CHAPTER Il

FORMAL THEORY OF NUCLEAR
REACTIONS

1. INTRODUCTION

A formal theory of nuclear reactions should provide a framework within which
it is possible to describe the wide range of reaction mechanisms exhibited in
nuclear collisions. It should develop, directly from the nuclear Hamiltonian, the
amplitude for the rapid processes, such as the single-step direct reactions as
well as for the relatively slow compound nuclear resonance reactions. It should
include the intermediate structure doorway state reactions and go beyond to
the multistep reactions of both the direct and compound variety. It should be
possible to obtain in the high-energy limit the multiple scattering approximation
of Chapter II. Finally, it should permit the application of statistical
considerations and thus obtain the statistical theories of nuclear reactions
applicable to the various experimental situations. It should be emphasized that
the formal theory only develops a framework; a framework that provides a means
for inserting the physics of the reaction under consideration. Once this is done,
the theory should yield expressions that allow a direct interpretation of the
experimental data in terms of well-defined parameters.

As we have emphasized, reactions can be ordered according to the time delay
they involve. Time delay in a given reaction can be introduced by providing
alternative mechanisms to the direct one by means of which the system can
proceed to the exit channel of interest. Instead of the system proceeding in a
single step to the final state, it can make a transition to another channel (or
channels) and so delay the development of the final state. This possibility is
shown schematically in Fig. 1.1 for the case of elastic scattering for simplicity;
that is, it is assumed that the energy is so low that this is the only reaction that
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can occur. Following the direct route the system would never leave the entrance
channel. This route is symbolized by AF. But as is indicated by the figure, the
time-delayed routes ABCDEF can also contribute to the process. The time delay
depends on the ratio of the probability of the transition from the entrance
channel to the “other” channels, BC in the figure, to the probability that the
system proceeds immediately to the final state, symbolized by F. However, this
branching ratio is not the only parameter of importance. For example, if it were
large, not only would the transition from the entrance channel be rapid but the
transition back to the entrance channel would be equally quick. There would
be some time delay but not necessarily a substantial one. For the latter to occur,
another condition needs to be satisfied, one that inhibits the return transition.

To see what this condition is, it is necessary to decompose the other channels
into a group that connect directly with the entrance channel and the remainder,
as illustrated by Fig. 1.2. As indicated, the system can proceed to the doorway
channels, as those channels that couple directly to the entrance channel are
designated, and either proceed on to the “remaining” channels or return back
to the entrance channel. The remaining channels, by definition, do not couple
directly to the entrance channel. Thus a second important parameter is the
ratio of the probability for the transition from the doorway to the remaining
channels to the probability for the transition from the doorway back to the
entrance channels. If this ratio is large, the time delay will be large for then the
system will be trapped, spending a considerable fraction of the interaction time
oscillating between the doorway channels and the remaining channels.

This time delay can be especially long at particular energies, the resonance
energies, as can be seen from the following discussion. Suppose for a moment
that the transition probability from the doorway channels to the entrance
channel were zero. Then the system, if placed in other channels (consisting of
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the doorway and remaining channels), would be bound. Under these circum-
stances the system will oscillate between the doorway and remaining channels
indefinitely but only at certain energies, the bound-state energies, E,. Suppose
now that the transition probability to and from the entrance channel is increased
from zero. It follows that when the incident energy is correspondingly close to
the binding energies E,, a very long time delay will ensue and the system will
resonate. As this transition probability increases, the resonant energy will
increasingly depart from E,, and usually the time delay will be reduced.

In summary, resonances will occur for elastic scattering when the system,
restricted to other channels, as illustrated in Fig. 1.3, has bound states of positive
energy, E,. The resonance energies will be close! to E,. The coupling to the
entrance channel need not be small. However, if it is strong, the shift of the
resonance energy from E, will be large and the width increased, that is, the
time delay shortened.

Resonance scattering of light by atoms provides a well-known example. The
incident projectile is a photon of energy hw, the target an atom in its ground
state. This system forms the entrance channel. This channel will couple to an
excited state of the atom with excitation energy &. In the absence of the electro-
magnetic coupling by virtue of which radiation back to the ground state would
occur, this excited state is bound. When the photon energy Aw is close to e,
ho ~ ¢, a resonance in the scattering of the photon will occur in which the
incident photon is absorbed by the atom and then emitted.

This effect can also be observed in the passage of monochromatic light
through a medium made up of such atoms. If again hw ~ ¢, the index of
refraction, n, will undergo a very sharp change as a function of photon energy,
as illustrated in Fig. 1.4, the phenomenon being referred to as anomalous
dispersion.

Another example, and one that more closely approaches the nuclear case,
considers the interactions of a projectile (e.g., a neutron) and a target nucleus
in the ground state. The incident projectile moves in a field of force exerted by
the nucleus, as illustrated in Fig. 1.5a. The target nucleus shown in the same

‘If E, is near zero, the effect of coupling to the entrance channel can move the resonance energy
to negative values. The resonance is then referred to as a negative energy resonance. This concept
is useful if there is an effect of the resonance at positive energies.
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figure consists, in the independent particle model, of nucleons, indicated by the
filled circles, in the bound-state orbits. Figure 1.5a then illustrates the entrance
channel. As a consequence of the interaction between the projectile and the
target, a nucleon in the target is raised in energy while the incident projectile
loses a corresponding amount of energy. If the excitation energy of the target
is ¢ and the incident projectile energy is E, the energy of the projectile is E — &.
This situation is shown in Fig. 1.5b, where it is assumed that E — ¢ is negative.
The system is now bound in the sense that all the nucleons are individually
bound. Of course, if the excitation energy of the target were to be returned to
the projectile, it would again be unbound. But in the absense of that coupling
the system is a bound one, although the total energy E is positive. The potential
in which the projectile moves does have a bound state at — E,, indicated by
the line in the projectile half of the figure. According to the qualitative discussion
presented earlier, when E —¢ is close to — E,, or

E~e¢—E,

a resonance will occur. This example is still very far from a realistic description
of the neutron—nucleus interaction, but it does contain the essential elements.
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A detailed, albeit simple example will serve to illustrate this discussion. The
Hamiltonian of the system illustrated in Fig. 1.5 can be written

H=Hy+T+V({1E) (1.1

where r is the coordinate of the incident particle and & represents all the
independent coordinates of the nucleons in the nucleus. T is the kinetic energy
operator, V(r, &) the potential energy of the projectile relative to the target center
of mass, and H, the Hamiltonian for the target nucleus, therefore depending
only on &. Assume for simplicity that this Hamiltonian has only two eigenvalues,
0 and ¢, with the corresponding normalized wave functions Y4(&) and y,(€).
The total wave function for the system is then

1
Y= . Luo(MWof8) + u, (WY1 (5)] (1.2)

where u, and u, describe the projectile wave functions in the two channels
Fig. 1.5a and b, respectively. Inserting this expression for W in the Schrédinger
equation,

\ HY = E¥

and using the orthogonality of ¥, and ¥, yields a pair of coupled equations
for ug and u,:

u u

[E‘(T‘*‘ Voo)] 0=V01r1

r r

u u

[E—e—(T+ Vn)]f=vm—;°

where

Vi,(") = (Y| Vr, g)‘/’;>:

The integrations in these matrix elements is, as indicated, over the variables §
only. We now assume that u, and u, are spherical, that V,, is given by an
attractive square well,

\ Voo=— Vo r<a

2
Vi, =— A_h_ (r—a) A = constant ’J
2m

that
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and that

Ah?
Vor=Vio=— o o(r — a) A = constant

Hence u, and u, satisfy the differential equations

up + (k* + KQug = — Ad(r — ayu, r<a (1.3a)
w4+ (— K2+ Ad(r — a))u, = — AS(r — a)u, (1.3b)
where
2m 2m
Kzzﬁ(E—E) K(z):? 0
and
="k
hz

This selection of potentials has the merit that (1.3b) in the absence of the coupling
to the entrance channel has only one bound state at k = k; that is,

vy + [ —«k§+ Ad(r —a)]v, =0

has only one bound state solution. We leave it as an exercise for the reader to
show that k, satisfies the equation

ga=_ 24 (14)

1 _e—2xoa

The right-hand side of this equation is given by the solid curve in Fig. 1.6.
When Aa > 1, one solution of (1.4) exists at the intersection of the curve and

2Ke a
FIG. 1.6
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the dashed line. As we shall see, the resonance generated by the coupled
equations (1.3) will occur near the solution of (1.4)

As a first step we integrate (1.3a) and (1.3b) over a small range a + §. This yields

p(at) — uya”) = — Auy(a)

u(a®)—u\(a”) + Au(a) = — Aug(a)

Note that
uy =sin Kr r<a
a sinh kr r<a
u, =
o sinh kae ¥~ r>a
where

K= ./k*+K}

and « is a constant to be determined. It is now a simple matter to evaluate

_au(a™)
B uo(a)
One obtains

A%a?
[2ka/(1 — e~ 2*9] — ja

f =KacotKa+ (1.5)

As we show in the Appendix to this chapter, resonances occur when f = 0. The
second term in (1.5) is plotted in Fig. 1.7. Assuming that k « K, the first term
is a constant that we take to be positive as an example. The function f equals
zero at the intersection of the dashed line and the solid curve. The value of the
resonance energy, Eg, is Ex = ¢ — h?k%/2m. This is a resonance if Eg > 0.

The difference between ki and k, depends on the curvature of the second
term as a function of xa and the size of the first. Assuming that «z ~ Ky, one
obtains

Ko A2q?
Krad >~ Koad + —
A (1—4a+2kqoa)KacotKa

This formula demonstrates that the deviation of the x; from «k,, that is, the
deviation of the resonance energy from the energy of the bound state of channel
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u,;, grows as the strength of the coupling between the channels measured by
Aa increases.

The width of the resonance is shown in the Appendix to this chapter to be
given by

rzi (1.6)

(0f/OE)g =g

Evaluating the derivative at k, rather than at kg, to simplify the result, and
assuming Ka to be constant yields

r ZthK(z) A%a?
T mA [+ (ke — Aa](Kacot Ka)?

We see, as predicted, that the width increases (and the time delay decreases) as
the coupling strength increases.

When E differs from Eg by an energy several times I', the energy variation
of the cross section because of the energy variation of the second term on the
right-hand side of (1.5) becomes unimportant. Of course, an effect remains, and
usually the coupling to the second channel does increase the time delay.

In an actual projectile—nucleus reaction, the second channel is replaced by
many channels labeled “other” channels in Fig. 1.1. There are then many bound
states and correspondingly, many resonances, in contrast to the single bound
state and single resonance of the coupled equations (1.3). In the next section
the formalism applicable to the more complex and more realistic situation is
developed.
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2. FORMAL THEORY

The formal theory of nuclear reactions presented below relies on the concepts
presented in the preceding section. Of course, the system to which it is applied,
the compound system consisting of the projectile plus target nucleus, is much
more complex than the system discussed at the end of Section 1 for which the
target nucleus was assumed to have only two states, the ground state and one
excited state. Nevertheless, it is possible by using projection operator techniques
to rephrase the more general problem so that significant similarities to the
simpler case are developed.

What we shall do is to partition all the states of the system into two sets of
states. One set will contain the entrance channel and at least those channels
that are involved in the prompt component of the reaction amplitude, that is,
those which contribute to the direct single step as well as direct multistep
processes for the reaction under consideration. This set of channels will play a
role similar to that of ugy, of (1.2). The second set will contain all the remaining
channels (the other channels) including, necessarily, those that are bound in the
absence of coupling to the first set. They play a role similar to that of u, yr, of (1.2).

These conditions do not constitute a precise definition of the partition. As
we shall see, this lack of precision is useful since it allows the insertion of the
pertinent physics of the problem into its analytical formulation. One illustration
of such a partition would be helpful. Suppose that the physical process is the
elastic and inelastic scattering of a pion by a nucleus (to avoid, in this illustration,
the complications of the Pauli principle that would occur if the incident particle
were a proton or, for that matter, any nuclear projectile). The appropriate set
of states will include the entrance channel uy(r)i/,(E) as well as the inelastic
states u,(r)y,(§), where y, are the states of the target nucleus, ¥, being the
ground state, i, the first excited state, and so on; & are the coordinates, including
spin and isospin of the nucleons making up the target. The functions u,(r) give
the wave functions of the pion, where r is the pion coordinate relative to the
center of mass of the target. If the energy of the projectile is E and the excitation
energy corresponding to ¥, is ¢,, the energy associated with the pion is E — ¢,
If this energy is positive, the asymptotic form of the wave function u,, n #0,
will be of the form of an outgoing wave e**/r, where k, = [2m/h?*)(E —¢,)]"/%
Those channels for which k,, is real, that is, (E — ¢,) > 0, are called open channels.
If E—¢, is less than zero, k, is pure imaginary and the asymptotic form of u,
is proportional to e®*/r = e~ !¥I"/r. These channels are referred to as closed
channels.

Once the representation of the Hilbert space to be used is described, the next
task is partition into the prompt (the first set) and delaying (the second set)
components. One solution is to include all the open channels in the first set
and all the closed channels in the second set. This is the partition most commonly
used at relatively low projectile energies, since then the number of open channels
will be small. However, even in this case it sometimes proves advantageous to
include some of the closed channels in the prompt space, or vice versa, some
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of the open channels in the space of the delaying channels. This option is always
available.

At high projectile energies, the delaying channels become unimportant for
the most part. All important channels are prompt (although there can be delayed
after-effects) and the partition used in Chapter II selects for the first set just
those channels that are of immediate interest (e.g., the entrance channel if elastic
scattering is being studied).

The selection of the set u,(r)y,(§) is not just a matter of convenience. There
is an implied statement in making that choice regarding the reaction mechanism.
For example, it is implicitly asserted that particle transfer channels* are not
important for elastic or inelastic scattering. This is, in fact, not always the case,
for it can occur that by transferring a particle or cluster of particles from the
projectile to the target, it is possible at some energies easily to excite a “giant”
resonance of the new system formed in this way. Inelastic excitation or elastic
scattering of the target would follow if inverse particle transfer back to the
projectile is made. In the case of pion—nucleus collision, the list given above of
the possible channels in fact omitted one significant channel that is formed
when the pion is absorbed by the target nucleon, the A.

These examples stress the flexibility of the partition and the role of physical
intuition, first, in selecting the complete set that is to be partitioned and then,
in choosing the partition.

Since the nature of the representation of the Hilbert space of the problem
will vary considerably, it will be useful to develop a general formalism. Toward
this end let us assume that the Hilbert space of the problem is partitioned as
described above into two orthogonal components, 2 and 2. The first of these,
2, will contain the prompt channels; the other, 2, the closed channels, the exact
nature of the partition depending on the physics of the reaction being considered,
as described above. The projection operators P and Q project onto the subspace
2 and 2, respectively, and satisfy

P=pP' Q=0
PP=P Q=0
P+Q=1

(2.1)

The state vector of the system, W, satisfies the Schrédinger equation
(E-H)¥=0 (22)

We can now determine the equation satisfied by the prompt component of P,
PY, and the time-delaying component, Q'F. Writing

¥ = PY¥Y + Q¥
and multiplying (2.2) from the left by P and Q yields
(E— Hpp)(P¥) = H,p Q) 23)
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and
(E — Hyo)(QW) = H,p(PY) 24
where
H,,=PHP, Hp,=PHQ, etc
If we write

H=Hy+¥V

where H, is the sum of the Hamiltonians for the internal degrees of freedom
of the projectile and target and the kinetic energy operator for their relative
motion. It is usual to restrict the class of projection operators to those for which

H V,

PQ H

=V,

PQ = opP opP

The analogy of (2.3) and (2.4) with (1.3) of Section 1 is rather clear. Whereas
in the latter case 2 and 2 contain only one component (1/r)ug¥, and (1/r)u ¥,
respectively, the more general case of (2.3) and (2.4) will contain many
components.

This simple partition can be used to obtain some quite general results. We
can formally solve (2.4) as follows:

1

TEHO_H
E'™ —H,,

H,,P¥Y (2.5)

Q¥

QrP

This expression includes the boundary condition that there is no incident wave
in the subspace 2. The in in E‘Y) = E +in, n—>0", is included in case some of
the open channels are in 2. Substituting (2.5) in (2.3) yields

(E—H_)P¥ =0 (2.6)

where

1

PQ E(+)_HQQ HQP

Hye=Hpp+H 2.7)

The first term on the right-hand side, H ,p, is associated with the prompt process.
The second term describes the time-delaying effect of coupling 2 space with 2,
propagation in 2 as given by 1/(E‘*) — H,,) and then reemission into £. The
Schrédinger equation (2.6) iterates this process.

