CHAPTER Il

MULTIPLE SCATTERING

1. INTRODUCTION

Considerable simplifications in the theory describing the reactions induced by
a projectile incident on a nucleus become possible when the energy of the
projectile is sufficiently high. In this limit, the projectile in passing through the
nucleus can be considered to undergo successive collisions with the target
nucleons—hence the term multiple scattering. In the lowest approximation, each
of these collisions is treated as a two-body (projectile—target nucleon) collision.
One can thereby relate the transition amplitude for the processes induced by
the collision with the nucleus to the transition amplitude for those induced by
the collision of the projectile with the individual nucleons making up the nucleus.
The complex many-body problem is thus reduced to a simpler two-body one,
although it must be borne in mind that the projectile-nucleon collision occurs
in an “environment” produced by the other nucleons in the nucleus, sometimes
referred to as spectators.

~ For this approximation to be accurate, it is necessary for the nucleus to be
sufficiently dilute so that the projectile encounters only one target nucleon at
a time. The range of the force between the projectile and nucleon should therefore
be small compared to the distance 2r, between the nucleons. A second condition
requires that the wavelength of the projectile be smail compared to the distance
between the nucleons of the nucleus:

kro > 1 (1.1)

where k = 1/4 If the wavelength is so long that this condition is not satisfied,
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a collision with one nucleon will necessarily involve its neighbors and thus it
cannot be regarded as a two-body collision. It will be recognized that an essential
part of these conditions is the requirement that the projectile is “on the energy
shell” between collisions; that is, between collisions the energy is kinetic, #2k?/2m.
One can readily take into account a constant potential energy, — V, in the region
between collisions where the energy is then (A%k2/2m) + V.

Under these circumstances the projectile wave proceeds through the nucleus,
producing at each target nucleon a scattered wave. These scattered waves for
elastic scattering will be coherent and in the forward direction will interfere
constructively, leading to a scattering amplitude proportional to the number
of nucleons, 4, in the target. The cross section in the forward direction will be
proportional to 4. For larger angles of scattering the cross section will decrease
as the angle of scattering or equivalently the momentum transfer. q, increases.
The relevant parameter can be determined by the following considerations.

When an incident projectile collides elastically with a target nucleon, it will
impart a momentum transfer q and therefore an energy A2q%/2M to the target
nucleon. However, at small angles, that energy is not sufficient to lift the nucleon
out of the Fermi sea. There must be further collisions of the struck target
nucleon with the other nucleons, so that finally the nucleus recoils as a whole.
For that to occur, the uncertainty in position of the struck nucleon, #/q must
be larger than the size of the nucleus. Hence, roughly

ho R 1.2)
q

where R is the nuclear radius. Or since for elastic scattering
q=2psinif

inequality (1.2) becomes

0
2KRsin_ <1 (1.3)

For angles greater than those satisfying (1.3), #/q will be less than R and only
part of the nucleus will be involved. Thus the nucleus will not be able to recoil
as a whole and the elastic scattering amplitude will be reduced, falling from its
0 =0 value.

When these conditions are satisfied, one can, for example, obtain the elastic
scattering amplitude for the collision of the projectile by the target nucleus in
terms of the nuclear density, and of the two-body (projectile-nucleon) scattering
amplitude. This result is of great power since it permits the determination of
the nuclear density from experiments using a variety of projectiles that probe
different spin-, isospin-, and momentum-dependent components of the nuclear

density.
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The importance of the approximations involved must, of course, be evaluated.
A detailed discussion is given in Section 4. For the present we note that the
conditions described above are never exactly satisfied since there is a finite
probability that the separation of two target nucleons will be so small that the
potentials between the projectile and the target nucleons will overlap and/or
that the projectile wavelength will not be sufficiently small. In that event the
projectile will interact with at least two of the target nucleons simultaneously.
The transition amplitude for projectile-nucleus reactions will then depend not
only on the density of target nucleons but also on their spatial correlation. One
such correlation is induced by the Pauli exclusion principle and has the scale
given by 1/kg, so that nucleons separated by less than this distance can no
longer be considered as independent [see Chapter IIT in deShalit and Feshbach
(74)]. Other correlations will be a consequence of the nuclear forces acting
between the target nucleons. The scales in this case are the various ranges
characterizing the nucleon—nucleon potential. The strength of, for example, the
pair correlation is given by the number of target nucleons, multiplied by the
probability of a nucleon finding another within a distance r, (= scale length of
the correlation). The latter factor is given by (r./R)?, so that the correlation

effect is of the order of
r 3 r 3
Al L] ==& 1.4
&) -() 14

using R = ro, A3, 1t is thus difficult to observe correlation lengths much smaller
than r,. (For a more quantitative result, see Appendix A.)

Another approximation we shall often use in this chapter asserts that the
projectile passes through the nucleus in so short a time that the target nucleons
are essentially stationary. This approximation, referred to as the frozen nucleus
approximation, is valid for sufficiently high projectile energy. The characteristic
time, 1, for target nucleon motion can be obtained from the zero-point motion
of the nucleon of amplitude r,. The corresponding momentum is #/r, with
energy AE = h?/2Mr}. The time 7, is then

h 2Mrd
Ty~ —— = (1.5)
AE h
The time required for the projectile to pass a target nucleon is
E
1,=2ry—2% (1.6)

pyc?

where E, and p, are the energy, including the rest mass and momentum of the
projectile, respectively. The ratio t,/t, needs to be much greater than 1 if the
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frozen approximation is to be valid:

2
T kprO‘M ¢ (1.7)
Tl’ EI’

In the limit E, > M ¢, this ratio becomes Mc’r,/hc, which is much larger than
unity. In the nonrelativistic limit, one obtains for the ratio, k,roM/M,. Thus if
the projectile is a nucleon, inequality (1.7) becomes identical with (1.1).

Under the frozen nucleus approximation the transition amplitude J is a
function of the position, spin, and so on, of each of the target nucleons that
prevail at the time the projectile passes through the target:

T =T (r,¥a...,1,) (1.8)

The transition amplitude to be compared with experiment is obtained by taking
appropriate matrix elements of ~ with respect to the target nucleus states. For
elastic scattering that amplitude is

T =T Y (19)
where ¥, is the target nucleus wave function. For inelastic scattering, it is
T =<¥Y,; T ¥, (1.10)

where ¥ . is the final target nucleus state. This approximation is called adiabatic.

2. QUALITATIVE RESULTS?

Much of the physics of multiple scattering can be understood at a qualitative
level by studying a simple case. In this example the target nucleus is taken to
be a system of nucleons which is so dilute that the probability the projectile
will undergo two collisions with a target nucleon is small. The frozen nucleus
approximation will be used so that the target nucleons will be considered as
being fixed during the course of the collision. ~

Under these circumstances the transition amplitude 4 will be given by a
sum of amplitudes emanating from each of the target nucleons:

T =Y tlk,,k;r,) 2.1

where t is the projectile—nucleon amplitude giving the scattering of a projectile
with incident momentum #k; and final momentum 7k , by a target nucleonatr,.

tLax (51).
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We now must make use of an important theorem relating the amplitude
t(k,k;,r,) with the amplitude of a scatterer located at the origin t(k,k;;0).
Toward this end, compare the integral Schrodinger equations appropriate to
these two situations:

ikir—r'|
virr,) — ek — L f V-, dr (2.2a)
4 ) [r—r'|
ll' r__ 1 eik‘r_r,| ’ ’ ’
Y(r;0) e — | —— V(' )(r;0)dr (2.2b)
4n ) [r —1'|

where V is the scattering potential. In the first of these equations introduce a
shift of the origin:

r—r,=s
One obtains
ik|s—s’|

V(s +r,;r,)ds
[s —s'|

. ) 1 (e
Y(s+r,;r,)=ekiseikit _

Comparing this equation with (2.2b) yields immediately the important result
Y(s +r,51,) = €4 (s;0) (23)
Thus the shift in the origin results only in a change in phase, a consequence of

translational invariance of the Schrodinger equation (2.2a). From (2.2a) we
obtain

tk, kisr,) = Jﬂe—ik”' VX' —r (' r,)dr
=¢ krtn Je‘ kS V(s (s +r,;r,)ds

Using (2.3) it follows that
t(k,, kj; 1) = e * TR (K k5 0) 24

One corollary of this equation will be important for later discussion. We
leave it as a problem.

Problem. Let t(r,r';r,) be defined by

N L
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Show that
tr,t';r,)=tr—r,r—r,;0) (2.5b)
We can now return to (2.1). Using (2.4), it becomes
T =tk k)Y e
q=k —k, (26)
tk,, k) =tk k;0)
Finally, the elastic scattering transition amplitude is

yel(kfa kl) = t(kfa k|)<\P,| z ei“""‘l’i>

Using the antisymmetry of the wave function ¥, this becomes

T alky, k) = Atk k;)p(q) (2.7)
where
ﬁ(Q)=jei“"‘P(r1)dr1
and
p(l'l)=J|‘I‘i(r1,r2,---)lzdl'z--- 2.8)
jp(rl)drl =1 29

From (2.9) it follows that the Fourier transform of the density, p(q), is unity at
q =0, that is, for scattering in the forward direction. Generally, as described in
the preceding section, g will drop rapidly with increasing scattering angle. (Note
that |g| = 2ksin 0, where § is the scattering angle.) For example, if

3 3/2 1 _—
p(r)=(£> Fe‘“”’" /R (2.10)

which satisfies (2.9) and

R?= J‘p(r)r2 dr
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so that R is the root-mean-square radius, then

e—q’R’/(y — e—(2/3)k3RZsinl(1/2)0 (21 1)

plq) =

We note the rapid decrease in j(q) and therefore of the scattering transition
amplitude, (2.7), as the scattering angle, the energy, or the size of the system
increases. The quantity g(q) is referred to as the form factor.

According to (1.10), the inelastic transition amplitude is given by

T silkys, k) =t(ky, ki)<kpflzeiqlr"\Pi> (2.12q)

or
T pi= Atk k)pri(q) (2.12b)

where f ;(q) is the Fourier transform of the transition density:

Pf;(q) J i " (ry)dr, (2.13)

and
prilry) = Jf(rl,rz,...)‘Pi(rl,rz,...)drz... (2.14)

Note that 7 ,(k,k;) is zero whenever q is zero because of the orthogonality
of ¥, and ¥;. As a consequence, .7 ;; at small g will be proportional to some
power of g.

Further insight is obtained from examination of the total angular distribution
for inelastic scattering summing over all possible final states:

doineh 27r 2
—r = ; 2.15

where the projectile wave functions appearing in 4 ;; are asymptotically plane
waves of unit amplitude and m is the reduced mass of the projectile—nucleus
system. p, is the density of final states and j; is the incident current density.
Inserting (2.12a) into (2.15) and summing over the final states one obtains

y o <kf|t(k > CHIT e ) CH T )
= N e n e m
7o Qentht\ ko w7 rons
(2.16)

The factor in front of the sum is the cross section for projectile—nucleon scattering
except that the projectile-nucleon reduced mass is replaced by projectile-
nucleus reduced mass. We shall return to this point later.
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Making use of the completeness of the final states ¥ the sum in (2.16) may
be performed. A sum rule is obtained:

da.(inel) mz k . _
;ﬁ'(zn)2h4<ﬁ't(kf’ki)lz> 2 (CHijertr e

— (W[ CF e D)

Using the antisymmetry of the wave function W;, the sum is readily shown to
equal

2 (W TS — (BT (P e )

n,m

=A+ A(A—-1)p(q, —q) — A*p(q)p(—q) (2.17)
where
. pq, —q) = quin “p(ry,r,)dr, dr, (2.18)
and
p(rl,rz)z.J‘l‘l’i(rl,rz,ra,...)|2dr3-~ (2.19)

The quantity p(r,,r,) is the diagonal two-body density giving the probability
density to find a nucleon in the range dr, at r, and another in the range dr,
atr,. To obtain the correlation density, one must subtract the probability that
obtains when the two particles are independent, p(r,)p(r,). Thus

C(ry,ry) =p(ry, ;) — p(ry)p(ry) (2.20)

Note that
JC(rl,rz)drl =O=J.C(r1,r2)dr2 (2.21)

The Fourier transform of C is

-~

Ca:,92) = Je"'"" TR C(ry, 1) dry dr, (222

From (2.21)

C(q,,0)= C(0,q,) =0 (2.23)
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Asymptotically, C(r,,r,} should vanish since for large (r; —r,|, the nucleons
are expected to be independent, so that

C(r,,r;)—0 as r, —r,| > (2.24)
In terms of the function C, the right-hand side of (2.17) is

A+ A4 —1)C(q, —q) — Alp(g)|?

so that
d (inel) 2 k -
ng=@%ﬁ<;mhAmﬁ [A(1 —[p(@)?) + A4 — 1)C(q, — 9]
[ i av

(2.25)

We see immediately the expected result that this cross section vanishes as g — 0.
As already indicated [see (1.4)] and to be shown in more detail below, C ~ 1/4,
so that (dol""/dQ>, ~ A. This result is to be contrasted with the elastic
scattering cross section, which according to (2.7), is proportional to 42. The
latter is a consequence of the constructive interference of the waves scattered
by the target nucleon in the forward direction. For this reason, the elastic
scattering is referred to as coherent scattering. The inelastic cross section is
referred to as incoherent scattering since proportionality of the cross section to
A can be interpreted as addition of the cross sections, rather than the amplitude,
for each target nucleon.

An important consequence of this discussion of inelastic scattering is that it
will be easier to observe the correlation term at the larger angles, R ~ 1, and
in the inelastic scattering.

