gained from the study of nuclear
reactions, particularly the single-step direct type. For this purpose it is necessary
to understand the dynamics of nuclear reaction, while at the same time methods
must be developed that permit the extraction of nuclear structure information.
These two objectives are inextricably involved. Nevertheless, it has proved
possible to accomplish both despite the fact that these reactions are governed
by the strong interactions. Playing an essential role has been the ability to study
the various processes systematically, varying the targets, the projectiles, and
projectile energy and exploiting the wide variety of reactions described in
Section 3.
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The key has been what is termed the specificity of, particularly, the direct
nuclear reactions [see deShalit and Feshbach (74, p. 72)]. Specificity refers to
the ability of these nuclear reactions to excite specific types of nuclear states
preferentially or to probe particular nuclear properties. Specificity can be a
consequence of a property of the projectile, that is, its charge, mass, spin, and
so on, and/or it can be a consequence of a property of the initial and final
nuclear states connected by the reaction. Generally, specificity can be exhibited
for experiments in which specific final states are observed rather than an average
over a group of final states appropriate for the statistical models. This
requirement calls for precision experiments involving beams and detection
equipment with excellent energy resolution. Obviously, observation of particular
final states is less easily performed. As the excitation energy increases, the density
of levels increases and the energy separation between the levels decreases. By
and large this has the consequence that it is in the transition to low-lying states,
for which the existence of specificity is most easily observed. This limitation
can be violated if a particular reaction mechanism selects out a particular type
of state for which the density of states is not very large, even if the excitation
energy is high. An example is the excitation of states with a very large angular
momentum by heavy-ion projectiles. Another is the excitation of isobar analog
states, whose existence is a consequence of the approximate conservation of
isospin. Incidentally, the excitation of single states permits the use of
conservation principles that help not only to identify the mechanism involved
but also to determine the nature of the states excited.

The importance of the single-step direct reaction in this context should be
emphasized. As we have described repeatedly, the excitation of complex states
will generally require multistep processes. However, multi-siep processes do not
usually play an important role in the excitation of simple modes of motion.

On the other hand, single-step direct reactions preferentially excite simple
modes of motion of nuclei. For example, the stripping (d, p), which adds a
neutron to the target nucleus, and the pickup (p,d) reaction, which removes a
neutron, are sensitive to the single-particle aspects of nuclei and are thus
particularly useful for shell model studies. The added neutron in the first example
will be placed in an empty single-particle orbital, producing a particular state
of the residual nucleus. The contributions to this cross section from multistep
processes will generally be relatively small.

A. Angular Momentum and Coulomb Barriers

Specificity depends on several factors. The one first realized historically is
concerned with the probability that a projectile can penetrate to where a nuclear
reaction can take place. The most familiar barrier to penetration is the Coulomb
barrier, present because of the electrostatic repulsion between the positively
charged nucleus and the positively charged projectile. This barrier is illustrated
in Fig. 8.1. It can be expected that if the energy of the system is well below the
peak (see curve A in the figure), the particle will not be able to penetrate and
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FIG. 8.1. Real potential for *2C~*2C scattering. [From Scheid, Fink, and Miiller (73).]

nuclear reactions will be improbable. On the other hand, when the energy is
near the top of the barrier or above (see curves B and C in the figure), penetration
will readily be accomplished. The barrier energy is given roughly by

2Ze?

Eg R

where ze is the projectile charge, Ze the charge of the target nucleus, and R the
distance between the centers of the projectile and target when touching.
Replacing R by 1.2(47/* + A}/*) fm, where A is the mass number of the target
and A, of the projectile, this formula becomes

zZ
Eg=12—"2"___ MeV (8.1)
AP+ AP

Some representative values are given in Table 8.1.

Another barrier to penetration is the angular momentum barrier. Classically,
the system, consisting of an incident projectile of momentum p and target
nucleus at rest, will have an angular momentum given by pb, where b is the
impact parameter (see Fig. 8.2). If the interaction radius, that is, the distance
between the centers of the interacting projectile and target nucleus beyond
which nuclear reactions become improbable, is R, the maximum angular
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TABLE 8.1
Coulomb Barrier Energy Coulomb Barrier Energy
Nucleus for Protons® (MeV) for z-Particles” (MeV)
27A1 3.97 6.96
%sCu 7.07 12.62
19%Ag 9.95 18.06
'7Hf 13.28 2430
U 15.59 28.80

“In the radius formula 1.2(A} 344 ”3) the factor 1.2 is determined empirically
by charged particle rcactlons It can, in fact, be as large as 1.5 in some cases,
reducing the values above by the ratio 1.2/1.5=0.8.

7 T N

Incident Direction

Interaction -
Region

FIG. 8.2

momentum of the system that can contribute to a reaction is pR. Therefore,
nuclear reactions will involve angular momenta [#, satisfying

<kR k= g (8.2)

Numerically (and nonrelativistically) for light projectile.
kR = 0.22R(A,E)"? (8.3)

where R is expressed in fermis, 4, is the projectile mass number, and E is the
projectile energy in MeV. For a given energy E the more massive particle carries
more angular momentum, so that a heavy-ion projectile is capable of trans-
mitting a relatively larger angular momentum to the target nucleus. In fact, it
is in this way (i.c., by heavy-ion collisions) that the very high spin states
referred to earlier are excited.
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The phrase angular momentum barrier emphasizes that kR gives a rough
upper bound to the angular momentum which can be involved in a nuclear
reaction. Quantum mechanically, the probability for a nuclear reaction falls
rapidly but not immediately to zero when the angular momentum kR is exceeded.
The angular momentum barrier makes its appearance explicitly as an effective
repulsive potential (the centrifugal potential) in the radial Schrédinger equation
describing the relative radial motion of projectile and target. The ratio of this
centrifugal potential energy to the total energy E evaluated at the interaction
radius R is

Bt oI+ 1)

which must be less than 1 if the centrifugal barrier is to be penetrated easily.
On introducing the variable k, this condition becomes

I(1+ 1) < (kR)? (8.4)

which is just the quantum-mechanical equivalent of (8.2).

Roughly, the probability for a nuclear interaction is proportional to the
probability that the incident particle will arrive at the nuclear surface. For
neutral particles such as the neutron, the incident amplitude for a wave carrying
angular momentum Ik is proportional to the spherical Bessel function of
order [ j/(k;r), where k; is the incident momentum divided by &
The corresponding probability evaluated at the nuclear radius R is j7(k;R),
which for small k;R is on the order of (k;R)*". The fact that this quantity
approaches zero for small k; is simply the expression of inequality (8.4).

The effect of the Coulomb barrier is given for small values of k;R by
multiplying the neutral penetration factor by one depending on the
dimensionless parameter #;:

_zZe* EgR

= 8.5
hv, hv; ®.5)

n;

where ze is the projectile charge, Ze the target nucleus charge, and v, the incident
velocity. One obtains for the penetration factor

Clz(’h)(kiR)ﬂ
where
21

2 __ 20 211 (1 — 1V 4 27, 29 2T
Cl =gz yp =17 i1 ) 0 89)

The last factor is the value of C? for I =0, C2. This factor goes to zero rapidly
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TABLE 82
1 Can
0 1.000
0.2 0.500
0.4 0.222
0.6 0.089
0.8 0.033
1.0 118 x 102
20 438 x 10~3

as the barrier energy increases or as the incident velocity decreases, as can be
seen from Table 8.2, indicating the strong effect of the Coulomb repulsion.
Similar factors (k,R)*' and CZ(n,)(k,R)* are present in the cross section for
endoergic reactions, for which the emergent particle’s momentum can approach
zero.

