
CHAPTERIV
 

RESONANCES AND ТНЕ STATISTICAL 
THEORY OF NUCLEAR REACTIONS 

1. INTRODUCTIONt 

This is the first in а series of спартегв in which the forrnalisrn of Chapter 111 will 
Ье applied to various types of reaction phenornena that аге observed 
experirnentally. Extensions of the forrnal theory will suggest themselves and Ье 

developed. 
We begin the chapter with the isolated resonance, the dependence of its 

width ироп projectile energy, and the interference of the resonance arnplitude 
with that for the prornpt reactions not only for elastic scattering but for other 
reactions as well. Threshold phenomena, the existence of cusps in the cross 
section, аге natural1y considered at this point. These аге fol1owed Ьу а 

discussion оЕ the case of rnапу overlapping resonances. The very irnportant 
impact of the details of the ernpirical analysis of the data ироп theoretical 
considerations is stressed. It is now а quick step to the statistical theory of 
nuclear reactions since analysis of the resonance data provides us with 
distribution functions for the widths, spacing of resonance energies, and 
fluctuations in the cross section. Correlations among t11ese various quantities, 
either self-correlations or сговз-соггегапопв of f1uctuations in different 
channeIs, аге irnportant statistical rneasures that сап indicate the existence of 
significant phenornena. The simple statisticaI theory for the average reaction 
cross section сап Ье forrnulated and cornpared with experirnent, suggesting 
the need, in sorne cases, for а rnore detailed statistical description of а reaction. 

:Иodgsоп (87); Mahaux and WeidermUller (79). 
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Channels; Angular Oislribulions. The description of the angular distribution 
of reaction products differs according to the scheme adopted for labeling the 
ореп channels. Опе сопипоп method is to couple the projectile spin i and the 
target spin 1 to form а channel spin s, as indicated Ьу the equation 

I+i=s (1.1) 

The vector notation is shorthand for 11 - il < s < 1+ i. The spin is then coupled 
to the orbital angular momentum 1 to obtain the total angular momentum of 
the system, J: 

J=s+I=I+i+1 (1.2) 

This procedure is referred to as the channel coupling scheme. lt is also possible 
to couple the projectile spin and the orbital angular momentum as would Ье 

appropriate if spin-orbit efТects were overriding: 

i+l=j (1.3) 

То form J, j would Ье coupled to 1: 

j+I=J (1.4) 

This coupling scheme is referred to as the spin-orbit coupling scheme. Finally, 
the helicity coupling scheme of Jacob and Wick (59) has often Ьееп used [see 
Chapter УНl of deShalit and Feshbach (74)J, particularly for relativistic 
phenomena. Тп this scheme the projections of the projectile and target spin 
along the direction of motion, Аа and Ах, respectively, similar quantities for the 
reaction products, )'Ь and Ау, together with the total angular momentum J (and 
its projection М) аге used. 

Of course, in addition to the angular momenta, опе must also include the 
parity of the channel, the energies of the system in the center-of-mass frame, 
and the excitation energies of апу of the complex particles in the initial or final 
states of the system. For the sake of definiteness we shall use the channel 
coupling scheme in this chapter. Then the angular distribution of the reaction 
products for а two-body final state in which both products are in well-defined 
quantum states of а given energy is 

dC1(a, а') ~ ,, __1 (1 s J 11 ~Y 11I s J )
k2L..(21+1)(2i+l) 1,,1 V"'t/L L 2,,2dQ 

Х (1'1' s', J 1 11 ~ YL II/~, s', J 2) Re n2 ffa'a(l'l s'; 11s; J, П 1 ) 

х ff:'a(l~s'; 12s; J 2П2)JР L(COS g) (1.5) 

The sum is taken over аll angular momentum and parity quantum numbers 
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with the exception of 1, i, and of course е< and а'. The final states are normalized 
per unit energy that is <xAE)lxAE') = 4nд(Е - Е'). 

As а consequence, :r rz'rz' the transition matrix, is dimensionless t . The 
integrated cross section is 

4n 2} + 1 
u(е<' е<) = - " In:r, (l's" Тз: JП)1 2 (1.6) 

, k2 г: (21 + 1)(2i + 1) rz rz ' , 

The reduced matrix elements (l1SJ111~YLII/2SJ2)in (1.5) аге kinematical in 
the sense that they do not depend оп the nuclear шгегаспоп. The angular 
momenta 11,12 are two possible values in the decomposition of the incident 
wave into partial waves; s is а possible value of the channel spin. The primed 
quantities describe the situation for the final state. In addition to (1.2), the 
reduced matrix elements yield 

(1.7) 

which together with (1.2) yields 

and (1.8) 

These results сап also Ье obtained from the explicit expression 

Note the requirements that both 11 + 12 + L and I~ + I~ + L must Ье емеп, thus 
guaranteeing parity conservation. We immediately see from (1.7) and (1.8)that 

L max = min(2/, 2/', 2J) (1.10) 

where 1is the maximum incident angular momentum, l' the maximum emergent, 
and J the maximum value of the total angular momentum. Equation (1.10) is а 

precise statement ofthe complexity theorem [Yang (48)] described in Chapter 1. 
The :r matrix in (1.5) depends оп the nuclear interaction. We see that in 

the channel spin coupling scheme it describes а transition between two channels 
с and с' defined Ьу the quantum numbers 

с == {e<ls; JП} 
(1.11) 

с' == {e<'I's'; JП} 

tFor spinless particles, .07, = - (1/л) sin д/е/д" where д, is the phase shift. 
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We shall often, for погапопа! compactness, replace 

.r(l'(l(l's'; ls; JП) 

Ьу 

(1.12) 

.r is а symmetric function of с' and с: 

.rc,c = .rcc' 

Therefore, from (1.6) it follows that 

, k'2(2I' + 1)(2i' + 1)
б(а а) = б(:Х а') (1.13) 

, k2(21 + 1)(2;+ 1) .' 

This reciprocity relation interchanging initial and final states. 1 --+ Г, ; --+ ;', 

and so оп, has been used to determine а spin when three of the four 1, ;, Г, ;' 
аге known. For example, the spin of the n meson сап Ье obtained Ьу comparing 
р + р --+ п+ + D and п+ + D --+ р + Р [Marshak (51); Cheston (51)]. 

2. ISOLATED RESONANCES; INTERFERENCE WITH ТНЕ 

PROMPT AMPI_ITUDE 

The transition .rс,с(JП) сап, according to (111.2.25), Ье written as а sum of two 
terms, the prompt and the resonant amplitude: 

(2.1) 

Therefore, the differential cross section (] .5)сап Ье broken ир into three parts: 

dб(а', а) = dб(Р)(а', а) + dб(R)(а', а) + dб(1)(а', а) 
(2.2)

dQ dQ dQ dQ 

The first term оп the right side of this equation gives the angular distribution 
of the reaction products as generated Ьу the prompt processes as indicated Ьу 

the superscript Р. The second, with superscript R, the angular distribution 
originating in the resonance, while the third, with superscript 1, is the angular 
distribution developed Ьу the interference between the two, the prompt and the 
resonance process. А similar decomposition is possible for the integrated cross 
section. From (1.6) 

(2.3) 
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For example, inserting (2.1) into (1.6) yields 

4п 21 + 1 
а(Р)(а' а) = -" Inff(:)1 2 = La(:) (2.4) 

, k2 г: (21+ 1)(2; + 1) с с с с 

4п 21 + 1
a(R)(a' .а) =-" 1nff(I!) I 2 ="a(I!) (2.5) 

, k2 г: (21+ 1)(2; + 1) с с г: с с 

4п 21 + 1
a(l)(a' а) = - " [п 2 ff(I!) ff(:)* + п2 ff(I!)* ff(:)] (2.6) 

, PL...(21+1)(2i+l) се се се се 

We consider the case of а single isolated resonance which is designated (just 
as in the case of bound states) Ьу а врестйс-л and П. Thus 

da(R)(a',а) п 2 1 
------.:.------.:.- = 2L (11 s1 11j4n YL 11 [2s1)(['1 s'111 ~YLII[~s'1)
 

dQ k (21 + 1)(2; + 1) 

х Re(ff~I!) ff~I!)*)PL (2.7) 

То excite а resonant state of а given parity, [1 + [2 and ['1 + [~ must Ье even; 
that is, [1 and [2 must have the same parity and similarly for ['1 and [~. Since 
[see (1.9)] 

it rollows that L is even. Непсе the resonant angular distribution (2.7) is 
symmetric about 900. 

ProbIem. Prove directly from (1.9) that if both the projectile and target have 
zero spin, and if the reaction products have zero spin, then 

da(R) 
--,",-, [РАсоsЭ)]2 
dQ 

This result is applicable to resonance reactions such as 12с + 12с ---+ 2°Ne + а, 

12с + 160 ---+ 24Mg + а, and so оп, when the residual nucleus and emergent 
particles аге in spin-zero states. 

Before the effect of interference сап Ье discussed, it is necessary to provide 
explicit expressions for ff~I!) and ff~:!. The former is given Ьу (111.2.25) as follows: 

(2.8) 
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In this last expression the g's are real numbers and the J's give the phases of 
the distorted waves generated Ьу the potential scattering [Eq. (111.2.24)]: 

(111.2.24) 

and [гогп (111.2.23), 

(111.2.23) 

and [готп (111.2.22), 

(111.2.22) 

Each channel с with ап 1and s that сап согпэше to give the JП of the resonant 
state will contribute to (1.5). 

The prompt ггапзшоп amplitude is constructed out of the solutions of 

(Е - Нрр)Х(±) = О (2.9) 

where generally this is а set of coupled equations connecting the different 
channels. The DWA (distorted wave amplitude) is constructed Ьу treating the 
coupling pertubatively. Моге explicitly, the relevant equations are ofthe form 

(2.10) 

so that~ 

(2.11 ) 

where X~;) and X~O) are solutions of the uncoupled equation (2.1 О) that is with 
Нес' = НС,С = О. 

In the discussion that follows we shall employ the DWA approximation for 
the Хс and Хс' appearing in the definition of Г АС: 

(2.13) 

:One сап improve цроп (2.11) Ьу obtaining а better Хс Ьу eliminating Хс" so that 

(2.12) 

Then the exact ff~~,) is given Ьу <x~~IIHc'clx~+», where x~+) is а solution of (2.12) [Lamarsh and 
Feshbach (65)]. Since the wave functions аге usually obtained using ап empirical1y determined Ни' 

it is possibIe that the DW А is а more ассшаге approximation than would at first арреаг, 
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and the amplitude given Ьу (2.11) for the prompt amplitude. This is а reasonably 
ассшаге procedure when the prompt process is а single step and in апу event 
will serve to illustrate the effects of interference between the direct and the 
resonant amplitude. 

From (2.11) it then folJows that 

(2.14) 

where А is а real amplitude. 
То illustrate the effect of interference we consider а simplified situation. Let 

us first restrict the discussion to elastic scattering. Second, let us assume that 
the target nuc1eus has zero spin, so that s' = s, and in addition assume that the 
energy is so low that only опе angular momentum, the lowest possible уа]ие 

af 1, contributes significantly to the formation of the compound nucleus. Suppose 
that the resonance occurs therefore for а рагпсшаг combination of([, s,1, П) = С. 

ТЬеп from (1.6) and (2.4), 

(J(a а) = i...J с'с (2.15)",и<Р) + а
с, 

where the prime indicates the omission of the terms с' = с = С. The cross section 
(Те is 

_ 4n 21 + 1 от .. 2 
ае - -2 ---- In~ ([1" 11" 1П) I (2.16)

k 2; + 1 

For this term the potential scattering amplitude is 

n.'1~ot) = - е - iocsin де (2.17) 

Combining (2.17) and (2.8), (Jc is 

(J =----4n 21 + 11 е l'0 . -1: -е 2'0 Г ле/ 2 12 (2.18)I с __----'-'-=_c S1n u 
е k22i+l с Е-Ел+(i/2)Гл 

Introducing the resonant phase angle у л' 

tan Ул == 2(Е _ Ел) 

(2.18) becomes 

= 4n --21 + 11 2" ( slnb. e-I"c.. - ГАС' е-ау, ) 12 (2.19)(J - е I"C -sшу . 
е k2 2; + 1 с Гл л 

ТЬе simplest situation occurs when only the elastic channel is ореп. This, 
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together with the initial assumptions, has the consequences Г АС = Гл and де 

real. Then (2.19) becomes 

411: 21 + 1. '. . . 2 
e- 1U c (J = --- --Isшд - sш У е-'Улl (2.20)

е k2 2i + 1 с л 

It is immediately clear that completely destructive interference occurs when 

Оп the other hand, а maximum occurs when 

11: 
Ул = + де 

2 

with а maximum cross section 

(2.21) 

In terms of the energy Е we have 

ГЛ 
Е = Ел + -cotbe [ог the minimum value of (Je(iX, iX) = О 

2 
and (2.22) 

Г 
Е = Е· - - tan де [ог the maximum value of (Je(iX, iX)

л 2 

We see that the efТect of the interference is to shift the maximum and introduce 
а minimum, with the scale of these shifts given Ьу Гл' Fог по potential scattering 
term, that is, по interference, де = О, the maximum is not shifted while the 
minimum is at infinity. For де small, the maximum is shifted to а lower (1arger) 
energy [ог де positive (negative) while the minimum appears оп the other side 
of Е л' Оп the other hand, when де approaches 11:/2, that is, when the potential 
scattering resonates, the maximum disappears (i.e., moves off to infinite energy). 
The resonance now manifests itself Ьу а minimum (in this case а zero) at Е = Е ... 
Figure 2.1 gives ап example of а resonance with ап interference minimum and 
Fig. 2.2 shows а resonance in which the potential scattering is уегу small, so 
that по interference phenomena occur. 

If тоге than опе channel is ореп, Г АС < Гл and де сап Ье complex since there 
will Ье absorption [гот the elastic scattering channel denoted Ьу С into reaction 
channels t. Under these circumstances the cross section at the interference 

+Ву using the eigenphases for the prompt channels similar to the (7/, оС (111.2.45'), опе сап avoid
 
complex phase shifts.
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FIG. 2.1. Elastic scattering cross sections for S-wave neutrons пеаг а resonance in the 
compound nucleus. The figure shows the relationship between the shape-elastic and the 
compound-elastic cross sections for а spinless target nucleus. [From Marmier and 
Sheldon (70).] 

minimum will по longer Ье zero and the maximum will по longer Ье as large 
as that given Ьу (2.20). The [иll formulas are given Ьу Feshbach (60). As ап 

example, we quote here the result for де real: 

n21 + 1{[ ( г ;.с) 2 ( г лс) ]1/2 г лс} 2
а (~~) = -- 1+ 1 - - - 2 1 - _. cos 2д ±
тал' k 2 2; + 1 [. Г е Г 
ппп Л л ;. 

(2.23) 

The visibility of а resonance is reduced as Г яс becomes а smaller fraction of Г л' 

Note also that the elastic scattering resonance contributes only to the partial 
waves having а fixed 1 and П. The cross section will contain the contributions 
for other values of 1 that generally will not resonate at Е near Ел [as assumed 
Ьу (2.15)]. It will certainly Ье considerabIy easier to observe а resonance when 
the number of partial waves involved is few, as the nonresonant background 
tends to obscure the resonance structure. 

As this discussion emphasizes, it is гпоге difficult to observe resonance 
structure in the integrated cross section, particularly as the energy increases. 
То remove the effects of the nonresonant background and thus make the 
resonance гпоге visibIe, it would Ье obviously helpful for the experiment to Ье 

designed so as to Ье гпоге selective. Choosing а particular channel, for example, 
would Ье best. Опе соттоп and important method looks at the reaction 
products, which because of selection rules and specificities originating in barrier 
penetration factors тау have тапу fewer nonresonant background terms. Ап 

example is given in Fig. 2.3; the 12с + 12с reaction shows тапу resonances 
detected Ьу examining the y-ray spectrum generated Ьу reactions leading to the 
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FIG.2.2. Neutron total cross section for In. [Marmier and Sheldon (1969), taken [готп 

Landon and Sailor (55).] 

states in 20Ne and 23Na. These resonances аге weB below the barrier and thus 
аге not as readily detected in, say, elastic scattering, to cite ап extreme example. 

The angular distribution is much гпоге sensitive than the integrated cross 
section to the presence о[ ап isolated resonance. То demonstrate this, we take 
the simple case о[ ап s = О initial system and ап s = О final system. Ап example 
is the elastic scattering of a-particles (or pions or kaons) Ьу а spin-zero nucleus. 
Then, as опе сап verify directly [гогп (1.9), 

(2.24) 

As опе сап directly show [гогп (1.5) using (1.9) and, [гогп deShalit and Feshbach 
(74), (А.2.96) and (А.2.35) deShalit and Feshbach (74) 

dб(а', а) n 
2 I са: 2 

------ = -21 (21 + l)P/(cos ~)~ ,(1)1 (2.25)
dQ k <Х<Х 
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FIG.2.3. Resonances in the 12с + 12с reaction [From ЕсЬ and Bromley (85).] 

where we have abbreviated 3""",(10; 10; IП) Ьу .'7'""",(1). Of course, one сап derive 
this result directly rather than as а special case of (1.5). Let the resonance occur 
[ог 1= J. Then 

da(a', (х) = n\'7'(~) + (2J + I)Р (cos З)з(I!) (J)1 2 (2.26)
dQ k 2 а '" J "'.'" 

The first term is just the prompt term ("potential" scattering in the elastic case), 
the second the resonance term. We see that the interference occurs now between 
the [иН potential scattering amplitude and the resonant amplitude. This 
combination will have an interference minimum and а maximum whose 
positions will vary with ang]e. It is often the саве, рагпсшапу at the higher 
energies, that the prompt amplitude is very small at back angles. In that event, 
the resonant term will Ье very prominent in this апяшаг region and the angular 
distribution wШ vary ]ike (PJ)2. Моге generally, an analysis of the angular 
distribution into partial waves wiВ reveal the resonance. When the channel 
spins аге not zero, extracting the resonance amplitude from the angular 
distribution might again prove difficult. However, in these cases one сап turn 
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to the polarizations and their angular distributions (if the data аге available!) 
for the needed additional information. 

Interference, constructive and destructive, as а consequence of the existence 
of both а prompt amplitude, (2.14), and а resonating reaction amplitude, (2.8), 
сап occur in reactions as well as elastic scattering. 1ts strength depends оп the 
relative magnitude of each of the contributing terms, that is, оп gc' ;Яс;./Г А of 
(2.8) and оп Ас,JJП) of (2.14). Again because of the general tendency of the 
prompt amplitude eventually to decrease sharply as the angle increases, 
resonance structure should Ье more visible at back angles, while interference 
phenomena should Ье significant in the intermediate angular region lying 
between the forward angular region, where the dominant contribution to the 
differential cross section is from the prompt amplitude and the backward angular 
region dominated Ьу the resonance reaction. 

Опе should поте that because the interference depends оп the strengths of 
the prompt and resonant amplitudes and because these vary with the exit 
channel, the locations in energy of the interference maximum and minimum 
will generally vary with channel. The maximum wi1l not Ье at Е).; it тау differ 
from that value Ьу the order of ГА and in extreme cases Ьу гпоге. The customary 
procedure for the identification of а resonance Ьу observing its presence in each 
channel must take this possibility into account. 