A simple model of p(r, r,) will serve to illustrate some of these points. We take

p(ry,ry) = Ne‘(l/zml(r%w%)[] — e~ /2B 'I‘2)2] (2.26)

The correlation is carried by the second term in parentheses. It disappears as

Ir, —r,;|—> o. Moreover, p(r,,r,) goes to zero as |r, —r,|—0, simulating the

effect of a hard core and/or the Pauli exclusion principle. The parameter « is
O(1/R) and f is O(1/r.), where r_ is the correlation length, so that

f>»>a (2.27)

except for the smallest nuclei. N is a normalization factor determined by the

condition
J'[p(rlvrz)drl dry =1
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Note that

p(ry)= -[P(rl ,ra)dr,

has a contribution from the correlation term in f:

3/2 2 3/2
p(r)=N \(271)3 [e"”z’“z’2 - < 2 ) e—“/2>l<a2+2ﬂ2)/<a2+ﬂ2)1a2r2]
x

a4+ B2

2 32 2,2 ? 2y2
N(7Tl|ie-(1/2)a r M(%) e~ ] (2.28)
B»a as

The second term in brackets has a shorter range than the first term. The
normalization factor is

af b
= 7, 2 - — — (2.29)
(27'()3{1 - [ozZ/(Ol + BZ)]3/2} B»a (271’)3[1 —(1/\/§)(d3/ﬂ3)]
It is straightforward to evaluate the Fourier transforms:
l a2 3/2
plq) = {e—qz/z(z’ _ (¥) e~ (/247 [a? + Byad(a® + 2111)1}
1 —[a?/a? 4 2B%)]%2 a? + 2p2
3
R 20
b2 1 —(1//8)(2*/B%) NS
and
=, {ewmsww
1—[&?/(e® + 26312
2 3/2 o
- (a) e~ (12 Ya2 a2 + 267)laq} + ) + B2(q) +q2)2]}
a? 4242
(2.31)
Finally,
~ o3
T Te~ 124} +qd)a? —(1/4)a2a2(q] +43) + B2(q1 + q2)?]
C(‘Ih(h)_ﬂ:’ 5 [e +e
v
- (e‘qf/‘*al —43/2a® 4 ,—ail2a? -q%/‘taz)b] (2.32)

We see directly that for > a, C is on the order of (,/R)’, so that C~1/A.
C(q,,q;) goes to zero as q, or q, go to zero. Note also that for large q; and
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q, the decrease of C is governed by the parameters 1/a, 1/2¢*> and when
q, +q; =0, by 1/282%. This last case will provide the smallest asymptotic rate
of decrease since 1/8% « 1/a%. The sum rule, (2.25), depends on C(q, — q):

3
[e—ql/az2 + e—rf’/2b‘2 _ 2e_(3/4)(‘12/“2)], (2'33)

~ o
Cq,—9———

B>a \/§ﬁ3

which at large angles is dominated by the second term.

3. OPTICAL MODEL POTENTIAL?

The preceding discussion assumes that the projectile wave incident on each
target nucleon is the incident plane wave. In fact, the incident wave is composed
of that plane wave together with the waves that have been generated by scattering
from all the other nucleons of the target nucleus. The discussion in Section 2
is thus invalid if the probability for secondary and multiple scattering, that is,
rescattering of wave generated by a previous scattering, is important. When
that is the case, the wave incident on a target nucleon consists of a linear
superposition of plane wave so that (2.1) is replaced by

- dk
Ta=<XW|TY)= ZJ—3<Ti|t(kf’ k) 7.(K)
= J (27)
or

dk N
‘7-el =4 -[W J‘drnp(rn)t(k_ﬁ k; rn)Xn(k) (3 1)

where 7,(k) is the probability amplitude for a plane wave of momentum k to
be incident on the nth target nucleon. We now introduce t(r,r’;r,) by inverting
the Fourier transform, (2.5a), and using (2.5b) as well, so that

Ta= AJ e jp(r,) dr, fd' J dr' e~ =, v — 1) T, 0 (32)
(2m)

The integral over k yields directly the incident wave in coordinate space:

dk .
xa(r') = ,[QTP T 7(k) (3.3)

*Lax (51).



3. OPTICAL MODEL POTENTIAL 85

so that (3.2) can be rewritten
Ta=A Jdreikf"Jdr’[Jdr"t(r —r,, ' — r,,)p(r,,):]x,,(r’) (3.4)

We now make the approximation that y,(r') is independent of n and can be
written x(r'). This is not exact since the linear combination of waves incident
on the nth nucleon, (3.1), should not include the effect of the wave coming from
the nth nucleon itself. However, if the number of nucleons is sufficiently large,
the error should be small. When g, is replaced by y, the resulting amplitude is
identical to that which would be obtained from a Schrodinger equation with
the nonlocal energy-dependent optical model potential V©PY(r,r'):

Verdr ry= A4 jdrn tr—r,,r' —r,)p(r,) (3.5
Its Fourier transform is
Verik k') = ”dr dr' e Ty eR(p et T
= Apk —k)i(k, k') : (3.6)
In using (3.6) it has been the practice to structure f(k ., k;) as follows:
ik, k) =tz(q) q=k;,—k, (3.7)

where E, the projectile energy, is treated as a parameter. Under these circum-
stances

je""‘“" "T¢(q) dq

t(r,r’;r,)=0(r—r') (2n)°

=d(r —r')tglr—r,) (3.7)
The optical potential then becomes local:
Veri(r r) = 5(r — r') VP (r)
V‘E'_Pl(r) =A '[drn tE(r - rn)p(rn) (38)
This is the form of the high-energy multiple scattering optical potential found

in the literature [Lax(51), Kerman, McManus, and Thaler (59)]. Its Fourier
transform is

Ver(g) = J-ei"" VE(r) = Afg(@A(q) 39
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Both (3.5) and (3.8) demonstrate that within the limits of the approximations
employed to obtain them, that high-energy elastic scattering experiments
provide a probe, symbolized by the transition matrix t(k, k;) characteristic of
the projectile—nucleon scattering, to study the one-body density p(r). Each
projectile, whether a nucleon, a-particle, pion, and so on, will be sensitive to
different aspects (i.e., spin and isospin dependence) of p so that by combining
experiments one may be able to obtain a complete description of p.

Even in the approximate form, (3.5) and (3.8), the transition amplitude for
all values of k; and k; needed to obtain V°* cannot be determined directly
from experiment since one would have to know f(kk;) for k,#k; The
procedure generally used takes a functional form for 7(q) fitted to experimental
data and using that form extrapolates to values “off the energy shell” (i.e.,
k;#k;). A commonly used form is

ix(q) = B(E)e *®9* (3.10)

This procedure leads to minor errors, for the following reason. For larger nuclei,
only values of f¢(q) near ¢ =0 will enter importantly into the optical potential.
The reasons foilow. The scale of g(q) 1s 1/R (R = nuclear radius). For infinite
nuclei g(q) is proportional to 5(q), while the scale of 7 is 1/ry, where ry is the
range of nuclear forces. Hence #(q) falls off with increasing ¢ much more slowly
that p(q). In the relatively small momentum transfer range in which g differs
from zero, there is no difficulty in obtaining the requisite #(q) from experiment.
For very large nuclei (i.e., nuclear matter), (3.9) becomes

Ver(a) = AT0)5(Q)
and

VEri(r) = Atp(0)p(r) (3.11)
The imaginary part of V{®” can be related to /, the mean free path of the
projectile in nuclear matter. We note that

2
Im i = hLZ ApImTg(0) = —4nApIm f(0°) = — Apkar  (3.12)

where in the last step we have made use of the relationship between the imaginary
part of the elastic scattering amplitude at 0°, f(0°), and the total cross section:

or= 4% Im f(0°) (3.13)
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From the Schrédinger equation one has

. 2m 2m
(kg + ik;)? = pe E — e plopt) (3.14)

where k, and k, are the real and imaginary part of k, respectively. Inserting
(3.11), using (3.12), and assuming that k, > k, leads to

2m
kf( = ) (E— V)

and

2
h—'? ViR — 2k ok, ~ — 2kk,

Hence, using (3.12),
k,=3Apos (3.15)

and the mean free path, 4,

= (3.16)
2k, Apar

a familiar result. (See Chapter V, p. 354, for a derivation that takes into account
the important effect of the properties of the medium in which the collisions
occur.)

The optical potential bears a simple relation to the results obtained in
Section 2 for the scattering amplitude [see (2.7)]. Equation (2.7) is the first Born
approximation amplitude using the optical model potentials, (3.5) or (3.8). The
Schrodinger equation with these potentials takes into account the distortion of
the incident plane wave by the nucleon medium. The Schrédinger equation also
develops an amplitude that satisfies unitarity, which is not the case for the first
Born approximation. Form equation (3.8) [rather than (3.5)] is often pointed
to as justification for the folding potential described in Chapter V, to which the
reader can turn for further discussion.

The foregoing derivation of the optical model potential fails under two
circumstances. First, it fails if three-body forces are important [Austern (83)],
for then the scattering cannot involve one nucleon at a time with the projectile
on the energy shell between collisions. It also fails, even when only two-body
forces are acting, when the target nucleons are too close to each other. In that
event, a double scattering in which the projectile is not on the energy shell after
the first scattering becomes possible, in contradiction to the postulated
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conditions for the validity of (3.5) and (3.9). The importance of this process
depends on the probability that the target nucleons are sufficiently close to each
other, that is on the correlation function. If the energy deficiency is AE, the
lifetime of the system is h/AE and the distance traveled by the projectile is
hu/AE. By the end of this time interval a second collision restoring the system
to the energy shell is necessary, so that Av/AE must be on the order of the
correlation length r.. As AE increases, the correlation length to which the
experiment is sensitive decreases, so that the projectile must go farther off the
energy shell to see smaller correlation lengths.

One can take account of these collisions in which two of the target nucleons
are close together by considering multiple scattering as involving a series of
scattering from two target nucleons rather than from one target nucleon as
assumed in the earlier discussion. It is intuitively clear that in that case (3.8)
is replaced by

Ve, r) = A(A— 1) jdrm Jdr,, (DT, 1) ) (3.17)

In this equation t‘? is the transition amplitude for the scattering of the projectile
by two target nucleons located at r, and r,,. It is generally a nonlocal operator.
[Tt is left to the reader as a problem to derive (3.17) using an analysis following
that which led to (3.8).] The two-particle density p(r,,r,,) can, according to (2.20),
be written as follows:

p(rs ) = p(r,)po(r,) + C(r,, T,) (2.20)
where [cf. (2.21)]
~J‘C(r,,, r,)dr,=0= JC(r,,, r,)dr, (2.21)

Consider the term generated when the first term of (2.20) is inserted into (3.17):

A(A — I)Jdrm Jdr,,p(r,,)t‘”(r, r;r,,r,)p,)

This term describes the independent scattering of the projectile by nucleons at
r, and r,,. This is precisely what the optical potentials (3.5) and (3.8) were
designed to describe. Hence this term is already contained in (3.8). The term
arising from the correlation in (2.20) is

A(A — I)Jdr,, JdrmC(r,,, r) 13, r;r,,r,) (3.18)

*The more complex equation, (3.5), could equally well be generalized.
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Using (3.8) to describe the scattering from the two-particle system, one obtains

tAr,r;r,,r,) =3t —r,)(r — ) + t(r —r,)o(r — r)

+ At (r, ¥ 1, 1,,) (3.19)

The first two terms are obtained from (3.8); the last is the nonadditive
contribution obtained when the scattering from the two-body system is obtained
more precisely. Inserting into (3.18) and using (2.21), (3.18) becomes

A(A—1) J‘dr,l Jdrm C(r,,r,)AtD(r,v;r,,1,)

The revised optical potential taking into account the possibility that two of
target nucleons can be close together is

VOerI(r )= A Jdrl p(r )t —r,)é(r —r’)
+ A(A— I)J-dr1 jdr2C(r1,r2]At‘2)(r, r;r,r,) (3.20)

It is generally not possible to obtain At‘® for the necessary ranges of r; and r,
from experiment. Therefore, to complete (3.20), a method for calculating A¢'?
must be given. One might numerically solve the problem of projectile/two-
nucleon scattering in the frozen nucleus approximation [Sparrow (75)] or one
can provide an approximation [Feshbach, Gal, and Hiifner (71); Chaumeaux,
Layly, and Schaeffer (78)], which permits a ready evaluation of this term. By
taking the Fourier transforms of the C At‘® term, one can verify that because
of the properties of C(ql,qz) [see (2.32)], the magnitude of that term is on the
order of (r.,/R)* (~ 1/4) multipled by the magnitude of At'?(q,,q,). The first
factor reduces the 4 dependence of VP! to a linear one. The second is expected
to be small at high energies since most of the scattering by the two-body system
will be given by the first two terms of (3.19). One therefore expects the second
term in (3.20) to be small compared to the first term (see Appendix B of this
chapter). However, because of interference of the first and second term, the
latter may become visible especially at high momentum transfers, where the
precipitous decrease of the first term will be modified by the presence of
the second.

One should note the differing origin of the correlation function present in
(2.25) and (3.20). In (2.25) we are concerned with the inelastic cross section.
There is no interference and only E(q, —q) makes its appearance. Only single
scattering is present in the amplitude, C making its appearance as a consequence
of squaring the transition amplitude and summing over all final states. The
conclusion reached in Section 2, that C will not be visible in the elastic scattering,
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must be modified because as has been emphasized, interference of the first and
second terms in (3.20) may make the correlation-dependent term visible.

4. FORMAL THEORY OF MULTIPLE SCATTERING®

The intuitive considerations of the preceding sections need to be put on a firmer
footing in which a more accurate result is derived, with the approximations
clearly stated and methods for the calculation of corrections indicated. In this
section we employ the formalism developed by Kerman, McManus, and Thaler
(59) [here called the KMT method; see also Feshbach, Gal, and Hiifner (71)],
which in turn is based on the analysis by Watson (53, 57, 58) and Lax (51) of
the multiple scattering problem.

Formally, the multiple scattering problem can be stated as follows. Let the
potential acting between the incident projectile and the target nucleus be a sum
of two-body interactions, v;, including spin and isospin dependence acting
between the projectile and the ith target nucleon:

V=Y v @.1)

1N

1

1

where «/ is the antisymmetrization operator operating on the target nucleons,
thus guaranteeing that only those wave functions for the target system that
satisfy the Pauli principle will enter into the discussion. When the projectile
consists of nucleons, we shall assume that the Pauli principle acting between
the projectile nucleons and the target nucleons need not be enforced [Takeda
and Watson (55)]. Physically, this seems reasonable (unless the collision leads
to a large energy loss), for one can identify the projectile after collision by its
large energy. However, there have been some criticisms of this procedure
[Picklesimer and Thaler (81)].