Problem. Referring to the discussion in deShalit and Feshbach (74, p. 648),
show that # ., where

H = P# P
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satisfies the integral equation

1

Wesee that H , is energy dependent, complex, and nonlocal. These properties
are consequences of the presence of the propagator 1/(E™ — H,,). Because of
this, there is a dispersion-type relationship between the real and imaginary parts
of # . To derive this result most simply, we express H  — Hpp in terms of
the eigenstates of the operator H,,. This operator will generally have bound
eigenstates whose eigenvalues form a discrete spectrum, and unbound eigenstates
whose eigenvalues form a continuous spectrum. Hence

H,, @, =&, (discrete)
2.9)
H,,®(&,0) = £O(E, o)

where o is an index which together with & specifies the continuum state.
These state vectors are assumed to be normalized and therefore form an
orthonormal set:
(D ®y > =9, (O P(&,0)> =0
(O(&,0)|D(&,0)) = (8" — &) — &)
Then

Hy—H,p=Y q’sxq)HQ" J JdgHPa“’(g’};)+>)<_‘1’f’“)HoP (2.10)

s

Using the result

1 P
E_g m—mé(E &)

where 2 indicates that the principal value integration should be taken and
O0(E — &) is the Dirac delta function, we obtain

H,, ®,>{®d,H
Re(Heff_HPP)=Z' e < oF +

d&
s E_é. P JH J.daHPQCI)(éD, o) >{ P&, )H

(2.11q)

while

Im(H, — Hpp)= —7 Jda H,po®(&,2)> {D(&,0)H yp (2.11b)
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Note that this operator is negative definite, as it must be to represent a decrease
in flux in the prompt channels because of the presence of open channels in 2
space. Substituting (2.11b) into (2.11a) yields

po @) {(PH,p
ReHefszPP+Z

e JlmHe“ @ (@212

where it is assumed that H,, is real, as is usually the case.

Problem. Show that (2.12) can also be written

0@, (DY,
Re V, V,,,,+Z E><€

J Im V(&) (2.13)
This result is the nuclear analog of the Kronig—Kramers relation between the
real and imaginary parts of the index of refraction for light (see Fig. 1.4)
propagating through an infinite medium. For an infinite nuclear medium there
are no significant closed channels at low excitation energies, so that the second
term on the right-hand side of (2.13) is essentially zero. However, at energies
that permit the excitation of isobars, this term could be appreciable.

We turn next to resonances. Recall from the simple example of the preceding
section [see (1.3) et seq.] that resonances are associated with the bound states
of the time-delaying component of the wave function. In the present context,
this is Q. The bound states are now given by @, with energies &,. As one can
see from (2.10) for H g, rapid energy dependence of H ., will occur near &,
and one would predict that rapid energy dependence and therefore a long time
delay will occur for E ~&. For E near &, H_, can be written

+ HPQ(I)S> <(I)SHQP

HeffzﬁPP E_¢&

(2.14)

where all the remaining terms in the expansion (2.10) have been grouped together

to form H,,, which will be assumed to have a slow energy dependence near

é,. We shall see what this means after examining its consequences. Equation

(2.14) is equivalent to the partition in which 2 contains only one state ®,.
The Schrodinger equation (2.6) becomes

Hpy®,>(®,|HypP¥)

(E — Hpp)(PP) = E_é

Its formal solution is given by

1 HPQ(I)S><(I)S|HQPP\P>
E—H,, E—&,

PY¥ ="+ (2.15)
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where x{ ", the distorted incident wave, is the solution of
(+) _
(E—Hp )"

satisfying the outgoing wave boundary condition. The J matrix giving the
transition amplitude is

g‘“’) + <X}—)|HPQ¢S><¢3|HQPP\P>

T
Ii E—&,

(2.16)

where F‘f’:’ is the prompt direct amplitude associated with the first term of
(2.15), and x'7) is the solution

(E HPP)/(‘ * _— 0

describing the final amplitude satisfying incoming wave boundary conditions.
Returning to (2.15), multiply both sides by (®H ,p, yielding

Q| W@ > Q5| Hop P )

(D, HopPP> = (D Hppr{ ) + 2 E—é"

where

1
WQQEHQP m; HI’Q (217)
Solving for (@, H,,P'¥), one obtains

(E = E)DHppri ")
E— (fs - <d)s‘ WQQ(Ds>

<¢s|HQPPW> =

Inserting this result in (2.16) yields

i G g
Ji E—(a@s—<(DS|WQQd)S>

(2.18)

This is a typical resonance formula. As expected, the resonance occurs near &,.
There is an energy shift and a width that are given by the expectation value of
W .
Q0

(D[ Wpo®,> = A(E) — 3iT(E) (2.19)
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so that

" <x,)|HpQ<D><<D|HQPxE”>
s E—E, +(i/2)T,

(2.20)

Note that E; and I, are functions of E. The statement that E is the resonance
energy assumes that their energy dependence is weak. Inserting W,,, from (2.17)
into (2.19) provides more explicit expressions for A; and T':

1
———H,,®,
QPE _HPP e >

P , _
e —— H,,® > — i { Dy HypO(E — Hpp)Hpy®,

(D, W,yo®,> = <

=<¢

Comparing with (2.19), we see that

H

T, =2n{ D H,p,0(E — Hpp)H p @, (2.21)

Introducing a complete set of states x'*! of the Hamiltonian H ,, at the energy
E, one obtains

—277~'Z|<<D |Hopr ")) |? = Y T (E) (2.22)

The width I is thus the sum of partial widths I corresponding to the decay
of the state @, into various possible channels with the same value of the energy
E. The numerator of the resonance term in (2.20) is obviously related to these
partial widths:

: |
<®S|HQPXE'H>=€"§‘ “si o gioi Isi

2n \F

id
& = e‘ fgs.f

(H, ®, =479 223
oy H pg®s > = o \/2n (2.23)

where J; gives the phase of x! ™, that is,
2t = e F; (2.24)

where F; is real. Since ®, is a bound-state wave function, it can be taken as
real. These results, (2.22) and (2.23), upon insertion into (2.20), yield the familiar
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Breit—- Wigner formula?

L 1 ieiesy 995 (2.25)

T
2n E—E,+1iir,

fi

Further properties of I', will be discussed later (see p. 242).

The subscript s represents all the quantum numbers required to specify the
bound state ®,. These will certainly include its total angular momentum J and
its parity Il. The resonance therefore contributes to a particular partial wave,
while the prompt, direct amplitude 77 will generally involve several partial
waves.

Problem. Show that

1
A =—2P

JdE’FS(E’)
2n

E—-F
Show that

LL=2m) G I(H — HppP 17

This one resonance + direct amplitude description is exact. It is not, however,
useful if the direct amplitude .7 (f’? and therefore E(E) and I'y(E) vary rapidly
with energy E near E,. Generally, if the resonances arising from the bound
states at & ar¢ well separated, the direct amplitude is observed to vary slowly
with energy. However, if the separation in energy D between neighboring &, is
on the order or less than I',, it would be necessary to remove a group of
resonances in, say, an energy interval d, before the direct amplitude would
become relatively constant over the energy region in the center of d. The
resonances are then said to overlap. The formalism developed above can readily

{Equation (2.24) assumes that x{*’ and X}_' are eigenstates of 5,, the § matrix associated with }7",
with eigenvalues e?% and e??/, respectively. However, if they are solutions of coupled equations,
that is, if the prompt space contains more than one channel, as will occur if direct inelastic or
transfer reactions are energetically allowed, that will no longer be the case. It is then necessary
to introduce the real orthogonal transformation M, , which connects an eigenfunction of §,,, %,
with eigenvalues e?42, with an open-channel distorted plane wave such as x{*'. This transformation
is obtained in the course of solving the prompt problem. Then (2.25) is replaced by

gsxgsﬁ
M, 2.26
2n E—E,+§x’l"s:| b (2:26)

pl(BatAg)

1 .
7, =ZM”[%(1 G P

where g, gives the magnitude of {®,|H,,,>- Results (2.26) holds in the DWA approximation, or
when only one channel is open. We shall refer to the latter as the single-channel case.
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be extended to include this case [Feshbach (58,62)]. However, it will be
convenient and instructive to use a different but equivalent approach.

We begin with the general expression that follows from (2.3) and the
two-potential theorem:

'7'fi = g.(fl? + <X_(f_)|HPQQlPi> 2.27)
where we have inserted the subscript i on 'Y to indicate that it is the ‘¥ developed

by the incident wave x!*). The exact expression for Q¥; can be obtained as
follows: Solve (2.3) for P¥;:

l 4
gy HraQ¥ .27)
. PP

PY¥, ="+
Substituting this result into (2.4) yields the inhomogeneous equation

(E— HQQ - WQQ)QTi = HQPX5'+) (2:28)

where W, is now given by

1
WQQ = HQPmHPQ (229)
Solving (2.28), one obtains
1
oY, = —HQPXE“" (2.30)
E—Hy,— Wy
so that 7, becomes
1
T .=F"f’+<x“) H ——H x(.+)> (2.30)
fi fi f PQ QrPAi
E—Hyp— Wy

The second term gives explicitly the time-delayed component that is generated
by the coupling of the £ space to the 2 space. Its explicit energy dependence,
as given by the propagator [1/(E — H,, — W),)], can be rapid when E is near
a pole of the propagator.

One can recover the result of (2.18) if 2 space contains only one state @,
satisfying (2.9). Then

v ol o
E_HQQ—WQQ E_HQQ_WQQ

1
=¢s> 1 <¢s=¢s> <®s
E—{®,|(H g+ Wpo)®,) E—&,—A+4iT,
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where (2.19) has been used. Upon inserting this last result into (2.30’). one again
obtains the Breit—Wigner formula, (2.20).

The extension of this procedure to the case of several overlapping resonances
is straightforward. We simply expand 2 space to include just the requisite
number of bound states ®,. That number is determined by the requirement that
the energy dependence of the amplitude generated by H,,, in the energy interval
of interest is sufficiently slow. One can then obtain the eigenvalues of the operator
H,, + Wy, by solving the secular equation

det|(E, — &), — W, |=0 (2.31)

st
where

1
H H,,Qq>,> (2.32)
P

W =< Q| Woo®,) = <q)s QP [:(+) —H,

The eigenvalues E, are complex, since W, is not Hermitian. The result for the
isolated resonance is obtained immediately if the determinant has only one term.
The eigenfunctions of H,, + W,,, €, are finite linear combinations of the
bound-state wave functions ®, which have been included in 2:
Q,=>x",
The functions Q, form a biorthogonal set with the adjoint functions Q{*:
(4) _
<Qu ,Qv> - 6;4\'

The coefficients x* satisfy the set of linear equations

Z [(Eu - ées)ésr - Wst]x:“) =0
i
while the corresponding coefficient for Q(, £ satisfies

Z fgﬂ)[(E“ - (g’s)é“ - Wn] =0

With these results in hand it is now a simple matter to expand 1/(E — H,, — W)
in terms of Q, and so finally obtain

_gwyy AR (2.33)

where

AW = T Hpg Q) QP H x> (2.34)
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Note that the A% are complex and that

T AW =3 G H pg®, > < B Hop (239)

u

where the completeness of @, has been used.
Let us for simplicity again consider a single channel, so that

—2id

(=) _ +
A =720

Then
Y AW =Y | x| H pg®, > (2.36)

I3

The A® and E, are not independent. For example, the diagonal sum rule when
applied to the secular equation (2.31) yields

YImE, =) ImW,
u s
Inserting the value of W and making use of (2.36), one obtains
1
Y AW = —-e*y ImE, (2.37)
u T u

For isolated resonances this equality holds for each individual g, thus reducing
to (2.22), which states that the total width (= — 2 Im E®) equals the sum of the
partial widths that appear in the numerator of the resonance amplitude.
Equation (2.37) states that this equality holds on the average, that is,

21 Y [Kx [ Hpg®, > = —2) ImE, (2.38)
s "

Other relationships, such as (2.37), may be obtained from the properties of the
secular equation (2.31).

Because of the relationships between 4 and E, the number of independent
real numbers required to describe the resonance term in (2.33) is not as large
as might appear. Without these connections each term involves two complex
numbers, A(f“,.’ and E™, or four real numbers, We shall shortly derive a more
economical expression in which this number of real parameters is reduced by
one-half.

It is instructive at this point to show that relationship (2.37) is a consequence of the
unitarity of the S§ matrix. For this purpose it will suffice to develop this relation for
single-channel elastic scattering. Then

AW
E—E

" u

T =9 +3

P
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From
S=1-2ni7
one obtains

AW
S=§,-2miy

E—E

M

where S, is the S matrix for the prompt process. It is convenient to introduce A
which is defined by

AW = SPLC/ (u)

Hence

) of W
S=S,,|:1 —2miy ]

E—E

i

To avoid obfuscating complications, consider the simple case of just two resonances,

o o
S=S§, 1-21:;'( S )
E—-E, E-E,

_s [(E — E\)E — E;) — 2nisd ((E — E,) — 2misd 5(E — El):|
P (E—E\)E—E))

Unitarity, SS = 1, requires that
(E— EE — E,)—2nisd (E — E,) — 2nisd ,(E — E,) = ¢'ME~EDE-ED

where the phase 4 is to be determined. Equating coefficients of E* on both sides of the
last equation gives A =0, while equating the coefficients of E yields

E\+ E; + 2ni(s/, + /)= E¥ + E¥

so that
1
A+, =-(ImE, +ImE,)
T
or
1.
A+ A, =—-S,(ImE, +ImE,)
VA
in agreement with (2.37).
Problem. Consider the case where several resonances contribute.

It is clear that many other relationships can be obtained by comparing
coefficients of still lower powers of E. Not all of these relationships are
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independent. It thus becomes important to determine the number of independent
constants appearing (2.33).

The A" Reactance Matrix (Feshbach (67a)). Consider (2.28) once more, where,
it is to be recalled, 2 space contains a finite number of bound states ®,.
Expressing W,,, more explicitly, (2.28) becomes

P

(E ~Hog=Hor =

HPQ)Q‘P +in Y Hopr "D V1 HpgQ¥ > =H gpri ™
7
(2.39)

where y designates those open channels whose energy equals the initial energy,

E. The wave functions for the incident state y{*’ belong to the set x!"’, while
24 belongs to a corresponding set of states x{”. To simplify the formal

mampulatlons it is useful to introduce the projection operator O:

0=T x> = T (240)
Y 4

with

Also, let

P .
HQQ+HQPE_ITPPHPQE‘#QQ

so that (2.39) becomes

(E— H#40)Q¥ +inH ,oHpo Q¥ = Hyp 1™ (2.41)
where
H,,=O0HQ
From (2.41)
Q¥ = ! ——Hyoxi™
E—#,o+inH,oH,,
Note that

1 1 1
———— ———Hyp = ————— ————Hy,
E— Ao +inH,nH,, L +in[IAE — # 40)JHyoHpg E — # o0

1 1
___qui e T MM A w1
E—#y, 1 +inH o, [1(E — H# 40)1H 0
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where we have made use of the operator identities

1 1 1 11

_ A o=
1+ AB 1+BA XY YX

Inserting the resulting expression for Q¥ into (2.27) yields

2 .=.9'(P.’+< (- (.+’> 242
R AN A Pt @42
where
1
XN =H ——H 2.43
o, (2.43)

Note that ¢ is a finite Hermitian matrix for real E. We also note that the S matrix

Qi
S=1-2miF =Sp— 27
1 +inA”
or
2niHN
S . = (NN ) (+)
=< G <x, "t i B >
Finally,
1 —inx
Si=(1|l———x" 2.44
i <’(f 1+ iz > 244)

The unitarity of the S matrix can be demonstrated from this result. Note,
however, that it is not immediate, but requires the use of the relation between

the distorted waves x{*), '~ and the undistorted waves.

Problem. Prove the unitarity of S, of (2.44).

