CHAPTER IV

RESONANCES AND THE STATISTICAL
THEORY OF NUCLEAR REACTIONS

1. INTRODUCTION!?

This is the first in a series of chapters in which the formalism of Chapter T will
be applied to various types of reaction phenomena that are observed
experimentally. Extensions of the formal theory will suggest themselves and be
developed.

We begin the chapter with the isolated resonance, the dependence of its
width upon projectile energy, and the interference of the resonance amplitude
with that for the prompt reactions not only for elastic scattering but for other
reactions as well. Threshold phenomena, the existence of cusps in the cross
section, are naturally considered at this point. These are followed by a
discussion of the case of many overlapping resonances. The very important
impact of the details of the empirical analysis of the data upon theoretical
considerations is stressed. It is now a quick step to the statistical theory of
nuclear reactions since analysis of the resonance data provides us with
distribution functions for the widths, spacing of resonance energies, and
fluctuations in the cross section. Correlations among these various quantities,
either self-correlations or cross-correlations of fluctuations in different
channels, are important statistical measures that can indicate the existence of
significant phenomena. The simple statistical theory for the average reaction
cross section can be formulated and compared with experiment, suggesting
the need, in some cases, for a more detailed statistical description of a reaction.

‘*Hodgson (87); Mahaux and Weidermiiller (79).
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232 RESONANCES AND THE STATISTICAL THEORY OF NUCLEAR REACTIONS

Channels; Angular Distributions. The description of the angular distribution
of reaction products differs according to the scheme adopted for labeling the
open channels. One common method is to couple the projectile spin i and the
target spin I to form a channel spin s, as indicated by the equation

I+i=s (1.1)

The vector notation is shorthand for |I — i| < s < I + i. The spin is then coupled
to the orbital angular momentum 1 to obtain the total angular momentum of
the system, J:

J=s+1=T+i+l (1.2)

This procedure is referred to as the channel coupling scheme. 1t is also possible
to couple the projectile spin and the orbital angular momentum as would be
appropriate if spin-orbit effects were overriding:

i+l=j (1.3)
To form J, j would be coupled to I:
j+I1=J (1.4)

This coupling scheme is referred to as the spin-orbit coupling scheme. Finally,
the helicity coupling scheme of Jacob and Wick (59) has often been used [see
Chapter VIIT of deShalit and Feshbach (74)], particularly for relativistic
phenomena. In this scheme the projections of the projectile and target spin
along the direction of motion, 4, and A4, respectively, similar quantities for the
reaction products, 4, and 4,, together with the total angular momentum J (and
its projection M) are used.

Of course, in addition to the angular momenta, one must also include the
parity of the channel, the energies of the system in the center-of-mass frame,
and the excitation energies of any of the complex particles in the initial or final
states of the system. For the sake of definiteness we shall use the channel
coupling scheme in this chapter. Then the angular distribution of the reaction
products for a two-body final state in which both products are in well-defined
quantum states of a given energy is

do(w, o) 1 !
aQ k2 (21+ 1)(2i + 1)

x (1,8, 0 I/4n Y |1y, 8, ) Ren> T, (I)s; 1ys; J,T14)
x T X (I, 1,8 J,11,) 1P (cos 9) (1.5)

(1’55" ”\/ 47IYI H12’S J2)

The sum is taken over all angular momentum and parity quantum numbers
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with the exception of I, i, and of course o and «'. The final states are normalized
per unit energy that is {y.(E)|x.(E")) = 4nd(E — E').

As a consequence, the transition matrix, is dimensionless®. The
integrated cross section is

a’a®

4 2J+1
]772I ) —— T . (I's'; Is; JID)|? (1.6)

= e Lo @i+ )

The reduced matrix elements (/,sJ, [|\/4n Y, ||1,57,) in (1.5) are kinematical in
the sense that they do not depend on the nuclear interaction. The angular
momenta /,,l, are two possible values in the decomposition of the incident
wave into partial waves; s is a possible value of the channel spin. The primed
quantities describe the situation for the final state. In addition to (1.2), the
reduced matrix elements yield

J,+J,=L (1.7)
which together with (1.2) yields

l, +1,=L and I''+1,=L (1.8)
These results can also be obtained from the explicit expression

(LT I\/Ar Yyl 15T ) =(=F 42 [@21 + D@L+ D2J,+ D2 + DL+ D]

x(ll L 12){11 J, s} w9
0 00)J, I, L

Note the requirements that both [, +1, + L and I, + !, + L must be even, thus
guaranteeing parity conservation. We immediately see from (1.7) and (1.8) that

L. =min(2l,2I,2J) (1.10)

where [ is the maximum incident angular momentum, I the maximum emergent,
and J the maximum value of the total angular momentum. Equation (1.10) is a
precise statement of the complexity theorem [ Yang (48)] described in Chapter 1.

The Z matrix in (1.5) depends on the nuclear interaction. We see that in
the channel spin coupling scheme it describes a transition between two channels
¢ and ¢’ defined by the quantum numbers

¢ = {als; JIT}
(1.11)
¢ ={ols; JII}

!For spinless particles, 7, = — (1/n)sin 6,¢', where 9, is the phase shift.
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We shall often, for notational compactness, replace
T (s’ 1s; JIT)
by
T (JTD) (1.12)
J is a symmetric function of ¢’ and c:
T =9,

Therefore, from (1.6) it follows that

_kPer+nei+1)
ORI+ DRI+ 1)

a(a,a) a(x, o) (1.13)

This reciprocity relation interchanging initial and final states. I -1, i—{,
and so on, has been used to determine a spin when three of the four I, i, I', i’
are known. For example, the spin of the = meson can be obtained by comparing
p+p—-n*+Dand n* + D—p+ p [Marshak (51); Cheston (51)].

2. ISOLATED RESONANCES; INTERFERENCE WITH THE
PROMPT AMPLITUDE

The transition 7 _, (JTI) can, according to (II1.2.25), be written as a sum of two
terms, the prompt and the resonant amplitude:

T =T D4+ T® @.1)

c'c c'c

Therefore, the differential cross section (1.5) can be broken up into three parts:

dofit, ) _do"(e,) | da"(a',a) | do'(e, o
dQ dQ dQ daQ

The first term on the right side of this equation gives the angular distribution
of the reaction products as generated by the prompt processes as indicated by
the superscript P. The second, with superscript R, the angular distribution
originating in the resonance, while the third, with superscript I, is the angular
distribution developed by the interference between the two, the prompt and the
resonance process. A similar decomposition is possible for the integrated cross
section. From (1.6)

o(o,0) =P, ) + a®(o, ) + oo, ) (2.3)
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For example, inserting (2.1) into (1.6) yields

2J+1

T |aT PP =TeP 2.4)
QI+ DQRi+1) e

4
SUCTE)
41: 2J+1

(R) - -
=l pais D)

InT B2 =Y ¢® (2.5)
47: 2J+1

e, o) = i —
QI+ )2+ 1)

2 R P, 2 R P
[T RTE* f g2 7 Reg®]  (26)

We consider the case of a single isolated resonance which is designated (just
as in the case of bound states) by a specific-J and II. Thus

do®(o, a) _

_ ‘ZJ drn Y, \L,s)(', s'J arY, ||, s'J
0 kzz(zlﬂ)(zlﬂ) ST/ Y, ,sd)(1, s T || /an Y || lys )

x Re(7 R 7 R*)p, (2.7)

To excite a resonant state of a given parity, /; +/, and !, + I, must be even;
that is, /; and I, must have the same parity and similarly for I, and /. Since
[see (1.9)]

I, L 12>
LisJ| Y, ll,8)) ~
(s YL |1ysd) (0 0 0

it follows that L is even. Hence the resonant angular distribution (2.7) is
symmetric about 90°.

Problem. Prove directly from (1.9) that if both the projectile and target have
zero spin, and if the reaction products have zero spin, then

do'®
aQ

~ [P,(cos 9)]*

This result is applicable to resonance reactions such as '2C + 2C —»2°Ne + «,
12C+ 10 - 2*Mg + «, and so on, when the residual nucleus and emergent
particles are in spin-zero states.

Before the effect of interference can be discussed, it is necessary to provide
explicit expressions for 7 (¥ and 7). The former is given by (I11.2.25) as follows:

77 @ = 3 g +00 s/ T4 TT) 28)
E—E, + (2T,
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In this last expression the g’s are real numbers and the &’s give the phases of
the distorted waves generated by the potential scattering [Eq. (I11.2.24)]:

Xe=e"| x| (111.2.24)

and from (I11.2.23),
T,.=g; (IT1.2.23)

and from (I11.2.22),
r,=Yr, (111.2.22)

Each channel ¢ with an ] and s that can combine to give the JIT of the resonant
state will contribute to (1.5).
The prompt transition amplitude is constructed out of the solutions of

(E—Hpp)' =0 (2.9)

where generally this is a set of coupled equations connecting the different
channels. The DWA (distorted wave amplitude) is constructed by treating the
coupling pertubatively. More explicitly, the relevant equations are of the form

(E - HCC]XC = Hcc'xc'
(2.10)
(E~H_ ). =H_x
so that?

yc'c = <XE"_0)‘HL‘L‘XI(.‘;)> (21 ]]

where 3{;? and !’ are solutions of the uncoupled equation (2.10) that is with
Hcc' = Hc’c = 0

In the discussion that follows we shall employ the DWA approximation for
the x. and y. appearing in the definition of I, :

T = 2m[< D, Hgpz )1 (2.13)
{One can improve upon (2.11) by obtaining a better y, by eliminating y,., so that
E—-H_-H ! H 0 (2.12)
cc cc’ E— HCW c'c A= .

Then the exact 7 is given by (¢! '|H, |x{*">, where x{*’ is a solution of (2.12) [Lamarsh and
Feshbach (65)]. Since the wave functions are usually obtained using an empirically determined H_,
it is possible that the DWA is a more accurate approximation than would at first appear.
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and the amplitude given by (2.11) for the prompt amplitude. This is a reasonably
accurate procedure when the prompt process is a single step and in any event
will serve to illustrate the effects of interference between the direct and the
resonant amplitude.

From (2.11) it then follows that

nT P = — e 439 4 (JTI) (2.14)

where A is a real amplitude.

To illustrate the effect of interference we consider a simplified situation. Let
us first restrict the discussion to elastic scattering. Second, let us assume that
the target nucleus has zero spin, so that s’ = s, and in addition assume that the
energy is so low that only one angular momentum, the lowest possible value
of I, contributes significantly to the formation of the compound nucleus. Suppose
that the resonance occurs therefore for a particular combination of (I, s, J,IT) = C
Then from (1.6) and (2.4),

o, )= "0 + o (2.15)

where the prime indicates the omission of the terms ¢’ = ¢ = C. The cross section
oc is

4m2J +1
i ,71 |77 (15 13 JTD)? (2.16)

Oc=

For this term the potential scattering amplitude is
T PV = — ¢~ ¥cgin 6 (2.17)

Combining (2.17) and (2.8), o is

2
Oc= 4n2J +1 e*csin § — e2iéc &/27 (2.18)
K2 2i+1 E—E,+@/2)T,
Introducing the resonant phase angle y;,
tany; = L
"= NE-E,)
(2.18) becomes
47[2J+1 2~5<. — i8¢ l—‘;h(;- _'>2
Oc=— - e*¢| sindpe” ¢ — —2=sinye M (2.19)
C= 2241 c r, Va

The simplest situation occurs when only the elastic channel is open. This,
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together with the initial assumptions, has the consequences I',. =T, and &,
real. Then (2.19) becomes

47 2J + 1 . .

Gc=—s ———|sind,e” % —siny,e” |2 2.20

T 1| Ve (2.20)
It 1s immediately clear that completely destructive interference occurs when

V1= 0c oclo, ) =0

On the other hand, a maximum occurs when

i
Ya= 2 +9d¢
with a maximum cross section
4 2J + 1

oo, a = - 221

) (2.21)
In terms of the energy E we have

I, .
E=E,+ ?cot d¢ for the minimum value of o(«, ) =0

and (2.22)

r
E=E, —5tan o¢ for the maximum value of o.(x, )

We see that the effect of the interference is to shift the maximum and introduce
a minimum, with the scale of these shifts given by I',. For no potential scattering
term, that is, no interference, . =0, the maximum is not shifted while the
minimum is at infinity. For . small, the maximum is shifted to a lower (larger)
energy for é. positive (negative) while the minimum appears on the other side
of E,. On the other hand, when J. approaches 7/2, that is, when the potential
scattering resonates, the maximum disappears (i.c., moves off to infinite energy).
The resonance now manifests itself by a minimum (in this case a zero) at E=F;.
Figure 2.1 gives an example of a resonance with an interference minimum and
Fig. 2.2 shows a resonance in which the potential scattering is very small, so
that no interference phenomena occur.

If more than one channel is open, I',. < I"; and d, can be complex since there
will be absorption from the elastic scattering channel denoted by C into reaction
channels®. Under these circumstances the cross section at the interference

By using the eigenphases for the prompt channels similar to the g, of (II1.2.45'), one can avoid
complex phase shifts.
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FIG. 2.1. Elastic scattering cross sections for S-wave neutrons near a resonance in the
compound nucleus. The figure shows the relationship between the shape-elastic and the
compound-clastic cross sections for a spinless target nucleus. [From Marmier and
Sheldon (70).]

minimum will no longer be zero and the maximum will no longer be as large
as that given by (2.20). The full formulas are given by Feshbach (60). As an
example, we quote here the result for . real:

27+ 1 I\? r V2orel?
G (ot,oc)zzt2 .+ {I:]+< —"C) —2( ——AC>COS25C] ilc}
max k* 2i+1 r, r, r,

m (2.23)

The visibility of a resonance is reduced as I', - becomes a smaller fraction of I';.

Note also that the elastic scattering resonance contributes only to the partial
waves having a fixed J and IT. The cross section will contain the contributions
for other values of J that generally will not resonate at E near E; [as assumed
by (2.15)]. It will certainly be considerably easier to observe a resonance when
the number of partial waves involved is few, as the nonresonant background
tends to obscure the resonance structure.

As this discussion emphasizes, it is more difficult to observe resonance
structure in the integrated cross section, particularly as the energy increases.
To remove the effects of the nonresonant background and thus make the
resonance more visible, it would be obviously helpful for the experiment to be
designed so as to be more selective. Choosing a particular channel, for example,
would be best. One common and important method looks at the reaction
products, which because of selection rules and specificities originating in barrier
penetration factors may have many fewer nonresonant background terms. An
example is given in Fig. 2.3; the '?C + '2C reaction shows many resonances
detected by examining the y-ray spectrum generated by reactions leading to the
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FIG. 2.2. Neutron total cross section for In. [Marmier and Sheldon (1969), taken from
Landon and Sailor (55).]

states in 2°Ne and 23Na. These resonances are well below the barrier and thus
are not as readily detected in, say, elastic scattering, to cite an extreme example.

The angular distribution is much more sensitive than the integrated cross
section to the presence of an isolated resonance. To demonstrate this, we take
the simple case of an s = 0 initial system and an s = 0 final system. An example
is the elastic scattering of a-particles (or pions or kaons) by a spin-zero nucleus.
Then, as one can verify directly from (1.9),

L=l=J, L=Il=J, (2.24)

As one can directly show from (1.5) using (1.9) and, from deShalit and Feshbach
(74), (A.2.96) and (A.2.35) deShalit and Feshbach (74)

’ 2
‘1”‘(;:2’9‘) = :7@(21 + 1)Pcos 9T, ()2 (2.25)




2. ISOLATED RESONANCES; INTERFERENCE WITH THE PROMPT AMPLITUDE 241

T

QUASIMOLECULAR RESONANCES

O T T e 1 ]

2+t et g8t at 2t 4% gtotat o+ gtatet
400 12¢ 4 12¢ y-Yields
2+
e = YALE DATA
126 4 120 2+, 0 = MUNSTER DATA
INTERACTIONS 2+)
300 [ ]

Lo [tz
1 l&f
5

e

Nuclear structure factor-Arb. units

100

_—>

i

3.0 4.0 50 6.0 7.0 8.0
Ecm.(MeV)

FIG. 2.3. Resonances in the '?C+ '*C reaction [From Erb and Bromley (85).]

where we have abbreviated ., (10; I0; [TT) by .7 . (I). Of course, one can derive

this result directly rather than as a special case of (1.5). Let the resonance occur
for I=J. Then

do(o,2) m?

0 k2|.ff;’2 +(2J + 1)P,(cos 9).T7 . ())|? (2.26)
The first term is just the prompt term (“potential” scattering in the elastic case),
the second the resonance term. We see that the interference occurs now between
the full potential scattering amplitude and the resonant amplitude. This
combination will have an interference minimum and a maximum whose
positions will vary with angle. It is often the case, particularly at the higher
energies, that the prompt amplitude is very small at back angles. In that event,
the resonant term will be very prominent in this angular region and the angular
distribution will vary like (P,)*>. More generally, an analysis of the angular
distribution into partial waves will reveal the resonance. When the channel
spins are not zero, extracting the resonance amplitude from the angular
distribution might again prove difficult. However, in these cases one can turn
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to the polarizations and their angular distributions (if the data are available!)
for the needed additional information.

Interference, constructive and destructive, as a consequence of the existence
of both a prompt amplitude, (2.14), and a resonating reaction amplitude, (2.8),
can occur in reactions as well as elastic scattering. Its strength depends on the
relative magnitude of each of the contributing terms, that is, on g,.,g,,/T"; of
(2.8) and on A4_ (JIT) of (2.14). Again because of the general tendency of the
prompt amplitude eventually to decrease sharply as the angle increases,
resonance structure should be more visible at back angles, while interference
phenomena should be significant in the intermediate angular region lying
between the forward angular region, where the dominant contribution to the
differential cross section is from the prompt amplitude and the backward angular
region dominated by the resonance reaction.

One should note that because the interference depends on the strengths of
the prompt and resonant amplitudes and because these vary with the exit
channel, the locations in energy of the interference maximum and minimum
will generally vary with channel. The maximum will not be at E,; it may differ
from that value by the order of I'; and in extreme cases by more. The customary
procedure for the identification of a resonance by observing its presence in each
channel must take this possibility into account.