The goal of the multiple scattering theory is to relate the transition matrix,
g, for the projectile—nucleus collision to the transition matrix, ¢, for the
projectile-nucleon collision. From (4.1), 7 satisfies

A
v + v,-fj:?(E) 4.2)
o

1 i=1

M

T(E)=

i

I

where

a=E* — K —Hy 4.3)

and Hy is the target nucleus Hamiltonian; K is the kinetic energy of the incident
projectile relative to the center of mass of the target nucleus. On the other hand,

{Kerman, McManus, and Thaler (59); Feshbach, Gal, and Hiifner (71); Feshbach (81).
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the ¢ matrix satisfies, for scattering from the ith nucleon,

1
ll(E) = U‘- + Uiﬂ tl(E) (4.4)

)

where K, is the kinetic energy operator in the projectile-nucleon system.
As a first step, one introduces an operator t which is the transition matrix
for the averaged two-body interaction (1/4)Y #v,.o/:

14 14
rz—g U,»&¢+—E v, —1 4.5
AT AT a #3)

7 is a many-body operator closely related to ¢t;. This relationship is made more
explicit by introducing t; defined by

1
=_ ) 4.6
T AZI, (4.6)
Then

o
=0 +0;—1 4.7
o

which should be compared with (4.4). 7; may be considered as the effective
two-body operator in the nuclear medium. The latter’s presence is indicated by
the antisymmetrization operator ./ as well as by the nuclear Hamiltonian in
the operator «~'. Equation (4.7) takes into account the contribution to the
scattering amplitude generated by the ith nucleon of the waves emanating from
all the other nucleons, as indicated by the presence of the operator 7 on the
right-hand side.

We can now use (4.5) to eliminate v; from (4.2) for 7. This elimination is
essential if v; is singular. Toward that end, rewrite (4.5) as follows:

o
Y v = (A — Zvi—)t
i i a
and replace Y v;/ in (4.2) by the right-hand side:
. 1
T = (A —Zvii)r+(A —Zvid)r~,/"-
T T o) o
Using (4.5) [Problem. Prove (4.8)]

1 <7
N o = i 4.8
taz,- vt Ev‘at (4.8)
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this equation becomes

1 1 of 1
7=Ar+Azfr(Zv,-+Zu;d 3—)
a aNi o i o

or
1
T =A1+(A—1)1-T (4.9)
o
Define 7' by
A
T= T (4.10)
A-—1
Then
’ 1 T
T ' =(A-I)t+A-1)1-TF 4.11)
o

We thus obtain the remarkable result that the scattering induced by Y ;v; can
equally well be considered as a consequence of the effective interaction
(A —1t(=[(A — 1)/A]X 1;). The effect of the Pauli principle is now contained
within the operator 1, while the transition matrix .7 is to be obtained from the
solution of (4.11) by multiplication by the factor A/4 — 1 according to (4.10).
With this result it now becomes possible to introduce the “frozen” nucleus
approximation with some improvement upon its formulation as given in
Section 2. We return to the Schrodinger equation equivalent to (4.11):

[E—K-—Hy—(A—1)1]¥ =0 (4.12)

and derive an equation for the open-channel component of . That component
will at least contain the elastic channel, but it can as well contain other channels
of interest. Toward this end we introduce a projection operator P which when
applied to any wave function such as ‘¥ will yield the open-channel component
of interest. P is given by

P=0>0+151+ - (4.13)

where 0) is the state vector for the ground state of the target nucleus, 1) the
first excited state, and so on. The number of terms included is determined by
the physics of the phenomena under study. Here the emphasis is on elastic and
inelastic scattering. The projection operator @ complementary to P is defined by

Q=1-"P 4.14)
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The following relationships will be needed:
P’=P 0*=0 PQ=QP=0 (4.15)
We also define the symbols 155, Tpp, and 1yp:

Tpg = P1Q Tor = Q1P
Tpp = PTP Too = 010

The Schrédinger equation (4.12) can be replaced by a pair of coupled equations
for P¥ and QVY, where PY¥ + Q¥ =V

[E— K —(Hy)pp — (A — D1pp](PY) = (A4 — 1)1po(QY) {4.16q)
[E— K —(Hy)gg — (A — D1pe1(Q¥) = (A — ) 14p(PY) (4.16b)

Solving the second equation formally for (Q¥) and substituting in the first
equation yields

|:E — K —(Hy)pp — (A — 1)7pp

1

—(A—1
( Jtre E—K —(Hy)gg— (A —1)1g0

(A— 1)TQP]P‘P =0 (4.17)

thereby deriving an effective Hamiltonian and in particular an effective potential
for the subspace projected by P. Equation (4.17) is exact. The first-order term
in the effective potential, (4 — 1)tpp, is supplemented by a second-order term
involving 7 twice, which describes the system making the transition from the
space projected by P to the complementary space projected by Q, propagating
in 2 space followed by a transition back to the space projected by P. The
Schrodinger equation iterates this process. Equation (4.17) is exact, but it is in
a form that is suitable for approximation. For example, the frozen nucleus
approximation is obtained by replacing (Hy),o by an average excitation energy
¢ and (4 — 1) 1y, by a first approximation to the two-body projectile-nucleus
optical model Hamiltonian. Hence

!
p K-y

0
= (A - l)Tpp + (A - I)ZTPQE—_WTQP

Vo = (A= Dtpp+(4— 1) (A — 1)ty
@.17)

where V) is the first-order potential [given by (4.30)] still to be derived. In
writing the second of the equations we have used the fact the propagator no
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longer depends on the target nuclear coordinates, depending only on the
projectile coordinates relative to the nucleus center of mass. To proceed further
we must elucidate the relation between 1; and ¢;.

The first approximation replaces (4.4) by

1
tL~v+v -t (4.18)
o

This involves adding Hy to the denominator of the propagator to obtain 1/a.
This may not be a serious error under the assumption that E is large. Since we
shall eventually replace H, by some average value, this error can be compensated
to some extent by shifting the energy in (4.4). For a further discussion of this
point, see Appendix A at the end of this chapter, where it is shown that the
error is of the order of 1/4. Note also that (4.4) is in the projectile-nucleon
center-of-mass system, whereas (4.18) is in the projectile-nucleus frame, very
close for the heavier nuclei to the laboratory frame.
Using (4.18), one can eliminate v, in (4.7) for ;. From (4.18),

1
Ui = (1 - U,')ti
o
Substituting in (4.7) gives

1 1
Tl‘=(1_vi)t|'.d+<lvi)tigf
[ o o

o 1 o
=tid+ti—r—ti—<vi4:1+vir)
o o o

where the equation

1
vi—L=4L-
04 o

has been used. This equation follows from (4.18). Using (4.7), the equation for
7, becomes

1
I‘,~=t,~ﬂ+li*(‘t—1’i)
e 4
The equation for 7 is then
1 1 1
T=—) LA+ =) ,—(1—1;
AZ AZ oz( )

1 1 o —1
=— l'.,d"'_ t," i 4
PR E et @19
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where the following relation has been used:

T=9T; (4.20)
and it is assumed that the operators are acting on antisymmetrized wave
functions. It is important to replace the propagator (1/a)[ = 1/(E'*) — K — Hy)]
by 1/&, which takes the effect of the nuclear medium more completely in account:

G=E""—K-—-Hy—(A—1) 4.21)

These two propagators are related by

or

(A— 1)rl (4.22)
o

But we need (& — 1)/« and this is, from (4.22),

-1 o —1
- (4.23)

o a

which follows from the equation (< — 1)/ =0 and (4.20). Inserting this result
in (4.19), we have

o —1
—1; 4.24)
&

1 1
=-YtAd+-)Yt
' A;' +AZ'

providing the desired relation between t and ¢, [It is the analog of the
Bethe—Goldstone equation stated in Chapter 111 of deShalit and Feshbach (74).]
One can now solve this equation for t by successive approximations. In the
first order, obtained by droping the second term on the right-hand side of (4.24),

1
T~—)YL¢L.
L5
or
T~ (4.25)

To second order obtained by using this result in (4.24),

7 —1
L

&

1 1
=Yt A+t 4.26
i 429
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or
1

Zt + Z: Z =t (4.26')
o

where we have used .o/1; = (1/4)X t;. We can now calculate the effective potential

operator V,,, the optlcal model potential V = PVOP,P From (4.17),

Vg =(A =1t +(4— 1)%%
x

1 P
=A—Drt+A-1)1 _ 1—(A—1)Y1=1
a &
where
a=E—K—g—V® 4.27)

One now inserts approximation (4.26") into IA/opl, making the additional
approximation of replacing & everywhere by 4. The result is

A1 1 (A—17?

P
Vo =—Y1; —.Z,_, yER L (4.28)

A i#j i

This is the principal result of the multiple scattering formalism as developed
by Kerman, McManus, and Thaler (59). Its extension to third order has been
given by Ullo and Feshbach (74). There are three major approximations made
in deriving (4.28). They are, in major part, high-energy approximations in that
they become increasingly valid as the energy increases. That assertion depends
in turn upon appropriate behaviour of the matrix elements of #; and Hy with
increasing momentum transfer, q, and energy. What is required is that these
matrix elements decrease rapidly enough with these increasing g and E so that
the magnitude of ¢;(1/a) is sufficiently small to ensure convergence of the series
for Vom, the first two orders of which are given by (4.28). This limitation can
be avoided to a great extent if one were to solve the analog of the Bethe-
Goldstone equation, (4.24) more exactly (i.e., adapting the independent pair
approximation) rather than use a small perturbation approximation.
In the case of elastic scattering, P = 0)<0, and

Vopr = €01 V| 0 (4.29)

and (Hy)pp = 0. The first-order optical model potential is thus

yi = %<0|2|0>=(A—1)<0|t1|0> (4.30)

opt
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The transition matrix t; is generally a nonlocal operator because of the presence
of the second term in the Lippman—Schwinger equation, (4.4). In coordinate
space it therefore has the form (r —r,3(r + r )|{|r' — r},3(r + r}), where, to be
specific, we have used relative coordinate and center-of-mass coordinates for a
nucleon projectile. The generalization to other projectiles is straightforward.

Conservation of momentum determines the dependence on center-of-mass
coordinates:

ty =00 +r)—3r +r))r—r,r—r)) 4.31)

Then
V) =(A - I)J.drlJ‘dr’l‘l’*(r,,rl,...)tl‘{’(r’,,rz,...)drz---

=(A— I)Jdr1 -[dr’l K(r,r)tr—r,r' —r)oGr+r)— 30 +71)))
4.32)

where K (ry, r))is the one-body density matrix for the ground-state target nucleus
K(r,r')= J‘drz -WH(r,r,,...)Pr,r,,...) (4.33)
In momentum space (4.32) becomes
VLL{(k k') = jdrjdr’e“" Vol (r,r)es (4.34)
Introducing Fourier transforms for K and ¢
K(r,r) ! J'd jd et TR (5, §) (4.35)
r,r')=—— |ds |ds'e ,S .
(2n)°
and
fe, %) = [dpjdp'e‘i“"’”"""'t(p,p’) (4.36)

Equation (4.34) becomes (use relative and center-of-mass integration variables)

s+ks+k

ds
2

7k k)=

opt

ds'K s, s')f( >5(s ~k—-(—k)) (437

The interpretation of this equation is instructive. The projectile brings in a
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momentum of k’, the target nucleon — s’. Upon scattering the projectile acquires
a momentum of k, the target nucleon, —s. The delta function ensures that the
momentum transferred to the projectile, (k — k’), is balanced by the amount
transferred to the target nucleon (s —s’). The ¢ matrix gives the amplitude for
a transition from relative momentum (s’ + k') to 3(s + k). Equation (4.37) takes
into account the motion (sometimes referred to as the Fermi motion) of the
nucleons in the target nucleus.

As a final development we consider the consequences of the assumption that
t(r,r') is local [see (3.7'}],

t(r,r')=o(r —r')e(r) (4.38)

upon the first-order potential, (4.32). The evaluation is straightforward. One
finds that V{)(r,r) is local:

Vi —r) = d(r — r)el(r) (4.39)
where
W) = (4 —njdrlmrlw—rl) 4.40)

In momentum space

st = [

=(A—1)p(g)i(q) (4.40)

Equation (4.39) is in agreement to order 1/4 with the result obtained by intuitive
arguments in Section 3 [see (3.9)]. In making this comparison, one should bear
in mind that the scattering amplitude obtained using the potential equation
(4.39) must be multiplied by the factor (4/4 — 1), according to (4.10), in order
to obtain the full " matrix. Thus the intuitive result and the first-order result
just obtained will give the same amplitude in the Born approximation. Further
discussion is postponed until the second-order term of (4.28) is evaluated.

We first express the second-order term in coordinate space assuming t; to
be a local operator [see (3.7)]

Crlglr'y =o(r —r)(r —r))
Then
VO (r r)=<0,r|V20,r>

opt opt

A2 | [aerd S — " )efr — r)<r” | e
=A-1) Jdr J‘dr {A(A—])<0|Zo(r r’)t(r r,v)<r|o_(|r>

i#j

X O(r" —v')i(r' — ;|0

—*<0I25(r—r Jr(r —r)]0><r”| = Ir”’><0\25 " —r (r—r)|0>}
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Using the antisymmetry of the target nuclear wave function and performing
the integrations over r” and r", one obtains

Vo, r) = (A — 1 {<O0[t(r — r)e(r’ —13)|0> — (O]e(r —1,)[0><0]¢(r' — r,|0)

opt

X<T|:|T'>
&

=(4- 1)2jdr1 J.drzt(r - n)<r|;\r'>t(r' —2)[o(ry, 1) — p(ry)p(r,) ]
or

Vo) =(4 - 1)? Jdrl fdrzt(r - r1)<r|1_|r’>t(r’ —1,)C(r,,r,) (4.41)
x

Clearly, V‘Z’ is a nonlocal energy-dependent potential involving a scattering by
a target nucleon at r,, a propagation from r’ to r, and a second scattering by
a target nucleon at r,. The correlation function measures the probability of a
target nucleon being present at r, and another at r,. Comparing (4.41) with the
intuitive derivation of (3.20), one can identify the At‘? of that equation (to order
1/A).