B. Inside the Nucleus

Finally, we come to the question of how far a projectile will travel inside the
nucleus once it penetrates the barrier. More precisely, how soon will the incident
projectile leave the incident channel, that is, the elastic scattering channel?
Empirical evidence indicates that the absorption of neutrons and protons in
the nuclear interior is weak. It is, however, very strong for composite systems
such as deuterons, a-particles, or heavy ions because these “dissolve” inside the
nuclear interior and do not preserve their identity. Thus the composite particles
do not penetrate a great distance into the nucleus and tend to be more sensitive
to surface properties of nuclei and to excite surface states. The proton does not
show such selectivity since it can penetrate the nuclear interior. This is illustrated
in Fig. 1.10.3 in deShalit and Feshbach (74), where one sees a marked difference
in the number of levels excited in inelastic proton scattering compared to inelastic
deuteron scattering. In the latter case one would expect a preference for the
excitations of the vibrational modes of a nucleus [see deShalit and Feshbach
(74, p. 471)].

Let us illustrate these remarks with simple examples. Neutrons and y-rays
are uncharged and thus do not have to penetrate the Coulomb barrier. Neutrons
of low kinetic energy are thus the appropriate projectiles to be employed for
the study of these states of the compound nucleus, formed by the neutron and
target nucleus, whose excitation energy is near the separation energy of the
neutron. It is in this region that an enormous number of compound nuclear
resonances have been found. These are nearly bound states of the compound
nucleus. [see Figs. 1.12.2 and [.12.3 in deShalit and Feshbach (74); note the
neutron energies. ]

At very low energies, these resonances must, according to (8.4), be =0
resonances. As the energy increases, it becomes possible to excite | = 1 resonances
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and at higher energies | = 2 resonances, and so on. For example, for the target

nucleus, *#Cu, kR is ﬁ for 1.8 MeV neutrons. It equals \/6, appropriate for
the [ = 2 case for 5.4 MeV. Of course, both | =1 and [ = 2 resonances will make
their appearance long before these values are reached. Their presence can be
demonstrated by, for example, examining the angular distributions of elastically
scattered neutrons at and near the resonant energy.

y-Rays may be used to excite the target nucleus by absorption and in principle
could be used to study any of the nuclear states. However, the angular
momentum barrier plays a role. If a photon of energy hw is absorbed at a
distance R from the center of the nucleus, it can transmit an angular momentum
of hwR/c, so that

hc ¢

Since Ac = 197.32 MeV fm, it is clear that for photon energies up to the order
of a few tens of MeV, the photon absorption process will be dominated by the
I =1 (i.e., dipole) mode. Quadrupole and higher multipoles will also be absorbed,
but the cross sections will be considerably smaller. This effect is clearly visible
in the long-wavelength limit. In that limit the transition probability [see
(VII1.5.35) deShalit and Feshbach (74)] is proportional to (kR)*>*!, where j is
the multipole order, so that the transition probability decreases rapidly with
increasing j. It is, of course, no accident that the most readily observable
gamma-induced reaction, the giant resonance seen in all nuclei [see pp. 48 and
491-503 in deShalit and Feshbach (74)], is a dipole resonance.

A major problem with the use of uncharged particles is the difficulty to
measure and control them. The use of lithium-drifted germanium counters has
vastly improved the detection of y-rays, while in recent years the development
of nano- and picosecond circuitry, together with the availability of more intense
neutron sources, has changed the situation in neutron physics with regard to,
for example, the study of (n, n'), (n,7), and (n, n’ X) reactions.

C. Electron Excitation

Since electrons are negatively charged, they are attracted by the positively
charged target nucleus. The importance of elastic electron scattering for
determination of the nuclear charge density has been emphasized in deShalit
and Feshbach (74, pp. 3-7). Here the excitation of nuclear levels by electrons
is discussed briefly. We shall consider only the effect of the Coulomb interaction:

e2

v=y (8.7)

prot [T — 1y

where the sum is taken over all the protons in the nucleus and r is the electron
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coordinate. There are other terms involving the magnetic-type interaction and
the interaction with exchange currents.

It is, of course, one of the great advantages of using the electron as a probe
that the interaction is well known. In addition, the interaction is relatively weak,
so that one can use the Born approximation.* For simplicity, we shall use the
nonrelativistic form, which is incorrect for the high-energy electrons used.
However, to some extent, it will be possible to correct for this error in the
course of the calculation. The Born approximation inelastic amplitude is

1 2m ik
= ~ikrrpx(1,2,..., A 1,2,....4
Js 4nh2j J 7 %gdr - )
x et drd(1)---d(4 — 1) (8.8)
or
1 2m —iks( ) pikit( ) - J J‘ —ik k
= = i T ) piki(r—r lfr.et.r.
Ir 4n h? proy r—r|
X ®*(1,2,..., A)®(1,2,..., A)d(1)---d(A — 1)

where ®; and ®; are the final and initial states of the nucleus, respectively. Since
all the particles are idential, each of the terms in the sum is numerically identical.
Therefore, with a change of variable,

12m( , .Ze* e,
ffi=faﬁ qu_é_d€<d)f|eq |D;>
where
q=k;,—k, (8.9)

and r, is the coordinate of one of the protons in the target nucleus. The first
factor is the nonrelativistic Born approximation for the elastic scattering of an
electron by a point nucleus of charge Ze. We shall replace it by the exact
relativistic elastic scattering amplitude. Hence

fri=f{955l@ (8.10)
where 5} is

7= <@ e |,

For nuclei with large Z one must take the Coulomb distortion of the electron wave function into
account. This will, however, not change the qualitative nature of the results obtained here.
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pY)(q) is the form factor for the transition. It is the Fourier transform of the
transition charge density

pYIry) = J-d(2)~-~d(A —DO*(1,2,..., AD(1,2,..., 4) (8.11)
and
A = Je“'"'p‘f,?(rl)drl (8.12)

It is the last quantity that is determined by experiment.
The transition will involve an angular momentum change of j and thus those
components of "7 that carry at least that amount of angular momentum will
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FIG. 8.3. Square of the magnetic form factor for the 27, T =1 state at 20.76 MeV in
12C. The theoretical calculation divided by 2 is compared with experiment. [From
deForest and Walecka (66).]
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survive the integration, that is

A=Y @+ l)i'jfz(qr )P,(cos 3,)p)r ) dr,

12j

For not too large g, the first term in this sum dominates:

PG ~ (2 + 1) J],((IH)P {cos 3,)p')(r ) dr, (8.13)

i.l 1)

~ (21,:"1)” Jr’ P;(cos 9,)p(r,)dr, (8.14)
The integral gives the transition electric multipole moment. The characteristic
dependence on ¢’ of (8.14) is a reflection of the angular momentum barrier
penetration. However, in contrast with the radiative case, for which g is limited
to w/c, where hw is the excitation energy, q in the electron inelastic scattering
case can be varied from the minimum value of w/c to a maximum available at
back angles given by (k, + k) = 2E/hc, where E is the electron energy. It thus
is possible to use inelastic electron scattering to map out p%)(q) over a wide
range in ¢, and therefore p“’(r) the y-ray-induced transmon providing only
A~ 0). 1t should be noted that the dependence ¢’ helps to identify the multipole
moment (but not its electric or magnetic nature), as illustrated by Fig. 8.3.

