CHAPTER V

ELASTIC AND INELASTIC SCATTERING

1. INTRODUCTION

Chapter IV is devoted to the study of reactions involving a relatively long inter-
action time as exemplified by compound nuclear resonances and by these
reactions to which the statistical theory applies. The latter is appropriate when
the excitation energy, U, of the residual nucleus is sufficiently large and the
energy of the emitted particles are sufficiently small. The angular distribution
is symmetrical about 90° and the energy variation of the cross section (assuming
sufficiently good resolution) is rapid. In this chapter we consider the direct
reaction, that is, prompt reactions (a term that we prefer to use if one could
revise history!). In this case the interaction time is relatively short, on the order
of the time it would take the projectile to traverse the nucleus. The angular
distribution is asymmetric, thereby revealing the direction of the incident
projectile. The variation of the cross section with energy is slow, as one would
expect to follow from the short interaction time.

According to Chapter 111, the governing description for prompt reactions is
given by the multichannel optical model. The open channels are the ones usually
included but on occasion, particularly near thresholds, it may be important to
include closed channels as well. The phrase optical model refers to the fact the
prompt reactions can be selected by considering the energy-averaged wave
function, { P¥), which satisfies the equation
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where
Yer) = (PP (1.2)

In this equation, I is the energy interval over which the average is taken. It
clearly has the function of smoothing the dependence of the propagator
(E—Hpyp+ iI/2)~ ' upon the energy. It is this term that takes into account the
effect of the closed channels upon the optical model wave function. The function
YerY is a multicomponent wave function of dimension equal to the number of
channels included in £ space. If (1.1) is written in terms of the channel wave
functions, it becomes a set of coupled Schrodinger equations.

In the approximate treatment of these coupled equations, the elastic channel
plays a central role. We project it out by introducing the projection operator
p and its orthogonal complement R. Defining H®P" by

1
H°Y=H, +H,, —— ——H 1.3
PR E—Hyy+il2 % (13
(1.1) can be rewritten as follows:
E — H'erY — H(Opl)
(E—H2Wry = HoE W 14

(E—HQRWr= “’""l//cl
using the notation

HEY=pHPR, etc. ,
The wave function ¥ is a multicomponent wave function containing all the
reaction channels with the exception of the elastic channel, whose wave function
is given by . We can solve for y; bearing in mind that the channels involved
are open:

1

VR= o He HE W (1.3)
Therefore, , satisfies
1
— Hpt) __ pylopt) (opt) _
|:E pr HPR EM _— H(}g‘p{l)HRP Jll/cl_o (1.6)

Note that

1
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(1.7)
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We see that the elastic channel wave function satisfies a Schrodinger equation
with a complex and, therefore, absorptive interaction. The absorption has two
sources. One is loss of flux from the incident channel, is produced by the prompt
reactions that can occur. This is described by the third term, involving the
subscript R, in brackets in (1.6). The other source stems from the fact that P9,
and therefore, y,, are the results of an energy average of P¥. Following
Friedman and Weisskopf (595), it can be argued that taking the energy average
is equivalent to selecting the prompt component of P¥. In terms of the
development under discussion here, this conclusion follows from the fact that
H® is a smooth function of E. The function WP, and therefore y,, will
exhibit an absorption because they do not contain the delayed component of
PY¥. In more picturesque terms, the wave pocket formed by taking the energy
average is attenuated on passing through the nucleus, because some of its flux
is left behind to form the compound nucleus. This flux will be emitted later. It
is this process that is described by the second term in brackets in (1.6). This
effect is present even when only elastic scattering is possible, that is, for energies
below the threshold for nonelastic reactions.

In principle, (1.6) can be used to determine the averaged elastic scattering
amplitude. To determine the reaction amplitude leading to a particular channel
¢, we project out that channel with an operator ¢ so that (1.4) becomes

(E = HPWo = HPw+ HEPY, (1.82)
(E—HEW = HPW o+ HPY, (1.80)
(E = HS™), = HY o+ HEY, (180

where

R=c+r and cr=0

Note that if ¢, and i, are eliminated, the resulting equation for y,, must be
identical to (1.6). If , is eliminated, one obtains a pair of coupled equations
for ¥, and ¢ .. The inclusion of the effect of the other open channels

Problem. Show that these coupled equations for ¢, and ¢, are

(E—=H,Wo=H .

(1.9)
(E - fcc)d’c = '}{)cpd/el

where

H=H + W

wo=How 1 pom (1.10)
ab ar p(+) _ fylopy rb ’
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Show that the transition matrix for the excitation of ¢ is

(T > =LNAF WD (1.11)
where

(E_'ch)(pg—):(] (112)

which are projected by r is required if multistep processes are important. If it is
assumed that only a single-step process is important, the DWA (distorted wave
approximation) is used. In this approximation [Lamarsh and Feshbach (65)]
the exact equation for ¥, (1.6), is used and (1.8b) is replaced by

(E — Hﬁ;"’")dzc ~ Hﬁ‘;”‘)uj/c, (1.13)

so that
(T =T8> GOHW (114

where
(E—Hi‘c"‘")x‘ )=0 (1.15)

Comparing with the exact expression (1.11) we see that #°! ¢{™) has been
approximated by H *fxt ). The coupling of the channel ¢ to the open channels
r has been neglected in both H!, and x{™. The waves y{~) and i, are distorted
(i.e., are not plane waves) because of the potential terms present in H°™ and
in the effective Hamiltonian for the single-channel wave function ,, as given
by (1.6). The approximate equation (1.14) for the transition amplitude 1s referred
to as the distorted wave born approximation (DWA). Using the DWA requires
the determination of the single-channel wave functions ¥}’ and x{™’, as well
as the coupling Hamiltonian H,,. We discuss the first of these issues in the next
section.

Note. In many applications of the DWA, the interaction Hamiltonian used in
the calculation, (1.14), is empirically determined using parameter choices that
produce best fits to the data. As a consequence, many of the effects of the
omitted open channels are included to the extent that this is permitted by the
forms used for the Hamiltonian. However, when these effects are too severe, it
may be necessary to recognize their importance through the use of a system of
coupled-channel Schrodinger equations, taking explicitly into account those
channels that have the major impact.

2. THE SINGLE-CHANNEL OPTICAL MODEL

The empirical optical model is used to develop the single-channel wave functions
required by the DWA. The model was developed originally to provide an
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understanding of the low-energy neutron-neucleus interaction as observed by
Barschall and his collaborators [Barschall (52)]. Although it was derived in the
sense that it was shown that the model wave function and model scattering
amplitude were energy averages of the exact wave function and exact scattering
amplitude, the optical model has been used since semiempirically. An a priori
form is chosen for the optical model potential, that is, for the Hamiltonian of
(1.6). Its parameters are then adjusted so as to yield agreement with the data,
such as the total cross section o; the elastic angular distributions do _,/d<; the
polarization of the emergent particles, if available; and so on. Smooth behavior
of the parameters with respect to changes in projectile energy and target are
desired for physical significance. Substantial discontinuities may imply the
presence of a phenomenon for which the single-channel optical model is
inadequate, requiring, perhaps, the use of a multichannel optical model.

A. Average Cross Sections

Since in the optical model the scattering amplitude is energy averaged, the
optical model cross section (o) cannot, except for one situation, be compared
directly with the energy-averaged cross sections, &, since cross sections are
quadratic functions of the scattering amplitude. The one exception is the total
cross section o, since it is a linear function of the amplitude in virtue of the
optical theorem:

or= 4% Im £(0°) 2.1)

Energy averaging? both sides then gives the result
(ory =iy (22)

that is, the optical model total cross section equals the energy-averaged total
cross section. This is not the case for the angular distribution or other
observables. In those cases we have from (IV.7.7)

2 2
T 2= 1T GO 176
Averaging, one obtains
J_el = <ael> + a.(el;‘[‘) (2'3)

Before the optical model can be compared with experiment, the fluctuation
cross section, ¢‘F), must be added to optical model cross section (g ,,>.

‘Angular brackets are used to indicate model quantities and a bar indicates energy-averaged
quantities.
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The optical model also predicts an absorption cross section {a,>, which is
related to {(a;> as follows:

o, ={K071>—<{0> 24
A similar quantity can be defined for the energy-averaged cross sections
G6,=6;—6,, (2.5)
The relationship between &, and {a,) follows from (2.2) and (2.3):
(o,>=6,+53" (2.6)

The first term, 6,, is a consequence of real inelastic processes, while G5 represents
the contribution of the delayed processes. We have discussed the presence of
these two contributions in Section 1 [see (1.6) and the ensuing discussion].

The cross section §&%, is just the compound elastic scattering that was
discussed in Chapter IV. Its calculation in terms of transmission factors is given
there. One expects processes competitive with compound elastic scattering
would become so significant as the projectile energy increases that ¢ would
tend to zero as that energy increases. In other words, the fraction of the flux that is
delayed and reemitted into the elastic channel eventually decreases with energy.
Most of the delayed flux will contribute to reactions. In the limit, then,

0,>—3,

2.7
<0el>_’&el ( )

The cross section (g, ) is directly related to the transmission coefficients T,
[see (IV.7.28)]. From this last equation and for the single-channel case, each
partial wave yields

T,=1-[KS >
The corresponding partial reaction cross section is
{e¥) =nr’T,

which must be multiplied by the appropriate weighting factor for each partial
wave. For a spin-independent optical model potential the partial wave series
is a series in the orbital angular momentum, /. In that case the weighting factor
is 21 + 1. Comparing with (IV.7.45), one finds that this cross section is identical
with the ¢, the cross section for the formation of the compound nucleus, so that

(6,5 =g 238)



2. THE SINGLE-CHANNEL OPTICAL MODEL 339

B. Nonlocal Potentials

It is immediately obvious from the general expression (1.1) for the multichannel
optical model, and a fortiori for the single-channel projection, (1.7), that the
optical model Hamiltonian is energy dependent and nonlocal. The energy
dependence is explicitly visible [see (1.1)] in the propagator (E — H,, +i1/2)” L
The nonlocality originates in this term since it describes the process in which
the system leaves the incident channel, going to 2 space, propagates in 2 space
and then returns to the incident channel. In coordinate space this operator
would be a function of two variables, the point at which the interaction, HQP,
induces the transition to 2 space and the point at which the interaction, H p,,
induces the return to 2 space.?!

Such a nonlocal energy-dependent operator can also be thought of as an
energy- and momentum-dependent operator. To see this, let the nonlocal
potential ¥~ (assumed spin independent, for simplicity) have the general form

VY = JUE(T, r —ny(r)dr (2.9)

where the subscript E reminds us that v is energy dependent. This reduces to
a local operator if

op(r T — 1) = (' — Dugl(r) (2.10)
since substituting in (2.9) yields

VY = vg(t(r)

Upon making the substitution

in (2.9), one obtains

VY= va(r, P (r + p)dp

or using the identity

e PY(r) = Y(r + p)

‘One should combine this dynamic nonlocality, with the contribution of the nonlocality of the
nucleon-nucleon forces, a consequence of the composite structure of the nucleon. From the
existence of the excited state of the nucleon, the A at 1236 MeV, one estimates the size of the
nucleon to be #f(m,— My)c ~ 0.7 fm.
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where

h
p=-V, (2.11)
one obtains

P = ( J e, p)e‘/h""*dp)w(r)

Thus the nonlocal potential acting on  given by (2.9) can be written as an
energy- and momentum-dependent potential

AL f og(r, p)e™® P dp 2.12)

Clearly, the p in the exponent operates on ¥ and not on vg.

For the most general operator vg(r,p)Vg will contain all powers of the
momentum operator p. Two approximations that are commonly used are
instructive. In the first, most appropriate at high energy [Perey and Saxon (64)]
the momentum operator, p, is replaced by the projectile momentum (in the
center of mass) p,, so that

¥ = Vilr,po) = va(r, pel e dp 2.13)

With this approximation, ¥~ becomes just a function of E, the energy, and of
r. We note one important consequence of (2.13). Assuming that the dependence
of v; on p is smooth, that is, significant changes occurring over a range, a, then
Ve will decrease with increasing momentum p,, once p, = #/a. Such a decrease
would be modulated by the explicit energy dependence.* Indeed, as we shail
discuss later, such a decrease does occur, the real part of the optical model
potential going though a zero near a projectile energy of 200 MeV. In the present
context, this could be considered to be the consequences of an averaging that
occurs once the wave length (f/p,) of the projectile is much smaller than the
scale of the nonlocality.

The Perey-Saxon momentum approximation can be improved by using the
momentum inside the interaction region [Frahn (65)] rather than that of the
incident projectile. In this local momentum approximation one expands V(r,p)

*An empirical analysis omitting explicit E dependence yields ~ 1 fm, or a p, very close to the Fermi
momentum pp. As can be seen from the high-energy multiple scattering approximation for the
optical potential (Chapter II), the nonlocal term is in part a consequence of correlations. The
empirical scale, pg, could be taken to indicate that the Pauli correlations generated by the exclusion
principle is the one of significance.
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about p? = P2, that is,

OVi(r, p?)
op

Ve(r, p) = Vi(r, p?) = Vi(r, P?) +[ } (p>=P%) (219
pi=p2

where we have made explicit use of the assumption that V; depends only on
p. Inserting (2.14), replacing p by (#/i)V, into the Schrédinger equation yields

2 AL/ 2 2 2
{E+hV2—l7£(r,P2)~ VL(r)—Zm[M] [(ivui) }wzo
2m opt el \2m 2m

where V(r) is the local part of the optical model potential, H,, of (1.1). If we
now chose P2(r) to satisfy

LPz(r) = E — Vg(r, PX(r)) — V,(r) (2.15)
2m

this Schrodinger equation reduces to

2
[;’M V2 + (E — Vg(r, PX(r)) — VL(r))]gl/ =0 (2.16)

4

Equation (2.15) reduces to the choice P = p, when V, + V; « E, that is, at high
energies. It is otherwise an equation determining P?(r) and therefore the effective
potential in (2.16).

Problem. Consider v,(r,p) = U(r)[1/(n"/%a)*]e ?/**. Solve (2.15) graphically,
discussing the behavior of V(r,(P*(r)) as a function of E. Discuss the validity of
the expansion equation (2.14). If a is on the order of 1fm, beyond what energy
can this nonlocal potential be treated as a small perturbation?