3. PROPERTIES OF THE WIDTHS; THRESHOLD BEHAVIOR OF
CROSS SECTIONS; CUSPS

The width of a resonance is given [see (II1.2.13)] by
I“M=27:|<<D,1|HQP;CL+'>|2 (I11.2.13)

The value of I, depends on the overlap of the channel wave function x{*’ with
®, and H,,. Roughly speaking, this is increased if y{*’ has an appreciable
amplitude within the nucleus, that is, within the nuclear volume or on the
nuclear surface, according to the nature of the reaction. In other words, the
size of I",, will depend on the probability that the incident wave will penetrate
into the nucleus or, equivalently, the probability that the prompt reaction wave
can emerge. The barriers that can reduce these probabilities are the angular
momentum and Coulomb barriers referred to in Chapter 1. The effect of these
barriers is largely independent of the nuclear interaction and depends critically
on the system’s energy, size and the charge of the projectile and target. The
angular momentum barrier is important near the threshold for the reaction.
The reduction that the Coulomb barrier produces is important for energies
near to and below the height of the barrier. Both of these effects can produce
a rapid energy dependence of I', . It would thus be useful to factor these effects
out of I',, so that the remainder will more truly reflect nuclear properties. This
factorization cannot be unique.
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In this volume we adopt the transmission factor in the channel ¢T,, as a
measure of these effects:

~T, (3.1)
where T, is defined by

T.=1-YKS I (3.2)

S.. is the S matrix, ¢ and ¢’ denoting open channels, while {S_.) is its energy
average. The motivation for this choice can be seen most easily by considering
the single-channel case, that is, when y, is a single-channel wave function. The
averaged S can be obtained from the corresponding optical model wave function
{x.>- In Chapter V (p. 367) we show that

Tc:4kJ(x;">(_hfﬂ W)(xc>r2 dr (3.3)

where W is the imaginary part of the complex optical potential. In (3.3) <{y.>
is normalized to have unit amplitude at infinity. Since the angular momentum
and Coulomb barriers enter in an identical way for the equations satisfied by
r.and {x.», the behavior of T, and I ;, should be similar. Obviously, T, cannot
reproduce the dependence of I',. on A. However, since W represents the
absorptive effects of the reactions as well as the reduction in channel ¢ because
of coupling to other channels, T, provides in a rough fashion a measure of the
magnitude of I' ;. This relationship is, in fact, demonstrated by (II1.3.22'), where
the absorption computed from the optical model, which is proportional to T,
is found in first order to be proportional to the energy average, {I", ). For the
present purposes it will suffice to record the approximate result,

T, ~ 2ndw, »<T,.> (3.4)

where @, is the density of levels of the 4 type.
The properties of the transmission factor are listed in the Appendix to
Chapter I1I. Drawing on these results, we find that

T.(E)~k¥*1C3n)  as k-0 (3.5)

where E is the energy of the relative motion of the two-particle system in channel
¢,k the wave number is the corresponding momentum divided by 4, and Ih is
the relative angular momentum of the two particles. The quantity # is the
Coulomb parameter

_zZeZ_ zZ
 he 1378

n (3.6)
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_vo L [EMeV)
ﬂ_c—mﬂ u (3.7

where v is the relative velocity corresponding to wave number k and p is the
reduced mass in channel ¢ in units of the proton mass. The Coulomb factor
C} is given by (1.8.6), which we repeat here:

21

2_,727 2 2 —1)2 27... 22
C; _.[(21)!]2(1 +n)[=1D? +n*]--- (1 +7*)CG(n)

where

2
Cln = (3-8)

e2™ — |

A short table of C} is given in (Table 1.8.2).

Because of the close relationship between 7, as given by (3.3) and I',, as
expressed by (3.1), it follows that the threshold behavior of T',, is also given by
(3.5), that is,

L.~k 1CHm) 3.9)

From the analysis of Section 4 in Chapter III, an expression for T near a
single-particle resonance [Eq. (I11.4.52)] is available:
rrr
T.= £ 8¢ ___ [ =Tl +T} 3.10
c (E_(g)sp)z-i—‘_l{rgp sP sP SP ( )

I'{p, the escape width from the resonance, is usually referred to in the literature
as the single-particle width. It is the single-particle width in the absence of an
interaction of the single channel with the compound nuclear channels. An
estimate of the order of magnitude of T can be obtained from the results given
in the Appendix to Chapter III for T in the resonance region for a square-well
optical potential whose imaginary part is W,. Then when the relative angular
momentum is /A, one finds that

I, ~2W, 3.11)
2h?

rl,= —— kRs(kR) (3.12)
#R

where R is the radius of the potential and p is the reduced mass. The function
s,(kR) is given by

1

— o 3.13
Rk G

sy(x)
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where w{*) is the outgoing wave solution of

d*w, I(I+1 217]
dx? |: x? x ™ .14
For uncharged particles (y = 0)
SO = 1
s X
T4 x2
4
s * (3.15)

2794+ 3x2 4 x*

x
T 225 4+ 45%2 + 6x* + x5

S3

The barrier effects given by (3.5) are in (3.10) carried by the factor F§P, as
can readily be demonstrated using (3.12).

The various expressions for 7, are not needed for its numerical evaluation,
as this can be easily obtained from the numerical integration of the optical
model differential equation for the channel. They serve here to furnish some
insight into the properties of T,, which in turn gives the gross properties of the
widths according to (3.1). We shall often write

L,=75T. (3.16)

where 72, will carry the deviation of the dependence of I',, from normal.

The threshold behavior, (3.5), is obviously of importance for channel C. It
can also sharply influence the behavior in other channels. For example, consider
the scattering in channel C given by (2.18):

47 —ibc o %FCA 2
O'C=—2 e Sln&c—m (317)
A A
in the case where two channels C and D can be opened, so that
=T +Tp, (3.18)

Suppose that channel D is closed below E;, and for the sake of the example
suppose that the value of ! for channel D is zero, so that above threshold

[, =T, +/E—EzAp, (3.19)
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where A, is a finite constant at E = E;. Below E;
r,=Tc (3.20)

It is now a simple exercise to verify that

(agc>—>oo E-E{"
JE

(?g)ammtEaE;) (3.21)

while

Hence ¢ will have a cusp in its dependence on the energy, as illustrated in
Fig.3.1. For larger values of /, singularities in o will appear for higher derivatives
(e.g., in the second derivative for [ = 1), but these effects are much more difficult
to discern.

Note. The effects of the angular momentum and Coulomb barrier are not
restricted to resonance reactions but hold more generally. The matrix, 7 ., is
given by

ce?

T =Y Vy> (3.22)
so that the dependency of | . |* on g, is similar to that of I, . Hence
|T o2~ T ~ k¥ CHy) k>0 (3.23)

where | is the orbital angular momentum in the ¢ channel. From (1.6) it follows
that

0. ~KAIC2y) k>0 (3.24)

revealing the 1/v law for reactions induced by a neutral particle (y =0) valid
when [ =0.

The cusp described by (3.21) is also more general, not being restricted to
resonance reactions. This fact may be made evident through the use of one of

|
FIG. 3.1. Formation of a cusp in ¢, because of I,
a threshold in another channel. Er F—
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FIG. 3.2. Reaction showing cusp [From Zyskind, Davidson et al. (78).]

the conditions that follow from the unitarity of the S matrix:

28581 (3.25)

Suppose, for example, that there are three channels ¢, ¢, ¢”, which must be
considered, and moreover, suppose that there is an [=0 threshold in the ¢”
channel. We now look for the effect of this threshold on the ¢’ channel, that is,
on |S,..|%, which is proportional to the cross section for the reaction ¢ — ¢’. From
(3.25

2 __ 2 2
[Seel® =1=18[* =8|
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The ! =0 threshold dependence of |S_..|* is given by the factor \/E — E; for E
greater than Er, and by zero for E less than E;. Therefore, ¢|S_.|?/0E will have
an infinite discontinuity at E = E; because of the [ =0 threshold in the ¢”
channel. Just such a cusp is shown in Fig. 3.2. The cusp in the **Cr(p,7)>*Mn
reaction is generated by the threshold in the **Cr(p,n) reaction (Zyskind,
Davidson et al. (78)).

4. OVERLAPPING RESONANCES

The analysis of a cross section in terms of a prompt amplitude plus a resonant
one can be readily extended to the case of several isolated (i.e., nonoverlapping),
resonances. However, it should be noted that the results are not unique in the
sense that they depend on the choice for Hpp, which in turn determines the
prompt term. As was illustrated by several examples in Chapter III, H,, is not
unique, so that the prompt term can be the scattering from a hard sphere as
in the Wigner—Eisenbud theory, or in another example it can be the amplitude
deduced from an optical model potential. Consequently, the value of the widths
I' will vary with the choice of Hp,, although the reduced width of (3.16) will
generally be less sensitive. This ambiguity reflects the latitude in the definition
of what will be considered prompt and what will be considered delayed. It is
essential that the presentation of an analysis of experimental results clearly state
the choice made for the description of the prompt amplitude, that is, the choice
of Hpp.

A related question asks how many resonance terms one should add on to
the prompt term. Indeed, in some formalisms the number of terms is infinite.
There is in some no prompt term initially. That term is recovered by summing
over the “distant” resonances. This is, in fact, appropriate since the distant
resonances are not resonances at all if by resonances we mean delay times,
which are long compared to some appropriate characteristic time.

A simple illustration will clarify this remark. In potential scattering the
characteristic time is a/v, where a is the range of the potential and v is the
velocity of the incident particle inside the potential. Suppose that a pole of the
S matrix occurs at E —iI'/2. The delay time is then #/T". If that delay time is
less than a/v, the time required for the particle to cross the region in which the
potential acts, the contribution of the pole term to the scattering amplitude is
physically not a resonance. It is physically more correct to consider it as a
contribution to the prompt amplitude. To complete this illustration, note that
the poles of the S matrix for an attractive square-well potential, no matter how
shallow, are infinite in number. In that case, it is mathematically possible to
represent the scattering amplitude as a sum of contributions from each of these
poles, but of course the resultant total amplitude shows no resonant structure
if the well is sufficiently shailow.

These caveats have even more validity when the resonances are overlapping.
Analysis of such data can and have been made using (I111.2.23) or (111.2.47). In
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the first of these, the transition matrix is written as follows:

(#)
=70+ Z (I11.2.33)

As indicated by the earlier discussion the sum over u contains a finite number
of terms, say N. Because of the requirements of unitarity, the parameters A(}‘z)
and E,, which are slowly varying functions of E, are not independent. To make
one such relationship explicit, let

AW = ie"(‘sf+‘§"’e"‘f’"g”(Jl'I)gm.(Jl'I) 4.1)
and define
W=XT, | (42)
where *
=9 (43)

The reader should compare these definitions with (I11.2.22)—(II1.2.24) given in
Section 2 of chapter ITI. With these definitions (I11.2.33) becomes

e'Prg, (JIg (JTI)
E—&, +(z/2)r + (/2T

V2

L
— g i(3f + i)
=7 +2 et E

4.4
where &, is the real part of E,. The condition relating A(f'? and Im E, given in
the single-channel case by (I11.2.37) becomes

YIr,=0 (4.5)

so that the imaginary part of E, fluctuates about the isolated resonance value
of (4.2).

Equation (4.5) is not the only relationship implied by unitarity. Despite the
awkwardness of applying these conditions, (I11.2.33) is often used in fitting
experimental data.

Another procedure that automatically satisfies unitarity uses (II11.2.47). In the
single-channel case
Ty " (111.2.48")

1 +inx

o
I =

where « is given by the series

“ N

_ e v
2n T E—e;

4.6)
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The often used R matrix fit to resonance data is an example of the use of
(I11.2.48"). The parameters are y, and e,.

In both methods there are two additional parameters which are not always
explicitly mentioned. These are the range, 0E, over which a fit is to be made,
and the number of terms, N, in the series (4.4) or (4.6). These parameters are
not independent. They should be determined by the usual statistical measure
of the quality of a fit such as the y? value. In particular, they should be chosen
in such a way that the values of y, and e,, for example, are stable against small
changes in 6E or N.

As the energy of the system increases, the spacing in energy of the resonances
becomes smaller, the width of the resonance increases with the consequence
that the resonances overlap more and more, and rather soon it becomes
impossible to distinguish the individual resonances. Nevertheless, the structure
in the energy dependences of the cross section does not immediately disappear.
With sufficient energy resolution one observes rapid fluctuations in the energy
dependence of the cross section. These are referred to as Ericson—fluctuations
[Ericson (60c, 63); Brink and Stephen (63); Brink, Stephen, and Tanner (64)].
They have been observed in a wide variety of reactions.

Statistical measures are used to describe the Ericson—fluctuations. The
simplest of these is the energy averaged cross section (o), where the average
of an energy-dependent quantity F(E) is defined by

(F(E)) = (P(E, E,)F(E,)dE, (4.7)

o

where

JP[E7 Eg)dEq, =1 (4.8)

To proceed further it is useful to choose H ,,, to be the optical potential [Kerman,
Kwai, and McVoy (73)], for then, from the definition of the optical potential,
it follows that in the decomposition of the 4 matrix into a prompt and
fluctuating part (see Section 8 for further discussion)

T =74 g 4.9)
T L) satisfies
(FTFY=0 4.10)
It follows that the average cross section can be written as

(6> ={P) + () =6V + (s> 4.1
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The second term does not vanish despite (4.10), since
oFL ~ | T o-(FL)lZ
The distribution of 7 FY and ¢'FV about their mean values provides more
detailed statistical information. For the distribution of 9 )| the practice has
been to appeal to the central limit theorem of the theory of probability [Feller
(68)]. It will be recalled that this theorem states that if a quantity, call it x, is

the sum of a large number of random contributions, then the probability P(x)dx
that x falls between x and x + dx is given by

.

1 202 ,
x) = ; 2> e~ (1/2)(x2/{x23) 14.]2)
N/ LT X

where the average value of x, {x), is taken to be zero, and {x?), the average
value of x2, is defined by

(x?> = ﬁt P(x)x*dx (4.13)

Following Ericson (63), we assume that both the real and imaginary parts
of 7 are such random variables. If

TED =g +if (4.14)

then

P(o) = e ~(1/2)@?/(a?))

./27r<oc >

If, in addition, one assumes that
(a?)y=(p*)=ad’

one can write the joint probability P(a, f§) as
P(a, B) = ——e —(1/2)(2? + %)/a? (4.15)
na’

It is now a simple matter to obtain the probability distribution for 6% from
the relation ¢ ~ (a2 + 2). From (4.15),

P(c™) = A A (4.16)

1
o™
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where
{o)= jP(o—)a do 4.17)

An experimental test of (4.16) is possible under the assumption that each
observed value of 6" is a member of the ensemble making up the distribution
given by (4.16). In other words, by varying the energy, members of the ensemble
are produced. Thus an energy average becomes identical with the ensemble
average, a form of the ergodic theorem. An example of an experimental distri-
bution constructed in this way is shown in Fig. 4.1. It will be seen that the
probability distribution agrees with the simple result (4.16) rather well. The
variance given by

{a?>—(a)?

var=————
(a)?

equals unity for distribution equation (4.16). We note that the distribution given
in Fig. 4.1 has a smaller variance. This can be consequence of the finite
experimental energy resolution, which obviously will smooth the data by the
rate of (I'/AE)?, where AE is the resolution and I' is the width of the fluctuation.

The ergodic hypothesis made above is not in fact correct, as is demonstrated
by the existence of correlations in the fluctuations of the cross section and for
that matter of the transition matrix, 7. At a particular angle 8 at which the
reaction product is observed, an autocorrelation function C(g, §) measuring the

10
€2(0'6, ag ) Mg 24
0.8 6=0°
EZ:2g =256-355 MeV
0st-
P(&)
04F
02}
0 1 1 1 | i
0 05 10 15 20 25

=

FIG. 4.1. Probability distribution of the differential cross section for *2C (60, as) Mg
for the a5 group leading to the 6.00-MeV excited state in 2*Mg. The excitation energy
in the compound nucleus ?*Si is about 30 MeV [Halbert, Durham, Moak, and Zucker
(64).] [From Ericson and Mayer-Kuckuk (66).].
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correlations as a function of energy can be defined as follows:

Cle.0) = Co(E +e)a(E)) —a)? .18)

(a)?

where o is the differential cross section giving the angular distribution. Similarly,
an amplitude correlation function, c(g, 8), is given by

C(€’9]=<f(E+8)f*(E)>—|<f>|2 4.19)
(o)

where
o=|fI?

It is generally assumed? that

Ca(E +¢)) = a(E)
CS(E+¢e))=f(E)

If o(E+¢) and o(E) are uncorrelated, {(o(E+¢)a(E)> will equal
(6(E +¢)><{a(E)> and C(e,6) will vanish. Deviations from zero indicate the
presence of correlations.

We shall now write C(g, 8) in terms of the prompt direct cross section and
the fluctuating part as given by (4.11). From the assumption that ¢ does not
fluctuate, we have

(P> =<KaP)? (4.20)

Using this equation C(g, §) becomes

Cle, ) = C(0,HCTe, 0) (4.21)
where
(@) — (a2
Cc0,6)= [0® 4+ (oFDyT2 4.22)
and

‘ (oFV(E + g T(E)) — (o ™)?
CEVE0) =" ey ety (4.23)

‘This assumption is not necessary. One need only redefine C(e, 6) as follows:

{o(E + &)o(E)> — a(E +&)>{o(E)>
{o(E +e)><o(E))

Cls, 0) =
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C"M equals unity for ¢=0, and as ¢ becomes very large one can expect
o'FY(E + &) and 6"Y(E) to be uncorrelated, so that CF1)(e, 6) will approach zero
for large values of «.

Similar expressions can be obtained for c(g, 0) with some simplfication since
according to (4.10),

{f>=0
In particular,
(FL) FL)%
c(e,0) = i (E +M (4.24a)
(o)
Note that
(o™
¢(0,6)= aT')?a‘iT) =1—y (4.24b)
where
o™
=@

In general, C(e, 0) and c(g, 0) are independent. However, under a sufficiently
drastic approximation they can be related. Toward this end note that

(G FE + )a™E)) = (f FUE + ) f COH(E + 6) f PE) [ TVH(E))  (4.25)

We now assume that only pair correlations are required to describe the
right-hand side, so that

(f(FL)(E + S)f(FL)*(E + g)f(FL)(E)f(FL)*(E)>
= (fORE+ o) fTVHE + &)y (S TIUE) fTUHE)D
+ (S EDE +0)f THED Cf IHE +0) S THE))
= (a?[1 +cle, 0)°] (4.26)

It should be noted that third-order terms such as {fFY(E + ¢} f FL*(E + ¢)-
FEWE)Y (fFLU*(E)> vanish in any event in virtue of (4.10). In deriving (4.26)
we have also assumed that (f""Y(E +¢) fFE)) is zero. This follows from
(4.10) if that equation is valid because of the random phases of the components
of £ Tt is thus indicated that the major error in the derivation of (4.26) is
the possible presence of a quadrilinear correlation which cannot be expressed,
as in (4.26), in terms of lower-order correlations.
It immediately follows from (4.26) that

C(s,0) =|c(e, 0)|? 4.27)
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Although c(¢,0) can and has been measured directly [Feshbach and Yennie
(62)], it is considerably simpler experimentally to measure C(e, 6).