D. Coulomb Excitation

As implied by the term barrier, the Coulomb and angular momentum barriers
generally reduce the probability of a nuclear reaction as demonstrated by (8.4)
and (8.6). However, this assumes that the reactions are induced by short-range
forces. This assumption fails for the Coulomb force. A heavy ion of moderate
energy passing at some distance from the target nucleus can still excite the
nucleus through the action of the Coulomb force. This mechanism is referred
to as Coulomb excitation. It is more effective the larger the atomic number of
the heavy-ion projectile. By proper choice of the projectile and energy, one can
adjust the distance of closest approach so that the projectile does not come too
close to the nucleus, so that whatever excitation is observed is caused by the
changing electric field associated with the motion of the projectile. Coulomb
excitation will preferentially excite levels that have a high probability for
y-emission and indeed has been the method of choice for investigating the
rotational spectrum of deformed nuclei [see deShalit and Feshbach (74, p. 412)].
A rough estimate of the Coulomb excitation cross section can be obtained using
the Weiszacker—Williams approximation. This approximation, which becomes
increasingly valid as the projectile energy increases, replaces an incident charged
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projectile by an equivalent beam of photons with a spectrum given by
dn(®w)=———— (8.15)

where v is the velocity of the projectile. The cross section is then given by
multiplying this spectrum by the cross section for the absorption of a y-ray of
energy hw. Using (VIII.(8.1)) from deShalit and Feshbach (74), assuming zero
width for the excited state, one obtains the following for the excitation cross
section:

Zet & 41 .
o=@l It gLy (8.16)
ho hej(2j + DLEJ+ DHI]?

This formula should be considered of qualitative validity only in view of the
shortcomings of the Weiszidcker—-Williams approximation in the energy range
in question. It does show the direct connection of the Coulomb excitation cross
section with the B coefficients.

The Coulomb field exerted by a heavy ion is very strong. Evaluating the
field of a heavy ion of charge z at the target nuclear radius R, one finds that
the force F on a target nucleus, mass number A, and charge Ze is

2
F= %7 ~ jTZ/B MeV/fm 8.17)
T T
For a ®*Cu projectile incident on 2°®Pb, F = 68 MeV/fm. Such a strong force
permits multiple excitations; that is, the target nucleus while excited can be
excited once more and the process can be repeated during the course of the
collision. This means that the target nucleus will be in one of this chain of
possible excited states for a finite time, with the consequence that the properties
of such a state can be investigated. In this way the quadrupole moments of
excited states have been measured.

E. Surface Reactions

As we stated earlier, composite particle projectiles do not penetrate the target
because of absorption. These reactions thus probe the surface of the nucleus.
The fact that only the surface is involed means that the important incident
angular momenta are in the neighborhood of p,R, where p; is the initial
momentum of the projectile, while the angular momentum carried off by the
emerging projectile is p R, where p, is the final momentum. Hence it will be
most probable to excite the target to a level whose angular momentum differs
from the ground state by gR, where g =|p, — p,|. This implies a maximum in
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the angular distribution at an angle determined by

nAJ = qR

or

(hAJ/R)? — (p; — py)?
2Pin

1 —cosf, = (8.18)

This angle becomes larger as the angular momentum change AJ increases. Since,
classically, gR must be larger than #AJ, the cross section is zero classically for
qR <hAJ. This phenomenon is :ilustrated in Fig. 1.11.2b of deShalit and
Feshbach (74), in which the angular distribution for the inelastic excitation of
various levels in *®Ni by a-particles is shown. One sees that the first peak
(excluding a possible peak at 0°) occurs at greater angles as /, the angular
momentum of the levels, increases. The angles 8,, predicted from (8.18) are 6.2°,
9.2°, and 12.1°, which compare with 10°, 15°, and 17° experimentally. One also
observes a drop in the cross section as one decreases the angle for the / =3 and
4 cases.

The angles predicted from (8.18) are not quite correct since the reduction in
momentum that occurs because of the Coulomb repulsion was not taken into
account. The Coulomb reduced momentum, p,, is related to the momentum p
(either the incident or final momentum) by

2\ 1/2
pe= (l—zze) (8.19)

where E is the energy. Then using (p.); and (p.), in (8.18) instead of p; and p,
gives values of 6, equal to 10.4°, 15.5°, and 20.3°, which compare more
favourably with the experimental values. Of course, these simple predictions
are substantially modified by quantum-mechanical effects as well as by the
effects of the interaction with the target.

An indication of the narrow range in orbital angular momenta involved in
reactions of this type is shown in Fig. 8.4. In this case of a-particle inelastic
scattering by 2Mg at E = 84 MeV, the behavior of imaginary parts of the radial
integrals involved in the calculation of the cross section for the process is plotted
as a function of the average [ = (/, + 1,)/2, where [; is the angular momentum of
the incident wave and [, of the emergent wave. We see that most of the radial
integral is concentrated in the region /=18 + 2. This is in reasonably close
agreement wth pR/A, which for the R of 3.841 fm used in these calculations
equals 15.2. One also notes a very strong oscillation in the angular distribution
(see Fig. 8.5). This is the case because the reaction occurs only at the surface,
with the consequence that the a-particle is diffracted by the target. Typically,
the angular distribution is proportional to [ j{(gR)]? (j, is the spherical Bessel
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FIG. 8.4. Localization of the radial integrals for Mg?*(x, ). [From Austern (70).]

function; see Appendix A). Indeed, as pointed out in Chapter I of deShalit and
Feshbach (74, p. 79), this phenomenon can be used to determine R, the effective
radius for the reaction being studied.

F. Stripping and Pickup

As discussed earlier, the stripping and pickup reactions result in the deposition
(stripping) or removal of a neutron (pickup) from a single-particle orbit. Since
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FIG. 8.5. Comparison of the DWA theory with experimental data for Zr®*(«,«) at
65 MeV bombarding energy. The energies and angular momenta of the Z°% excited
states are given on the graph. [From Austern (70).]

the deuteron is strongly absorbed, the cross section will be largest if the
single-particle wave-function is appreciable at the nuclear surface. For this
reason the valence neutrons are generally involved. For example, in the
40Ca(d, p)*'Ca reaction of Fig. 1.12.1 in deShalit and Feshbach (74), the neutron
can go into the 1f,,, orbit or higher orbits. However, the state in 41Ca that
is excited is generally not pure ¢(f5,,)¥(*°Ca) but will have other components.
As a consequence, before comparison with experiment is possible, the magnitude
of the cross section calculated using (4.1) must be multiplied by a factor, the
spectroscopic factor, less than unity. The spectroscopic factor gives the
probability of finding the final system in the state ¢(f5,,)¥ {*°Ca). One of the
results of the measurement is the energy of the state in question, so that one
can map out the energy of the single-particle (or quasi-single-particle) states for
a large variety of nuclei. The results are shown in Fig. 8.6.