When the wave length of the incident projectile is long, an expansion of the

exponential operator in (2.12) is appropriate:

i

2
h) Jvz(r,p)(p'p)zdp+

1 , 1
Vi(r,p) = ng(r, p)dp + . J‘vgtr, pp-pdp + 5(

The first term yields a local energy-dependent potential,
vg(r) = JUE(ra p)dp

The second term vanishes if we assume that the dependence of vg(r,p) on p is
spherical, that is, depends only on p?. (This may not be the case for deformed
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nuclei or if the spin degree of freedom is taken into account). Under the same
assumption the third term becomes

Ve p?
op? = - 6n2 vg(r,p)p® dp
so that with k= p/h,
1% 1 oV,
Vi(r, p) =~ vg(r) + (akf)kz = vg(r) — (21( 6kE>V2 (2.17)

demonstrating explicitly the momentum dependence of the nonlocal Vi(r,p).
The partial derivatives are evaluated at k=0. This momentum- and
energy-dependent potential can be written as an energy-dependent potential as
follows. The optical model Schrédinger equation following from (2.17) is

h 1 8V
V24 E—-V,—v — T Ey2 ly =0 2.18
I:Zm + I "E(r)+2k ok :|l// (2.18q)

or

T L A | T
{V +h2[E Vimte 1+(m/h2k)/(8VE/ak)(E Vi=ve) ¥ =0
(2.18b)

In discussing this equation one should bear in mind that vy and J0Vg/0k may
both be complex.

On the other hand, one could replace the energy dependence of the nonlocal
potential by momentum dependence. Toward this end, expand v, as follows:

Ovg
vp=0v,+ E| — + ..
Y (aE>o

In this equation we now replace E by
2

h* ,
Es——V 4V, +v,
2m

where we have dropped the term in dV/dk? as being of higher order when
multipled by dv;/0E. The Schrodinger equation, (2.18a), becomes to this order

j hz IOVE h? (aUE):l ( OUE)
Sy Ey VE+E—(V,+ 14— =0 (19 j
[[Zm 2k ok ' 2m\ OE /, Witvol 1456 ) 5¥ ‘ )%
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The brackets multiplying V2 can be related to a space-dependent complex
effective mass, m*

2k ok OF

Kt on: 1oV, K (m)
- =4 + 1=
2m* 2m 2k ok 2m o

or

m* 1

C

m 1+ (m/h2k)(@V,/k) + (Gv/OE)q

Define mg. and m,, by

, i
Mee _q _ (ﬁ) (2.20a)
m JE /,
My _ 1

(2.20b)

m 1+ (m/h?k)(OVg/Ok)

where mg, depends on the change in mass arising from energy dependence and
my, depends on the change due to momentum dependence. Then to first order,
m* _ mg. my,

(4

2.21)
m m m

This equation is satisfied exactly in the case of infinite nuclear matter [ Migdal
(61); Brown (72); the case m,.,/m is given in Feshbach (58b)]. No attempt has
been made to separate out the imaginary components of m*, mg., and m,. If
real values are desired, we define

©) 1
i J Re(av ) M _ . (2.22a)
3E Jo m 1+ (m/hk)Re(0Vy/k)

m
with
m*  m, mg
— =" (2.22b)
m mm

We note that for finite nuclei these quantities are functions of r; in the case of
infinite nuclear matter they are constants.

Evaluations of these quantities have been made for infinite nuclear matter
using the Brueckner—Hartree—Fock approximation, similar to that described
in Chapter VII of de Shalit and Feshbach (74) [Jeukenne, Lejeune, and Mahaux
(76, 77); Mahaux (78)]. Brueckner—Hartree—Fock determinations of the optical
potential have also been made by Brieva and Rook (77, 78) and Brieva, Geramb,
and Rook (78). We shall not discuss these relatively complex calculations but



344 ELASTIC AND INELASTIC SCATTERING

will use the results of the Liege group to illustrate the behavior of these effective
masses with momentum in infinite nuclear matter. Usually the results
obtained with a first-order calculation indicated by the subscript 1 will be
presented. Higher-order calculations have been made. There are quantitative
changes, but the qualitative picture is not modified. In Figs. 2.1 and 2.2 we show
the behavior of mg, as a function of k for two nucleon densities, k= 1.35 fm ~*
and k= 1.10fm ™. Two features should be noted. First, mg,/m is greater than
unity for k < 1.5k, and second, it has a sharp peak just above k = kg. This last
result depends critically on the choice of the reference spectrum (see Chapter
VII of deShalit and Feshbach (74). If a sizable gap is introduced, the sharp energy
dependence seen in Figs. 2.2 and 2.3 disappears. The calculated m, /m are shown
in Fig. 2.3. This quantity increases smoothly as the momentum increases. Its
value is less than unity, compensating to some extent for mg,/m being greater
than unity, in the calculation of the product, (2.23). The values for m¥/m are
shown in Figs. 2.4 and 2.5.

The strong variation with k in m,,/m persists in the values of m}¥/m. From
each of these sets of curves, Figs. 2.1 to 2.5, it is clear that in the momentum
range k < 2kg, the deviation of the effective mass from unity is substantial and

154 415
14k ke =135fm! 14
413
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w
E
412 ¢
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o
1.0 1.0
| )|
0.0 0.5 1.0 1.5 2.0

ike

FIG. 2.1. Effective mass mg,/m (dashed curve) and (mg, + mg,)/m (solid line) as a function
of k for kr = 1.35fm™!. [From Jeukenne, Lejeune, and Mahaux (76).]
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FIG. 2.2. Effective mass mg,/m (dashed curve)and (mg, + mg,)/m (solid line) as a function
of k for kp=1.10fm~'. [From Jeukenne, Lejeune, and Mahaux (76).]

that there are appreciable effects arising from the nonlocal nature and energy
dependence of the optical potential.

There are two consequences of nonlocality and energy dependence that are
of special importance for applications. It follows directly from (2.9) (i.e., from
nonlocality) that current conservation is not satisfied locally. This result holds
also in the effective mass approximation. Using standard procedures (and taking
m* to be real in order to isolate the effect of interest; (current conservation is,
of course, not valid in the presence of absorption), it follows from (2.19) that

ap . m .
+divj=[1-— divj 2.23
3 i ( - (r)) i (2.23)
where j, the current density, and p, the particle density, are given by
. ho_ * *
=Yy —yVyr]  p=yry
2mi

From this current-conservation equation we see that in addition to the decrease
in particle density because of current flow, there is a loss (m* < m) because of
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FIG. 2.3. Effective mass m,,/m (dashed curve) and (m,; + m,;)/m (solid line) as a function
of ke, (@) ke = 1.35fm ! and (b) k; = 1.10fm ™. [From Jeukenne, Lejeune, and Mahaux
(76).1

nonlocality and energy dependence. As a consequence, the actual value of p in
the interaction region where (m* < m) will be less than that which would be
computed using current conservation, as is done when a semiempirical optical
model wave function is used. This is known as the Perey effect [Perey (63)].
When m* is a constant independent of r, the empirical particle density should
be multiplied by m*/m, and the corresponding empirical wave function by
(m*/m)*2 in the interaction region.

The second consequence of energy dependence of the optical model potential
is the nonorthogonality of wave functions corresponding to different energies.
This is a real effect. The exact many-body wave functions are of course
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FIG. 24. Effective mass m¥/m as a function of k for kp=1.35fm™!

Lejeune, and Mahaux (76).]

. [From Jeukenne,

T T T |l
1.0 1.0
ke = 1.10 fm~! .
Iy
09| 19 —osg
. ' 1 3
| «
£ v
3 /N 2=
08l 7 ‘\ g —os
/
® // \
] S VoA Hoz
v A4
W
0.6 l | | 0.6
0.0 0.5 1.0 15 20
k/kg

FIG. 2.5. Effective mass m}/m as a function of k for kp= 1.10fm ™! [From Jeukenne,
Lejeune, and Mahaux (76).]
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orthogonal. But their projections onto the open channels—in this case, to the
elastic channel—are not. The physics lies in the fact that the coupling of the
open channels to the closed ones (and to each other) is energy dependent, as
is immediately obvious from (1.1). Even though the energy has been eliminated,
the departure from orthogonality remains in the effective mass approximation,
(2.19). The usual orthogonality there is replaced by the new condition

FCO*Y D m*(r)dr =0 E#FE (224)
E E

where clearly the dependence of m* on r is important.

C. The Infinite Medium

Before considering in some detail results obtained from semiempirical analysis,
it is desirable to present a global qualitative view of features of the optical
model potential for nucleons. Great theoretical simplifications occur if we limit
the discussion to the infinite nuclear medium. In that case the nonlocal potential
of (2.9) is constrained by the condition that translational invariance be
maintained as follows:

V(R T — 1) > vg(r — 1)
Equation (2.12) becomes
¥ = [vg(p)e® ™ dp = ¥ (E, k)
The local potential ¥, must be constant but can depend upon E. Finally, we

note that the solutions of the Schrédinger equation in the infinite medium are
plane waves. For a wave of momentum #Kk, the Schrédinger equation reduces to

E= ik2 + V(E,K)
2m
V =V.(E)+ ¥ (E, k) (2.25)

an equation determining the relation E(k) or k(E). The nuclear medium is
dispersive, the group velocity being given by (1/A4)(dE/dk). From (2.25) one can
write V = V(E, k(E)), where now the potential is local.

Problem. Prove that the group velocity is given by ak/m*.
We shall also make use of the dispersion relation connecting Re V and Im V.
Such a relationship is given in (IIL.2.13). It is useful because even with modest
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information on Im V obtained, both theoretically and experimentally, it permits
calculating a component of Re V from Im V.

There are some penalties to be paid in going to the infinite nuclear matter.
The spin-orbit potential no longer appears. We shall be concerned only with
the central potential. The empirical values of the central potential are obtained
through the analysis of collisions of nucleons with finite nuclei in which the
surface plays a singificant role. Two extrapolations are used. In the first, the
value of the local optical model potential (which has spatial and energy
dependence, as we shall see in Section 2.E), Vpr(E, r) at r =0, Vgpr(E, 0), is used
as the empirical value of V(E,k(E)). The thought is that the conditions which
exist at the center of the nucleus approximate those of the infinite medium. As
a function of mass number, there will be substantial fluctuations because of
nuclear structure effects. There are also ambiguities, particularly with regard to
Im V(E, 0), because different models of the optical potential will weight the
surface and volume differently. More recently, rather than using Vgpr(E,0), the
volume integral per nucleon of the potential

1
J=— | Vopr(E, 1) dv
AJ orr(E,T)

is found to be less sensitive to these ambiguities.

It is also necessary to rephrase dispersion relation (II1.2.13) since in the
nuclear matter limit the sum over bound states is replaced by an integral as
these states form a continuum below the Fermi energy ¢;. It is easy to “guess”
the form of the answer, namely to extend the limits in the principal value integral
to — 00. The formal development proceeds by using the symmetric particle—hole
representation of Chapter VII in deShalit and Feshbach (74, p. 554). Recalling
that discussion, we define the creation operator «; as follows:

Oﬁ:{a: e(k) > &
, —a_y e(k) < ep

so that o] either creates a particle with energy &(k) greater than the Fermi energy
or a hole if (k) < er in the Fermi sea. It is then possible to write

PY = Jdka,:’uk|0>

where |0 is the “vacuum”, equal in this case to a Fermi sea filled to the Fermi
energy ¢, and u, is the amplitude of the excitation «[0.
With this definition it is possible to carry out the derivation leading to
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(IT1.2.13). One obtains

1 © ImV,
Re Veff(Es k) = VPP - '@J‘ E i“(g’, k) dg (226)
14 E—¢&

~ 00

One subtraction is performed.

dg (227)

Re Ve (E, k) = Re Vigeler k) + BF@J Im Vel 8, k)

n - (Er — EYE — 6)

This relation agrees with that used by Mahaux and Ngé (81) if one replaces
the E in their (10) by E + ig, e >07.

The momentum k appears as a parameter, that is, the dispersion relation
must hold for each k. The empirical results for V_ are usually given as functions
of the energy only. This reduction can be obtained in principle by replacing k
by solving (2.25). In the high-energy limit, the Perey—Saxon result can be used.
Or one can average both sides of (2.27) over a k domain. Or one can evaluate
at a particular value of k. For example, V (E, k = 0) gives the volume integral
of V(E, p), which should be simply related to J. Mahaux and Ng6 (81) assume
that Im V. (E, k) varies slowly with respect to k for k <2.5fm~*!. One cannot
be that cavalier with Re V ¢(Ef, k) since the nonlocalities arising from the Pauli
principle must be taken into account. Mahaux and Ngo expand that term
around k; and use the effective mass approximation. Only m, enters. The first
term, Re V (ep, kp), is given empirically by — 53.3 MeV. With these approxi-
mations it is possible to proceed with the exploitation of dispersion relations
(2.27).

However, we need an estimate of the magnitude of Im V¢ (E). The method
of Lane and Wandel (55) and Clementel and Villi (56), which makes explicit
the role of the Pauli principle, provides a first look. The method used is that
developed by Goldberger (48). It is based essentially on kinetic theory, from
which we learn that the mean free path, L, for a nucleon traveling through a
medium, in this case nuclear matter, composed in this case of nucleons, is given
by

L=— (2.28)

where p is the density of nuclear matter and o is the nucleon-nucleon cross
section. The mean free path L may be related to the imaginary part of the
potential as follows. In an infinite medium, a plane wave, e'*°**1Z is 3 solution
of the Schrddinger equation. It follows immediately that

1 po
L = — k = —
2%, 7 (2.29)

2
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Substituting in Schrodinger equation (2.25) gives for weak absorption

—ImV =hok,
h
_ pve (2.30)
2
where v is the velocity, aky/m.
The medium consists of a Fermi gas of nucleons with levels filled to an

energy & and momentum kg. It is therefore necessary to average ov over the
Fermi sea:

{va) 3 Ip—Kk| , , ,
(o) = = 2 dkfa(q,q'q)alQ q=q
v 4np; D

where ad(q,q-q’) is the differential cross section, p is the incident nucleon
momentum, k is the initial target nucleon momentum, and q and q' are the
relative initial and final momenta [e.g., ¢ = ;(p — k)]. Assuming isotropy [no
dependence on (q°q), so that a(q,q°q’) becomes a(q)/4n, one obtains

3 (p*+k—2p2
(oy=—r J"’ PF 5(q) dk
4npep lp+ K|

The integration over the Fermi sphere can be readily performed when o(q) is
a constant . Then

7 2 2 2\ 5/2
5\p 5\p Pr
3 P2 2
—>Zao(1—p—§> P s @231

The result is to be inserted into (2.30) to obtain an estimate of Im V.