З. PROPERTIES OF ТНЕ WIDTHS; THRESHOLD BEHAVIOR OF 
CROSS SECTIONS; CUSPS 

The width of а resonance is given [see (111.2.13)] Ьу 

(111.2.13) 

The value of Г АС depends оп the overlap of the channel wave function x~ +) with 
ФА and НQP' Roughly speaking, this is increased if x~ +) has ап appreciable 
amplitude within the nucleus, that is, within the nuclear volume or оп the 
nuclear surface, according to the nature of the reaction. Iп other words, the 
size of Г).с will depend оп the probability that the incident wave will penetrate 
into the nucleus or, equivalently, the probability that the prompt reaction wave 
сап emerge. The barriers that сап reduce these probabilities are the angu]ar 
momentum and Coulomb barriers referred to in Chapter 1. The effect of these 
barriers is largely independent of the nuclear interaction and depends criticalJy 
оп the system's energy, size and the charge of the projectile and target. The 
angular momentum barrier is important near the threshold for the reaction. 
The reduction that the Coulomb barrier produces is important for energies 
near to and below the height of the barrier. Both of these effects сап produce 
а rapid energy dependence of Г АС' It would thus Ье useful to factor these effects 
out of Г лс so that the remainder will more truly геПесt nuclear properties. This 
factorization cannot Ье unique. 
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In this volume we adopt the transmission factor in the channel сТс , as а 

measure of these efТects: 

(3.1) 

where Т, is defined Ьу 

л; = 1 - I 1< Sce' >12 (3.2) 
с' 

Scc' is the S matrix, с and с' denoting open channels, while <Scc' >is its energy 
average. The motivation [ог this choice сап Ье seen most easily Ьу considering 
the single-channel саве, that is, when Хс is а single-channel wave function. The 
averaged S сап Ье obtained [гот the corresponding optical model wave function 
<Хс>' In Chapter V (р. 367) we show that 

(3.3) 

where W is the imaginary рап of the complex optical potential. In (3.3) <х.: 

is normalized to have unit amplitude at infinity. Since the angular momentum 
and Coulomb barriers enter in an identical way [ог the equations satisfied Ьу 

Хс and <Хс>, the behavior of Т, and Г лс should Ье similar. Obviously, Т, саппот 

reproduce the dependence of Г АС оп А. However, since W represents the 
absorptive efТects of the reactions as well as the reduction in channel с because 
of coupling to other channels, Т, provides in а rough fashion а measure of the 
magnitude of Глс' This relationship is, in fact, demonstrated Ьу (111.3.22'), where 
the absorption computed [гот the optical model, which is proportiona! to Тс , 

is found in first order to Ье proportional to the energy average, <Г лС>. For the 
present purposes it will suffice to record the approximate result, 

(3.4) 

where со л is the density of levels of the А type. 
ТЬе properties of the transmission factor аге listed in the Appendix to 

Chapter 111. Drawing оп these results, we find that 

as k-O (3.5) 

where Е is the energy of the relative motion of the two-particle system in channel 
c,k the wave number is the corresponding momentum divided Ьу h, and lh is 
the relative angular momentum of the two particles. The quantity '1 is the 
Coulomb parameter 

zZe2 zZ 
'1=--=-- (3.6) 

hv 137{3 
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(3.7) 

where v is the relative velocity corresponding to wave number k and Jl is the 
reduced mass in channel с in units of the proton mass. The Coulomb factor 
С? is given Ьу (1.8.6), which we repeat here: 

where 

2 2n1]
С (n)---- (3.8)
О" - е 2 п '1 - 1 

А short table of C~ is given in (ТаЫе 1.8.2). 
Because of the close relationship between Т, as given Ьу (3.3) and Г лс as 

expressed Ьу (3.1), it follows that the threshold behavior of Г лс is also given Ьу 

(3.5), that is, 

(3.9) 

From the analysis of Section 4 in Chapter 111, ап expression for Т пеаг а 

single-particle resonance [Eq. (111.4.52)] is available: 

г Sp = Г lp + г ~p (3.1О) 

rlp , the евеаре width from the resonance, is usually referred to in the literature 
as the single-particle width. It is the single-particle width in the absence of ап 

interaction of the single channel with the compound nuclear channels. Ап 

estimate of the order of magnitude of Т сап Ье obtained from the results given 
in the Appendix to Chapter III for Т in the resonance region for а square-well 
optical potential whose imaginary рап is Wo' Then when the relative angular 
momentum is lh, опе finds that 

(3.11) 

(3.12) 

where R is the radius of the potential and Jl is the reduced mass. The function 
s/(kR) is given Ьу 

1 
(3.13)s,(x) = Iwj+)(x)12 
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where w\+) is the outgoing wave solution of 

(3.14) 

For uncharged particles (", = О) 

So = 1 

х4 

S2=----- (3.15)
9 + 3х 2 + х" 

хб 

Sз = --------
225 + 45х 2 + 6х 4 + х" 

The Ьапiег efТects given Ьу (3.5) аге in (3.1 О) сапiеd Ьу the factor Г Ip, as 
сап readily Ье demonstrated using (3.12). 

The various expressions for Те аге not needed for its numerical evaluation, 
as this сап Ье easily obtained from the numerical integration of the optical 
model difТerential equation for the channel. They serve here to fumish some 
insight into the properties of Те' which in tum gives the gross properties of the 
widths according to (3.1). We shall often write 

(3.16) 

where y~c will сапу the deviation of the dependence of Г Ас from normal. 
The threshold behavior, (3.5), is obviously of importance for channel С. It 

сап also sharply influence the behavior in other channels. For ехатрlе, consider 
the scattering in channel С given Ьу (2.18): 

= 4nl- _ .!.Г СА 12 (3.17)(J е - itk sin д 2 

С k2 С Е - Е;. + и/2) Г ;. 

in the case where two channels С and D сап Ье opened, so that 

(3.18) 

Suppose that channel D is closed below Ет , and for the sake of the ехатрlе 

suppose that the value of 1for channel D is zero, so that above threshold 

ГА = Го + JE - ETA D ;. (3.19) 
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where А Dл is а finite constant at Е = Ет . Below Ет 

(3.20) 

It is now а simple exercise to verify that 

whiJe 

(3.21) 

Непсе б wiН Ьауе а cusp in its dependence оп the energy, as illustrated in 
Fig. 3.1. Fог larger values of /, singularities in бс will арреаг [ог higher derivatives 
(e.g., in the second derivative [ог 1= 1), but these effects аге тисЬ тоге difficult 
to discern. 

Note. The effects of the angular momentum and Coulomb barrier аге not 
restricted to resonance reactions but hold тоге generally. The matrix, :Ус'С' is 
given Ьу 

(3.22) 

so that the dependency of I:Yс'с 12 оп Хс is similar to that of Г лс' Непсе 

(3.23) 

where / is the orbital angular гпогпепшгп in the с channel. From (1.6) it follows 
that 

(3.24) 

revealing the 1/v law [ог reactions induced Ьу а neutral particle (1] = О) valid 
when / = О. 

The cusp described Ьу (3.21) is also тоге general, not being restricted to 
resonance reactions. This fact тау Ье made evident through the use of опе of 

I 
I 

О-с ~ 
I 

FIG.3.1. Formation of а cusp in ас because of I 

а threshold in another channel. Ет Е-
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g 
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н Target thickness
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U 

54сг(р, ')')55мп 

Е-у = 2565 keV 

10- 5 L....-----1---1__---I.__---I.__---I..__.....I...__......I-__..J 

1.0	 2.0 3.0 4.0 
Ep(LAB) (MeV) 

FIG.3.2. Reaction showing cusp [From Zyskind, Davidson et al. (78).] 

the conditions that follow from the unitarity of the S matrix: 

(3.25)
 

Suppose, for example, that there are three channels с, с', с", which must Ье 

considered, and moreover, suppose that there is ап 1= О threshold in the с" 

channel. We now look for the efТect of this threshold оп the с' channel, that is, 
оп IScc.1

2
, which is proportional to the cross section for the reaction с-+с'. From 

(3.25) 
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The 1= О threshold dependence of IScc,, 12 is given Ьу the factor JE - Ет for Е 
greater than Ет , and Ьу zero for Е less than Ет . Therefore, aIScc,1

2/aE will have 
ап infinite discontinuity at Е = Ет because of the 1= О threshold in the с" 

channel. Just such а cusp is shown in Fig. 3.2. The cusp in the 54Cr(p,у)55Мп 

reaction is generated Ьу the threshold in the 54Cr(p,n) reaction (Zyskind, 
Davidson et al. (78)). 

4. OVERLAPPING RESONANCES 

The analysis of а cross section in terms of а prompt amplitude plus а resonant 
опе сап Ье readily extended to the case of several isolated (i.e., nonoverlapping), 
resonances. However, it should Ье noted that the results are not unique in the 
sense that they depend оп the choice for Нрр' which in turn determines the 
prompt term. As was illustrated Ьу several examples in Chapter 111, Нрр is not 
unique, so that the prompt term сап Ье the scattering from а hard sphere as 
in the Wigner-Eisenbud theory, ог in another example it сап Ье the amplitude 
deduced from ап optical model potential. Consequently, the value of the widths 
Г will vary with the choice of Нрр , although the reduced width of (3.16) will 
generally Ье less sensitive. This ambiguity rеПесts the latitude in the definition 
of what wi1l Ье considered prompt and what will Ье considered delayed. It is 
essential that the presentation of ап analysis of experimental results clearly state 
the choice made for the description of the prompt amplitude, that is, the choice 
of Нрр • 

А related question asks how тапу resonance terms опе should add оп to 
the prompt term. Indeed, in some formalisms the number of terms is infinite. 
There is in some по prompt term initially. That тепп is recovered Ьу summing 
over the "distant" resonances. This is, in fact, appropriate since the distant 
resonances are not resonances at аll if Ьу resonances we теап delay times, 
which are long compared to some appropriate characteristic time. 
А simple illustration wi1l clarify this remark. In potential scattering the 

characteristic time is а/и, where а is the range of the potential and и is the 
velocity of the incident particle inside the potential. Suppose that а pole of the 
S matrix occurs at Е - ir/2. The delay time is then h/r. If that delay time is 
less than а/и, the time required for the particle to cross the region in which the 
potential acts, the contribution of the pole term to the scattering amplitude is 
physically not а resonance. It is physically more correct to consider it as а 

contribution to the prompt amplitude. То complete this illustration, note that 
the poles of the S matrix for ап attractive square-well potential, по matter how 
shallow, are infinite in number. In that case, it is mathematically possible to 
represent the scattering amplitude as а sum of contributions from each of these 
poles, but of course the resultant total amplitude shows по resonant structure 
if the well is sufficient1y shallow. 

These caveats have еуеп more validity when the resonances are overlapping. 
Analysis of such data сап and have Ьееп made using (111.2.23) or (111.2.47). In 
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the first of these, the transition matrix is written as follows: 

A(Jl)
:r .= y(~) + " __f_;- (111.2.33)

fl fl г: Е - Е
Jl Jl 

As indicated Ьу the earlier discussion the sum over J1 contains а finite number 
of terms, say N. Because of the requirements of unitarity, the parameters A~) 

and EJl, which are slowly varying functions of Е, аге not independent. То make 
опе such relationship explicit, let 

(4.1) 

and define 

(4.2) 

where 

(4.3) 

The reader should compare these definitions with (111.2.22)-(111.2.24) given in 
Section 2 of chapter 111. With these definitions (111.2.33) becomes 

where @IJ. is the real рап of EJl' The condition relating A~) and 1т EIJ. given in 
the single-channel case Ьу (111.2.37) becomes 

Lr~=O (4.5) 
IJ. 

80 that the imaginary рап of EIJ. fluctuates about the isolated resonance value 
of (4.2). 

Equation (4.5) is not the only relationship implied Ьу unitarity. Despite the 
awkwardness of applying these conditions, (111.2.33) is often used in fitting 
experimental data. 

Another procedure that automatically satisfies unitarity uses (111.2.47). In the 
single-channel case 

(111.2.48") 

where к is given Ьу the series 

(4.6) 
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The often used R matrix fit to resonance data is ап example of the use of 
(111.2.48"). The parameters аге }'s and es · 

In both methods there аге two additional parameters which аге not always 
explicitly mentioned. These аге the range, дЕ, over which а fit is to Ье made, 
and the number of terms, N, in the series (4.4) or (4.6). These parameters аге 

not independent. They should Ье determined Ьу the usual statistical measure 
of the quality of а fit such as the х 2 value. In particular, they shouJd Ье chosen 
in such а way that the values of 'Ys and е., for example, аге stable against small 
changes in дЕ ог N. 

As the energy of the system increases, the spacing in energy of the resonances 
becomes smaller, the width of the resonance increases with the consequence 
that the resonances overlap гпоге and гпоге, and rather soon it becomes 
impossible to distinguish the individual resonances. Nevertheless, the structure 
in the energy dependences of the cross section does not immediately disappear. 
With sufficient energy resolution опе observes rapid f1uctuations in the energy 
dependence of the cross section. These аге referred to as Ericson-f1uctuations 
[Ericson (60с,63); Brink and Stephen (63); Brink, Stephen, and Таппег (64)]. 
They have Ьееп observed in а wide variety of reactions. 

Statistical measures аге used to describe the Ericson-f1uctuations. The 
simplest of these is the energy averaged cross section (0'), where the average 
of ап energy-dependent quantity F(E) is defined Ьу 

(4.7) 

where 

fр(Е, Eo)dE o = 1 (4.8) 

То proceed further it is useful to choose Нрр to Ье the optical potential [Кеппап, 

Kwai, and МсУоу (73)J, for then, from the definition of the optical potential, 
it follows that in the decomposition of the :?/ matrix into а prompt and 
f1uctuating part (see Section 8 for further discussion) 

(4.9) 

:?/(f'L) satisfies 

(4.10) 

It follows that the average cross section сап Ье written as 

(4.11 ) 
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The second term does not vanish despite (4.10), since 

The distribution of ff(FL) and (Т(Н) about their теап values provides тоге 

detailed statistical information. For the distribution of ff(FLJ, the practice has 
Ьееп to appeal to the centrallimit Птеогегп of the theory of probability [Feller 
(68)]. It will Ье recal1ed that this theorem states that if а quantity, саН it х, is 
the sum оЕ а large пит Ьег of random contributions, then the probability Р(х) dx 
that х falls between х and х + dx is given Ьу 

(4.12) 

where the average value of х, <х), is taken to Ье zero, and <х2 ) , the average 
value of х2 , is defined Ьу 

(4.13) 

Following Ericson (63), we assume that both the real and imaginary parts 
of ff аге such random variables. If 

ff(FL) = а + ifЗ	 (4.14) 

then 

Р(а) =	 __ 1 -=е -(1j2)(a 2j(a2 ») 
J2тr<a 2 ) 

1[, in addition, опе assumes that 

опе сап write the joint probability Р(а, fЗ) as 

Р(а, fЗ) =	 ._1_ е - (1 /1)(a 2 + р2)/а 2 
(4.15)

2na1 

It is now а simple тпацег to obtain the probability distribution for (Т(п) [гот 

the relation (Т(п)......., (а2 + fЗl). From (4.15), 

(4.16) 
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where 

<о") = fР(а)а ад (4.17) 

Ап experimental test of (4.16) is possible under the assumption that each 
observed value of a(FL) is а member of the ensemble making ир the distribution 
given Ьу (4.16). In other words, Ьу varying the energy, members ofthe ensemble 
аге produced. Thus an energy average becomes identical with the ensemble 
average, а form of the ergodic theorem. Ап example of an experimental distri
bution constructed in this way is shown in Fig. 4.1. It will Ье seen that the 
probability distribution agrees with the simple result (4.16) rather wеП: The 
variance given Ьу 

equals unity for distribution equation (4.16). We note that the distribution given 
in Fig. 4.1 has а smaller variance. This сап Ье consequence of the finite 
experimental energy resolution, which obviously will smooth the data Ьу the 
гаге оf(ГjдЕ)2, where дЕ is the resolution and Г is the width ofthe fluctuation. 

The 'ergodic hypothesis made аооме is not in fact соггест, as is demonstrated 
Ьу the existence of сопеlаtiопs in the fluctuations of the cross section and for 
that matter of the transition matrix, У. At а particular angle () at which the 
reaction product is observed, ап аutосопеlаtiоп function С(в, ()) measuring the 

с I 2(оI6. а 5 ) Mg24 
8=0<) 

E~i28 =25.6-35.5 МеУ 

0.5 

0.8 

02 

0.6 

P(~) 

0.4 

1.0 1.5 

x=~ 

FIG.4.1. Probability distribution of the differential cross section for J -с е ба. iXs) 24Mg 
for the iXs group leading to the 6.00-МеУ excited state in 24Mg. The excitation energy 
in the compound nucleus 28Si is about 30 МеУ [Halbert, Durham, Moak, and Zucker 
(64).] [From Ericson and Mayer-Kuckuk (66).]. 
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сопеlаtiопs as а function of епегgу сап Ье defined as follows: 

(4.18) 

where а is the differential cross section giving the angular distribution. Similarly, 
ап amplitude сопеlаtiоп function, с(в,8), is given Ьу 

2
С(В 8)= <j(E+b)j*(E)-I<j)1 (4.19), <а) 

where 

lt is generally assumed t that 

<а(Е + В) = а(Е) 

<j(E + В) = J(E) 

If а(Е + В) and а(Е) аге uпсопеlаtеd, <а(Е + r.)(J(E) will equal 
(u(Е +е)<а(Е) and С(В,8) will vanish. Deviations from zero indicate the 
ртевепсе of сопеlаtiопs. 

We shall now write С(в,8) in terms of the prompt direct cross section and 
the Пuсtuаtiпg part as given Ьу (4.11). F гогп the assumption that а(Р) does not 
fluctuate, we ha ve 

(4.20) 

Using this equation С(в,8) becomes 

С(В,8) = С(О, 8)C(FL)(e, 8) (4.21) 

where 

(4.22) 

and 

(4.23) 

:This assumption is not песевеагу. Опе need only redefine C(s, О) as follows: 

(а(Е + s)a(E) - (а(Е + s)(a(E) 
С(;;,О) = ----------

(а(Е + s) (а(Е) 
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C(FL) equals unity for 8 = О, and as 8 becomes very large опе сап expect 
a(FL)(E + 8) and a(FL)(E) to Ье uпсопеlаtеd, so that С(РЦ(8, 8) will approach zero 
for large values of в. 

Similar expressions сап Ье obtained for С(8, 8) with some simplfication since 
according to (4.1 О), 

<f) =0 

Jn particular, 

(4.24а) 

Note that 

<а(Н» 

с(О, 8) = (Pj-<-(FL» = 1 - У (4.24Ь) 
а + а 

where 
а(Р) 

у=-

<а) 

In general, С(8,8) and С(8, 8) аге independent. However, under а sufficiently 
drastic approximation they сап Ье related. Toward this end note that 

We now assume that only pair сопеlаtiопs are required to describe the 
right-hand side, so that 

<f(FL)(E + 8)РРЦ*(Е + 8)j<FL)(E)f(FL)*(E» 

~ <f(FL)(E+ 8)j<l'Lj*(E + 8» <j<FL)(Е)j<П)*(Е» 

+ <j<l"L)(E + 8)РРЦ*(Е» <j<FL)*(E + 8)j<FL)(E» 

= « 2 ) [ 1 + Ic(s,8)1 2 J (4.26) 

It should Ье noted that third-order terms such as <РРЦ(Е + Е)рРЦ*(Е + Е)
j<FL)(E»<j<FL)*(E» vanish in апу event in virtue of (4.10). In deriving (4.26) 
we have also assumed that <j<FL)(E + Е)РРЦ(Е» is zero. This follows from 
(4.1 О) if that equation is valid because of the random phases of the components 
of ррц. It is thus indicated that the major епог in the derivation of (4.26) is 
the possible ртевепсе of а quadrilinear сопеlаtiоп which саппот Ье expressed, 
as in (4.26), in terms of lower-order сопеlаtiопs. 