Neutrons are also added to or removed from a target nucleus by the (n,7)
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Small corrections for symmetry energy have been applied to correct the data to the line
of beta stability. [From Cohen (71).]

1
16.

and (y, n) processes, respectively. By choosing the appropriate y-ray energy, one
can select some of the states populated by (d,p) or (p,d) reactions. The
comparison between the two sets of reaction is informative both as to the nature
of the reactions and the states excited. The neutron absorbed is usually a
low-energy neutron limiting the angular momentum of the quantum numbers
of the compound nucleus. The (y, n) reaction, on the other hand, is not limited
to the removal of neutrons in surface orbitals as is the (p,d) reaction.

The pickup process, (p,d), may be discussed in similar terms. The neutron
that is “picked up” is, for the following reason, again a surface neutron in the
sense that its wave function peaks at the surface. If the deuteron is made too
deeply within the nuclear interior, it will be absorbed before it can escape from
the nucleus. Hence surface production will be more visible.

As the energy increases the deuteron will eventually have a large enough mean
free path that its production in the interior of the nucleus will be observable.
In that case the state of the residual nucleus will, in shell model terminology,
be a hole state.* Observations of such states by this method have been made.
We mentioned earlier another method of observing single hole states by the
(y,n) reaction and by quasi-elastic scattering of energetic electrons or protons

*The reader should recall that the definition of a hole state depends on the “vacuum” chosen. For
example, the removal of a neutron from '®0 could be described as leaving a hole state in ‘80 or
leaving a 2p-1h state with an *¢O core.
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in the (e, 'p) or (p, 2p) reaction, respectively. A comparison of the results obtained
with these various methods will provide information on the reaction mechanisms
involved as well as the nature of the excited state.

For the stripping and pickup processes, it is important to realize that the
single-particle or single-hole states that are probed are surface states not only
in configuration space but also in momentum space; that is, for the most part
we are dealing with states near the Fermi momentum pr. Much the same can
be said of the excitations induced by other composite particles. The vibrations
seen with inelastic a-particles are, for the most part, coherent linear combinations
of one-particle-one-hole states, but the major contributions come from states
close to pg.

G. Examples of Direct Reactions

The stripping and pickup reactions are archetypes of the use of direct reaction
to study nuclear structure. By choosing the appropriate projectile and energy,
it becomes possible to study a wide variety of nuclei and excitations. We earlier
mentioned the use of the (*He, d) and (d, >He) reactions to study single-particle
proton states and the (*H, p) and (p, *H) to study “superconducting” nuclei by
the transfer of two neutrons coupled in a 'S, state. Inelastic proton and neutron
scattering will study the formation of 1p-1h states.!

H. Heavy lons

The availability of heavy ions greatly increases the variety of projectiles and
the range of possible transfers of particles from and to the heavy ions and the
target nuclei. The transfer of a-particles is conveniently studied using °Li
projectiles, for example. The nuclei !’O and '80 are useful projectiles for the
study of single- and two-neutron transfers. Heavier nuclei are neutron rich and
thus facilitate the transfer of many neutrons and the consequent formation of
new nuclei approaching more closely those nuclei that are unstable against
neutron emission. On the other hand, the same process can lead to the formation
of multiparticle-hole states.

In the case of heavy-ion projectiles, it is often the case that the single-step
direct description is inadequate and one must turn to the multistep direct
processes. Virtual excitation of the low-lying levels in both the projectile and
target nucleus can play a role. The sequential transfer of nucleons, resulting in

‘We repeat a caveat. The independent-particle model description of nuclei is oversimplified. The
ground state of '°0, for example, consists of the independent-particle state marking the completion
of the p-shell but also 2p-2h and 4p—4h components, to mention the most likely. These are essential
for proper descriptions of the correlations in the ground state. It is convenient to adopt the
terminology of Chapter VII in deShalit and Feshbach (74) and refer to the more complete description
of single-particle states as quasi-single-particle states and the states obtained by inelastic excitation
as quasi-particle-hole states.
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a many-nucleon transfer, can compete with the transfer of the entire cluster as
a single-step process.

Because heavy ions are composite, they generally do not penetrate deeply
into the target nucleus. Most of the transfer reactions discussed above occur
close to the nuclear surface, and thus the heavy ions serve as probes of the
surface. The effectivéness of heavy ions in this respect is accentuated by their
very short wavelength, which is given by

4.56
AE)?

(8.20)

where A is the projectile mass, E its energy in MeV, and 4 is in fermis. For
example, if an electrostatic accelerator of the van de Graaf type has an effective
terminal voltage of 20 MV, a *2S ion stripped of half its electrons will acquire
an energy of 5MeV per nucleon. Under these circumstances 4 equals
6.4 x 107 '5cm! This very short wavelength permits the use of classical
mechanics for the discussion of the motion of a heavy ion. Second, it
demonstrates the possibility of using a heavy ion as a probe of the surface
structure of the target with considerable spatial resolution.

An example of the discussion above is provided by the interaction of %0
ions with ®°Ni. The angular distribution, shown in Fig. 8.7, shows rapid
oscillations at small angles. This effect can be understood by examining the
classical orbits of the *°0 ion in the field of the **°Ni nucleus taking the nuclear
interaction as well as the Coulomb interaction into account (see Fig. 8.8). It
will be observed that orbit 1 above the grazing orbit, g, and orbit 3 give rise
to identical scattering angles; in the latter case the nuclear interaction plays an
essential role. However, it might be expected that orbit 3 would not be of much
importance because of the absorption that takes place in passing through the
surface region of the target nucleus. To explain the observations, this expectation
must be incorrect. In the surface region involved in the small-angle scattering
(and one can be quite specific about that region because of the short wavelength
involved), the absorption must be weak, an important conclusion that so far
seems to be valid for a variety of heavy-ion reactions.

The procedure employed to obtain the foregoing conclusion is of general
interest. It is familiar from physical optics, where characteristically the
wavelength of light is very much smaller than the dimensions of the components
of the optical system. In physical optics the motion of the incident plane wave
is “broken up” into the behavior of rays, which is calculated by the methods of
classical mechanics. Each ray follows the classical orbit illustrated in Fig. 8.8.
The phase of the wave along each ray is obtained by calculating the optical

path length given by
J-n ds
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FIG. 8.7. Angular distribution corresponding to the *°Ni(*#Q, '°Q) transition to the
ground state of ®>Ni measured at an incident laboratory energy of 65 MeV compared
with a DWA theoretical prediction. [From LeVine, Baltz, et al. (74).]

where n is the effective index of refraction

By this means it is possible to construct a final wavefront, which, of course,
will no longer be a plane wave.

The crucial point in the analysis of the small-angle 1°O + 3®Ni scattering is
that different rays, 1 and 3 in Fig. 8.8, have the same angle of scattering. The
amplitude at infinity is obtained by adding the amplitude of each of these two
contributions. The rapid oscillations reflect the fact that as the angle of scattering
changes, the net value of the amplitude will fluctuate as the relative phase of
the two contributions changes. Constructive interference will give rise to the
peaks and destructive interference to the valleys. For these oscillations to be
observable, the magnitude of the contributing amplitudes must be comparable.
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This is possible only if the absorption in the surface region is not large, the
conclusion noted earlier in this discussion.