We note that as p goes to py, Im V will go to zero. This is a consequence of
the Pauli principle since it forbids all collisions in which either nucleon ends
with an energy less that ¢ As the incident nucleon energy approaches &g, the
amount of phase space available for the collision goes to zero. The Pauli effect
goes to zero and (o) approaches o, as p grows. Of course, the assumptions,
such as a constant g4, are much too crude for comparison with experiment.
Nevertheless, the correct order of magnitude of Im V is obtained with (2.30).

Passatore (67, 68) who pioneered the use of dispersion calculation of Re Vg,
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showed that if Im V is constant at large energies, Re V at large energies decreases
in magnitude, eventally becoming repulsive. As one can see when (2.31) is inserted
into (2.27), initially the real part of the potential depends linearly on the energy
but eventually develops a logarithmic dependence. Both of these results have
been confirmed experimentally. See, for example, the results obtained by
Nadasen et al. (81), described in Section V.2.

Mahaux and Ngb (81) quote results obtained using the results of nuclear
matter calculations carried out by Mahaux and his collaborators, and compare
them to the empirical results. This comparison is shown in Fig. 2.6. The values
of W= —ImV for E < ¢, are obtained from the spreading width of one-hole
states [1/2=W. Up to |E—&p|~50MeV, the theoretical results are in
reasonable agreement with experiment. There is, of course, a great deal of scatter
in the empirical data, presumably a consequence of structure effects, which
nuclear matter calculations cannot include explicitly. According to Mahaux
and Ngo, the results for ReV are not sensitive to the values of W above
|E —ep| =50MeV. Their results for the ReV are shown in Fig 2.7 for
|E —epl < 50 MeV. The agreement with the empirical depths is good, as the

10h

W (MeV)

-100
E ‘EF (MeV]

FIG. 2.6. Energy dependence of the imaginary part of the single-particle potential for
medium-light nuclei. [From Mahaux and Ngo (81).]

=40
>

£ -50
> =60

E‘EF (MEV)

FIG. 2.7. Single-particle potential. The dashed curve gives the Hartree—Fock field and
the solid curve the full shell model potential. The dots are the empirical depths. [From
Mahaux and Ng6 (81).]
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theory describes correctly the magnitude, the overall energy dependence, and
the plateau at E =¢,. The plateau is a consequence of the peaking of m*/m
near gg.

We conclude this section with a description of the important influence of
nonlocality on the imaginary part of the optical potential. To make the latter
explicit, rewrite (2.25a) as follows:

2
E= ;L k? + Vo(E, k) — iW(E, k) (2.32)
m

In the effective mass approximation, and assuming that W varies slowly with
k,V can be expanded about a value of k, say k,. Then

h2k? OVR(E, k
E~——+ Vg(E ko) — iW(E, ko) + (k* — k3) Va(E, ko) (2.33)
] 2m ok
If one now puts
. 1
k=kg+ ik, L=—
2k,
and chooses k, as the solution of
hz
E=—k?+ Vg(E, ko) (2.34)
2m
one obtains from (2.32) to first order in k;:
h? oVy
h? av,
0= —k;kg — W(E, ko) + 2kjkg ——';
m ok
From the first of these equations and (2.34), kg = k,. From the second
K mW(E, ko)
" ko[ + (m/hPko)(OV J0ko)]
so that
W(E, k 2
k="MW Ek) Wk (2.35)

h2k, © 2mW(E, ko)
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This result has important implications. As noted earlier, k can be eliminated
from the potential term in (2.32) so that only the potential energy terms depend
only on E:

2
E= ﬁ—k2 + Vi(E) — iW(E) (2.36)
2m

where
VR(E) = VR(E,k(E)), ~ W= W(E, k(E))
If one once more picks k =k, + ik; and uses (2.34) and (2.35), one finds that

h2k,

W=""W(Ek) L=—20_
m 2m, W (E)

(2.37)

The last of these equations demonstrates the large effect of non-locality on the
imaginary part of the optical potential [ Negele and Yazaki (81); Fantoni, Frimen,
and Pandhariponde (81); Bernard and Van Glai (78)]. When the nonlocal
energy-dependent optical potential is approximated by a local energy-dependent
potential through the Perey—Saxon approximation, k — k,, the imaginary part
of the potential must be multiplid by m,/m to take the effect of nonlocality into
account. This effect must also be contained in the effective potential method of
Frahn as outlined in the discussion following (2.14).

6
5
4
™
£ 3t S —
5 —_——-
FIG. 2.8. Comparison of three approxi-
mations to the mean free path with the range P
of values compatible with the reaction cross "
sections for Ca, Zr, or Pb (shaded band). The _,_"'
short dashed curve is given by (1/ap); the long N
dashed curve is obtained from (2.37) neglecting L -
the factor m;/m. The solid line is the correct D
nonlocal expression in (2.37). [From Negele 50 100 150

and Yazaki (81).] E (MeV)
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An immediate application of these considerations is to the mean free path.
Negele and Yazaki (81) calculated the mean free path using the results of
Jeukenne Lejeune, and Mahaux (76) (see Fig. 2.8). Agreement with experiment,
which provides only rough estimates, showed that the effective mass correction
given by (2.37) is essential. It has the effect of increasing the mean free path by as
much as 1.7. Negele and Yazaki make the point that the effect of nonlocality
is important for an understanding of the large mean free path of a nucleon in
nuclear matter, a result of importance for the understanding of the foundation
of the mean field (shell model, optical model, etc.) approximation in nuclei.

D. Angular-Momentum-Dependent Potentials

Optical model potentials, which are functions of L* (L =r x p), the square
angular momentum operator, have been proposed by Kobos and MaclIntosh
(79). This particular kind of momentum dependence could be a consequence of
a particular sort of nonlocality in which the kernel vg(r,r' —r) in (2.9) involves
only those r’ that can be obtained from r by a rotation. Such a special connection,
rand r', could occur for interactions limited to the surface region of the nuclear
system. The underlying physical mechanism could be surface waves propagating
from r’ to r. If the system is deformed, these would correspond to excitation of
rotational levels and their deexcitation. More generally, potentials that are L
dependent can be obtained directly from (2.9) by expansion of v in a series of
Legendre polynomials that are functions of r-r’. Such an expansion is entirely
equivalent to the Taylor series of (2.17).

E. Empirical Optical Model Potentials: Nucleon Projectile

In the empirical determination of the optical model potentials, one initially
assumes the functional form of the potential involving a number of unspecified
parameters. This is followed by a determination of these parameters which are
chosen so as to obtain a best fit the experimental data. As the data have become
more accurate and as more aspects of the nucleon—nucleus interaction have
been studied, the forms used have become more elaborate. A commonly used
form, the ‘standard form’, is given by Perey (63), and Perey and Perey (74):

Vo =7 +6-LY,

d
Vo = Veau — Vf (x0) - i[ Wf () — 4Wy df(xu)] (2.384)

Xp

Vo= (")2140 L (2.388)

N rdr

and where AL is the angular momentum operator and V, W, W,, V,, are
constants. Vi, is the Coulomb interaction with a uniformly charged sphere of
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radius R.:
zZe?
r=zR.
r
Veou = 7o 2 (2.39)
—| 3-= r<R,
2R, R?

where ze is the charge of the projectile and Ze that of the target nucleus. The
function f(x) is usually taken to be in the Woods—Saxon (54) form:

1 _ .A1/3 ’
fed= o ae T Re=ra'? (2.40)

The Woods—Saxon form (see Fig. 2.9) characteristically is roughly constant
within the nucleus, decaying exponentially at large distances at a rate governed
by the value of a;. The radius parameters, R,, is the value of r at which f(x,) is
one-half of its value at r = 0. The function — 4 f’(x) has its largest values in the
surface region, r = R & 1.5a. Thus V,, has a real term that has its largest value
for r <R, and is therefore referred to as a volume term. The imaginary
component has a volume term f(x,) and a surface term (— 4 f'(x,). In addition,
there is a spin-orbit term that is concentrated at the surface. Qualitatively, these
components are intuitively satisfactory. The real potential should be a
reasonable continuation of the shell model potential into positive energies; the
absorption should have a strong surface component, particularly at the lower
energies, where the excitation of surface collective models should dominate; and
the spin-orbit term should be surface dominated since it vanishes in the infinite
nucleus limit.} However, it must not be forgotten that the Woods—Saxon form
has no other validating support, and indeed many other forms have been used
[see Marmier and Sheldon (70, p. 1102) and Feshbach (58)] that have similar
properties. As we shall see at intermediate energies (see Section 2.F), it must be
replaced by a nonmonotonic form with a repulsive central region and an
attractive surface component.

The parameters, V, W, W, V,, R, R, and a; are adjusted to fit all the
available data. Moreover, they are required to “track,” that is, to vary smoothly
with the nucleon energy and with atomic and mass number. By a fine tuning
of the values of the parameters, one can generally obtain a nearly perfect fit of
the data for each target nucleus and for each energy. Such precise fits are often
necessary for the calculation of reaction processes. However, in this volume we

*The comparison with the shell model potential is not straightforward. Both it and the optical
model are single-channel potentials in which the effect of other channels or conligurations are
included approximately. It is not clear to what extent the approximations in the two cases are
consistent. However, in the limit in which the mean field approximation (e.g., as obtained from the
Brueckner—Hartree—-Fock method) is accurate, the comparison is valid.
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1.0 = f(x) -4 §(x)

X=r/a

FIG. 2.9. Woods—Saxon potential and its derivative.

are concerned more with the global properties of these parameters to see the
trends as a function of energy and target. Strong fluctuations away from ‘the
average for a given nucleus of class of nuclei could indicate the presence of
nuclear structure effects. We shall discuss these in some detail later. For the
present it will suffice to remark that strong fluctuations may be removed if the
coupling of the elastic channel to other channels is explicitly considered through
the use of the coupled-channel optical model in place of the single-channel
description. Generally, this coupling gives rise to smooth behavior in the elastic
channel, so that a single-channel optical model suffices. However, in the presence
of special effects, as exemplified by coupling to vibrational or rotational states
or generally to doorway state resonances, a single channel is inadequate and
the results physically not meaningful.

Form equation (2.38) exhausts the possible spatial invariants only if the target
nucleus has zero spin. If it has a spin I, with corresponding spin operator I,
many other invariants can be formed [Feshbach (58)]. A few of the many
possibilities are

o', L'L, (6-ndr), (o-DLI), etc. 2.41)

The evidence for the presence of these terms is rather meager, indicating that
they are relatively weak, on the order of a fraction of an MeV [see Hodgson
(80); Batty (71)].

Phase-Shift Analysis: Elastic Scattering. Restricting our considerations to
potential equation (2.38), that is, either to spin-zero target nuclei or neglecting
terms dependent on the spin of the target I, such as those given in (2.41), the
scattering amplitude can be written as follows (see Appendix B):

f = A(k, 0) + B(k,0)c*n (2.42)
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where n is a unit vector perpendicular to the scattering place:

_ kixk,
ks x k|

(2.43)
where #k; is the incident momentum, 7k, the final momentum, and @ is the
angle between them:

ki"k, =k?cos¥, [k; x k| =k*sin 6

The quantities 4 and B can be expanded in a partial wave series:

A(k,0) = —Z[(1+1)[e2“’(+) 1)+ (e’ — 1)]P(cos§)  (2.44a)

B(k,0) = Z(ew‘“ %% ") P{Y(cos ) (2.44b)

where

d
PV =sinf—— -P/cosbh)
d(cos 0)

The phase shifts 6{*) are obtained from the asymptotic form of the solutions
to the radial Schrodinger equations

dZ =[ 1 ll
W+[k2— ‘ *;”—v@—lvfso]wu=l+%,r)=0
r r

Y(i=1-17 [k2 W+l _y (1+1)Vm]¢(j=l—%,r)=0

dr? r?
In obtaining these equations, we have made use of the results
(- LY(j=l+3r=R(=1+37)

(O LW(j=1-3r=—(+DY(=1-137)
Asymptotically,

[
y(ji=1+3, )-»sin(kr—5n+6§i’) (2.49)
The differential cross section for the elastic scattering of an unpolarized beam is

do
e =|A4|12+|B|? 2.46
<dQ>u..pon |4]1* + | B| (2.46)
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while the total elastic cross section is
(ot :k% 30+ DEFT — 1)+ K — )2+ [0+ 1)]] 257 — 27|12

1=0
or

<a£§:’>=% Y L0+ D] — 112 +1]e2%7 —1)2] (2.47)
I1=0
The total cross section is given by the optical theorem:
2n g 2i8(*) 206"
{Oo> =ﬁ > [+ 1)(1 —Ree® )+ (1 —Ree? )] (2.48)
=0
The optical model reaction cross section is the difference, (2.4):
6,5 =<0, > — (o> =kfz- S L@+ 1) — (1 + D[22 — 12721 (2.49)
=0

These expressions, (2.46), (2.47) (2.48), and (2.49), in the absence of the spin-orbit
potential so that §{*) = {7, reduce to the spin-zero results. These are:

fO= L i (21 + 1)(e?% — 1)P,(cos 6) (2.44a)
2ik 0

o . 4
(ol = % Y 21+ 1)]e — 1|2 = kl;Z(zl + )[sin2&e” M 4 L(1 — e~ 2m)2]
(0]

(2.47)

inserting & = £ + in. Finally,
47‘[ = a2 -2 1 -2m ’
O, =ﬁ2(2l + 1)[sin*&e™ M+ 3(1 —e™2™)] (2.48")

0
(o= 5T @+ e ) (249)

and the transmission factor [see (IV.3.2)

T,=1—e4m (2.49")

The polarization (= analyzing power if time-reversal invariance is satisfied)
generated in the elastic scattering of an unpolarized beam is transverse to the



360 ELASTIC AND INELASTIC SCATTERING

scattering plane:

_trf'ef _ ReAB* He
trf*f " |AI> +|BJ?

2Pn (2.50)

If the incident beam is polarized, the angular distribution becomes

d d
<—”> »=<“> (1+ P,Pn,n) .51)
dQ pol dQ unpol

where P, gives the beam polarization and n, its polarization direction. By
measuring the asymmetry, that is, the difference in do/dQ with respect to the
scattering plane, one can determine P. Measurements of the angular distribution
after a second scattering, that is, by analyzer, permit the determination of Im A B*
(and |B|?) and finally, of A4 and B separately (to within a phase) if (da/dQ)
is measured as well.