To obtain a resonance expansion of 7, we introduce the eigenvalues x, and
eigenfunctions of the operator ., which is Hermitian when E is real:

XY, =x,Y, (2.45)

The functions Y, form an orthonormal set. They are also eigenfunctions of ¥
where

_l—im}if
—l+i7r.)if
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with eigenvalues (1 — ink,)/(1 + inx,). If we write the eigenvalues of & as e*',

we find that

tang, = — nx,
It is possible to express k, in terms of e, the eigenvalues of #,,, with corre-
sponding eigenstates ®,. We note that
K, =LY, |HY,> <YH ! H Y>
T u w’ = w|*t0Q ., Qo
E— 5y
or
(Y, |Hy, @012
= alHog P
p —e,
Defining the widths
2, =2m|< Y,|Hpo®, > 2
we obtain finally?
1 2
Tus (2.46)

K,=—
¥ 2n“E—e,

Note that y,; and e, are energy independent if the projection operator Q is
chosen to be fixed with energy.
The transition matrix is then given by

T =T LT ANY,S Y [P 2.47
Ji Ji §<Xf “>1+l‘7IK,'“< #IX, > ( )
while
_ 1 —inx - ria ,
Sfi=Z<X<f )IYu P M<Yu|X§+)>=Z<X§' )|Yu>e- “<Yulx(i+)> (248)
n I +inxk, P

It is often convenient to work in a representation in which S is diagonal and
project to the scattering states x'*’, as given explicitly by (2.48). In the single-
channel case the potential § matrix, {x{™’|x{*’>, and the full § matrix are
diagonal simultaneously. The resonance energies are given by the poles of (2.48’),
that is, when

1 +inx, =0

Note that &, is real for real E, with poles on the real axis with positive residues. However, «, is
not rigorously an R function in Wigner’s terminology because e, and ®, are functions of the energy.



172 FORMAL THEORY OF NUCLEAR REACTIONS

or

2 E—e, '

For an isolated resonance, that is, e, takes on only one value e,, this equation
yields the resonance energy, e; — iy,;/2. The shift A; no longer appears because
of the difference between H,, and # ,,. To compare the result directly with
(2.23), consider the case where p is restricted to one value; that is, we consider
only a single channel. There is then only one «,(= k), so that

1 _eZié K

T ,. = + g3 2.48"
Ii 2mi 1+ inx ( )
and
Sji — eziél — l:TEK — plité+a) [249)
1 +ink

Assuming as an example that there are only two states ®; and @, in 2, (2.46)

yields
K:i( o, 7 )

2n\E—e; E—e,
and

1 N'E—A

£ : (2.50)
1 +ink 2n(E—e, (E —e;) +(i/2)TE —A)

where

F=yl+yi  A=ye,+7,¢

Equation (2.50) involves only four real numbers, while the resonance series
(2.33) for two resonances would involve apparently four complex numbers for
the single-channel case. However, as (2.50) demonstrates, there must be two
independent relations between these constants. One of these is given by (2.38).
The others can be derived either from the properties of the secular equation
(2.31) or from the unitarity condition [see Levin and Feshbach (73)].

3. DERIVATION OF THE OPTICAL MODEL POTENTIAL

The optical model potential as originally defined [Feshbach, Porter, and
Weisskopf (54)] is that single-channel potential which would generate the energy
average of the elastic scattering amplitude (or the transition amplitude). The
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energy average was to be taken over a domain, AE, which is large compared
to both the width I of the individual resonances or fluctuations in the cross
section as well as their spacing D. On the other hand, AE should be small
compared to energies I'g, over which the potential scattering amplitude varies
considerably. For nuclear potentials I'g, is of the order of several MeV, which
is to be compared with the width of compound nuclear resonances, which can
extend from fractions of an eV to a few hundred kilovolts.

In the context of the formalism of this chapter, the energy averaging of the
transition amplitude is equivalent to an energy average of PV, since £ contains
the incident channel and therefore 7 {f) contains the elastic scattering amplitude.
# can, of course, contain all the prompt channels, so that the analysis which
follows will generalize the optical model to include these prompt processes,
such as the single- and multistep direct reactions.

This result for { P¥ ) can be seen directly from (2.27'), which can be written
as follows:

qui:XE

1
g, Trel¥s (3.1)
Averaging both sides according to conditions outlined in the preceding
paragraph yields

CPYD =0+

oo HroCQ¥D (3.2)

P

since the only quantity on the right side that varies with energy rapidly enough
to be changed by the averaging procedure is Q. The transition amplitude
generated by (3.2) is clearly the energy average of that generated by (3.1), as
can be seen from (2.27):

T =T P+ T HpgQWs)
Upon averaging this quantity, one obtains

(T 1> =T D4 (3D Hpg Q.5 (33)

To determine the optical model potential it is necessary to determine the
Schrodinger equation satisfied by ( P¥ ». Toward this end, we replace QW in
(3.2) by the result, (2.30), obtaining

1 1
PYS = o Hpe (S Vgt 34
CPY:) =i E(H_pr PQ Coq orXi (3.4
where

=E—-H

€00

ee ™ Woo (3.5)
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Operating on both sides of (3.4) with E‘*) — H,, yields
1
(E—HPP]<PlPi>=HPQ<e >HQPXE+) (3.6)
QQ

This could have been directly obtained from (2.3) since it leads directly to
(E—Hpp){P¥;) = Hpp Q¥ (3.7)

We now replace y{*’ in favor of (P¥) by solving (3.4):

1
(+) — y
= — —— (P¥;) 3.7
14 [IAE'™ — Hpp)1H pp<1/e0> Hyp
so that (3.6) becomes

1 1

(E—H_,){P¥,>)=H <—>H (P¥,>
PP P\ ego/  CNH[IAED —Hpp)1H po{ 1/egy > Hyp
(3.7
Using the operator identity
1 1
B = B
1+CAB 1+ BCA
with
A= : =H d C= ! H
= % , B=Hgp, an —WH” PQ
one obtains
(E—H,,)X{P¥,>=H <1> ! H,,(P¥)>
PP ' 2\ ey/ 1+ HopI/(EH —Hpp)1H o lfeged &7
1 1
=H — H, . {P¥,>
”Q<eQQ> 14 Wyolllege> 2°
Therefore, the optical model equation for (P'¥) is
1
E_HPP_HPQ _ HQP:|<P‘Pi>=O (3.8)
[ (1/egg» 4 Woo
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The optical Hamiltonian is therefore

1

H =H,,+H,,— —F————H
opt PP PQ<1/eQQ>—1+WQQ QP

(3.9)

If {1/ey, > were replaced by 1/e,,, (3.9) would return to the exact form (2.7).

The term {1/e,, ) represents in an average way the impact of the omitted
channels in 2. Obviously, the value depends greatly on the choice of the states
to be in 2, which should be made according to the physics of the situation
being considered. Choosing only the elastic channel to be in £ throws all the
effects of the other prompt channels into {1/e,, . This may be what is needed
if only elastic scattering and total cross section are of interest. If prompt channels
exist and are included in 2, (3.8) becomes a set of coupled equations with
complex diagonal and coupling potentials. It should not be surprising that the
diagonal component of the optical potential for the elastic channel differs from
that of the optical potential obtained by restricting £ to the elastic channel.
As we shall see, H_, is absorptive. As might be anticipated, the absorption is
larger for the single-channel 2 space since it must contain the effects of the
channels that have been placed in 2.

The reader should note that the optical model potential described in this
section differs from the optical model potential derived in Chapter II. The latter
is obtained by the multiple scattering approximation valid in the limit of high
energies and short wavelengths. The optical model potential of this chapter is
a consequence of energy averaging the fine-structure resonance. As a
consequence of the averaging process, detailed information (e.g., regarding the
resonances) cannot be obtained from the optical model potential and its wave
function.

Averaging. 1t now remains to evaluate {l/e,,>. The average of any function
F(E) is given in terms of a normalized density p(E, E,) as follows:

(F(E)) = jP(E, Eq)F(EQ)dE, (3.10)
where
Jp(E’ EO)‘IEO =1

Therefore,

1 > f ) 1
SN | p(EEg)————— —dE, 3.11)
<eQQ Eo—Hgo— Wy,

Note that W, is a function of energy but a slowly varying one, so that the
only energy dependence we need to consider is the explicit one. It should be
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recalled that 1/e,,, varies rapidly with energy because of its complex poles, that
is, because of resonances or fluctuations.
Two forms of p(E, E,) are in common use:

A 1
E,Ey)=— L tzi 3.12
p(E,E,) 21 (E—Eqf + (A2 orentzian (3.12)

1 AE
J B~ Eol <

p(E,Ey) = box average (3.13)
[ 0 |E — Eq| > >

These two forms emphasize differently the resonances at a distance from E,, the
box average giving them zero weight. It is possible to devise a family of density
functions which vary from the Lorentzian to a Gaussian that is similar to the
box form [Levin and Feshbach (73)]. These will give differing answers for the
integral defining {1/e,,>. For the present it will suffice to discuss the conse-
quences of the two examples above.

The Lorentzian has the advantage of analytic simplicity. Consider the
Lorentzian average of F(E):

0

_A ([ F(Eo)
= J —o (E~ Eo)’ +(A/2)?

Assuming that F(E,) has no singularities in the upper half of the complex E
plane and that it is well behaved on the infinite semicircle, it is a simple matter
to evaluate the integral using the calculus of residues. One obtains

(F(E))L=F(E+I;ZA> (3.14)

Hence

<1> -1 (3.15)
ego/r E+(iA2)—Hyy— W,

The effect of the averaging process is to increase the width of each resonance
by A. Since A is assumed to be large compared to each of these widths, the
fluctuations caused by the resonances are completely smoothed. The optical
Hamiltonian, (3.9), becomes

1

H,)=Hp+Hpy————H
pt/L PP PQE—HQQ+(1/2)A Qr

(3.16)
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To obtain the box average it is convenient to evaluate a typical term in an
expansion of 1/e,,:

1 1 E+(1/2)AE dEO
<E —E.+ irs/2> AE J‘E—(l/Z)AE Ey— E;+(i/2)T

1 [QIIE-EH+1DAE] y

dx

AE J oroe-£—aman X* + 1
As long as
|E — E,|«3AE (3.17)

that is, near the center of the interval,

< 1 > in
= )= = (3.18)
E_E, +(/2T, AE

Condition (3.17) can be rephrased to state that (3.18) is valid for resonances in
aninterval dE about E as long as §E <« AE. For (3.18) to be useful, the following
inequalities must hold:

AE » 8E » {; (3.19)

This condition is not restrictive except in the case of extraordinarily broad
resonances®. From (3.18) it follows that

1 in ,
<—> = ~ap (3.19)

€00
The optical Hamiltonian is then

in 1

- “H,y————H 3.20
AE" "1 —(in/AE)W,, %° (3-20)

(H =Hpp

opt) box

In both cases the optical Hamiltonian is complex. In the limit of large A (or
AE) the imaginary part is negative definite, as it must be so that the optical

‘Equation (3.18) is not valid for resonances near the edge of the interval AE. This is referred to as
the edge effect. If the edge effect is substantial one expects a sensitivity with respect to the averaging
interval AE. Generally, experimental results are quoted when the data are insensitive to AE and
thus (3.18) may be taken as valid for that reason. The edge effect is also present for the Lorentzian
since it weights these resonances beyond (E + A/2) in a particular way.
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potential is absorptive. This is expected since the elimination of the channels
in 2 space leaves some of the flux unaccounted for.

More graphically, an energy average of the wave function is equivalent to
the construction of a wave packet, whose passage time at a given space point
is on the order of (h/AE). The differing averaging densities, p, develop different
shapes and time dependence for the wave packet. The Lorentzian, for example,
leads to an exponential decay with time. As developed in deShalit and Feshbach
(74, p. 91 and following), the prompt amplitude will not contain any contribution
from the delayed component, whose time delay is #/T, I « AE. Thus when the
incident wave strikes the nucleus, part of it passes through promptly, and part
of it is delayed. The prompt amplitude does not contain the latter, so that the
averaged prompt amplitude exhibits absorption. Moreover, as the width for
the resonances (or fluctuations) increases, or equivalently, if it is necessary to
consider a number of resonances simultaneously because they overlap, this
separation in time between the delayed and time component will be reduced,
raising the question of how much should be assigned to each. Clearly, if the
width is on the same order as AE, there can be no distinction between the two
and the optical potential should be real, in the absence, of course, of true inelastic
processes.

The shape of the wave packet plays a critical role for this issue. (H ), does
not depend on W, and does not show this effect. On the other hand, (H,_),,,
does. For that case we evaluate the imaginary part of the expectation value of
this potential, which is directly proportional to the absorption:

Im{(PY)|(H,,)pox (P YD
1
1 — (in/AE)[1/E™ — Hpp)1H poH gp

<P‘*’>>
(3.21)

—in

where we have used (3.7”) and (3.19). Noting that (3.7') implies that

in 1
(P¥) = (1 -————H_, H )xﬁ“
AEE® —H,, "9
we can rewrite (3.21) as follows:

IM{CPY (V) CPYD D

in 1 —in
=Im<x}+’ (1 +'A—EHPQHQPE(—)_HPP)< AE HPQHQP> 5+)>

Assuming that x{™ is an eigenstate of S, so that

X§+) — eiéF
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where F is real, one obtains

Im PV 0o <PYD D

<xi+’

Introducing the widths [see (2.35) and (2.22)]

2
—EHPQHQP+TEAE2 HpoH pp(E — Hpp)H py pr$“>

rs=2n|<q)slHQPX§+)>}2

and restricting 2 space so that it includes only x{*’, we find that

1
absorption ~ —Im {{PY (V) pox CPY) ) < [M—EZFS - (2AE> & r, ]
(3.22)

Thus the absorption differs from zero if

L = <F> 2 (3.22)
AE <D>

where (D) is the average spacing between resonances. This condition agrees
in order of magnitude with Wigner’s limit [ Lane, Thomas, and Wigner (55)]
and has been derived in another fashion [Feshbach (69)]. This should not be
taken as a rigorous condition on a given channel strength function, as it depends
on a particular choice of the averaging density. However, it does have a
qualitative significance. In fact, it can be shown [ Mello and Feshbach (72)] that
large widths imply a strong correlation of widths with resonance energies and
a hypersensitivity with regard to the choice of the averaging interval AE.

4. INTERMEDIATE STRUCTURE, DOORWAY STATE RESONANCES,
AND GIANT RESONANCES?

The subjects of this section have been discussed in deShalit and Feshbach
(74, pp. 99-104) and in Section I1.6. It will therefore suffice to provide only a
brief review before entering into the formal description.

Intermediate structure refers to an energy dependence of the cross section
whose scale, I'y, lies between the width, I ., for the fine structure produced by
compound nuclear resonances or Ericson—Brink fluctuations (see Chapter 1V)
and the width, Iy, for the gross structure that would appear in the cross section

{Block and Feshbach (63); Feshbach, Kerman, and Lemmer (67).
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for single-channel elastic scattering produced by a real local potential, that is,
T p>»Ty»Tey 4.1)

To observe intermediate structure it .is necessary to average the cross section
(either by numerically averaging good resolution data or by using poorer, but
not too poor, experimental energy resolution). In this way the fluctuations in
the cross section are smoothed and larger widths become visible. The interval
AE over which the average is made should be less than I'; but much greater
than D, the spacing for compound nuclear levels. This process is demonstrated
in Fig. 1.13.7 of deShalit and Feshbach (74) for an isobar analog resonance.
Conversely, intermediate structure should exhibit fine structure when examined
with sufficiently good energy resolution. This is illustrated by Fig. 1.1.1, which
shows the fine structure associated with two isobar analog resonances at 2.77
and 3.14 MeV.

Many examples of intermediate structure have been observed. So far we have
discussed the giant electric dipole resonance, the subthreshold fission cross
section, and the isobar analog resonance [see deShalit and Feshbach (74, p.
99-104)]. Giant resonances generally are examples of intermediate structure,
The quadrupole resonance at an excitation energy of 60/4'/*> MeV, the electric
monopole mode, and the Gamow—Teller resonances are examples. The light
heavy-ion system '2C + '2C exhibits intermediate structure involving many
resonances, as shown in Fig. 4.1. These fragment into fine structure when
examined with very high energy resolution.

All the foregoing cases involve isolated resonances. However, there will be
cases in which they overlap. For these a statistical theory of the type that has
been discussed briefly in Section 1.6 and is discussed more fully in Chapter IV,
is appropriate.