9. REACTIONS WITH “EXOTIC” PROJECTILES

We have commented earlier on the reactions that can be induced by the exotic
projectiles (%, K, p, etc.). Their theoretical description does bring in some unique
features that need to be addressed. For example, a pion interacting with a
nucleon can form a A, the excited state of the nucleon. Therefore, an important
intermediate state—a doorway state—which is formed in a pion-nucleus
collision, is a A-hole state. The properties of the A-hole state are critically
important for an understanding of pion-induced reactions and pion production.
In pion production a A is formed in the collision of a nucleus with the incident
projectile. The A then decays into a nucleon plus a pion. Because the A-hole
state is generally a coherent combination of states with differing orbits for the
A and for the hole, a single-step DWA direct reaction description will not
suffice. Note that the =™ couples strongly to the proton and weakly to the
neutron in forming the A. The reverse is exhibited by the n~, so that
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pion—nucleon interaction is sensitive to the neutron and proton distributions.
The double charge exchange reaction (see p. 16) requires the intervention of
at least two nucleons and therefore is sensitive to the nucleon—nucleon
correlations inside the nucleus.

When a kaon is incident on the target nucleus, it becomes possible to
produce a A via the elementary reaction.

K +n->A+=n" 9.1)

If the A is captured by the nucleus, a hypernucleus will be formed. Capturing
the A in a well-defined state is most likely if the nucleus does not fragment.
Fragmentation can occur if the recoil momentum of the nucleon in the nucleus
exceeds the Fermi momentum, which is on the order of 250 MeV/c for all but
the lightest nuclei. [However, see Dalitz and Gal (76), who give a more stringent
condition.]

A zero-momentum transfer is possible for the (K ~, n ™) reaction, for example
[Podgoretsky (63); Feshbach and Kerman (66)]. In the elementary reaction
equation (9.1), consider the case in which the neutron is at rest and the pion is
observed in the forward direction. We shall now show that there is an incident
kaon momentum for which the A produced is at rest. Under these circumstances
conservation of energy and momentum (the momentum p of the kaon and the
momentum of the pion are equal) requires

c2p? + mic* + myc? = myc? + Jc2p? + mict

It is a simple matter to solve this equation for the kinetic energy of the
incident kaon:

E m (;2 _(mK+mN_m_,\—mn)(mK+ mN_mA+mn)C2
K "k - T

2Amp —my)

Inserting the value of the masses yields a kinetic energy of about 231 MeV
and a momentum of 531 MeV/c. At this energy the A produced will be at rest.
In Table 9.1, the recoil A momenta, p,, is given for a range of incident kaon
momenta. Note that p, equals the momentum transfer. Moreover, for a given
kaon momentum, departure from the forward direction for the n~ increases
the momentum transfer.

TABLE 9.1 _
px(MeV/c) 0 400 531 700 1000 2000

pa(MeV/c) 250 40 0 40 75 130
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These results suggest that if a K~ in the momentum range sufficiently close
to 531 MeV/c strikes a nucleus, it will be possible for the kaon to “strangeness
exchange” with a nucleon, with the emergent pion going off in the forward
direction, the A remaining behind and forming a hypernucleus in a definite
state. One would expect a large cross section in this kaon momentum range,
with the cross section being small elsewhere. This effect has been observed in
a number of nuclei. In Fig. 9.1 we show the results obtained for '2C(K ~,z7)}?C
and '*O(K~,7n7)1°0 (at py = 715MeV), where the pions are observed in the
forward direction [Briickner, Granz, et al. (76, 78)]. A strong peak with a sizable
cross section is clearly seen, confirming the existence of a direct strangeness
exchange process.

The peaks are labeled by the orbit occupied by the A and the resulting
neutron-hole. The major peaks are substitutional. The p,,, peak in '°O consists
of a A in a p,;, orbit about the host nucleus '*O in a p,,, state, while in the
P12 case the *O s in a p, , state. The splitting in 'O between these two states
is 6 MeV, with a maximum amount of 0.3 MeV which can be ascribed to the
A spin—orbit interaction. It is therefore very small. The DWA calculation of
Boussy (77) confirms this result. The A-nucleus spin-orbit potential is thus very
much smaller than in the nucleon—-nucleus case. Later experiments in which
y-ray transitions between hypernuclear energy levels were observed in a
(K7, n™7) coincidence measurement. [May et al. (81)] confirmed this result.

We also note that an (s,,)A(P5, 3)n state is found. This illustrates an important
point. In a hypernucleus, the A with a mass (1115.6 MeV) similar to the nucleon
and indeed a member of the SU(3) octet (n,p, A,Z%,Z° =7, does not need
to satisfy the Pauli exclusion principle with respect to the nucleons in the
nucleus. It can enter regions of configuration and momentum space forbidden
to the nucleons. For example, the state (s, /z)..(l’g_,;)n is forbidden by the exclusion
principle, but a A in the s,, orbital about the 'O host is allowed. From the
point of view of the study of nuclear structure, the A in a hypernucleus acts as
a baryonic probe, thereby providing another and quite different way to study
nuclear properties.

10. SPECIFICITY AND SYMMETRY

The isolation of a given mode of interaction, which is one of the essential
elements helping to ensure specificity, is greatly aided by symmetry requirements.
These lead to selection rules that must be satisfied by the reaction. On the other
hand, by studying the appropriate nuclear reactions and observing the selection
rules, one can help determine the symmetries of the underlying elementary
particle interactions and the accuracy with which they are satisfied. The
discovery of parity nonconservation is a notable example of the use of nuclear
properties for this purpose.

There are two kinds of symmetry of interest, intrinsic and space—time. The
first is exemplified by charge, isospin, and strangeness. The second leads to such
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overall conservation principles as conservation of linear and angular
momentum, parity, and energy. Dynamically, the space—time properties of the
fields that interact with nuclei are of fundamental importance. Since the vector
potential (A, ¢) transforms as a 4-vector, the electromagnetic field couples with
the 4-vector nuclear charge current (J, p) and thus serves as a probe of these
nuclear properties. This coupling is required by Lorentz invariance of the
Lagrangian, giving the interaction term j*A — p¢. The selection rules for
electromagnetic transitions given in Chapter VIII of deShalit and Feshbach (74)
are direct consequences of the transformation properties of A and ¢. On the
other hand, if the selection rules are known, it becomes possible to deduce these
transformation properties.

In actual practice the transformation properties of the electromagnetic fields
are used to identify the spins and parities of the levels of a nucleus by observing
transitions induced by y-rays, by the Coulomb field of heavy ions, or by the
inelastic scattering of electrons.

Once these quantum numbers are established by, for example, observation
of electromagnetic transitions, it becomes possible, by observing the transitions
induced by another field, to determine its transformation properties. For
example, nuclei can be used as “filters” that distinguish among the various
symmetries of the weak interactions [Chapter IX of deShalit and Feshbach
(74)]. In p-decay, by choosing the appropriate decaying nucleus and the
appropriate final state, one can examine separately the Fermi and
Gamow-Teller interactions. The superallowed O* — O™ transitions of isospin
T =1 nuclei [see deShalit and Feshbach (74, p. 788)] involve only the Fermi
matrix element, {y [t *e'¥"|y, >, while the decay of *He into °Li, from a spin
O state to a spin 1, involves only the Gamow-Teller interaction, {i ;|t*ee'¥ |y, ).