The following parametrization for AB* is often used:

2AB*

(A2 +1BP) P(0) +iQ(0) (2.52)

where Q is referred as the spin rotation function, so that

_ 2ImAB*
(141> +BI?)

Q is related to the Wolfenstein parameters R(6) and A(0) (see Appendix B) by
Q=R(@)sinf + A(H)cos O (2.53)

Note that if 6, P, and Q are measured, the amplitude f is determined to within
a phase.

Low-Energy Scattering. At sufficiently low projectile energy only the s,/=0
term in the partial wave analysis will be significant. The angular distribution
is spherical,

Ak, 0) —>2—]‘k (e??—1) (2.54)

l
B(k,6) -0
At these low energies only neutral projectiles, in particular neutrons, are useful.
Writing
do=Co+ig  1Me=0 (2.55)
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since the potentials involved are complex and absorptive, we obtain for the
scattering amplitude equation (2.42):

{(f>= i(l — g™ 2M0g2it0) (2.56)

The various cross sections are

' _ 5,7 2n0\ 2
(o> =:—f[e2"° sin’ o + (41 ; " > ] (2.57a)
_ o 2mo
(O = g[(e‘z"" sin® &, + 1—; D (2.57b)
(o, =§(1 — ™ m) (2.57¢)

Note that according to (2.49"), the optical model transmission factor 1 — |e2¥%|?

equals
(Toy=1—e"4m (2.57d)
At zero energy both £, and 7, approach zero. Define these limits by

Eo— —ka No— kb (2.58)
so that
kA —8y— — k(a — ib) (2.59)
where a—ib is a complex scattering length. The total elastic cross section is
(6> > 4n(a* + b?)

<a,>—-»4n(%-—2b2> (2.60)

so that

(oD —-»47t(a2 —b+ i) 2.61)

where the assumption that follows from the effective range relation has been
made:

1o — kb + O(k?)
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The reaction and total cross section both grow like 1/k as k approaches zero.
This is the familiar (1/v) absorption law. The elastic cross section (a5 is used
to define an effective radius, R:

(V> = 4nR>
where

R?=q%+ b? (2.62)

For reference we give the low-energy limit for the case of a target nucleus
with spin I. The two possible values for the total J are I + }. Since the weighting
factor for each value of J is

2J+1

I er+)

(2.47) is replaced by
2 2y, b 2 2y, b
o,,0—>4n| gila’ —b+)+7 +4n| g_(a’ —b_)+7 (2.63)

where a, —ib, is the scattering length for J=I+31, a_—ib_ for J=1-13.
The weights g, and g_ are given by

_I+1

g+—m
(2.64)

_ 1

9-=or+1

Finally, we shall relate the parameter b with the strength function (I'/D}.
To that end we write the exact elastic amplitude as the sum of a potential
scattering term plus a sum of resonance terms. Moreover, at these very low
energies, the width for inelastic processes (radiative capture) can be neglected
compared to the elastic width. Hence [see (1V.2.18)]

f=1|:e""sin6 — g2id 2 ]
k “E—E, +(/2T,

where 4, the potential scattering phase shift, is real. This formula assumes that
the resonances in the sum over A are not overlapping. Using the “box” averaging
(it is assumed that é, k, I';, or E; do not vary appreciably over AE),

E1+AE/2
= l[ewsina—emzi M]
k 7 AE Jg, _ag2 E—E; +i(T';/2)
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The integral is easily evaluated. Assuming that AE/T"; » 1, one obtains

1/ . ine? _ T

=_{ e®sind + —*)
R e
Noting that

S _<r
AE D

where D is the average distance between levels A, we rewrite (/) in a form that
makes comparisons with (2.56) easy:

b
<f>—2k(1 e+

This yields
o 2M0+2id0 eZi&(l _ n(F))

For (I')/D < 1, it follows that

fo'_—‘s
e M=1-n I (2.65a)
D
so that
Cdma(Dy( DY\ _n
(ay=mm (1 2D> (T 2.65%)
—‘E _,n<r> in2 ESFZ] 2.6
<0,m>—k2[(1 D )sm fo+2 b (2.65¢)

Comparing (2.65a) with (2.60), we find that

b

_1n<1">(l+n(l">)

_ (2.66)
k 2D 2D

The relevant experimental data are generally summarized in two figures. In
one the strength function S, (the subscript refers to the [ value)

I (Eo\"?
=5 )
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where E, is an arbitrary energy, usually taken to be 1€V, is plotted. In the
other, the length

1/2
R’E(l—n<r>) : a
D

Figure 2.10 gives the strength function (E,/E)'/*S, with E,=1eV. The
experimental points are obtained by direct measurement of the width of
individual neutron s-wave resonances, summing the widths in an interval AE
and dividing the sum by AE. The solid line gives the results of an optical model
calculation which includes the effect of deformation, while the dashed line is
obtained from a spherical optical model. The peaks represent values of A, or
more precisely, values of the nuclear radius R for which the overlap of the
square magnitude of the wave function inside the nucleus |x,|* [sec (2.68)] with
the imaginary potential is a maximum. Using the rough formula

2mV,
h2

R=(n+3n

which gives the values of n for which the s radial wave function has a maximum
at R, one can readily show that the maxima Fig 2.10 are due to the 3s(n=2)
and 4s(n = 3) resonances. Deformations split the large peak at 4 ~ 152 into two
peaks with maxima near A ~ 148 and A ~ 185, in substantial agreement with

T I T T | | I — T T T T
S-WAVE STRENGTH FUNCTIONS E
— DEFORMED OPTICAL MODEL CALCULATION j}
| --- SPHERICAL OPTICAL MODEL CALCULATION ]
|0;
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T I
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|.O:“II"
ol | ! ! ! ! ! I | L ! i + { I }
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A

FIG. 2.10. Comparison of theoretical with experimental values of the s-wave neutron
strength function. The solid curve represents deformed optical model calculations, and
the dashed curve is based on spherical optical model calculations [Mughabghab,
Divadeenam, and Holden (84)].
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FIG. 2.11. S-wave strength function comparison of experiment with three strengths for
the volume absorption potential. [From Moldauer (63).]

much of the data. A splitting that is much less pronounced occurs near the
A ~ 60 peak. However, anomalies remain. The most pronounced is the large
group of very low values of §, in the region extending from 4 ~ 80 to 4 ~ 130.
This can be summarized by stating that the value of the imaginary potential
W is anomolously low in this region (Fig. 2.11).

One physical explanation has been suggested by Block and Feshbach (63),
in which it is proposed that the density of the two particle-one hole doorway
states, through which the formation of the compound nucleus proceeds, is low
in this region. The comparison between experiment and theory is shown in
Fig. 2.12. More recently, Kirouac (75) has considered, on essentially this basis,
the strength function {(S,) for 143 < A < 158, where, as he has shown, there is
a strong odd—even effect, as illustrated in Fig. 2.13. The theoretical results are
in good agreement with the data (Fig. 2.14). The Block mechanism, based on
nuclear structure considerations, thus provides an explanation for the
fluctuations as well as the average behavior.

On the other hand, a fit to the average behavior has been obtained by
Moldauer {63) by using “surface” absorption optical potential concentrated
somewhat outside the surface region. The maximum of this potential is 0.5 fm
greater than the radius parameters of the Woods—Saxon form used for the
volume potentials, Vf(x,) of (2.26) (see Fig. 2.15).

These two approaches exemplify one of the tactical problems that arise in
making optical model fits. Should one adjust the parameters of the potential
to obtain a fit, or should one search for the explanation of an anomoly
in nuclear structure properties? The first procedure is of importance for
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FIG. 2.13. S-wave neutron strength functions of even Z-odd N nuclei (open symbols)
and even Z-even N nuclei (closed symbols) in the first peak of the 4S resonance. Three
odd-Z isotopes ( x ) are also shown. [From Kirouac (75).]
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FIG. 2.14. Calculated fluctuations in s-wave neutron strength functions 143 < 4 < 158.
[From Kirouac (75).]

applications. But differences in the various potentials will be difficult to interpret,
being sensitive to the choice of the forms used for the optical model potential.
The second is, in the long run, more fundamental, but its meaning will be

clarified completely only with the development of a quantitative understanding
of the optical model potential.

Problem. Starting with the equation

1d ,dy |:kzl(l+1)_2p
2

Sty
r? drr dr h?

V+ iW)] =0
derive (IV.3.3)
2
(T, =4k fo( —h—’z‘ w)x,ﬂ dr
Using the approximate relation [see (2.65b) and (2.57d)], valid for I'y/D « 1,

(Ty>=2n %92 2.67)

(T 2k 2
) DE =J‘X3‘(—PW Yor?dr (2.68)

show that

T
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FIG. 2.15. Strength-function §, calculated using the potential of Moldauer (63), a
Woods—Saxon potential with surface absorption:

—R -1 —_R— 2
V(r)= Uo[l + exp(r)] +iW0exp(—————r C)
d f
2 d _ -1
+ Uso(i c-llAI:I + exp(r R
m,c rdr d

where R=ry,A3 +r;; Uyg= —46MeV; Wy= —14MeV; U, =TMeV; ry=1.16fm;
ry =0.6fm; d=0.62fm; f=0.5fm; ¢ =0.5fm. [From Morgenstern, Alves, Julien, and
Samour (69).]
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FIG. 2.16. Comparison of theoretical with experimental values of the p-wave neutron
strength function. The solid curve represents deformed optical model calculations, and
the dashed curve is based on spherical optical model calculations of Mughabghab,
Divadeenam, and Holden (84).

Discuss the sensitivity of the calculated <I")/D to y, when W is sharply peaked
at the surface. Note particularly the effect of a node of g, at the nuclear surface.
Relate to the Moldauer potential.

It is considerably more difficult to measure the strength function for /=1
and / = 2 neutrons. The measured values are given in Figs. 2.16 and 2.17. These
strength functions S, and S, are defined by

<II;'> = 5,(kR)S, (2.69)

where an average over the possible spins j =141 with the weights (2j+1/2)
has been performed in obtaining I',/D. The functions s, are given in (IV.3.15).
Obviously, in any study of S, one should ascertain the value of R and E, that
were used in extracting S,. Quite good agreement with optical model calculations
is obtained once the effects of deformation are included. However, there are
substantial deviations from the optical model predictions, indicating the
presence of structure effects.

The values of a are given in Fig. 2.18 together with the calculations of Perey
and Buck (62). Substantial agreement has been obtained. The s-wave strength
functions for protons should be similar to those of neutrons at energies at which
the protons are moving with nearly zero energy, that is,

E,—E,+ CB.
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optical potential. [From Marmier and Sheldon (70)].



2. THE SINGLE-CHANNEL OPTICAL MODEL Ky g

1 1 1 | Rl ] L

| 1-, 3 -
2 2

L o Ty = -
0.20- s Tp = —
- x Tp = E
- 016 -

[72]
-~ B 7
012l : 1 l -
0.08 1 { -

T | ¥}{f111i j-

0.08 -

1
N |-
—

o |
oo { e l

FIG. 2.19. Proton strength function for P- and S-wave resonances. [ From Mitchell (80).]

where C.B. is the Coulomb barrier energy [Margolis and Weisskopf (57);
Johnson, Galonsky, and Ulrich (58)]. For experimental examples, see Schiffer
and Lee (57, 58); Johnson, Galonsky, and Ulrich, Schiffer (64); Elwyn, Marinov,
and Schiffer (66); Johnson and Kernell (69, 70). These are for the most part
based on the (p, n) reaction.

Developments in experimental methods, particularly by the Duke group,
have made it possible to measure the widths of isolated resonances in proton
resonance reactions [Bilpuch, Lane, Mitchell, and Moses (76)]. The resulting
strength functions are shown in Fig. 2.19, where the Coulomb penetrabilities
have been factored out; that is, in (2.69) the Coulomb wave functions have been
to evaluate s,. For the case of the /=1 strength function, a maximum
corresponding to a 2p resonance at about 4 =40 is observed.

Intermediate Energies (E <100MeV). The form (2.38) for the optical model
potential contains parameters: the radius parameters r,, ry, ry, rp, and r_; the
surface parameters day, ay, ap, and a_; and the parameters giving the strength
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of the potential, V, W, W, and V_,. Perey and Perey (74) tabulate a list of value:
of these parameters for individual target nuclei and various projectiles. For our
purposes the global parameters they give are of more interest. These are giver
in Table 2.1 together with those obtained by Rosen, Beery, Goldhaber, and
Auerbach (65) after a full study of polarization. The Wilmore—Hodgson potential
is the local equivalent of the Perey—Buck potential (62):

h 2 1 e("_Rso)/ﬂso , , ,
Vl// = — <Fxc) ar W so( )l,[/ + J.V(r,r)c,(/(r)dl' (2.70)

where

V(r,r) = UGr+ r’I)T(Ir_ﬂ) @71
P

Nonlocality follows when T deviates from a delta function; the quantity p
parameterizes the range of the nonlocality. Perey and Buck take

l 3
T(r)= ( #) e e (2.72)
N
and
d
U(r)=Vof(xo) +4iW, d—f(xu) (2.73)
X4

Their fit to neutron data yields V=71 MeV, W,=15MeV, r =r,=rp,=1.22fm,
a,,=a,=0.65fm, a,=0.47 fm, p=0.85fm, and V= 7.2 MeV.

Turning to Table 2.1, we note that the leading term of the central potential,
V, as well as the radius parameter, ry, which are independent of energy, N and
Z dependence are in agreement, reflecting the diffraction structure of the dif-
ferential cross section. The imaginary term is dominated by the surface term
Wy, the value of Wy, ap, and rp being sensitive to the reaction cross section.
Some volume absorption improves the fit. Including it results in a value of r,
that is considerably larger than the real potential, in qualitative agreement with
Moldauer’s (63) suggestion. The spin-orbit terms, needed to explain the
polarization data [Rosen, Beery, Goldhaber, and Auerbach (65)], are in
reasonable agreement with each other. The energy dependence in several of the
parameters reflects the nonlocality and energy dependence of the nonlocal
potential (e.g., that of Perey and Buck). The term 0.4Z/A'/3 is an estimate of
the change of the Coulomb potential because of the nonlocality using the
effective mass approximation. It needs to be identified before the symmetry term
in (N—2)/A can be extracted empirically. Unfortunately, it is not easy to
separate -the (N—Z)/A term from the Z/4'3 term. Some removal of this
ambiguity can be obtained by including the charge exchange (p, n) interaction.
This is discussed in Section 3.