1 ,
AP, 1) =t — 1 )<r| [0 ) e(r —r,) (4.42)
&

We also restate (4.41) in momentum space, as this is the form in which one
finds it in the literature:

Pk k) = (4 - J x J ST = WK KK~ k)
P 2n)® J (2n)
x C(kn _ k, kr _ km) (4.43)
where
Cq.q)= Jdrl J-d’ze"“‘” TR (1) (4.44)

A posteriori, it appears that the multiple scattering series for the optical
potential is an expansion in terms of correlation functions of increasing order.
The first-order term depends on the density, the second in the pair correlation.
Ullo (74) has evaluated the third-order term and has shown that to O(1/4), Vij)’t
depends on the triple correlation function C®)(r,,r,,r;) lending support to this

surmise.
Problem. Show that the triple correlation function is given by

C(s)("x ,Tp,T3) = p(3)(rl~ ry,r3)— Pm(H T2)p(rs) — pAA(ry, r3)p(ry)

— pP(ry,13)p(ry) + 2p(ry)p(r,)p(rs)
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Show that

[C“’(rl, r,,r3)dr, = C(r,,r3)

Y

The separation into density- and correlation-dependent contributions V)
and Vf;}t must be modified when the spin dependence of the two-body transition
operators is taken into account. Here it will suffice to given an example. The
complete treatment is given in Lambert and Feshbach (73) and Parmentola
and Feshbach (82). Suppose that the incident projectile is a nucleon and that

tr—r)=tOc—r)+t9r—r)o0;
Then for a spin 0 target nucleus,
VO, r)=(4 - 1)<0[t(r —r;)10>6(r — r)
= (A —DO0[tO(r —r,)|0>(r — 1)

so that t does not appear in V. On the other hand, the equation for V®(r,r’)
becomes

VO ) = (4 — 1)2<r|;|r'>

x {<OI[ —ry) + 9 —ry)00, [1V(r —1rp) + 1O —15)0°0,]10)
— 0]t r — 1 0><0|£ V(' —1,)[0)}

l ”~
=(A—1)*Cr|=|r') | dr, J dr, {t O —r )11 —r,)C(ry, 1)
&
+ 0[O — r )19 —1,)0,°6,|0) }

To avoid some Racah algebra, assume that the target wave function is a product
of a spin and of a space-dependent factor. Hence the second term becomes

M= J‘drl '[drz Ot —r )9 —r,)0,°6,|0)

= J‘dh J‘drzp(rl»rz)tm(r - rl)t(s)(r' —1,)<0|6,°0,|0)

and

1
{0l|6,-6,/0) =A—(A——1) §.<0|6,-'6j|0>
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—— = [K0[}0, 30,105 — 34]

A(A -1
__ 3
A-—1
Hence
M=— % dr, Jdrzp(n,rz)z“’(r — 1) —1,)
or
M=— AZ’IUdrlp(n)t“’(r - r»]“drzp(rz)r@(r - rz)]

— A—37 Jdr, Jdrz Cry, e, )t —r )t —r,)

Define the density (but not correlation dependent) optical potential as follows:
Vi =(4- I)J r ) —r,)dr, 5(r — )
-3(4- 1)<r| L Jdnp(rl)t“’(r - rl)fdrzp(rz)t“’(r' —r;) (445
o

The remainder of the optical potential V! 4+ V) — v~ will now involve only
C(ry,r;) and not p.

The Schrodinger equation with the potential ¥7() is equivalent to a pair of
coupled equations:

=i/3(A-1) J‘drl pr )t —ro )¢ (4.46)

Equation (4.45) can be obtained by eliminating ¢ from this pair of equations
and identifying the potential in the resulting single-channel Schrodinger
equation. The process being described consists of two scatterings. In the first
the spin of the target nucleon is flipped by the o-6, term, generating the



102 MULTIPLE SCATTERING

amplitude ¢. The spin of the target and the amplitude ¢ are restored through
the action of the second 6-0,.

The magnitude of this spin effect will vary with circumstances, depending
on the ratio between the first and second terms in (4.45), such as the strength
of the spin-dependent amplitude compared to the spin-independent one. One

can show that the ratio will decrease like l/ﬁ but that energy dependence
may be modified by the energy dependence of t*) and t'?. In any event, before
the effects of correlations can be evaluated it is necessary to evaluate the spin- and
isospin-dependent contributions which make their appearance in Vf)i’t. The first
order V) does not contain all the density dependence.

The optical potential V_ of (4.28) can be used to describe reaction processes
such as inelastic scattering. In that case one simply includes the inelastic channels
under study in (4.13). We consider the simple case of only one inelastic channel.
One then obtains a pair of coupled equations with the potential matrix
xl0>, and (P,

opt opt

OIVDRI0Y, <OV, 1|V

opt opt

We have just obtained (0| IA/E,L’JO), which in its local form, is given by (4.39),
where p(r) is the density for the ground state, |0, of the target nucleus. The
other diagonal component, (1| IA/BP‘| 1>, will have a similar structure with p(r)
replaced by the density function for the excited state. The new elements are the

coupling potentials, which will take the form

Vo, =<0IVD1Y =(A4— I)Jp(,](rl)t(r —r,)dr, (4.47)
where
Poy(ry) = J“Pg[l,Z,...)‘PI(I,Z,...)drz--- (4.48)
* Note that -
me(rl)drl =0 (4.49)

as a conseq‘uen_ée of orthogonality of the target wave functions.

The form factors p,,, as they are sometimes called, are discussed in some
detail in Chapter V. We therefore will be content with a few remarks concerning
the Fourier transform j,,(q):

ﬁol(q) = 'l.eiq'rp()l(r) dr (4.50)

From (4.49) we have

Por(0)=0 @.51)
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Moreover, if the transition from |0) to |1) involves a change in angular
momentum, then p,,(r) will involve Y, (6, ¢). Therefore, in the expansion of the
plane wave exp(iq‘r) in (4.50) the first term that survives is proportional to
Ji(gr). As a consequence, j,,(g)— ¢' for small g. This is one of the effects of the
angular momentum barrier. The Born approximation then indicates a sharp
decrease in the transition amplitude as one approaches g =0. The effect of
including distortion will not substantially modify this result, so that one expects
the inelastic scattering cross section to have its maximum for gR ~ [ and to
decrease rapidly as q becomes smaller.

For most situations the distorted wave approximation (DWA) with inter-
action V,,, of (4.47) suffices. The form of V), suggests the possible use of folding
to describe the coupling potential (see Chapter V). The extension to include
correlation effects has been carried out [ Feshbach (81)] and the reader is referred
to that paper for more details.

5. THE SEMICLASSICAL APPROXIMATION!

This procedure is applicable when the wavelength of the projectiie is small
compared to the size of the system and when the projectile energy is much
larger than the depth of the potential in which the projectile moves. We begin
by considering the problem of the scattering of a projectile by a potential well
and then develop the generalization to multiple scattering.

The propagation of short-wavelength radiation is a comparatively ancient
subject which has received thorough study [van de Hulst (57)]. It occurs, for
example, in the design of optical instruments, where the wavelength of the light
is small compared to the size of the system. It is a method developed in that
connection which we shall adapt to the present problem. Consider a wave
propagating through a medium with an index of refraction n. The wavefront
is defined to be an equiphase surface, while points on the wavefront trace out
trajectories as the wave propagates. In the approximation to be used, these
trajectories are calculated in the geometrical optics approximation (infinitely
short wavelength) with the phase change along the ray given by the optical
path length, AQ:

AD = Jnk ds

where the integral is taken along the trajectory. By performing this calculation
for each ray it is possible in principle to construct the equal-phase wavefronts
and thereby follow the propagation of a wave through the medium.

In the present context, the ray is replaced by the classical mechanical

tGlauber (59); Feshbach (67).
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trajectory of the particle. The index of refraction is given by
2 1/2
nk = l:i[:(E - V):| = (k2 — V)"
{

where

U=

RYEN

v (5.1)

so that

AD = j /k* —Uds (5.2)

This approximation is thus a semiclassical one.

In the simplest form of the approximation it is assumed that the trajectories
are straight that is, undeviated by the action of the potential and thus proceeding
in the incident direction. This approximation requires that the momentum
change which occurs because of the action of the potential be small compared
to the initial momentum. Taking the force to be of the order of V/a, where a
is an interaction length, and the time during which it acts as a/v, one obtains
amomentum change of V' /v. The resulting angular deflection is on the order of

vV v
== (5.3)
vp 2E
The straight-ahead approximation is thus valid when
|4
0~—«1 (5.9
2E

To use the geometric approximation it is necessary that the classical trajec-
tories be well defined. This requires that the classical momentum change V/v
be larger than the quantum uncertainty in the momentum #/R:

V h
v
or
VR V
—=—(kR)>» 1 5.5
hv 2E( ) (5:3)

We observe that this condition can be satisfied simultaneously with (5.4) only if
kR > 1 (5.6)

Problem. Prove that the Born approximation is valid when (V/2E)(kR) «< 1.
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Problem. Show that in the relativistic regime (5.5) is replaced by VR/hc > 1.
With the straight-ahead approximation it becomes a simple matter to

calculate the phase change of a plane wave propagating in the z direction.
Taking the initial phase (z— — o) to be kz, the phase at any z is

O(z)y=kz + J dz'((Jk* = U —k)
and the corresponding “plane wave” by

Y= exp{i[kz + f dz (Jk* — U — k)]} (5.7)

—w

It should be noted that despite the straight-ahead approximation,  does
describe a particle with both longitudinal and transverse momentum.

Problem. Let the solution, ¢, of the Schrodinger equation for potential
scattering have the form

Show that when V2§ « (VS)?,
(VS ~k>—-U
Derive (5.7).

We are now in a position to evaluate the elastic scattering transition matrix
from  to the plane wave with momentum k:

ﬂ_e' = <¢}_’V¢IE+)>

2 z P
=:jdre”"‘f"Uexp{i[ki-r-&—J dz’(\/p—U-k)]}
U -«

_ ;’2 Jdr ei(ki—kf)'rUexp{i[ JZ dz’(\/ka - k):'} (5.8)
u -

To proceed further we choose the z axis to be along the direction (k; + k). This
is a modification of the straight-ahead approximation. It is still assumed that
the trajectories are straight lines but along the direction given by the average
momentum (k; + k ;)/2. Then (k; — k)1 becomes (k; — k)b where b is a vector



106 MULTIPLE SCATTERING

perpendicular to k; + k. Evaluating this scalar product yields
.0
(k;—k,)b= 25micos¢bk
Equation (5.8) becomes

2 z
7 = ;'_sz Jdb e2i‘i""’/2’°°54”’"Uexp{i|:j dz' (K — U — k)]}
H -

The integration over the orientation of b yields

2 z
g = nh szjbdeO(ZkbsmlH)Uexp{ [J dz'((Jk*-U —k):|} (5.9)

A second approximation consistent with condition (5.4) permits the integration
over z to be performed. Let

o= /kK2-U—-k
Then
— 20k + ®?) ~ — 20k (5.10)
with an error of U/k? or V/E. Then

2mhk * :
T, = debJo(zkbsin%G)J dzCDexp(ij @dz’)
Hn ) —®

The z integration can now be performed, vielding

3 2nihZk
u

j bdb J,(2kbsinif)(e'* — 1) (5.11)
0

where

x(b)=Jw cbdz:r dz(/k* = U — k) (5.12)

— 0

This derivation avoids an expansion in the exponent and therefore leads to an
error linear in V/E rather than exp[i(V/E)]. With (5.11) we have thus reduced
the calculation of 7, to a quadrature with an error on the order of V/E and
valid in the short-wavelength limit (kR — o) [see (5.4) and (5.5)]. The straight-
line approximation used to obtain (5.9) requires, in addition, that the scattering
angle 8 be small as stated by (5.4). A better limit is obtained from the requirement
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that the value of k occurring in the expression for x(b) does not differ appreciably
from the magnitude of 1(k; + k). The condition that the error in exp(iy) be
small is

4E

<— 5.13
kRV G-13)

Problem. In the expression (5.7) for 7, take the z direction to be along the
incident direction. Replacing exp[i(k — kcos 6)z] by unity, show that 7, is
given by (5.11) with, however, J,(2kb sin 16) replaced by J,(kb sin §).

The expression for the elastic scattering amplitude

1 2u
fa==3 137 (5.14)
is
k(= : ;
fu=" J bdb Jo(2kbsin L0)(e* — 1) (5.15)
tJo

Further exploitation of these results to be developed in this section depends
on the result to be demonstrated now, that for real U (no absorption) unitarity
is approximately satisfied (this is not the case for the Born approximation); that
is, the total cross section, o1, given in that event by the total elastic cross section,

Uc1=2”j|f31|25m9d9 (5.16)
is equal to the cross section calculated according to the expression
ar=4—:lmfe,(0) (5.17)
From (5.16) and (5.15) we have

o, = 2nk? J bdb J b’ db’ J sin 0 d0 J ,(2kb sin10)J o(2kb’ sin 56)

0 o 0

x (e®) — [)(e ) — 1) (5.18)
We make use of the Fourier—Bessel integral [Morse and Feshbach (53, p. 766) ]

r Jolkb)J o(kb )k dx = Q(I’T_bi)

0
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Letting k = 2ksin 10, this equation becomes

n—ioo () b _ b’
J Jo(2kb sinL6)Jo(2Kkb’ sin 16) sin 6 46 — - )
1]

Assuming that (f,)* can be neglected well before one reaches =rn, the

integration over 8 in (5.18) can be performed to yield

ael:2nJ bdb|e*® — 12 (5.19)

[}

while from (5.17)

or= 4nJ bdb(1 — Ree'?) (5.20)

0

As can be verified immediately, o equals ¢,, when U and therefore y is real.
The approximate satisfaction of the unitarity condition is thus demonstrated
in the appropriate limit of no absorption.

When U is complex, absorption will occur. The absorption cross section g,
can be obtained by subtracting o_,, (5.19), from o, (5.20):

aa=2nj bdb(l—lei1|2)=2n.[ bdb(l — e~2'mx) (5.21)

0 0

These formulas for the angle integrated cross sections [Eqgs. (5.19), (5.20), and
(5.21)] can be interpreted as being composed additively of contributions coming
from a region between b and b + db with the area of 2nb db. Each contribution
can be calculated as if there is an § matrix, as a function of b, given by exp(iy).
Indeed, these results can also be obtained from the phase shift series for 7
by taking a suitable high-energy limit. One then finds that

S ~ g2idth)
where

I+
k

0=

L) =5b)~5, b=

These results are very useful. Because of their simplicity, they permit a rapid
evaluation of the elastic angular distributions as well as cross sections. Even in
domains where they are not quantitatively valid, they yield qualitative results
that are useful for orientation.