It is possible using neutrino-induced reactions [e.g., (v,e”)] and appropriate
initial and final nuclear states, to select out various components of the weak
interaction and obtain their momentum dependence. The results for the Fermi
and Gamow-Teller matrix elements obtained from S-decay mentioned above
involve only low momenta (i.e., small g) values. The selection rules for the
neutrino-induced process are given in Table IX.17.2, of deShalit and Feshbach
(74). By choosing appropriate initial and final states in the reaction, one can
select out various combinations of terms in the Hamiltonian equation (IX.17.15).

Pion reactions can be used to explore the nature of the transition axial vector
currents. For example, in a (y, n) or (x, y) reaction, the coupling to the nucleons
must involve transition axial nuclear currents because of the pseudoscalar nature
of the pion. The leading term of the (y, n) reaction amplitude near threshold is

proportional to
<¢/f dl.->

where E is the electric field associated with the y-ray and ¢ is the pion field
wave function. We see that the Gamow-Teller combination is involved, while

Y t*0,-E¢
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the axial current is given by 3>;t*6; The connection of the pion transition to
the weak interaction is not in retrospect surprising because of the relation
between the axial current and the pion field given by PCAC [see (I1X.14.4) of
deShalit and Feshbach (74)]. Similarly, the (K, =) reactions can probe the
transition and exchange strangeness currents.

Intrinsic symmetries will also provide selection rules that select reaction
modes. Strictly speaking, isospin is not conserved in nuclear reactions because
the Coulomb interaction violates isospin conservation. However, the effects
of Coulomb force, such as the Coulomb barrier on either the incident channel
or on the exit channel or both, can be taken into account. One may then ask:
Upon making this correction, will the remaining features of the reaction conserve
isospin? In other words, is the effect of the Coulomb field (or other isospin
breaking interactions) of importance only when the projectile approaches the
target or when the emergent particle leaves the residual nucleus? The answer
appears to be that isospin is usually conserved in one-step direct reactions once
the external effects of the Coulomb field are taken into account. However, the
question of whether isospin is conserved in multistep processes is more difficult
to answer in general. One would expect it to hold if there are only a few steps
involved but that as the number of steps increases it would begin to fail. The
expectation that isospin is conserved in direct processes relies on the long range
of the Coulomb potential, which as a consequence has small nondiagonal matrix
elements connecting states of differing isospin. The Coulomb potential can have
substantial diagonal elements, giving rise to substantial energy shifts (the
Coulomb energy). An excellent example of this effect is seen in the isobar analog
state, which differs substantially in energy from its parent state because of the
Coulomb interaction but whose wave function is hardly affected because its
nondiagonal matrix elements between states of differing isospin are small [see
the discussion on p. 102 of deShalit and Feshbach (74)]. However, in the
multistep processes one has the possibility that the isospin (conservation)
violation accumulates after a number of steps and become appreciable. It should
also be borne in mind that the effect of the isospin violating interaction depends
not only on the magnitude of the nondiagonal matrix element but also on the
density of final states; the greater their number at the right energy, the greater
the probability of a transition. The relevant additional fact is that the density
of levels goes up very rapidly with the number of steps. It thus seems likely
that if a reaction involves more than a few steps, isospin is probably not
conserved. We would, for example, not expect isospin conservation in the
evaporation part of the spectrum. This is indeed observed.

A rather striking example of the breakdown of isospin conservation occurs
in the (&,7) process. The a-particle has zero isospin, while the y-ray can be
considered for the energy domain under investigation to have unit isospin.
The process therefore involves a change AT =1 between the initial and final
nuclei. Under these circumstances, the process 2®Si(x,7,)*’S leading to the
ground state of 32§ is isospin forbidden, whereas *°Si(«, 7,)**S is allowed. But,
in fact, the cross section for the first of these is larger than the cross section for
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the second! The explanation seems to be that a number of steps must be involved
as the system proceeds from the capture of the a-particle to the final release of
the y-ray.

Isospin symmetry is broken because of the interaction carried by the
electromagnetic field. That interaction can be considered to be transmitted by
the interchange of the photon by the interacting systems. When we extend our
considerations to include the strange particles, isospin symmetry is extended to
the SU(3) symmetry. If isospin symmetry were exact, the masses of the neutron
and proton would be identical. If SU(3) symmetry were exact, the masses of
the neutron, proton, A, Z'*%7) and Z? would be identical. They are not.
The A-proton mass difference, for example, is 177.3 MeV. This symmetry
breaking (in addition to the electromagnetic variety described above) is thought
to be a consequence of the mass of the strange quark, which differs from that
of the up and down quarks. Recall that the proton consists of two up quarks
and one down quark, while the A is made up of an up, a down, and a strange
quark. Symmetry breaking of the baryon—baryon forces occurs because the
kaons and pions are massive; the forces they transmit have a finite range given
by their Compton wavelength, which is on the order of 0.4 and 1.4fm,
respectively. It is clear that in contrast with the Coulomb potential, the
differences between the nuclear matrix elements of the forces generated by pion
and kaon exchange will not be small and thus SU(3) symmetry is broken.
However, it is possible, as in the Coulomb case, that the nondiagonal matrix
elements between states specified by SU(3) quantum numbers are small. In that
event, SU(3) analog states would exist.

We conclude this section with two examples of the impact of symmetry on
nuclear reactions. Spatial symmetries in the angular distribution of reaction
products can be a consequence of the statistics satisfied when the projectile and
target are identical. The simplest case is provided by the elastic scattering of a
12C nucleus by another '2C nucleus. This system obeys Bose statistics; that is,
the wave function of the system must be symmetric with respect to the exchange
of the two '2C nuclei. The wave function for the system can be written as follows:

P(EID(E)x(R, —R,)

where ¢(&,) is the wave function describing the !2C particle and &, represents
all the internal coordinates. The wave function y describes the relative motion
of the two nuclei, depending only on the center of mass R, and R, of each of
the particles. From the Bose symmetry it follows that

xR, —Ry)=x(R, —R,)
Hence asymptotically,

1 _ . .
xR, — Rb)_’—z [e* (Ra=Ro) 4 o~ ik (Ra=Rb)]

e'*/Ra—Rs|

+[f(9)+f(ﬂ—9)]m (10.1)



10. SPECIFICITY AND SYMMETRY 65

12¢c
e
12¢ Lz c
> 7
T-6
12¢ FIG. 10.1
where
k(R —
coso— KR —Ry)
kIR, — Ry|
The scattering amplitude
SO+ f(r—0) (10.2)

is symmetric about 90°, which simply reflects the identity of the two '2C nuclei,
as can be seen in Fig. 10.1. It is not possible to determine which of the two '2C
nuclei scattered through the angle 8 and which through the angle (x — 6). The
plus sign between the two amplitudes is a consequence of the Bose statistics
obeyed by the '2C nuclei. Fermi statistics implies the opposite sign.