TABLE 2.1

W

4 To ao 'w Gw Wp p ap Vso Tso 4s0
(MeV) (fm) (fm) (MeV) (fm) (fm) (MeV) (fm) (fm) (MeV) (fm) (fm) r,
Protons
Becchetti and 54.0-0.32E 1.17 0.75 0.22E-27 1.32 051407 11.8—0.25E 1.32 0.51 6.2 1.01 0.75 1.149
Greenless (69); N_z if >0 ) N—Z N—-Z N—Z 41,7884 23
A>40, +4—= 0 otherwise e +l2T +0-7T _1.1634-%3
E<50MeV 4 A
13 if >0
+047/4 0 otherwise
Menet et al. (71); 49.9-0.22E 1.16 0.75 1.2+0.09E 1.37 0.74—0.008E 42-005E 1.37 0.74—0.008E 6.04 1.064 078 125
E <60 MeV - N-Z N-Z N-Z
+26.4LZ +1.0—— +155—— +1.0——
A A A A
+04Z/413
Rosen et al. (65) 53.8—0.33E 125 0.65 1.5 1.25 0.7 5.5 1.25 065
Neutrons
Becchetti and 56.3—0.32E 1.17 0.75 0.22E—1.56 1.26 0.58 13—0.25E 1.26 0.58 6.2 1.1 0.75
Greenlees (69); N-Z if >0 ) N—Z
A>10, - 24~--;i“" 0 otherwise - 12T
S<E<24MeV
if >0
0 otherwise
Wilmore and 4701 -0267E 1.32-0.76 0.66 942—-0.053E 1.266 048
Hodgson (64) —0.018E? x (10734) —0.37(10734)
+4(1072 4) +£2(10724)
—8(10734)° —4(10734)
Rosen et al. (65) 49.3—0.33E 1.25 0.65 5.75 1.25 0.7 5.5 1.25 065
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The optical model potential should be a reasonable continuation, into the
positive energy domain, of the single-particle shell model potential (see footnote,
p. 356). To make such a comparison, it is necessary to know, for example, the
energies of the single-particle shell model states. However, in most cases these
states are fragmented by the action of the residual potential. Determination of
the centroid of the single-particle strength, to be calculated as the mean energy
of the fragmented states weighted by the fraction of each state that is single-
particle strength (i.e., spectroscopic factor), is difficult, as it is rare that the
single-particle strength has been completely ascertained. This also has the con-
sequence that it will be difficult to describe the continuation of the imaginary
part of the optical model potential into the bound-state domain. In principle,
this could be calculated from the fragmentation of a single-particle shell model
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FIG. 2.20. Nuclear potential depths for single-particle states of *°Ca, *3Ca, 3*NI, °°Z,
and 2°®Pb compared with average best-fit lines. O, , proton; +, =----- , neutron.
[From Bear and Hodgson (78).]
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level, which is analogous to the fragmentation of a single-particle resonance
into fine structure resonances as described in Chapter III [see (I11.4.49)].
Bear and Hodgson (78) have therefore restricted their study to the single-
particle energies of nuclei nearly closed shells, where level fragmentation is
minimal. The form of the potential they use is that given by (2.38) with
W=W,=0. They take r,=1236fm, a=0.62fm, and a_,=0.65 for the
spin-orbit case. Moreover, V, is chosen to be 7MeV, leaving only V to be
determined. The results are shown in Fig. 2.20 and can be fitted as indicated by

N-Z
Vot Vi for E> — 15 MeV

V= Nz (2.74)
Vot Vi——+B(E+15)  forE< —15MeV

where E is measured from the Fermi energy E.. The empirical values of ¥V,
Vi, and f are given in Table 2.2.

Folding Model: Empirical. Satchler (67), Slanina and McManus (68), and
Greenless, Pyle, and Tang (68) have suggested an alternative form for the optical
model potential, to be used in place of that given by (2.38). This development
is suggested by the high-energy multiple scattering theory, which in first order
yields the potential of the form

V(= J.p(rl)t(r —r,)dr,

where ¢ is the two-nucleon free-space transition matrix. This expression is not
correct as the nucleon energy is lowered. There are already substantial errors,
presumably arising because of the influence of the medium in which the two
interacting nucleons find themselves at proton energies of 500 MeV [Ray (83)].

A similar result is obtained if one drops the second term in the effective

TABLE 2.2

Nucleus Vo (MeV) V: (MeV) B
12¢c 56.7
160 56.0
40Ca 56.0
48Ca 54.9 38.1 0.32
S8Nj 57.4 40.0 0.64
907r 544 428 0.47

208pp 54.5 36.2
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Hamiltonian of Chapter III:

1
g _H, Hop

Hy=Hpp+H (2.75)

keeping only H . Recall that when P projects only on the elastic channel,
P\P = .,duo ¢)0

where ¢, is the ground-state wave function of the target nucleus. As a
consequence,

Z Vo;

Vpp(P¥) = <¢’o Q/1‘04’0>

where v; is the interaction between the ith target nucleon and the incident
projectile. Evaluating the matrix element on the right (the integrations are only
over the target nucleon coordinates), one obtains

Vpp(PY¥) = [ -[P(rl)vo1(r0a r,)dr, :|u0(r0) - Jp(rl’ Fo)Vg, (Yo, P )uo(r,)dr,  (2.76)

The errors in this approach come mainly from the neglect of the second term
in (2.75), which contains the effects that can be described as involving excitation
of the target nucleus, such as core polarization and correlations.

The empirical folding potential takes account of these limitations by replacmg
the two-nucleon interaction v,, by an effective two-body potential, so that (2.76)
is replaced by

VXopl = I: Jp(rl)gpt(rp’ l.1)dr1 ]Xop[(rp) - Jp(rl ’ rp)gm(rm rl)Xopt(rl )drl (277)

‘The quantity g (T 1) is the effective two-body interaction in the nucleus, where
r, represents all the projectile coordinates (spatial, spin, isospin) and r; those
of a target nucleon. The subscripts p and ¢t refer to projectile and target,
respectively. Note that the single-channel wave function u, of (2.76) has been
replaced by the optical model wave function x, . This can be justified using
the partition proposed by Kawai, Kerman, and McVoy (75) given by (I11.8.5).
Note that this form reduces to that developed by first-order multiple scattering
(which neglects the effects of the Pauli principle) theory as noted above, with
g,, replacing the two-body transition matrix t(r, —r,).

The linear dependence of V,  on the density is illusory, as the effective
interaction g, depends on the nuclear medium, and thus on the density and
other parameters describing the nuclear system. The hope is that g, will depend
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slowly on these variables and thus can be replaced by an average value over a
substantial range of target nuclei and energy.

Note. A microscopic theory of the effective interaction can be developed.
Clearly, the Bethe—Goldstone equation (now with one nucleon in the continuum)
will yield information. The papers of Mahaux and his school and of Brieva and
Rook discussed earlier employ the Bruecker—Hartree—Fock method to calculate
the effective single-body potential in nuclear matter. In the course of this
calculation the effective two-body interaction in nuclear matter is obtained.
One can then apply a local density approximation to obtain an effective
two-body interaction appropriate for two nucleons in a finite nucleus. This
procedure is a generalization of the G-matrix method described in Chapter VII
of deShalit and Feshbach (74). The g, obtained in this manner is density
dependent. Moreover, if such a calculation were to be done directly for a finite
nucleus rather than by applying the local density approximation, g, would
show nuclear structure effects arising from core polarization and correlation
effects.

Returning to (2.77), let us define and/or describe p(r(), p(ry,r,) more
completely. The quantity p(r,) is the one-particle target ground state density
normalized to A:

p(r1)=AJ.l‘l‘g(rl,rz,rg,...)|2dr2-~- (2.78)

The quantity p(r,r’) is the ground-state density matrix discussed in Chapter 11
of deShalit and Feshbach (74). It is defined by

pr,r)=A J‘I‘g(r, r,,... )Wo', r,,...)dr, - 2.79)
Note that the density p(r) is just the diagonal element of p(r,r'):

p(r) = p(r,1) (2.80)

Problem. Prove

plr) = <‘1‘o 2.8r—r) ‘Po> (2.81)

and

Y. 6(r—r)o(r' —r)

i*j

Wo(r',15,.. .)> (2.82)

1
P(r’r’)';A__—l<\Po(r1,r2,---)
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Note in (2.82) that the factor 5(r —r;)é(r" —r’) is understood to be multiplied by
the unit operator in the other coordinates, d(r; —r})é(r, —r3)--.

The factor g,(r,,r,) is the effective projectile nucleon-target nucleon
interaction inside the target nucleus. It depends not only on r, and r, but on
the spin and isospin variables (i.e., on 6, 6, r,, and r,) as well.

Note. For reasons of simplicity in presentation, the spin/isospin dependence of
d,» P(r) and p(r,r') have been suppressed. The effective interaction g, can be
written as a linear combination

Gp= D g5 P°T (2.83)
S, T

where PST are projection operators in spin and isospin space:
PST = pSpT (2.84)

where S and T can have the values zero (singlet) or 1 (triplet). The corresponding
operators are
P(O)Zl—cp-ﬂ1 P(1)=3+0”.0},
4 4

Note that expansion (2.83) is valid in the presence of spin-orbit (6, +6,)1,,,
and tensor (3o,f,6,'f, —0,°6,) interaction terms, since these vanish in the

singlet spin state.
Under these circumstances p(r;)g,, of (2.77) becomes

P(ro)gp, - Z pST(rO)gitT
S, T

where, for example,

5 e~ r.-)(3 +Zo.oi)(1 _;O.t,.) \P0>

In an empirical analysis the form of g, is assumed. Its parameters are then
adjusted to fit the data under investigation.

Plo(ro)= <‘P0

The first term in (2.66) for the folded potential V,, is referred to as the direct

D).
term, Vi

- Vin= fp(rl)g,,,(rp, r,)dr, (2.85)
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FIG. 2.21. Differential cross sections for 30-MeV protons on '2°Sn. [From Owen and
Satchler (70).]

and the second is referred to as the exchange term. In the earliest formulations
of the folding potential model this term was omitted. However, as Owen and
Satchler (70) soon demonstrated, this exchange contribution cannot be neglected
(see Fig. 2.21). The exchange term is nonlocal. Because of its origin, one can
expect it to have a range of the order of 1/kg. In calculations it is often replaced
by a local equivalent potential using one of the methods described earlier in
this section (see Sec. 2B this chapter).

The effective nucleon—nucleon potential to be inserted for g, in (2.77) has
the general form [Greenlees, Pyle, and Tang (68); Petrovitch and Love (80)]

. [ C g Cog v -
Y ete = Voo T V01%0"Ti + 0{(00°0; + 0, 6¢°6,T" T;

€

+[vg + 077718, + [v5° + 07316 1] Ly, (66 + 6)) (2.86)

In this expression, the coefficients v,,, v, and v-5 are functions of the distance,
[ro —r;|, between the incident projectile ry and the target nucleus nucleon r;.
The subscripts a and b refer to the spin and isospin character of the interaction.
The superscripts C for central, T for tensor, and LS for spin-orbit refer to the
spatial symmetry. The tensor operator Sy, is defined by

S0i= 300'?06,"?5_00'6‘- (2.87)
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where £, is the unit vector in the r, direction, while
1
Lo; = (o — 1) x (po — P) (2.88)

It is useful to break up the interaction, (2.86), according to the spin and
isospin of the interacting pair, using the projection operators P5T of (2.84).

Noting that both the tensor and spin-orbit potentials vanish when operating
as a single spin state (6, = — @;), we obtain

g‘nE Ue”E P(ll)Vgll)_'_ P(OI)VE()I) + P(IO)V(iIO) + P(OO)V%OO) (289)
where

Vit =05, + 05, + 05y + 05, + @5 +0{")Sg; + (057 + v1F)Lg;" (00 + 67)

©1) _ ,C C _2,C _2.C
Vi =05 +vg, — 307, — 307,

—T T T T T T T T T
25 L £,:30.3 Mev
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FIG. 2.22. Experimental differential cross-section data points, with errors, for the elastic
scattering of 30.3-MeV protons together with predictions. (From Greenlees, Hnizdo,
et al. (70).]
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VIO =5, — 305, + 05, — 305, + (0F — 30])Sg; + (v5° — 3v1%)Lyg;* (6, + 05)

VOO = 4€ — 3uC — 30€, + %S, (2.90)

The Pauli principle requires that V'Y and V% act only when the relative
orbital angular momenta of the two interacting nucleons are odd. The often-used
Serber force puts both of these equal to zero so that v, acts only on even
relative orbital states. Applications of interaction equation (2.89) to elastic
scattering of protons (energies extending up to 40 MeV) have been made by
Greenless and his collaborators [Greenlees, Pyle, and Tang (68); Greenlees,
Makofake, and Pyle (70)]. Only the first term in (2.77), the direct term, was
used. The exchange term containing effects of the Pauli principle was neglected.
Presumably some of its effects are included in the empirical g(r,, r,). The targets
were all even—even nuclei, with the consequence that only v5,, v$, and (v5° + v2%)
contribute to V. These interactions were taken to be real. It was, therefore,
necessary to add imaginary potentials of the surface and volume variety, familiar
from (2.38), to the V, of (2.77). The reader is referred to the original papers
for the details of the calculation. Comparison of the calculation (eight empirical
parameters) with data is shown in Figs 2.22 and 2.23. This subject is discussed

further in Section 5.

Intermediate Energies 100 MeV < E < 200 MeV [Nadasen, Schwandt, et al.
(81); Schwandt (83)]. The analysis based on the standard model, (2.38), has
been continued to higher energies as these have become available. The overall
situation has been reviewed by Schwandt (83). We shall make use of that review
as well as the paper by Nadasen, Schwandt, et al. (81). In that paper, an optical
model analysis using the standard model is developed for the observed angular
distribution and polarization for protons with energies ranging up to about
180 MeV elastically scattered from a wide variety of nuclei. The results are given
in Table 2.3. The symbols used are those of (2.38). E, is the proton energy in
MeV. E in the expression for W signifies that the expression (E, — 135) differs
from zero only for E, > 135 MeV.

Note that the linear energy dependence of the depth of real part of the central
potential as given in Table 2.1, valid at lower energies, is replaced by a
logarithmic energy dependence, in agreement with Passatore’s earlier prediction.
Second, the imaginary term has no surface term and grows rapidly with energy
above 135 MeV, presumably as a consequence of pion production. Note, again
in contrast with Table 2.1, that the geometrical factors r,, a,, rw, and ay are
energy dependent. Finally, we see that the spin-orbit depth is complex.