The results obtained with a square well [Feshbach (67); Bassichis, Feshbach
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and Reading (71)] are instructive. From (5.15),

1) = ‘;JO J bdb Jo(2kb sin10)(e2* VR =P _ 1) (5.22)

K Jo

where R is the radius of the well and

k= Sk Ug—k—— —- 0

Ug« k2 2k

The value of f at 0° is

iU, RZ{ [ 1 . ( 1 1 )]}
0)= —— 2" 14| — 2ikR| _ N 5.22
J0) 2k 2 2k%R? ¢ ikR  2x*R? (5:22)

In the limit kR — oo, the optical theorem, (5.16), yields
JT—>27[R2 [523)

As one can see from (5.20), this result can also be obtained when the absorption
is so strong that e'* can be neglected within the radius R. The absorption cross
section is then

g, nR?2 (5.24)

The angular distribution consists of two terms. The term, which is dominant
near 0° generally and/or because of strong absorption, is given by the — 1 term
in (5.22). Note that it is the U, independent part of the integrand. We shall refer
to it as the diffraction component, f,. It contains that part of the scattered wave
responsible for the formation of the shadow, as is immediately clear in the case
of strong absorption. We find that

iU, (* iU ,,J,(2kRsin(0/2))

= _Yo inlgy_ -0 en R STIYT2)) )

f40)= x ), b db J 4(2kb sin30) » R RS (012) (5.25a)

R .Il(2k1.( sin(6/2)) (5.25b)
2sin(6/2)

The angular distribution | f,|? obtained from (5.25b) has a strong maximum at
6=0°

Fu00) =" (5:250)
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The next maximum in | f,;|* occurs at 2kR sin(8/2) equal to about 5.2, at which
point the ratio to |f,|? at 0° is 1/57.4, demonstrating the strength of the 0°
maximum,

From (5.22’) the value of the deviation from f,(0°) is given by

iU R [k |
0°) — £,(0°) = —2 + 2ikR _
SO =140y == [2{;<R PR )]

so that

Ifel(()o] *f,,IOD)\ - e~ ZlmxR

|fa(0°)] x| R 529

When Im|k|R > |, the small-angle scattering is dominated by f,. Even when
the absorption is small, the diffraction amplitude will make the major
contribution when

|UoIR

kIR =~
2k

» 1 (5.27)

Condition (5.27) is identical with the condition (5.5) that the Born
approximation fail and that the classical trajectories are well defined. It is thus
satisfied in the regime for which the approximation for i, (5.7), is valid.

At least two conditions must be met if the semiclassical method is to be
applied to obtain cross sections for larger angles of scattering. The absorption
must be sufficiently strong so that one can neglect scattering from the front
surface of the scatterer. This could generate amplitudes that would interfere
with the incident beam creating maxima and minima characteristics of
“rainbow” scattering. Second, it no longer makes sense to use the straight-line
approximation for, for example, scattering to the back angles. In the spirit of
the semiclassical method, one should calculate the classical trajectories and then
obtain a more accurate expansion for . Equation (5.7) is no longer valid. The
effect of neglecting the momentum transfer is shown in Fig. 5.1. The effect of

expanding the square root ./k? — U, around k as used in (5.10) is shown in
Fig. 5.2. Deviations from the exact result appear at 6~ |V|/E. With no
absorption (Fig. 5.3) strong deviations appear even at small angles. These errors
decrease in magnitude as the energy increases. For example, for scattering of
516-MeV nucleons (no absorption), the real and imaginary part of the amplitude
is compared to the exact amplitude in Fig. 5.4. The semiclassical real part of
the amplitude, longitudinal momentum neglected, fails after the first secondary
maximum, while the imaginary part is incorrect even at 0° and increasingly
beyond that point. In both cases there is agreement to within an order of
magnitude with the exact results at back angles. Note that all of these examples
use semilog abscissa. Figure 5.5 shows that the importance of absorption even
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FIG. 5.1. Comparison between calculated cross sections to indicate the effect of including
longitudinal momentum transfer and neglecting it, indicated by “no Qz” [From Bassichis,
Feshbach, and Reading (71).]

at higher energies, the exact result showing the large effect of interference at
back angles.

The application of the semiclassical approximation to multiple scattering
is referred to as the Glauber approximation [Glauber (59); McCauley and Brown
(58)]1. We begin with the elastic amplitude, (5.11), which using (5.14) becomes

Ju= % Jeiq'b(l — etk gy (5.14)

The scattering is from A scatterers at positions r,( = z;, b;), the scattering potential
being given by

Y=Y va-r) (5.28)
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102
E = 100 MeV

R=5t
O+ V= (-10-i40)MeV

— Exact
—-— Square Root (Qz)

----- High Energy

do/dq barns
S|
I

10-2—

10°3 —

| ! { || |
(o} 30 60 90 120 150 180
Angle in Degrees

FIG. 5.2. Differential cross section for the scattering of 100-MeV nucleons by a
square-well potential 5/ in radius and potential V =(— 10 — 40i) MeV. Comparison is
made between the exact, the high-energy approximation (including the longitudinal
momentum transfer indicated by “Qz”), and the square-root form. [From Bassichis,
Feshbach, and Reading (71).]

so that the phase function y is, according to (5.12),

)(='|.co |: /kz—ZU(r—r,.)—k:Idz (5.29)

|4

where

U=

RS

Expanding the square root and keeping only the first term, one obtains
1k, b) =3 xik,b—b) (5.30)

1 (= ”
n= 5| U= —hivj_w Vir—r)dz (5.31)
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2
10 E * 100 MeV
R=7f
1o V= -40 MeV

— Exact

]
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r Vo
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do0/4q barns
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Angle in Degrees

FIG. 5.3. Effect of absorption, where the radius of the square well is 7, the potential
V= —40MeV, and the incident nucleon an energy of 100 MeV. [From Bassichis,
Feshbach, and Reading (71).]

so that
7 ik ig-b ixi
Ja=5 | dbe®( 1= [Te™ (5.32)

Moreover, x; may be related to the single scattering amplitude of the projectile
by a fixed-target nucleon. In the same semiclassical approximation, it is

ik (. )
flq)= = Jé"q"’(l —e'*)db (5.33)
2r
Inverting this relation gives (q ; = vector component along b)

) 1 )
1 —ei= Inik dq,e” ' f(q) (5.34)

where the integration is in the scattering plane containing the vectors k; and
k,. The evaluation of this integral requires knowledge of f(q) for nonphysical
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FIG. 5.5. Different cross section for a Yukawa potential, — Ve "/r, where 2m/h?)V, = 250
and k=p/h=5. The solid curve shows the exact result, the dashed curve the eikonal
result. [From Joachain (75).]

complex values |cos ) 1 of the scattering angle 8, since k is fixed. However, if
f; decreases rapidly enough with increasing ¢, this region is not expected to
contribute appreciably to the integral.

In the Glauber approximation, one starts with (5.15), postulates additivity
of the phases as given by (5.30), and computes e** from (5.34), avoiding any
explicit mention of the scattering potential. Because of the additivity assumption,
(5.30), the Glauber approximation assumes that the projectile is on the energy
shell between collisions. It cannot, for example, include fully the effects of the
collision of the projectile with two target nucleons (or more), since that will
generally add terms in y that depend in a nonadditive fashion on the coordinates
of both target nucleons. One can immediately see the presence of such a term
by expanding the square root in (5.29) to second order. Then [ Feshbach (69)]

A=Y+ > wib—b.b—b;,z—z) (5.35)
i>j
where
w,. = ! Ur—r)U(r—r))dz

PY N
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As a consequence, the Glauber approximation in the form given so far cannot
be used to evaluate the importance of correlations. The KMT formalism does
take these two-body terms into account. They appear in the second-order term
(4.41), which depends on the correlation function C(ry,r,).

We return to (5.32). Because of (5.34) connecting y; and f; it is convenient
to introduce the profile function

[=1-ew (5.36)

so that (5.32) is written
fe,=;(Jdbei“‘b[l -T1¢ —r,.)] (5.37)
n i

The scattering amplitude is obtained by taking the matrix element of fel with
respect to the ground state:

Sa= <0|fc.|0>— Jdb 'qb<0|1—[](|4r,.)|o> (5.38)

Note that the product, [[(1 — I';), contains A factors, indicating that the target
nucleons scatter the projectile nucleons only once. Expanding that product yields

=[J0=T)=Er- 5 [+ 5 T+ (5.39)

i*j itj*k

The first term yields the single scattering, the second the double scattering, and
so on, ending with the A particle scattering (I';I',I",I7;---T,) (i#j#k--).
According to (5.38), one must now take the expectation value of (5.39) with
respect to the ground states:

O =TT =THI0> =<0[Y. 0> — Y <OIT,T;[0) + - (5.40)

i i#j

When correlations, including those which are dynamic and those which are a
consequence of the Pauli exclusion principle, are neglected, that is, using the
independent-particle description for the target, (5.40) becomes

O[T —JT(1=Ty|0)=1-J[<0[1—-T;]0) =1 —HJP(W)[I —TI'(b—by)]dr

=1- [ Jp(ri)(l —I(b— bi))dri]A
=1- |:1 - Jp(ri)r(b - b,-)dri:lA
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Introducing the relation between the profile function I' and the nucleon—
projectile scattering amplitude f yields

. A
fe1=;—"fdbe"'"’{l—[1—# ﬁ(q’,O)e""‘""f(q’)dtI’]} (5.41)
bid 2nik

where p(q, 0) is the Fourier transform of the density with the momentum transfer
along the longitudinal direction, (k; + k)/2, put equal to zero.

If the binomial in (5.41) is expanded, the first surviving term in (5.41) is
proportional to A, the second to 4(4 — 1)/2, and so on; the term proportional
to A is the contribution to the amplitude from single scattering, and the term
proportional to A(4 — 1)/2 is the contribution of the scattering from two target
nucleons. When the projectile—nucleon amplitude is sharply peaked in the
forward direction in the laboratory system, as is the case for high-energy
projectiles, one can readily see that the double scattering term has a wider
angular dispersion than the single scattering term. Thus in this picture the first
diffraction peak comes from the double scattering term, while the first diffraction
minimum is a consequence of destructive interference between the single and
double scattering terms. Equation (5.41) is a remarkably simple result that can
readily be evaluated to obtain the elastic scattering amplitude. Its validity is
restricted to forward scattering, which is most probable for high-energy
projectiles. In view of the additivity assumption [Eq. (5.30)] it neglects
correlations arising from the Pauli principle as well as those coming from the
nature of the interaction. Equation (5.41) assumes that a nucleon in the target
nucleus scatters the projectile only once. For these reasons it is most appropriate
for a low-density target system.

When A is large, [brackets]? in (5.41) can be approximated as follows:

1 . 4 .
[1—. Jﬁ(q,O)e‘"‘"’f(q)dq} —e'*4(b) (5-42)
2nik
where
A [ ~ig-b
Ta= 5 A(q,0)e " f(q)dq (5.43)
nk

For large nuclei j(q,0) is sharply peaked around § =0, so that

Af(©) [ e
YA f—fp(q, 0)e ~bdq
2nk

_ 2’?:‘}{@ sz o(0) (5.44)

where zis in the direction perpendicular to b, that is, in the direction of 3 (k; + k ).
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The function T(b)
T(b)= fdz p(r) (5.45)

is referred to as the thickness function, since it gives the thickness of the target
nucleus as a function of the impact parameter b.
With approximation equation (5.42), (5.41) can be written

fa =;deb eh(1 — ') (5.46)

19

which has the form to be expected from an optical potential model, (5.14). One
may then calculate the total absorption cross section, ¢, according to (5.21):

o, = ~J‘db(l — e~ 2Imxa)
But Im y,, in the large-nucleus approximation, is, from (5.44),

2Imy, = 4”AkT(b) Im £(0) = Ao T(b) (5.47)

where we have used 4n/kIm f(0)=o0, the cross section for the projectile-
nucleon cross section. Therefore,

6, = jdb(l — e~ AcTd) (5.48)

the classical result.

Once y, is known, (5.43), one can ask for the equivalent optical model
potential, that is, the potential that will give rise to the known yx, through the
relation (5.31):

1 1 (=
x4(b)= — 2kf U,ulf)dz=— = J_ Vo(¥) dz (5.49)
Using the approximate expression for x4, (5.44), one obtains

Ugp = —4mAf(0)p(r) (5.50)

This should be compared with the result obtained using the KMT method of
Section 4, which yields, according to (4.40) and using the large-nucleus
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approximation,

Ugpe = —4n(A = 1)f(0)p(r)

Problem. One can consider (5.49) as an integral equation for U,,. With the
assumption U_ = U_(r), this equation may be solved. Toward this end, use
r as the integration variable in (5.49), so that it becomes

1 [ Uryrdr
kJy Jr*—bp?

This is the Abel integral equation. Show that the solution is

xalb)=

(5.51)

2kf°0 db  dy,
Y

Ur)=— _ =<
D7) e
Note the result

f' bdb n
R/(rP—b*)(b*—R?) 2

Discuss (5.51) using a reasonable description of y,.

In this section and the preceding one, we have developed two different
formalisms, the KMT and the Glauber approximations, for the multiple
scattering of high-energy projectiles by a target nucleus. A comparison between
the two procedures is possible for the formulas for the KMT V), (4.40), and
the Glauber f,, (5.41). Diagrammatically, both of these correspond to a
component of the multiple scattering in which the target nucleus and the
projectile are never excited, as illustrated in Fig. 5.6 for the scattering amplitude
where the vertical lines indicate the presence of an interaction. The second
KMT term, Vfi’t, (4.41), correspond to the contribution in which the target
nucleus is excited and then deexcited, as shown in Fig. 5.7. The Schrodinger
equation involving V{l} + V) iterates the two elementary diagrams, the one

shown in Fig. 5.7 and the diagram in Fig. 5.8, which is the basis for Fig. 5.6.

/ Projectile
/ Target nucleus

FIG. 5.6
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Projectile

—
Target nucleus
(ground state)

Target nucleus (excited)
FIG. 5.7

Unfortunately, for the hope of using strongly interacting hadronic probes to
study correlations, studies of the high-energy proton reactions have failed so
far to reveal any easily identifiable and substantial effects (see Chapter IX) of
the correlation terms in elastic scattering, so that the KMT equation (4.40) and
the Glauber equation (5.41) do suffice for most purposes. For this contribution
we can think of (5.41) as providing a solution to the Schrodinger equation for
the optical potential. It is a convenient solution particularly for small systems,
certainly more readily evaluated than a phase-shift analysis when the energy is
large (unless of course the WKB method is used). It is, however, approximate
and is not accurate at the larger angles or at the diffraction minima.