Before we look at some of the experimental data, it is useful to present a
theoretical estimate of c(¢, §). Toward this end we use expression (IT1.2.33) quoted
earlier:

A(u)
g7 (FL) —
7E) % E—¢&,+3/2T (4.28)

We have dropped the subscripts f and i, which are to be understood, and the
simplifying approximation that the imaginary part of the poles, E,, is indepen-
dent of u and equal to I'/2 has been made. We now wish to evaluate

(FL) g (FL)x — A AT >
(FTE+9T (E)> g<[E+a—gﬁ(i/z)r][E—gv—(i/z)r] “.29)

We make the assumption that the important contributions to the sum occur
when y = v. The other terms are small because they will generally have phases
which if there are enough terms in the sum will take on all possible values. The
net effect is a considerable cancellation. In the limit that we take here that the
cancellation is complete, this assumption is known as the random phase
assumption?. Under this assumption

7 (FL) g (FL)% = |Au|2 >
(T FNE + 6T TV*E)) §<[E+ e—&,+((/QT1[E—&,—(i/2)T]

Neglecting the energy dependence of 4, and &, the energy average of this
quantity can be readily computed® with the result that

i’

,0)=c(0,0
(e, 0) =l )e+tF

(4.30)

‘More explicitly if ¢, is the phase of 4,, the right-hand side of (4.28) can be written

Y eitéu= b0 14,47
PR [E+e—&,+ (/T |[E—~ &, ~(i{/2)T]

If we now assume that ¢, and ¢, are chosen from an ensemble of random numbers, the ensemble
average of this quantity will contain only the ¢, = ¢, terms, the remaining vanishing. Finally, one
assumes that the ensemble and energy averages (i.e., the ergodic theorem) are identical.

YThe calculation proceeds as follows:

< 1 > B L J‘E0+A dE
[E+e—&,+ (/AT IE-&,—(/2T] T2A Fo-a LE4+e—8,+ (/AT IE—-&,—(/2T]
(Continued)
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and

2

r
Cle, 0 = C(0,0)—
&0)=C0.0 ;- 12

(4.31)

The width, T, scales the rate at which C(g, ) goes to zero with increasing e.
The value of #/T" measures the time during which the compound nuclear system,
formed by the projectile and target nucleus, lives. In contrast to the compound
nuclear resonance, for which #/I" gives the lifetime of a well-defined state, there
is no well-defined state with a width I'. Rather, because the resonances overlap,
the system moves from resonance to resonance before finally breaking up into
the final observed products. The quantity #/I" measures the time for this process,
and thus it would be most appropriate to refer to it as the interaction time. The
quantity I" is called the coherence energy.

The special nature of the form used for 7 %" should be remarked upon. In
the first place, the correlations between the coefficients A®, the widths T, and
the energies &, because of unitarity have been neglected. More important,
perhaps, is the neglect of effects of intermediate structure signaling the presence
of doorway states. These will introduce another scale in addition to T, of the
order of I';, the average width of doorway states. Pappalardo (64) has suggested
that one could search for doorway states by looking for this second scale factor
in the autocorrelation function, as indicated in Fig. 4.2, which presents a highly
idealized situation. As indicated in the figure, the small ¢ behavior (dashed line)
is dominated by I" and the large ¢ dependence is governed by I',.

The existence of these fluctuation effects was predicted by Ericson (60c). It
was first demonstrated by Colli, Facchini, and their collaborators (59). Some
experimental results obtained by von Witsch, von Brentano, Meyer-Kuckuk,
and Richter (66) using the 3"Cl(p, 2)>*S are shown in Figs. 4.3 and 4.4. In Fig. 4.3
we see the excitation functions for this reaction at 12 scattering angles taken
with an energy resolution of AE < SkeV. The presence of fluctuations is clearly
indicated. In Fig. 4.4 the autocorrelation function is plotted for three separate

(FL)

where A »¢. Let x = (2/T)E. Then the integral becomes

r‘ xo+(2/A 1
—J dx - -
Al-oma  x+(2e/D)—x, +D(x—x,—1)

If now it is assumed that the averaging interval 2A is much larger than I, the limits of the integral
can be approximated by + oo and the integral evaluated by the calculus of residues, for example,
to give

il 1
A i+el

from which (4.30) follows.
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FIG. 4.2. Autocorrelation function in the presence of a doorway state.

angles. It will be observed that after an initial decrease as predicted by (4.31),
C(e, 0) fluctuate about the zero value. These fluctuations are referred to as finite
range deviations (FRDs) and arise from the fact that a finite energy range was
used in making the averages and correlations. The requisite corrections have
been developed by Bohning (66). Fitting the small & part of the results in Fig.
44 gives a mean value of I of about 18keV.

On examining Fig. 4.3, it is quite clear that there is considerable angular
correlation. For example, the peak at about 11.5MeV proton energy at the
laboratory angle 8 =175° also appears at 170°, 162°, and 157°. Angular
correlations are to be expected simply from the complexity theorem mentioned
in Chapter I and by (1.10). This states that if there are maximum values of the
orbital angular momentum in either the entrance or exit channel, there is a

65° 1 132° 1 65° 1 132° !
100° 175° 100° 175°

Emergence angle ——»

FIG. 4.3. Three-dimensional representation of the variation of the angular distribution
of the a-particles emerging from the reaction®*’Cl(p, «)**S and proceeding to the ground
state of 3*S, shown as a function of energy between 11.000 and 11.952 MeV in steps of
0.008 MeV [von Witsch, von Brentano et al. (66).]. [From Marmier and Sheldon (70).]
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FIG. 4.4. Energy autocorrelation functions C(g) plotted as a function of the energy
difference & for (a) 6 = 33°, (b) 8 = 80°, (c) 8 = 175° (CM) in the case of the 3"Cl(p, 2,)**S
reaction proceeding to the ground state of 3*S. The coherence energy I' can be derived
from the width at half-height of the first peak; the results indicate that I' = 18 keV, which
corresponds to a mean lifetime for the compound nucleus 3¥Ar* of 1 = #/T" = 3.7 x 107205

RESONANCES AND THE STATISTICAL THEORY OF NUCLEAR REACTIONS

< Py T T T T T T T T T
S o N, 37Ci(p, ao) 1
L
§ OIO' . qu(‘) —‘
Q
5t oost!” \ {a) AT
8 *~e oo A e
- O e _g~ ~N oo~
3 \, "
& -005} \.\r— e 4
@ L L ) \ L < iR ¢ ! 2 L I " |
Wi o 80 160 240
Energy difference ¢ [ke\/] -
osgs, T L L A A B
:\. *Cilp, ao) ]
I ol0f \-, 1
— B 3 -
O AN (b) .
| \. memem~, .,v-'\.-c\.
»o \\. PUsST S ——— " Sy e=a”
- 1 1 1 " 3 i Il " 1 N i
(0] 80 160 224
Energy difference ¢ [(keV] —»
T T s e
1.0 N
P‘ 37C|(p, C!o) ]
A ]
05F53\ ]
= N :
© - oo (c) eeny ]
O - '\. ¢ . - [ .--‘.'.-."’. -
A n 1 I " 1 1 \ 4 " 0 1 ]
o] 80 160 224

Energy difference ¢ (keV] —

[von Witsch, von Brentano, et al (66).]. [From Marmier and Sheldon (70).]



4. OVERLAPPING RESONANCES 259
s
maximum value of the order, L, of the Legendre polynomial P, required to
describe the angular distribution of the reaction. Well above the Coulomb
barrier, these maxima values are set by the angular momentum barrier. If the
momentum change is g, then

R
q:l

7 max

0~1 4.32)

Experimental verification of the validity of this remark has been given by
Dearnley, Gibbs, Leachman, and Rogers (65).

We observe that there are two causes of angular fluctuations. One, just
discussed, is a consequence of the finite size of the nuclear system. The second,
which originates in the energy fluctuations, affects the differential cross section
da/dQ. The appropriate correlation function is defined as follows:

((do™0/dQ)(da' ™ /dQ')y — (da®V/dQ )y ( doTV/dQ' Y
(do/dQ ) {da/d )

C(6,0)= (4.33)

The averages in (4.33) are energy averages. This correlation function can be
evaluated using the expression for the 7 matrix, (1.5). We shall not carry that
calculation out but will leave it as an exercise for the reader who may be helped
by the following derivation of {do/dQ ). According to (1.5),

-

1
do™dQy = — N (Lsd, | Y 18I )W ST || Yo |15
(do / > kz Qi+ DRI+ 1) Z(xs x” L”Z 2)(1 1” L”zz 2)

x {Re[T TV, 51,50, T1) T FL*(,,s"; 1,5, J ,11,) > P, (cos 6)
4.34)

To evaluate the average we make use of the random-phase approximation,
which in the present context takes the form

<R€(<7‘F”9"F”*)> oIy, 15)0(14,1)0(J 3, J )OI, T, )| 7 TR '3 1y 5.0, TIPS

do®V 47’ 1
—— ) (ST Y UIsDHU'sT| Y ||I's'T
< 40 > K 20+ 1)@2i+1 Z(b 1Y N sHSTIYLNTs'T)
x | TFI(I's; ls;JH)| > P, (cos ) 4.35)

From the properties of the reduced matrix elements of Y, it follows that L is
even, so that (de™/dQ> is symmetric about 90°. Later in this chapter we
describe how to evaluate (|7 FY|?> using the statistical theory of nuclear
reactions.
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5. LEVEL DENSITY!

In considering reactions that lead to highly excited states of residual nuclei, it
is usually neither practical nor desirable to observe the cross sections for the
excitation of a particular state. Generally, the experimental energy resolution,
AE, is not sufficiently small to permit the selection of a given final state or to
go on to define its properties such as spin, parity, moments, and so on. Under
these circumstances the summation in the expression for the cross section

UZ'Z|711‘[2 5.
S

where f designates the final states of the system contained in the energy interval
AE, is replaced by an integral as follows:

4n (. L
azp-fdb,ww,)y 2 (5.2)

Here w(E[) is the level density of the residual nucleus. The quantity w(E)dE
gives the number of levels between E and E + dE. It is, of course, possible to
partition the density further by asking, for example, for the density of levels
with a given quantum number, such as the spin, J, or with a given set of
quantum numbers, J, I1, T, and so on.

We shall also be interested in the density of levels at a particular energy of
excitation of the compound nucleus. Except for a relatively small energy range,
in which the resonances can be individually observed, it is generally not possible
to determine the properties of the individual resonances, and a more global
approach in which the occurrence of resonances is given by a level density is
preferred.

In both cases, density of levels in the compound or in the residual nucleus,
the energy spectrum is taken to be discrete. This certainly can be the case for
the residual nucleus. For the compound nucleus, the levels are taken to be the
levels of the states of the system in what was designated in Chapter III as the
2 space. This Hilbert space is defined as containing those states in which no
part of the system is in the continuum, so that 2 is the closed-channel subspace.
Because of this restriction, the energies of the 2 space form a discrete spectrum
even though the energy of the system is positive. The levels in 2 space become
observable resonances with finite widths, when one includes the effect of the
coupling to the open-channel subspace designated by £.

For a discrete energy spectrum with energies ¢;, the level density w(E) is
given exactly by

o(E)=Y 8(E —¢,) (5.3)

i

*Ericson (60c); Bloch (69, 72); Huizenga and Moretto (72); Huizenga (72).
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where

meme=NwJ—ng (5.4)

E>

N(E) gives the total number of levels with energies less than E.

Equation (5.3) is exact. Using an integral representation of w which follows
from (5.3), it will be possible in the limit of large E to obtain a continuous
approximation to the series of delta functions. Toward this end introduce the
Fourier representation of 6(E — ¢;):

1 [ .
(SE—E— — -!K(E_E_/)d_
( ;) '27rj e K

-

so that

1 (e _. .
‘:U(E):‘J< BAlKE(Z€'K5j>dK
) _ o J

Letting x = if,

w(E)=1.F P Z(B)df (55)
27

—ico

where Z(f) is the partition sum:
Z(P)y=3 e Pi=tr(e ") (5.6)
j

the trace is restricted to the states in 2. The partition sum is a familiar object
in statistical mechanics and one is tempted to relate the integration variable,
B, with the inverse of the temperature. That would be the case if the system
were in contact with a heat bath and if one could describe the excited nucleus
as an equibrated system.

In the limit of large E, the method of steepest descents [ Morse and Feshbach
((53), 437 et seq.)] can be used to obtain an approximate evaluation of the
integral in (5.5). Rewriting the integrand as exp[SE + In Z(8)], we expand the
bracketed expression around the saddle point, f,, defined to be a point at
which the derivative of SE + In Z(f) with respect to f is zero.

dinZ(p) _

The integral for w(E) is then approximately given by
1 *® 1|d*InZ

H=1 oz J ex [__4 - 2]d

o(E) 7€ (Bo) B Pl =5 a2 (B—PBo)* |dp
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where we have assumed it to be possible to deform the path of integration from
the pure imaginary axis to the real one in the neighborhood of = f8,. Hence

1 l/ZﬂE | 1/2 SoE
oLz ] 70~ | e o

This result, providing a continuous function approximating the  that is
given in (5.3) by a series of J functions, can be valid only for sufficiently large
energy E. The energy interval around E over which expression (5.3) has been
effectively averaged to obtain (5.7) should contain a sufficiently large number
of levels.

Problem. Show that

E= %fx—zﬁ = (&i(Bo)> (5.8)
and
d;';gz = (2 — e (59)
where
(eiy= %ﬁ’z e_;,ﬂ (5.10)

Equation (5.7) for w does not explicitly take into account constraints that
can be imposed on the system because of conservation conditions. For example,
one might ask for the level density for a system consisting of a given number,
N, of nucleons, or for a system whose angular momentum is J, and so on. In
what follows we generalize the discussion leading to (5.7) asking for the density
o(E,N).

The density w(E, N) is given by

w(E,N) =Y 6(v — N)S(E — &,(v)) (5.11)

Jvy

where, as indicated, ¢; is a function of the number of nucleons. Introducing the
Fourier integral representation of the é functions, one is immediately led to the
analog of (5.5):

w(E,N) =(2'?Jm ap, Jm dB,Z(B, ) E 02N (5.12)
T —ico

—ix
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where

Z(B1,By) =Y e e (5.13)

The method of steepest descents applied to the integral in (5.12) yields

1

olEN) = det L

Z(BY, p)elE 1N (5.14)

where the saddle-point values of B, and B,,” and Y, respectively, are
determined by the equations

E+ F; In Z(B©, ) =0 (5.15)
‘F1
4 (0} (0)

N = o Z(, g =0 (5.16)
M2

and

_?InZ(By,p,)

¥ (5.17)

A. The Level Density for the Independent Particle Model

Let us suppose that N nucleons move independently in an average one-body
potential [see Chapter V) in deShalit and Feshbach (74)]. Suppose, moreover,
that the one-body energy levels in this potential are given by ¢,,¢,,.... Because
of the Pauli exclusion principle, the number of nucleons in each level is either
zero or 1, where we are using the m-representation [deShalit and Feshbach (74,
p. 221)]. Then

Tn,=N (5.18)
Sne, = E (5.19)

The partition sum, (5.13), is

Z(ﬁl,ﬁ2)= Z exP[ﬂzZns_ﬂlz"sﬁs]= z expl:Z(ﬁZ_ﬂles)nsJ (520)

allng allng

or

Z(By,Br) =] [ (1 + ef27F1e) (5.21)

Further development requires assumptions regarding &,.. We shall assume that
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the spectrum ¢, can be replaced by a smoothly varying continuous spectrum
as indicated by the Fermi-gas model [see Chapter II in deShalit and Feshbach
(74)]. Then

InZ(B,, B5) =) In(1 + P27 F1es)) —»Jw w(e)In(l + P2 hNde  (5.22)

£0

where ¢, is the smallest value of ¢,. This integral will be evaluated for large f,
and f,. The validity of this assumption will be justified a posteriori. Under these
circumstances the exponential, exp(f, — 8, ¢), will for small or negative values
of &, be much larger than unity, so that the logarithm in (5.22) is approximately
equal to fi, — fi,&. For large values of ¢, the exponential will be negligible and
the logarithm will tend to zero. The drop to zero occurs precipitously for large
values of f#, and f3,, at

B,
L=h2 (5.23)
"=,

As the notation indicates, for the saddle-point values of #, and f,, the ratio
equals the Fermi energy.