More generally, Bose statistics imply that the only even-parity wave functions
enter into the incident wave [see the first two terms in (10.1), which describe
the incident wave for a two-body Bose system], and therefore (assuming
conservation of parity) only even-parity wave functions are to be found in the
emerging wave. This conclusion applies not only to elastic scattering but also
to reactions. Thus in the 2C(!2C, )2°Ne reaction, as a consequence of the Bose
statistics of 12C, only even-parity states of the & + 2°Ne system are generated.

These arguments are readily generalized to particles with spin. Nuclei with
an old number of nucleons obey Fermi statistics, while even-A nuclei obey Bose
statistics. A simple example is the scattering of identical spin-3 particles, such
as protons or 'O nuclei. One can classify the spin states of the system as singlet
and triplet, the first of which is odd under exchange, the second even. To satisfy
the requirements of Fermi statistics, the spatial wave function for the singlet
state should be even under exchange, whereas for the triplet state the spatial
wave function is odd. The former then has even parity, the latter odd parity,
so that for the triplet state the scattering amplitude has the form

fO) —f(n—-0

and is zero at 0 = /2.

A general theorem derived, for example, by C. N. Yang deals with the
maximum complexity to be expected in an angular distribution. Consider, for
simplicity, the collision of a spinless system by a spinless, target leading to
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spinless products. The maximum angular momentum L; brought in by the
incident wave that will make significant contributions to the collision is
determined by the Coulomb and angular momentum barriers. The limit imposed
by the latter is approximately

Li ~ ktR

where k; is the incident wave number and R is the radius determined by the
range of the interaction. Similarly, there will be a limit to angular momentum
of the final system given by L,. The theorem states that when the angular
distribution is decomposed into Legendre polynomials P,, the maximum value
of L will be the minimum of the two values 2L; and 2L,. The theorem can
readily be understood on the basis of the information content of both the
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FIG. 10.2. Comparison of experimental angular distribution for the elastic scattering of
1.04-GeV protons by ?°8Pb with the predictions employing the Rayleigh—-Lax potential
with and without spin-orbit (s.0.) terms. The density-dependent Hartree—Fock densities
are used. [From Boridy and Feshbach (77).]
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incident and emerging waves. For example, if the highest-order Legendre
polynomial entering in the incident wave is P, the incident direction is defined
with an uncertainty of O(1/L;). The collision process cannot reduce this
uncertainty, so that the maximum order of the Legendre polynomials in the
emerging amplitude certainly cannot exceed L;,. The angular distribution
involves the square of the amplitude and thus the limit of 2L, is obtained. When
spin is introduced the theorem now states that the maximum value of L is the
minimum of 2L;, 2L,, and 2J, where J is the maximum value of the total
angular momentum of the system entering in the reaction. A simple consequence
of this discussion is that the angular distribution for the elastic scattering will
exhibit oscillations whose period is greater than or on the order of 1/kR. At
very high energies or for strongly absorbed particles the oscillations are of the
order of (1/kR) (see Fig. 10.2).

Problem. Prove that the only states of a spin-zero nucleus that can be excited
by the forward (8 = 0) inelastic scattering of a-particles are the natural parity
states, O*, 17, 2%, ..., JOV ...

11. DENSITIES, CORRELATIONS, AND THE DIRECT REACTIONS

In the preceding sections and in Sections 1.12 to 1.15 of deShalit and Feshbach
(74), we have reviewed some of the elementary concepts that are useful for the
understanding of nuclear reactions. We have seen how by choosing the
appropriate experimental parameters—target, projectile and its energy, type of
reaction, excitation energy of residual nucleus, energy resolution, and angular
definition that can be obtained with the detection apparatus—one can select
the type of final state excited and determine its properties. These detailed studies
for a wide range of experimental parameters are essential for a deep and broad
understanding of the properties of nuclei. In this final section we discuss the
long-range goals of nuclear reaction studies, which go beyond the discovery of
the “simple” degrees of freedom, the nuclear normal modes of motion.

A principal goal is the determination of the nuclear Hamiltonian, that is,
the detailed description of the forces that determine nuclear structure and the
interaction of nuclei with a variety of particles, and the form to which these
reduce for the nuclear normal modes. The energy spectrum of a nucleus is very
useful in this respect. The Hamiltonian of Chapter VI in deShalit and Feshbach
(74), for example for rotational deformed nuclei, was in the long run mostly,
but not entirely, justified by the observed rotational energy spectrum. But, in
addition, properties of the nuclear wave function such as the B coefficients for
radiative transition probabilities provided important supporting evidence. If we
wish to go beyond the model Hamiltonian, much more information on the
nuclear wave function is required; in fact, if we knew the nuclear wave function
for one state with “infinite” accuracy, it would be possible to determine the
nuclear Hamiltonian.



68 INTRODUCTORY REVIEW

Interestingly, the one-step direct reactions provide the most direct
information on the nuclear wave function. Perhaps the most outstanding
example is the use of elastic and inelastic electron scattering to determine the
charge and current density inside nuclei.

Formally, the amplitude for a transition of a target nucleus with wave function
¥, to the residual nucleus with wave function W can always be cast into the
form

=PRI T (11.1)

The operator J~ depends on the coordinates of the problem, including positions,
momenta, spins, and isospins, and on the state of the incident projectile and
the emergent particle. As is apparent from the form of (11.1), the observation
of the transition will yield information on the overlap ¥ with W, its nature
depending on whether 4 is a one-body, a two-body, or a more general,
many-body operator. When the residual and target nucleus have the same mass
number, that is, when scattering occurs, for example in the (p,p) or (p,p')
reaction, and when J is a one-body operator® as regards its dependence on
target nucleons,

=Y 70 (11.2)
(presuming symmetry), Equation (11.1) becomes

T pr= ZJ‘P;(l,Q,...,A)f(i)‘PT(I,L...,A)d(1)~--

where the integration refers to summation over spin and isospin and integration
over spatial coordinates. The center-of-mass motion of the residual and target
nuclei will be included in the operator 4 so that W and ¥ ; depend only upon
internal coordinates. The spatial integrations are then over 3[ — 1) coordinates.
The remaining three coordinates are those of the center of mass. Using the
symmetry of J and the wave functions, one finds that

T pr = AJ‘P;{I,...,A)QA'(I)‘PT(I, .., A)d(1)--

or

fRT=AI W F(1)d(1) (11.3)

'More generally J = 3. T (il7"). This form leads to more complicated results which we discuss
later [see (11.10)].
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where pQ). is the density matrix:

Pl = J‘P;‘;(I,L..‘,A)‘PT(1,2,...,A)d(2)--- (11.4)

The experiment can provide the values of 7, (more precisely | p,|?) as a
function of energy, momentum transfer, and finally, energy transfer if the
scattering is inelastic. From that one hopes to deduce p$}. or at least to compare
with 7 o, computed using a p{} based on theory and/or other experiments.
Elastic electron scattering can be used to determine the charge density of a
number of nuclei. The density refers to the diagonal value of p&}, p 2. Similarly,

inelastic electron scattering can be used to determine nondiagonal elements of

)
PRT:

Problem. Prove that when 7 =y T, T rr = Atrpp,(ili )7 (i|7'), where
the trace is carried out with respect to spin, isospin, and spatial coordinates.