The effect of correlations can be introduced into the Glauber approximation
by adding two-body terms to the expression for the phase-shift function y as
in (5.35). Some of the consequences of that ansarz have been developed
[Feshbach (69)]. One of these is qualitatively important. In obtaining (5.41),
correlations were neglected. In particular, <0|%,, ;I';I';|0) was placed equal to
2i#;<0IT;|0><0[I;|0). The difference, 3", ,[<O|I;T;|0> — <O[I7;]0><0[T;[0}],
involves correlations. However, when two-body terms are included in yx, one
obtains, instead, <O0|T';I'; + iw;;|0), so that in discussing correlation effects one
must take into account both the on-the-energy-shell effects given by I';I"; and
the effect of dynamical correlations as described by w; . If one takes for w;; the
form given in (5.35) obtained by expanding the square root (k? — U)'/?, one
finds that the w;; term gives the effect of the overlap of the potentials acting
between the incident projectile and two of the target nucleons. In this model
the effect of overlap does tend to zero with increasing energy, so that at
sufficiently large energies the w;; term should be relatively unimportant. The
important point to be borne in mind is that it is not possible to distinguish
between the correlation effects present in the ground-state wave functions and
the effect of overlapping potentials. The two mechanisms give rise ‘to
indistinguishable matrix elements (except for their energy dependence).

Projectile
_ <

Target nucleus

:/ (ground state)

FIG.58
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6. CENTER-OF-MASS AND PAULI-PRINCIPLE CORRELATIONS,
FERMI MOTION

A. Center-of-Mass Correlations

The effect of center-of-mass correlations is particularly important for light nuclei.
It is a consequence of the conservation of momentum, which requires that the
momentum of the center of mass be unchanged by the interaction between the
projectile and the nucleus. This requirement is formally satisfied by target nuclear
wave functions that depend only on intrinsic coordinates, that is, on

rE:ri—R (6.1)

where r; is the coordinate of ith target-nucleus nucleon and R is the
target-nucleus center of mass. Similarly, the wave function for the projectile—
nucleus system depends only on the coordinate of the projectile relative to the
center of mass of the nucleus. However, it is very often the case that the model
wave functions W™ available for the calculation of p(r) and C(r,r) (e.g., the
interacting shell model wave functions) have not had their center-of-mass motion
removed; that is, they are written as functions of the 34 coordinates r; rather
than of the 3(4 — 1) coordinates r; of (6.1). To the extent that the model wave
functions are good, so that an approximate decoupling of the center-of-mass
motion and the internal motion occurs, one can relate the model density and
correlation functions with the exact p and C.
We begin with p and recall that

pM(g) = (PR (6.2)

where the superscript (M) indicates model quantities. Introducing (6.1), one
finds that

[)‘M’(q) — <\P€)M)|eiq-r’1 eiq-R|w£)M)>
If W{ were exact, it would be a product wave function:

WO = Yo, Fs )@ n(R) (63)

Then p™)(q) would factor as

M (Q) = p(9)f . (q)
where
A(g) = Yol )|V o (ry )
and

Peml@ = (@l R, > = (PO RP PO, (6.4)
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Therefore, the desired j(q) is

~(M)
p(q) =p~ W (6.5)
Pem(@

In case the wave functions used for W are constructed from single-particle
harmonic oscillator wave functions, (6.3) and (6.5) are exact. [For details, see
Feshbach, Gal, and Hiifner (71).]

For the correlation function C(q,q) we have

~ 1 . .
C™M(q.q)=——7 3 (PMeirrielt | wH
(9.9) A(A_l)zjj( ol 1o
= (PRheln i s — 500(q)pM(q) (6.6)

Introducing the factorization, (6.3), one finds that

C™(q,q) = C(4,9)p.,(q + @) + H@HQ)[Fon(q + @) — P on(DPrn(@)] (6.7)

From this equation C is readily obtained, using (6.5), in terms of model quantities.

In light nuclei, the center-of-mass effect can be substantial, as illustrated by
Fig. 6.1. The importance of center-of-mass correlations for elastic scattering
decreasing rapidly with increasing 4 and is not visible for nucleon-*°0 scattering
[Feshbach, Gal, and Hiifner (71)].

B. Pauli Cor_relalions

The Pauli exclusion principle requires that the wave function for the target
nucleus be antisymmetric. As a consequence, even in the absence of a residual
interaction, correlations are implied. As a first example we use a Slater deter-
minant for a p-shell nucleus. The 1s and 1p orbitals are taken to be the harmonic
oscillatory wave functions

@M ~e VD7 M) ~rY,,(9, @)e”

One then finds that [Feshbach, Gal, and Hiifner (71); Lambert and Feshbach
(73)]

A—4
M@y =1=-"—"42 e—q2/4v
" q) ( i )

a’ N\ 2 e’ \ 2
cw)(q,ql):[aowﬂl(qq ) _az(" q) ],
14 Vv y

when the values of the coefficients a, are as given in Table 6.1.

and
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FIG. 6.1. Effect of CM correlations in p-*He elastic scattering. The solid line includes
this effect, the dashed does not. Disregard experimental points, which have been changed
substantially in later experiments. [From Feshbach, Gal, and Hufner (71).]

As indicated, the Pauli correlations for *He vanishes for this model wave
function, as the exclusion principle has no effect. In view of the small value of
the coefficients, one can expect that the Pauli correlations will have little effect
on the elastic scattering. This expectation is borne but by calculations for the
smaller scattering angles. However, some effects do appear beyond the first
secondary maximum.

Another model appropriate for heavy target nuclei, is the Fermi-gas model.
The two-body correlation for that case has been derived in Chapter II [Eq.
(I1.5.14)] of deShalit and Feshbach (74). This leads to the following result, after
averaging over spin and isospin:

A 3j.(k — 2
Crvr) == atrptr), [M] (68

4 kglry —r,|
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TABLE 6.1

4Hc 12C 160
aq 5% 6
ay e 10
a, 0 Seo 340

where j, is the spherical Bessel function of first order. As commented on in
Chapter II of deShalit and Feshbach (74), the net correlation is repulsive (Pauli
repulsion); that is, it has the effect of increasing the average distance between
target nucleons beyond what would be calculated from a simple product wave
function. Approximating the term in brackets in (6.8) by the form (B.13) (see
Appendix B at the end of this chapter) yields an effective? r, of SkF/\/B, from
which a length defined by (B.14) can be obtained, noting that § «r_. Finally,
the second-order potential can be obtained from (B.12). The effect is not small,
so that Pauli correlations are of importance for the heavier nuclei. Calculations
show that effects of this order of magnitude are visible at the larger angles.

C. Fermi Motion

The nucleons in the nucleus are moving. So far the discussion has assumed
them to be stationary because during the passage of the projectile through the
nucleus with a velocity close to c, the velocity of light, the nucleons in the target
nucleus hardly move. The motion of the nucleus can be taken into account in
the first-order potential V{}}, (4.32) or (4.37). For this purpose one needs the
density matrix K(r,r') as well as the projectile—target nucleon transition ¢ matrix.
The first is model dependent. The second involves the ¢ matrix off the energy
shell, therefore requiring a complete description of the projectile—nucleon
interaction for its determination. The density matrix K(r,r') in the

independent-particle approximation is given by
A
Krr)= Y ¢:yir) (6.9)
=1

where ¥, are the single-particle orbitals. In the Fermi-gas model

¥y helr — )

K(rsrl):po k I]‘ r,|
Flr—

(Fermi-gas model) (6.10)

where p, is the density (4/Q). The major effect of the Fermi motion 1s to
introduce a nonlocality with a range of the order of 1/kp into the first-order

*The quantities  and r, are defined in Appendix B of this chapter.
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optical potential. However, as can be seen from (4.37) and the ensuing discussion,
the behavior of K(r,r'), r#r will be important only if ¢(r,r’), the elementary
amplitude, is also nonlocal. If ¢(r, ') is local, that is, proportional to é(r —r’) as
in (4.38), only K(r,r) = p, survives and there is then no impact of the Fermi
motion on the first-order optical potential. We estimate that the influence of
the Fermi motion is determined by the parameter (ka)?/30, where a is the range
of the nonlocality in t(r, r’). In the case of nucleon—nucleon scattering, a ~ 0.7 fm,
so that the magnitude of the Fermi-motion term is on the order of several
percent. It is clear that Fermi motion becomes more significant in the presence
of long-range nonlocal elementary projectile-nucleon amplitudes.

7. SOME KINEMATICS

(a) One rather obvious requirement of importance for high-energy projectiles
is the appropriate use of relativity and at the very least of relativistic kinematics.
The preferred method up to recently [Goldberger and Watson (64); Kerman,
McManus, and Thaler (59)] has been to insert the optical potential of Section
I1.4 in deShalit and Feshbach (74) into the Klein—-Gordon equation. There is
an ambiguity even in this simplistic procedure since one must postulate the
transformation properties of the optical potential. One obtains different results,
as we shall see, according to whether one presumes that the potential is the
fourth component of a 4-vector or a scalar. In a recent development, a covariant
description of the ¢t matrix is used and the optical model employs the Dirac
equation when the projectile is a nucleon. Use of the Dirac optical model is
presented in Chapter V. In the following discussion we follow the derivation
of Goldberger and Watson (64) and Kerman, McManus, and Thaler (59).

Goldberger and Watson begin with the expression of the energy in the
center-of-mass frame assuming that the optical potential V is the fourth
component of a four-vector. Let the energy of the system, excluding the rest
mass of the target nucleus but including the rest mass of the projectile be &.
Then

2,2
(6= V) + Ame? = /m3c* + pPc® + Ame* + 2;7”2 .1)
mc

where the energy of the target nucleus is expressed nonrelativistically. 4 is the
mass number of the target and m, is the mass of the projectile. Solving this
equation for p? to first order in V (i.e., taking & > V) yields

1
cip? = (&2 —mlc*) 5 —2(5”V~—1
1+(&—V)/Amc 1 +(&—V)/Amc?
1
~ (62 —mlc*)

L+ &/Amc? 1 + &/Amc?
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Replacing p by #/iV yields the following Schrodinger-type equation:

| [ & —m2ct 1
V24 ( M gy )]¢=o (7.2)
S R\ + &/ Amc? 1 +&/Amc?

The (wave number)?, k?, which is given in the Schrodinger case by the
nonrelativistic 24mm,E/h*(m,+ mA) (where E=& —m,?) is replaced by
(6% —m2c*)/h2c(1 + &/Amc?). In the nonrelativistic limit (E «mc?) the last
expression reduces to the nonrelativistic value. We note that the effective
potential is energy dependent. This is a result of the assumption that V is the
fourth component of a 4-vector. If V is a scalar, that energy dependence is not
present.

Problem. Suppose that V is a scalar. Show that the only change in (7.2) is the
replacement of &V by mc?V. Derive the Schrodinger equation when V has two
components, V, and V,, where V, is the fourth component of a 4-vector and
V, is a scalar.

(b) The transition matrix elements, 7, for elastic projectile -nucleon scattering
are usually given with respect to the projectile—nucleon center-of-mass frame.
Multiple scattering theory requires their value in the projectile-nucleus frame.
The transformation between the two frames is governed by the result that

VEE, PP,y T |p1,p2>VELE; s an invariant (1.3)

In this expression (py, E;), (p,, E,) are the momentum and energy of each particle
(projectile, nucleon) before collision, and (p), E}), (p5, E}) are their values after
collision. The wave functions in the matrix element of 7 are assumed to be in
the form exp(ip-r)/h asymptotically with unit amplitude. However, since the
invariant volume in momentum space is dp/E, the invariant normalization is

given by

p'|p)y =(@2nh)*d(p' — p)/E

This condition leads immediately to the result (7.3).

Let ¢, be the value of the matrix element of J in the projectile-nucleon
center-of-mass frame, while ¢,y is its value in the projectile—nucleus frame. From
(7.3) these are related by

E Estpy = &1851p, (7.4)
where E, and E, are the energies of the projectile and target nucleon, including

their rest masses in the projectile—nucleus frame, and &, and ¢, are the
corresponding energies in the projectile—nucleon frame. Equation (7.4) is
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approximate since E; # E, E, # E’,. The equation is valid for small momentum
transfers; the error is on the order of g%(p? — q?)/m?E?. In addition, t,, is related
to the scattering amplitude f in that frame by

4mhc?
lpp= — E, SPn (7.5)
where!
Ey=3(e; +£,5) (7.6)
Combining (7.5) and (7.4) yields
£18, 1
toy = —dmh?c? 12— f,, 77
PN T E.E, E, Ir (7.7)

We now relate all the energies ¢4, £,, and so on, to the encrgy E; and momentum
p,. of the projectile in the laboratory system. We illustrate the process for the
case of ¢, and ¢,. In Fig. 7.1 the two situations to be compared are shown. We
now form an invariant for situation (b):

(EL+ myc?) —2p2 = mic* + m2c* + 2myc’E =5 (7.8)

We now calculate the same invariant using situation (a). It equals

(1 +&2)* =4E] = (/mic* + c*p?, + /mic* + c?p2 ) (7.9)
€15Pcm 825Pem EL’pL ,/-mz
—_— — —>e
my m; m
Projectile-nucleon Projectile-nucleon
center of mass laboratory system
(a) (b)
FIG. 7.1

‘The Kerman et al. tyyr is (2m)~3tp,. This factor is a consequence of the differing normalizations.
In the KMT case the matrix elements of { are taken with respect to plane waves (1/27)32¢™", so
that (7.5) is replaced by txyr = — (h%c?/2n?E,) f. The derivation of (7.5) is similar to that of (7.2).
Terms on the order of (mpc? —m,c?)/E, and V/E, are neglected. The presence of E, in the
denominator of f indicates that the assumption has been made that V transforms like the fourth
component of a vector.
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Equating (7.8) with (7.9) yields an equation for ¢?p2,. This is readily solved to
yield

2,42 2.4,2

2 _ myerr _macp
T omict + mict + 2myctE, s
or
2 2
_mactpy, myeTtpy, (7.10)

It then follows that

m,E, + mc* myE; +mc?
&, = — =
: 2E, Js
_ mac*(Ep +myc?)  mac*(Ep +myc?)

2E, Js

A little manipulation will show that

¢ 52[1 1 (1 mf>2] (7.12)
€16, = - -—— .
e (1 + m2/m? + 2E, /m,c*)? m2

For the situations to be considered in this volume it is a good approximation
to take

(7.11)

&2

£,6, ~ E2 (7.13)

equating the arithmetic mean of ¢, and ¢, with the geometric mean. Using the
exact equation (7.12) in the discussion is not difficult, but to keep the results
simple we shall employ (7.13), so that

E
tpy = — dnh2c? —2 7.14
PN n=c ElEzf ( )

We are now left with the determination of E,E,. E, in terms of E; is obtained
from equating 4 EZ to the right-hand side of (7.8). The kinematic situations
involved in determining E, and E, are illustrated in Fig. 7.2, where &, is the
energy of the target nucleus in the projectile—nucleus center-of-mass frame. We
take

6,

E2=j
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El’p éal,p ELapL /AAmZ
—_— ——— R
m, Am, m,
Projectile-nucleus Projectile-nucleus
center of mass laboratory system

FIG.7.2

The analysis used to obtain (7.11) can be repeated, with the result

m,c*(E + Amyc®)(Amyc*Ep + mic®)

E\E,= 7.15
e APmic* + mic* +24m,c’E, (7.13)
Inserting this result into (7.14) and using (7.10) yields the final result:
k 14+ 2E,/AM ,c? 2/4%m?
tpy = — 2mh?c? —k +2EJAMe” A mi/ATmy o 46

kemEp (1 + mic?/AmyE ) (1 + E /Amyc?)