In this limit
mz__ﬁwmzj (e) By — Bre) de
p2.01»1 £o
or
F = B, N(eg) — B, Wier) (5.24)
where
N(eg) = J w(e)de (5.25q)

gives the number of single-particle states up to ¢z, while

Wi(ep) = Jgr cw(e) de (5.25b)

£0

gives the total energy of these states.
The next order is obtained by evaluating

@© EF

w(e)In(l + e#>#%) de + j @) In(l +e #2515 dg

£0

an—F‘”’:j

éF
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In the first integral let ;¢ — f, = x and in the second B, — ;¢ = x. Then

| O )
InZ — F™ = J w(ﬁl-{-f‘p)ln(l +e *)dx

140 1

1 f2-preo x
+ (‘ w(—f+ap>ln(l+e"‘)dx
ﬂ1~0 ﬁl

As B, increases, taking &, to be negative, to O(1/8,), one obtains

InZ — Ft= :%’(Eﬁfm In(1 + e~)dx =£n2/'6)w(sf)
By Jo B

Combining this with (5.24) for F** yields

@), _Ps

InZ ~f,N(eg) — B, Wier) + 8, FE ﬂ; (5.26)

This result can now be substituted in (5.15) and (5.16), determining the
saddle-point values of §* and . Take, for example, (5.1):

N dlnZz N(ey) + n? )
=——2x=N( —w
B, P lepr "

For large values of §, and smooth single-level density w,

N~ N(ep) (5.27)

so that indeed ¢ is, to this approximation, the Fermi energy. In the same
approximation, (5.16),

2
E = Wie,) + % %‘gj) + terms in o'(ep) + --- (5.28)

1

Since W(ey) is the energy of the Fermi gas in its ground state, the excitation
energy U is given by

_ ™ oler)
U=" 5 (5.29)

The two equations f,/8, = ¢r and (5.29) then determine both £, and §,.
We also need to compute the determinant L, whose elements are given by
(5.17). The second derivatives are readily calculated in the limit of 8, and S,



266 RESONANCES AND THE STATISTICAL THEORY OF NUCLEAR REACTIONS

large from (5.26) bearing in mind that ¢z = f8,/8,. One obtains

*InZ =a)(£F) 0*InZ _ (n: N ﬁz)w(sp)
aB: B By \3 ) B
?InZ
= _'B—;w(ap)
0B, 08, Bi
so that
2 2
detL:nr (1)(8}:))
3\ B

It is now possible to evaluate the right-hand side of (5.14) to obtain w(E, N).
The result? is [Bethe (37)]

nrw(ep)U

1
exp[2
J48U 6

2 1/2
(U, N)~_~1exp<7I w) = :l (5.30)
48U

JBU  \3B,

where for convenience we have changed the independent variable from E to U.
This form is commonly used in the semiempirical description of the density of
levels to be discussed. The constant 1/f, plays the role of a temperature, f, so
that (5.29) relates the temperature and the excitation energy®:

U = at? (5.31)
where the Fermi-gas model gives
2
gz T )
6

iMorrison (53) has compared this result and that obtained by Hardy and Ramanujan (18) for the
different ways, p(n), to form a given number n by any of the possible sums of smaller integers. For

large n they find that
1 [ 1[2 1/2
exp 2(—n> ]
J48n 6

The reader is invited to consider the relationship of this result and (5.30).
YA statistical-mechanical definition of temperature T is

pn}=

1 dw 1 c

wﬁ_ U U

1 2
U=C(T——)
c

T*l

or approximately,
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or

6U
= [nzw(m]

Problem. Using (5.21) and N = d1nZ/d8,, show that

1
T+ eﬂ](es-zrl -

N=} Y Aley)

where n(e,) is the average occupation number of the one-body state with energy
&,. Using the continuous approximation for the spectrum of ¢ [see (5.22)], this
becomes

N= Jm M— = J‘w de w(e)n(e)

o 1+ elh‘s*tl-‘) o

See Fig. 5.1 for a plot of r(g). Using the approximation developed following
(5.22), show that N = N(ep). Show that the number of particles excited above & is

(l nﬂu
B

Thus the average number of degrees of freedom (particles plus holes) excited
when the excitation energy is U is given by

212w
’ [N
or
m“=2m2/6mf“) (5.32)
w
(e) 8+ o

\/

L B finite
\ FIG. 5.1. Average occupation number,
fi(e) of a one-body state with energy ¢ for

€p €  two values of 8.
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If we write the exponent in (5.30) as 2. /aU,

12In2 -
Roge =~ /aU = 0.84/aU ~ 0.3, /AU,,,

T
where we have used the empirical a = 4/8.

It is, of course, clear that (5.30) is incorrect near U equal to zero, that is,
when the excitation energy goes to zero, and is applicable only for sufficiently
large values of U and N. A comparison of (5.30) with an exact calculation of
the density of levels when the single-particle levels are equidistantly spaced is
shown on Fig. 5.2. Except at small values of the excitation energy, the agreement
is excellent.

0e

104

PS) |

103

'6|l | It 1 I 1 | |

10 20 s 30 40 50 &0

FIG. 5.2. Exact level density per unit single particle spacing for a Fermi system of
one kind of particles with equidistant single-particle levels versus excitation energy s in
units of this spacing. The solid smooth curve is the approximate solution, (5.30). [From
Ericson (60).]
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Fluctuations. 1f these results gave an exact evaluation of the expression (5.11)
for w(E, N) the value of (N)* and of N? would be equal, where

Nw(E,N)=3 vé(v — N)S(E — &;(v))

v
and

N2(E,N) =Y v28(v — N)S(E — g,(v))

Jsv

A measure of the accuracy of these calculations is then furnished by the
fluctuation defined by

[W —NZT” _ [<Wﬂ7}”2 _AN
(N)? | N2 TN

From (5.12) and (5.13) we see that

o _JdB[dBoLOZ (B, Br)/op, 1 =72
[dB,[dB,Z(B,.B,)et E~FaN

Evaluating Z and 0Z/6f, at the saddle point gives the result

dInZ(B,, B,)
3P,

N~

at By =0, B, =By

in agreement with (5.16).
The value of N? is similarly given by

A AL
Z(,.p2)

so that

2 07815

Nt
o8

The independent particle model [see below (5.29)] gives

olep)

N2 - N2=(AN)*=
( B1

or using (5.29),

(AN)? = [GU w(BF)]“Z

7.52
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Inserting the Fermi-gas model value for o,

3N

w__
2ep

one obtains

9UN\1/2
(2

e

Introducing u, the excitation energy per nucleon (and replacing 9/z* by 1)

U
u=—
N

one finally obtains

é_N_gN-M(l)M
N &p

indicating the error is least for heavier nuclei and smaller excitation energies.
For a further discussion, see Feshbach (88).

B. Angular Momentum Distribution

The level density, w(E, N), (5.30), derived just above, takes account of all states
regardless of their angular momentum. Because of the important role played
by angular momentum barriers as discussed briefly in Section 4, we shall find
knowledge of the level density for levels with energy E and with angular
momentum J, w(E, N, J), essential for the interpretation of nuclear reactions.

In the procedure developed by Bloch (54), one adds to the constraints that
the total number of particles be N and that the total energy be E, the constraint
that the projection of the total angular momentum along an axis be M; that
is, in addition to the conditions given by (5.18) and (5.19), we add

M =) nm,

The resulting level density is w(E, N, M). The density we seek w(E, N, J) is then
given by

o(E,N,J)= w(E,NM =J)— w(E,N,M =J + 1)

o (6w(E, N, M)) (533
aM M=J+1)2

We begin by forming the partition function Z, which will now depend on
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three parameters f,, f,, B3:

Z(B1, B2, B3) = ZCXP(ﬁz" + B3M(v) — B1&,(v)
Applying the method of steepest descents [see (5.12)] yields

1

o(ENM)=—7b——
( ) (27!)3/2‘d6tL|1/2

Z(BO, B, NP BN ION(534)

where B, the saddle-point values of B;, satisfy (5.15) through (5.17) and the
additional equation

0
6lnZ _ (5.35)
0Bs
The generalization of (5.22) becomes
an:ZJ w(e,m)In(1 + ef>m+P2=Fey g (5.36)

where w(e, m) is the single-particle level density for particles of energy ¢ and
projected angular momentum m. The evaluation of the integral in (5.36) proceeds
according to method described above following (5.23). One obtains

2 (e
lnz=Yy {(ﬁz B N epm) — By Wileg(m) + %‘W} (5.37)
m 1
where
ep(m)
N, (ep(m)) = J wle,m)de (5.384a)
:)Hm)
W, (ep(m)) = J ew(e,m)de (5.38b)
where the Fermi energy eg(m) is defined by
£p(m) = %ﬂ (5.39)

We now define a Fermi energy independent of m, g, by averaging eg(m) over m:

Bz + Bsm
B

(5.40)

Ep



272 RESONANCES AND THE STATISTICAL THEORY OF NUCLEAR REACTIONS

where
. _ Smoem),m)
2 w(ep(m),m)
or using
wlep) = Y. w(ep(m), m) (5.41)
- _ Smao(er(m),m) 542
o(ep)
Similarly,
mi = 2 ler(m).m) (5.43)

w(er)
Finally, the functions N and W of the preceding section are given by

N(ep) =) No(er) (5.44)
and
Wier) =Y. Waler) (5.45)

Inserting these relations into (5.37) yields

InZ = B,N(er) + BsMlep) — B W(er) + 2; w(6p)|:n3 + Bim* — "'12)] (5.46)
1

where a Taylor expansion of N, (es(m) to first order and W, (ex(m)) to second
order has been used:

53m+ﬂ2) Bs

3 ~ N,(ep) + = (m — m)w(ep(m), m)
1 1

Nm(aF(m)) = Nm<

Terms up to w(ex(m), m), but not including its derivatives, have been taken into
account.
Using the conditions (5.15), (5.16), and (5.35), one obtains

= ﬁnj 2(m? — i
E=W(ep) + 2ﬁf|:3+ﬂ3(m m)]
N = N(es)

M=M()+ b 3‘;’(8”) (m* — m?) (5.47)
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The last equation can be solved for 5 and the result introduced into (5.46) as
follows:

B AM
olep)(m? — m?)

AM =M — M(ep)

3=

and
n? 1(AM)?
U=E— W)= of? wlep) + > (5.48)
5 = wlep)(m? — m?) (5.49)

The second term in (5.48) can be interpreted as the rotation kinetic energy of
excitation, where # is the moment of inertia about the axis upon which the
angular momentum is projected, an identification that requires justification.

Problem. Prove that .# approximately equals the rigid moment of inertia for
a spherical nucleus. Use

w(gF) = i— (5.50)

&

and
m? =~ (xp, — yp,)?

It is now a straightforward calculation to obtain the level density by using
the results above in (5.34). We find that

- 1 ”_zw(gF):|
N = oo 3 er B /BT e"p[ R

Inserting the value of f, from (5.48) and differentiating the result according to
(5.33) to obtain w(E, N, J), one obtains

2J +1 (U — &, N)

A = s (6o (U — )T

(5.52)

where again the independent variable E has been replaced by U. In this equation,
(U, N) is given by (5.30), and

U+
2.5

R (5.53)
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is the rotational energy. In obtaining (5.52), M(er) has been placed equal to
zero, as would be the case when the ground-state spin is zero. Note again that
this expression fails when U equals %, that is, on the Yrast line.}

When £ is small compared to U, that is, away from the Yrast line, we can
expand (5.52) about # =0 to obtain

oUN, D=2 U, Nye-vramene (5.54)
8o’
where [see below (5.32)]
1/2 1/2
62 = J(()U) - J(U) (5.55)
nla(ey) a

Problem. Prove that

[e]

Y (2J + Vo(E, N,J)-»J dJ(2J + Do(U,N,J)= (U, N)
J o

Problem. Show from (5.51) that

o(U —HAM?/.9),N)

UN,M)=
N LA (6 ler) (U — HAM?/) T

In the limit of {AM)?/.# « U,

o(U,N,M)= (U, N)e~aM?2e* (5.54)

2no

Thus in this approximation the angular momentum distribution is a Gaussian
with a root-mean-square derivation, o, given by (5.55), which increases with
increasing excitation energy. One can expect [see (3.4)] that the absorption
cross section will decrease when J exceeds ¢. This is simply the statement that
it will be much less probable for the angular momenta of the individual nucleons
to line up to obtain a given J as J increases. However, the probability improves
if the excitation energy increases since a greater variation in the values of the
angular momenta for the individual nucleons occurs.

The Yrast line is defined as the curve in the (U, J) plane giving the lowest possible value of J for
a given value of U.
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C. Rotational Nuclel

In addition to the total angular momentum I, the state of rotational nuclei are
characterized by the quantum number K [see (VI.3.30) in deShalit and Feshbach
(74)], the projection of I on the body-fixed axis of symmetry, assuming axially
symmetric nuclear deformation. We can now ask for the density of levels with
a given I and K.

Since K is a projection, approximation (5.54) can be used:

w(U,N,K)=

2
o(U, N)exp( —K—z) (5.56)

g/ 21 20k

where o is given by (5.55), employing for .# the moment of inertia about the
symmetry axis. The density of levels for a given value of I is then obtained by
summing:

w(U,N,I)=1 Z (U — R(K,I),N, K) (5.57)

where # is the rotational energy associated with rotation about the axes
perpendicular to the symmetry axis [see (V1.2.12) in deShalit and Feshbach (74)]:

)
*M,l[( I +1)—K?]

and # | is the appropriate moment of inertia. The factor of 1 takes into account
the fact that the sum includes both K and — K. Inserting this value for # and
using the approximation £ « U yields

I
(U, N) Z e~ (126X + 1) = (1/2)1 /ok = 1/07)K? (5.58)

3
V8Kayg K=-1

where o2 is given by (5.55) with .# replaced by .# | . The factor multiplying K>
in the exponent depends on the difference (1/#, — 1/.# ). In a rigid body in
the shape of a prolate spheroid,

o(U,N,I)=

tfK = ‘lsph(l - %5) jL = jsph(l + %5) (559)

where § is the eccentricity parameter [see deShalit and Feshbach (74, p. 416)]
and #,, is the moment of inertia of a rigid sphere of radius R, where R, is
the mean radius [see deShalit and Feshbach (74, p. 415)]. Then

1 -1 1 o

Fx I Fon(1-28)(1+15)
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A contribution to the energy of rotation coming from rotation about the
symmetry axis is possible only at excitations sufficiently great that pairing effects
are reduced. Under these circumstances, the superfluidity [see deShalit and
Feshbach (74, p. 568)] thought to be responsible for condition equation (VI1.4.1)
in deShalit and Feshbach will be correspondingly less and this moment of
inertia, £, will approach the rigid value, (5.59). More explicitly, if the average
number of unpaired particles is v and the average value of K? for one particle
is K2, then

172
62l=vK?=4 6U
K ! K n2olep)

At low energies the number of unpaired particles goes rapidly to zero, so that
# 1s reduced from its rigid value, which applies at sufficiently large excitation
energies.

The angular distribution of fission fragments depends on the K dependence
of w(U, N, I), permitting a determination of .#; from experiment. [See Reising,
Bate, and Huizenga (66) and Bohr and Mottelson (75, p. 619); see also Huizenga,
Behkamu, et al. (74) and Dgssing and Jensen (74).]

D. Isospin Distribution

The results obtained for the angular momentum distribution, in particular (5.54"),
can be quickly adapted to this problem. The level density w(U, N, T,), giving
the density of levels at an excitation energy U, number of particles N, and
isospin component Ty [=3(Z — N)], is

o(U,N, T3)=

w(U, N)exp( —2’1%‘%2) (5.60)

T

ag i

T

where

o 1/2
o2 = (m? — mf)[L’“j)U}
n

Of course, m? =1. Near the Fermi energy,

_— 1%}") - wy(ﬁr)
" 2wpler) + onler)

where wp and wy are the single-particle level density for protons and neutrons,
respectively. Hence

o2 = [6“’@3”}”2 rlselerle) (5.61)

! n? [wn(er) + wplep)]?
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where
w(er) = wy(ep) + wplEr)

Equation (5.60) becomes

6l/4 2 12
W(U.N, Ty) = lzw(ef)[w(‘:)(jf)m} [w(er) U]~
N\YF P\°F

202

2 T2
X exp|:2 %w(sF)U - 3} (5.60")
All the considerations above are based on the independent particle model
of the model; that is, the Hamiltonian is assumed to be given by

H=Yalag, (5.62)

where a and a, are the Fermion creation and destruction operators associated
with a single-particle level of energy ¢, In addition, it is assumed that
single-particle level density is a smooth function of the single-particle energy.
Under these circumstances the level density for the nucleus depends primarily on
w(eg), the single-particle density evaluated at the Fermi energy.}

Improvements can be obtained by using a more realistic nuclear Hamiltonian
and single-particle level density. For example, the single-particle levels of the
independent particle shell model are bunched and the possibility of degeneracy
is substantially different when a shell is, for example, half filled than when it is
completely filled. The assumption of a smooth single particle density is not a
good approximation under these conditions. Rosenzweig (57) has, for example,
calculated the nuclear level density using a simple model that exhibits both the
bunching and variation of degeneracy, characteristic of the shell model. In
another, obvious improvement the interactions are taken into account. For
example, Hartree—Fock single-particle levels can be inserted in (5.62). Proceeding
further, the quasi-particle description of Chapter VII of deShalit and Feshbach
(74), which should be especially advantageous in view of the strong dependence
of w(U) on w(eg), can be used. H will now include both the single-particle
energies and the pairing Hamiltonian [Moretto (72a, 72b)]. Finally, more
sophisticated methods based on the Goldstone linked cluster expansion [ Section
VIL.14 in deShalit and Feshbach (74)] could in principle be adapted for the
calculation of nuclear level densities.

‘The saddle-point evaluation of the density of levels is an approximation to the exact density. The
latter can be obtained for noninteracting nucleons by using the combinatorial method. This method
amounts to finding the number of ways in which the nucleons can be distributed among the
single-particle levels for a given energy of the nucleus. A systematic approach to this enumeration
has been given by Hillman and Grover (69).
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The results of these calculations are not readily summarized by an analytical
expression. However, some features that can be readily understood qualitatively
emerge. These have formed the basis of a semiempirical description of the nuclear
level density.

The major effects of the residual interaction on the nuclear levels of the
independent particle shell model include the lifting of degeneracies of that model
and the motion of the energy levels to different values of the energy. Of particular
importance for our discussion is the substantial descent of some levels, these
thereby becoming either the ground state or lying much closer to the ground
state. On the other hand, at relatively high excitation energies the motion of
the levels does not result in any substantial change in the level density from
that predicted by the independent particle model. The two spectra before and
after the residual interaction is “turned on” are illustrated in Fig. 5.3. It is clear
from the figure that one can use the independent particle model result for w(U)
for the spectrum of Fig. 5.3b for sufficiently large U if U is replaced by U — A.
In other words, one shifts the ground-state energy from which U is calculated
to the value it has before the residual interaction is turned on. This is, of course,
not an exact statement, since the differences in the spectra can hardly be
expressed by means of only one parameter. However, by choosing an empirical
value for A, one might expect to be able to match the spectrum of (b) at
sufficiently large U. If @w,(U) is the level density for the independent particle
model, then for sufficiently large U, wo(U —A) is the level density when
interactions are taken into account.

This concept of a reference level, differing from the ground state, for the
calculation of the effective excitation energy [Hurwitz and Bethe (51)] has been
incorporated into (5.52) with A as well as a and ¢ as empirical parameters to
be determined from experiment [Huizenga (72)]. The effect of pairing energy
on level density can be included in this way. Recall from (I1.3.1) in deShalit and
Feshbach (74) that the pairing energy is taken to be zero for odd—even nuclei
and is given by a positive function of A, §(A4), for odd—odd nuclei and by — d(A4)
for even—even nuclei. Taking the same reference level, that is, the odd—even
nucleus, A is given by — §(A) for odd-odd nuclei and by §(A4) for even—even
nuclei [Ericson (59)].

il
i

[
—

FIG. 5.3. Effect of the residual interactions on the —
distribution of the nuclear energy levels.
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FIG. 5.4. Total number of states up to the excitation energy E for Mn>%, Fe®, Fe®’,
and Fe>® versus E. The resolution is somewhat higher in the case of Mn>° than for the
rest. The figure compares the total numbers of states for even, odd, and odd-mass nuclei.
[From Ericson (59).]