The states corresponding to these resonances have been referred to as doorway
states and the corresponding resonances as doorway state resonances [Block
and Feshbach (63)], to emphasize that they serve as the first stage beyond the
entrance channel in the development of the complex compound nuclear state;
that is, the system would have to pass through the doorway state before the
full complexity of the compound nuclear state could be generated. This is
illustrated in Fig. 4.2. The doorway state is a relatively simple state, not as
complex as the compound state or as simple as the entrance channel state paral-
leling the inequality (4.1). The hypothesis that such simple states exist and that
they are the only states that couple strongly to the entrance channel will be
referred to as the doorway state hypothesis.

A simple, although somewhat idealized example will help to make the
doorway state hypothesis more concrete. Suppose that the incident projectile
is a nucleon. Suppose, moreover, that its energy is such that no reactions are
possible, so that only elastic scattering can occur. The entrance channel wave
function, x!*’, then describes the motion of the incident nucleon in the field of
the target nucleus. This nucleon—nuclear interaction is specified by a model
Hamiltonian that is appropriate for this energy range. The remainder of the
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FIG. 4.1. Nuclear structure factors derived from the total y-radiation yields of the
12C 4+ 12C interaction. [From Erb and Bromley (84).]
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wave function is generated by the residual Hamiltonian given by the difference
between the exact and model Hamiltonians. As an example, suppose that we
idealize this residual interaction by assuming that it consists of a sum of
two-body interactions. Furthermore, as an example, suppose that the target
nucleus has a closed shell or subshell so that the appropriate entrance channel
Hamiltonian is the shell model Hamiltonian. The entrance channel is then a
one-particle state in shell model terminology. The residual interaction acting
on x\*) will excite a particle ‘hole pair, the incident nucleon changing its state,
generating a two-particle/one-hole stafe (2p—1h). The states produced in this
fashion, or a linear combination of them, are doorway states since they are the
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only ones that are coupled by the residual interaction to the entrance channel.
All the states of this complexity (i.e., of the 2p—1h structure form the doorway
state space, £. Since the particle—hole interaction can build up collective states
with preferred spin and isospin (e.g., the dipole J=17, T =1 state), a doorway
state may often be more simply described as a particle plus vibration state.
More generally, a doorway state can be a particle plus a collective state, and
then it may be more convenient to employ collective variables in describing
the residual interaction.

The above is simply an example; the doorway concept is not limited to the
case of a nucleon incident on a shell model target nucleus. The examples of
intermediate structure listed earlier include the case of an incident photon (El),
an incident a-particle, or the collision of two *2C nuclei. What is required is that
upon the first collision [Weisskopf (60)] the residual interaction produces a
relatively simple configuration, analogous to the 2p—1h states discussed above.
In the case of the giant dipole resonance, that simple state is well known to be
a linear combination of particle—hole excitations [see deShalit and Feshbach
(74, p. 491)].

As discussed in the introduction to this chapter, a resonance occurs whenever
there is an approximate state of the system that is bound and whose energy
equals the total energy of the system. The important point is that in this state
the energy has been redistributed and a sufficient fraction of the incident kinetic
energy has become internal energy. A doorway state has just this property,
namely that some of the system’s energy has been used for excitation rather
than remaining as kinetic energy. In the example quoted above, this energy is
used to excite a particle—hole pair. If, in addition, the total energy of the doorway
state equals the incident kinetic energy, a doorway state resonance will occur,
producing as a consequence intermediate structure in the cross section.

The resonant doorway state wave function will generally be composed not
only of the states generated directly by the residual interaction acting on the
entrance channel wave function but will also include additional components of
the same complexity. These are contained within doorway space 2. In our
example, after the initial formation of 2p-lh states, the nuclear Hamiltonian
acting on them will produce others (as well as states of different complexity)
which are not directly coupled to the entrance channel. The resonant doorway
state, being an approximate eigenstate, will generally involve these components
as well as the directly coupled ones.

The resonant doorway state is not an exact stationary eigenstate of the
nuclear Hamiltonian. It will decay with time and thus has a width. In addition
to the escape width '], caused by transitions to various exit channels and
common to all types of resonances, there is the width, which is a consequence
of the possible transition to states of higher complexity, roughly speaking to
the fine structure states (see Fig. 4.2). This width, I"i, is referred to as the
spreading width,T" ﬁ The total doorway state width, I',, is the sum of these two:

I,=T}+T] 4.2
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The visibility of the doorway state resonance depends critically upon I'y. If T,
is too large, intermediate structure will not be seen.

To see this, let us turn to the expression for the I =0 elastic scattering cross
section, which applies to this case [compare (2.20)].

1 2
a=4it sin § — e'? /2

k? (E—Ep)+(i/2)(T; + T}

where h2k?/2m is the energy and § is a phase shift. We see that I'} acts as an
additional absorption. The maximum magnitude of the resonant doorway term,
the second one, occurs at E = E, and is equal to F}/Fd, proving the point made
in the preceding paragraph.

Stating this result in another way, if the coupling between the resonant
doorway state and the compound nuclear states, whose energies differ
appreciably from E,, is substantial, the spreading width I'} will be large and
the resonant cross section will be reduced appreciably. Moreover, if as a
consequence of this coupling, I, is on the order of or greater than D,, the energy
spacing between doorway resonances, these will overlap. The doorway reso-
nance will not be isolated and an energy average of the fine structure will
consequently average over more than one doorway state, preventing direct
observation of the character of each individual doorway resonance.

We turn to the quantitative description of doorway state phenomena. The
Hilbert space will now be partitioned into three parts, # + 2 + 2, where 2
will contain the prompt channels, &, the doorway states, and 2' the more
complex states, as indicated by Fig. 42. Comparing with (2.1), we have

2=+ 29 4.3)
[t is, however, more convenient, for the derivations given below, to group the
doorway states with the prompt channels. Let the projection operators that
project onto the 2,2, and 2' subspaces be P, D, and @', respectively.
Orthogonality of the spaces is presumed, so that
Pi=p PD=0 PQ' =0 DQ' =0
P+D+Q =1 (4.4a)
Finally, let
P=P+D P+Q =1 (4.4b)

The analysis of Section 2 applies. One can, for example, immediately write

Hoo —w,er ¢§“> (4.5)

1
Hpp o _—H
EM —Hyg=Wog "1 J

— P’) ()
T =T+ <¢,
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where
(E— Hp’y')¢ =0

The functions ¢ can be resolved into prompt and doorway components P¢
and D¢ satisfying the equations

(E—H,p)Pp=H,p D¢ (4.6)
(E—Hpp)Dd = Hp, P @.7)

7§ is the transition amplitude generated by this system. Since these equations
are identical in form (simply replace Q by D) with (2.3) and (2.4) it is entirely
possible, depending of course on H, for this system to exhibit resonances which
will be present in 7 (see Fig. 4.3). The analysis follows exactly that leading
to (2.20) or (2.30'). These resonances are the progenitors of the doorway state
resonances, for the coupling to 2’ has not yet been included. They will have a
width that is roughly the escape width I'T. To obtain the full width it is necessary
to average over the fine structure, that is, obtain the optical potential for this case.
As we saw earlier, the energy averaged wave function {P'¥V) satisfies

(E—-H )XPY>=0
where

1

. H,, 4.8)
egod ™ +Woo &7

Hopt = HP’P’ + HP'Q'

We now introduce the critically important assumption, which we shall refer to
as the strong doorway assumption, namely that 2 couples only to %. In other
words, 2’ does not couple directly to 2. This assumption leads to the equations

Hpp =0 Hpy=Hp, (4.9)
Therefore,

1
: H,
P eggd T Woy 27

H, =Hpp+H (4.10)

P

f

Entrance Doorway
Channel States

F1G. 4.3
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It follows that the equation for ( P"¥) can, by virtue of
(PY¥)=(P¥Y>+<(D¥>

be written as a pair of coupled equations:

(E—Hpp){P¥)=H,,(D¥) (4.11)
(E—Hpp— Wy ){D¥>=H,{(P¥) 4.12)
where
Wpp=Hp, }1 Hyp (4.13)
Ufeggd ™+ Wyy

Comparing with (4.7), we see that the coupling of £ with 2’ has produced,
upon energy averaging over the fine structure, an additional complex term W,
whose imaginary part will give rise to I'}. One can now immediately obtain
the analog of (2.30") by the procedure used to derive that equation. The result is

1
<'9-f|‘>='g_(f}?+<1}_) Hp), — HDPXE‘+)> 4.14)

E_HDD_ WDD— WDD
where x(ﬁ’ are, as before, solutions of

(E-Hpp)x=0
and
1

-~ H
DP r~(+) PD
E—H,p,

W,,=H (4.15)

Wpp describes the coupling of the doorway states to the entrance and exit
channels. )

If one now makes the single isolated doorway state assumption, (4.14)
becomes

<X}_)|HPD'/’.1><W¢1|HDPXE'+)>
E—E,+(1/2)i(T} + T}

(T ;>=T 7+ (4.16)

where

Ey=Re{Yyl(Hpp + Wpp + WoplWa>
I"j: ‘2]m<¢’d|WDD¢d>=27TZ|<X(y‘)|HPD¢d>|2 (4.17)
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_ 4o I<YalHpg® )|
Lo _ = AL (AE—2 VAT
Ti= = 2Im{y| Wondha> = ¢ 7L+ [2AE — &,)/AT

4
*KZ [<Wal Hpg @y |?
q

Here y, is the doorway state wave function and @, are the wave functions
describing the fine structure resonances in 2’ [see (2.9)]. The expression for '}
has been obtained by using the Lorentzian average for {(1/ey)>. The wave
function ¥, a solution of

(E - HDD)Wd =0

is a bound-state wave function. The apparent difference between the second
and third line of (4.17) is a consequence of the diﬁ‘ering normalizations of y,,
which is normalized so that the volume integral of |,|? is unity, and x" (E),
which is normalized so that volume integral of ' "*(E)y'"(E’) is o(E — E) As
anticipated in the introductory remarks, the magmtude of '} will depend on
the magnitude of the residual interaction Hpy., and on the rate with which the
series over g converges. If contributions from distant resonances are important,
I} will tend to be large and the resonance obscured by the single-step amplitude
A (P)

Some further consequences of doorway state resonances can be uncovered
by studying the one-channel case. Then the elastic scattering {7 ) matrix,
according to (4.16) and (4.17), is given by

<La/"> — g'(P) + ieZEA 71-(1
2n (E—E)+ (T +T})

The average S matrix that follows is

[E E,,)+ z(I“l )
(E—Eg)+ (T} +T)

(S) =2 (4.18)

As is obvious, (S is not unitary because of the spreading width, " i, which
acts, as stated earlier, as an absorption. The transmission factor (p. 243), T,
reflects the presence of absorption since

T=1-|(S>7 (4.19)
which, in the present case, is

rr

- da 4.20
(E — E)? + 3172 (420

Recall that the average absorption cross section is proportional to T. Thus we
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obtain the important result that the cross section for absorption into compound
nuclear state is enhanced by the presence of doorway state achieving a maximum
at E = E,. Obviously, the transmission by the doorway mechanism will be zero
if there is no coupling of the entrance channel to the doorway state (T} =0) or
if that state does not couple to the compound nuclear resonances (I'} = 0).

The symmetry of T about E = E, is a consequence of the strong doorway
assumption, namely that the entrance channel couples only with the doorway
state and not with the more complex states. We now examine the effect of
allowing such direct coupling. Upon energy averaging, one obtains, instead of
(4.11) and (4.12), the following equations:

(E— Hpp— Wpp){P¥) =(Hpp + Wpp)<D'¥> (4.21)
(E — Hpp — Wpp){D¥ ) = (Hpp + Wpp){P¥) (4.22)
where W, is given by (4.13) and

1

Wop = Hp, -
PD PQ <1/leQ'>_1+WQ'Q'

Hyp (4.23)

W,y represents the effect of the direct coupling of the subspace 2 of the prompt
channels and the subspace 2’ on the generation of components contained in
subspace &, while

_ 1
Wep= Hpp H, 4.24
e = e e T Wy oP (4.24)

represents the effect on the prompt channel of such coupling. All the elements
of the W matrix are complex. The analysis of (4.21) and (4.22) is identical with
that of (4.11) and (4.12).

One effect of the complex W matrix is to make the potential scattering 7,
absorptive, that is, the phase shift for the single-channel case has a positive
imaginary part, while another is that the escape width I'] given by

) =2nCo P (Hpp + Wapla > <tral (Hpp + Wop) (™ (4.25)
is complex since Wpp, is not Hermitian; hence
Il=|Tle* (4.26)

The S-matrix equation (4.18) is replaced by

_ 2is -2n| 1 _: |l"l|ei"’ :I
(S)=¢e?*"e [1 I(E—Ed)+(i/2)l:d 4.27)
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where 6 + in is the potential scattering phase shift and I', is the total width.
The transmission T given by (4.19) can readily be evaluated. As long as ¢ is
not equal to zero, the resulting T is not symmetric about E = E,. In Fig. 44
the T for the symmetric case (¢ = 0) is compared with the result obtained when
¢ #0. The latter is asymmetric and has an interference minimum. Both of these
features are a consequence of the relaxation of the strong doorway assumption,
Hpy =0, thereby permitting a direct coupling of 2 and 2', Hpy #0.

According to the preceding discussion, the wave function for the nuclear
system W, can be broken up into three components as follows:

¥ =PY + DV + Q¥

The first term, PV, describes the prompt channels. In the neighborhood of a
compound nuclear resonance, (D + Q)¥ = QW is given by ®, and DV is given
by the doorway state, ¥,. Interestingly, the overlap of y, with ®@,, {® |y, is
quite small. In other words, ¥, need not be a major component of ¥ in order
to serve as a doorway state. Or, conversely, the doorway state is built up out
of small fractions of the compound nuclear resonance wave functions.

The overlap, (®,|¢, >, can be related to experimentally observable quantities
as follows. The compound nuclear state width I', is related to @, according to
(2.22) by

I's= 2n|<x(+)|HPQ®S>|2

where for simplicity the discussion is restricted to the single-channel case.
Expand @, in terms of §, and the states @, in 2". The component of the matrix
elements involving @/ is zero because of the strong doorway state assumption.
Therefore,

Ty =27/ <D,, |, > P 1< D | Hppi g D12
or
To=TJK Dl (4.28)
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where the subscript s, indicates that the compound nuclear resonance is
associated with the doorway state ¥, The overlap is then

r
KD, ¥ ? = ﬁ (4.29)

d

Since the doorway state width, I';, encompasses many fine structure resonances
and T, and T’} are usually of the same order of magnitude, I'/T"} is found to
be much smaller than 1. We thus have demonstrated that the overlap {®,|y,>
is small.

Another insight can be obtained from the average value of I'| averaged now
over an interval AE containing not only many compound nuclear resonances,
but also many doorway states. This AE would be appropriate for the optical
model if AE satisfies I'gp »> AE » I',. Thus from (4.28)

1 1 1
—YT,=—>YT] o 2=__%T1]
AE; s AEZ .,§|< salWadl AEZ i

or

Ty _<T
Ds Dd

(4.30)

where D is the energy spacing of the compound nuclear resonances and D,
that of the doorway states. As usual, the angular brackets indicate average
quantities. This equation has a simple interpretation. The ratio <I" »/D, referred
to as the strength function, represents the fraction of an energy interval occupied
by resonances of average width {I"). Thus (4.30) states that this fraction of an
energy interval is independent of whether one does an extensive average leading
directly to the optical model result given on the left-hand side of the equation
or performs the average in two steps in which first AE « ', and therefore reveals
the doorway state resonances and then averages over many doorway states.

Problem. Derive (4.30) by equating the optical model average of the
single-channel S matrix with the average of {(S) [given by (4.18)] averaged
over many doorway states.

Returning to (4.29) for the overlap probability, we see that it can be rewritten
approximately (since the average of a ratio is not the ratio of the average)

Dy p
L[y == =" (4.31)

Dd Ps
where p gives the density of states denoted by the subscripts. Again since the
density of compound nuclear levels is of course much greater than the density
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of doorway states, the average overlap probability is much smaller than 1,
reaffirming the earlier conclusion.

A. Exit Doorways

The discussion has so far emphasized the connection between the entrance
channel and the doorway state. Clearly, if in a reaction the final state is well
defined experimentally, there is the possibility that a doorway state exists which
bears a similar relation to the exit channel. We shall refer to such doorway
states as exit doorways, to distinguish from entrance doorways, which are the
doorway states discussed above. As one can see from (4.16), the final state x‘ )
is connected to ¥, in precisely the same way as the initial state x!*'. But therc
is the possibility that the branching ratio, [ {x\ | HppWa > 1*/|{Wal Hppxi ™' 1% to
the ﬁndl state is very small, indicating that, in fact, g(/d is not a doorway state
for x 7). However, there is also the possibility that x ~) connects strongly to
another doorway state .. If these two correspondmg resonances overlap, the
reaction from y{*’ to |~ will be enhanced. This mechanism is important for
radiative neutron capture.