Obviously, the question arises of when the operator J is a one-body operator.
It clearly has that character when the underlying interaction between the
projectile and target is weak or electromagnetic in character, for then first-order
perturbation theory may be applied. It also has that character for single-step
direct reactions. Generally,  for a multistep direct or compound nuclear
reaction is a many-body operator.

There are several types of densities: matter density, charge density, spin
density, and spin—isospin density. The latter describes the probability per unit
volume of finding a particular particle (i.., neutron or proton} with a particular
spin orientation at a point within the nucleus. Equation (11.4) for p{}). is just
the matter density. It is convenient to rewrite it and pgq as the matrix element
of the operator 4(r):

:%Zd(r—ri) (115)

where r, is the coordinate of a nucleon and

porr) = (Wl p¥r> (11.6)

The expression for the charge density p is

PO = T3+ 5,016 ) (1L.7)

while the spin and spin—isospin density operators are

pOr) = Za @o(r —r) (11.8)
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The diagonal ground-state values of p© are quite well known. Its nondiagonal
values and the matrix elements of p” are now in the process of being determined
by elastic and inelastic electron scattering. Further information is also provided
by the scattering of high-energy protons and pions by nuclei.

Equation (11.2) provides an accurate representation of one-body operators
only if the interaction between the projectile and the target nucleon is sufficiently
weak. For the strong interactions, (11.2) is replaced by

-~

I = 27(1 h) (11.10)

and prr now becomes a matrix not only with respect to the subscripts R and T
but also with regard to space [see (II1.4.4) in deShalit and Feshbach (74)]1:

prolili) = J‘l’;(i, 2, )P, 2,.. )dQ) (11.11)

The spatial matrix properties of this full pp.(i'|i) can be exploited to obtain
nuclear information of even greater subtlety than, say, that obtained from p“’
For example, take the diagonal

PN = prri]i) (11.12)

It can be considered as a Hermitian matrix in i’ and i, and as a consequence,
can be diagonalized. The procedure will be described later (see p. 203). For the
moment it is sufficient to state the result:

i)=Y Y3W (x, (11.13)
2

The functions ¥ ,(i) are orthogonal and can be normalized. They are the best
single-particle wave functions for the description of the target, at least as for
as the reactions leading to the determination of p(i'|i) are concerned.

One-particle transfer reactions such as (p,d) or (p,2p) are frequently used to
determine the properties of single-particle wave functions. The analog of pgy
for this case is

Spr(l) = J\y;(z, 3, LAY, ..., A)dQ)- (11.14)

Clearly, if W differed from Wy by the addition of one orbital to a Slater
determinant, Sgr(1) would be proportional to the corresponding single-particle
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wave function. The square magnitude of the constant of proportionality gives
the probability that ¥ consists of W and a particle in a particular single-particle
state and is known as the spectroscopic factor. If Wy is a complex combination
of excitations, this constant will be small, and in the absence of other effects
originating in g , the cross section will be reduced. The cross section for
one-particle transfer reactions tends to be largest when the shell model
description is most applicable.

Returning to scattering, two-particle density matrices [see (III, 4.9) in deShalit
and Feshbach (74)] appear when the operator . is a two-body operator:

7 =Y 9Gj) (11.15)
The resultant J ., is then

T pp=1A4(4— 1)[?;(1,2,...,A)j'(l,2)‘I’T(1,2,...,A)d(l)-n
or

=3A(A - l)jp‘ﬁ%(l 2)7 (1,2)d(1)d(2)
where

peN1,2)= J‘Pﬁ(l,l 3,...,A¥(1,2,3,...,4)d3) - (11.16)
The corresponding operator is

p —r.
(x,y)= A(A—l lg{}é(x r)o(y —r;) (11.17)

The pair correlation function C‘¥(x, y) is defined by
CA(x,y) = pP(x,y) — p(x)A(y) (11.18)

It has the property

J\C{Z)(x, y)dx = JC(Z)(X’ y)dy=0 (11.19)

since

Jﬁ‘z’(m)d(l) =pM0Q)

Pair correlations for both elastic and inelastic scattering will be present whenever
the interactions are sufficiently strong. They therefore can play an important
role for hadron interactions with nuclei. Some information on the diagonal



72 INTRODUCTORY REVIEW

ground-state two-body density is available from the calculation of the binding
energy of nuclei [see (IT1.4.11) in deShalit and Feshbach (74)].

Spin and isospin components of the correlation function can be obtained
through the use of appropriate operators. The operator

— —) 1 —a.-6.
A(A_n,;é(" r)oy =)l —o'a)) (11.20)

ﬁ?:)o =
gives the probability density of finding a pair of nucleons at x and y in the
singlet (S = 0) state. Similarly,

i SUPI A(A Z S(x —r)d(y —r)i3 +6,6)3(1 — 1ot (11.21)
l<}

gives the probability density of finding a pair of nucleons at x and y in the spin
triplet (S = 1) and isospin singlet (T = 0) state. These will appear in J . if the
two-body operator 2 (1,2) has a spin and isospin structure which necessarlly
will appear in the form exemplified by (11.20) and (11.21).

Two-body transfer reactions [e.g., (p, *H)] will provide information on the
two-body wave functions since it will involve overlap integrals of the form

S@(1,2) = J‘[’;(3,4, L AYP(1,2,3,4,..., A)dB)-- (11.22)

Deviations of $'2)(1,2) from the product of single-particle wave functions, which
might be obtained from single-particle transfer reactions (11.14), would reflect
the presence of correlations in the wave function W. In the case of the (p, *H)
reaction, there is a pronounced sensitivity to correlations in which the two
neutrons (T =0) are in a 'S, state.

Generally, correlations may be needed to describe a process when the strong
interactions are involved. Highly accurate studies with the weak and electro-
magnetic interactions could in principle provide information on the
correlations—that is, if the accuracy required second-order perturbation theory
in order to obtain a sufficiently precise prediction. For strong interactions, the
multistep processes will generally be sensitive to correlations. This can most
easily be seen in the high-energy limit, for which it is possible to picture the
reaction as preceeding by a number of collisions between the nucleons in the
target and the projectile. Clearly, if two such collisions are important, the
consequences will depend on the pair correlations in the target; if three, the
triple correlations will be relevant; and so on.

We can extend this discussion to include third- and higher-order density
matrices and correlations. We have, however, already shown that a principal
result of the study of reactions will be the determination of properties of the
wave functions of the target and residual neclei. If it were possible to carry out
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all the indicated evaluations (it is probably not necessary or desirable to carry
out all of them), one would determine the nuclear wave function and thereby
the nuclear Hamiltonian, which is the ultimate goal of the study of nuclear
structure. We are a very long way indeed from carrying out this ambitious task,
and the description given above is almost certainly overidealized. The
outstanding example of the application of this analysis is the use of elastic and
inelastic electron scattering to determine the charge and current density inside
nuclei. More recently, high-energy proton scattering by nuclei has begun to
achieve similar results for the matter density.

Problem. Define p*®(x,y, z). Show that the third-order correlation function is

COx,y,2) = px,y,2) — p(x)p Py, 2) — p(y)p?(x,2)
— p(@)pP(x,y)+ 2p(2)p(y)p(x)

Show that [ C® dx =0.
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