We leave it as a problem to show that this reduces correctly in the nonrelativistic
limit (E;, = m,c?).

(c) Breit Kinematics. In employing (7.16) in the optical model Schrodinger
equation (7.2), one must use values of f5, that cannot be obtained from the
analysis of the scattering of the projectile by a free nucleon. This point becomes
clear when one examines the Lippmann—Schwinger equation, corresponding to
(7.2), in momentum space. The Lippman—Schwinger equation for the transition
amplitude 7' is

1
g — 1) (1) gt
T =V Vemm 7

where K is the kinetic energy operator. Taking plane wave matrix elements of
Z' in the projectile—nucleus coordinate frame yields

dkf’ 1
k k'S =<k V(“ k’ + | — k V(l) k'S (Kk"|g k'
KIT IR = CKIVK J(zn)3< VRIS Loy s (R IO

(7.17)

For elastic projectile—nucleus scattering, the magnitude of k and k' are equal
and the corresponding energy E(k) is equal to E. Nonrelativistically,
E =h%k?/2u (u = reduced mass). We then say that the matrix elements of 7
are on the energy shell. The first term on the right-hand side of (7.17) will also
be on the energy shell if V), a function of E, is also evaluated at E = E(k). In

the first-order theory V() depends on the { matrix for projectile-nucleon
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scattering in the projectile-nucleus reference frame, t,y. The requirement that
V() is on the energy shell translates into the requirement that tpy is on the
energy shell and therefore can be obtained from the analysis of the experimental
projectile—nucleon scattering. This last statement is valid to the extent that the
kinematic regions which are allowed for projectile scattering from a free nucleon
and from a nucleon embedded in the nucleus overlap. This overlap is generally
not complete since the scattering from a nucleon embedded in a nucleus can
involve momentum transfers q = (k — k') which are larger than those that can
occur when the target nucleon is free.

To illustrate this point, suppose that the projectile is a nucleon. Then in the
nucleon—nucleon center-of-mass frame each nucleon has a momentum k/2
initially. The maximum momentum change occurs for 180° scattering, yielding
a maximum value of g2 equal to k2. In the laboratory frame (for simplicity we
take the nucleus to be infinitely massive so that the projectile—nucleus frame
and the laboratory frame are identical), g7, is given by 2k*(1 — cos 6), where 8
is the scattering angle. It is clear that g2, will exceed k?, the maximum g¢? for
scattering by a free nucleon, for 6 greater than 60°. Thus for angles greater than
60° it is no longer possible to obtain tpy from the experimental ¢p,,.

Turning to the second term on the right-hand side of (7.17), the integral over
k” involves values of <k| V(! |k”> that are not on the energy shell since k” can

opt
asssume any mangnitude. I-‘I)owever, V), involves the nuclear form factor j(g),
which decreases rapidly with increasing qR, where R is the nuclear radius
parameter. As a consequence, the off-energy-shell contributions of (k| V{|k">
will be small barring a singular behavior of #{q) when one deviates from
on-shell kinematics.

A common method for estimating off-the-energy-shell matrix elements of f5,
involves establishing an analytic form for t,, as a function of E and q [e.g,
a(E)e ~ B4 often used] from the on-shell experimental data. Then one substitutes
in that form, that is, treats E and g as independent variables to obtain the
value of fp, off-shell. This procedure presumes a smooth behavior of fp, as a
function of these variables.

Another method which we shall now describe resolves the problem of the
overlap of the kinematic regions allowed in free nucleon—projectile scattering

and that allowed in nucleus—projectile scattering. We return to (4.37):

- - k/ ’
pw st st’K(s, s’)?(k ;r sk*s )5(5 —k—s +K) @437

opt

L A=
(k,k)—(zn)3 5

where
K(s,s) = fdr J-dr'K(r, r)e isTHIST

The variables k and k' multiplied by 4 are momenta in the projectile—nucleus
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frame of reference. We choose a local density approximation for K:
K(r.r)= P(r ; rl)"’"w'_“k'”"" (7.18)

In the Fermi-gas approximation equation (6.10) this amounts to replacing the
3j1((x)/x) factor by its value at x =0. The exponential factors in (7.18) are
appropriate to the nucleon-nucleus reference frame, where k' is the momentum
of the nucleon and —k’ the momentum of the nucleus. Then each nucleon in
the nucleus has a momentum — K’/ A4, neglecting the momentum of these nucleons
with respect to the nuclear center of mass. Inserting (7.18) into the equation
for K(s,s') and integrating yields

(3o
K(s,s)—(Zn)é(A ) pls s+A (7.19)

where we have introduced

k+Kk

Q="

and qg=k—-k

Inserting (7.19) in (4.37) yields a factorized expression for ¥V (k,k'):

opt

Pk, k) = (4 — l)ﬁ( —q(1 —%))f(Q(l P A+ Y A)“‘) (7.20)

In the Pn frame,  describes the elastic scattering of a nucleon with momentum
Q — q/2 by a target nucleon of momentum — Q/A4 + q/2, with the final momenta
being given by Q + ¢/2 and — Q/A — q/2, respectively. This is referred to as
Breit kinematics (see Fig. 7.3). Note that for k = k', Q-q equals zero, so that the
energies are equal before and after the collison. Moreover, the effective kinetic
energy in the laboratory frame when k =k’ is given nonrelativistically by

1 1)\?
TEO = —| 02 1+= ] +¢? 7.21
lab 2m[Q ( A) q ] (7.21)

In words, the two-body scattering occurs with the Breit momenta and with the
effective energy given by (7.21) when the scattering is on the energy shell. This
effective energy varies with the angle of scattering.

To extrapolate V() off the energy shell (k' # k),  in (7.20) is replaced by #(q)
evaluated at the effective laboratory energy given by (7.21), which varies with
momentum transfer g. Tables of f(q) are given by McNeil, Ray, and Wallace
(83). The resulting potential is nonlocal, taking into account to some extent the

nonlocality of the two-body transition matrix. However, as is evident from the
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Initial state Final state
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FIG. 7.3. Two vectors representing the momenta of the incident nucleon, (Q — 1q), and
the target nucleon, (—(1/4)Q + %q) maintain the angle between them and their
‘magnitudes after scattering. Scattering results in a rigid votation of the two vectors.

interpretation of (7.20) for V'{}}, the momentum of the nucleons in the nucleus

is neglected. An evaluation of the consequences of this treatment of off-shell
effects has been investigated by Picklesimer, Tandy, Thaler, and Wolfe (84).
Significant effects are obtained for nucleon projectiles energies below 300 MeV.

Note. The relativistic generalization of (7.21) is

N
T =~ — 2mc?

lab 2mc

where

1 2

s=(E,+ E,)* — h2c2Q2(1 - —)

2 2.2 2 2 2.2

2 _ q°  mc _ Q q* m*c
Ep—-hZCZ(QZ+4+h2 ) E:—h2C2[<A) +Z+ h2 ]

8. AN EXAMPLE: PROTON-NUCLEUS SCATTERING

We conclude this chapter with a brief description of the application of multiple
scattering theory to the scattering of high-energy protons by spin-zero nuclei.
The objective will be to provide a qualitative understanding rather than a
definitive comparison of experiment with theory. For thorough discussions the
reader should consult the papers by Chaumeaux, Layly, and Schaeffer (78) and
Ray (79) (see also Chapter IX).
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The starting point is the nucleon-nucleon amplitude for the scattering of
the incident proton by the ith nucleon of the target nucleus, f. In the
nucleon—nucleon center-of-mass frame f;, has the Wolfenstein form:

flO(kcm’ k/ ) = A; + Bgco"'i + C:‘(GO + 6[).(qcm X Qcm)
+ D66 Qu) (6" Qo) + E(60* Qo) (61 Qerm) (8.1)

The variable k_ is the incident momentum of the proton in the two-nucleon
center-of-mass frame, and k., is the final momentum. In addition,

= l(cm - k::m Qcm = %(kcm + k(cm) (82)

The vector Qcm is a unit vector in the direction of Q.. The coefficients A4;, and
so on, in (8.1) are scalar functions of k., and k., that is, functions of kZ_ = k2,
and k.,*k_ . They depend on isospin as follows:

AI = A}+ + to'TiAl_
so that
Ay, =<{pn|A'lpn)=A —A_ A, =A +A_ (8.3)
The reader should verify that (8.1) is the most general form, depending at most
bilinearly on gq., and Q., which is rotationally, time-reversal, and
space-reflection invariant. (Note that under time reversal k - —k'.)

To use (7.16) to obtain the value of t in the nucleon—target nucleus frame,
we must transform k_, and k,_ to the projectile—nucleus frame:

k
q=k'—k}=qcm Q___%(k"'k():k—Qcm

- 1
(qcm X Qcm) = ;(q X Q)

The second of these equations is valid at small angles (k' ~ k) only. Finally,
using (7.16), one finds that
(Epn(k, k) ]i0 = 4; + Bi6o 06, + Ci(o, +6))"(q X Q)
+ D{60°Q)(0:°Q) + E{(6,°q)(5:°q) 84
where
l L v k
A;= (EL) =n(E,) — B; Ci=n(E)

. p i G
em (8.5)

cm

ky
D;=n(E))—=.D, E;=nE) “E,
= L)kcmkz i n( L)

cm

Cm
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where n(E;) is obtained from (7.16):

he® 1+ [24/(A% + DI(Eymc?)

(8.6)
E, 1+4[A)A?+ 1D)](E/mc® + mc*/E))

nE) = —

The experimental values of the coefficients in (8.1) are fitted using a Gaussian
form: for example,

! —appq?
A, = A,,(0)e"*rrd

where 47 (0) and «,, are complex functions of the energy.

An example of such a fit [Wallace and Alexander (80)] of the nucleon—nucleon
amplitudes is given in Table 8.1 for the incident proton momentum in the
laboratory frame of 1.7 GeV/c (kinetic energy 1 GeV). At that time, 1980, the
only well-known proton—neutron amplitude is 4/, . In the p—p case the B, .D’ .
and E, amplitudes are poorly known. Because of these uncertainties, it has
been the practice in applications to multiple scattering to neglect the B’, D',
and E’ terms in (8.1) and to fit the nucleon—nucleon data with the A" and C’
coefficients only. Note that the C;,, term is not determined from nucleon-nucleon
scattering but by elastic proton scattering from “He.

Focusing on the contributions of the A’ term, one should bear in mind that
p(q) varies much more rapidly than #(q), so that over a considerable range the
optical potential is given by #(0)p(q). To illustrate, take p(q) to be a Gaussian

pla) =R
where R is the root-mean-square radius of the nucleus, which we shall take as
roughly equal to the nuclear radius. Then the quantity to be compared with
a,, Of 0, is R*/6h*c* ~ 64%/*(GeV/hc)~ 2 The latter is far greater than «,, or
a,, for even light nuclei [see discussion in deShalit and Feshbach (74, 109)]. A
second feature originates in the large imaginary component of A’ terms. This
has the consequence that the central part, V,, of the optical potential is highly

TABLE 8.1

A, (0)=(— 1126 +6.76Ti)(GeV/hc) ™' a,, = (5.08 + 0.63i)
A7 (0)=(— 1.695 + 5.628)(GeV/he) ™t a,,=(2.93+0.0)

B, (0)=(—1431-0320)(GeV/he) ™' B,,=(5.84 + 7.44i)
C, (0)= (4349 +7.559i)(GeV/c) ~? Vop = (3.91 + 0.596i) x (GeV/hc) 2
C(0) =(—2.355 — 1.654i)(GeV/c) 2 ¥pm = (4.00 — 2.80i)
D', (0)=(070 + 1.140)(GeV/c) ! 8pp = (494 — 7.41J)

E (0)=(1.61.191— 1.390i)(GeV/e)~? epp=(15.6 + 1.12i)
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FIG. 8.1. Multiple scattering optical potential for the elastic scattering of 1-GeV protons
by “He (central potential). [From Parmentola and Feshbach (82).]

absorptive. This is illustrated in Fig. 8.1, which gives the optical potential for
1-GeV protons in “He. We observe that the real part of V, is weak and repulsive
while the imaginary part is relatively large. As a consequence, the corresponding
angular distribution exhibits the oscillations characteristic of Fraunhofer
diffraction [ f ~ J,(2kR sin(8/2))2kR sin(68/2), Eq.(5.25b)] of the incident wave
by an absorbing sphere (see Fig. 8.2). The positions of the minima of these
oscillations depend only on the radius of the sphere, in the case of a sphere
with a well-defined sharp radius. In the more realistic case, p(r) will involve a
radius parameter which will then determine the positions of the minima.
Moreover, these are stable against the addition of spin-orbit contributions to
the optical potential originating in the C’ term of (8.1), of correlation effects,
or of Coulomb terms, as demonstrated in Fig. 8.3. Chaumeaux et al. point out
that the nucleon—nucleon amplitude can be changed by an overall phase which
can be a function of g* without disturbing the fit to experiment. Such a change
will, however, have an effect on the multiple scattering since the phases of the
scattering amplitudes emanating from different nucleons will be modified,
thereby changing the way in which they interfere (see Fig. 8.4). Note again
the stability of the position of the minima.

On the other hand, a change in the density distribution has a noticeable
effect, as can be seen in Fig. 8.5, where the impact of changing the neutron
density is illustrated.
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From this discussion it should be clear that the scattering of protons in the
range 1 GeV provides a method for the determination of the neutron density
within nuclei. The proton density is taken from high-energy electron scattering
after removal of the finite proton charge radius in order to obtain the point
proton density. Some of the results thus obtained by Ray (79) (which include
important consideration of additional electromagnetic effects of which the
interested reader should be aware) are given in Table 8.2.