One can obtain the transition amplitude for this case starting from the general
expression given by (4.14),

1
T D>=TD+{ vy H _ H (+>> 4.32
< f> T <Xf ‘( PDE_HDD—WDD_WDD DD) ( )

When there is more than one isolated doorway state it becomes necessary to
diagonalize (Hpp + Wpp+ Wpp), a procedure paralleling that described after
(2.32). Let the eigenvalues of this operator be E;—i/2T",, the corresponding
eigenfunction, Q,, and those of the adjoint equation QY. Then

<g-ﬁ>= Z(Xf IHPDQd><Q(A)|HDPX5+)>

(4.33)
E—E,+ (i/2T,

Sum rules similar to (2.38) can also be derived for this case. In particular,

Z <X(f_)‘HPDQd><Q,(1A)|HDPX5'+)> =Z <X(f_)|HPD¢’d><‘/’d|HDPX(,-+)> (4.34)
d d

and

%; Iy= "27TZIm<ll’d|WDD+ Wopl¥a> (4.35)

We see that these results are very similar in form to that obtained for
overlapping compound nuclear resonances, with the difference that there is an
additional absorption measured by 3, Im<{y,| Wpp ¥, >. Note also that Q, will
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be a linear combination of the various y, states so that even if {x''|Hpp¥;),
for example, is small, this is not necessarily the case for x‘f"|H ppS2>. In any
event, it is now possible because of interference between two terms, one
corresponding to an entrance doorway and another to an exit doorway, to
obtain an overlap between entrance and exit doorways.

B. EHfect on Fine Structure

We have not yet discussed the impact of the doorway state resonance on the
fine-structure resonances or, for that matter, the corresponding effect of direct
processes on the doorway state resonance. These will be most clearly seen in
the widths of these resonances.

Recall that the width of a fine-structure resonance in 2’ space is, in virtue
of the partition,

P+Q=1

given by (2.22), with P and Q replaced by P’ and Q’, and yx by ¢ of (4.5). For
the single-channel case to which the discussion will be limited, the width is
given by

F=2n|{ Q| Hypd{" )| (4.36)
where @ satisfies

(&, — Hyo)®,=0 (4.37)

Because of the doorway state assumption, (4.36) can be replaced by

[,=2n|{®,|HypD¢{" )| (4.38)

To obtain D¢{*’, we turn to the coupled equations (4.6) and (4.7). Solving the
first of these for P¢, and inserting the result in the second yields

(E _— HDD - WDD)Dd) = HDPX§'+’ (4.39)
so that
1
Do) — — H..y' 4.40
@; E—Hyp— Wy, pPXi ( )

We now make the additional assumption that there is only one doorway state
in the energy domain being considered. Then

1

DtV =—
¢l E—&,+1Lil]

l/’d(‘/’d|HDPXf~H>
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Substituting in (4.38) yields

r- 2n|{ @ Ho p¥a 21 [{Yal Hppi > 12
’ (E— &) + 4T}

From (4.17)
Tl=2n| <l Hpprl 12 (4.41)
We also introduce the definition
Tl=2mp, > K| Hop¥a>|? (4.42)

where {p,> is the average level density of the fine structure levels.
Finally, one obtains

Dy TiT

I'(E
) 2n (E—6) +4T)?

(4.43)

The energy dependence of the numerator of this expression is slow, being on
the scale of the direct prompt processes represented by x{ ™. Within the doorway
state resonance the main energy dependence is therefore carried by the
denominator. We see that I'((E) has its maximum value at &, which by the
way does not equal the doorway state resonant energy, E,, because the effect
of Wy is not included, as it need not be since no averaging has been carried
out in obtaining (4.42). (However, if the box average is used, E; will equal &,.)
Assuming that the difference (E, — &) is not large compared to '], one may
conclude that for the case of isolated fine-structure resonances, those that occur
near the center of the doorway state will be broader. These conclusions are
modified if the fine-structure resonances are overlapping.

The strong doorway state assumption plays a central role in the foregoing
development. Ifit is relaxed [see the discussion accompanying (4.22) ], the general
results obtained above would remain, that is, that the widths would be larger
when the fine-structure resonance occurs within the doorway state resonance.

This analysis can be adapted for the description of similar relations between
the single-particle resonance and both the doorway state and fine-structure
resonances. The doorway state case will be considered first.

We divide the space 2 into two orthogonal subspaces, .# and .4". The
single-particle resonance is taken to be the consequence of a bound state in .4/,
coupling to the open channel space .#. Moreover, we require that only .4” and
not .4 can couple to 2. It is now possible to set up a one-to-one relationship
between the corresponding projection operators M, N, and D with those used
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to describe the doorway structure, P, D, and Q' [see (4.4)]:

MoP
NoD (4.44)
D@
It follows that the bound single-particle state s, with energy Egp satisfies
(Esp—Hyy — Win)tsp =0 (4.45)

where

1
Wyw=Hyyy ————
NN NME(+)_HMM

Hyn (4.46)
The analog of x'*, the solution of the equation

(E—Hpp)y'™'=0

(E—Hyp)dtV'=0 (4.47)

We may now restate (4.43) in terms of M, N, and D, replacing @, by y/,, ¥,
by xsp, and y; by x{*). One obtains

D T} splip,
T(E)==° LTS (4.48)
2n(E—&sp)” + 3(Tsp)

where

Ddrj,sp =2m| <Y, | HpnAsp |2 and rsTp,i =2m| <XSP|HNM2§'+)>IZ

demonstrating that the doorway state width will have a maximum value at &gp
near the single-particle resonance energy.

A second set of relations, similar to (4.48), leads to a formulation of the
relationship between the single-particle resonance and an isolated fine-structure
resonance, which is close to that obtained by Lane, Thomas, and Wigner (55).
The isomorphism used is

NoD (4.49)
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Relation (4.43) now reads

T (E) — §D5> _ ri,SPr;{’,i
: 2n (E— &sp)* + L(TL,)?

(4.50)

where

Tl =21 p DK D Houisp D12

so that the fine-structure resonance width will be greater near the single-particle
resonance energy, &gp.

It should be noted that the &, and I'sp of (4.50) are not identical with those
of (4.48). Similarly, the fine-structure resonances in space 2’ are not the same
as those in space 2, so that the D, used in (4.56) is not identical with the D, in
(4.43). However, substantial differences are not expected.

One interesting result that can be obtained from (4.50) yields a direct, albeit
approximate, evaluation of I'!;,. We sum both sides of (4.50) over all T,
occurring within the single-particie giant resonance:

dE, (Th o> <Thp,>
I'(E)— — T(E)=-——22t"— 2002
LTE) J<Ds> )=

Assuming a single channel, (I'l,> = (T, .>, leads to
N 4 SP.i

Y T(E)~<(T}lg) (4.51)

Hence the effect of the fine-structure resonances is to increase the width of the
single-particle resonance by the sum of the fine-structure widths. This follows
from the expression for the transmission factor, (4.20), which for the present
application is given by

- <rsl,sp><r;P,i>
(E—&sp) +4[Tlspd + (Tl DT

(4.52)

Thus a coherent hierarchical picture emerges. Because of the single-particle
resonance the widths of the fine-structure resonances are enhanced [Eq. (4.50)].
Because of the doorway state resonance there is a substructure within the
single-particle resonance (4.43), the enhancement of the fine-structure resonances
being greater in the neighborhood of the doorway state energy. Upon averaging
over the fine structure, using an averaging energy interval small compared with
I, but large compared to I, the doorway state broadens (the effect of W,,). If
that broadening is too large, the doorway state resonance may not be visible.
This in fact happens frequently to the single-particle resonance; that is, on
averaging over an interval small compared to I'gp but large compared to T,
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and I, the width of the single-particle resonance becomes sufficiently broad as
not to be visible in the optical model cross sections.

5. PROJECTION OPERATORS AND ANTISYMMETRIZATION

So far it has not been necessary to specify the projection operators P, Q, and
so on, used in the preceding sections. Only their existence has been assumed.
This fact points to the great generality of the results obtained. They apply to
any system, not only the nuclear one, which exhibits both prompt and
time-delayed reaction phenomena. The choice of these operators can be made
so as to take into account the physics of the situation under discussion, thereby
tailoring the reaction formalism to the phenomena to be understood. On the
other hand, by making specific choices, one can obtain a variety of less general
reaction formalisms.

The Pauli principle must, of course, be taken properly into account. The
wave functions for the projectile and for the target nucleus are always assumed
to be separately antisymmetrized. The exit particle and the residual nucleus
wave functions are similarly treated. However, a problem arises whenever both
the projectile (exit particle) and the target (residual) nucleus contain the same
kinds of particles. The situation is simple if the incident particle is an electron
and the process is electron elastic or inelastic scattering. In that case it is only
necessary to use antisymmetric target and residual wavefunctions. But when
the incident particle is a nucleon or a heavy ion, the Pauli principle must be
applied to the entire system consisting of (4, + 4,) nucleons, where Ay is the
target mass number and A4, that of the projectile. The Pauli principle does
introduce complications, which are physically important, and therefore cannot
be ignored, tempting as that may be.

The principal method to be used in this volume is chosen so that it permits
a simple and simultaneous treatment of both the direct and resonance processes.
As an example, consider scattering processes, both elastic and inelastic, so that
the target nucleus can remain in its ground state y, or may be excited to any
of a number of excited states, ¥, ,,..., ¥y with excitation energies ¢,,¢,,... .
We consider first the case where the projectile is not composed of nucleons.
Then the wavefunction of the system can be written asymptotically as

N
\F—‘Z“v(ro]l.l’v("larza---,r,a) (51)
0
where r, is the coordinate of the incident particle with respect to the center of
mass of the target nucleus. We shall not explicitly indicate the spin and isospin
coordinates so that r; contains these as well as the spatial coordinates.
The simplest prompt channel projection operator is given by

N
PY =3 urol(ry,....,T) (52)
0
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so that
N
P=3 (e, )>Yr)-r,) (53)
0

where the ,’s are normalized. The dependence on r, and r{ is not given since
it is the unit operator that spatially would be é(ry —r,). Comparing (5.3) and
(5.2) we see that

u(ro) = (Y, (ry 1) [P(ro,re,...,1y) (54

Asymptotically for v # 0, u, — 0(e®"/r,), where k, = ./(2m/h*)(E — ¢,) where ¢,
is the excitation energy of the vth excited state of the target nucleus. When
¢, > E, the wave function u, decreases exponentially with increasing r for large
ro. It is not necessary to limit the sums in (5.2) and (5.3) to the open channels.
If there is evidence that there are other channels of importance for the prompt
processes, as might be the case for the multistep processes, these can readily
included by extending the sum.
Using the P above, the equation for the prompt processes

(E—Hpp)(P¥Y)=0

becomes a set of coupled equations for u,:

(E - va)uv = Z va’uv' (5'5)
where
H,, ={y,|HY,> (5.6)

The effect of averaging over the fine-structure resonances is to replace Hpp by
the optical model H so that H,, is no longer real and H,, no longer Hermitian.
Equations (5.5) are the equations for the coupled-channel method. These are
clearly appropriate if the incident projectile is an electron, a muon, or a pion,
for example.

If the incident projectile is a nucleon or an ion, two additional features must
be considered. The first is the Pauli principle; the second is the possibility of
transfer reactions either as open channels or as an intermediate state in a multi-
step process. For the present we shall, for simplicity, not include transfer
processes. The discussion of the projection operator needed for those cases will
be deferred to Chapter VII.

Assume, then, that the incident particle is a nucleon and that asymptotically

N
Voo Y ufroW(ry,...,1,) (5.7
0
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where o7 is the antisymmetrization operator. It is still possible to use
N
PY =Y ufto)l,(Fy.....x,) (5.2)
]

but then the sum must be extended to highly excited states (N very large), for
the following reason. Even though (5.2) is not properly antisymmetrized, it is
still possible to obtain a correct result by antisymmetrizing after solving the
many-body Schrodinger equation. That is, it is possible to assume that the
incident nucleon is distinguishable from the nucleons in the target, solve that
problem exactly, and then antisymmetrize. However, that solution must contain
the open channel in which the incident nucleon and a target nucleon exchange,
a process referred to as exchange scattering. In other words, as one lets, for
example, r, approach infinity, ¥ will contain an outgoing wave in this variable.
This can only occur if the sum, (5.2), includes the continuum components of
the set of target nuclear wave functions; that is, (5.2) would need to be written

U, + fu(v)'//(v) dv

Moreover, u(v) must be a singular function of v in order that a finite amplitude
exist when r,, r,,... approaches infinity.

Antisymmetrization is most essential if a finite and minimal number of
coupled channels is to be used. To see how antisymmetrization helps, consider
the case of elastic scattering. Let the scattering without exchange be described by
Ug(roWo(ry,rs;...,r,) and the exchange scattering, in which r; and r,, are
exchanged given by v(r)¥o(r;,rs,..., 51, FoFit1,-..,F,4), sO that the anti-
symmetrized ‘P is given asymptotically by

Y- Jx/|:“0(ro)lp0(r1 Ty + Z LX) AN ( ST SR F3 /HPTO rA):I

Using the properties of the antisymmetrization operator this expression can
be written as follows:

v —’*9/{[“0('0) - U.‘(ro):| Yolr, "‘TA)}
i
Thus the term in the antisymmetrized ‘¥, which is proportional to v, contains
both the direct and the exchange amplitude. Importantly, it is not necessary to
include in the sum being antisymmetrized contributions from the continuum
target wavefunctions to obtain the correct scattering. In other words, the
amplitude of the continuum wave functions need not be singular. Of course, if
either method is used, antisymmetrization after solving the Schrodinger or
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antisymmetrization of the wave function before solution, the same result will be
obtained. However, if approximations are to be used, particularly by truncating
the system of coupled-channel equations, a better approximation will be
obtained if the approximate wave function is antisymmetrized before attempting
a solution.

We therefore assume that

PY = »%’[ Y ulro)y(r ---TA):| (58

v=1

where again N may be larger than the number of open channels. Our problem
will be to determine P and thereby Q from this equation.

The form of the wave function given by (5.8) is used by many authors in
discussing prompt reactions. However, as pointed out by Bell (62) and Villars
(77), the set {uy,} is overcomplete because of the antisymmetrization required
by the Pauli exclusion principle. To see this, consider Fig. 5.1, which shows two
possible states of the system, the incident particle being indicated by an open
circle, some of the target nucleons by the filled ones. The target wave function
corresponding to Fig. 5.1a, say y,, obviously differs from that for Fig. 5.1b, say
¥, SO that each would give rise to separate terms, u,, and u,,, in expansion
equation (5.8). However, because of the identity of the particles, there is no
difference between the states of the total system illustrated in Fig. 5.1. In other
words, «/[u,y,] and /[uy,] are not independent. There must be a linear
combination of the two which is identically zero.

More generally, there will be functions u, that satisfy the equation

A Y LW ;1)1 =0 (5.9)

The functions u, satisfying (5.9) will be referred to as superfluous. As pointed
out by the example given above, one can always add to the series in (5.8) terms
coming from exchange scattering without changing PW¥W. To demonstrate another
example of the solution of (5.9), note that if ¢, is a Slater determinant made
up of single-particle wave functions, (5.9) is satisfied if «, is any one of these

(a) (&)
FIG. 5.1



5. PROJECTION OPERATORS AND ANTISYMMETRIZATION 199

wavefunctions. The existence of solutions to (5.9) demonstrates that (5.8) does
not provide a complete definition of P. Additional conditions are required.

Elimination of the superfluous solutions is essential for correct treatment of
the Pauli exclusion principle. Serious errors can result if such a procedure is
not carried out and (5.8) is used, assuming that all the u, are independent.
Friedman (67) has carried out a sample calculation, the scattering of neutrons
on '°0, and has shown that neglect of the fact that {u,} forms a dependent set,
leads to gross errors in the energies and widths of the resonances, and the
prediction of spurious resonances, which are not present in the results obtained
with the exact calculation (see Table 5.1).