It immediately follows from (4.26) that 

С(с;,8) = Ic(c;,8)12 (4.27) 
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Although с(е,6) сап and has been measured directly [Feshbach and Yennie 
(62)], it is considerably simpler experimentally to measure С(в,6). 

Before we look at some of the experimental data, it is useful to present а 

theoretical estimate of с(е, 6).Toward this end we use expression (III.2.33) quoted 
earlier: 

(4.28) 

We have dropped the subscripts f and i, which are to Ье understood, and the 
simplifying approximation that the imaginary part of the poles, EJl' is indepen
dent of J1 and equal to Г/2 has been made. We now wish to evaluate 

А А* )g-(FL) Е + е g-(FLj* Е - Jl V (4.29)< ( ) ( ) - Е \ [E+e-@"Jl+(i/2)Г][Е-@"v-(i/2)Г] 

We make the assumption that the important contributions to the sum оссш 

when J1 = v. ТЬе other terms are small because they will generally have phases 
which if there are enough terms in the sum will take оп аll possible values. ТЬе 

net efТect is а considerable cancellation. In the limit that we take here that the 
cancellation is complete, this assumption is known as the random phase 
аввшпрпоп '. Under this assumption 

Neglecting the energy dependence of AJl and @"Jl' the energy average of this 
quantity сап Ье readily computed§ with the result that 

ir 
с(е, 6) = с(О, 6)--о (4.30) 

e+zr 

!More explicitly if ФI' is the phase оС AI" the right-hand side оС (4.28) сап Ье written 

IA A*IL ei( Ф. - ф,) l' _ v 

1'.' [Е + F.- tf l' + (i/2)rJ[E - tf. - (i/2)r] 

If we now assume that ФI' and ф ; are chosen from an ensemble оС random numbers, the ensemble 
average оС this quantity will contain only the ФI' = Ф. terms, the remaining vanishing. Finally, one 
assumes that the ensemble and energy averages (i.e., the ergodic theorem) аге identical. 
!The calculation proceeds as follows: 

/ 1 ) 1 fEO+11 dE 

\[Е + Е - tfl' + (i/2)r][Е - tfl' - и/2)Г] = 2.1 Ео-11 [Е + Е - tfl' + (i/2)r][E - gl' -(i/2)r] 

(Continued) 
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and 

г2 

С(Е, О) = С(О, 0)2-2 (4.31) 
Е + Г 

The width, Г, scales the rate at which С(Е, О) goes to zero with increasing Е. 

The value of h/r measures the time during which the compound nuclear system, 
formed Ьу the projectile and target nucleus, lives. In contrast to the compound 
nuclear resonance, for which h/r gives the lifetime of а well-defined state, there 
is по well-defined state with а width Г. Rather, because the resonances overlap, 
the system moves from resonance to resonance before finally breaking ир into 
the final observed products. The quantity h/r measures the time for this process, 
and thus it would Ье most appropriate to refer to it as the interaction time. The 
quantity Г is called the coherence energy. 

The special nature of the form used for g-(FL) should Ье remarked upon. In 
the first place, the сопеlаtiопs between the coefficients А (JL), the widths Г, and 
the energies @JL because of unitarity have Ьееп neglected. Моге important, 
perhaps, is the neglect of effects of intermediate structure signaling the presence 
of doorway states. These will introduce another scale in addition to Г, of the 
order of Гd' the average width of doorway states. Pappalardo (64) has suggested 
that опе could search [ог doorway states Ьу looking [ог this second scale factor 
in the аutосопеlаtiопfunction, as indicated in Fig. 4.2, which presents а highly 
idealized situation. As indicated in the figure, the small Е behavior (dashed line) 
is dominated Ьу Г and the large Е dependence is governed Ьу Гd' 

The existence of these fluctuation etТects was predicted Ьу Ericson (60с). It 
was first demonstrated Ьу Colli, Facchini, and their collaborators (59). Some 
experimental results obtained Ьу моп Witsch, уоп Brentano, Meyer-Kuckuk, 
and Richter (66) using the 37Cl(p, ct) 3 4 S аге shown in Figs. 4.3 and 4.4. In Fig. 4.3 
we see the excitation functions [ог this reaction at 12 scattering angles taken 
with ап energy resolution of I1.E ;5 5 keУ. The presence of fluctuations is clearly 
indicated. In Fig. 4.4 the аutосопеlаtiоп function is plotted tor three separate 

wherc d »е. Let х = (2/Г)Е. Then the integral becomes 

г fХО + ( 2 /Пt. 1 
- dx------
d хп -(2/Пt. (х + (2е/Г) - ХIl + i)(x - Х Il - i) 

If now it is assumed that the а veraging interval 2d is much larger than Г, the limits of the integral 
сап Ье approximated Ьу ± ос! and the integral evaluated Ьу the calculus of residues, [ог cxample, 
10 give 

тсiГ 

d i + е/Г 

[гот which (4.30) follows. 



4. OVERLAPPING RESONANCES 257 

'\ , 
\ 

\ 
\ 

-, 
-, 

' .... 

1.0 2.0 3.0 4.0 
Е 

FIG.4.2. Autocorrelation function in the ртевепсе of а doorway state. 

angles. It will Ье observed that after an initial decrease as predicted Ьу (4.31), 
С(8, О) fluctuate about the zero value. These fluctuations аге rеfепеd to as finite 
range deviations (FRDs) and arise from the fact that а finite energy range was 
used in makihg the averages and сопеlаtiопs. The requisite сопесtiопs have 
been developed Ьу Bohning (66). Fitting the small е part of the results in Fig. 
4.4 gives а mean value of Г of about 18 keV. 
Оп examining Fig. 4.3, it is quite clear that there is considerable angular 

correlation. For example, the peak at about 11.5МеУ proton energy at the 
laboratory angle ()= 175.° атво appears at 170°, 162°, and J57°. Angular 
correlations аге to Ье expected simply from the complexity theorem mentioned 
in Chapter 1 and Ьу (1.10). This states that if there аге maximum values of the 
orbital angular momentum in either the entrance or exit channel, there is а 

11.952 
1fI'~:::;::::~::l. 

650:	 1320 : 650 : 1320 ~ 

1000 1750 1000 1750 

Еmегgепсе апglе _ 

FIG.4.3. Three-dimensional representation of the variation of the angular distribution 
ofthe cx-particles emerging from the reaction37CI(p, 0()34S and proceeding to the ground 
stateof 34S, shown as а function of energy between 11.000 and 11.952МеУ in steps of 
0.008 МеУ [von Witsch, von Brentano et al. (66).]. [From Marmier and Sheldon (70).] 
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FIG.4.4. Energy autocorrelation functions C(l:) plotted as а function of the energy 
ditТerence l: for (а) fJ = 330, (Ь) е = 800, (е) () = 1750 (СМ) in the case of the 37CI(p,ao)34S 
reaction proceeding to the ground state of 34S. ТЬе coherence energy Г сап Ье derived 
from the width at half-he'ight of the first peak; the results indicate that Г = 18 keV, which 
corresponds to а mean lifetime for the compound nucleus 38Аг* of 1" = h/f = 3.7 х 1О - 20 S 

[von Witsch, von Brentano, et аl (66).]. [From Marmier and Sheldon (70).] 
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maximum value of the order, L, of the Legendre polynomial PL required to 
describe the angular distribution <Jf the reaction. Well above the Coulomb 
Ьапiеr, these maxima машев' are set Ьу the angular momentum Ьапiеr. If the 
momentum change is q, then 

(4.32) 

Experimental verification of the validity of this remark has Ьееп given Ьу 

Dearnley, Gibbs, Leachman, and Rogers (65). 
We observe that there are two causes of angular f1uctuations. Опе, just 

discussed, is а consequence of the finite size of the nuclear system. The second, 
which originates in the energy f1uctuations, affects the differential cross section 
d(J/dП. The appropriate сопеlаtiоп function is defined as follows: 

, «d(J(FL)/dQ)(d(J(FL)/dП') - <d(J(FL)/dП) <d(J(FL)/dП') 
С({) () ) = (4 33) 

, <d(J/dfJ.) <d(J/dП') . 

The averages in (4.33) are energy averages. This сопеlаtiоп function сап Ье 

evaluated using the expression for the :у matrix, (1.5). We shall not сапу that 
calculation out but wil1leave it as ап exercise for the reader who mау Ье helped 
Ьу the following derivation of <d(J/dfJ.). According to (1.5), 

(d(J(FL)/dfJ.) = 4~3 1 I,(l1 SJ111 YL11/2sJ2)(l'1s'J111 YLII/~s~J2) 
k (2i + 1)(2/ + 1) 

х <Re [:y(FL)(l'1' s'; 11s; J, П1):у(FL)*(l~, s'; 12s; J 2П2) )PL(cos ()) 
(4.34) 

То evaluate the average we make use of the random-phase approximation, 
which in the present context takes the form 

From the properties of the reduced matrix elements of YL , it follows that L is 
even, so that <d(J(FL)/dП) is symmetric about 900. Later in this chapter we 
describe how to evaluate <I :y(FL)12) using the statistical theory of nuclear 
reactions. 
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5. LEVEL DENSITyt 

In considering reactions that lead to highly excited states of residual nuclei, it 
is usual1y neither practical пог desirable to observe the cross sections [ог the 
excitation of а particular state. General1y, the experimental energy resolution, 
дЕ, is not sufficiently small to permit the selection of а given final state ог to 
go оп to define its properties such as spin, parity, moments, and so оп. Under 
these circumstances the summation in the expression (ог the cross section 

(5.1) 

where f designates the final states of the system contained in the energy interval 
дЕ, is replaced Ьу ап integral as fol1ows: 

(5.2) 

Неге ш(Е J) is the level density of the residual nucleus. The quantity ш(Е) dE 
gives the питЬег of levels between Е and Е +dE. It is, of course, possible to 
partition the density further Ьу asking, [ог example, [ог the density of levels 
with а given quantum пиmЬег, such as the spin, Г, ог with а given set of 
quantum numbers, J, П, Т, and so оп. 

We shall also Ье interested in the density of levels at а particular energy of 
excitation of the compound nucleus. Except [ог а relatively small energy range, 
in which the resonances сап Ье individually observed, it is generally not possible 
to determirie the properties of the individual resonances, and а тоге global 
approach in which the оссипепсе of resonances is given Ьу а level density is 
preferred. 

In both cases, density of levels in the compound ог in the residual nucleus. 
the energy spectrum is taken to Ье discrete. This certainly сап Ье the case (ог 

the residual nucleus. For the compound nucleus, the levels аге taken to Ье the 
levels of the states of the system in what was designated in Chapter 111 as the 
:!2 space. This Hilbert space is defined as containing those states in which по 

part of the system is in the continuum, so that :!2 is the closed-channel subspace. 
Because of this restriction, the energies of the fl space [огт а discrete spectrum 
еуеп though the energy of the system is positive. The levels in !!2 space Ьесоте 

observable resonances with finite widths. when опе includes the effect of the 
coupling to the open-channel subspace designated Ьу fl/'. 

For а discrete energy spectrum with energies tj, the level density ш(Е) is 
given exactly Ьу 

(5.3) 

:Ericson (БОс); Bloch (69, 72); Huizenga and Moretto (72); Huizenga (72). 
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where 

(5.4) 

N(E) gives the total number of levels with energies less than Е. 

Equation (5.3) is exact. Using ап integral representation of оз which follows 
from (5.3), it will Ье possible in the limit of large Е to obtain а continuous 
approximation to the series of delta functions. Т oward this end introduce the 
Fourier representation of Ь(Е - eJ 

so that 

W(E)=~fro e-iКЕ(~еiКЕj)dК 
2n - со J 

Letting к = i{З, 

1 firo
ш(Е) =	 -. еРЕZ({З)dР (5.5) 

2т -ioo 

where Z(P) is the partition sum: 

Z({З) = Lе- РЧ = tr(e- PH)	 (5.6) 
j 

the trace is restricted to the states in 9... The partition sum is а familiar object 
in statistical mechanics and опе is tempted to relate the integration variable, 
~, with the inverse of the temperature. That would Ье the case if the system 
were in contact with а heat bath and if опе could describe the excited nucleus 
as an equibrated system. 

In the limit of large Е, the method of steepest descents [Morse and Feshbach 
((53), 437 et seq.)] сап Ье used to obtain ап approximate evaluation of the 
integral in (5.5). Rewriting the integrand as ехр [{ЗЕ + ln Z({З)], we expand the 
bracketed expression around the saddle point, /зо, defined to Ье а point at 
which the derivative of РЕ + lnZ(P) with respect to Р is zero. 

at Р = {ЗО 

The integral for ш(Е) is then approximately given Ьу 
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where we have assumed it to Ье possible to deform the path of integration from 
the pure imaginary axis to the real опе in the neighborhood of /3 = /30' Непсе 

1 )1/2 [1 )1/2
оз "'"' ------ еРоЕ Z - еРоЕ Z (5.7)

- [2nld21nZ/d/3~1 (/30)- 2nl dE/d/3oI (/30) 

This result, providing а continuous function approximating the со that is 
given in (5.3) Ьу а series of д functions, сап Ье valid only for sufficiently large 
energy Е. The energy interval around Е over which expression (5.3) has Ьееп 

efТectively averaged to obtain (5.7) should contain а sufficiently large number 
of levels. 

ProbIem. Show that 

(5.8) 

and 

d21n Z 2 2 
--- = <l'.) - <l'.) (5.9)

dfJ~ J J 

where 

(5.1О) 

Equation (5.7) for оз does not explicitly take into account constraints that 
сап Ье imposed оп the system because of conservation conditions. For example, 
опе might ask for the level density for а system consisting of а given number, 
N, of nucleons, or for а system whose angular momentum is J, and so оп. In 
what follows we generalize the discussion leading to (5.7) asking for the density 
ьа: N). 

The density ш(Е, N) is given Ьу 

ш(Е, N) = L д(V - N)д(Е - l'iv)) (5.11) 
j, у 

where, as indicated, l'j is а function of the number of nucleons. Introducing the 
Fourier integral representation of the д functions, опе is immediately led to the 
analog of (5.5): 

(5.12) 
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where 

Z(/31, /32) = I ePzv- в, ч(v) (5.13) 
j,v 

ТЬе method of steepest descents applied to the integral in (5.] 2) yields 

ш(Е N) = 1 Z(/3(O) /3(O»)ePiO)E-Р~О)N (5.14) 
, 2nldetLjl/2 г > 2 

where the saddle-point values of /31 and /32,/3iO) and /3~O), respectively, аге 

determined Ьу the equations 

Е + ~- ln Z(/3(O) /3(0») = О (5.15)
д/31 1 ' 2 

N - ~ ln Z(/3(O) /3(0») = О (5.16)
д/32 1 ' 2 

and 

(5.17) 

А. The Level Density for the Independent Particle Model 

Let us suppose that N nucleons гпоуе independently in ап average one-body 
potential [see Chapter У) in deShalit and Feshbach (74)]. Suppose, moreover, 
that the one-body energy levels in this potential are given Ьу е 1 , е 2 , ••• • Because 
of the Pauli exclusion principle, the number of nucleons in еасЬ level is either 
zero or 1, where we аге using the m-representation [deShalit and Feshbach (74, 
р. 221)]. ТЬеп 

(5.18) 

(5.19) 

ТЬе partition sum, (5.13), is 

Z(/31' /32)= I exp[/32Ins - /31 Inses] = I eXP[I (/32 - /31 eJns] (5.20) 
alln. alln. s 

or 

(5.21 ) 

Further development requires assumptions regarding es • We shal1 assume that 
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the spectrum е• сап Ье replaced Ьу а smoothly varying continuous spectrum 
as indicated Ьу the Fermi-gas model [see Chapter 11 in deShalit and Feshbach 
(74)]. Then 

InZ(/31'/32) = Iln(l + e(f12-f1ltS»)~f.·XJ ш(е)lп(l + e(f12-{Jl t»)de (5.22) 
s ~ 

where ео is the smallest value of es • This integral will Ье evaluated for large /32 
and /31' The validity of this assumption will Ье justified а posteriori. Under these 
circumstances the exponential, еХР(/32 - /31 е), will for small or negative values 
of е, Ье much larger than unity, so that the logarithm in (5.22) is approximately 
equal to Р2 - Р 18. For large values of 8, the exponential will Ье negligible and 
the logarithm will tend to zero. The drop to zero occurs precipitously for large 
values of /32 and /31, at 

(5.23) 

As the notation indicates, for the saddle-point values of /32 and /31' the ratio 
equals the Fermi energy. 

In this limit 

or 

(5.24) 

where 

(5.25а) 

gives the number of single-particle states ир to eF , while 

(5.25Ь) 

gives the total energy of these states. 
The next order is obtained Ьу evaluating 
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In the first integral let /31 е - /32 = Х and in the second /32 - /31[', = х. Then 

As /31 increases, taking [',0 to Ье negative, to 0(1//31)' опе obtains 

Combining this with (5.24) for F(a)) yields 

(5.26) 

This result сап now Ье substituted in (5.15) and (5.16), determining the 
saddle-point values of /3\0) and /3~0). Take, for example, (5.1): 

For large values of /31 and smooth single-level density ш, 

(5.27) 

50 that indeed [',J' is, to this approximation, the Fermi energy. In the same 
approximation, (5.16), 

(5.28) 

Since W(&F) is the energy of the Fermi gas in its ground state, the excitation 
energy и is given Ьу 

(5.29) 

The two equations /32//31 = [',F and (5.29) then determine both /32 and /31' 
We also need to compute the determinant L, whose elements аге given Ьу 

(5.17). ТЬе second derivatives аге readily calculated in the limit of /31 and /32 
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large from (5.26) bearing in mind that еЕ = P2/Pl' Опе obtains 

J
21nZ 

ш(еЕ ) J21nZ=(n2+p2)cv(eF) 

JPi Р1 дP~ 3 2 P~ 

a2 1n z Р2
 
дР1 дР2 = - Pi ш(еЕ )
 

so that 

n
2
(ш(еЕ ) ) 2detL=- -

3 Pi 
It is now possible to evaluate the right-hand side of (5.14) to obtain ш(Е, N). 
The гезшг! is [Bethe (37)] 

(n2cv)1/2
1 1 [

cv(U,N)~--ехр - =--ехр 2 (5.30)
J48U 3Pl J48U 

where for convenience we have changed the independent variable from Е to U. 
This form is commonly used in tne semiempirical description of the density of 
levels to Ье discussed. The constant I/Р 1 plays the role of а тегпрегашге, (. so 
that (5.29) relates the temperature and the excitation energy§: 

(5.31 ) 

where the Fermi-gas model gives 

: Morrison (53) has cornpared this result and that obtained Ьу Hardy and Rarnanujan (18) for the 
difТerent ways, р(n), to forrn а given number n Ьу any of the possibIe sums of srnaller integers. For 
large n they find that 

)1 /2]
1 [ (n2 

р(n)=·--ехр 2 -n 
.j48n 6 

The reader is invited to consider the re!ationship of this resu!t and (5.30). 
*А statistica!-mechanica! definition of ternperature Т is 

or approximate!y, 
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or 

ProbIem. Using (5.21) and N = д ln ZjD/32' show that 

where n(es ) is the average occupation number of the one-body state with energy 
F.s ' Using the continuous approximation for the spectrum of е, [see (5.22)], this 
becomes 

Г dеш(е) f.ooN= = dешеnе1 Рl«-Ц) ( ) ( )
о + е <О 

See Fig.5.1 for а plot of n(е). Using the approximation developed following 
(5.22), show that N = N (eF ) . Show that the number of particles excited аооуе eF is 

(ln 2)ш 

/31 

Thus the average number of degrees of freedom (particles plus holes) excited 
when the excitation energy is и is given Ьу 

(21n2)ш 
n=--

я /31 

or 

(5.32) 

FIG.5.1. Average occupation number, 
11(10) оС а one-body state with energy 10 [ог 

Е two values оС fЗl' 
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If we write the exponent in (5.30) as 2vau, 
121n2 r:: г:rт ~ 

" ех с = --2-У аU = 0.84у аU ~ 0.3у AUM eV n 

where we have used the empirical а = А/8. 