The odd-even effect is illustrated in Fig. 5.4, which gives the total number
of states up to an excitation energy U for four nuclei: **Mn (odd, odd), 3"Fe
(even, odd), >*Fe (even, odd), and 3®Fe (even, even). As expected, the odd—odd
nucleus has the greatest number of states, the even—even the fewest, while the
even—odd nuclei fall in between. The shell model provides a reason that the
number of states of 37Fe is greater than that for 33Fe for a given excitation
energy; namely, >°Fe has only one neutron outside the closed neutron shell at
N =28, while 37Fe has three such neutrons. There is, therefore, a larger number
of states that can be formed in *’Fe than in 33Fe.

More quantitatively, one might hope to use the experimental determinations
of the level density to obtain the parameters a, o, and A. The systematics of
their dependence upon excitation energy, and the mass, A, and atomic number,
Z, of the nucleus might then provide insights into the properties of excited
nuclei. For the most part such systematic studies have not been carried out.
Unfortunately, it is often the case that different expressions are used for w so
that the values of a and ¢ obtained are not immediately comparable.

A compilation [Facchini and Saetta-Memchella (68); Baba (70)] of the values
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FIG. 5.5. Level density parameter a as a function of atomic mass A [Baba (70)]. [From
Huizenga and Moretto (72).]

for a are shown in Fig. 5.5. To obtain these, g, the spin-cut off parameter, was
calculated from (5.55) using the rigid moments of inertia, and A was taken to
be equal to the pairing energy values given by Gilbert and Cameron (65). We
observe that these values of a are marked by substantial deviations from the
expected linear dependence on A, (5.50), deviations that are especially large for
nuclei near the closed shells. This can be related to the fact that the density of
single-particle levels near the Fermi energy is markedly smaller for closed-shell
nuclei. The correctness of this analysis is indicated by theoretical level density
calculations using the single-particle levels provided by the Nilsson model [see
Chapter VI in deShalit and Feshbach (74)] for nuclei close to the doubly magic
nucleus 2°®Pb. The results are shown in Fig. 5.6. As expected, 2°Pb has the
smallest level density. The level densities for neighboring nuclei increase with
increasing distance of the nuclei from 2°8Pb.

The values of o that are extracted from those experiments, particularly those
sensitive to the value of the maximum angular momentum which can contribute
to the reaction cross section, are shown in Fig. 5.7. The excitation energy, U,
is approximately 8 MeV. The solid line that gives the value of ¢ computed using
the rigid moment of inertia [ Chang (70), Coceva, Corvi, Giacobbe, and Stefanson
(72)] is in substantial agreement with the experimental rgsults for 4 < 110. It
is not possible to draw any conclusions for larger values of 4 in view of the
little information available.

Theoretical values of the spin cutoff parameter, o, have also been obtained
using the Nilsson model. The results are shown in Fig. 5.8. The nuclei involved
do not overlap with those experimentally observed in Fig. 5.7, but the
comparison would suggest that the theoretical values will be too large.
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FIG. 5.6. Theoretical level densities as a function of excitation energy for nuclei in the
neighborhood of the 2°3Pb doubly closed shell. The Nilsson shell model has been used
to obtain the spherical set of single particle levels [Moretto, Stella, and Carmella-Crespi
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FIG. 5.8. Theoretical spin cutoff parameters 62 as a function of excitation energy for

nuclei in the 2°°Pb region. The calculations have been performed on the basis of the
Nilsson diagram [Moretto, Stella, and Caramella-Crespi (70).] [From Huizenga and
Moretto (72).]

The experimental results that form the basis of the foregoing comparisons
with the theory are obtained from a variety of sources. The most obvious
involves simply counting of the levels, which is possible only if they are isolated,
as can be the case for low-energy neutron resonances. However, this procedure
rapidly becomes impossible as the excitation energy increases. The primary
method then exploits the dependence of reaction cross sections, total as well
as differential, on the nuclear level density, as will be made evident in later
sections of this chapter (see Section 7). For the present we illustrate the results
that can be obtained by Fig. 5.9 for the case of *°Ni.

French and his collaborators have developed a statistical method for
determining the nuclear level density which is appropriate for the interacting
shell model. In this model the wave functions for the system are assumed to be
expressible in terms of the shell model single-particle wave functions. Moreover,
a finite number of shells are assumed to be mixed by the residual interaction
forming the shell-model space. Thus the effective Hamiltonian is given by the
finite matrix {(®; H|®;), in that shell model space where the set {®,} are the
independent-particle (i.c., noninteracting shell model), wave functions. The
theory attempts to compensate for the effect of omission of the states outside
the model space by using an adjusted (“renormalized”) residual interaction. This
procedure is in obvious difficulty when the actual interaction brings down into
the energy domain of interest, states that have appreciable components not
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FIG. 5.9. Plot of the experimental level density of ®*Ni as a function of excitation energy
[Lu, Vag, and Huizenga (72).] [From Huizenga and Moretto (72).]

included in the model space. These are referred to as intruder states. It should
also be noted that even when the unrenormalized residual interaction is
two-body, the renormalized interaction will generally contain many-body
interactions as components. The energies of the system are given by the
eigenvalues of the Hamiltonian {®;|H|®;}. Generally, the diagonalization of
such a matrix is a formidable numerical task. For instance, the J=3, T=1
matrix in the shell with 12 particles has the dimension of 6706, so that there
are 2.25 x 108 different matrix elements and 6706 cigenvalues. If, however, the
residual interaction is two-body, as is usually assumed [see Chapter V in deShalit
and Feshbach (74)], the number of independent matrix elements is only 63. The
two-body assumption is not generally correct, as the omission of states outside
the model space rigorously requires the introduction of many-body forces, so
that the number of independent matrix elements will be larger than 63. There
is an upper bound to this number when the number of active particles is m,
since then the many-body force is at most an m-body force.
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FIG. 5.10. (a) Plot of the distribution of 196 diagnonal nuclear shell model matrix
elements from the work of D. Kurath. The solid curve is a simple normal distribution
(2m)~ "% exp(— HZ/2H?) in which H,, is the diagnonal element minus the mean
diagnonal element for each matrix. (b) Plot of the distribution of 675 off-diagonal matrix
elements obtained in the work of D. Kurath. The solid curve is a simple normal
distribution (2n) /2 exp(— H ﬁ/ZH HZ,)in which H,_is the off-diagonal element; the mean
value of the off-diagnonal elements |s very close to zero. [From Porter and Rosenzweig

(60).]

The statistical method adopted by French and Wong (70) and Bohigas and
Flores (71) makes use of the empirical resuit (see Fig. 5.10) that the matrix
elements of a short-range residual interaction are random. By this we mean
that the distribution of values of the matrix elements when the excitation energy
or the mass number of the nucleus is varied is Gaussian. A justification of this
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result is indicated by the following plausible but hardly rigorous argument. In
terms of ¢, (r), the single-particle shell model wave function, the matrix element
of a two-body potential v(r,r’) is

(il vdpmd, ) = jd’,}* (0] (F)o(r, ), ()¢, (r') dr dr’ (5.63)

For large quantum numbers (i.e., for reasonably high excitation energies) the
¢,’s will have a large number of nodes. The overlap of these wave functions as
they occur in (5.63) will generally yield a very irregular and complex dependence
on r and r. Since v is short range, the matrix element of (5.63) is a sum of
contributions that come from the regions in which the overlap is constructive.
To the extent that these contributions are effectively random, the central limit
theorem may be applied and the distribution of the matrix elements is
Gaussian.

This empirical result suggests the following procedure. One can construct
an ensemble of possible Hamiltonians with model shell space by choosing each
of the independent matrix elements randomly (i.e., from a Gaussian distribution),
and then solving the resulting secular equation for the energy eigenvalues of
the system. By this means it would then be possible to develop an energy
eigenvalue distribution. The fundamental assumption is then made that this
distribution is identical with that which would be obtained from the energies
of the levels in a given nucleus or from a variety of nuclei. This hypothesis is
referred to as the ergodic hypothesis and is reminiscent of the hypothesis made
in statistical mechanics, in which the time behavior of a system is related
statistically to the properties of an ensemble of trajectories generated by random
initial conditions.

An important simplification in the calculation of the distribution of energies
can be obtained if one assumes that the distribution is Gaussian.

W)= exp[~[E'_“2] (5.64)

J2mi? 22

where the average energy E is given by ¢ and the mean-square deviation E? — E>
by 42. The validity of (5.64) has been shown by numerical calculations as well
as through an application of the central limit theorem [Mello (78)] when the
number of particles is larger than two, when the interaction is two-body, or
larger than k, when the interaction is k-body.

It is thus no longer necessary to diagonalize the Hamiltonian. One need only
compute the mean energy and the dispersion using the expressions

2= YC0HO,)
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and

’12=§Z<<Di|(e—m2<l>,->=$Z<<DfIH2<D,->—82 (5.65)

i i

or

|
PZLZ;K(D"‘H@"NZ_SZ (5.66)

In these expressions d is the dimension of the space, while the matrix elements
are linear combinations of randomly chosen quantities. Such a procedure was
used by Ayik and Ginocchio (74) to compute the level densities for light nuclei.
The orbital single-particle, wave functions of the 2s, 1d, and f, , shell were used.

Some comment should be made with regard to the Gaussian form, (5.64). It
differs sharply from the expression (5.30) obtained earlier, which showed an
ever-increasing density of levels. The reduction in the level density at large E
is a consequence of the use of a finite shell model space and is simply an
expression of the fact that the energy eigenvalues in such a space will be bounded
from above. The Gaussian, 5.64, is therefore meaningful only in the low-energy
region, E <e¢. The resulting form in this domain is not identical with (5.30).
However, Ayik and Ginocchio’s calculations take interactions and shell model
effects into account.

6. SPACING OF ENERGY LEVELS; WIDTH DISTRIBUTIONS!

The preceding discussion provides an overall broad view of the distribution of
nuclear energy levels. We turn next to the description of local properties of the
energy spectrum as posed by the question: What is the probability that the
separation between two neighboring energy levels is s? Further specifications
would include the probability that two levels are separated by an interval s
containing n levels. We shall consider only the simplest case, n = 0.

Let w(s)ds be the probability of finding a level at a distance between s and
s +ds from a given level. The probability we seek is given by w(s) multiplied
by the probability that there is no level in the interval s. This last factor can
be calculated as follows. Divide the interval between 0 and s into elements of
size As,. The probability that there is no level in the interval As, is given by
1 — w(s,)As,. The the probability of finding no level in the interval O to s is
given by

[T01 = exs,)As,] = exp 3 log(l — (s,)As,) = exp[ — Y ofs,)As,]

—>exp|: - Js w(s)ds:l
0

Brody, Flores et al. (81); Porter (65); Bohigas and Weidenmiiller (88), Bloch (68).
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Finally, the probability p(s)ds of finding a level between s and s + ds from a
given level with no level in between is

p(s) = Caxs)exp [ - J‘s w(s) ds:, (6.1)

0

where C is a normalizing constant. If w(s) is a constant, one obtains the Poisson
distribution

o= eon, J5 s
D ' (& p(s)ds

(6.2)
where D is the average spacing.

However, as we show shortly, levels with the same quantum numbers do not
cross (for nonsingular perturbations); that is, as the residual interaction is
changed, two levels may approach each other but will eventually repel each
other. Under these circumstances one might use, as suggested by Wigner,
w(s) ~ s, so that

pls) = g % ¢~ (x/4)(5/D)? (6.3)

the Wigner distribution law for spacings. Note that the probability for small
spacings is substantially smaller for this distribution compared with the Poisson.

The agreement of the Wigner distribution with experiment as shown in
Fig. 6.1 is remarkable in view of the simplicity of the argument. The reduction
for small s is clearly seen.? Interestingly the Wigner distribution also gives a
good fit to the spacing between the two lowest levels in nuclear having the
same J and 7 as shown in Fig. 6.2.

To obtain additional insight into the spacing distribution has required the
introduction of a model. We shall briefly’ mention two statistical models, the
Gaussian orthogonal ensemble (GOE) and the two body random Hamiltonian
ensemble (TBRE), described at the end of Section 5. The former, although it is
not realistic, as it assumes many-body forces equal in rank to the number of
particles making up the system, has the advantage of being analytically tractable.
For the most part, the properties of the TBRE require numerical determination.
This model is also not completely realistic because it restricts the interaction
to two-body forces, an assumption that is not correct because of its use of a
finite-dimensional shell model space.

‘One should note that the Wigner distribution is found to be valid for atomic spectra [Porter and
Rosenzweig (60)] as well as for the spacing of the first two levels with the same J and IT in each

nucleus.
$The reader should be aware of the “unitary ensemble” introduced by Dyson (62).
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The GOE assumes that the distributions of the individual matrix elements of
the Hamiltonian are independent. This is unphysical because for residual
two-body (or at most, few-body) forces usually envisaged the matrix elements
are strongly correlated. The second assumption is that the joint distribution of
all the matrix elements are invariant under a change of representation. This
assumption is nut justifiable even if the representations involved are complete.
There may be, indeed are expected to be, representations which because of
dynamical reasons are more appropriate for the application of the statistical
hypothesis; that is, the representations conform more closely to the physics of
the system under study.

With this “caveat emptor” in mind, consider a two-dimensional infinitesimal
rotation which transforms only the eigenfunctions ®, and ®@,, that is,

D, =D, +¢0,
D, =0, —ed,
assuming that H is Hermitian and that @, and ®, are real, the matrix elements of
H transform as follows:
H, =(®||HV, >=H, +2eH,,
H,,=(®,|HV,>=H,, —2tH,
H’12=H12+3(H22_H11)
H:1u=H1”+£H2u} 42
H2u=H2“_8H1“

Thedistribution function P(H,,,H,,,H,,, H,,,H,,,...) transforms as follows:

P oP oP opP
—=2H,, —+Hyp—H)——2H,, —
oe oH,, oH,, oH,,
opP oP
+ Hy— —H,,——
Ez( *oH,, 1“6H2u)

The invariance condition requires that dP/d¢ =0, which will be the case if

P oP oP
=—oH;,P - =-20H;,P - =—aH,;;,P (64)
6H 6H |, 0H,,

oP opP
= “2“H1uP
cH,, 0H,,

= —2aH,,P (6.5)

It is left as an exercise for the reader to prove by extensions of the argument
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leading to (6.4) that the constant « in (6.5) is identical with the o« in (6.4).
Integrating (6.4) yields

P = Ce ok = Ce™ vt (6.6)

where C is a normalization constant. The invariance condition is thus extremely
restrictive. Note that the distribution function for the diagonal elements,
exp(—oaH}), has a wider spread than that for the nondiagonal elements,
exp(—2aH fj) The fact that P can be expressed as a trace demonstrates explicitly
the independence of P with regard to representation.

As an example of the application of this result for P, we use it to calculate
the spacing distribution for the case of a two-dimensional space involving
therefore only H,,, H,,, and H,,. For this case the energy eigenvalues, E , and
E _, are given by

E,=i[Hy, + H,,  /(H,, — H;))* + 4H2}] 6.7)
The spacing
s=/(H\, — Hy)* +4H3, (6.8)

is a positive-definite quantity, a result from which the absence of level crossing,
alluded to earlier in this section, can be deduced. It is a result that is not
restricted to the two-dimensional case.

From (6.6) and (6.8), the probability distribution for the spacing is given by

P(s)=C JdH“JdleJdeze_“‘H“+2H”+H“)0(S—\/(Hu—sz) +4H1))
(6.9

The integration is straightforward so we leave it to the reader to carry it out.
The result is the Wigner distribution (6.3). However, this coincidence occurs
only for the two-dimensional case. Agreement with the Wigner distribution is
achieved again when the dimensionality becomes very large. The comparison
with an exact calculation of Gaudin (61) is shown in Table 6.1.

Remarkably, it is actually possible to obtain the probability distribution for
the eigenvalues of the GOE in closed form. Toward this end, note that the
Hamiltonian matrix of dimensionality N has N(N + 1)/2 independent matrix
elements. Upon diagonalization the new variables are the N energy eigenvalues
E, and N(N — 1)/2 parameters «; describing the transformation to the diagonal
basis. These parameters do not appear explicitly in (6.6) for P since

trH?>=Y E?

Finally, it is necessary to transform from the volume element dH,,dH,,dH,,
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TABLE 6.1 Comparison between the Wigner
Two Level Distribution (p,) and the Exact
Calculation (p) of Gaudin

S/D p P
0 0 0
0.064 0.104 0.0996
0.127 0..207 0.1974
0.191 0.303 0.2915
0.255 0.395 0.3801
0.318 0.477 04617
0.382 0.549 0.5350
0.446 0.6117 0.5989
0.509 0.6630 0.6525
0.573 0.7032 0.6954
0.637 0.7308 0.7273
0.764 0.7547 0.7587
0.891 0.7396 0.7502
1.018 0.6933 0.7083
1.146 0.6255 0.6417
1273 0.5445 0.5598
1.400 0.4587 0.4713
1.528 0.3750 0.3836
1.655 0.2978 0.3023
1.782 0.2301 0.2308
1910 0.1730 0.1709
2.037 0.1267 0.1229
2.164 0.0906 0.0837
2.292 0.0631 0.0581
2419 0.0429 0.0383
2.546 0.0286 0.0245
2674 0.0185 0.0153
2.801 0.0117 0.0092
2928 0.0062 0.0054
3.055 0.0030 0.0031
3.183 0.002 0.0017

Source: Gaudin (61).

dH | dH ,3dH 55 - }o dEldE,_---dENdal--‘odoc(N)(N_l)/z; that is, we need to
compute the Jacobian of the transformation. Toward this end, note that the
matrix element is linear in the energy eigenvalues E

Hi;=<{®;|HD;> = <Z “iaXa|HZ“jbXb> =Za;Eaaja
a b a

where the parameters «; are selected from the set «;, and y, , are eigenfunctions
of H. Therefore, the element in the Jacobian, ¢H;;/0E,, is independent of E,
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while the remaining (N)(N — 1)/2 elements 6H;;/0u;, will be linear in E,. Hence
the Jacobian is a multinomial of degree N(N — 1)/2 in the eigenvalues E,. Finally,
note that if any pair of eigenvalues are equal (i.e., if there is a degeneracy), the
transformation from {E,, «,} space to H;; space is singular. Hence the Jacobian
must go to zero whenever two eigenvalues E, and E, are equal. Thus as far as
the dependence upon E, and E, is concerned, the Jacobian is proportional to

N
1—] IEaiEbl
a<b=1
and P becomes?
Ll 2
PEy,....E)~ [] |E,—E,|e Xk (6.10)
a>b=1 .

where we have integrated over the dependence on the parameters «;. This result
is referred to as the Wishart distribution. Evaluating the constant of
proportionality in (6.10) and determining the distribution for the spacing and
other measures of distribution requires elegant and ingenious mathematical
arguments which we shall not describe here. It is from these results that one
deduces that for large dimensionality, N, the Wigner result is recovered. Indeed,
it seems that the Wigner result is approximately correct for large N even for
the two-body (TBRE) case. This is illustrated by Fig. 6.3. These exact calculations
also exhibit a long-range anticorrelation, which is presumably a consequence
of the repulsion of energy levels.? It has been observed experimentally.