The needed condition that will eventually permit the determination of P is
suggested by the discussion preceding (5.8): namely, that the remainder of the
wave function

0¥ =(1 — P)¥

does not contain any dependence on the set {y,} present in (5.9). This is
guaranteed? if

<wv(r1ar2’-"9rA)l(14P)\P(r0$r1""7r,4>=0 0<V<N (510)

for all r,. Inserting P¥ from (5.8), (5.10) becomes

o) = lro) = 3 <Konmolig (6) (5.11)
where
U lro) = e s 1) ¥R s, 1.0 (5.12)
and
K (6,00 = AU L, Far oo E ) Y(Fr 2o T (513

Note® that K is just the one-body density matrix of (1.4.4) in deShalit and
Feshbach (74) and of (I.11.11).

*In (5.10) and below, integration is performed over the variables common to the bra and ket of
the matrix element.

¥Kerman (67) points out that K represents the lack of orthogonality between «/(u,\,) and </ (u, ¥,
although ¥, is orthogonal to .. Indeed,

1
T <“"{uvwv|du\-’ww> = <uv¢’v|‘—duv'wv‘> = <uvj(5vv' - va’)uv’>
A+1

Hence orthogonality will only occur if K. = 6,,., that is, if K is diagonal with eigenvalues of unity.



TABLE 5.1° Scattering of Neutrons by '*O

Primary Calculation Control Calculation
Energy E, Half-Width T'/2 Energy E, Half-Width T'/2
i=3
(MeV) (keV) (MeV) (keV)
10.86 0.01 9.67 0.34
10.98 2.5 10.00 49
11.01 8.5 10.02 0.22
12.90 0.58 10.55 0.24
13.36 1.7 10.67 0.09
14.48 0.73 11.05 8.3
14.92 10 12.93 0.53
15.52 22 13.37 1.6
14.50 0.83
14.93 11
15.52 2.1
i=3
(MeV) (keV) (MeV) (keV)
5.94 120 5.24 38
6.97 57 6.72 21
7.88 70 1.77 0.009
9.19 42 8.01 39
10.07 1.0 9.03 35
11.21 0.12 9.80 1.1
11.47 0.10 10.16 28
12.54 22 1092 0.002
13.79 36 11.27 0.01
15.15 15 12.57 18
13.79 35
15.15 15
i=3
(MeV) eV x1073) (MeV) (eV x 1073
5.53 0.53 592 1.3
7.33 0.03 7.15 0.36
10.58 190 9.13 0.18
10.75 1.4 10.13 0.009
14.18 54 10.00 190
14.19 59
=4
(MeV) (V) (MeV) V)
6.75 0.25 5.33 0.48
897 0.54

Source: Friedman (67).

“Resonance parameters for the “exact” case, the primary calculation, and a case in which the
projectile was given some properties which distinguished it, the control calculation thus checking the
effect of the Pauli principle.

200
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It is convenient to define the matrices

U
ZO UO Koo o KON
1 1 . .
us=| u=| ", K=f : : (5.14)
" U, Kyo - Kux
so that (5.11) becomes
U=(1—K)u (5.15)
where
1= Jé(r —r)d,,
Note that
<¢v(r1 T y) dz u rol,(ry ---rA)> =[(1 = K)u], (5.16)

We now consider the properties of K. We observe that K is Hermitian, that s,
K, (r,ro) = K3 (ro,r)
Therefore, K can be diagonalized and its eigenvalues are real:
= KW

a aa <wa7 wﬂ> = 6«[) (516’)

Second (1 — K) is positive definite. For any u [see (5.16)]

ul(1 =Ky = <Z u(r (ry ---1y) ﬂ<z u (r Ary -~-rA)>

Since the ket is antisymmetric, one can rewrite this equation as
1
<u‘(1 _K]u>=A—_H<dzuvlpu|dzuv’lpv'> (5‘170)

=0 (5.17)

concluding the proof.
From these results one can immediately conclude that the eigenvalues of K,
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K., are less than or equal to 1:
K, <1 (5.18)

Problem. Show that K, is positive definite. Therefore, if P¥ contains only the
elastic channel, so that K = K,

12k,20
Starting from (5.17a), one can derive a further bound on k,. Expand ./ > u, i,

in a complete set of target functions y(r, ---r,). It is very important to bear in
mind that it would extend beyond N, the truncation value given by (5.8). Then

from (5.17a),
K)v'l’l/’l’>

Sl - K)v-,t/f,>

Cul(1 — Ku i <Zu K)u,

Z<Zmu—Kn%

A+1t v

If we drop the terms for both t and ¢’ > N we drop a positive quantity, so that

dul(1 — Kwud > > - Z <Zuv(1 —K),y, Zuv'(l - K)w‘ﬁz'>

lt— v

Now insert for u an eigenfunction of K, w,, with eigenvalue «,. One obtains
(1= 1) > (1 =1
—K)2Z2——U—K,
A+1

so that

Ke= — A (5.18)
which, together with (5.18), bounds «, between — A4 and 1.
Problem. Prove that

trK = AN + 1) (5.19)

where the trace of a matrix K with elements K, .(r,r,) is defined as

trK=Y .[drva(r, r (5.20)
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Problem. Prove that
trK2<(trK)? = A3(N + 1)2

The properties of K for elastic and inelastic scattering have been discussed
extensively by Friedman (67).

One example of K will prove instructive. Suppose that N = 0; that is, the
prompt channel deals only with elastic scattering. K has only one element, K .

Koo = A<LWo(t, 5., T ) Wo(To, 2500 T 4D (5.21)

where ¥, is the ground-state wave function. Suppose that this wave function
is a Slater determinant constructed of A single-particle wave functions, w;; then
it is easy to show that

A
Koo =2 wi(tw(ro) (5.22)

For this K the eigenfunctions satisfying
Ko,=kw,
are
,{t) = w,(r)
and

K,=1 (5.23)
Note that, as should have been apparent from the discussion, the eigenfunctions
of K do not form a complete set. For this case, however, &/uy, and u,y
are orthogonal.

Problem. Consider a two-particle . Each , is a Slater determinant made up
of two single-particle wave functions taken from the set wy, w,, w,: the ground
state Y, involving w, and w, ¥, just w, and w, and ¥,, w, and w,. Show that
the K matrix in this example is

K=
Wi (EIwo(ro) + wir)w,(ro) od(r)w,(ro) wi(r)w,(ro)
w3 (r)wo(ro) wirw,(ry) + wirw,(r,) —wi(r)wo(ro)
w3 (r)w,(ro) —wi(mw,(r,) wi(r)wo(ro) + wirw,(ro)

Show that eigenvalues of K are 1 with one exception, for which the eigenvalue
is —2.
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Returning to (5.15) it is obvious that any inversion of that equation must
treat eigenstates of K with eigenvalues of 1 with care. The corresponding eigen-
functions are denoted w!". These solutions are just the superfluous solutions
mentioned below (5.9). To prove this, consider

Pl Y O, > =) =Y (K, |0l

But the right-hand side equals zero because w!!) is an eigenstate of K with
eigenvalue of 1, so that

<¢v("1 :

m"o'/’ >=0

It thus follows that

<J:/Za)(”(ro)l// ‘szZw‘”ro >=O

and therefore

dZwm%—O (5.9)

the condition for the superfluous solution. Moreover, and this is an important
point, the final expression for P need not contain any dependence on w!", since
these terms will not contribute to

PY=oS uy,

Hence the use of the term superfluous. This fact manifests itself in a property of
U defined by (5.12) and (5.14), namely

CoPIU> =Y LoP|U,>=0 (529
To prove this, insert (5.15) for U, yielding
(P|UD = P11 = K)u)
Because of the hermiticity of K,
(P|UY ={(1 = K)o{P|U» =0

Thus the superfluous solutions are orthogonal to U
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We now return to (5.15):
U=(1-K)u

The general solution of this equation is

w,|U .
u= Y wa< o >+terms in 0"
Ka# 1 1 —x, ’

205

In accordance with the discussion just concluded, the terms in w!" are dropped,

so that
CoPluy=0
and

(0JU>_ 1

W, = -
G-k, 1-K

where the operator 1/1 — K’ is defined by

I ¢ oo},

1—K  Z1 1—«k,

It is convenient to rewrite (5.26) as follows:

u=U+ Y wa<wa|U>( 1—1)

Ke# 1 1—'%

where we have made use of (5.24). Finally,

u=U+ Y 00U Ka

K, # 1 Ka
In terms of K,

1 K
U= U=U+ U
1—K 1-K

Recalling that U, = (y,|'¥ ), one obtains

P‘P=L:{Zuv|//v=L;JZ{UV+ Y a),,v<a)(,,|U>IK°‘)‘C :Illl\,

2% 1

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)
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In terms of K,

P= o [Z ¢v><¢;+ Z l//v>(1 flK')wv(%]: M[;Z; l//v> (1_1K)W<¢]

(5.30)

This is the projection operator which, when applied to ¥, yields &/ > uy,, with
the requirement that none of the y, which appear in this sum are present in
QY. This requirement must be satisfied if P\ is to involve a finite number of
¥,. Equation (5.30) reduces to the simple form Y, >y, when all the «, are
either zero or 1.

With P determined, it now becomes possible to develop an explicit statement
for the Schrodinger equation (2.3) and (2.4) or (2.7). Let us use the last form,

[E — (Heg)pp]P¥Y =0 (5.31)

To reduce this equation to a set of coupled equations in one variable, namely
the distance between the projectile and the center of mass of the target,
premultiply (5.31) successively by ¥, and integrate over all the coordinates of
the target nucleons. Note from (5.10) and (5.12) that

U,=W,I¥)=<y,|PY) (5.32)
Since W is an arbitrary antisymmetric function of (4 + 1) variables, the second

pair of equations holds for any such function. Equation (5.31) becomes the set
of coupled equations

ev,= 3 (.

v

|
Heff o Z” wv' (1) Uv”> (533)

— K

In this equation, the effect of the projection appears explicitly in the Hamiltonian
term. If we now introduce the function u,, (5.33) becomes

EZ(I - K’)vv'uv’ = <l//v

Heff‘dz wv'uv'> (534)

The term on the right involves both direct and exchange terms. The term on
the left is modified by the inclusion of normalization corrections. Note, however,
the explicit omission of the eigenfunctions of K with unit eigenvalue. Since K/,
can be written as a finite sum of factorable terms its inclusion does not present
any special difficulties. If all the eigenvalues of K are 1 or zero, K’ = 0, with the
result that one need only include the exchange terms in the effective Hamiltonian
to take account of antisymmetrization.
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An alternative form for (5.34) is obtained by reintroducing the operator K:

EY (1=K, Juy +EY. o0y ollu, = <./;v

Heff"dzuv'lllv'> (535)

Or because of the orthogonality between w!!) and u,
E < ¥,

In other words, one can use the naive wave function o/ > u,, in the Schrodinger

equation as long as u is orthogonal to all the eigenstates ! of K with eigenvalue

1. Which form, (5.34) or (5.36), is used is a matter of convenience. If the !V

are known a priori, it might be more convenient to use (5.36). On the other

hand, if all the eigenvalues of K are zero or 1, (5.34) might prove more useful,

especially since the orthogonality w!"’ to u is an automatic consequence of (5.34).
Orthogonality of w!" can be enforced by projection:

‘ﬂz uv'./jv’> = <l/lv =Weff'S%Z‘ uv"l’v‘>

CoPluy=0 (5.36)

a=u—y o(Pu)
The resulting o/ > 4,y remains a solution of (5.36) since
Y oy,

is identically zero for all « [Saito (69)].

Another method that is particularly useful when asymptotic conditions need
to be satisfied explicitly is used by Auerbach, Gal et al (72). For example, rewrite
(5.34) [or (5.35)] making the orthogonality of w{" explicit by introducing the
projection operator ¢, and p,

g =1-Y o> {(a"=1-p, (5.37)

Then both equations can be written in the form
q,Epu=gq,hu (5.38)

If(5.34)is used, pisjust 1 — K'. The identical result is obtained if (5.35) is used.
Writing g, =1 — p,, (5.38) becomes

(Ep—hu=p,(Ep—hu
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Let
(Ep—hu'© =0
and
(Ep —h)g ™ =1
Then

u=u®+9p (Ep— hu
=u® + Y F WS LoV (Ep — hyu)

The orthogonality requirement becomes

<w$’1)|u> — <a):,”lu(°)> + Z<w;}1)|g(+)wgll)><w:‘1),(Ep — h)u) =0

Defining the matrix § by
950 = (ORI a1
these equations can be solved for {w'"|(Ep — h)u):
ColM(Ep—Ru) = — 3 (g7 Depl 016>
»
Finally,

u=u? =Y GO 0>(G Vg Plug) (5:39)

Problem. In (5.34) introduce the wave functions

Q" = Z (\/ 1 - K’)vv’uv'

and derive the coupled equations for Q,. Show that the effective Hamiltonian
for this equation is Hermitian.

It is perhaps unnecessary to add that H,, in (5.34) or (5.36) can be replaced
by H, and thus provide a description of the prompt processes after averaging
over the fine structure. The supplementary condition in (5.36) must, of course,
still be satisfied.

In summary, to take into account the Pauli exclusion principle and
simultaneously limit the space 2, one first evaluates K. This matrix depends
——only on the ground state, Y, of the target nucleus and a finite number of it
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excited states, y,. Once K is obtained, and its eigenstates w, determined, one
can proceed to solve (5.34) using only those w, whose eigenvalues differ from
zero or 1. Or using only those with eigenvalues of unity, one can solve (5.36),
including the supplementary condition. Determining the eigenstates of K is not
a formidable task, as K is bounded and Hermitian and depends on one
coordinate. However, the target wave functions should include center-of-mass
effects, which does introduce some complication.

If determinantal wave functions are used for y,, one avoids calculating K
altogether, since then it is known that all the eigenvalues of K are 1 and that
the eigenfunctions of K are just the single-particle wave functions making up
the determinant. However, the center-of-mass problem remains.

The discussion above is restricted to scattering, elastic and inelastic. The
effects of the Pauli principle for particle transfer reactions are discussed in later
chapters.

6. ALTERNATIVE REACTION FORMALISMS

Such a wide variety of reaction formalisms have been proposed that it is not
possible to present an adequate review of each in this volume. We have, therefore,
chosen to describe a few of the more familiar examples. To the extent that each
one is exact, they should give identical answers to a specific problem. The
advantages of a given approach depend more on the ease with which it can be
applied to a given physical situation. One should especially ask: Is it in a form
that permits a direct physical interpretation of the experimental results, and
similarly, does.it have predictive capability? Can it make good use of what is
known about the nuclear structure of the colliding systems, of the compound
system, and of the produced particles? Can its parameters, in principle, if not
immediately, be derived from fundamental nuclear theory, that is from the
underlying nucleon—nucleon force, or less ambitiously from a model
Hamiltonian plus a residual interaction?

Fortunately for the comparison with experimental data, the form of the results
for the transition amplitudes and cross sections is the same for all these
formalisms. This might be referred to as a formalism invariance. An important
reason for this similarity lies in the requirements of unitarity. Unitarity, when
applied to a single-channel process, requires that the S matrix satisfy

IS12=1 or S=e%° §real (6.1)
This condition is satisfied by the following form [see (2.44)]:

1 —i
S = ezldm__”z (6.2)
1+ inX"

where ¢p is a smoothly varying function of the energy and £ is a real function
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which contains that part of § which varies rapidly with energy. The function
¢p gives the potential scattering phase shift so that the potential scattering §
matrix, Sp, is

Sp=e?i¢r
and (6.2) can be written
S=SpSg (6.3)
where
| —inA”
= — 6.4
F  tin (©4)

The words smoothly and rapidly are not quantitatively defined, so that the
factorization equation (6.3) is not completely specified, and indeed, different
reaction theories will use differing Sp.