The uncertainty in the Ar,, (= {r2>? —(r2>?)is +0.05fm. Ar,, is for a
given nucleus, while Ar,,. is evaluated for two isotopes with differing neutron
number. Examples of the deduced neutron density is shown in Fig. 8.6 for the
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FIG. 8.2. (a) Comparison of experimental angular distribution for the elastic scattering
of 1.04-GeV protons by 2°°Pb with the predictions employing the Rayleigh-Lax potential
with and without spin-orbit (s.0.) terms. The density-dependent Hartree—Fock densities
are used. [From Bordy and Feshbach (77).] (b)) Comparison of the angular distribution
for the elastic scattering of protons by 60, 4°Ca, 38Ni, ®°Ni, ®2Ni, *Ni, °°Zr, and
208ph with predictions employing the Rayleigh-Lax potentials. The Hartree—Fock-
Bogoliubov densities are used. [From Chaumeaux, Layly, and Schaeffer (78).]
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FIG. 8.4. Change of the cross section when the nucleon—nucleon amplitude is multiplied
by a phase factor e’ for different values of . [From (Chaumeaux, Layly, and Schaefler

(78).]

Ni isotopes. From Table 8.2 we see reasonable agreement with Negele’s
density-dependent Hartree—Fock calculation, an agreement that is also present
in Fig. 8.6. The outstanding major disagreement is in the value of Ar,,. for the
pair *8Ca and *°Ca.

Both Chaumeaux et al. and Ray take correlations into account. According
to both authors (see Appendix B at the end of this chapter), the effects are
appreciable at the larger angles. However, they are of the same order as effects
arising in the uncertainties in the input data and small electromagnetic effects
involving the form factor of the neutron. The effect of spin-dependent
correlations, including those arising from B’, C', D', and E’ terms, on elastic
scattering have been investigated by Lambert and Feshbach (73) and Parmentola
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FIG. 8.5. Effect of changing the neutron density distribution. [From Boridy and
Feshbach (77).]

TABLE 8.2

(r2y1 <r;>1/2 (riyte DDHF
Nucleus (fm) (fm) (fm) Ar,, Ar,, Ar,, Ar,,
40Ca 3.491 3.392 3.482 0.10 —0.05
48Ca 3.625 3.396 3.470 0.23 0.13 £ 0.04 0.19 026
*8Ni 3.700 3.686 3.7712 0.01 0.00
S4Ni 3912 3.745 3.845 0.17 0.21 +0.02 0.13 0.18
1168n 4.692 4.546 4619 0.15 0.12
1248n 4.851 4.599 4.670 0.25 0.16 +0.02 021 013

208pp 5.611 5453 5.503 0.16 0.20
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FIG. 8.6. Point neutron density distributions for *%°*Ni deduced from second-order
KMT analysis (shaded bands) and predicted by the density matrix expansion (DME)
approach to Hartree—Fock theory (dashed curves). The difference between the **Ni- and
38Ni-deduced neutron densities is compared with the DME prediction in the lower half
of the figure. [From Ray (79).]



142 MULTIPLE SCATTERING

and Feshbach (82) for a *He target. These authors find that generally the
influence of the B, D, and E terms is small if the nucleon—-nucleon parameters
of Table 8.1 are used. Chaumeaux et al. ¢xamine the spin-dependent effects of
B, C, and E (D is not included) in inelastic scattering, pointing out quite correctly
the sensitivity of the angular distribution and of the polarization to these
coeflicients. The results for these quantities, using coefficients A, B, C, and E
quite similar to those given in Table 8.1, are less than satisfactory. But
adjustments within the uncertainties can improve comparison with experiment.

APPENDIX A

In this section we apply the optimal approximation method of Gurvitz, Dedonder,
and Amado (79) to projectile-nucleus scattering. We focus on the relationship
between t; and 1; as given in (4.19). In the course of that derivation ay( = E — K,)
of (4.4) is replaced by a(=E — K, — Hy), as in (4.18). The method of Gurvitz
et al. allows for an adjustment of the values of E so as to reduce the consequent
error. Let

&OEG_KU

and

f; (A.1)
The equation for 7;, (4.7), remains unchanged:
o

=0 + 0, —T; 47
o

The dependence of both #; and t; on v; can be used to eliminate v;, producing
a relation between f; and 7;;

o 1
=0 +1 ( - _)r‘- (A2)
a4 Ao

The optimal approximation will be applied to an auxiliary quantity 7 defined by
- (1 1
T:= tl+ti<4—)’r: (A.3]
in terms of which

1 13

=t 4T 1 (A4)
o
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To second order,

I | 1
=L+t —(G—0)-T1
Qo
S 1 _
~h+— (@ —a)—¢; (A.5)
%o ao
~ f; + AT

We shall now show that it is possible to choose &, (by choosing ¢) in a manner
independent of the target nucleus, so that (A.1) describes two-body scattering
and so that

U =F (A.6)

and therefore in agreement with (4.26), with ¢; replaced by ;.

To demonstrate (A.6), consider the matrix element of the second term in
(A.5) (= At)) with respect to the target nucleus and the incident and emergent
projectile. Let the latter have momenta p and p’, respectively, while the target
nucleus wave function in the momentum representation is (P, — p/A4,
P, —p/A,...), where ZP; = P is the total momentum of the projectile plus target.
The propagator (1/d,) is taken to be diagonal in momentum space:

_ o —p)o(P —P)o(P;, —P)--
e —p*/2u

(A7)

1
Uprr.)

Qo

<p”P’1’P'2

As a consequence, f; of (A.1) is diagonal in the target nucleon momenta, as v;
can only change the projectile momenta.

(P, PP [E|p, Py, Py = (T 6(P) — P)O(P, —Py) - (AB)

We can now proceed to evaluate the matrix element of At; for elastic scattering;
the incident projectile has a momentum p, and the target nucleus P —p. One
obtains

(P Wol AT, Yo

P P
= |dp,dp, |dP, |dP, -y} P, ==, P, —~--.
Jinns fap, [avicun(p=Fr )

x {p'|EIpy ) <p1aP'1,P’za---|fio_a|Pz,P1’P2;-~>

& — pi/2p

N 1 '
x <Pz|ﬁ|l’>m‘/’o(l)1—%’Pz—%’---) (A.9)
2— D3
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Evaluating the matrix element of &, — a gives
(P, PLP,, . |dg—a|ps, P, Py, D

2 2 1 2
= d(p, —Pz){[ﬁl—g;—(E—g;_zzm(p;_Zl) ):I

x 6(P, —P,)o(P, —Py)--- + Y V(P, —P,)5(P, —P,)--
X 5(P,. 1 n 1)5(Pn+1 n+ 1)5(Pn+2 Pn+2)“'} (A.IO)

where the assumption has been made that the nucleons in the target nucleus
move in a mean field described by a local potential V. Using the Schrodinger
equation satisfied by yo(P, — p/A,...), the integration over the P, and p, can
be performed to yield

<P YolAT P Yo

Jdplfdp'fdp' .po(P' P p’ ><P|f|P\>
ol B {("’ "‘) ~(m-5) ]
81"171/2# 2m A A

) (A1)

The quantity in the braces becomes (2/A4)(p — p,)- P, + (1/4%)(p> — p?). At this
point the Breit coordinates are introduced:

P

1
x <p1|t|p> -y Yo (P;—,P;—

L - |

A

g=p—p K=3p+p) Kq=0, (p*+p)=K'+4" (A1)
yielding
2p—p)'P,=2(K+9-p,)P,
=2(K+79—p.)' (P, —K) + 2(K + 3 — p,)*(K)
By using time-reversal invariance of the integrand of (A.11) it can be shown

that the first term of the equation above integrates to zero, so that no dependence
on the coordinates P, remains. As a consequence, the term in brackets in (A.11)

becomes

e _.E_q_z.{_u
! 8mA  2mA
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It follows from (A.11) that
{PYolATpYo) =0

if one chooses

q® (p. —K?
8mA 2mA

e =E+ (A13)

where E = p?/2u. This choice of ¢, is independent of the target nucleon variables
P,, so that as implied by (A.7) and (A.8), f; is the transition amplitude for the
scattering following from the Schrédinger equation:

2 2 _KZ
[p+q (P, —K)?

2
P
P - o1 —0
2 8mA 2mA 2,1}’5(” )

The effective energy is obtained by dropping v from this equation. One can
then rewrite the term in brackets as follows:

2 2 KZ 1/1 1 2
R R
2u 8mA 2mA+u) 2\p mA mA+u

so that the effective energy is

LZ+ q2 B KZ
2u 8mA  2(mA+ p)

Eeff = (A-14)

and the effective momentum operator is p, — [u/(mA + u)]K, so that the
projectile momentum p is replaced in the Schrédinger equation by
P—L[w/(mA+ pwlK

The development in Section 4 uses ¢; rather than 7. In first order these two
quantities will be approximately equal if the last two terms in (A.14) are small
compared to the first. These ratios are on the order of u/mA, which is appreciable
only for the lightest nuclei.

The optimal approximation reduces the second-order term to zero through
the choice of ¢, given by (A.13). The question remains as to whether higher-order
terms are significant. The third-order term is discussed by Gurvitz, Dedonder,
and Amado (79), who conclude that it is not if ¢ varies slowly with the energy.

APPENDIX B CORRELATIONS

The second-order optical model potential V{?) given by (4.41) is nonlocal, with
opt

the consequence that its effect is difficult to evaluate analytically or even
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numerically. One approximate method derived by Feshbach, Gal, and Hiifner
(71) [see also Feshbach (81) as well as papers written with Lambert (73), Ullo
(74), and Parmentola (82)] replaces the Schrédinger equation containing ij,:
with a pair of coupled equations. This procedure is in any event necessary if
the spin-dependent terms are to be taken into account accurately as described
in the text (see p. 100). In this section further approximations valid at sufficiently
high projectile energies and small momentum transfers are made which yield
a local form for Vf,i)( akin to that obtained by Chaumeaux, Layly, and Schaeffer
(78).
We repeat (4.41) with {r|l/a|r') = G(r,r'):

J‘ Vo O () dr' = (4 — 1)? J‘dr'G(rl, r')jjdrldrzt(r — 1 )Ur’ — 1) C(ry, ra)Y(r)
(B.1)

We now assume that
C(ry,15) = p(ry)p(r)y(r; —ry) (B.2)

Second, we note that t(r —r,) is sharply peaked at r ~r,. Assuming that p(r)
varies slowly over that peak, little error is made if p(r()t{(r —r,) is replaced by
p(r)t(r —r,). Equation (B.1) then becomes

JVﬁil(r, )(r)dr’ = (A — 1)p(r) Jdr'G(n F)p(r)F(r — r')y(r) (B3)
where

Fr—r)= Jdn J‘drzt(r — )t —ry)y(r, —ry) (B.4)

Note that one can show that the integral on the right-hand side of this equation
is a function of (r —r’). Since the integrands in (B.4) consist of three sharply
peaked functions, F itself is sharply peaked at r =r/, so that p(r') in (B.3) can
be replaced by p(r):

J.Vf,i’!(r, r)Y(r)dr = (A — 1)?p3(r) Jdr’G(r, r)F(r — r)y(r) (B.5)

This result could also have been obtained by using the local density
approximation for second-order multiple scattering in nuclear matter. In that
case it is exact, and in the case of a finite nucleus, G(r,r’) is to a good
approximation G(r —r’), so that

JVL%,’,(:‘ — )W (r)dr =(A4 — 1)2p4r) fdr’G(r —)F(@r —rW(r)
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The integral on the left-hand side can now be reduced to a local form using
the Perey—Saxon (64) approximation, which is discussed in detail in Chapter V
(p. 000). In the present case

Jdr’ Gr—r)Fr—rW()= stG(s)F SW(r—s)
= stG(s)F(s)e_s'V'w(r)

so that V{%\(r,r’) can be replaced by

V=4 l)zpz'[dsG(S)F(S)es'V' (B.6)
The Perey—-Saxon approximation exploits the fact that the dominant component
of ¥(r) is the plane wave e’*". Then

V(R = (A —1)*p*(r) f"sG(s)Hs)e-"“s (B7)

In this approximation the V{7 dependence on r is given by p?, in comparison
with V1) whose spatial dependence is determined by p(r). An improved
approximation for ¥®, which may be needed when the nuclear surface plays
a significant role, can be obtained by Taylor expansion of p(r;) and p(r,); for
example, p(r;) would be placed equal to p(r)+ (r; —r)-Vp(r)+ ---. Such
corrections may be of importance in dealing with inelastic scattering.

Evaluation of the integral in (B.7) can be simplified by using the eikonal
approximation for G. In zeroth order we neglect the excitation energy £ and
the potential energy term V)

i .
where from (7.2),
1 2 2.4 2
e L& mme 4 e EEme (B9)
h2c* 1+ &/Amc? 1+ &/Amc?

The energy & is the energy of the system, including the rest-mass energy of the
projectile but not that of the target nucleus. The function 6({) is the unit function

)1 (>0
O(C)_{o (<0
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We must still fix the { direction. This we take to be the direction of k. One
now obtains

io
T oK%k

stG(S)F (s)e™* = — Jdl F(0,00(0) = Jm d{F(0,0)

h2 2k

where it has been assumed, as is usually the case, that F(0,{) is even in (.
Recalling the definition of F, (B.4), the integral of F(0,{) can be expressed in
terms of the Fourier transforms of ¢t and y:

2
JF(O, Hdl = (217[) .[dquf(ql’ 0)i( - q.,0)7(q.,0) (B.10)

We parameterize this result by
JF(O, ydl = — (#0))*! (B.11)

where [ is a length. The final result for V) is

Vo= zk [(4 = Dp(0)]* (B.12)

This potential is proportional to the square of V), (4.40), when the short-range

approximation is made for #r —r;). A rough estimate for / is obtained by
assuming the Gaussian form (see Table 8.1) for #(q), #(0)e ™ #*/2*, and for y(r):

rZ
yr) = (F— l)e"’”'3 (B.13)

c

the form used by Chaumeaux et al. This choice for y(r) satisfies the condition
that its volume integral is zero, satisfying (2.21) when p can be taken to be a
constant. Finally, C(r) approaches —1 as r goes to zero. With these choices [
becomes

_/2m : B.14
=3 "+ 22 (B.19

As pointed out by Feshbach Gal, and Hiifner (71), ! is reduced because of the
presence of the range of the projectile—nucleon potential given by f§ in (B.14).
Inserting typical values for r, ( ~0.7fm), % = 0.4 fm?, one finds that / = 0.084
and that the magmtude of V‘f,’ is small compared to V‘” However, because
of the dependence of p? rather than p, there is a greater proportion of high-
momentum components which can affect the cross section for large momentum
transfers.
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