The experimental reason for the latter lies in the dominance of the
contributions of the spin channel component ¢'*) corresponding to ¢:n=
I(n =k, x k,,) over the contribution from the ¢*n= — 1(¢™’) component, as
demonstrated in Fig. 2.24. From the point of view of the optical model this
result is a consequence of the complex spin-orbit potential, which enhances the
j=1+} partial wave with respect to the j=I—3 component.
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FIG. 2.23. Experimental polarization data points for the elastic scattering 30.3-MeV
polarized protons, together with predictions. [From Greenlees, Hnizdo, et al. (70).]

An indication of the energy and isospin dependence of the parameters in
Table 2.3 can be obtained from Fig. 2.25. The energy dependence of these optical
model parameters seems to indicate the need for modification of the standard
equation (2.38) model.

Intermediate Energies > 200 MeV. The difficulties that are suggested by the
comparatively rapid energy dependence of the optical model parameters become
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TABLE 2.3

N-Z
vV = (92.5 + 64 T)(l —0.155InE)) MeV

6.5
"o =l.18+(0.34+7)10‘3Ep fm
a, =0.77—(1.2 x 107*)4%*(180 — E,,)

N
W =38+3-+(123x 1073)(E> =135  MeV, W,=0
z 0.065 Ca

rw =116+pIn(185—E,), f=<0053Zr fm

ay =037+(18x10"HE, fm (0058FPb

The V, of (2.38b) is replaced by V_ +iW,_ .

V, =165(1 —nInkE)) MeV, r7=0.160+0.06§;—z

W, ~52(1-02621nE,) MeV
r, ~1015+5x107%4  fm

S

a_ ~0.60 fm

so

explicit in this energy region. For example, the standard Woods—Saxon model
fails to provide a good fit to the angular distribution and analyzing power
observed in the elastic scattering of 400-MeV protons by *°Ca (see Fig. 2.26).
As Meyer, Schwandt et al. (81) have shown, this failure is a consequence of the
restriction of the radial behavior of the components of the potential to the
Woods—Saxon form. If, for example, the real central potential — Vf,,((x,) is
modified by the addition of a repulsive term:

- Vfws(xo)'“’ - V[fws(xo) + 'Ifst(xo)] (291)

and similarly for other terms, agreement with experiment is vastly improved
(see Fig. 2.27). The corresponding central potentials, real and imaginary, are
shown in Fig. 2.28. We see the presence of a repulsive central region in the real
part of the central potential, together with a substantial increase in the absorptive
term. The need for a repulsive central region together with an attractive potential
at large r was first suggested by Elton (66).

A qualitative explanation of this important result is provided by the local
density approximation using the infinite matter calculation of the real potential,
V. As can be seen from Fig. 2.29, the variation of V with energy depends strongly
on the density. It decreases more rapidly with energy with the larger density
po than for the density py/2. The first, in fact, becomes repulsive at roughly
250 MeV, while close to 200 MeV the second already exceeds the first. In the
local density approximation one can thus expect a nonmonotonic form for the
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cm

FIG. 2.24. Calculated differential cross-section angular distributions (solid curves)
plotted as ratio-to-Rutherford for 80-, 180-, and 280-MeV proton elastic scattering from
208ph, The partial spin-channel decompositon of the cross sections (“spin up” dashed
curves; “spin-down” dot—dashed curves) is also plotted, illustrating the origin of the
damping of the oscillatory structure observed around 180MeV. [From Nadasen,
Schwandt, et al (81).]

central potential. In the small r region the potential will become repulsive, while
for larger r in the surface region where the density is reduced, the potential will
remain attractive, although eventually it, too, will become repulsive at sufficiently
large energies in agreement with high-energy ( ~ 1 GeV) analysis.
Quantitatively good agreement with the 400-MeV data is obtained using the
local density approximation and the infinite nuclear matter real potential
obtained by Geramb and Nakano (83) based on the Paris nucleon—nucleon
potential. A direct comparison is shown in Fig. 2.30 for 400-MeV proton



S8¢€

L g T 1 T 7T TP V7T 709707770 v L4 \ LS L L T
1o} o 4
0 - Ca 1
35F " Zr fo | s
30k s Pb 1=
- 1=
- o
__ 25} - .
> ¢ 1
2 5 -
~ 20-
> Ca %
15} - - -
Pb =
1ok 1l 060F = - == - - - == —ag]
A 2
Vs- \ 112:_---_-_Eb__
SO 08-
0 \EL A S L
Wso 108 o e e e e e - {=
_5f p - Ca 4 &
1.00¢ b
1 1 I 14 3ttt i1411 L 1 I 1 L 1 1
50 100 150 200 60 80 100 120 140 160 180 200
Ep (MeV) Ep (MeV)

11
10

o N W

0.6

0.5

Ep (MeV)

v L] T L] 1 1 z

- o 4
7
—_—, .
i e Zr o/ 1
& e

o
L ‘,' Ca ./ d
- ¢ r' . 4
¢ f ”
s 4

—.

® .
L ‘:‘:i\.\ ]

\%

- -
] L/
- -
[ R T TS
60 80 100 120 140 160 180 200

FIG. 2.25. Energy dependence of the complex central and spin-orbit potential parameters
obtained in the fixed-spin-orbit fits to the cross-section data. Note the logarithmic energy scale

in the left-hand panel. [From Nadasen, Schwandt, et al. (81).]



98¢

Cross-Section (mb/sr)

10.00 x 107

]
\ — Simple WS fit
1000

100.0 \

10.00

-l
)

1.000

0.100 \

0.010

1.00 x 1073

1.00 x 1074
)

20 40
Angle in Degrees

(a)

60

Analyzing Power

1.50

1.000

LNAR
AN

-0.500 1

|

-1.000

0 20 40
Angle in Degrees

(6)

FIG. 2.26. Angular distribution (a) and analyzing power (b\ compared to the Woods—Saxon

fit. [From Schwandt (8.3).]



2. THE SINGLE-CHANNEL OPTICAL MODEL

10.00 x 102

1000

~

1
— WS + WS fit

100.0

10.00

1.000

N

0.100

Cross-Section (mb/sr)

0.010

1.00 x 1073

1.00 x 1074
0

FIG. 2.27. Angular distribution (4) and analyzing power (b)

20 40 60
Angle in Degrees

(a)

1.50

1.000

0.100

Analyzing Power

—-0.500

-1.000

387

——

Woods-Saxon plus (Woods—Saxon)? fit. [From Schwandt (83).]

V(r) (MeV)

-10

T

180 MeV]

<

y
/0 V()

’
- -

_"\ —400 MeV | {

r (fm)

20 40 60
Angle in Degrees

(6)

compared to a

s

(3]

=S

z

FIG. 2.28. Radial dependence of the real and imaginary parts of the central potential
at 180 and 400- MeV. The solid lines give the modified Woods—Saxon fit (see Fig.2.27).
[From Schwandt (83).]

scattering by 2°8Pb. These microscopic calculations remain viable below
200MeV, as Fig. 2.31 indicates from a comparison of the cross section for
135-MeV protons scattered by 1°O with theory. Of course, in this energy region
the standard model provides a good fit, as discussed earlier.

The Relativistic Optical Model: Dirac Phenomenology [Clark, Hama, and
Mercer (83)]. In this analysis the Schrodinger wave equation is replaced by
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the Dirac equation as if the incident nucleon were a relativistic spin-1 particle
moving in the field of an infinite mass nucleus. This single-channel formulation
omits any explicit calculation of recoil associated with the target. The results
are in surprisingly good agreement with experiment. When the Dirac equation
is reduced to an equivalent Schrodinger equation, the repulsive addition
[see. (2.91)], energy dependence, and correct spin-order coupling are obtained.
Inasmuch as the physical origins of, for example, the energy dependence in the
relativistic model differ so sharply from the physics of the nonrelativistic model
of, say, Jeukenne, Lejeune, and Mahaux (76), one remains tentative in evaluating
the success of the relativistic model.
The Dirac equation in Hamiltonian form?* is

[cap+ B(mc® + U,) + Uy = Ey (2.92)

*For notation, see appendix to ChIX, deSha_lit and Feshbach (1974) and ChIX.

FIG. 2.30. Angular distribution (a) and analyzing power (b) for 400-MeV protons
scattered by 2°®Pb compared with the calculations using the effective interactions derived
by von Geramb and Nakano (83) and with the second-order multiple scattering using
a modified Hartree—-Fock nucleon density. [From Ray (83).]
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Other invariants can be added to the g term, but it has sufficed for the empirical
treatment to employ only the combination of a scalar potential U, and the fourth
component of a four-vector, U,. To obtain a comparison with the Schrédinger
optical model equation, one first introduces

()

and obtains
(6-p)s=[(E—Uy)—(mc*+ U )1y, (2.94q)
(6Pl =[(E—Uq) + (mc* + U Jys (2.94b)

Solving the second of these equations for ¥, and introducing the result into
(2.94a) yields
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[(E = Uo)* —(mc* + U )1y,

1
=|(E—U,) + (mc* + Uy)ce- co*
[( o) +( Yo p Uotme® 4 Uy p]t//L

Evaluating the quantity on the right under the assumption that U, and U, are
functions of r yields only

c* oA 1 04
E—Ug)? —(mc*+ Ug)’ Ty, = ¢*p? ‘L—c— " (r
L( o) —( s Y. Pyt |: rA or Py ¢ A or (r P):,l//l,
where
_ 2
AE(E U,) + (mc* + Ug) (2.95)
E + mc?
To remove the linear term in p we replace y, by
Y=AY2¢p (2.96)
with the result
l(J‘E—U )2—1(ch+ U)?—p? |¢
c? ¢ c? s P
+[ 31 <6A) L ! 8(r28A)+ Loa o b=0
7 7 s -
or 2r2d or or rA or
or placing
E? — m?c* = c2k?
one obtains the Schrodinger equation:
k2 2
(2m ;- en)¢ 0 297)
E 1 3 1 (04)\?
Vie=——Uo+Us+ — (U - U+ ——| —
T mez 7 ° 57 om ( Us) 8mA2<6r)
1 04
1 ¢ ,04 (2.98)

S L - 6
4mr:Adr oOr 2mrA or

In V, note the energy dependence of the U, term as well as the presence of
the square terms, which by suitable choice of U, and U, can produce a repulsive
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FIG. 2.32. Elastic p—*°Ca cross sections and analyzing powers at 181 MeV. The smooth
curves are the results of the relativistic optical model analysis described in the text.
[From Arnold, Clark, Mercer, and Schwandt (81).]

term as required by (2.91). These three terms would appear naturally in any single-
body relativistic formulation, as they originate from [(E — U,)? — (mc? + Us)?].
In the above, the Coulomb term is included in U,. The spin-orbit term and the
preceding two terms (also making repulsion contribution) are consequences of
the special character of the Dirac equation. To obtain the energy dependence
observed, Re U, must be repulsive (positive) and Re U attractive (negative).
Note that U, and Uy are complex. The effect of an attractive Uy is to reduce
the nucleon mass inside the interaction region considerably ( ~ 0.5 m), thereby,
amplifying the relativistic effects.

In using the Dirac optical model, (2.92), to fit experimental data [see Clark,
Hama, and Mercer (83) for a summary], Ug and U, are chosen as follows:

Uo = Vo folr) + iWog,(r)
US = sts(r) + iWSgS(r)
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FIG. 2.34. Values of the imaginary scalar W, and vector W, potentials at r =0 deter-
mined from the 12-parameter analysis of p—*°Ca data described in the text. The dotted
lines are the calculations of Jaminon (83); the dashed lines of Horowitz (82), the smooth
curves, of Shakin (83). [From Clark, Hama, and Mercer (83).]
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FIG. 2.35. Real part of the Schrédinger equivalent central potential U, determined
from the Dirac equation based analysis of p—*°Ca elastic scattering experiments. The
Darwin term is omitted. [From Arnold et al. (82).]

where f5, f., 9o, and g, are in the Woods—Saxon form:

1
1+ ¢~ Rle

The geometrical parameters for f, and f; are obtained by comparison with the
results of the Walecka relativistic model (74) obtained by Horowitz and Serot
(81). For the case of 181-MeV protons incident on 4°Ca, the parameters are as
follows:

R, =3.474fm
R,=3.453fm
ay, =0.668 fm
a,=0.692 fm

The methods used to obtain these results are described in Arnold, Clark, Mercer,
and Schwandt (81). In that paper the geometrical parameters for the imaginary
components of U, and U, were chosen identical with those of Re U,. These,
together with the depths V, , and W, ,, were varied in order to obtain a fit of
the experimental data, making a six-parameter fit in all. The standard model
uses 12 parameters. The fits to the 181-MeV proton data are shown in Fig. 2.32.
The values of the parameters to be combined with those given above are
ReUy=334MeV, ReU;= —437MeV, ImUy= —107MeV, and ImU,=
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109 MeV, where the geometrical parameters for Im U, are R = 3.487fm and
a=0.716fm. The energy dependence of the potential depths is shown in Figs
233 and 2.34.

The real part of the effective potential, (2.98), is shown in Fig. 2.35. The
characteristic intermediate wine bottle shape is seen at 181 MeV. The potential
is mainly repulsive at 400 MeV and above, with a small attractive tail that
diminishes in amplitude as the energy increases. The radial dependence of the
effective spin-orbit potential is shown in Fig. 2.36. The excellent agreement at
181 MeV and 400 MeV is repeated at 497 MeV. A new feature at this energy is
the measurement of the spin rotation function Q(6) shown in Fig. 2.37. The
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FIG. 2.37. Spin rotation function Q. 0.0 10 20 30 40
(From Schwandt (83).] 6

relativistic model agrees very well indeed, whereas the standard model result
given by the dashed line is in strong disagreement with experiment.

The excellent agreement obtained with the relativistic theory over a wide
range of energies is a strong incentive for further study, especially those involving
reactions, which will serve as tests of the theory. The one-boson exchange picture
used by Walecka (74) and Shakin (83) involving a scalar (¢) and a vector boson
{(p) is not easily made consistent with the quark picture of a nucleon with a
root-mean-square radius of 0.8 fm. Thus at the time this is being written, much
remains to be done.