It is, of course, clear that (5.30) is incorrect пеаг И equal to zero, that is, 
when the excitation energy goes to zero, and is applicable only [ог sufТiciently 

large values of И and N. А comparison of (5.30) with ап exact calculation of 
the density of levels when the single-particle levels аге equidistantly spaced is 
shown оп Fig. 5.2. Except at small values ofthe excitation energy, the agreement 
is excellent. 

1'(5) 

Ю2 

1() 

s 

FIG. 5.2. Exact level density рег unit single particle spacing for а Fermi system of 
опе kind of particles with equidistant single-particle levels versus excitation energy s in 
units of this spacing. The solid smooth curve is the approximate solution, (5.30). [From 
Ericson (60).] 
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Fluctuations. If these results gave an exact evaluation of the expression (5.11) 
for ш(Е, N) the value of (Й)2 and of й 2 would Ье equal, where 

Йш(Е, N) = L \·J(v - N)J(E - eiv)) 
j.v 

and 

N 2w(E, N) 2J(v= Lv - N)J(E - ej(v)) 
j,v 

А measure of the ассцгасу of these ca1culations is then fumished Ьу the 
fluctuation defined Ьу 

From (5.12) and (5.13) we see that 

N = Jd/31 Jd/32 [aZ(/31' /32)/a/32JeP
,E - в-н 

Jd/31 Jd/32Z(/31' /32)е Р lЕ - в-н 

Evaluating Z and aZ/a/32 at the saddle point gives the result 

in agreement with (5.16). 
The value of й2 is similarly given Ьу 

so that 

The independent particle model [see below (5.29)] gives 

or using (5.29), 
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Inserting the Fermi-gas model value [ог ш, 

опе obtains 

9UN ) 1/2
(AN)2 = -2( n E;F 

Introducing и, the excitation energy рег nucleon (and replacing 9/n2 Ьу 1) 

U 
И=-

N 

опе finally obtains 

indicating the епог is least [ог heavier nuclei and smaller excitation energies. 
For а further discussion, see Feshbach (88). 

В. Angular Momenlum Dislribulion 

The level density, ш(Е, N), (5.30), derived just аооуе, takes account of аll states 
regardless of their angular momentum. Because о[ the important role played 
Ьу angular momentum barriers as discussed briefly in Section 4, we shall find 
knowledge of the level density [ог levels with energy Е and with angular 
momentum J, ш(Е, N, J), essential [ог the interpretation of nuclear reactions. 

In the procedure developed Ьу Bloch (54), опе adds to the constraints that 
the total пumЬег of particles Ье N and that the total energy Ье Е, the constraint 
that the projection of the total angular momentum along ап axis Ье М; that 
is, in addition to the conditions given Ьу (5.18) and (5.19), we add 

The resulting level density is ш(Е, N, М). The density we seek ш(Е, N, J) is then 
given Ьу 

ш(Е,N,J)=ш(Е,N,М=J)-ш(Е,N,М=J + 1) 

~ _ (дШ(Е, N, М)) (5.33) 
дМ M=J+1/2 

We begin Ьу forming the partition function Z, which will now depend оп 
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three parameters /3 г- /32' /33: 

Applying the method of steepest descents [see (5.12)] yields 

ш(Е N М) = 1 Z(/3(O) /3(0) /3(О»)еР~О)Е-Р~О)N-Р~О)М (5.34)
" (2n)3/2IdetLjl/2 г > 2 ' 3 

where то), the saddle-point values of /3i' satisfy (5.15) through (5.17) and the 
additional equation 

alnZ 
___ о =М (5.35) 
д/3з 

The generalization of (5.22) becomes 

lnZ = ~ fШ(Е,m)lп(l + еРзrn+Р2-fJl~)d[; (5.36) 

where Ш(Е, т) is the single-particle level density for particles of energy [; and 
projected angular momentum т. The evaluation ofthe integral in (5.36) proceeds 
according to method described аооее following (5.23). Опе obtains 

where 

(5.38а) 

(5.38Ь) 

where the Fermi energy [;F(m) is defined Ьу 

(5.39) 

We now define а Fermi energy independent ofm, [;F, Ьу averaging EF(m) over т: 

(5.40) 
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where 

_ LтCO(8 F(т), т) 
т=-----

LCO(8 F(т), т) 

or using 

(5.41) 
т 

_ LтCO(8F(т), т) 
т=-------'-----

CO(8F) 
(5.42) 

Similarly, 

2 
т 

Lт 2CO(8 

F(т), т) 
=-- ---

CO(8F) 
(5.43) 

Finally, the functions N and W of the preceding section аге given Ьу 

(5.44) 
т 

and 

(5.45) 
т 

Inserting these relations into (5.37) yields 

(5.46) 

where а Taylor expansion of N m(8F(т) to first order and Wm(eF(т)) to second 
order has Ьееп used: 

Terms up to CO(8 F(т), т), but not including its derivatives, have Ьееп taken into 
account. 

Using the conditions (5.15), (5.16), and (5.35), опе obtains 

Е = W(f.F) + CO(8~) [n 
2 

+ /3~(т2 - m2 ) ] 

2/31 3 

N = N(8F ) 

М = M(8 
F

) + /3з СО(8F) (т2 - m2 ) (5.47) 
Р1 
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The last equation сап Ье solved for /3з and the result introduced into (5.46) as 
follows: . 

/3з = /3~ДM 
ш(еFНm 

2 
- m2 

) 

дМ==М-М(еF ) 

and 

тс 2 t(дМ)2 
и = Е - W(f.F ) = --:zш(еF ) +-=---- (5.48)

6/3 1 ,j! 

,j! == ш(е F)(т 
2 

- т2 ) (5.49) 

The second term in (5.48) сап Ье interpreted as the rotation kinetic energy of 
excitation, where 5 is the moment of inertia about the axis ироп which the 
angular momentum is projected, ап identification that requires justification. 

ProbIem. Prove that .~ approximately equals the rigid moment of inertia for 
а spherical nucleus. Use 

(5.50) 

and 

It is now а straightforward calculation to obtain the level density Ьу using 
the results аооуе in (5.34). We find that 

(5.51) 

Inserting the value of /31 from (5.48) and difТerentiating the result according to 
(5.33) to obtain ш(Е, N, 1), опе obtains 

where again the independent variabJe Е has Ьееп replaced Ьу U. In this есцапоп, 

ш(U, N) is given Ьу (5.30), and 

(1 + 1.)2
9f = 2 (5.53) 

2.~ 
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is the rotational energy. In obtaining (5.52), M(EF) has been placed equal to 
zero, as would Ье the case when the ground-state spin is zero. Note again that 
this expression fails when И equals !И, that is, оп the Yrast line. t 
Whеп!И is small compared to И, that is, away from the Yrast line, we сап 

expand (5.52) about !и = О to obtain 

ш(U, N, 1) = 21 + 1 ш(U, N)е-[]+Щ2)]2/2<т 2 
(5.54) 

J8n0"3 

where [see below (5.32)] 

(5.55) 

Problem. Prove that 

L(21 + 1)Ш(Е,N,1)-+f,ОО d1(21 + l)ш(U,N,1)=ш(U,N) 
J о 

Problem. Show from (5.51) tl.шt 

In the limit of i(дМ)2 j.f « И, 

ш(U,N,М)= ~ ш(U,N)е-<i1М)2/ 2 <Т 2 
(5.54') 

v 2nО" 

Thus in this approximation the angular momentum distribution is а Gaussian 
with а root-mean-square derivation, 0", given Ьу (5.55), which increases with 
increasing excitation energy. One сап expect [see (3.4)] that the absorption 
cross section will decrease when 1 exceeds 0". This is simply the statement that 
it will Ье muсЬ less probable for the angular momenta ofthe individual nucleons 
to line uр to obtain а given 1 as 1 increases. However, the probability improves 
if the excitation energy increases since а greater variation in the values of the 
angular momenta for the individual nucleons occurs. 

~Tbe Yrast line is defined as the curve in the (U,J) plane giving the lowest possible value of J for 
а given value of U. 
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С. Rotational Nuclel 

Тп addition to the total angular momentum 1, the state of rotational nuclei аге 

characterized Ьу the quantum number К [see (V1.3.30) in deShalit and Feshbach 
(74)J, the projection of 1 оп the body-fixed axis of symmetry, assuming axially 
symmetric nuclear deformation. We сап now ask for the density of levels with 
а given 1 and К. 

Since К is а projection, approximation (5.54) сап Ье used: 

К
2 

ш(U,N,К)=--ш(U,N)ехр1 ( --2) (5.56) 
ak~ 2ак 

where ак is given Ьу (5.55), employing for ~ the moment of inertia about the 
symmetry axis. The density of levels for а given value of 1 is then obtained Ьу 

summing: 

ш(U, N, 1) = t L
/ 

ш(U - ~(K, I), N, К) (5.57) 
К= -/ 

where ~ is the rotational energy associated with готапоп about the axes 
perpendicular to the symmetry axis [see (V1.2.12) in deShalit and Feshbach (74)]: 

and ~ л. is the appropriate moment of inertia. ТЬе factor of t takes into account 
the fact that the sum includes both К and - К. 1nserting this value for ~ and 
using the approximation ~« U yields 

ш(U, N, I) = 
1 

ш(U, N) L/ e-(1/2 a l )(/ )(I+ 1)-(l/2)(1/ai -1/аl>К2 (5.58) 
j8КaK К=-/ 

where ai is given Ьу (5.55) with .F replaced Ьу ~ .l' The factor multiplying К 2 

in the exponent depends оп the difТerence (1/~ К - 1/~ .l)' Гп а rigid body in 
the shape of а prolate spheroid, 

(5.59) 

where <5 is the eccentricity parameter [see deShalit and Feshbach (74, р. 416)] 
and ~SPh is the moment of inertia of а rigid sphere of radius Ro where Ro is 
the mеап radius [see deShalit and Feshbach (74, р. 415)]. ТЬеп 

- 1 1 <5 

~К ~.l ~SPh (1 -1<5)(1 + j<5) 
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А contribution to the energy of rotation coming from rotation about the 
symmetry axis is possible only at excitations sufficiently great that pairing effects 
аге reduced. Under these circumstances, the superfluidity [see deShalit and 
Feshbach (74, р. 568)] thought to Ье responsible for condition equation (VI.4.1) 
in deShalit and Feshbach will Ье correspondingly less and this moment of 
inertia, 5 к' will approach the rigid value, (5.59). Моге explicitly, if the average 
number of unpaired particles is v and the average value of К2 for one particle 
is Ki, then 

At low energies the number of unpaired particles goes rapidly to zero, so that 
5 к is reduced from its rigid value, which applies at sufficiently large excitation 
energies. 

The angular distribution of fission fragments depends оп the К dependence 
of ш( и, N, 1), permitting а determination of 5 к from experiment. [See Reising, 
Вате, and Huizenga (66) and Bohr and Mottelson (75, р. 619); see also Huizenga, 
Behkamu, et al. (74) and Dфssing and Jensen (74).] 

D. Isospin Distribution 

The results obtained for the angular momentum distribution, in particular (5.54'), 
сап Ье quickly adapted to this problem. The level density ш(U, N, Тз), giving 
the density of levels at an excitation energy и, number of particles N, and 
isospin сотпропеш Тз [==-!(Z - N)], is 

Т
2 

1 ( )ш(U,N, Тз)=--ш(U,N)ехр ----1 (5.60) 
(Jt~ 2(Jt 

where 

Of course, т; =;}. Near the Fermi energy, 

where шр and шN are the single-particle level density for protons and neutrons, 
respectively. Непсе 

(5.61) 
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where 

Equation (5.60) becomes 

Т
2

тс 
2 

] 

6 F 2а; 

Аll the considerations above ате based оп the independent particle model 
of the model; that is, the Hamiltonian is assumed to Ье given Ьу 

х ехр [ 2 -Ш(В )и __3 (5.60') 

(5.62) 

where а! and as ате the Fermion creation and destruction operators associated 
with а single-particle level of energy B • ln addition, it is assumed thats 

single-particle level density is а smooth function of the single-particle energy. 
Under these circumstances the level density [от the nucleus depends primarily оп 

ш(еF ), the single-particle density evaluated at the Fermi епегяу.! 

Improvements сап Ье obtained Ьу using а тоте realistic nuclear Hamiltonian 
and single-particle level density. For example, the single-particle levels of the 
independent particle shell model ате bunched and the possibility of degeneracy 
is substantially different when а shell is, [от example, half filled than when it is 
completely filled. The assumption of а smooth single particle density is not а 

good approximation under these conditions. Rosenzweig (57) has, [от example, 
calculated the nuclear level density using а simple model that exhibits both the 
bunching and variation of degeneracy, characteristic of the shell model. In 
another, obvious improvement the interactions ате taken into account. For 
example, Hartree-Fock single-particle ]eve]sсап Ье inserted in (5.62). Proceeding 
further, the quasi-partic]e description of Chapter УН of deSha]it and Feshbach 
(74), which shou1d Ье especially advantageous in view of the strong dependence 
of ш(И) оп w(e F ), сап Ье used. Н wi]] now include both the sing]e-partic]e 
energies and the pairing HamiJtonian [Moretto (72а, 72Ь)]. Finally, тоте 

sophisticated methods based оп the Go]dstone ]inked сшатег expansion [Section 
УII.14 in deShalit and Feshbach (74)] сошо in рппсгр[е Ье adapted [от the 
caJculation of пцстеаг ]evel densities. 

:The saddle-point evaluation о[ the density о[ levels is ап approximation to the exact density. The 
latter сап Ье obtained [or noninteracting nucleons Ьу using the combinatorial method. This method 
amounts to finding the number о[ ways in which the nucleons сап Ье distributed among the 
single-particle levels for а given energy of the nucleus. А systematic approach to this enumeration 
has Ьсеп given Ьу HiIlman and Grover (69). 
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The results of these calculations аге not readily summarized Ьу ап analytical 
expression. However, some features that сап Ье readily understood qualitatively 
emerge. These have formed the basis of а semiempirical description ofthe nuclear 
level density. 

The major efТects of the residual interaction оп the nuclear levels of the 
independent particle shell model include the lifting of degeneracies of that model 
and the motion of the energy levels to difТerent values of the energy. Of particular 
importance for our discussion is the substantial descent of some levels, these 
thereby becoming either the ground state ог lying тисЬ closer to the ground 
state. Оп the other hand, at relatively high excitation energies the motion of 
the levels does not result in апу substantial change in the level density [гогп 

that predicted Ьу the independent particle model. ТЬе two spectra before and 
after the residual interaction is "шгпес оп" аге illustrated in Fig. 5.3. It is clear 
from the figure that опе сап use the independent particle model result for ш(U) 

for the spectrum of Fig. 5.3Ь for sufficiently large И if И is replaced Ьу И - .1. 
In other words, опе shifts the ground-state energy from which И is calculated 
to the value it has before the residual interaction is turned оп. This is, of course, 
not ап exact statement, since the difТerences in the spectra сап hardly Ье 

expressed Ьу means of only опе parameter. However, Ьу choosing ап empirical 
value for .1, опе might expect to Ье able to match the spectrum of (Ь) at 
sufficiently large U. If шо(U) is the level density for the independent particle 
model, then for sufficiently large И, шо(U -.1) is the level density when 
interactions аге taken into account. 

This concept of а reference level, difТering from the gгound state, for the 
calculation ofthe efТective excitation energy [Hurwitz and Bethe (51)] has Ьееп 

incorporated into (5.52) with .1 as well as а and (J as empirical parameters to 
Ье determined from experiment [Huizenga (72)]. The efТect of pairing energy 
оп level density сап Ье included in this way. Recall fгom (11.3.1) in deShalit and 
Feshbach (74) that the pairing energy is taken to Ье zero for odd-even nuclei 
and is given Ьу а positive function of .1, д(А), for odd-odd nuclei and Ьу - Ь(А) 

for even-even nuclei. Taking the same reference level, that is, the odd-even 
nucleus, .1 is given Ьу - д(А) for odd-odd nuclei and Ьу д(А) for even-even 
nuclei [Ericson (59)]. 

uf1--

ut~-
FIG.5.3. EfТect of the residual interactions оп the 
distribution of the nuclear energy levels. 
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Fe 5 5 Fe 5 7 FIG.5.4. Tota1 пumЬеr оГ states ир to the excitation energy Е for Мп 5 6, , , 

and Fe 5 8 versus Е. ТЬе reso1ution is somewhat higher in the case of мп 5 6 than for the 
rest.ТЬе figure compares the tota1 numbers of states for ечеп, odd, апd odd-mass nuclei. 
[From Ericson (59).] 

The odd~even effect is illustrated in Fig. 5.4, which gives the total number 
of states uр to ап excitation energy и for [оцг nuclei: 56Мп (odd, odd), 57Fe 
(even, odd), 55Fe (even, odd), and 58Fe (even, even). As expected, the odd-odd 
nucleus has the greatest number of states, the even-even the fewest, while the 
even~odd nuclei fall in between. The shell model provides а reason that the 
number of states of 57Fe is greater than that for 55Fe for а giveri excitation 
energy; namely, 55Fe has only опе пешгоп outside the closed пешгоп shell at 
N = 28, while 57Fe has three such neutrons. There is, therefore, а larger number 
of states that сап Ье formed in 57Fe than in 55Fe. 
Моге quantitatively, опе might hope to use the experimental determinations 

of the level density to obtain the parameters а, а, and д. The systematics of 
their dependence uроп excitation energy, and the mass, д, and atomic number, 
Z, of the nucleus might then provide insights into the properties of excited 
nuclei. For the most part such systematic studies have not been carried out. 
Unfortunately, it is often the case that different expressions аге used for со so 
that the values of а and а obtained аге пот immediately comparable. 

Acompilation [Facchini and Saetta-Memchella (68); ВаЬа (70)] ofthe values 



280 RESONANCES AND ТНЕ STATISTICAL ТНЕОАУ OF NUCLEAR REACTIONS 

35.-----------------------, 

30 

" .:25 

.:" .....:..:>..{';.::..~... 
20 ... г>: .. ~ .. 1/ 

.....~. :':";:'>~:15 ..~. ,...<" 
.:'., .-~/ ..... а = А/8 MeV- 1 

10 . }.:/:' 
,.~.y , 
Ч'_~~ 

:// 
о 20 40 60 80 100 120 140 160 180 200 220 240 

А 

FIG. 5.5. Level density parameter а as а function of atomic mass А [ВаЬа (70)]. [From 
Huizenga and Moretto (72).] 

for а are shown in Fig. 5.5. То obtain these, б, the spin-cut off parameter, was 
calculated from (5.55) using the rigid moments of inertia, and L\ was taken to 
Ье equal to the pairing energy values given Ьу Gilbert and Сатегоп (65). We 
observe that these values of а аге marked Ьу substantial deviations from the 
expected linear dependence оп А, (5.50), deviations that аге especially large for 
nuclei пеаг the closed shells. This сап Ье related to the fact that the density of 
single-particle levels пеаг the Fermi energy is markedly smaller [ог c]osed-shell 
nuclei. The correctness of this апагуыэ is indicated Ьу theoretical level density 
calculations using the single-partic]e ]eve]s provided Ьу the Nilsson гпоое! [see 
Chapter УI in deShaJit and Feshbach (74)] for пцсте] сгове to the doubly magic 
пшйецв 208рь. The гевцпз аге shown in Fig. 5.6. As expected, 208рь has the 
smallest [еуе! density. The ]eve] densities [ог neighboring пцсте! increase with 
increasing distance of the гшсге] [гот 208рь. 