The transition matrix .7 [ = (1 — S)/2=ni] is

7=yp+Sp7R (6.5)
where
1-S |
T p=— .P="—e‘¢Psm¢P
2mi i
and
e
T pg=—— _ (6.6
R vina (69)

Equation (6.5) has the same form as (2.47) in the single-channel context.
Moreover, the resonance representation of 4 can in general be given by

=ty B 6)
2n~E—e '

where yZ and e, are real. In the case of a single isolated resonance, at say ey, 7
becomes

I = —le“”" sin ¢p + e21%” (1/2?1)[?’(2)/2(E —eo)]
& 1+ (i/2)[yo/(E — eo) ]
or
7 = —Loior| singy—eron 702 ] |
T = ﬂ:e ':sm ¢p—e E— ey +(0/2);2 (6.8)
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which is just the single-channel resonance formula, showing both a potential
scattering term and a resonant term. Equation (6.8) is a consequence of unitarity
plus the statement that the two kinds of amplitudes are involved: When there
are many terms in the series for 2, 7 is not as simple. However, it should be
possible to expand 7 in terms of the poles of the S matrix, E,, such as that
given by (2.33):

. 24
T =T p+eriory - E (6.9)
" E—E,

so that

oy _ (12m) Y v (E—e)]
1E—-E, 1+ 1/2)21[)’3/(E—€s)]

M=

77—
I r=
u

(6.10)

Recall that both &/, and E, are complex numbers, so that the number of
parameters in the middle expression is 4n if the number on the right side is 2n,
implying that there are 2n relations between {</,} and {E,}. These relations
can be obtained from (6.10). First expand both sides of (6.10) in a power series
in inverse powers of E. The left-hand side gives

1 1
gR=EZMu+EZ"Q/#Eu+"'

and the right-hand side gives

A e o |

1
Z"du = gz?f

so that

1 i
Z"Q/uEu = zn[z)’fes - ‘i‘-zvsz)zil

Since {y?} is real,

Yimel,=0 6.11)
1
YRedl,= 37 (6.12)

An alternative but not independent requirement states that the poles of the
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right-hand side of (6.10) occur at E,. These poles are the roots of

n

ﬂ(E—es)+§Zv:ﬂ(E—e.)=0

s=1 t¥s

The sum of the roots equals the coefficient of — E®~ 1, so that

i
$£,-5(e-17)
implying that
ReYE,=Ye, (6.13)
and
ImYE,=—31Yy2=—n) Red, (6.14)

One can verify from (6.8) that (6.11) and (6.14) hold for an isolated resonance:
Ime/, =0

1
Red/,= ——ImE,
T

Equations (6.11) and (6.14) state that these equations hold on the average for
overlapping resonances. One can readily continue this process. The next order
yields

2n }, (Re/ )(ReE,)=Im Y EE,

u>v u>v

However, these additional relationships are not informative. The major point,
to be gained from the discussion following (6.10), is that the parameters &/,
and E, are not independent, if § is to be unitary.

The sequence of equations (6.5), (6.6), (6.7), and (6.9) present an expansion
of 7 in terms of the poles of the reactance matrix ¢, which automatically
satisfies unitarity or an expansion in poles of the S matrix, where, however,
unitarity is not obvious but is secured through relations such as (6.11) and
(6.14). The form of these results is independent of a particular reaction formalism.
The difference among the formalisms lies in their statement regarding the
potential scattering amplitude .7 , and the consequent differences in the inter-
pretation of the parameters yi, e, o, and E,.

As an example, consider the potential scattering amplitude 7 ,. In an early
version of the #-matrix theory (to be described below), 7 is taken to be
hard-sphere scattering for which the phase shift for the zero angular momentum
I =0 partial wave (and for large energies for all /)is — kR, where R is the radius
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of the sphere. In the formalism of Section 2 it is the scattering caused by the
Hamiltonian H,,. How can these give the same total amplitude? Clearly,
hard-sphere scattering cannot be correct since it presumes an infinite potential
energy. It must therefore be compensated by taking many terms in the series
for . Summing up the effect of distant resonances, whose energy dependence
over a small interval in energy is weak, modifies the hard-sphere shift,
presumably into one whose energy dependence is more in accord with scattering
caused by a potential. Moreover, we see that these distant resonances are not
physically meaningful. Choosing the potential scattering does affect the values
for the widths [see, €.g.,(2.22)] and the resonance energies. Consistency requires
that the same description of potential scattering is used in calculating or
developing the energy dependence of the width and resonance energy.

The analysis of experimental data exhibits a similar problem. In fitting a
cross section to either (6.6) and (6.7) or to (6.9), it is necessary to determine the
parameters ¢, as well as say y, and e,, and to decide how many terms in the
series over u to use. Changing that number will modify the empirical values of
Tw €, and ¢p. The pragmatic response to this issue is to include the number
of terms as one of the parameters in obtaining a fit. In other words, one looks
for a number of terms such that the inclusion of an additional one in the sum
over u does not affect the ¥ for the fit and does not modify the values of the
parameters obtained from the data. One must also require that the potential
~ phase shift does not vary rapidly with energy. It is clear that in presenting an
analysis of data, the method used in obtaining the parameters should be carefully
stated. Of course, these problems do not arise if the resonance is isolated.

Problem. Write the S matrix in the presence of doorway states is
S=SpS,8,

where Sp is the S matrix for potential scattering, S, for doorway state resonances,
and S, for fine-structure resonances. Show that

T =T p+8pT p+SpSpT, (6.15)
We turn now to some examples of reaction formalisms. Our general aim will

be to relate them to the general discussion given in Sections 2 to 6 of this
chapter.

A. The Theory of Kapur and Peierls’

This theory sets a boundary condition at each channel radius R.. In the
single-channel case, the boundary condition to be satisfied by the resonant

‘Kapur and Peierls (38).
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state is

X

or

“—ikX, atr=R (6.16)

The radius R is any distance beyond which the nuclear interactions vanish. The
consequence is a resonance series for the S matrix [see (2.46)] of the form given
by (2.33). The parameters, the widths and resonance energies, are real but energy
dependent. Equation (6.16) simply states that X, at R is an outgoing wave with
wave number k. The generalization of (6.16) to several channels requires that

0X
T ik X, atr=R, (6.17)
"

where the subscript ¢ denotes the channel and k. is the corresponding wave
number.

The theory described in Section 2 of this chapter provides a generalization
of the theory of Kapur and Peierls free of the use of a boundary condition
radius or separation into partial waves. To demonstrate this point, consider
the eigenfunctions Q, of the operator H,, + W,, discussed in the material
following (2.31). They satisfy

(E,— Hop— Wpo)2, =0 (6.18)

where
W,,=H ;1 H
QQ QPE1+)_HPP PQ
Note the parametric dependence of , and E, on E, the energy of the system.
Equation (6.18) is equivalent to the coupled equations

(E—Hpp)p, = HpoQ (6.190)

PQ=%u

(E = H o), = H o1, (6.19h)

where y, are the open-channel wave functions associated with the resonant
state Q,. Equation (6.18) is obtained if the solution of (6.194a) is taken to be

1

- H, O 6.19¢
B (6.1%)

Lu PO
The y,, then, satisfy outgoing wave boundary conditions which are the natural

generalization of (6.17), concluding the argument. As in the case of the
Kapur—Peierls theory, the resonance widths and energies are functions of E.
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This dependence is weak; its strength determined by the energy variation of the
open-channel wave functions, that is, of the prompt amplitudes. Indeed, this
-energy dependence is desirable. It takes into account the effect of the energy
dependence of the prompt amplitudes upon the resonance parameters. This
dependence could be significant if the resonance is wide, or if many resonances
in a substantial energy domain, AE, are being considered.

B. #-Matrix Formalism?*

This method can be considered to be a special case of the formalism, described
in this chapter, in which the projection operator P is geometric. Conceptually,
the simplest operator, which projects out of the exact solution ‘¥, a part that
has the same asymptotic behavior as W, is one that is unity outside the region
in which the nuclear interaction takes place and zero inside; that is, P =1 as
long as |R, —r,| > R_, where r, is the coordinate of the ath nucleon, R, the center
of mass of the rest of the system, and R, is the interaction radius appropriate
for a channel c¢. The operator Q then projects into the interaction region. The
problems raised by the Pauli principle are thus encountered only in 2 space.
In £ space the form used in (5.8) suffices. This assumes that the problems raised
by the long-range Coulomb forces are not important.

However, the use of a spatially discontinuous projection operator does give
rise to problems that must be carefully treated. It is necessary, for example, to
ensure the continuity of total ‘P; that is, the two discontinuous functions P¥
and Q¥ must join smoothly at the surface of the interaction region, |R, —r,| = R,
for all a. The kinetic energy operators must be suitably defined. Since PV is
discontinuous, VZ(P¥) will be singular on the surface of the interaction. Similar
remarks apply to QW. But W = PW¥ + QW will have no singularities at this
surface. Identical problems of this kind occur in the theory of boundary
perturbations and Green’s functions [Morse and Feshbach (53)] and can be
resolved in the same way. The value on the surface of the interaction region of
V2(P) is taken to be its value as one approaches the surface from the field-free
region, that is, as |R, —r,| —» R{*). Similarly, VZ(Q¥) at this surface is defined
in the limit |R, —r,| — R{™), that is, as the surface is approached from the
interaction region. Continuity for ‘¥ is ensured, as in the Green’s function case,
through the use of a singular surface interaction. In the case of the Green’s
function for the Laplace equation, this procedure is equivalent to assuming the
presence of compensating monopole and dipole layers. In the present context,
we introduce a surface interaction, %, which is present in both the field-free
and interaction regions. # is defined by

1 d
B=—YB, B,=bSR.—p)| B+ 6.20
A+1§ ( p)( ap) (6.20)

-4

*Wigner and Eisenbud (47).
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where

P = lRairal

and &/0p, is the normal derivative to the surface, p, = R,. B, is an arbitrary
constant. The constant b, can be determined from the single-channel case to
be h%/2u,, where p, is the reduced mass for the channel. The interaction region
has been assumed to be spherical. It is a simple matter to generalize (6.20) to
the case of a deformed shape. The coupled equations (2.3) and (2.4) are replaced by

(E—H,p— B)PY = — B(QV) (6.21)
(E — Hyo— B)QY = — B(PY) (6.22)

We see that the requirements of continuity provide the coupling between P¥
and QW. Continuity is assured by these equations since the singularities on
both sides must match. Note that by defining VZ(P¥) [and VZ(Q'¥)] as indicated
above, H,, and H,, will not be singular at p, = R.

The functions @, of (2.9) are solutions of the homogeneous form of (6.22). We
shall call these functions X ;. They satisfy

(E;—Hpp— B)X; =0 (6.23)

Integrating over a small interval in p, containing R, we find that X, satisfies
the boundary condition

8X,

-

0P,

+BX,=0 atp,=R, (6.24)

This condition, together with
(E,—Hyp)X;,=0 (6.25)

are equivalent to (6.23). Since we are dealing with an “interior problem,” the
spectrum of E; will be discrete; moreover, because of the nature of H 00 it will
be unbounded from above. The X, form an orthonormal complete set. The
potential scattering wave functions x') are, similarly, solutions of

(E— HPP);C( =0 (6.25)

In addition to satisfying the boundary conditions at infinity indicated by their
superscripts, they must join continuously with the internal wave functions, H,,
consists only of the kinetic energy operator and the long-range electromagnetic
interactions.

These results are already sufficient to establish the connection with the
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Wigner—FEisenbud #-matrix theory. However, we can go one step further and
derive the relation between the wave function and its derivative needed to obtain
the transition amplitude in the #-matrix theory. By eliminating Q%W from (6.22),
we obtain the familiar equation for P¥:

1
T e

By requiring that the coefficient of the J function singularity in the #-dependent
potential be zero, then integrating over a small interval in p, including R, yields

the result, after expansion in eigenfunctions X ,, that

NS LTI ALY 627

where W(R;a) is the wave function W evaluated with the ath particle on the
interaction surface, that is, with p, = R. Because of the symmetry of X ; and ¥,

(X, B> = <X;

SR — pa]< B —'i>\1’> (6.28)
0Py

To obtain the Wigner—Eisenbud result it is necessary to introduce a complete
and orthonormal set of surface wave functions E‘c“" (L,2,...,0—1, a+1,...,
A+ 1; RQ,). The superscript a indicates that the ath particle is on the interaction
surface; the remaining coordinates are for the other particles that are located
within the interaction region. The subscript ¢ indicates the channel. The ortho-
normality condition is

Jag“’*ag@dsa =35, (6.29)

where the integration is over the surface p, = R and over the interior volume
for the remaining particles. Expanding W(R; ) in terms of these wave functions
yields

Vaclae
a,= ZA é%s (Ba,. +b.) (6.30)
where
a,=(E@| ¥
and

b = <5§“’

é"P> 6.31
2. (6.31)
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are independent of « because of the symmetry of the wave functions. The
subscript on B has been dropped to avoid confusion. The quantities y,. are

30 =<CXHIEWD (6.32)

Equation (6.30) is the primary %#-matrix result as given by Teichmann and
Wigner (52). (There are some differences in notation.) The # matrix is given by

Viclae
R, =Y Liehic (6.33)
; El - E

The y,, are independent of the energy so that the energy dependence of # is
completely explicit. We see that when B =0, roughly speaking, # gives the
relation between the magnitude of ¥ on the surface and its radial derivative.

We shall not carry this development any further. To obtain the reaction
amplitudes, we need only note that the external wave functions can also be
written in terms of the surface wave functions multiplied by radial wave functions
which need to be adjusted so as to satisfy the joining conditions at the channel
radius p, = R given by (6.30) and the usual combination of an incident wave
and an outgoing wave at p,— 0.

This formalism contains two arbitrary parameters, R and B, for each channel.
The predictions are independent of their value. But the question can be asked
if there is a best value of each, so that accurate approximations can be readily
made. For example, it would be desirable if the series, (6.33), were limited to a
few terms. However, there are also some important requirements that must be
met which act to increase the number of terms. It would at first seem reasonable
to propose the nuclear radius for R. But the intrinsic nuclear wave functions
do not fall precipitously to zero at R, nor is the range of nuclear forces equal
to zero. Therefore, the region beyond R is in fact not nuclear force free. One
could attempt to take this into account by including these terms in H,,, but
then the effects of the Pauli principle would have to be explicitly considered.
An alternative procedure would be to take a larger value of R, that is, one
larger than the nuclear radius. But then the density of the levels E, increases
and the number of terms in the series for R . which would need to be considered,
increases correspondingly. The method adopted limits the series to a few terms
in the region of energy of interest and considers the remaining terms as an
empirical parameter with a weak energy dependence. The effect of this procedure
is to modify the potential scattering from that given by (6.25’), in other words,
to introduce a potential term in the external region. For further discussions of
this problem, the reader is referred to Teichmann and Wigner (52), Thomas
(55), and Lane and Thomas (50).

The use of the boundary condition operator was introduced into the theory
of nuclear reactions by Bloch (57) and elaborated by L.ane and Robson (66, 67).
The description above is taken from Feshbach (62). It permits the direct use of
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the formalism in Sections 2 to 5 to evaluate the consequence of the #-matrix
assumptions.

C. S-Matrix Formalism?

The Kapur—Peierls expansion employs the eigenvalues of the operator
Hyo+ Wohoo where the dependence on the energy E of Wy 1s regarded as
parametric, so that the eigenvalue E, and eigen function Q, are both functions
of E:

[ELE) = H gy — Woo EYIQ(E) = 0 (6.34)

u
This is an excellent approximation as long as W, (E) varies slowly with E. If
we have been careful in selecting the prompt channels forming 2, this will be
generally true unless the resonance width is an appreciable fraction of the
single-particle width. However, this condition is not always satisfied, particularly
when the target nucleus is light. It therefore becomes necessary to improve on
this approximation by solving

[, ~ Hypp— Wool€)A, =0 (6.35)

This is the procedure that was adopted by Lemmer and Shakin (64). From A,
[compare with (6.19¢)] one can obtain the prompt wave function:

1
PY), = ——H, A 6.36
( )u é[}L"’) —HPP PQ 1’3 ( )

For a given channel =, this wave function satisfies the boundary condition

¢ APY), ik, (P¥), (6.37)
0Py

where

k2= %(@@u —,) (6.38)

The quantity &, is the excitation energy of the residual nucleus. Since &, has a
negative imaginary part, P¥, will grow exponentially with increasing p,. This
exponential increase can be interpreted [Humblet and Rosenfeld (61)] as a
consequence of the fact that one finds at p, those particles that were emitted
by the system at a time (t — p,/v), where v is an average velocity. Since the time

*Siegert (39); Rosenfeld and Humblet (61).
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dependence of the state ¥, is

e—im‘,(r/h

this emission occurred when the amplitude of W, was larger by the factor
exp[(Imé&,)p,/vh]. This behavior is the familiar one; solutions satisfying
boundary condition (6.37) are often referred to as the Gamow solutions, used
by Gamow and Condon and Gurney in their theory of x-decay.