We turn finally to the distribution function for one of the amplitudes of the
eigenvectors of the random Hamiltonian. If these are denoted by a,, a,---ay,
the joint distribution function is

2 N
P(al,a2,...,aN}=Q—6<1—Zaiz) (6.11)
N 1

since the amplitudes must remain normalized under an orthogonal trans-
formation. The quantity Q, is the total solid angle subtended by an

1t has been pointed out by Dyson that this expression can be thought of as the configurational
part of the partition function for a two-dimensional Coulomb gas with each particle held in a
one-particle oscillator potential.

$The correlation function is evaluated by Dyson and Mehta (63). However, they did not deal with
the GOE but rather with the “orthogonal ensemble” of unitary matrices, whose eigenvalues are of
the form e™'. Porter therefore refers to the ensemble as the COE, the circular orthogonal ensemble.
One can consider the Dyson ensemble to be a theory of random S matrices, while Wigner, Porter,
and Rosenzweig consider random Hamiltonian matrices with real matrix elements, assuming
time-reversal invariance. The violation of time reversal led [Dyson [62)] to the consideration of
“unitary ensembles.” It leads to substantial differences for the spacing distribution from that which
follows from the circular orthogonal ensemble.
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FIG. 6.3. Histogram obtained collecting the lowest energy difference between states with
the same J and IT in the nuclear table. The solid line represents Wigner’s distribution
p.(x) and the dashed line shows the prediction of the TBRE in the ground-state region
taken from Cota, Flores, Mello, and Yipez (74). The number of spacings is 135 and the
probability of x? is 3% when the histogram is compared with p,(x) and 13% when
compared with the p(0; x) of the TBRE. [From Mello (78).]

N-dimensional sphere. To show this, introduce N-dimensional spherical
coordinates:

A=Y a?
a, =Acos 3,

a,=Asin 9, cos 9,

ay=Asin 3,sinY,---sin 9y, (6.12)
The volume element is given by
AN 1dA dQy

so that

2
JP(al,az,...,aN) da,--day= [5(1 — ADAY V44 dQy

N
=2J5(1 VLAY yy

as desired.
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The distribution for a, is given by
P(a) = JAP(al,...,a,\,)é(al —a)da,---day
= J‘P(a1 cray)dla, —a)AN " 1dAsin T2 9,49, dQy_,  (6.13)

where we have used

dQy=sin""29,sin""*9,.-.sinGy_3d9,---dIy_,

=sin""29,dQy_, (6.14)

Note that 0 < 9, <7, a # N — 1, while —n < 35_, <. Hence

Q,_
P(a)= gl; 1JAé(a—cos&l)sin""z.91(1!.91

N
:QN*1 (1 _aZ)(N—S)/Z (615)
Qy
One can readily show by integrating the first line of (6.14) that

2nN/?

T T(N2)

N

Assuming that a®> « 1 and N » 1, (6.15) becomes

N 1/2
P(a)da = (*) e~ N2 4g (6.16)
2n

Since the single particle width, T, is proportional to a?, its distribution can
be obtained directly from (6.16). Let

r

— = Ng?
KI5

we then obtain the Porter—Thomas (56) distribution for the widths:

P(I)dr = ! (<r>>l/ze-(1/2)(l‘/<r>) dr (6.17)

S\ T (T

where (I") is the average of I.
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FIG. 6.4. Plot of the distribution of amplitudes for '°°Er from 0 to 3 and from 0 to
4.2 keV. The porter—Thomas curves are shown for comparison. [From Mello (78).]

The Porter—-Thomas distribution has been amply verified experimentally as
illustrated by Fig. 6.4. If v channels contribute to the width, one can calculate
the result by folding the Porter—Thomas distribution for single channels:

P(IN)= JP(F,)P(FZ)---P(FV)é(F — Zv: l",-)dl“l --dl, (6.18)
1
This calculation can be carried easily by using the representation of the 4 function
r=>ry)= 21_71 Jexp[ik(l“ —>T)]1dk
Inserting this result into (6.18) yields

P = 2i Jdke““' [H JP(F,-)e_ “‘r"dl",.]

s 1

This integral can be carried out to obtain a single closed form when the average
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widths for each channel are equal:

(rop =2
v

The one obtains the “y? distribution for.v degrees of freedom™

vIm V2 1 —vI[\dr
&m”_@GJ mm“%xmyf (619

One can readily show that
2 2 2 2
I =L =;<F> (6.20)

showing that as the number of channels increase the variance decreases. For a
large number of contributing channels it is good approximation to neglect
fluctuations, so that

@) —-fKID)  vlarge (6.21)

7. STATISTICAL THEORY OF NUCLEAR REACTIONS?

As can be seen from Fig. 5.6, the level densities in the heavy nuclei quickly
approach astronomical values with increasing excitation energy. For the lighter
nuclei, the level density does not reach as large values for the same excitation
energy, but the numbers are still substantial as illustrated by Figs 7.1 and 7.2.
To obtain either theoretically or experimentally the cross section for the
excitation of each of these levels is generally not possible or worthwhile. There
are exceptions. At very low excitation energies, the level density is sufficiently
small, so that the individual compound nuclear resonances can be observed.
At higher excitation energies special structures such as the doorway state
resonances (isobar analog resonances, the giant multipole resonances, etc.),
which in fact involve averages over many levels, are of great importance. In the
discussion that follows we assume that such unusual structures are not present
in the energy domain being considered. Excluding these exceptions, the large
level density precludes the study of the individual levels. Under these
circumstances a statistical approach becomes unavoidable.

The justification of a statistical theory of nuclear reactions is similar in content
to that used to justify statistical mechanics. Indeed, the statistical theory of
nuclear reactions may be considered to be an example of nonequilibrium

*Blatt and Weisskopf (52); Hauser and Feshbach (52).



7. STATISTICAL THEORY OF NUCLEAR REACTIONS 297

| T T

LOG (LEVELS /MeV)

] I _

16 32 48
ENERGY, MeV

FIG. 7.1. Comparison of Hillman—Grover level density with experimental values for

$6Fe. Circles are experimental points. [From Lefort (76).]

statistical mechanics. At a sufficiently high excitation energy when the level
density is large, it is reasonable to assume that the states are complicated linear
combinations of simple states. As an example, consider a nucleon incident upon
a nucleus for which a shell model description is adequate. The nucleon will
excite the target by exciting one of the nucleons so that the system may be
considered to be in a 2p-1h state. A second encounter with a target nucleon
may lead to a 3p—2h state. Successive interaction will eventually generate 4p—3h
components, Sp—4h components, and so on (see Fig. 7.3). The wave functions
of the compound nuclear system will consist of a linear combination of the
incident state and states belonging to these various excitation categories: 2p—1h,
and so on. In terms of this shell model representation, the number of terms in
the linear combination forming the wave function will be very large, on the
order of the number of levels in an interval of a few MeV. Under these
circumstances, it is not surprising that the transition amplitudes 4 ., which
depend on the overlap between the initial wave function and the complex nuclear
wave function, will be a complex random variable. That is, the value of 7 ..,
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FIG. 7.3. Multistep nuclear excitation.

because of the complexity of the nuclear wave function, will depend on relatively
accidental features of the latter. The value of 7. will fluctuate rapidly as the
energy changes, giving rise to the Ericson-fluctuations discussed earlier in this
chapter. The values of 7. obtained from a sufficiently large energy range form
an ensemble with respect to which average properties of the system can be
calculated. It is assumed, and this is a form of an ergodic theorem, that the
ensemble average and the average with respect to an energy interval are equal.
Perhaps the most essential hypothesis made in the development of the
statistical theory is the random-phase hypothesis. This hypothesis is the most
direct application of the insight that the complexity of the nuclear wave function
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will lead to effective randomness. We first provide a general statement of the
random-phase hypothesis, as there will be many applications in differing
contexts. Suppose that an amplitude u can be written as a sum as follows:

u=y u,
n

We shall, moreover, assume that the average values of u and u,, the nature of
the average depending on the problem under consideration, are zero:

up=0 <u,»=0 (7.1)

The question is asked as to the average value of |u|?, which generally will differ
from zero:

Clul?y =3 {ufup> (7.2)

The random-phase assumption states that the phases of u, are random, from
which (7.1) follows immediately. To see this, let

u'l = e.¢n|un|

The various possible values of ¢, ranging from 0 to 27 are assumed to be
equally probable, so that the average is given by

1 2z
<un>=‘J und¢n:0
2z J,

The same analysis applied to (7.2) yields
(¥t ) = O | 4| (73)
so that

QulPy =3 lu,|? (7.4)

n

The dependence of this result on the representation used to obtain the expansion
of u should be noted. The physics of the system under consideration dictates
the selection of the representation to be used. It is through this choice that a
physics content is given to the random phase hypothesis. We shall see many
examples.

As a first application of the random phase assumption, we make use of the
result of Kawai, Kerman, and McVoy (73) to be described later in this chapter.
It states that it is possible to break up the transition matrix .7 into two parts:
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a prompt (or direct) term, J ®, the channel indices are suppressed for the time
being, and a fluctuation (or resonance) term, 7 (F1)

T=9®+7 (7.5)
so that upon taking averages
(T >=KTP)
(TS =0 (7.6)

The cross section is proportional to |7 |%. Taking the average assuming that a
random relative phase exists between . ® and 7Y one obtains

AT P>=TPP)+ TP (7.7)

or in terms of the cross section, the cross section can be given a corresponding
decomposition
(o> =0® 4 gL (7.8)

The above results apply to the entire cross section. But they apply as well
as the partial wave cross sections so that

AUy = 7O0m1P) + <7 ™un)i) (7.9)

As a second example consider the application of the random phase hypothesis
to the angular distribution (1.5). We then need to average J {17 {1*, where
¢ stands for the quantum numbers «, /, s; JTI so that

FEL — f/‘fb’(l’]s’l; Is; J,IT)

ci.eq

Using the random-phase hypothesis,

(TEVGELYS 5 5 | gFL2 (7.10)
We then obtain for the angular distribution
do V(o a)> | I
— Y=Y (IsJ || JAnY, || IsHU'ST || JSarn Y, || I's'
< 0 2 (21+1)(2i+l)( I LD TN /Ar Y, ||I's'T)
x | mAT FW(I's' Is; JTT)* D P (cos 9) (7.11)

Since [see (1.9)]

0 0

(UsJ || /an Y, | IsJ)y ~ ((1) L 1)
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only even values of L will occur in the sum in (7.11), with the consequence that
the angular distribution is symmetric about 90°. This result follows directly
from the fact that according to (7.10), the random-phase hypothesis permits
interference only between states of the same parity. We shall leave it as an
exercise for the reader to show that, in view of the fact that the polarization is
an interference phenomenon, it will vanish under the random-phase hypothesis.
Of course, this result applies only to the fluctuation term. Other polarization
parameters such as D, the “depolarization,” do not vanish.

The limiting form of isotropy follows from the general expression (7.11) only
if additional assumptions are made. The assumption is made that the transition
matrix Z .. . does not depend on the channel spin s". Second, it is assumed that
the density of states with a given spin s’ is (25’ + 1). This differs from (5.54) in
that the cutoff is not included. As a consequence, the implicit assumption is
made that the principal contributions come from sufficiently low s'. Turning to
(1.9), the s’ dependent factors in the sum over s’ of (7.11) are

rJ s . J J L
7:’+L+12r+1 = _s+L+121_+_1
2=y ){J p L} D=y ){, p S,}

= (=)t /I + DRI+ 1)d,,

Since only the L =0 term survives, the angular distribution in this limit is
isotropic. Isotropy is a consequence of the evaporation models of Weisskopf
(31) and Frenkel (36).

The symmetry about 90° has been verified experimentally, and indeed
deviations from it are taken to indicate the presence of prompt processes. An
example of a symmetric angular distribution as it occurs in the reaction
58Ni(a, p)®'Cu is given in Fig. 7.4. An example from heavy-ion physics is shown
in Fig. 7.5, where the colliding nuclei are “°’Ar and 7’Sc.

We turn next to the evaluation of (|7 ¥"|?) Our goal will be to replace
this term by an expression that can be evaluated through the use of the
semiempirical optical model. The expression for 7 is given by (4.4):

7
2T L) = ¢il6r+80 Y gitutc' 9:4c)g:(c)

- (7.12)
2 E—E, + (1/2)(1—;. + ]—;)

where ¢g;(c), a real quantity, is the magnitude of the matrix element
{®,|Hgp|y!") connecting a channel ¢ with wave function (™’ with the state
for the compound system ®,. The partial width I',, is given by

Te=g3) (7.13)
and I'; by
;=T (7.14)
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FIG. 7.4. Angular distribution for protons emitted by 52Zn compound nuclei for several
kinetic energy ranges in 3®Ni(a, p)®'Cu-induced reactions at 19.67 MeV [Barker and
Sarantites (74).] [From Lefort (76).]

The quantity I'"’, differs from zero when the levels overlap. However, it has the
property [see (4.5)] that

TI=0 (7.15)

so that I", is not a positive-definite quantity such as I';.

In the preceding section it was shown that the distribution of the widths for
the single-channel case is given by the Porter—Thomas distribution, (6.17), when
the Hamiltonian is random. Equivalently, this means that the distribution of
the amplitudes g is Gaussian.

1 —1g?
g
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where (g?) is the average value of g* taken with respect to this distribution:

<g2>=r P(g)g* dg (.17)

The important point here is not the existence of a “derivation” but rather that
it has been verified experimentally (see Fig. 6.4.). Since the distribution given
by (7.16) is, according to the central limit theorem (see p. 251), that of a quantity
composed of a sum of random quantities, g itself can be considered as random
with

<g>=0 (7.18)

Assuming the phase ¢, to be random as well, (7.6), (.7 F
directly.

Of course, {|7FV|?} and therefore the partial cross section { ¢V (JTI)) are

% =0, can be verified
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not zero. We proceed now to evaluate (o) where

aFOJT) = 4n* 42| T FOJTI)?

— A2 Z o= b Yas9usdai9pi
T [E—E,+ (i/2)(T; + TY1[E — E, — (i/2)(T, + T)]

(7.19)

Note that E,, I';, and I'; are independent of the specific nature of the incident
or final channel. The random-phase hypothesis yields

Iy
L _ 5 Aft Ai 7 0

We evaluate the right-hand side in several limits:
1. There are a large number of exit channels. Under these circumstances the

variance in I, + I"} is reduced substantially [see (6.20)]. It is therefore a good
approximation to rewrite

<Z L IP Y > 27 <r1frx.>

T(E—E)?+ 4T, + ) E)? + +4(+T)°

A second assumption asserts that I'; ;and I'; are, for i # f, uncorrelated. Hence

<r1frg.i>=<r1f><rxi> (721)

Since the ensemble over which the averages are made consist for each case of
the widths I'; ; and I';; themselves, both (I'; ;> and <TI';;> will be independent
of A. They will be designated by (I',» and (T, ), respectively, where I'; is the
average width for forming the compound nucleus in the energy region covered
by the sum and T, is the average width for decay into the final state.

We may therefore replace (7.20) by

CoFPUT) =z (T <Y, (7.22)

where

) !

7.23
T(E—E)V+ M +T)? (7.23)

The factorization explicitly shown in (7.22) can be used to obtain an inter-
esting result. If {gf’) is sumed over all possible final states, one obtains the
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cross section for the forming of the compound nucleus?

Yo =0 =nl(THTHY (7.24)
I

We can now eliminate the ¥ factor between (7.22) and (7.24), obtaining

o =g Iy (7.25)
T
and
FL (T
ol ST (7.26)
o (T,

Thus the probability of decay of the compound system in a final channel is
given by the branching ratio {(I",»/{T" ), which is independent of the incident
channel i and therefore of the manner in which the compound system was
formed. This is referred to as the Bohr independence hypothesis.

Verification of the Bohr independence hypothesis in either form (7.25) and
(7.26) is difficult since it holds individually for each partial wave with given
values of J and II but not for the sum of such terms; that is, although each
term in the sum factors, the sum itself will generally not. However, if a compound
system can be formed by two different methods (i.e., by using differing projectiles
and targets), if the energy domain of the compound system is the same for the
two, if the distribution of the J’s and parities are the same, and so on, the ratio
of the cross sections for identical products should be constant over their energy
spectrum. Meeting all these conditions is not simple unless the reaction picks
out a unique final J and Il. Examples of a comparison between two such
reactions is given in Figs 7.6 and 7.7 [see the discussion by J.M. Miller (72)].

To make further progress, the relationship to the optical model of the
quantities we have been using will be exploited. This procedure is advantageous
since the parameters of the optical model potential can be determined empirically
by fitting the elastic scattering (and polarization if available) and the total cross
section.

The optical model has been derived in Chapter III and will be discussed in
greater detail in Chapter V. We briefly review some salient features here. It
states that the energy average of the wave function (¥ ) is the solution of a
Schrodinger equation with a complex potential. In the many-channel case, the
Schrodinger equation reduces to a set of coupled equations for the open-channel
wave functions. In the present context the relevant quantities is the transmission

*This is not exact since (7.21) and therefore (7.22) are not correct for the elastic term i= f. In
writing (7.24) we are assuming that the elastic scattering width is small, as should be the case when
many channels are open.