The va]ues of а that аге extracted [гот those experiments, рагцсшапу those 
sensitive to the va]ue of the maximum angu]ar momentum which сап contribute 
to the reaction cross section, аге shown in Fig. 5.7. The excitation energy, и, 

is арргохппагегу 8 МеУ. The soJid Нпе that gives the va]ue of о computed using 
the rigid moment ofinertia [Chang (70); Coceva, Corvi, Giacobbe, and Stefanson 
(72)] is in substantia] agreement with the ехрегппепга! гевцпв [ог А ~ 110. It 
is not possible to draw апу сопсшыопв [ог [агяег values of А in view of the 
litt]e information available. 

Theoretical va]ues of the spin cutoff parameter, б, have also Ьееп obtained 
using the Ni]sson model. The results аге shown in Fig. 5.8. The nuclei involved 
do not overlap with those experimentally observed in Fig.5.7, but the 
comparison would suggest that the theoretical values will Ье too large. 
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FIG. 5.6. Theoretical level densities as а function of excitation energy for nuclei in the 
neighborhood of the 295рь doubJy closed sheH. ТЬе Nilsson sheH model has Ьееп used 
to obtain the spherical set of single particle levels [Moretto, Ste]]a, and Carmella-Crespi 
(70).] [From Huizenga and Moretto (72).] 
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FIG.5.7. Computation of values of б. [From Huizenga (72).] 
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FIG. 5.8. Theoretical spin cutoff parameters (J2 as а function of excitation energy for 
nuclei in the 205рь region. ТЬе calculations Ьауе Ьееп performed оп the basis of the 
Nilsson diagram [Moretto, StelJa, and Caramella-Crespi (70).] [From Huizenga and 
Moretto (72).] 

The experimental results that [опп the basis of the foregoing comparisons 
with the theory аге obtained [гот а variety of sources. The most obvious 
involves simply counting of the levels, which is possible only if they аге isolated, 
as сап Ье the case for low-energy пешгоп resonances. However, this procedure 
rapidly becomes impossible as the excitation energy increases. The primary 
method then exploits the dependence of reaction cross sections, total as well 
as difТerential, оп the nuclear level density, as wi1l Ье made evident in later 
sections of this chapter (see Section 7). For the present we illustrate the results 
that сап Ье obtained Ьу Fig. 5.9 [ог the case of 6°Ni. 

French and his collaborators have developed а statistical method [ог 

determining the nuclear level density which is appropriate for the interacting 
shell model. In this model the wave functions for the system аге assumed to Ье 

expressible in terms of the shell model single-particle wave functions. Moreover, 
а finite питЬег of shells аге assumed to Ье mixed Ьу the residual interaction 
forming the shell· model space. Thus the efТective Hamiltonian is given Ьу the 
finite matrix (ФjIНIФi ), in that she1J model space where the set {Ф;} аге the 
independent-particle (i.e., noninteracting shell modeJ), wave functions. The 
theory attempts to compensate [ог the efТect of omission of the states outside 
the model space Ьу using ап adjusted ("renormalized") residual interaction. This 
procedure is in obvious difficulty when the actuaJ interaction brings down into 
the energy domain of interest, states that have appreciable components not 
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FIG. 5.9. Plot of the experimental lеуеl density of 6°Ni as а function of excitation energy 
[Lu, Vag, and Huizenga (72).] [From Huizenga and Moretto (72).] 

included in the model space. These are referred to as intruder states. It should 
also Ье noted that even when the unrenormalized residual interaction is 
two-body, the renormalized interaction will generally contain many-body 
interactions as components. The energies of the system аге given Ьу the 
eigenvalues of the Hamiltonian (ФjIНIФi)' Generally, the diagonalization of 
such а matrix is а formidable numerical task. For instance, the J = 3, Т = 1 
matrix in the shell with 12 particles has the dimension of 6706, so that there 
аге 2.25 х 106 ditТerent matrix elements and 6706 eigenvalues. If, however, the 
residual interaction is two-body, as is usually assumed [see Chapter V in deShalit 
and Feshbach (74)], the number of independent matrix elements is only 63. The 
two-body assumption is not generally correct, as the omission of states outside 
the model space rigorously requires the introduction of many-body forces, so 
that the number of independent matrix elements will Ье larger than 63. There 
is an upper bound to this number when the number of active particles is т, 

since then the many-body force is at most an m-body force. 
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FIG. 5.10. (а) Plot оС the distribution оС 196 diagnonal nuclear shell model matrix 
elements Crom the work оС D. Kurath. ТЬе solid curve is а simple normal distribution 

(2n)-lI2 ехр( -Н;)2Н;) in which На.а. is the diagnonal element minus the теап 

diagnonal element Cor еасЬ matrix. (Ь) Plot оС the distribution оС 675 off-diagonal matrix 
elements obtained in the work оС О. Kurath. The solid curve is а simple normal 

distribution (271)-1/2 ехр( - Н;р!2Н;р) in which На.р is the off-diagonal element; the теап 

value оС the off-diagnonal elements IS very close to zero. [From Рогтег and Rosenzweig 
(60).] 

ТЬе statistical method adopted Ьу French and Wong (70) and Bohigas and 
Flores (71) makes use of the empirical result (see Fig.5.10) that the matrix 
elements of а short-range residual interaction аге random. Ву this we теап 

that the distribution of values of the matrix elements when the excitation energy 
or the mass number of the nucleus is varied is Gaussian. А justification of this 
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result is indicated Ьу the following plausible but hardJy rigorous argument. In 
terms of ф,,(г), the single-particle sheIl model wave function, the matrix element 
of а two-body potential v(r, г') is 

(5.63) 

For large quantum numbers (i.e., for reasonably high excitation energies) the 
ф,,'s will have а large number of nodes. The overlap of these wave functions as 
they occur in (5.63) will general1y yield а very irregular and complex dependence 
оп г and r'. Since v is short range, the matrix element of (5.63) is а sum of 
contributions that соте from the regions in which the overlap is constructive. 
То the extent that these contributions are effectively random, the central limit 
theorem тау Ье applied and the distribution of the matrix elements is 
Gaussian. 

This empirical result suggests the following procedure. Опе сап construct 
ап ensemble of possible Hamiltonians with model shell space Ьу choosing each 
ofthe independent matrix elements randomly (i.e.,from а Gaussian distribution), 
and then solving the resulting secular equation for the energy eigenvalues of 
the system. Ву this means it would then Ье possible to develop ап energy 
eigenvalue distribution. The fundamental assumption is then made that this 
distribution is identical with that which would Ье obtained from the energies 
of the levels ша given nucleus or from а variety of nuclei. This hypothesis is 
referred to as the ergodic hypothesis and is reminiscent of the hypothesis made 
in statistical mechanics, in which the time behavior of а system is related 
statistically to the properties of ап ensem ble of trajectories generated Ьу random 
initial conditions. 

Ап important simplification in the calculation of the distribution of energies 
сап Ье obtained if опе assumes that the distribution is Gaussian. 

1 [(Е - 8)2]
ш(Е)=--ехр - 2 (5.64) 

J21tA 2 2А 

where the average energy Е is given Ьу 8 and the mean-square deviation Е2 
- Е2 

Ьу А 2. The validity of (5.64) has Ьееп shown Ьу numerical calculations as well 
as through ап application of the central limit theorem [Меllо (78)] when the 
number of particles is larger than two, when the interaction is two-body, or 
larger than k, when the interaction is k-body. 

It is thus по longer necessary to diagonalize the Hamiltonian. Опе need only 
compute the теап energy and the dispersion using the expressions 
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and 

(5.65) 

or 

А2 = ~~ I<ФiI НФj)1 2 
- (;2 (5.66) 

I,J 

In these expressions d is the dimension of the space, while the matrix elements 
аге linear combinations of randomly chosen quantities. Such а procedure was 
used Ьу Ayik and Ginocchio (74) to compute the level densities for light nuclei. 
The orbital single-particle, wave functions ofthe 2s, ld, andf7/2 shell were used. 

Some comment should Ье made with regard to the Gaussian form, (5.64). It 
difТers sharply from the expression (5.30) obtained earlier, which showed аn 

ever-increasing density of levels. The reduction in the level density at large Е 

is а consequence of the use of а finite shell model space and is simply аn 

expression of the fact that the energy eigenvalues in such а space will Ье bounded 
from аооуе. The Gaussian, 5.64, is therefore meaningful only in the low-energy 
region, Е < г. The resulting form in this domain is not identical with (5.30). 
However, Ayik and Ginocchio's calculations take interactions and shell model 
efТects into account. 

6. SPACING OF ENERGY LEVELS; WIDTH DISTRIBUTIONSt 

The preceding discussion provides аn overall broad view of the distribution of 
nuclear energy levels. We turn next to the description of local properties of the 
energy spectrum as posed Ьу the question: What is the probability that the 
separation between two neighboring energy levels is s? Further specifications 
would include the probability that two levels are separated Ьу аn interval s 
containing п levels, We shall consider only the simplest case, п = О. 

Let ш(s) ds Ье the probability of finding а level at а distance between s and 
s + ds from а given level. The probability we seek is given Ьу ш(s) multiplied 
Ьу the probability that there is по level in the interval s. This last factor сап 

Ье calculated as follows. Divide the interval between О and s into elements of 
size ~sn. The probability that there is по level in the interval ~sn is given Ьу 

1 - ш(sn)~sn. The the probability of finding по level in the interval О to s is 
given Ьу 

-+ехр [ - f: ш(s)ds] 
~Brody, Flores et al. (81); Porter (65); Bohigas and Weidenmiiller (88), Bloch (68). 
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Finally, the probability p(s)ds of finding а level between s and s + ds from а 

given level with по level in between is 

p(s)= cw(s)exp[ - f: w(s)ds ] (6.1) 

where С is а normalizing constant. If w(s) is а constant, опе obtains the Poisson 
distribution 

"--.О!~,--p_(_s)_sd_s = D (6.2)
J~ p(s)ds 

where D is the average spacing. 
However, as we show shortly, levels with the same quantum numbers do not 

cross (for nonsingular perturbations); that is, as the residual interaction is 
changed, two levels тау approach each other but will eventually repel each 
other. Under these circumstances опе might use, as suggested Ьу Wigner, 
ш(s) "" з, so that 

(6.3) 

the Wigner distribu60n law for spacings. Note that the probability for small 
spacings is substantially smaller for this distribution compared with the Poisson. 

The agreement of the Wigner distribution with experiment as shown in 
Fig. 6.1 is remarkable in view of the simplicity of the argument. The reduction 
for small s is clearly зееп.! Interestingly the Wigner distribution also gives а 
good fit to the spacing between the two lowest levels in nuclear having the 
same J and 11: as shown in Fig. 6.2. 
То obtain additional insight into the spacing distribution has required the 

introduction of а model. We shall briefly§ mention two statistical models, the 
Gaussian orthogonal ensemble (аОЕ) and the two body random Hamiltonian 
ensemble (TBRE), described at the end of Section 5. The former, although it is 
not realistic, as it assumes many-body forces equal in rank to the number of 
particles making ир the system, has the advantage ofbeing analytically tractable. 
For the most part, the properties of the TBRE require numerical determination. 
This model is also not completely realistic because it restricts the interaction 
to two-body forces, ап assumption that is not correct because of its use of а 

finite-dimensional shell model space. 

:Опе should note that the Wigner distribution is found to Ье valid for atomic spectra [Porter and
 
Rosenzweig (60)] as well as for the spacing of the first two levels with the same J and П in each
 
nucleus.
 
§The reader should Ье aware of the "unitary ensembIe" introduced Ьу Dyson (62).
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The ООЕ assumes that the distributions of the individual matrix elements of 
the Hamiltonian are independent. This is unphysical because for residual 
two-body (ог at most, few-body) forces usually envisaged the matrix elements 
are strongly сопеlаtеd. The second assumption is that the joint distribution of 
аН the matrix elements are invariant under а change of representation. This 
assumption is nut justifiable емеп if the representations involved are complete. 
There mау Ье, indeed are expected to Ье, representations which because of 
dynamical reasons are more appropriate for the application of the statistical 
hypothesis; that is, the representations conform more closely to the physics of 
the systeJI1 under study. 

With this "caveat emptor" in mind, consider а two-dimensional infinitesimal 
rotation which transforms only the eigenfunctions Ф1 and Ф2' that is, 

Ф'1 = Ф1 + еФ2 

Ф~ =Ф2 - еФ1 

assuming that Н is Hermitian and that Ф1 and Ф2 are real, the matrix elements of 
Н transform as follows: 

Н'11 = <Ф'1 IНФ'1 >= Н 11 + 2еН 12 

H~2 = <Ф~IНФ~> = Н22 - 2еН 12 

Н'12 = Н1 2 + е(Н 22 - Н 11) 

H:1/l: н., ~ eH2/l} J.l > 2 
H 2/l-H2JJ «н.; 

Thedistribution function Р(Н 11'Н 12'Н 22'Н 1/l' Н 2/l"") transforms as follows: 

гг гг гг гг 
-= 2Н 1 2--+(Н2 2 Н 1 1)---2Н 1 2--
де он., гн., дН 2 2 

дР дР )
+ L ( H2/l---H1/l-

/l>2 гн., гн.; 

The invariance condition requires that дР/де = О, which wilJ Ье the case if 

дР дР дР 
--= -IY.H 11P --= -21Y.Н1 2Р ----= -!ХН Р (6.4)

"Н 22дН11 дН1 2 О 22 

дР 
--= -2!ХН Р (6.5)
дН 1/l1/l 

It is left as ап exercise for the reader to prove Ьу extensions of the argument 



290 RESONANCES AND ТНЕ STATISТICAL ТНЕОАУ OF NUCLEAR REACTIONS 

leading to (6.4) that the constant а in (6.5) is identical with the а in (6.4). 
Integrating (6.4) yields 

(6.6) 

where С is а normalization constant. The invariance condition is thus extremely 
restrictive. Note that the distribution function for the diagonal elements, 
ехр( - aH~), has а wider spread than that for the nondiagonal elements, 
ехр( - 2aH~). The fact that Р сап Ье expressed as а trace demonstrates explicitly 
the independence of Р with regard to representation. 

As ап example of the application of this result for Р, we use it to calculate 
the spacing distribution for the case of а two-dimensional space involving 
therefore only Н 11' Н 12, and Н 22' For this case the energy eigenvalues, Е + and 
Е _, аге given Ьу 

(6.7) 

The spacing 

(6.8) 

is а positive-definite quantity, а result from which the absence of level crossing, 
alluded to earlier in this section, сап Ье deduced. It is а result that is not 
restricted to the two-dimensional case. 

From (6.6)and (6.8), the probability distribution for the spacing is given Ьу 

P(s) = с fdH 11 fdH 12 fdH22 e- а(Нfl +2Hf2+H~2)b(s - j(H 11 - Н22)2 + 4H i 2) 

(6.9) 

The integration is straightforward so we leave it to the reader to carry it out. 
The result is the Wigner distribution (6.3). However, this coincidence occurs 
only for the two-dimensional case. Agreement with the Wigner distribution is 
achieved again when the dimensionality becomes very large. The comparison 
with ап exact calculation of Gaudin (61) is shown in Table 6.1. 

Remarkably, it is actually possible to obtain the probability distribution for 
the eigenvalues of the ООЕ in closed form. Toward this end, note that the 
Hamiltonian matrix of dimensionality N has N(N + 1)/2 independent matrix 
elements. Upon diagonalization the new variables аге the N energy eigenvalues 
Еа and N(N - 1)/2 parameters ai describing the transformation to the diagonal 
basis. These parameters do not appear explicitly in (6.6) for Р since 

Finally, it is necessary to transform from the volume element dH 11 dH 12dH22 
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тABLE 6.1 Comparison between the Wigner 
Two Level Distribution (р "') and the Exact 
Calculation (р) of Gaudin 

S/D Р Pw 

о о о 

0.064 0.104 0.0996 
0.127 0..207 0.1974 
0.191 0.303 0.2915 
0.255 0.395 0.3801 
0.318 0.477 0.4617 
0.382 0.549 0.5350 
0.446 0.6117 0.5989 
0.509 0.6630 0.6525 
0.573 0.7032 0.6954 
0.637 0.7308 0.7273 
0.764 0.7547 0.7587 
0.891 0.7396 0.7502 
1.018 0.6933 0.7083 
1.146 0.6255 0.6417 
1.273 0.5445 0.5598 
1.400 0.4587 0.4713 
1.528 0.3750 0.3836 
1.655 0.2978 0.3023 
1.782 0.2301 0.2308 
1.910 0.1730 0.1709 
2.037 0.1267 0.1229 
2.164 0.0906 0.0837 
2.292 0.0631 0.0581 
2.419 0.0429 0.0383 
2.546 0.0286 0.0245 
2.674 0.0185 0.0153 
2.801 0.0117 0.0092 
2.928 0.0062 0.0054 
3.055 0.0030 0.0031 
3.183 0.002 0.0017 

Source: Gaudin (61). 

dНlзdН2зdНзз· .. to dEldE2···dENd~1 .. ·da(N)(N_1)/2; that is, we need to 
compute the Гасошап of the transformation. Toward this end, note that the 
matrix element is linear in the energy eigenvalues Е",: 

Ни = <ФiIНФj) = <I>XiaXaIHL ajbXb) = L a~Eaaja 
Ь а 

where the parameters «, аге selected from the set aia and Ха.Ь аге eigenfunctions 
of Н. Therefore, the element in the Гасошап, дНulдЕа, is independent of Е, 
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while the remaining (N)(N - 1)/2 elements aHjarxj a will Ье linear in Еа • Непсе 

the Jacobian is а multinomial of degree N(N - 1)/2 in the eigenvalues Еа • Finally, 
note that if апу pair of eigenvalues are equal (i.e., if there is а degeneracy), the 
transformation from {Еm {ха } space to Hij space is singular. Непсе the Jacobian 
must go to zero whenever two eigenvalues Еа and Еь are equal. Thus as far as 
the dependence ироп Е; and Е; is concerned, the Jacobian is proportional to 

and Р Ьесогпев! 

N 

P(E1,···,EN ) - П IEa-Еы�-(tLuЕ~~ (6.10) 
а>Ь=l 

where we have integrated over the dependence оп the parameters «; This result 
is referred to as the Wishart distribution. Evaluating the constant of 
proportionality in (6.10) and determining the distribution for the spacing and 
other measures of distribution requires elegant and ingenious mathematical 
arguments which we shall not describe here. It is from these results that опе 

deduces that for large dimensionality, N, the Wigner result is recovered. Indeed, 
it seems that the Wigner result is approximately correct for large N еуеп for 
the two-body (TBRE) case. This is illustrated Ьу Fig. 6.3.These exact calculations 
also exhibit а long-range anticorrelation, which is presumably а consequence 
of the repulsion of energy levels.§ It has Ьееп observed experimentally. 