3. CHARGE EXCHANGE REACTIONS: OPTICAL MODEL DESCRIPTION'?

Because of the near identity of the neutron and proton, the charge exchange
reactions (p,n) or (n, p) should be closely related to the elastic (p, p) and (n,n)
elastic scattering. However, these connections are not simple because of the
presence of interactions, such as the the Coulomb interaction, which do not
conserve isospin. To make this issue more concrete, consider the final state in
a (p,n) reaction, in which the target nucleus (Z, N, A) is converted into the
nucleus (Z + 1,N —1,A). The target nucleus is in the ground state. The
energy-level spectra of the two nuclei, the target and residual are compared in
Fig. 3.1. We see that the level in the nucleus (Z + 1, N — 1), corresponding to
the ground state in the target nucleus (Z, N), is not its ground state, but rather
one lifted by an energy approximately equal to the Coulomb energy, which is

iSatchler (69), Robson (69), Auerbach, Gal, Hiifner, and Kerman (72).
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the dominant isospin symmetry-breaking term. This state in the (Z + 1,N — 1)
nucleus is referred to as the analog of the ground state of the (Z, N) nucleus.
To the extent that T, the isospin, is a good quantum number, it is the ground
state (i.c., the lowest state) of the T =(N — Z)/2 states in the (Z+1,N —1)
nucleus. The value of T, for the ground state of the (Z, N) nucleus is — T, while
for the analog, T,= — T + 1. It is clear that the channel which should be
considered along with the proton, plus the ground state of the (Z, N) nucleus
channel, in discussing elastic scattering is the neutron plus analog state of the
(Z +1,N — 1) nucleus. In other words, we consider elastic scattering in the
T =(N — Z)/2 channel, which, because of the Coulomb shift, should better be
referred to as quasi-elastic scattering.

One should question the use of isospin quantum numbers for the target and

-residual nuclei in the presence of a symmetry-breaking Coulomb force, which,
particularly for heavy nuclei, must be regarded as strong. The saving grace is
that this force is long range, that is, varies slowly over the nuclear volume. Thus
its nondiagonal matrix elements between nuclear states are relatively small. As a
consequence, the principal effect of this long-range symmetry-breaking force
will be to shift the position of the energy levels but not to change substantially
the wave functions inside the nuclear volume. In this respect, it therefore makes
good sense to continue the use of isospin concepts and nomenclature even for
the heavier nuclei, although it should be kept in mind that the states under
consideration are not pure. This argument breaks down at sufficiently high
excitation energies, for then the smallness of the nondiagonal matrix elements
will be compensated by the high density of states with differing isospins that
couple to a state with a specific isospin via the isospin symmetry-breaking
interaction. Isospin impurity will therefore grow with increasing excitation
energy.

We turn now to a consideration of the isospin extension of the optical model.
First, we collect some simple results regarding the states involved. The state of
the target nucleus will be designated by |z} for “parent” and the state of the
proton plus target by |pn ). The analog state, | 4 ), is obtained by converting a
neutron in the target to a proton?

4> =aT, |n) (3.1

*Recall that in these volumes t, [p> =0, |n> =|pd,1_|pd> =|nD, 1_|n> =0,t=1/2.
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where o is a normalization factor. We determine o by calculating ( A|A) and
choosing o so that ( A|A) is unity:

CAJAY =a¥{n|T_T,|n)=a?[T(T+1)— T2 — T,]

where it has been assumed that |z ) is a state with a well-defined isospin T with
the projection

Tyln) = —3(N —2)In)
With T = (N — Z)/2 we find that

! =(N—Z)\2=(2T)'2

o
so that
A= T =L T jm (3.20)
JN-2Z JaT
Note that
T_|n>=0 (3.2b)

Note. The corrections to (3.2) because of the isospin impurity are discussed by
Auerbach, Gal, Hiifner, and Kerman (72).

The states |pn) and |nA) can be written as linear combinations of states
with isospin T, (= T + 3)and T.(= T — }) using Clebsch—Gordan coefficients:

\pn>—|22,TTz> (T+3, T+ 3155 TTHIT,, To+ 3>
+{T =5, T+3l35TTI T, T, + 3>

Taking T, = — T, we obtain [see deShalit and Feshbach (74, p. 927)]

1 N
lpn) =135, T, = T>=———=1[IT> ) +/2T|T>] (3.39)

V2T +1

Similarly,
1
nAY =15 LT, =T+ 1)=—[2T|T> > —|T>]  (33H)
2T + 1

Inverting yields

1
T )=—0—— 2T|nA 34
ITs > \/ﬁ+1[lpn>+\/ InA> ] (349)
1 -
T.>=——[/2T —|nA 3.4b
IT<> \/2T+1[\/ lpn> —|nA4>] (3.4b)
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The isospin operators that will enter into our discussion include t, (=17;)
operating on the nucleon projectile and t-T(t = 3t), where t operates on the
nucleon and T on the nuclear (n or A) coordinates. The matrix elements of ¢,
in the two representations (3.3) and (3.4) are

Cprltslpny =3 <pnlts|nd) =0=_nAlts|pn)

{nA|tz|nAd)=—73 (3.5)
12T —1
Ts|ts|Ts )= —— = —{T.|t5| T«
({Ts|t51T> > 33T 11 (T<|t5|T<H
2T
T \t5|T> =T |t;5]T5 )= 3.6
(T |51 T< > =<{T|55|T> ) T +1 (3.6)

The matrix elements of ¢-T operator are most easily obtained in the
representation given by (3.4) since

T+ -T2
B 2

T-t

One obtains
(T-|T-t|T.»=35T
(TT Ty =—3(T+1) 3.7
(T T T ) =0=(T|T-HT )

In representation (3.3),

T
{pr|T-tipn) = —3

(nA|T-t|nd) =4T—1) (3.8)
(nA|T-tipn) = pn|T-t|nd) =1 /2T

Note that the operator T-t induces the charge exchange reaction pr—nA.
With these results in hand it will be possible to discuss the extension to the
optical model in isospin space proposed by Lane (62), namely,

e

V=Vo+avi (3.9)

These are the only invariants on isospin spin space since the isospin operator
for the projectile t can at most appear linearly. If we were dealing with other
projectiles (e.g., heavy ions, pions) whose isospin is greater than unity, other
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invariants are possible [Satchler (69)]. In the original Lane model, V, and V,
were assumed to be central potentials, but obviously this can be extended to
include spin—orbit terms or other spin-dependent terms, so that generally V,
and ¥, can have the general form given in (2.38). The spin-dependent term can
have a profound effect. For the present we shall assume that V,, and V,; depend
only on the radial coordinate.

The potential equation (3.9) is not complete since, for example, it does not
include the symmetry-breaking interaction between the incident proton and the
target nucleus. The principal component of this interaction is the Coulomb
force, which in (2.38) is taken to be the interaction of the proton with a spherical
distribution of charge of radius R, and charge Ze. This is an approximation to
the sum of Coulomb interactions between the incident protons and the protons
in the nucleus. There are additional electromagnetic terms, including magnetic
terms, describing the interaction of the magnetic moment and orbital current
of the proton with the currents and magnetic moments of the nucleons inside
the target nucleus. It should be noted that the Coulomb interaction is modified
by vacuum polarization. These effects, which should be added on to Coulomb
potential, are discussed in considerable detail by Auerbach, Gal, Hiifner, and
Kerman (72). They will not be included in the empirical analysis discussed below.

In the [n4) channel the electromagnetic symmetry-breaking interaction of
the neutron with the nucleus A is a consequence of the interaction of its magnetic
moment with the currents and fields inside the nucleus. These are similar to
those discussed in the preceding paragraph and will be neglected in the empirical
analysis.!

The optical model Hamiltonian is thus

T
H=Ho+To+ Vo + 4V~ “+ Vel +1) (3.10)

The last term is present only in the |pn > channel vanishing in the |nA4 > channel.
The operator H, is the Hamiltonian for the target nuclear system of A nucleons;
T, is the kinetic energy of the nucleon relative to the nucleus. The state vector
|7) is an eigenstate of H, with the energy scale chosen so that the eigenvalue
is zero.

With this Hamiltonian, the Schrodinger equation

HY = EY

can be reduced to a pair of coupled-channel equations by using either

*However, the small-angle scattering induced by the interaction of the neutron moment with the
electric field of the nucleus can be used to produce polarized neutrons, as pointed out by Schwinger
and referred to as Schwinger polarization scattering [Schwinger (48)].
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representation

Y=y, (0)pn) + ¢,(r)|nd) (3.11a)
or

Y=y.OIT-5+y.0)T) (3.11b)

Inserting (3.11a) into the Schrodinger equation and using (3.5)—(3.7), one obtains

2TV V.
I:E— Ty — Vo + " 1_ VC]¢p= 2, /ZTle,, (3.12a)

[E—TO—AC—VO—W}IJ,,:Z\/?ZW" (3.12b)
with the asymptotic boundary condition that , approach the incident plane
wave plus outgoing scattered wave, while i, yield only an outgoing wave if the
total energy in the neutron channel is positive; if negative, an exponentially
decaying wave would be required. From (3.12b) one sees that the energy in the
neutron channel is E — A with

Ac=CA|Ho|A) — {n|Ho|m>) (3.13)

If isospin were conserved, A. would be zero. But in virtue of the isospin
symmetry-breaking potential, the Coulomb potential, A, is not zero but rather
gives the additional Coulomb energy possessed by the analog nucleus because
of the replacement of a neutron in the parent nucleus by a proton. To
demonstrate this more closely, we introduce (3.1) expressing |4 in terms of
|7>. One obtains

1 1
Ac=ﬁ<7t|T_ [Ho, T, 1|5 2E<NI[T-,[H0, T.1]|n> (3.14)

Only if H, contains a term that does not conserve isospin and therefore leads
to a nonzero value of the commutator |H,, T, ] will A differ from zero.

Problem. Assume that the only isospin symmetry-breaking term in H, is the
Coulomb energy [see (IL.6.6) in deShalit and Feshbach (74)]. Express it in terms

of isospin spin operators and A (= N + Z) and evaluate the double commutator
in (3.14).

The value of A using the Fermi-gas model turns out to be

2
Ac gg%[(zz+ 1)—1.02Z'7] (3.15)
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[see Spencer and Kerman (72)], where R is the nuclear radius. For 83Sr, A, is
about 11.5MeV.

For a sufficiently low E, the available energy for the neutron analog channel,
(3.12b), is negative, so that the wave function decays exponentially. Moreover,
the homogeneous form of (3.12b) obtained by placing the right-hand side equal
to zero will admit bound-state solutions. As we know from the example
introducing Chapter I11, this has the consequence that the proton channel will
exhibit a resonance at an energy close to the energies of these bound states.
These are the elastic isobar analog resonances.

Before discussing these, one more feature must be added to (3.12a). The
imaginary component of the potential, V,, is not necessarily the same for the
proton and neutron channel since the coupling of these channels to other
channels and to more complex excitations differ. In other words, additional
isospin dependence needs to be added. The issues involved are clearer if we
make use of the Ts. (= T + }) and T. (= T — 1) representations Inserting (3.11b)
into the Schrédinger equation yields

[E— To— Vo — ZTAV‘ — A +T;ﬁ(AC— Vc)]l//>
= 2T Vol (3160
[E* T,— V0+2(T+ I)V, —Ve— Tl (Ac— Vc)]t//<
—_ 2T1+ T Vo (3.16h)

As is clear from (3.4), the major component of i is the neutron channel. As
originally emphasized by Robson (65), we also note that the coupling between
the T, and T. channel occurs “outside” the nucleus. In the nuclear interior
Ac and V. will cancel approximately. Thus the mixing between the two states
is referred to as external.

It is anticipated that the coupling of the T, channel to channels and states
that have not been included in (3.16) will be small since the density of T,
states is relatively small, whereas the density of T. states will be normal. We
therefore add an imaginary term to (3.16b) only, that is, replace V, by V, + iW,
in that equation. In isospin language this is described by

T+ (T +3)—(T+t)?
Vo—>V0+iW0(—+2&+2) L
2T+ 1

(3.17)

Equations (3.12) are modified as a consequence. They now become
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2TV 2T ] 2V, iW,
|:E—T0‘Vo+‘“l_vciwo v, = ( : )\/ Ty,

A 2T + 1 A 2T+1
(3.18a)
AT-1V, W, ] (2V1 iW, )
E—Ac—Ty—Vy— = J2T
[ ¢ o e A 2T+1_'/’" A 2T+1 Ty
(3.18h)

These equations can now be used to study the isobar analog resonances
using the optical model forms of Perey and Buck (62) or Rosen, Beery,
Goldhaber, and Auerbach (65), taking V, to have the same form as W,. An
example of a fit to the observed resonances in the reaction (p + 88Sr) is shown
in Fig. 3.2. Note that the proton energy employed is always considerably less
than the value of A, which is taken to be 11.45MeV. Writing

V=0, fw(x)

where fy(x) is given by (2.28), 4v,/A4 has the value of 2.2 MeV and v, the value
484 MeV.

When the target nucleus has a spin, as, for example, **Y with a spin of 1,
the analog resonance can have two spin values (j 41, #0) according to the
value of the spin of the neutron in the neutron channel [see (3.18b)]. To obtain
a fit, it is necessary to add a spin-dependent term to the optical model
Hamiltonian of the form 6+1, a possibility mentioned earlier in this chapter [see

2 o
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FIG. 3.2. Calculated differential cross sections at 90° for p + #®Sr. [From Auerbach and
Dover (66).]
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FIG. 3.3. Comparison of the calculated energy dependence of the cross-sections at 90°
for ®3Sr and 8°Y with experiment. [From Spencer and Kerman (72).]

(2.41)]. Taking this additional term as
V,
— fw(x
P Sw(x)

Spencer and Kerman (72) find V,/A4 to equal to 0.7 MeV. Their results are
shown in Fig. 3.3.