306 RESONANCES AND THE STATISTICAL THEORY OF NUCLEAR REACTIONS

06 ' r . ; T
05|
g oaf
(=]
o
T
+
£ o3l
NO
o
T
=
g
o 02
v
0.1}
0.0l | |
145 15.0 155 16.0 165 17.0 17.5

210

Excitation energy of Po“"" compound nucleus (MeV)

FIG. 7.6. Experimentally measured values of ¢(Po2°%)/[a(P0?°®)+ a(P02%)] as a
function of the excitation energy of the Po2!® compound nucleus prepared in two ways:
p + Bi?°? and « + Pb?°® [Grover and Nagle (64)]. [From Miller (72).]

coefficient T.. We employ the generalization T,. (where the subscript denotes
the open channels) defined by Satchler (63) as follows:

(opt)
ch’ =0,

cc

— LSS (7.27)

o

where §©PY is the energy-averaged S matrix, which can be obtained from the
energy-averaged wave function (i) of the optical model. If the optical model
conserved flux (which it does not because of the process of energy averaging),
§©PY would be unitary and TP would be zero. The transmission coefficient 7,
is the diagonal element of the matrix T°P":

T.=TOW=1- Z Ralk (7.28)

If we write the total S matrix as

§ = SOV 4 §FL (7.29)
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where

(SFLY = (7.30)

we see that

4

T.= <ZS££‘:’|2> (7.31)

Note. To prove this, use the unitarity condition SS* = 1, replace S by (7.29).
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Then average using (7.30). One then finds that

o= Zsuhsie ) (1.3

Using §TY = — 27i7 *Y) and expression (7.12), we have

SEL — _ jgitetde) 3 ¢g3Gse (7.33)
« T(E—E)+(i/2)(, +17)

Substituting in (7.31) and using the random-phase approximation,

2 2
T.= < Z |gxzc’ |.‘lhc"| 2> (7.34)
i (E—E)*+ (T, +17)

In the limit of a large number of channels, so that (I'; + I";.) is a constant equal
to (I'), and assuming independence of ;. =|g,.|* and T,.., (7.34) becomes

T.=(T T, (7.35)

where Y is given by (7.23). Substituting this relationship-into (7.22) yields the
familiar result

T,T
o FDJTT) = n? Zl Tf (7.36)

Note that in the derivation it was not necessary to evaluate 3, so that the
question of the distribution of E,, the end point effects, the size of (T ) relative
to D, the method of averaging did not arise. Moreover, it has not been necessary
to assume that T, « 1, which is a required and heavily criticized feature of many
of the derivations of (7.36).

The angular distribution, (7.11), is given by

<do‘ff.”>
dQ

Zm(’&] ” YL ” ISJ)(I’S,J “ YL ” IIS’J)O'(PL’(IIS’ lS JH)PL(COS 9)

(137)

where we have used (7.19). Similarly, the total fluctuation cross section according
to (1.6) is given by

2J+1
iy =y L ey s T 738

where one uses (7.36) for o
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The cross sections given by (7.36) and (7.38) describe the excitation of a
particular final state in the residual nucleus. However, for all except the rather
low-lying states, it is more appropriate to regard the spectrum of the residual
nucleus forming a continuum with a level density given by w (U, J). Then the
angle integrated spectrum (for example) is given by

da;€L>>_ , 2+ 1 T, T,UTI)
< )= Lo ST, + [ L. MalU., )] (7.39)

where both a sum and an integral are included in the denominator in order to
take account of both the discrete and continuum level spectrum.

Equations (7.36)—(7.39) (to be suitably modified by the width fluctuation
factor whose importance has been emphasized by Moldauer) referred to as the
Hauser—Feshbach (52) theory are the fundamental results of the statistical theory
of nuclear reactions. Their application is discussed in Section 9. For the present,
note that one only needs the optical model transmission coefficients. In applying
(7.36) one would need to know as well the energies, spins, and so on, of the
levels to be excited as well as of those which are competitive (i.e., contribute to
the denominator). To apply (7.39), one needs to know, in addition to the
transmission coefficients, the density of levels of the residual nucleus.

It will be useful (but not essential) to evaluate the sum, 3, of (7.23). A few
comments are in order. Qualitatively, the sum over 4 will contain those levels
with energies E, that fall within the averaging interval in energy, AE. The energy
E is at the midpoint of the interval AE so as to avoid end effects. Thus as E
moves, AE moves with it. When the width (in a single channel) is very large,
it is not always possible to avoid end effects since in that case the requirements
of unitarity would require a very tight correlation among the levels [Mello and
Feshbach (72)]. One of the consequences would be an instability of the averages
to the interval size AE. Experimentally, this would manifest itself as an instability
with respect to the energy resolution and could be so identified. The analysis
that follows assumes the absence of end effects.

In calculating 3" we shall also assume that new channels do not become
open in the interval AE; that is, there are no thresholds in the interval. This is
generally not the case, particularly as the excitation energy increases. As Kerman
and Sevgen (76) point out, one consequence of this assumption is that unitarity
need no longer be satisfied exactly.

Finally, some attention should be paid to the size of AE. For the present
discussion it is to be of such a size that fine structure (Ericson—Brink fluctuations)
and doorway state resonances but not the single-particle structure are averaged.
Therefore, AE satisfies the inequalities

[sp»AE>T,, T, D (7.40)

where [, is the single-particle width, I';, the doorway state width, I'; the width
of the fine-structure resonances, and D is the distance in energy between them
(D! = density of levels).
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With these various caveats in mind, we proceed to evaluate Y, replacing the
sum by an integral

1 E+(1/2)AE dEl
2= —J _—— . (7.41)
DJg 1288 (E—E)* + 2 +T7)

Replacing I'; and I', by their average values over the interval, {I'> and <I""> =0,
respectively, > becomes

B 2 J"‘* dx
DO +T>), 1+4+x?

)

where x, =(2/KT + ["D))(E £ 1AE). If AE>» {(I' + ")) as assumed and in the
absence of important end effects, as assumed, the limits of the integral can be
taken to be + oo, so that

2x
Y= DTS (7.42)
Equation (7.22) now reads
o = 1?2 2"<Dr<>r <>rf> (7.43)
Moreover, the value of T, given in (7.35) becomes
7= (7.44)

a result to which we have referred in Section 2 of this chapter. Finally, from
(7.24) one obtains

o =2l T, (7.45)

We remind the reader that the value of ¥, (7.42), is not needed to obtain the
fundamental equations (7.36)—(7.39).

2. We consider next the case when the exit channels are so few in number
that fluctuations in the total widths I, must be considered. We return to (7.20):

| P Y
(FL) JI-I — 12 Aft Ai
(o™ = 7 §<(E~El)2+}t(l"l+l“;)2> (7.20)
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It is more convenient in this situation to evaluate the energy average directly:

(FLy ) 1 Eo+(1/2)AE r).j'rli
(oI =n#? = dEY. . —
E Eo—(1/2)AE A (E_EA) +Z(FA+F,1)

(7.46)

It is possible to choose AE to be large compared to I'; + I/, yet small enough
so that their energy variation as well as that of E, is negligible. This possibility
exists because the scale over which these quantities change is on the order of
the single-particle width, I'gp, that is, of the order of several MeV, whereas T,
the width of the fine structure, must of course be much smaller than Igp.
Neglecting end effects (we remind the reader that the observer will always choose
AE so as to minimize these effects), the integral can readily be evaluated:

nx? 20, Ty

(FL)\ _
R = A5 r,+T,
or
iy
(oD = 72 23” <rr({3 r('l)> (147)

If we assume that I’ and I do not fluctuate, (7.47) reduces to (7.43). It is
convenient to introduce a correction factor expressing the difference:

W= < [T/ KT ITE/TE)] > (7.48)
(I'+ KT

W is referred to as the width fluctuation correction factor [ Dresner (57); Moldauer
(64)]. This correction factor should be most important when the number of exit
channels are few, as would be the case near the threshold for the excitation of
the first inelastic level. In any event, one would expect that under these
circumstances the levels E ; are well separated, so that " vanishes approximately.
Assuming that each T satisfies the Porter-Thomas distribution, it is relatively
easy to evaluate W. To illustrate, suppose that there are only two channels, I';
and I',, so that

W :<r1>+<r2>< r,r, >
2T (T (M) \T 4T,

1 a @
=[<r1>+<rz>12—J dxlf dx,”
nJo 0

—(1/2)x1 5~ (1/2)x2 XX,y

\/)71 \/;2 x LT+ x,KT )

where x,=T,/{(I,>. The integration can be performed after an integral
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representation of the denominator is introduced:

1 o0 a0
wz=[<r1>+<rz>12J daj dx;(/x e (DT eCTOM
TJo 0

© -
x .[ dxz\/’x2e~[(1/2)+a<rz>]xz
0

or

do

W =L+ <r2>]fo (1 + 22 <, ))3(1 + 2a(T, )22 74

This integral can be performed exactly with the result for W that follows:

Ty > +L<T5)

W, =
P (AT + JLT)P

A plot of W, as a funtion of {I',>/{I";)> is shown in Fig. 7.8. Since it is a
symmetric function of (I'; ) and {(I', >, only the values of W, from <{I",>/{(T";>
equal to zero to 1 are shown. We see that W, is generally considerably less
than 1 approaching 3 for <I'; >/{T'; > = 1. The effect of this correction is therefore
to reduce the cross section from the value given by (7.36).

It is easy to generalize this result to the case in which there are more than
two open channels. A review has been presented by Gruppelaar and Ruffo (77).
An interesting case occurs when there are many such channels, for then one

(7.50)

J L

Ol 1.0 10 100
«={To/T>

FIG. 7.8. Width fluctuation factor [see (7.50)].
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can establish a connection with the discussion in Section 6. Consider

N

<) r,r
= —2), (I =<
T+ N\ 2T
Then it can readily be shown in the limit of a large number, N, of open channels
that

(1.51)

13T T

<r)

showing that neglecting the fluctuations in the total width, I is a good approxi-
mation only if that width is large compared to I'; and TI',, even if the number
of channels is large.

This treatment fails in the difficult intermediate regime when the levels
overlap, at which point it is necessary to take account of the fluctuations in I"".
Very little information is available regarding these fluctuations. One possibility
is to assume that they are independent of the other parameters of the problem
and that their distribution is given by a Gaussian:

P(")dI" =

1 ir?
;exp(— — )dl"’
NZZI <)
With this assumption (7.50) for W, would be replaced by

T+ [ expl—al’ —42KT)

Wy="-1 "2 , /
ATy Joo (14 20T ) (1 4+ 2a(T, )

(7.52)

so that in principle by studying the width fluctuation correction factor, one
would be able to determine (T2 ). However, there are many other corrections
(discussed in Section 8), which makes this possibility illusory.

Fluctuation scattering can also contribute to elastic scattering. This
process is referred to as compound elastic scattering. In that case I';, and I';;
are no longer independent and (7.22) is not valid. We must instead calculate
(I'?>. Using the Porter-Thomas distribution, one finds that

(TH =3I )? (7.53)

so that the width fluctuation correction for compound elastic scattering has the
value of 3 in this limit. Introducing the fluctuations in I due to ', will reduce
this value; the leading term is 1/[(1+5<I";»/{T"}]. In the limit of a single
channel W reduces to unity, so that for compound elastic scattering W can
have a rather broad range of values.
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8. EFFECT OF THE DIRECT REACTIONS ON THE STATISTICAL THEORY

The discussion of Section 7 is based on the assumption that the partial widths
;. are uncorrelated, and not correlated to the energies E;. It is assumed that
an energy average can be replaced by an ensemble average in which the I,
are random following a Porter-Thomas distribution. For large values of T’
involving many contributions for which the width fluctuation correction, W, is
unimportant, one obtains the Bohr independence hypothesis, that is,
factorization of the partial cross sections. The relation of these factors to the
transmission factor, T,, (7.35), is established using the same assumptions. This
derivation of (7.36) does not require the evaluation of 3, about which there has
been some debate; it makes no assumption regarding the size of T,, nor is it
necessary to introduce ¢!, the cross section for the formation of the compound
nucleus or to make use of (7.44) connecting T, with I",/D.

The statistical assumptions with regard to I';, and E, have been the subject
of a spirited debate extending for nearly two decades. Correlations do exist
because of the existence of direct (prompt) reactions which can contribute to
the cross section and importantly, modify the wave functions which are to be
inserted into the defining matrix elements.

Moldauer (75a, 75b) particularly, and more recently Weidenmiiller and his
collaborators [Engelbrecht and Weidenmiiller (73); Tepel, Hofman, and
Weidenmiiller (74); Tepel (75); Hofman, Richert, Tepel, and Weidenmiiller (75);
and Hofman, Richert, and Tepel (75)], have emphasized the importance of the
correlations imposed by unitarity. Unitarity requires that

SST=1
or

2 SapS% =0, 8.1)
b

We see that the elements of S (or .7, which is linearly related to S) must satisfy
a number of nonlinear relations, which in turn impose relations between the
sets of quantities ¢,,g,,, and E; [see (I11.2.37), the discussion of the reactance
matrix K, and (I11.6.11) and the ensuring discussion]. The result, 3_I";, = 0, which
we have used repeatedly, can be considered to be a consequence of unitarity.
The unitarity condition can be very restrictive when the average of the partial
widths (I,;> are large compared to the spacing in energy {(D;). In that case
[see Mello and Feshbach (72)] the individual values of I',; are very large, so
that very strong correlations must then exist between the various I',_ in order
to satisfy unitarity. Under these circumstances, the results obtained both
theoretically and experimentally become very sensitive to the manner in which
averages are carried out and to the size of the averaging interval AE. It is
noteworthy that such sensitivities have not been observed, indicating that their
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occurrence is either rare or more likely that the analysis of the experimental
data naturally selects out such large widths and regards them as nonstatistical.

Before attempting to perform the difficult task of taking the effects of unitarity
into account, one should first understand if it is essential to do so in order to
provide a statistical interpretation of nuclear reactions. We need to be
particularly concerned with real situations and the manner in which data are
analyzed.

Kerman and Sevgen (76) point out that unitarity need not be satisfied exactly
since, in the energy domain under discussion, I" » D, there is a high probability
for new channels to become open in the averaging energy interval AE. Unless
the effect of these is included in the statistical treatment, and that is generally
not done in the many open-channel situations we are considering, there will be
a loss of flux to the new channels, with a consequent failure of unitarity. Taking
this effect into account quantitatively requires the introduction of new
parameters, as discussed by Kerman and Sevgen.

A second point is that unitarity is not the only condition to be placed upon
the transition amplitudes since they all are deduced from a common Schrodinger
equation using the nuclear Hamiltonian, which is of course not random. These
correlations cannot be stated as explicitly as the unitarity conditions, but they
are certainly as real. One must ask which of these many restrictions are to be
applied and which are to be neglected.

The point is that the statistical theory is an approximation; it cannot be
exact. Statistics enters when the matrix elements of the Hamiltonian involve
such complicated wave functions that the value of these matrix elements can
be considered to be random, following Gaussian probability distributions. It
should be noted that the distribution does not tell us when the particular value
of the matrix element occurs. It can only provide the frequency with which it
does. Thus statistical description can and does fail if inappropriately applied. It
will fail, for example, if the wave functions are not sufficiently complicated. As
we shall discuss in Chapter VI, only after the system has gone through a number
of interactions will the necessary complication be developed. If the reaction
product is produced at an early stage, the statistical theory will of course fail.
The nature of the physical phenomena is the important issue.

Moreover, it may be argued that it is not useful to regard a pole term in the
§ matrix with a large partial width as a statistical fluctuation. As pointed out
earlier, a consequence of a large average width is a close correlation among the
properties of all the levels in the averaging interval as well as a marked sensitivity
to the size of the averaging interval. This situation can hardly be described as
statistical. And indeed, in an analysis of such data one would label such structures
as nonstatistical and would consider them worthy of further study.

The reader is referred to the review by Mahaux and Weidenmiiller (79) for
a detailed discussion of the impact of unitarity and a summary of the present
understanding.* The present understanding depends very heavily on numerical

‘References to the pioneering work of Moldauer and other will be found there.
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studies. Weidenmiiller and his associates have employed the representation of
the 7 matrix in terms of the reactance matrix, " [see (I11.2.44) and the material
following], using a pole expansion of " [see (II1.6.7)], which can be obtained
from (II1.2.43). Unitarity is thereby guaranteed. The pole parameters are
assumed to be random. Moldauer (75a) has also performed a number of
calculations with similar results. We mention two of these. First, one obtains
a verification of the random-phase hypothesis for the S matrix in the case where
the number of terms A in the pole expansion of K is large, and A is large
compared to the number of open channels. The result is that (SEVSTEY>
vanishes unless two pairs of indices coincide. The second result, discovered by
Moldauer (75a), is referred to as M cancellation. Briefly, he finds that the various
correlation corrections cancel leading to (7.36), including the width fluctuation
correction (7.48) multiplicatively. This result holds for nonelastic cross sections.
The situation for elastic scattering will be discussed below following the methods
of Kawai, Kerman, and McVoy (73). This paper addresses two questions of
importance in the present context. The first to be discussed asks for a formulation
of the problem of reactions that explicitly separate the 4 matrix into two
components, the direct and fluctuation, that is, into ™ and ", with the
energy average of Y equal to zero. We have made repeated use of this
separation in this chapter. The second deals with the width correlations, which
are induced by the presence of the direct reactions.

The essence of the solution of the first question lies in the fact that the optical
model does provide calculation of the energy averaged amplitude. It will be
recalled [(Eq. (IT1.3.16)] that the averaged many-channel amplitude satisfies the
equation

(E — HeP) ¢ PY> =0 (8.2)

with
H(upl)=HPP+HPQ—1‘—HQP (8.3)
E—Hyo+il
This is to be compared with the exact equation satisfied by P¥ [Eq. (I11.2.7)]:

1
— o0

Equation (8.3) is obtained using the Lorentzian averaging function, with I the
energy averaging interval. The comparison suggests rewriting (8.4) as follows:

1 1
E—H°™_H - H,p [(P¥)=0
[ PQ(E—HQQ E—HQQ+i1) Q”]( )
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This equation can be restored to the canonical form (8.4):

1
E—HC V., —V, P¥Y)=0 8.5
[ pQE__HQQ QP:,( ) (8.5)
where
il
Veo=H S — 8.6
P PN E—Hyo+il 50

Equation (8.5) is equivalent to the coupled equations:

(E — HP)(P¥) = Vpo(Q¥)
(E— Hgo)(Q¥) = Vop(P¥) (8.7)

The 7 matrix for this system is [Eq. (111.2.30")]

T =T + <¢<f Vg E— Hog— Wy VQP¢:‘*’> (8.8)
where y ;; are the distorted wave solutions of
(E— H)y,, =0
with appropriate boundary conditions, while
|
Woo=Vor ooy pom Vre (8.9)
Since by definition
(T >=glom

it follows that the second term of (8.8) is L), so that

1
r(FL)_ (Y, 1% (+)

T =0 (8.10)

thus achieving the desired decomposition.