We turn finally to the distribution function for опе of the amplitudes of the 
eigenvectors of the random Hamiltonian. If these are denoted Ьу а 1, а2'" a N, 

the joint distribution function is 

(6.11) 

since the amplitudes must remain normalized under ап orthogonal trans
formation. The quantity QN is the total solid angle subtended Ьу ап 

tIt has been pointed out Ьу Dyson that this expression сап Ье thought оГ as the configurational 
part оГ the partition function for а two-dimensional Coulomb gas with each particle held in а 

one-particle osci1lator potential. 
§The correlation function is evaluated Ьу Dyson and Mehta (63). However, they did not deal with 
the GOE but rather with the "orthogonal ensembIe" of unitary matrices. whose eigenvalues are of 
the form eiB;. Porter therefore refers to the ensembIe as the СОЕ, the circular orthogonal ensembIe. 
One сап consider the Dyson ensembIe to Ье а theory of random S matrices, while Wigner, Porter, 
and Rosenzweig consider random Hamiltonian matrices with real matrix elements, assuming 
time-reversal invariance. The violation of time reversal led [Dyson [62)] to the consideration оГ 

"unitary ensembIes." It leads to substantial differences for the spacing distribution from that which 
follows from the circular orthogonal ensembIe. 
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FIG.6.3. Histogram obtained coIlecting the lowest energy difference between states with 
the same J and П in the nuclear table. The solid line represents Wigner's distribution 
Pw{x) and the dashed line shows the prediction of the TBRE in the ground-state region 
taken from Сота, Flores, МеНо, and Yipez (74). The number of spacings is 135 and the 
probability of х2 is 3% when the histogram is compared with Pw{x) and 13% when 
compared with the р{О; х) of the TBRE. [From МеНо (78).] 

N-dimensional sphere. То show this, introduce N-dimensional spherical 
coordinates: 

А 2 
= Ia?
 

а 1 = А cos 91
 

а2 = А sin 91 cos 92 

(6.12) 

The volume element is given Ьу 

so that 

A2)A NfР(а 1,а2 , .. o,aN ) аа, ..·da N = ~N fb(l - -
1 dA dnN 

A2)A N= 2 fb(l - -
1 dA = 1 

as desired. 
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The distribution for а is given Ьу1 

Р(а) = f P(a1,···,aN)c5(a 1 -а)dа 1···dа N 

= fр(а1 ... аN)ь(а1-а)АN-ldАSiпN-291d91dfJ.N_1 (6.13) 

where we have used 

dfJ. N	 = siпN - 2 
91 siпN - 3 

92 · .. sin 9 N - з d9 1.. ·d9N- 1 

=siпN-291dfJ.N_l (6.14) 

Note that 0< 9(1 < 'л, а#- N - 1, while -n < 9N - 1 < 'л. Непсе 

Р(а) = fJ.N- 1fb(a - cos 91) siпN - 2 
91 d9 1

fJ.N 

= fJ.N - 1 (1 _ a2 )(N - 3)/2 (6.15)
fJ.N 

Опе сап readily show Ьу integrating the first Нпе of (6.14) that 

2тrN / 2 

fJ. --
N - Г(N/2) 

Assuming that а2 « 1 and N» 1, (6.15) becomes 

N) 1/2 Na2j2daP(a)da= (2n e-	 (6.16) 

Since the single рагпсю width, Г, is proportional to а2 , jts djstribution сап 

Ье оогашес directly from (6.16). Let 

г 
--=Na 2 

<Г> 

we then оотатп the Porter-Thomas (56) distrjbution for the widths: 

P(ndr=_I_«r»1/2 е-(1/2)(Г/(Г» dr (6.17) 
, j2ic г <Г> 

where <г >is the average of Г. 
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FIG.6.4. Plot of the distribution of amplitudes for 166Er [готп О to 3 and [готп О to 
4.2 keV. The ропег-Thomas curves аге shown for comparison. [From МеНо (78).] 

The Рогтег-Thomas distribution has Ьееп amply verified experimentally as 
illustrated Ьу Fig. 6.4. If v channels contribute to the width, опе сап calculate 
the result Ьу folding the Porter-Thomas distribution for single channels: 

Р v(г) = fР(Г l)Р(Г 2)'" Р(Г v)<5 ( Г - ~ г, )dГ 1'" dГ v (6.18) 

This calculation сап Ье сапiеd easily Ьу using the representation ofthe <5 function 

Inserting this result into (6.18) yie1ds 

This integral сап Ье сапiеd out to obtain а single closed form when the average 
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widths for еасЬ сЬаппеl аге equal: 

ТЬе опе obtains the "х 2 distribution [ог-» degrees of freedom": 

-г )'/2 1 ( -vr )dr
р rdr- -- --ех --- (6.19)
,() - (2(Г) r(vj2) р 2(Г) Г 

Опе сап readily show that 

(Г2) _ (Г)2 =~(Г)2 (6.20) 
V 

showing that as the number of channels increase the variance decreases. For а 

large number of contributing channels it is good approximation to neglect 
fluctuations, so that 

(ЛГ) ) -+f( ( г )) v large (6.21) 

7. STATISTICAL THEORY OF NUCLEAR нввстюнв! 

As сап Ье seen from Fig. 5.6, the level densities in the heavy nuclei quickly 
approach astronomical values with increasing excitation energy. For the lighter 
nuclei, the level density does not reach as large values for the same excitation 
energy, but the numbers аге still substantial as illustrated Ьу Figs 7.1 and 7.2. 
То obtain either theoretically or experimentally the cross section for the 
excitation of еасЬ of these levels is generally not possible ог worthwhile. There 
аге exceptions. At very low excitation energies, the level density is sufficiently 
small, so that the individual compound nuclear resonances сап Ье observed. 
At higher excitation energies special structures such as the doorway state 
resonances (isobar analog resonances, the giant multipole resonances, etc.), 
which in fact involve averages over тапу levels, аге of great importance. In the 
discussion that follows we assume that such unusual structures аге not present 
in the energy domain being considered. Excluding these exceptions, the large 
level density precludes the study of the individual levels. Under these 
circumstances а statistical approach becomes unavoidable. 

ТЬе justification of а statistical theory of nuclear reactions is similar in content 
to that used to justify statistical mechanics. Indeed, the statistical theory of 
nuclear reactions тау Ье considered to Ье ап example of nonequilibrium 

~Blatt and Weisskopf (52); Hauser and Feshbach (52). 
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FIG. 7.1. Comparison of НiIlmап-Grоvеr level density with experimental values for 
5БFе. Circles are experimental points. [From Lefort (76).] 

statistical mechanics. At а sufficiently high excitation energy when the level 
density is large, it is reasonable to assume that the states аге complicated linear 
combinations of simple states. As ап example, consider а nucleon incident upon 
а пцс'ецв for which а shell model description is adequate. The nucleon will 
excite the target Ьу exciting one of the nucleons so that the system mау Ье 

considered to Ье in а 2p-lh state. А second encounter with а target nucleon 
тау lead to а 3p-2h state. Successive interaction will eventually generate 4p-3h 
components, 5p-4h components, and so оп (see Fig. 7.3). The wave functions 
of the compound nuclear system will consist of а linear combination of the 
incident state and states belonging to these various excitation categories: 2p-lh, 
and so оп. In terms of this shell model representation, the number of terms in 
the linear combination forming the wave function will Ье very large, оп the 
order of the number of levels in an interval of а few MeV. Under these 
circumstances, it is пот surprising that the transition amplitudes f/ cc" which 
depend оп the overlap between the initia] wave function and the согпргех nuclear 
wave function, wi]] Ье а complex random variable. That is, the va]ue of f/cc" 
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FIG.7.3. Multistep nuclear excitation. 

because ofthe complexity ofthe nuclear wave function, will depend оп relatively 
accidental features of the latter. The value of :Усс' wiII fluctuate rapidly as the 
energy changes, giving rise to the Ericson-fluctuations discussed earlier in this 
chapter. The values of :Усс' obtained from а sufficiently large energy range form 
an ensemble with respect to which average properties of the system сап ье 

calculated. 1t is assumed, and this is а form of an ergodic theorem, that the 
ensemble average and the average with respect to an energy intervaI are equaI. 

Perhaps the most essentiaI hypothesis made in the development of the 
statisticaI theory is the random-phase hypothesis. This hypothesis is the most 
direct appIication ofthe insight that the complexity ofthe nuclear wave function 
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will lead to etТective randomness. We first provide а general statement of the 
random-phase hypothesis, as there wiJ] Ье тапу applications in ditТering 

contexts. Suppose that ап amplitude и сап Ье written as а sum as follows: 

We shall, пюгеоуег, assume that the average values of и and иn , the nature of 
the average depending оп the ргоЫет under consideration, аге zero: 

<и) =0 (7.1) 

ТЬе question is asked as to the average value of lul 2 , which generally wiJ] ditТer 
[гот zero: 

(7.2) 
n,т 

ТЬе random-phase assumption states that the phases of и n аге random, [гот 

which (7.1) follows immediately. То see this, let 

ТЬе various possible values of ф; ranging [гот О to 2n аге assumed to Ье 

equally рroЬаЫе, so that the average is given Ьу 

ТЬе same analysis applied to (7.2) yields 

(7.3) 

so that 

(7.4) 

ТЬе dependence ofthis result оп the representation used to obtain the expansion 
of u should Ье noted. The physics of the system under consideration dictates 
the selection of the representation to Ье used. It is through this choice that а 

physics content is given to the random phase hypothesis. We shall see тапу 

examples. 
As а first application of the random phase assumption, we make use of the 

result of Kawai, Кегтап, and МсУоу (73) to Ье described later in this chapter. 
It states that it is possible to break ир the transition matrix .'У into two parts: 
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а prompt (ог direct) term, .'7(Р>, the channel indices аге suppressed for the time 
being, and а fluctuation (or resonance) term, .'7(FL) 

(7.5) 

so that ироп taking averages 

<.'7 >= <.'7(Р} > 
<.'7(FL}>= о (7.6) 

The cross section is proportional to 1.'712. Taking the average assuming that а 
random relative phase exists between .'7(Р} and .'7(FL) опе obtains 

(7.7) 

or in terms of the cross section, the cross section сап Ье given а corresponding 
decom posi tion 

(7.8) 

The аооуе results apply to the entire cross section. But they apply as weB 
as the partial wave cross sections so that 

(7.9) 

As а second example consider the application ofthe random phase hypothesis 
to the angular distribution (1.5). We then need to average .'7~~;/ .'7~~~*, where 
с stands for the quantum numbers а, 1, s; JП so that 

.'7(Н} == .'7(Н)(l' s' . ls' J П) 
Сl,С1 а',а 1 l' , , . 

Using the random-phase hypothesis, 

(7.10) 

We then obtain for the anguJar distribution 

Since [see (1.9)] 
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only еуеп values of L will occur in the sum in (7.11), with the consequence that 
the angular distribution is symmetric about 900. This result follows directly 
from the fact that according to (7.1 О), the random-phase hypothesis permits 
interference only between states of the same parity. We shall leave it as ап 

exercise for the reader to show that, in view of the fact that the polarization is 
ап interference phenomenon, it will vanish under the random-phase hypothesis. 
Of course, this result applies only to the f1uctuation term. Other polarization 
parameters such as D, the "depolarization," do not vanish. 

The limiting form of isotropy follows from the general expression (7.11) only 
if additional assumptions are made. The assumption is made that the transition 
matrix fГc'.c does not depend оп the channel spin 5'. Second, it is assumed that 
the density of states with а given spin s' is (2s' + 1). This differs from (5.54) in 
that the cutoff is not included. As а consequence, the implicit assumption is 
made that the principal contributions соте from sufficiently low 5'. Turning to 
(1.9), the s' dependent factors in the sum over s' of (7.11) are 

~(- y'+L+J(2s' + 1) {~ :, ~} = ~(- y'+L+J(2s' + 1){:' :, ~} 

= ( - )L+l' + 2J J(2J + 1)(21' + I)JLo 

Since only the L = О term survives, the angular distribution in this limit is 
isotropic. Isotropy is а consequence of the evaporation models of Weisskopf 
(31) and Frenkel (36). 

The symmetry about 900 has Ьееп verified experimentally, and indeed 
deviations from it are taken to 1ndicate the presence of prompt processes. Ап 

example of а symmetric angular distribution as it occurs in the reaction 
58Ni(1X, р) 61Си is given 1П Fig. 7.4. Ап example from heavy-ion physics is shown 
in Fig. 7.5, where the colliding nuclei are 40Ar and 77SC. 

We turn next to the evaluation of <I fГ~~,L)12), Our goal will Ье to replace 
this term Ьу ап express10n that сап Ье evaluated through the use of the 
semiempirical optical model. The expression for fГ~~,L) is given Ьу (4.4): 

where g;.{c), а real quantity, 1s the magnitude of the matrix element 
<Ф"IНQрlФ'~+» connecting а channel с with wave function Ф'~+) with the state 
for the compound system Ф;.- The partial width Г Ас is given Ьу 

(7.13) 

and Г" Ьу 

(7.14) 
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FIG. 7.4. Angular distribution for protons emitted Ьу 62Zn compound nuclei for severaJ 
kinetic energy ranges in 58Ni(a,p)61Cu-iпduсеd reactions at 19.67МеУ [Barker and 
Sarantites (74).] [From Lefort (76).] 

The quantity Г~ difIers from zero when the levels overlap. However, it has the 
property [see (4.5)] that 

Lr~=O (7.15) 
.. 

so that Г~ is not а positive-definite quantity such as Г... 
In the preceding section it was shown that the distribution of the widths for 

the single-channel case is given Ьу the Ропег-Thomas distribution, (6.17), when 
the Hami1tonian is random. Equivalently, this means that the distribution of 
the amplitudes 9 is Gaussian. 

(7.16) 



7. STAТlSТlCAL THEORY OF NUCLEAR REACTIONS заз 

4)4,. "$е 

Еоо ~ 96101"" 
prolons 

"'Eo<6МtV10' 

i 
~ 

с.. 
Ь 
.. 10' 

• 

#/ОА, + 77Se 
Ее... • 96Ме'.' 

се _ port;c!es 

z. " 
~ 
С... 
"ь... 

101 

"101 

30 ба 90 90 120 150 
l!c", 
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compound nuclei in several kinetic energy ranges [Galin, Gatty, et аl. (74).] [From 
Lefort (76).] 

where <в": is the average value of g2 taken with respect to this distribution: 

(7.17) 

ТЬе important point here is not the existence of а "derivation" but rather that 
it has Ьееп verified experimentally (see Fig. 6.4.). Since the distribution given 
Ьу (7.16)is, according to the centrallimit theorem (see р. 251), that of а quantity 
composed of а sum of random quantities, 9 itself сап Ье considered as random 
with 

<в» =0 (7.18) 

Assuming the phase ф). to Ье random as well, (7.6), <g-~~,L) >= о, сап Ье verified 
directly. 

Of course, <Ig-(FL) 12> and therefore the partial cross section <(j(FLJ(JП) > are 
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not zero. We proceed now to evaluate <ст(fч > where 

= n*2 L еi(ф;-ф,,) ... 9Лf--"_g-'-CJ-tf'----g_,,_ig--'--J-t_i-------

"J-t [Е - Е" + (2)(Г" + Г~)J[Е - EJ-t - (i/2)(Г J-t + Г~)] 

(7.19) 

Note that Е", Г;., and Г~ аге independent of the specific nature of the incident 
or final channel. The random-phase hypothesis yields 

We evaluate the right-hand side in severallimits: 

1. There are а large number of exit channels. Under these circumstances the 
variance in Г" + Г~ is reduced substantially [see (6.20)]. It is therefore а good 
approximation to rewrite 

А second assumption asserts that Гц and Г "i аге, for i =1- f, uпсопеlаtеd. Непсе 

(7.21) 

Since the ensemble over which the averages are made consist for each case of 
the widths Гц and Г ;"i themselves, both <Гц> and <Г ,,; > will Ье independent 
of А. They will Ье designated Ьу <Гf > and <Гi >, respectively, where Гi is the 
average width for forming the compound nucleus in the energy region covered 
Ьу the sum and Гf is the average width for decay into the final state. 

We mау therefore replace (7.20) Ьу 

(7.22) 

where 

(7.23) 

The factorization explicitly shown in (7.22) сап Ье used to obtain ап inter
esting result. If <cт<J;L> >is sumed over аН possible final states, one obtains the 
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cross section for the forming of the compound пцстецв! 

L(J~L) = (JjC) = nХ2 ( Г ) ( Г ) L (7.24)i 
f 

We сап now eliminate the L factor between (7.22) and (7.24), obtaining 

(7.25) 

and 

(7.26) 

Thus the probability of decay of the compound system in а final channel is 
given Ьу the branching ratio (Гf )/( Г), which is independent of the incident 
channel i and therefore of the manner in which the compound system was 
formed. This is referred to as the Bohr independence hypothesis. 

Verification of the Bohr independence hypothesis in either form (7.25) and 
(7.26) is difficult since it holds individually for each partial wave with given 
values of j and П but not for the sum of such terms; that is, although each 
term in the sum factors, the sum itself will generally not. However, if а compound 
system сап Ье formed Ьу two difТerent methods (i.e.,Ьу using difТering projectiles 
and targets), if the energy domain of the compound system is the same for the 
two, if the distribution of the j's and parities аге the same, and so оп, the ratio 
оС the cross sections for identical products should Ье constant over their energy 
spectrum. Meeting аН these согкйпопв is not simple unless the reaction picks 
out а unique final j and П. Examples of а comparison between two such 
reactions is given in Figs 7.6 and 7.7 [see the discussion Ьу 1.М. MiHer (72)]. 
То make further progress, the relationship to the optical model of the 

quantities we have Ьееп using will Ье exploited. This procedure is advantageous 
since the parameters ofthe optical model potential сап Ье determined empiricaHy 
Ьу fitting the elastic scattering (and polarization if available) and the total cross 
section. 

The optical model has Ьееп derived in Chapter III and will Ье discussed in 
greater detail in Chapter V. We briefly review some salient features here. It 
states that the energy average of the wave function (ф) is the solution of а 

Schrodinger equation with а complex potential. In the many-channel case, the 
Schrodinger equation reduces to а set of coupled equations for the open-channel 
wave functions. In the present context the relevant quantities is the transmission 

:This is not exact since (7.21) and therefore (7.22) are not correct for the elastic term i = f. In 
writing (7.24) we are assuming that the elastic scattering width is small, as should Ье the case when 
тапу channels are open. 
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function of the excitation energy of the ро2 1 о compound nucJeus prepared in two ways: 
р + Bi20 9 and iX + рЬ 2 О 6 [Grover and Nagle (64)]. [From Miller (72).] 

coefficient Те' We employ the generalization ТСС' (where the subscript denotes 
the ореп channels) defined Ьу Satch1er (63) as follows: 

T~~~t) = д се' - LS~~pt) S~.~p)* (7.27) 
с" 

where S(opt) is the energy-averaged S matrix, which сап Ье obtained from the 
energy-averaged wave function <1jJ) of the optical model. If the optical model 
conserved Пих (which it does not because of the process of energy averaging), 
S(opt) would Ье unitary and T(opt) would Ье zero. The transmission coefficient Те 

is the diagonal element of the matrix T(opt): 

Т == T(opt) = 1 _ " 1S(opt) 12 (7.28)
а

n
с а ~ 

с" 

If we write the total S matrix as 

S = S(opt) + S(FL) (7.29) 

http:�-----,---.-------�


7. SТAТlSТlCAL THEORY OF NUCLEAR REACTIONS 307 

I 

20 f- Proton spectra 1. • с 1 2 + сu 6З 

16 f
• 016 + со5З х 1.16 

,12 f , 
8f- '!I 8LAB = 1500,
4f- •
 

20 ~
 

16 - •.01;
Е ф 

::i! 