The expansion of the S matrix in terms of its poles was initially carried out
by Siegert (39) for the elastic scattering case and was further developed by
Humblet and Rosenfeld (61) to take account of reactions generally. However,
because of the exponentially diverging nature of the wave functions associated
with the poles of the S matrix, the traditional methods of expansion in terms
of an orthonormal set are not possible and these authors had recourse to
exploiting the analytic properties of the S matrix on the complex energy plane.
[For a resolution of the expansion difficulty, see Feshbach (79).]

This problem is avoided, in the formalism presented in this chapter, if 2
contains only closed channels. Lemmer and Shakin (64), for example, simply
solved the secular equation (2.36), which is just a form of (6.35). The solutions,
A,, are expanded in terms of the closed-channel wave functions so that there
is no normalization problem. The A,’s and their adjoint functions AL"’ form a
biorthogonal set:

(ALA’|A‘.> =0,, (6.39)

We may therefore expand the propagator in (2.30") to obtain

+CNH A AW (+)
7 =701y S Heo g<gJ orli ) (6.40)
u — O,
where &, and A, do not depend on the energy E. '

This is not an expansion in terms of all the S-matrix poles. Referring to (6.3),
S =SpSg

the expansion has been made in terms of poles Sy only, the number being given
by the size of the 2 space. The advantages of this procedure are quite manifest.
Not only can one obtain an expansion in terms of physically significant matrix
elements and energies, but one can also select the energy range over which the
expansion is made by selecting the set @, and one can avoid unimportant poles.
It is worthwhile to recall that in single-channel potential scattering, the S,
matrix for a attractive square well has an infinite number of poles. The
disadvantage of expansion equation (6.40) is the lack of independence of the
various matrix elements and energies &, because of conditions imposed by -
unitarity.
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D. Microscopic Theory

In a microscopic theory of nuclear reactions, the various quantities, such as the
widths and the resonance energies and the matrix elements entering the coupled
equations (5.33), (5.34), or (5.35), are all evaluated from “first” principles, namely
using a nuclear force and a model of the target and residual nuclei. The analysis
of this chapter has been employed in this way by Lemmer and Shakin (64), and
Friedman (67) for light nuclear targets. These authors use a shell model or
deformed shell model description of the target. Bloch (66) proposed a generaliza-
tion of the shell model for reaction problems which has been developed by
Mahaux and Weidenmiiller (69) who have written a treatise entitled Shell Model
Approach to Nuclear Reactions. We briefly discuss some of these attempts below.
It will be convenient to employ the second quantization formalism of Chapter
VIl in deShalit and Feshbach (74). We briefly review some of the results we
shall need in the present context. In the second quantization formalism, the
Hamiltonian is expressed in terms of creation and destruction operators, ¥ (r)
and Y/(r), respectively, where r, as usual, includes not only spatial but also spin
and isospin variables. These operators satisfy the anticommutation relations

W, ) =0 —r) (1o, d)} = {9} =0  (641)

In terms of these operators the number operator, N, is given by

N = J./?T(r)./,(r) dr (6.42)

An A-particle state is given by

1 -~ -~ -~ -~
1 18 STS JO L W'#T(r/a)l/f*(r,q—1)“'¢T(r2)'/ﬁ(r1)|0> (6.43)

where the vacuum state |0) satisfies
Y(0]0> =0

The Fock space wave function, with a definite energy E, is given by (E|r, -1 ).
An (A + 1)-particle state is given by

1

vAa+1

The normalization of the state given by (6.43) is

AL IS 1) FRE O

1
(r'l-'-rA|r1-~-rA>=—Ideté(ra—ra) (6.44)
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In problems dealing with the shell model it will be convenient to expand the
operators x// and t/ﬁ in terms of single-particle wave function ¢,, forming a
complete orthonormal set of eigenfunctions defined by
(T+ U)o = &0 (6.45)
where T is the kinetic energy and U is the shell model potential. Let
YO =Yake,  ak) =@ (6.46)

Then the coefficients satisfy

{ak),a'(k)} =o(k k),  {a'(k),a’(k)} = {a(k), a(k)} =
a)|0>=0  <0la’k)=0
N=Ya'Wak) (647)

The operator K ,,.(r, ) can be expressed in terms of the operators Y. Note that
K, . (rry)= Jl//*(l‘ | SYRIS ) [V200 1 790 YRR JY 17| SRRRY )

=AJ(vlr,rz,...,rA>(r0,r2,...,rAlv’>dr2--~drA

Using (6.43) as follows:
1 it
1 55 PYPPN J) =ﬁd/ @lry--ry)

it follows immediately that

K, (5,70) = g o)l v' (6.48)
Inserting expansion (6.46) gives
K, (r,10) = Y ok (1) @ilro) kv K| vK)

where

(kv KIVEDY = (vlatK)ak)|v' > 7 (6.49)
The eigenvalue problem for the K operator can now be written as follows:

Y (vlatk)ak)vIWSE, =k, W@ (6.50)

vk’
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Equation (6.49) demonstrates again that the set a]|v)> is not orthogonal, since
the overlap between two such states is given by

rlak)at )y =5,,8,, — (k v|K|vk'

Diagonalizing 1 — K is a method for restoring orthogonality, and consequently,
removing overcompleteness.

With the use of (6.49) it is a relatively simple matter to determine the matrix,
K, for a set of Slater determinants for states v. Friedman (67) provides several
examples:

Example 1. The states |v) are single-hole states, N in number, so that
[v> = a(k)I2>
where Q is an (A4 + 1)-particle state. Then the N? x N2 matrix for K is

vla'tky)alk;v'y = <Qla'(k)a"(k;)alk,a(k,) Q>
= 8(i,i16(j,J) — 6(0, ) (', j') (6.51)

This matrix can readily be diagonalized. The eigenvalues «, are found to be
unity with a multiplicity N2 —1, and 1 — N.

Example 2. The states |v) are single-particle states, N in number, so that

v) =af(k)|Q) i=1,...,N
Then
(vla'(ky)ak)v'y = (Qlalk)a’(k;)ak)a’(k,)IQ>
=3(j,1)00, j') (6.52)

In this case k, =1 N(N + 1)/2 times, and «,= — 1, N(N — 1)/2 times.

The problem following (5.23) deals with a simple case of three two-particle
states with eight eigenvalues «, = 1 and one equal to — 2. Although these results
are obtained using Slater determinant wave functions for ¢, they can be
generalized to a linear combination of the determinants, since such a
combination of the determinants is generated by a unitary transformation. As
a consequence, the eigenvalues spectrum, x,, remains unchanged although the
corresponding eigenfunctions of K will be transformed. This is an important
remark since it permits the application of the foregoing analysis to more accurate
descriptions of the states of the target nuclei, including contributions from
unbound orbitals, preserving orthogonality and satisfying the Pauli exclusion
principle.



224 FORMAL THEORY OF NUCLEAR REACTIONS

With the eigenfunctions and eigenvalues of K determined, one may now solve
the scattering problem using the most convenient of its formulations, (5.33),
(5.34), or (5.36). The procedure discussed by Bloch, Mahaux, and Weidenmiiller
makes two approximations. In the first place it limits the number of nucleons
in the continuum of the shell model potential to one, thus restricting the
application to scattering (including charge exchange) reactions and not
permitting the treatment of particle exchange reactions. This is an approxi-
mation even for scattering processes since states with two or more particles in
the continuum may be of importance, indeed are, for accurate descriptions of
the target wave functions, as mentioned above. The second approximation, not
completely independent of the first, limits the description of the target (A4 particle)
states and those of the (4 + 1) compound system to linear combinations of
Slater determinants formed from bound single-particle wave functions only.

A set of states for the full (4 + 1)-particle system is constructed. The “bound”
states @, are shell model states, which like the target states consist of linear
combinations of Slater determinants constructed from 4 + 1 bound single-
particle levels. These are finite in number. The energy of these states can be
above the threshold for particle emission so that they will generate resonances
as described in the introduction to this chapter. The scattering states of the
(A + 1) system, y.(E), are constructed by antisymmetrizing the product of the
wave function for a particle in the continuum and a target wave function.
Because of the special construction of all the states from single-particle wave
functions which are eigenfunctions of a common energy-independent single-
particle Hamiltonian, these scattering states, together with the bound states,
form an orthogonal set which we will assume is appropriately normalized. We
shall refer to them as the shell model states. Thus by making the assumptions
listed above, the Pauli principle and problems of overcompleteness are
avoided.

The formalism developed by Mahaux and Weidenmiiller (69) can be expressed
in terms of projection operators. These are explicitly constructed from the
(A + 1)-particle shell model states. The operator @ projects on to the set @,
while P projects on to the shell model scattering states y,.

P=3% JdE'xc(E'D (x(E) (6.53)
0=>9,}<, (6.54)

These are of course not identical with the P and Q used in Section 5. However,
the general analysis of Section 2 is applicable. Equations (2.3) and (2.4) become

[E — (Ho)pp— Vpp] P = Vo, OF (6.55)

[E — (Holgg — Vool Q¥ = VopP¥ (6.56)
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where the full Hamiltonian H is
H = Ho + V

and H, is the shell model Hamiltonian.

For further discussion of this model the reader is referred to Mahaux and
Weidenmiiller’s book (69). It is clear that its limitation to one particle in the
continuum precludes a realistic description of a compound nuclear resonance
and a fortiori of transfer reactions. It can be used to describe doorway states,
particularly those which are constructed from 1p-1h states excited, for example,
by photon absorption [Bloch and Gillet (65)]. This becomes a valid description
if V is complex, to allow for energy averaging over compound nuclear
resonances. The model is very useful as well in providing a description of the
structure of the S matrix, which as we discussed earlier, is insensitive to
dynamical details.

7. SUMMARY

In this chapter a formal theory of nuclear reactions is developed, based on a
separation of the channels of the system into prompt and time-delaying states.
This is accomplished formally through the use of projection operators P and
Q. Without specifying any but general properties of these operators, a theory
in which direct reactions and compound nuclear resonances appear
simultaneously and on equal footing is developed in Section 2. Both the case
of an isolated resonance and that of overlapping resonances are treated. Still
maintaining the generality of P and Q, the energy average of the transition
amplitude is discussed in Section 3 and a derivation of the optical model
exhibited. It should be remembered that this optical model is not necessarily
the single-channel optical model but can include many channels, so that it
provides not only a description of elastic scattering but also one of inelastic
scattering and direct processes generally. The theory of the doorway state and
its relationship to intermediate structure in the cross section is the subject of
Section 4. Exit as well as entrance doorways are treated, as well as the effect
of a doorway resonance on the fine structure resonances. In Section 5 we
consider a more specific P together with the problems of overcompleteness, the
Pauli principle, and the lack of orthogonality which occur if the prompt wave
function is expanded as a finite series in the wave functions of the target nucleus,
as is appropriate for the discussion of elastic and inelastic scattering. These
problems, as encountered more seriously in transfer reactions, will be discussed
in a later chapter. Finally, in the last section the general methods (Section 2
particularly) developed in this chapter are compared with other formalisms,
including that of Kapur—Peierls, Wigner and Eisenbud, and Bloch, Mahaux,
and Weidenmiiller, Many contributions to our understanding of nuclear
reactions that are appropriate to this chapter have not been discussed. There
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is the work of Macdonald, Tobocman and his collaborators, Danos and Greiner,
Thaler, Shakin, and many others. Of course, no attempt has been made to
provide a historical perspective.

Reactions induced (or produced) by y-rays can readily be included without
modification of the general development. As expected, the width of a resonance,
', will now contain a component, I',, because of the possible radiative decay
of a resonance. In addition, direct y-ray as well as doorway state processes are
automatically described by the theory, which is discussed by Estrada [Estrada
and Feshbach (63)].

APPENDIX. THE BOUNDARY CONDITION MODEL
FOR NUCLEAR REACTIONS?

In the boundary condition model, configuration space is divided into two
regions, one in which the strong nuclear interactions prevail, r < R, and one in
which the potential is zero (for neutrons) or Coulombic (for charged particles).
R is, roughly speaking, the nuclear radius. No such sharp boundary exists in
nature. But the model is useful because it isolates the major physical effects,
the corresponding parameters, and qualitative and quantitative estimates of
their numerical values. The model was developed in a simple form by Feshbach,
Peaslee, and Weisskopf (47) and in a more complete and sophisticated form by
Wigner and Eisenbud (47). It has been used by Lomon and Feshbach (68) to
study the nucleon—nucleon interaction, by Lomon (89) and by Jaffe and Low
(79) for elementary particle reactions.

In this section we use the simpler description of Feshbach et al. (47). Spin is
neglected. A partial wave expansion is assumed. The radial wave function for
the Ith partial wave, corresponding to an orbital angular momentum of /A, is
given by (1/r){,. The boundary condition to be met by the external wave function
(r>R)atr=Ris

i =R[d‘["/dr} (A.1)

where f; can be a complex function of the energy. The resultant S matrix is

E[,/kR —wiw,
wit fi/kR — wi*/w,

— ,2id)
Sl =e =

(A2)

where wi*’ are solutions of the Schrodinger equation for r> R evaluated at
r = R. The prime denotes derivative. The functions w{*’ for uncharged particles

*Feshbach, Peaslee, and Weisskopf (47).
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have the following asymptotic dependence:

wit() — eI (A.3)
[~
w((() — e~ 1m2)
{0
{=kr
Let
Wi = e Y = [wile (A4)
Then
[w,||wi|sin(g; — 1) =1 (A.5)
Let
wit A
W = Al + lSl (A.6)
Then
= Wi cos(o, — 1;) (A.7)
[wi
5 = : (A.8)
l [w|? '
The scattering matrix can then be written
. R)— A, +i
= e2ia (fi/kR) 1+ 1.51 (A.9)
(fi/kR) — A, — is,
The transmission factor T, is given by
I kR
T=1-I5=—4 m /ikRs) (A10)
(Re f, — kRA))? + (kRs; — Im f))?
Note that
7,20 and Im f,<0 (A.11)

Resonance Formula

Consider first I =0, for which A, =0. Let E, be the value for which Re f, =0.

Then in the neighborhood of E = Ej,

T,

T(E—E,) +T%4

K (A.12)
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and
) . ir
SO_I;_(eZmo__l)_eZum o .
(E—E,)+il)2
where
'=Ty+T;
2|Im f,|

" |Re fo/OE|;_y,

2R
|0Re fo/OE|g_p,

0

If the interaction region is a square well,
V=—V,—iW, r<R

then at resonance

0Ref0) R
6E E=Eo_ hz

pR?
Imfo = — ? WO
and
4W0(ﬁ2/uR2)kR

o=

(E — Eo)* + [W, + (h*/uR*)kR]?
These results are easily generalized for I 0. We find that

rore
12
(E — Eo)* +3(I)*

1=

where E, is the energy at which Re f, — kRA, =0, and

r(.” — 2|Imfl|
' |0(Re f,— kRs))/OE|;_g,
2kRs
ré= !

|d(Re f, — kRs)/E|_g,

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A21)
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The penetrability P, is defined to be

_ kRs, = <R (A.22)

|Wt|2

R Matrix (/=0)

Let X, be the solutions for the interior (r < R) problem satisfying

X
r=R

The eigenvalues will form a discrete spectrum. The energy accompanying the
eigenfunction X ; is E;. We now expand the exact solution  in terms of X; in
the region r < R. We assume that on the surface r = R:

EDWACLX(
where y.(s) forms an orthonormal set on the surface s, r = R. It then follows that

|: st Xaxe (S)]I: J‘ds XAX:'(S):'

¢(R) =

The # matrix is therefore

; g (A23)
where
hz
= \/: lexcdS (A.24)
2p
so that
¢(R) =3 R...(R) (A.25)

For the single-channel case, R, =R,

¢(R)=R_¢_.(R)
so that the f of (A.1) is

Jo= (A.26)

SI=
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Properties of s,and A,

é‘! 2 1
S'(C)T*_O’((zl— 1)!!) Mz
(A.27)
1
= =o(3)
so=1 Ay=0
S 1
S =— A=——— A28
a0 (A, 1509 (A.28)
c4 3(6 + 2
2= o gy A= —*(2;)4
9+32+(%) 9+3*+¢
For charged particles,
wi) =G, +iF, (A.29)

The properties of F, and G, are given by (A.70)—(A.74) in Appendix A at the
end of the book.
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