As a beneficial dividend, the coupling potential V acquires a desirable
dependence on Hy,. As one can see from (8.6), the contributions to V from the
eigenfunctions of H,, whose energy differs substantially from E is correspon-
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dingly reduced so that the problems of convergence raised, for example, by
Simonius (74) are resolved. This has a sound physical basis since the contri-
butions of these distant “resonances” should be included in the optical model.
It is achieved at the cost of an energy dependence which is, however, relatively
weak, such as that of the optical potential itself. Note that the formalism of
Chapter III can be used without any formal change in view of (8.7).

Because of (8.10), the cross section can be written

t FL
o (JI) = a9 + oG

where [see (7.12)]

Z eid’;'(f’i)gz(f]gi(i)

o> =4’} (| TGP =n71’.2<
Cor A R L T T

2>
Using the random-phase approximation this reduces to

(FL)\ _ 42 gi(f)yi(l) >
<0'fi > nii<z;':(E—E;‘]2+%(r;‘+r,;_)2

27X CHONHUDDY (8.11)

where in (8.11) we have retained the assumption that one can neglect the
correlations between the numerator and denominator of the pole expansion
because of the assumed large number of participating open channels. If now
one neglects the correlations among the g’s, the results of Section 13.7 follow. !

We now include the correlations but make the approximation (or assumption)
that only pairwise correlations are important:

<g7(NFi)> = L3NG +<9:(Ng:()><g:,Dg:(f)>  (8.11)
Defining the matrix
9:(Ng:()> =X
the cross section equation (8.11) becomes
o0 =AY [ X X+ XX ] 8.12)
The second term in brackets represents a significant change from the discussion

of Section 7. The Bohr independence hypothesis, for example, is not valid if
this term is significant.

*This derivation differs from that given by Kawai, Kerman, and McVoy (73) in that the sum, ¥,
is not evaluated explicitly.
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We now must relate the optical model transmission factor TP" and the
matrix X. From (7.27), (7.30), and the unitarity condition one can immediately
show that [see (7.32)]

1= (S sy ) 8.13)

<

Inserting (7.36’) and using the random-phase approximation,

Tji = (Z) Z (g:(9.(0)g,(Dg,(c)>

Again making the pair correlation assumption, one finds that

T =) Y. [€9:(N)g:0)><g:(0)g:(¢)> + <{ga(£)g:() > g (c)g:() ]

In terms of X,

Tpi=2[X it X +(X?)] (8.14)

or equivalently

T=>(XtrX+X?) (8.15)
The problem of expressing (i in terms of T, is reduced to solving this equation
for X. The principal limitation on this development arises from the pair
correlation assumption, which will fail if T is too large, for then many level
correlations will become important. Equation (8.14) is in agreement with a
conjecture of Vager (71).
The simple result (7.36) follows if the second term in (8.15) is neglected. Then

T=YXtrX (8.16")
Taking the trace of both sides one can solve for tr X and finally for X:

T
X :W (8.16)

We recover (7.36) if this result is substituted for the first term of (8.12). Note
again that 3" drops out and needs not to be evaluated. If both terms in (8.12)
are included,

oFL) ~ @TffTii + T}i)

L~ A7
& Zc ch (8 )
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FIG. 8.1. Angular distribution of the average CN
cross section for the elastic scattering 3°Gi (p, p)
for 8.5MeV < E, < 10.7MeV. The filled circles
are the measured values; the direct elastic
contribution has been determined from the
analyzing power and has been subtracted. The
dashed curve is calculated from the Hauser—
Feshbach formula; the full curve is twice this
value [Kretschmer and Wangler (78)]. [From 0° 90° 180°
Mahaux and Weidenmiiller (79).] 3

<da®N/dQ >

Factorization and the Bohr hypothesis are no longer exactly valid. In the case
of the compound elastic scattering (f = i),

2
FFU 2nxi Ty,

=T (8.18)

We see in this case the appearance of a factor of 2, compared to simpler results
that would be obtained if (7.39) were used for this case. Experimental varification
of the factor of 2 is shown in Fig. 8.1.}

To go beyond (8.16), we solve (8.15) for X in terms of T and

X=%(—trX+ /(trX)2+g) (8.19)

In principle one can take the trace of both sides and so obtain an equation for

It will be recalled that the width fluctuation correction calculated in Section (7) is 3 rather than
2. The reason for the difference can be seen from (8.11’), which states that for f =1,

(GAHDgI)> =2(g2>*

But the left-hand side equals (gi(i)). If the Gaussian distribution is used for g, [or the
Porter—-Thomas for T',(i)], one obtains

{gii)y =3¢g?)? (Porter—Thomas)
We see that the pair correlation assumption is not consistent with the Porter-Thomas distribution.

The factor of 2 corresponds to an exponential distribution for I';. This is in agreement with the
numerical calculations of Moldauer {75a) in the limit of large tr T.
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tr X:

4T,
c 8.20
2 (8.20)

(N+Htr X =31y [(trXx)?

c

This equation for tr X is not solvable analytically and one must resort to
numerical methods. Tepel, Hoffman, and Weidenmiiller (74) provide a simple
approximate solution. Here we shall be content with obtaining the first-order
correction to (8.16") and solving for tr X. This is accomplished by expanding
the square root in (8.19) to second-order. We find that

1 2 2\71/2 1
trX = S T)Uz[(trT) (tr T?)] (8.21)

Equation (8.16) is obtained if tr(T?) is dropped compared to (tr T). Since the
former is proportional to N and the latter to N2, this appears to be a good
approximation. If we now examine the result for X,

tr T 172 T2 1 T?
| st e (i)~ (i) 62

(8.16) will be recovered in the limit where tr T is large. To summarize, the
conditions for the validity of (8.16),

(trT?>»>trT? (8.23a)

and
Tutr T>»(T?) (8.23b)

Inequality (8.23a) is a necessary condition. It should be borne in mind that the
values of the matrix elements of T can be obtained from the multichannel optical
model so that inequalities (8.23) can be verified, the matrix elements of X can
be obtained approximately from (8.22) or numerically from (8.20) and (8.19),
and finally, o'f}") from (8.12).

Further dlscusswn will be found in the review by Mahaux and Weidenmiiller
(79). We have not included the connection of the results above with the under-
standing of the “precompound” reactions. These are discussed in Chapter V1.

9. APPLICATIONS OF THE STATISTICAL THEORY
The statistical theory of nuclear reactions is applicable when the level density

of the residual nucleus is large, that is, when its excitation is sufficiently high,
corresponding to the low-energy portion of the spectrum of the emitted particle.



322 RESONANCES AND THE STATISTICAL THEORY OF NUCLEAR REACTIONS

It applies as well at sufficiently low projectile (generally, neutron) energies for
which the direct reactions do not make a significant contribution. For
high-energy projectiles, the direct reactions dominate. However, the residual
nucleus may be left in a highly excited state. Its subsequent decay may be
calculated using statistical theory.

A. Angular Distributions

As a consequence of the random-phase hypothesis, the angular distributions
are symmetric about 90°. When the residual nucleus is excited to an energy for
which all possible orientations of its spin over the surface of a sphere occur
with equal probability, the angular distribution is isotropic. An example of
isotropy is furnished by an early experiment by Rosen and Stewart (55) from
the low-energy portion of the neutron spectrum produced by the inelastic
scattering of 14.1-MeV neutrons by Bi (Fig. 9.1). Inelastic scattering to particular
levels in 2°°Bi by 2.5-MeV neutrons [Cranberg, Oliphant, Levin, and Zafaratos
(67)] demonstrate the symmetry about 90° (Fig. 9.2). Similar results are shown
for 2°°Pb, with the addition of a small contribution from the direct reaction
process. Examples for heavy ions (*°Ar + 7’Sc— a + X) and for *®*Ni(a, p) were
given earlier in Figs. 7.5 and 7.4. The collision of light ions also furnish examples
as illustrated in Fig. 9.3.

The success of this prediction, symmetry about 90°, has led to its use to
identify reactions that are dominated by statistical processes. As we shall see
in Chapter VI, this is not entirely correct, as symmetry about 90° is also a

350 - —
300 - -
250

200

4 MeVy T -
150 2wf -[o o(0°) sin 0’ d§’ dE = 3.3 + O 3 barns
05

| l | | |
0 30 60 90 120 150 180

Center-of-mass angle, 6’

FIG. 9.1. Angular distribution of inelastically scattered 14.1-MeV neutrons from bismuth
[Rosen and Stewart (55)]. [From Ribe (63).]
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FIG. 9.2. Fits to the measured angular distributions of 2.5-MeV neutrons inelastically
scattered to two levels in 2°6Pb. In the calculation of the compound nucleus cross section
(CN) the width fluctuation factor was taken into account. The direct interaction
contribution is labeled DI [Cranberg, Oliphant, Levin, and Zafaratos (67)]. [From
Marmier and Sheldon (70).]

feature of the statistical multistep compound process of which the statistical
theory described in this chapter is a limiting case.

B. Energy Spectrum

We next consider the energy spectrum of the emitted particle, considering the
case in which the excitation energy of the residual nucleus is sufficiently high
that the residual nucleus levels effectively form a continuum with level density
o/U). The angle integrated cross section in the statistical theory is given by
(7.39) multiplied by the width fluctuation correction if needed:

<d°(fpfu>=nx?zw(u 5 27 +1 T,(JI) T(JII) o.1)
dU FETTTT I )R+ ) T IT + [dU To U, )]

where the complete parametric dependence of T, is T,(I's"; JIT), where we recall
that I’ is the orbital angular moment of the emitted particle, and s’ is the channel
spin. These combine vectorially to form J:

V+s'=J
T, depends similarly on the entrance channel !/ and s. The level density w,.(U)

takes into account the spin of the emitted particle i’ as well as the spin of the
residual nucleus, I'. The denominator sums over all ways in which the compound
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FIG.9.3. Angular distribution for the reaction !'2C(}*N, °Li)*°Ne, E_,=36MeV

compared with the predictions of the statistical model (HF) [Belote, Anyas-Weiss, et al.
(73)]. [From Stokstad (85).]

system can decay, including different modes of decay symbolized by the subscript
c. The decay can occur to discrete levels as well as to the continuum part of
the spectrum of the residual nuclei. To obtain the Weisskopf formula, (1.4.5), a
number of approximations to (9.1) need to be made. It is assumed that T, and
T; depend only on the orbital angular momenta ! and [, respectively. Second,
we assume, as was done in the derivation of the isotropic angular distribution
(see p. 301), that

0, (U,J) =25 + )2 + Dw,(U) 9.2)

Finally, the discrete sum in (9.1) is dropped and in fact it is assumed that the
residual nucleus for all the exit channels is the same. Inclusion of the effect of
other types of exit channels is straightforward and left for the reader to derive.
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With these approximations (9.1) becomes

<dL(foB> _ ni?a)o(U)Z"(?'l’ + DTN, 21+ 1T () ©.3)
du ' 2. JdU T2l + Doy (U,)
Defining
o9 =ni2Y 21+ DT, (9:4)
4

[that this agrees exactly with (7.4)], we obtain the Weisskopf result:

<M> o) LrE P EwoUp 03

de ZaIdUaE Jac (E )mO(Ua):ua

where pu, is the reduced mass of the particle emitted in channel a.

Note that in this derivation no use was made of the law of detailed balance,
as is the case for the traditional derivation given in Chapter 1. Detailed balance
cannot, in fact, be used without further justification since the cross section in
(9.5) is energy and state averaged, and detailed balance holds between particular
states with well-defined energies. Recall that for a given initial state

U,=E—-E+0Q,
where E is the initial kinetic energy in the center-of-mass coordinate system,
E' is the final kinetic energy of the emitted particle, and Q, is the “Q” for the
reaction. Casting ®, into an exponential form,

wo = exp[S(U)]

and expanding S(E + Q — E') about E + Q,

oS
SU)=S(E+Q—E)=S(E+Q)— E’()
0U /JE+g=v
one obtains
Wy = eSET D EIT 9.6)
where
1 oS
—= (—> 9.7
T ou E+Q=U

T is referred to as the nuclear temperature. Substituting (9.6) into (9.4) yields
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the Weisskopf-Frenkel evaporation formula. When S equals 2., /a(U — A) (see
p. 278),

a

1 1/2
T=[ (E+Q—A)j| (9.8)

Inserting (9.6) into (9.4), we observe that

! <da‘,‘i” ~ e EIT (9.9)
Ec9(E)\ dU

where we have omitted multiplicative factors that do not depend on E’. Thus
the logarithm of the left-hand side of (9.9) should be a straight-line function of
E’ with a negative slope equal to (1/T).

Another and somewhat more general result states that for a given E, the
left-hand side of (9.9) depends only upon U,, and in principle one should
therefore be able to determine w,. The branching ratio, that is, the ratio of the
differential cross sections for two differing reactions initiated by the same

o(b)

Cu63(0.961)-g

0 0.1
E(MeV)
FIG. 9.4. Inelastic neutron scattering exciting the 0.961-MeV level in ®3Cu. The curve

labeled (1) does not include the width fluctuation factor; curve (2) does. [From Tucker,
Wells, and Meyerhoff (65).]
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projectile, is

(FL) E_6“9(E
(do§R/dU,> _ paE,0P(E,) 0o(U,) 9.10)

ai_

(doEV/AU,>  mE,0(Ey) wo(U,)

The dominant factors in the ratio (if one is well above the thresholds) is given
by the ratio of the level densities at the appropriate excitation energies.

We conclude this section with some experimental results that provide
examples of the application of these results. We begin with the simplest case,
that in which the spin and energies of the levels of the residual nuclei are known
up to a sufficiently high energy. Then the cross section is given by (7.38) corrected

a a 100y
4 . v 55.57¢,
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50001 & \ry
x
3 N T\
= N\ \'\ A
E’ '\\ v
b+ - N\
ae x
° ) W
e \.\ x ¥
- 100 (- L) \N\_a
= APAN x Y \
o~ AN \,\v
\. « \:\,
\-\. g\
\ 4
\ N
10 \\
1 B A I S | I [ L L L | |
0

l
14 13 12 11 10 9 8 7 6 5 4 3 2 1
E‘S, Excitation energy

FIG. 9.6. Energy spectra of a-particles plotted as d?a/dedQ(1/e0;,,) versus excitation
energy. The inverse cross section gy, is calculated from an optical model by Igo and

Huizenga [Sherr and Brady (61)]. [From Lefort (76).]
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FIG. 9.7. Absolute y-ray yields from !'?C + '*N-induced reactions. The full curves are absolute
Hauser—Feshbach predictions [Erb, Olmer, et al. (73)]. [From Stokstad (85).]
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FIG. 9.8. Calculated and experimental excitation functions for the reactions !*’Au(a, xn).
The heavy solid curves represent experimental yields. The thin solid curves represent
equilibrium statistical model calculations. [From Blann (72).]

by the width fluctuation correction W,:

2J +1 T, JIDT(,s; JI1)
QI+n2i+1) Y T,ul,s,; JI)

(™Y =F W, (9.11)

An example of the application of this formula in which it is assumed that all
values of J of the compound system which are allowed by angular momentum
and parity conservation are included in the sum is shown in Fig. 9.4. We see
the important effect of the width correction factor in some cases.

In Fig. 9.5 we present some of the results of Holbrow and Barschall (63),
who considered the Rh(p, n) reaction. The straight line on the semilog plot is

FIG.9.9. Comparison between the experimental spectrum for protons emitted in
Csl(n, p) reaction (full line) at various energies and the calculated evaporate (—-—) and
preequilibrium (-—-) contributions. [From Gadioli and Milazzo-Colli (73).]
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in agreement with (9.9) [assuming that ¢{(E’) is a constant equal to 7R?, where
R is the nuclear radius]. The derivation from the straight line occurs at low
neutron energy near the threshold for the (p,2n) reaction. Another example is
given in Fig. 9.6, in which a-particle spectra produced in a (p,«) reaction
involving a variety of target nuclei are given. As a final example, the prediction
of y-ray yields in light-ion reactions are shown in Fig. 9.7. Note that no adjustable
parameters are used in this case.

The examples given in the section above show, in view of the crudeness of
the statistical model, a surprisingly excellent agreement with experiment. This
agreement indicates that once entrance and exit channel effects are included
through the transmission coefficients, the remaining features of the reactions
do not depend on the details of the nuclear Hamiltonian. From the theoretical
development of the fundamental equations (7.39) and (9.11), a necessary
condition for their validity appears to be that the wave functions involved be
sufficiently complicated so that the matrix element of the residual potential with
respect to these wave functions is a random number. However, the wave function
does have simple components, and if the reaction is dominated by these,
statistical considerations will fail. The condition for the validity of the statistical
theory is not only that the wave function be complicated but also that the
complicated components dominate. A rephrasing of these considerations using
time-dependent language is instructive. In the early phase of the reaction, only
simple states can be developed, the complicated states requiring a relatively
long period of time involving the residual interaction acting many times. If the
reaction terminates at an early stage, the statistical theory will fail. Indeed, a
direct reaction may be involved, and then the angular distribution will be
asymmetric, peaked toward the forward direction. The statistical theory will be
valid only if the reaction terminates at a sufficiently late stage. In Chapter VI
we discuss a formalism that includes both the early and late stages. That theory
will provide criteria for which the statistical theory is a limiting result. For
example, at sufficiently low energies, one requires that emission by the system
is much less probable than proceeding to the next stage of complication, so
that most of the reaction will involve emission from very complicated states.

For the present it will suffice to point to some examples of the failure of the
statistical theory. In Fig. 9.8 we present a comparison between the cross section
for the production of neutrons as indicated by the collision of a-particles striking
197Au. The failure of the statistical model as the a-particle energy increases is
evident. Another example is shown in Fig. 9.9, where the proton spectrum when
neutrons of the indicated energies are incident on Csl. Neither the shape nor
the magnitude of the evaporation contributions resemble the experimental
results. Will the discrepancy be made up by the single step direct process? We
shall provide some examples in Chapter VI to show that generally it will not
suffice.
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