12 

8  •! 8LAB = 1200 
I ~ 

4 ••1.. 
20 

16 

12 - • 
•
 

8f
~ t 8LAB = 900 

• I 
• 

• t • 
'I I I I I г I 

2 4 6 8 10 12 14 

f(MeV) 

FIG.7.7. Energy spectra of emitted protons. Cross sections from 016 + Со5 9 multiplied 
Ьу 1.16 [D'Auria, Fluss, et аl. (68]. [From Mi11er (72).] 

where 

<S(FL» = о (7.30) 

we see that 

(7.31) 

Note. То prove this, use the unitarity condition sst = 1, replace S Ьу (7.29). 
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Then average using (7.30). Опе then finds that 

Тсс' = / Ls~~,~) s~~~)* ) (7.32) 
\ с" 

Using S(FL) = - 2nisт(FL) and expression (7.12), we have 

(7.33) 

Substituting in (7.31) and using the random-phase approximation, 

Ig"c/ 
2Ig;'c,,1 2

т = / L ) (7.34)
с \ ",с" (Е - Е,,)2 + ±(Г;. + Г~)2 

In the limit of а large number of channels, so that (Г" + Г;.,) is а constant equal 
to (Г), and assuming independence of Г;'С = Ig;'cl 2 and Г лс '" (7,34) becomes 

(7.35) 

where L is given Ьу (7.23). Substituting this relationshipinto (7.22) yields the 
fami1iar result 

(7.36) 

Note that in the derivation it was not necessary to evaluate L, so that the 
question of the distribution of Е)., the end point efТects, the size of (Г) relative 
to D, the method of averaging did not arise. Moreover, it has по: Ьееп necessary 
to assume that Т:«: 1, which is а required and heavily criticized feature of тапу 

of the derivations of (7.36). 
The angular distribution, (7.11), is given Ьу 

(d:~L») 

= L (lsJII YLII IsJ)(I's'J 11 УLII1's'J)l1j.L)(l's';ls;JП)РL(СОSЭ) 
(21 + 1)(2; + 1) I 

(7.37) 

where we have used (7.19). Similarly, the total f1uctuation cross section ассогdшg 

to (1.6) is given Ьу 

2] + 1 
(a(~Ц) = '--~----l1(~L)(I's"ls' JП) (7.38)

/1 L..(21 + 1)(2; + 1) /1 " 

where опе uses (7.36) for a~Ц. 

1 
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The cross sections given Ьу (7.36) and (7.38) describe the excitation of а 

particular final state in the residual nucleus. However, for аН except the rather 
low-Iying states, it is more appropriate to regard the spectrum of the residual 
nucleus forming а continuum with а ]evel density given Ьу (J)/(U,J). Then the 
ang]e integrated spectrum (for example) is given Ьу 

(7.39) 

where both а sum and an integral are inc]uded in the denominator in order to 
take account of both the discrete and continuum level spectrum. 

Equations (7.36)-(7.39) (to Ье suitably modified Ьу the width fluctuation 
factor whose importance has Ьееп emphasized Ьу Moldauer) rеfепеd to as the 
Hauser-Feshbach (52) theory are the fundamental геввпв ofthe statistical theory 
ofnuclear reactions. Their application is discussed in Section 9. For the present, 
note that one ошу needs the optical тпоое! transmission coefficients. In applying 
(7.36) опе would need to know as well the energies, spins, and so оп, of the 
]evels to Ье excited as well as of those which are competitive (i.e., contribute to 
the denominator). То apply (7.39), one needs to know, in addition to the 
transmission coefficients, the density of levels of the residual nucleus. 

It will Ье useful (but not езвепцш) to evaluate the sum, L, of (7.23). А few 
comments are in order. Qualitatively, the sum over л will contain those levels 
with energies Ел that [аН within the averaging interval in energy, дБ. The energy 
Е is at the midpoint of the interval дЕ so as to avoid end effects. Thus as Е 

moves, дЕ moves with it. When the width (in а single channel) is very large, 
it is not always possible to avoid end efТects since in that case the requirements 
of unitarity would require а very tight сопеlаtiоп among the levels [МеНо and 
Feshbach (72)]. Опе of the consequences would Ье ап instability of the averages 
to the interval size дЕ. ExperimentaJly, this would manifest itse]f as an instability 
with respect to the energy resolution and could Ье so identified. The analysis 
that folJows assumes the absence of end efТects. 

In caJcu]ating L we shaH also assume that new channels do not Ьесоте 

ореп in the interval дЕ; that is, there are по thresho]ds in the interval. This is 
generaJly not the case, particularly as the excitation energy increases. As Kerman 
and Sevgen (76) point out, one consequence of this assumption is that unitarity 
need по ]onger Ье satisfied exactly. 

FinaJly, some attention should ье paid to the size of дБ. For the present 
discussion it is to Ье of such а size that fine structure (Ericson-Brink fluctuations) 
and doorway state resonances but not the single-partic]e structure are averaged. 
Therefore, дЕ satisfies the inequalities 

Гsр » дЕ» Гd , Гл,D (7.40) 

where ГSp is the sing]e-particle width, Гd' the doorway state width, Гл the width 
of the fine-structure resonances, and D is the distance in energy between them 
(D - 1 = densi ty of leve]s). 
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With these various caveats in mind, we proceed to evaluate L, replacing the 
sum Ьу ап integral 

(7.41 ) 

Replacing Гл and Г~ Ьу their average values over the interval, <Г) and <Г) = О, 

respectively, L becomes 

2 IX+ dx 
L= D(Г + Г) Х_ 1 + х 2 

where х± = (2/< Г + Г»)(Е ± t.1E). If .1Е» «Г + Г) as assumed and in the 
absence of important end effects, as assumed, the limits of the integral сап Ье 

taken to Ье ± 00, so that 

2п 
(7.42)L= D<Г) 

Equation (7.22) now reads 

(7.43) 

Moreover, the value of Т, given in (7.35) becomes 

(7.44) 

а result to which we have referred in Section 2 of this chapter. Finally, from 
(7.24) опе obtains 

(7.45) 

We remind the reader that the value of L, (7.42), is not needed to obtain the 
fundamental equations (7.36)-(7.39). 

2. We consider next the case when the exit channels аге so few in number 
that fluctuations in the total widths Гл must Ье considered. We return to (7.20): 
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It is more convenient in this situation to evaluate the energy average directly: 

(7.46) 

It is possible to choose .tJ.E to Ье large compared to Гл + Г~, yet smaB enough 
so that their energy variation as well as that of Е), is negligible. This possibility 
exists because the scale over which these quantities change is оп the order of 
the single-particle width, Гsp, that is, of the order of several МеV, whereas Г л' 

the width of the fine structure, must of course Ье much smaller than Гяе

Neglecting end effects (we remind the reader that the observer wi1l always choose 
.tJ.E so as to minimize these efТects), the integral сап readily Ье evaluated: 

or 

<a(~Ц) = n;:,2 2n /Г(f)Г(i)) (7.47) 
/1 D \ Г + Г 

If we assume that Г and Г do not f1uctuate, (7.47) reduces to (7.43). It is 
convenient to introduce а соттеспоп factor expressing the difТerence: 

w == / [Г(ЛI <Ги)] [Г(i)/< Г(i)]) (7.48) 
\ (Г + Г)/<Г) 

Wis referred to as the widthjluctuation correction factor [Dresner (57); Moldauer 
(64)]. This correction factor should Ье most important when the number of exit 
channels аге few, as would Ье the case пеаг the threshold for the excitation of 
the first inelastic level. In any event, one would expect that under these 
circumstances the levels Ел are weBseparated, so that г' vanishes approximately. 
Assuming that each Г satisfies the Porter-Thomas distribution, it is relatively 
easy to evaluate W. То illustrate, suppose that there are only two channels, Г 1 

and Г 2' so that 

where Ха = Гаl<Га). The integration сап Ье performed after an integral 
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representation of the denominator is introduced: 

W2 = [ ( r 1 ) + ( r 2)]2n1 Го drJ. f.rtJО dХl~е-[(l/2)+Il<ГI>]ХI 

х f.~ dx,.jx;e [(1/2)+ .(г,»х, 

or 

(7.49) 

This integral сап Ье performed exactly with the result for W that follows: 

(7.50) 

А plot of W2 as а funtion of (Г 2)/( г 1) is shown in Fig. 7.8. Since it is а 

symmetric function of (Г 1) and (Г2)' only the values of W2 from (Г2)/( г 1) 
equal to zero to 1 аге shown. We see that W2 is generally considerably less 
than 1 approaching!- for (Г 2 )/( г 1) = 1.The effect ofthis соттеспоп is therefore 
to reduce the cross section from the value given Ьу (7.36). 

It is easy to generalize this result to the case in which there аге гпоге than 
two ореп channels. А review has Ьееп presented Ьу Gruppelaar and Ruffo (77). 
Ап interesting case occurs when there are тапу such channels, for then опе 

1.0...---------------------------------, 

.9 

.8 
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.6 

1.0 10 100 
<:><=(Г2 /Г,> 

FIG.7.8. Width f1uctuation factor [see (7.50)]. 
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сап establish а connection with the discussion in Section 6. Consider 

Then it сап readily Ье shown in the Iimit of а Iarge number, N, of ореп channeIs 
that 

(7.51) 

showing that neglecting the fluctuations in the totaI width, Г is а good approxi
mation only if that width is Iarge compared to Г 1 and Г 2' even if the number 
of channeIs is Iarge. 

This treatment faiIs in the difficult intermediate regime when the IeveIs 
overlap, at which point it is necessary to take account of the fluctuations in Г. 

Very IittIe information is available regarding these fluctuations. One possibility 
is to assume that they аге independent of the other parameters of the problem 
and that their distribution is given Ьу а Gaussian: 

1 ехр (1~г 
2 )Р(Г)dГ = - dr'

J2n< г2 ) <Г2 

) 

With this assumption (7.50) [ог W2 would Ье replaced Ьу 

(7.52) 

50 that in principle Ьу studying the width fluctuation соттеспоп factor, опе 

wouId Ье able to determine <Г2 ) . However, there аге тапу other corrections 
(discussed in Section 8), which makes this possibility iIIusory. 

Fluctuation scattering сап aIso contribute to elastic scattering. This 
process is referred to as сотроила elastic scattering. In that case Гц and r..1.i 

аге по longer independent and (7.22) is not valid. We must instead calculate 
<Г~). Using the Porter-Thomas distribution, one finds that 

(7.53) 

so that the width fluctuation correction for compound elastic scattering has the 
value of 3 in this limit. Introducing the fluctuations in Г due to Г 1 wiII reduce 
this value; the Ieading term is 1/[(1+5<Г 1)/<Г)]. In the Iimit ofa single 
channeI W reduces to unity, so that [ог compound elastic scattering W сап 
have а rather broad range of values. 
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8. EFFECT OF ТНЕ DIRECT REACTIONS ON ТНЕ STATISTICAL THEORY 

The discussion of Section 7 is based оп the assumption that the partial widths 
Г АС аге uпсопеlаtеd, and not сопеlаtеd to the energies ЕА , It is assumed that 
ап energy average сап Ье replaced Ьу ап ensemble average in which the Глс 

аге random following а Porter-Thomas distribution. For large values of Г 

involving тапу contributions for which the width f1uctuation соггеспоп, W, is 
unimportant, опе obtains the Bohr independence hypothesis, that is, 
factorization of the partial cross sections. The relation of these factors to the 
transmission factor, Тс , (7.35), is established using the same assumptions. This 
derivation 0[(7.36) does not require the evaluation of L, about which there has 
Ьееп some debate; it makes по assumption regarding the size of Тс , nor is it 
necessary to introduce и,(с), the cross section for the formation of the compound 
nucleus or to make use of (7.44) connecting Т, with rc/D. 

The statistical assumptions with regard to Г.1.c and ЕА have Ьееп the subject 
of а spirited debate extending for nearly two decades. Сопеlаtiопs do exist 
because of the existence of direct (ргогпрт) reactions which сап contribute to 
the cross section and importantly, modify the wave functions which аге to Ье 

inserted into the defining matrix elements. 
MoJdauer (75а, 75Ь) particularly, and more recently Weidenmiiller and his 

collaborators [Engelbrecht and Weidenmiiller (73); Tepel, Hofman, and 
Weidenmiiller (74); Тереl (75); Hofman, Richert, Tepel, and Weidenmiiller (75); 
and Hofman, Richert, and Тереl (75)], have emphasized the importance of the 
сопеlаtiопs imposed Ьу unitarity. Unitarity requires that 

sst= 1 

or 

(8.1 ) 

We see that the elements of S (or .'Т' which is linearly related to S) must satisfy 
а numberof nonlinear relations, which in turn impose relations between the 
sets of quantities ФА,gАU' and ЕА [see (111.2.37), the discussion of the reactance 
matrix К, and (111.6.11) and the ensuring discussion]. The result, Lr~ = О, which 
we have used repeatedly, сап Ье considered to Ье а consequence of unitarity. 
The unitarity condition сап Ье very restrictive when the average of the partiaJ 
widths (ГсА > are large compared to the spacing in energy (D A>. In that case 
[see Меllо and Feshbach (72)] the individual values of ГС А are very ]arge, so 
that very strong сопеlаtiопs must then exist between the various ГАС in order 
to satisfy unitarity. Under these circumstances, the results obtained both 
theoretically and experimentally Ьесоте very sensitive to the manner in which 
averages are сапiеd out and to the size of the averaging interval f:t.E. It is 
noteworthy that such sensitivities have not Ьееп observed, indicating that their 
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оссцггепсе is either гаге or more likely that the analysis of the experimental 
data naturally selects out such large widths and regards them as nonstatistical. 

Before attempting to perform the difficult task oftaking the effects ofunitarity 
into account, опе should first understand if it is essential to do so in order to 
provide а statistical interpretation of nuclear reactions. We need to Ье 

particularly concerned with real situations and the гпаппег in which data аге 

analyzed. 
Kerman and Sevgen (76) point out that unitarity need not Ье satisfied exactly 

since, in the energy domain under discussion, Г» D, there is а high probability 
[ог new channels to Ьесоте ореп in the averaging energy interval ~E. Unless 
the effect of these is included in the statistical treatment, and that is generally 
not done in the тапу open-channel situations we аге considering, there will Ье 

а [озз of Пuх to the new channels, with а consequent failure of unitarity. Taking 
this effect into account quantitatively requires the introduction of new 
parameters, as discussed Ьу Kerman and Sevgen. 
А second point is that unitarity is пот the опlу condition to Ье placed uроп 

the transition amplitudes since they аll are deduced from а соттоп Schrodinger 
equation using the nuclear Hamiltonian, which is of course not random. These 
correlations саппот Ье stated as explicitly as the unitarity conditions, but they 
аге certainly as real. Опе must ask which of these тапу restrictions are to Ье 

applied and which are to Ье neglected. 
The point is that the statistical theory is ап approximation; it саппот Ье 

exact. Statistics enters when the matrix elements of the Hamiltonian involve 
such complicated wave functions that the уаluе of these matrix elements сап 

Ье considered to Ье random, following Gaussian probability distributions. It 
should Ье noted that the distribution does not tell us when the particular уаluе 

of the matrix eJement occurs. It сап only provide the frequency with which it 
does. Thus statistical description сап and does fail if inappropriately applied. 1t 
will fail, for example, if the wave functions are not sufficiently complicated. As 
weshall discuss in Chapter VI, only after the system has gone through а number 
of interactions will the necessary complication Ье developed. If the reaction 
product is produced at ап early stage, the statistical theory will of course fail. 
The nature of the physical phenomena is the important issue. 

Moreover, it тау Ье argued that it is not useful to regard а pole term in the 
S matrix with а large partial width as а statistical f1uctuation. As pointed out 
earlier, а consequence of а large average width is а close correlation among the 
properties of аll the levels in the averaging interval as well as а marked sensitivity 
to the size of the averaging interval. This situation сап hardly Ье described as 
statistical. And indeed, in ап analysis of such data опе would label such structures 
as nonstatistical and would consider them worthy of further study. 

The reader is referred to the review Ьу Mahaux and Weidenmiil1er (79) for 
а detailed discussion of the impact of unitarity and а summary of the present 
understanding. t The present understanding depends very heavily оп numerical 

: References to the pioneering work of Moldauer and other will Ье found there. 
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studies. Weidenmiil1er and his associates Ьауе employed the representation of 
the f/ matrix in terms ofthe reactance matrix, % [see (111.2.44) and the material 
fol1owingJ, using а pole expansion of % [see (l1I.6.7)J, which сап Ье obtained 
from (111.2.43). Unitarity is thereby guaranteed. ТЬе pole parameters are 
assumed to Ье random. Moldauer (75а) has also performed а number of 
calculations with similar results. We mention two of these. First, опе obtains 
а verification of the random-phase hypothesis for the S matrix in the case where 
the number of terms Л in the роlе expansion of К is large, and Л is large 
compared to the number of ореп channels. ТЬе result is that (S~~L)s~~L» 

vanishes unless two pairs of indices coincide. ТЬе second result, discovered Ьу 

Moldauer (75а), is геfепеd to as М cancellation. Brief1y, Ье finds that the various 
сопеlаtiоп сопесtiопs cancelleading to (7.36), including the width f1uctuation 
соттеспоп (7.48) multiplicatively. This result holds for nonelastic cross sections. 
ТЬе situation for elastic scattering wi1l Ье discussed below fol1owing the methods 
of Kawai, Kerman, and МсУоу (73). This рарег addresses two questions of 
importance in the present context. ТЬе first to Ье discussed asks for а formulation 
of the problem of reactions that explicitly верагате the f/ matrix into two 
components, the direct and f1uctuation, that is, into у(DI) and у(н), with the 
energy average of f/(FL) equal to zero. We Ьауе made repeated use of this 
separation in this chapter. ТЬе second deals with the width сопеlаtiопs, which 
аге induced Ьу the presence of the direct reactions. 

ТЬе essence of the solution of the first question lies in the fact that the optical 
model does provide calculation of the energy averaged amplitude. It will Ье 

recal1ed [(Eq. (1I1.3.16)J that the averaged many-channel amplitude satisfies the 
equation 

(Е - н(орt))(рЧJ) = О (8.2) 

with 

(opt) _ 1
Н -Нрр+НрQ • H QP (8.3) 

Е -HQQ + Еl 

This is to Ье compared with the exact equation satisfied Ьу РЧJ [Eq. (1I1.2.7)J: 

(Е - Нрр - H p Q 1 H Qp ) (РЧJ) = О (8.4)
E-HQQ 

Equation (8.3) is obtained using the Lorentzian averaging function, with 1 the 
energy averaging interval. ТЬе comparison suggests rewriting (8.4) as fol1ows: 

_ H(opt) _ H ( 1[Е _. 1 )Н J(рЧJ) = оp Q 
E-HQQ Е - H + iI QP

QQ 
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This equation сап Ье restored to the canonical form (8.4): 

1
[ Е - H(opt) - VpQ ____ VQpJ(P'P) = О (8.5)

E-HQQ 

where 

V -Н J и (8.6)
PQ - PQ Е - НQQ + il 

Equation (8.5) is equivalent to the coupled equations: 

(Е - H(oPt»)(P'P) = VpQ(Q'P) 

(Е - HQQ)(Q'P) = VQp(P'P) (8.7) 

The g- matrix for this system is [Eq. (1I1.2.30')J 

g- . = g-(Opl) + (.1/(-)1 V 1. V ,/1(+1) (8.8)
/1 /1 У' / PQ Е Н _ W QPY' 1 

- QQ QQ 

where I/J /,; аге the distorted wave solutions of 

(Е - H(Opt»)1/J /,; = О 

with appropriate boundary conditions, while 

1 
W =V V (8.9)

QQ - QP Е(+) - Н(ОР') PQ 

Since Ьу definition 

<g->= g-(ОРl) 

it follows that the second term of (8.8) is g-(FL), so that 

g-(~L) = (.1/(-)1 V 1 V 'II~+») 
/1 '1' / PQ Е Н W QPY' 1 

- QQ - QQ 

<g-j;L) >= о (8.10) 

thus achieving the desired decomposition. 
As а beneficial dividend, the coupling potential V acquires а desirable 

dependence оп Нсе- As опе сап see from (8.6), the contributions to V [гот the 
eigenfunctions of НQQ whose energy difТers substantially from Е is correspon



318 RESONANCES AND ТНЕ SТATISTICAL THEORY OF NUCLEAR REACTIONS 

dingly reduced so that the problems of convergence raised, for example, Ьу 

Simonius (74) аге resolved. This has а sound physical basis since the contri
butions of these distant "resonances" should Ье included in the optical model. 
It is achieved at the cost of ап energy dependence which is, however, relatively 
weak, such as that of the optical potential itself. Note that the formalism of 
Chapter 111 сап Ье used without апу formal change in view of (8.7). 

Because of (8.10), the cross section сап Ье written 

where [see (7.12)] 

iф(f i) (f) (') /2 )<а(~L»=4nЗ.{~<I.r(~L)12>=nf.:~ " е 1. 'g;. g;.l 
fl 1 п 1 

( I~E-E;.+(i/2)(r;.+r~) 

Using the random-phase approximation this reduces to 

<a(":L) >= n.t~ (" g~(f)g~(i) ) 
fl 1 ~(E-E;.)2+-}(Г;.+Г~)2 

~ 7t.t~ <g~(f)g~(i) >L (8.11) 

where in (8.11) we have retained the assumption that опе сап neglect the 
correlations between the numerator and denominator of the pole expansion 
because of the assumed large number of participating ореп channels. If now 
опе neglects the correlations among the g's, the results ofSection 13.7follow.t 

We now include the correlations but make the approximation (ог assumption) 
that only pair:wise сопеlаtiопs аге important: 

(8.11') 

Defining the matrix 

the cross section equation (8.11) becomes 

(8.12) 

ТЬе second term in brackets represents а significant change from the discussion 
of Section 7. ТЬе Bohr independence hypothesis, for example, is not valid if 
this term is significant. 

~This derivation difТers from that given Ьу Kawai, Кеппап, and МсУоу (73) in that the sum, I;, 
is not evaluated explicitly. 
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We now must relate the optical model transmission [астог Tjrl
) and the 

matrix Х. From (7.27), (7.30), and the unitarity condition опе сап immediately 
show that [see (7.32)] 

т .= \" S(FL)S(FL)*) (8.13)
Г! L.. Jc 'с 

С 

Inserting (7.36') and using the random-phase approximation, 

Again making the pair сопеlаtiоп assumption, опе finds that 

In terms of Х, 

(8.14) 

or equivalently 

(8.15) 

ТЬе problem of expressing (Jj~L) in terms of Тл is reduced to solving this equation 
for Х. The principal limitation оп this development arises [гот the pair 
сопеlаtiоп assumption, which will fail if Г is too large, for then тапу level 
сопеlаtiопs will Ьесоте important. Equation (8.14) is in agreement with а 

conjecture of Vager (71). 
ТЬе simple result (7.36)follows ifthe second term in (8.15) is neglected. Then 

T=IXtrX (8.16') 

Taking the trace of both sides опе сап solve for tr Х and finally for Х: 

т 
X~--- (8.16)(L tr т)1/2 

We recover (7.36) if this result is substituted [ог the first term of (8.12). Note 
again that L drops out and needs not to Ье evaluated. If both terms in (8.12) 
аге included, 

(Jj.L) ~ 7rЛ?(Тff Tii + T}i) (8.17) 
, Lc Тсс 
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Feshbach formula; the full curve is twice this 
value [Kretschmer and Wangler (78)]. [From 
МаЬаих and Weidenmiiller (79).] 

Factorization and the ВоЬг hypothesis аге по longer exactly valid. In the case 
оС the compound elastic scattering (! = i), 

a(FL) = 2nJ:; ~; (8.18)
еl :LT 

aa 

We see in this case the арреагапсе оС а factor оС 2, compared to simpler results 
that would Ье obtained if(7.39) were used Сог this case. Experimental varification 
оС the factor оС 2 is shown in Fig. 8.1.~ 

То go beyond (8.16), we solve (8.15) Сог Х in terms о[ Т and 

Х = t( -Ir Х + J(lr Х)' +;) (8.19) 

In principle опе сап take the trace оС both sides and so obtain an equation [ог 

-п will Ье recalled that the width l1uctuation соттеспоп ca1culated in Section (7) is 3 rather than 
2. The reason for the difТerence сап Ье seen from (8.11'), which states that [от .f = i, 

But the left-hand side equa]s (gi'(i). If the Gaussian distribution is used for g). [от the 
Ропег-Thomas [от r;.(i)], опе obtains 

(Рогтег-Thomas) 

We see that the pair correlation assumption is not consistent with the Ропег-Thomas distribution.
 
The factor of 2 corresponds to ап exponential distribution Гот Г).. This is in agreement with the
 
numerical ca1culations of Moldauer (75а) in the limit of large tr Т. 



tr Х: 

9, АРРLIСАТЮNS OF ТНЕ STAТlSТlCAL THEORY 321 

(8.20)(N + t)tr Х = t L 

This equation for tr Х is not solvable analytically and опе must resort to 
numerical methods. Tepel, Hoffman, and Weidenmiiller (74) provide а simple 
approximate solution. Неге we shall Ье content with obtaining the first-order 
соттеспоп to (8.16') and solving for tr Х. This is accomplished Ьу expanding 
the square root in (8.19) to second-order. We find that 

1 
tr Х = ---- [(tr т)2 - (tr T 2)] 1/2 (8.21) 

CL: tr т)'/2 

Equation (8.16) is obtained if tr(T2) is dropped compared to (tr т)2. Since the 
former is proportional to N and the latter to н». this appears to Ье а good 
approximation. If we now examine the result for Х, 

(8.22) 

(8.16) will Ье recovered in the limit where tr Т is large. То summarize, the 
conditions for the validity of (8.16), 

and 

(8.23а) 

(8.23Ь) 

Inequality (8.23а) is а necessary condition. It should Ье Ьоrnе in mind that the 
values of the matrix elements of Т сап Ье obtained from the multichannel optical 
model so that inequalities (8.23) сап Ье verified, the matrix elements of Х сап 

Ье obtained approximately from (8.22) or numerically from (8.20) and (8.19), 
and finally, (J~Ц [гогп (8.12). 

Further discussion will Ье found in the review Ьу Mahaux and Weidenmi.iller 
(79). We have not included the совпеспоп of thc rcsults аооме with the under
!1>tanding 0\ the "ртесогпровпс" теасцопв. 1Ъеsе аге d\scussed \n Chapter Vl. 

9. APPLICATIONS OF ТНЕ STATISTICAL THEORY 

The statistical theory of nuclear reactions is applicable when the level density 
of the residual nucleus is large, that is, when its excitation is sufficiently high, 
corresponding to the low-energy рогпоп of the spectrum of the emitted particle. 
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It applies as well at sufficiently low projectile (generally, neutron) energies for 
which the direct reactions do not make а significant contribution. For 
high-energy projectiles, the direct reactions dominate. However, the residual 
nucleus тау Ье left ш а highly excited state. Its subsequent decay тау Ье 

calculated using statistical theory. 

А. Angular Distributions 

As а consequence of the random-phase hypothesis, the angular distributions 
аге symmetric about 900. When the residual nucleus is excited to an energy for 
which аll possible orientations of its spin over the surface of а sphere оссцг 

with equal probability, the angular distribution is isotropic. An example of 
isotropy is furnished Ьу an early experiment Ьу Rosen and Stewart (55) from 
the low-energy portion of the пешгоп spectrum produced Ьу the inelastic 
scattering of 14.1-МеУ neutrons Ьу Bi (Fig. 9.1). Inelastic scattering to particular 
levels in 209Bi Ьу 2.5-МеУ neutrons [Cranberg, Oliphant, Levin, and Zafaratos 
(67)] demonstrate the symmetry about 900 (Fig. 9.2). Similar results аге shown 
for 20брь, with the addition of а small contribution from the direct reaction 
process. Examples for Ьеа vy ions (40Аг + 77SC _ а + Х) and for 58Ni(a, р) were 
given earlier in Figs. 7.5 and 7.4. ТЬе collision oflight ions also furnish examples 
as illustrated in Fig. 9.3. 

ТЬе success of this prediction, symmetry about 900, has led to its use to 
identify reactions ttlat аге dominated Ьу statistical processes. As we shall see 
in Chapter VI, this is not entirely correct, as symmetry about 900 is also а 

350 

300 

250 

200 

150 

I--I--I--]--j

I

,(4 MeV(Jr
27f Jn а(е') sin е' d(J' dE = 3.3 ± 03 barnsJn 0.5 О 

о 150 180 

Center-of-mass angle, е' 

120 

FIG.9.1. Angular distribution ofinelastically scattered 14.1-МеУ neutrons from bismuth 
[Rosen and Stewatt (55)]. [From Ribe (63).] 



9. АРРLIСАТЮNS OF ТНЕ SТATISТICAL THEORY 323 

,,
\ 

\ \ 

5 

f!t! ! ! • !_-----...0...;--
tH 

t CN -от 
- Е· = I 341 MeV J" = 3+ - 

-- .• CN-........,;
 
/

/ 
/ 

(Ь) /
~/ 

1 !~~N
I\~ Е. = 1.175 MeV, J" == 0+ f / 

;'..... i.. t......./·
- ..... - 't~ - -.,-- - .,. ..... 

01 for 3+ level 
О ------- --------- -.------ - -,---------г---------,--------

00 300 600 900 1200 1500 1800 

Scattering ongle е (см)-

FIG.9.2. Fits to the measured angular distributions оС 2.5-МеV neutrons inelastically 
scattered to two levels in 206рь. In the ca1culation оС the compound nucleus cross section 
(CN) the width fluctuation factor was taken into account. ТЬе direct interaction 
contribution is labeled ОI [Cranberg, Oliphant, Levin, and Zafaratos (67)]. [From 
Marmier and Sheldon (70).] 

feature of the statistical multistep compound process of which the statistical 
theory described in this chapter is а limiting case. 

В. Energy Spectrum 

We next consider the energy spectrum of the emitted particle, considering the 
case in which the excitation energy of the residual nucleus is sufficiently high 
that the residual nucleus levels effectively form а continuum with level density 
(J)f(U), The angle integrated cross section in the statistical theory is given Ьу 

(7.39) multiplied Ьу the width fluctuation сопесtiоп if needed: 

where the complete parametric dependence of Т, is Tf(['s'; JП), where we recall 
that [' is the orbital angular moment of the emitted particle, and s' is the channel 
spin. These соmЫпе vectorially to form J: 

l' + s' = J 

Т, depends similarly оп the entrance channel [ and з. The level density ws,(U) 
takes into account the spin of the emitted particle i' as well as the spin of the 
residual nucleus, Г. The denominator sums over аН ways in which the compound 



324 RESONANCES AND ТНЕ STATISTICAL THEORY OF NUCLEAR REACTIONS 

10 
FEx - 0.00 МеУ 

0+ tI 

\II I 
\1 ,. l.J 

.l"'o. :.;r 

I~ ". 

~ 

\ I 
1.63• 2+ • 

'\.. " ь, .А 
1 - r 
... 

4.25 
i'.- 4+ / 

,'\. м 

~ l..II 
T~ 

1 - "'1 

100 

10 

10 

10 

0.1 

10 10 

~Ex = 5.62.5.78 МеУ== 
эг.г: 

'" J 

\ I 
"'" ..1 

-~ А 

т ~""" --"" 1-
1 .. 

" Е7.00-7.20 / 
\ А 

...... IT., -""""... 

~! ь-

,\! У 
~ V 

• 
Е8.45-9.04 

I 

FIG.9.3. Angular distribution for the reaction 12Ce4N, 6Li)20Ne, Ест = 36 MeV 
compared with the predictions of the statistical model (HF) [Belote, Anyas-Weiss, et al. 
(73)]. [From Stokstad (85).] 

system сап decay, including difТerent modes of decay symbolized Ьу the subscript 
с. The decay сап оссцг to discrete levels as weB as to the continuum рап of 
the spectrum of the residual nuclei. То obtain the Weisskopr formula, (1.4.5), а 

number of approximations to (9.1) need to Ье made. It is assumed that Т! and 
Т, depend only оп the orbital angular momenta l' and 1, respectively. Second, 
we assume, as was done тп the derivation of the isotropic angular distribution 
(see р. 301), that 

(9.2) 

FinaHy, the discrete sum in (9.1) is dropped and in fact it js assumed that the 
residual nucleus for аН the exit channels is the same. Inclusion of the efТect of 
other types of exit channels is straightforward and left for the reader to derive. 
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With these approximations (9.1) becomes 

(9.3) 

Defining 

(1~C) =n);; ~)21 + 1)Ta(l) (9.4) 
1 

[that this agrees exactly with (7.4)], we obtain the Weisskopf result: 

(9.5) 

where J.la is the reduced mass of the particle emitted in сЬаппеl а. 

Note that in this derivation по use was made of the law of detailed balance, 
as is the case for the traditional derivation given in Chapter 1. Detailed balance 
cannot, in fact, Ье used without further justification since the cross section in 
(9.5) is energy and state averaged, and detailed balance holds between particular 
states with well-defined energies. Recall that for а given initial state 

where Е is the initial kinetic energy in the center-of-mass coordinate system, 
Е' is the final kinetic energy of the emitted particle, and Qa is the "Q" for the 
reaction. Casting шо into ап exponential form, 

шо = exp[S(U)] 

and expanding S(E + Q - Е') about Е + Q, 

S(U) = S(E + Q - Е') = S(E + Q) _ Е'( as)
ги E+Q=U 

опе obtains 

(9.6) 

where 

(9.7) 

т is referred to as the nuclear temperature. Substituting (9.6) into (9.4) yields 



326 RESONANCES AND ТНЕ STAТlSТlCAL THEORY ог NUCLEAR REACTIONS 

the Weisskopf-Frenkel evaporation formula. When S equals 2Jа(U - М (see 
р.278), 

1 ] 1/2
Т= ~(Е+Q-Д) (9.8)[ 

Inserting (9.6) into (9.4), we observe that 

1 (d (FL))
и fi -Е'/Т (9.9)

Е' uj)(E') dU ""' е 

where we have omitted multiplicative factors that do not depend оп Е'. Thus 
the logarithm of the left-hand side of (9.9) should Ье а straight-line function of 
Е' with а negative slope equal to (l/T). 

Another and somewhat тоге general result states that for а given Е, the 
left-hand side of (9.9) depends only ироп Иf, and in principle опе should 
therefore Ье аЫе to determine Шо ' The branching ratio, that is, the ratio of the 
difТerential cross sections for two difТering reactions initiated Ьу the same 

0.2 

OL ----.JL. _ 

О 0.1 

Е (MeV) 

FIG.9.4. Inelastic neutron scattering exciting the 0.961-МеV level in 63Си. ТЬе curve 
labeled (1) does not include the width fluctuation factor; curve (2) does. [From Tucker, 
Wells, and MeyeгЬofТ (65).] 
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projectile, is 

<d(J~~L)ldU а> f1.aEa(J~C)(Ea) (()о( иа) 
(9.10)

<d(J~~L)ldUb> f1.bEb(J~)(Eb)шо(и ь) 

ТЬе dominant factors in the ratio (if one is weB аооме the thresholds) is given 
Ьу the ratio of the level densities at the appropriate excitation energies. 

We conclude this section with some experimental results that provide 
examples of the application of these results. We begin with the simplest case, 
that in which the spin and energies of the levels of the residual nuclei аге known 
ир to а sufficiently high energy. Then the cross section is given Ьу (7.38)corrected 
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Ьу the width fluctuation соттеспоп W]: 

(9.11) 

Ап example of the application of this formula in which it is assumed that аН 

values of J of the compound system which аге allowed Ьу angular momcntum 
and parity conservation аге included in the sum is shown in Fig. 9.4. We see 
the important effect of the width correction factor in some cases. 

In Fig. 9.5 we present some of the results of Holbrow and Barschall (63), 
who considered the Rh(p, n) reaction. The straight line оп the semilog plot is 

FIG.9.9. Comparison between the experimenta! spectrum for protons emitted in 
CsI(n, р) reaction (full!ine) at various energies and the calcu!ated evaporate (_._) and 
preequilibrium (---) contributions. [From Gadioli and Mi!azzo-Colli (73).] 
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in agreement with (9.9) [assuming that O'jJ(E') is а constant equal to nR 2 
, where 

R is the nuclear radius]. The derivation from the straight line occurs at Iow 
пешгоп energy near the threshold for the (р,2n) reaction. Another example is 
given in Fig. 9.6, in which «-рагпс]е spectra produced in а (р,а) reaction 
involving а variety of target nuclei аге given. As а finaI example, the prediction 
ofy-ray yields in Iight-ion reactions аге shown in Fig. 9.7. Note that по adjustabIe 
parameters аге used in this case. 

The examples given in the section аооме show, in view of the crudeness of 
the statisticaI modeI, а surprisingly exceIlent agreement with experiment. This 
agreement indicates that опсе епггапсе and exit channeI effects are included 
through the transmission coefficients, the remaining features of the reactions 
do not depend оп the detaiIs of the nuclear Hamiltonian. From the theoretical 
development of the fundamentaI equations (7.39) and (9.11), а necessary 
condition for their validity appears to Ье that the wave functions involved Ье 

sufficiently complicated so that the matrix element of the residual potentiaI with 
respect to these wave functions is а random number. However, the wave function 
does have simple components, and if the reaction is dominated Ьу these, 
statisticaI considerations wiII faiI. The condition for the validity of the statisticaI 
theory is not only that the wave function Ье complicated but aIso that the 
complicated components dominate. А rephrasing of these considerations using 
time-dependent Ianguage is instructive. In the early phase of the reaction, only 
simple states сап Ье developed, the complicated states requiring а relatively 
Iong period of time involving the residuaI interaction acting тапу times. If the 
reaction terminates at ап early stage, the statisticaI theory wiII faiI. Indeed, а 

direct reaction тау Ье involved, and then the angular distribution wiII Ье 

asymmetric, peaked toward the forward direction. The statisticaI theory wiII Ье 

valid only if the reaction terminates at а sufficiently Iate stage. In Chapter УI 

we discuss а formalism that includes both the early and Iate stages. That theory 
wiII provide criteria for which the statisticaI theory is а Iimiting result. For 
example, at sufficiently Iow energies, опе requires that emission Ьу the system 
is much Iess probabIe than proceeding to the next stage of complication, so 
that most of the reaction wiII involve emission from very complicated states. 

For the present it wiII suffice to point to some examples of the failure of the 
statisticaI theory. In Fig. 9.8 we present а comparison between the cross section 
for the production ofneutrons as indicated Ьу the coIIision of a-particles striking 
197Аи. The failure of the statistical modeI as the a-particle energy increases is 
evident. Another example is shown in Fig. 9.9, where the proton spectrum when 
neutrons of the indicated energies are incident оп CsJ. Neither the shape nor 
the magnitude of the evaporation contributions resembIe the experimentaI 
results. WiII the discrepancy Ье made ир Ьу the single step direct process? We 
shaIl provide some examples in Chapter УI to show that generaIly it wiIl not 
suffice. 
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