We now turn to a discussion of the global analysis of the (p, p), (n, n), and
(p,n) reaction, where the last goes to the isobar analog state, developed by
Patterson, Doering, and Galonsky (76). These authors use (3.12), employing the
DWA for the (p, n) reaction. In this application of the DWA, the homogeneous



3. CHARGE EXCHANGE REACTIONS: OPTICAL MODEL DESCRIPTION 405
forms of (3.12) are used to describe the proton and neutron scattering:

2TV,

[E—TO—VO+ —Vc]x//,,:o (3.190)
|:E Ac—To—Vy— _A:Ix/,,,:o (3.19b)

while the (p, n) transition amplitude is given approximately by

TS ~ <¢‘ N2./2T—- Vi ¢(+>> (3.20)
The potential (3.9) is written
t-T
V= —"Vo(r,E)+“Vso(r)+4“//1(r,E)7 (3.21)
where
Vi, E)=Vic+ EVig)f(r,Rg,ag) + i(Wic + EW,p)f(r,R},a;)
d
—ia,(WS,c + EWS,‘C)dvf[r,R,,a,) k=0,1 (3.22)
r
and where
r—R\|! 13
f(r,R,a)=| 1 +exp R,=r,A (3.23)
a
The spin-orbit potential is
h 2
4//sa(r) = Vsa<_> l__f(r Rsa, (324)
: m,c rd

They also take V. in the form given by (2.27) with
1.1
Rc=1.1494"3 417884 '3 — %

Patterson, Doering, and Galonsky (76) find (for details, see their paper)

Yy N-Z
Re( Vot LTA) = (55.8 —032E+ 17.7T MeV)f(r,RR,aR)

re=1.17fm  ax=0.75fm (3.25)
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FIG. 34. (a) Comparison of DWA calculations with (p,n) isobar analog differential
cross-section data; (b) comparison of optical model calculations with (n.n) elastic
differential cross-section data. [From Patterson, Doering, and Galonsky (76).]
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2TV,
Im( -V ot y 1) =(—14+022E)MeV f(r,R, a;)
N—
- a,(9.6 —0.22E + (18.1 — 0.31E)—Z) if(r, R, a)
A Jjdr

N —

r;=1.32fm a, =051+ 0.7TZ (3.26)
The spin—orbit strength

V,, =6.2MeV 3.27)

“with
r, = 1.01fm a,,=0.75fm

The plus sign in the results above refers to the proton channel, the negative to
the neutron channel. In (3.19), T — 1 has been replaced by T. The coupling term
in (3.20) is

_ 2__1:’4\/2[17.7 MeV f(r, Rg,ag) + i(18.1 —031E)f(r, R, a;)] (3.28)

Comparisons with the fit to (p, p) elastic scattering data (E, = 25, 35,45 MeV)
by Becchetti and Greenlees (69), with (p, n) cross sections for the same energies
and the same target nuclei, “®Ca, °°Zr, 12°Sn, and 2°®Pb, are made. Predictions
of neutron elastic scattering at E, of about 7, 14, and 24 MeV for target nuclei
27Al,Fe,Sn, and 2°°Bi are compared with experiment. The results are
satisfactory. A representative sample is shown in Fig. 3.4.

4. INELASTIC SCATTERING

In this section we consider the inelastic scattering reaction, in which an incident
projectile excites the target nucleus:

a+ A-A*+4a @.1)

We assume that the process is a prompt one; that is, it is the result of a direct
interaction. As a consequence, we expect the angular distribution of nucleon a’
in the center-of-mass system to be asymmetric, peaked in the forward cone. The
energy variation of the cross section will be relatively slow, while the angular
distribution will exhibit characteristic diffraction oscillations, a consequence of
the relatively well-defined nuclear radius.

At low and intermediate energies, the surface region of the target plays the
important dynamic role. A qualitative discussion of surface reactions is given
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in Chapter 1. We repeat some of the arguments here. Let the incident and final
momentum of the projectile be p; and p,, respectively. Since we are dealing
with a surface reaction, the incident and final orbital angular momenta are p;R,
and p,R, respectively, where R is the nuclear radius. The net resulting change
in angular momentum #AJ is thus

hAJ =|p;—p,;|R =hqR (4.2)

implying a maximum in the angular distribution at an angle 8,, given by

2
sinz‘%M=4—L[("Rﬂ) ~(p.-pf)2J (43)
PPy

When p; x p,, as often occurs,

hAJ
Oy ~—— (4.4)
iR

We note that 8,, increases with increasing AJ. It also follows from (4.3) that
the cross section will vanish for 8 < 8, since in this region, hAJ <|p; — p,|R.
This is a classical result, of course. Quantum mechanically, the cross section
will diminish rapidly as 6 decreases from 6,,, so that 8,, is the first maximum
in the angular distribution. In Chapter I this simple result is compared with
the measured angular distributions for inelastic a-scattering by 38Ni and is
shown to give good results, especially when a Coulomb correction is made. The
oscillations in the cross section have an angular separation A predictd by the
uncertainty principle to be

1
" AJ gR
Some further insight into the inelastic scattering process can be obtained if

one makes use of the high-energy approximation to the optical model wave
function in (1.14):

J'(dlr) _ <X( )IH(“’”l/J(H) (4_5)

We assume that i{™) and x|~ can be written as a product of the projectile wave
function and the target nuclear wave function ¥; and ¥, for the ground and
excited states, respectively. Thus

‘//(Jr) 4)(*)\{1

and
X(f_) = d)‘f‘ y r (4.6)
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For didactic simplicity we have neglected the antisymmetrization that is
required when the projectile consists of one or more nucleons (the effect of
antisymmetrization is discussed on p. 195). The transition Hamiltonian H'P"
is taken to be a sum of two particle interactions between the incident nucleon
and the nucleons of the target, and, again for simplicity, we assume these residual
interactions to be central and complex:

HE =) v(r,,T) 4.7)
where r; is the coordinate of the target nucleus and r, that of the incident
projectile. With these assumptions, (4.5) becomes

T = (B0 P lr0) B (o) > “8)

where

¥ silko) = <‘l’f|Z v(ro, 1;)'¥) 4.9)

The high-energy approximation* assuming a spin-independent central optical
potential to ¢{* is [see (11.5.7)]

¢§+’~exp{i[ki-ro—ﬁj‘ opl(b05Z)dz:|} (4.10)

The z direction is given by k; and b, is the coordinate vector (x,,y,)
perpendicular to k;. The magnitude, b, is the impact parameter. Similarly,

d)(f)uexpi{[ k,- r0+h2k j Vopulb O,Z)dz]} @.11)

where z; is the direction of k. In combining (4.10) and (4.11) we shall, for the
second term in the exponential of (4.11), make the approximation k; = k, valid
when the excitation energy is small compared to the projectile energy, and the
approximation that the directions of z{,, b}, are the same® as that of z, and by,
implying small-angle scattering. Under these circumstances, the product
¢\*${™) is given by the simple expression

o

¢(/_)*¢E+) :exp{i[( .—kf rO]}exp[ —i— opl(bO’z)dz:l

hzk

iThis is accurate at sufficiently high energy, E > 100 MeV [Bassichis, Feshbach, and Reading (71)],
but the results obtained will be useful, as they are qualitatively correct below that energy.

*Some improvement in the last of these approximations can be made if the mutual directions of
zp and zj is taken to that of 1(k; + k).
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The first exponential is that which appears in the Born approximation. The
second is an approximation to the effect of the distortion caused by the optical
potential. We note that it depends only on the impact parameter by; there is
no z dependence. Since V,, has a negative imaginary component (= — iW), to
take absorption into account, the magnitude of the second factor is less than
1 and is given by

exp[ - %r Wib,, 2) dz] 4.12)

The integral is the total absorption along a path parallel to the z axis (i.e., in
the incident direction) at a distance b, away from that axis. The maximum
attenuation for the optical potentials commonly used will occur for a ray through
the center of the nucleus. The attenuation will decrease as b, increases, since
the path length is shorter and the absorption generally weaker. Once
b> R, W -0 and the attenuation will go to zero. The factor, (4.12), therefore
emphasizes the contribution of the nuclear surface to the direct reaction
amplitude.

To complete the calculation, we need to evaluate ¥ ,(r,), defined by (4.9),
and then perform the integral over r, indicated by (4.8) to obtain F4”. The
problem is simplified somewhat if we let v be a delta function of strength g,
so that

Y i=g<{¥] 2; oro—r)¥;>
= Ag{W¥ |o(ro —r)¥;)
= AgJ“P}(ro,rz, s )Pi(rg, T, )dry e 4.13)
= Agp ;(ro) 4.14)
where p; is the density matrix measuring the overlap of the initial and final

nuclear wave functions. The density matrix can be expanded in spherical
harmonics (in the absence of spin),

pri(to) = pri.lm(ro)ylm(go) 4.15)

where

= J SIS+ ) (4.16)

The quantity, [ is then the transferred angular momentum.
With these approximations, (4.8) for 7 (' has the form

T (fd,-ir)(lm) ~ fdro e'roe il(bo’/’ £iim(T0) Yim(€20) 4.17)
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where various constants of proportionality have been omitted and one of the
Y,’s has been selected. The function x(b,) is

(o) = — hzukj Voplbo, 2)dz (4.18)

The vector q = (k; — k) has the components

q,=k;—k,cosf q,= —k,sin0 q,=0
so that
q:r, = (k;—kycos0)zo — k bgsinfcos @,

The angle 0 is the scattering angle, the angle between k, and k;.

It is natural to use cyclindrical coordinates, (z,, b4, @) in evaluating integral
equation (4.17). Recalling that Y,,,(Q) ~ ¢™°P,,(cos 6,), the ¢, integral can be
performed immediately to yield 2n+i"™J ,(k (b, sin 0). The z, integration requires
the calculation of a Fourier transform of the z, dependence of p ; ,,.(*o) P, (cOs 6).
To obtain a rough value, we assume that the longitudinal momentum transfer
(k; — k;cos )R is small and that the overlap, p; ,.(ro), has its maximum at the
nuclear radius. The first of these assumptions holds if the scattering angle is
small and if the energy loss is small compared to the incident energy. The second
specifies the interaction to favor a surface reaction. Combined with the
attenuation originating in x(b,), these assumptions lead to the result that the
contribution to the z, integral comes primarily from the z, =0 region. Thus
the active region in the target nucleus for inelastic scattering in the forward
direction and with small energy loss is the neighborhood of the perimeter of
the great circle (for a spherical nucleus) perpendicular to the incident direction.
With z, = 0 one may replace P,,(cos6) by P,,(0) (ie., 8, = n/2). This function
differs from zero only when / + m is even.

Returning to k,, (4.17), one finds that

T4 (lm) ~ Py,,(0) Jdboboe‘l“"”Jm(k /bosin 0) Jp um@ G TR0z (4.19)

The angular dependence originating in the z, integral is relatively weak by
assumption. In the strong absorption model the magnitude of e‘*° is zero for
small b, and rises sharply to unity at the nuclear radius R. The /,m component
density matrix p; ,,, on the other hand, drop off rapidly beyond this value of
bg, so that the b, integrand peaks at R and one can approximate 7 4”(Im) by

TGO (Im) ~ P1yu(0)J m(k ;R sin 0) (4.20)

Thus, for a given angular momentum transfer [, 7 ‘f"i‘”(l) will be a linear
combination of Jy,J,,...,J; if [ is even and J,, J5,...,J; if | is odd. For large
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values of kR sin6,

e
J,,,(kfRsinB)—\/ir'rcos(kfRsing_E_@)
wk R sin 6 4 2
777 2 ) T
- |————(—)"?cos| k,Rsinf — - m even
nk;Rsin 6 4

5
— W——'—(—)‘"'"”/Zsin(kfRSinG—E> m odd
7k R sin 6 4

Hence, away from the forward direction, the even | angular momentum transfer
reaction angular distribution will be 180° out of phase with the angular
distribution for the odd-! case. In the same approximation [see (I1.5.25a) the
elastic scattering angular distribution is proportional to J,(kR sin 6)/sin 8, in
phase with the [-odd inelastic angular distribution. This set of phase relations
are known as Blair's phase rule. The agreement of this with appropriate
experiments is excellent, as can be seen from Fig. 4.1. However, as one can also
see, the theoretical curves fall much less sharply than experiment.

The result is sensitive to the sharp-cutoff, strong absorption model leading
to (4.20), as can be seen if we use a specific model for p, . Let

Prim~ T
where
=3 +1)
Moreover,? let €% be
fr=1—e¢ 1 @.21)

Inserting these forms into (4.19), taking m =0, and considering only the b,
integration yields the following integral for consideration:

I, = J dby b2+ (1 — e~ 8)e ™58 (k b, 5in 6)
0
This integral can be evaluated in closed form when [ is an integer:

P (o) e oae ()]
°72 g P gy Wyt T\ apty

4.22)

This is a simplified version of the form used by Lee and McManus (67).
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FIG. 4.1. Comparison of the Blair theory with experi-

mental data for the elastic and inelastic scattering of

20 40_ 60  BO 31-MeV a-particles by ***2Ca. The elastic and I = 1 data
c.m. for #°Ca, all others are for *2Ca. [From Austern (70).]

where p;, , is a polynomial of order [+ 1 in the variable indicated. Compared
to (4.20), the new feature is the exponential decrease [ x (kZsin §/4p)'**] with
increasing scattering angle, as required by the experimental data. Comparison
with the data indicates that the experimental situation lies between assumption
(421) and that leading to (4.20).

At sufficiently small angles,

T 89(Im) ~ sin'™ 9 (4.23)
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so that for even /, the dominant term is the J, one, whereas for odd /, it is J,.
Thus the angular momentum transferred is approximately perpendicular to the
scattering plane.

A. Diffraction

The oscillating angular distributions are very similar to those that prevail in
the diffractive scattering of short-wavelength sound and electromagnetic waves
by absorbing obstacles. In these classical cases, it can be shown [see Morse and
Feshbach (53, p. 1552)] that the scattering in the forward direction is given by
the radiation from the shadowed surface of the obstacle. The illumination on
that side is taken to be zero, ¥ =0, so that the scattered wave .=y —; on
the surface is just equal and opposite to the incident wave, y;, evaluated in the
surface. This classical case is developed for elastic scattering. In the discussion
that follows we extend the diffractive analysis to quantum-mechanical inelastic
scattering.

This development focuses on the projectile wave functions. The dependence
on the target nuclear coordinates is carried along. The final expression is then
an operator whose matrix element with respect to the initial ¥; and final ¥,
the target nuclear wave functions, yields the transition matrix for direct inelastic
scattering. The full Hamiltonian is used:

(E—Ty—Hy— V)¢ =0 (4.24)
where Hy is the Hamiltonian for the target nucleus, T, the projectile kinetic
energy operator, and V°" the full many-channel optical potential. The target
nuclear variables in both Hy and V°*, and therefore in ¢, are temporarily to
be regarded as constants. We shall replace Hy by E; for ¢ = ¢; and similarly

for ¢,. This is known as the adiabatic approximation. The equation for 7"
can then be written as

TG =Pl TV VYD (4.25)
Substituting for V°P'¢{*) from (4.24) leads to
T = (| oTME — E; — To)di V1)
But ¢, satisfies (4.24) in the absence of V°F, so that
(E—To—Hy)o ' =(E—To— Ep)gi7 =0
that is, ¢} is a plane wave. Replacing E, then, by T, + E, yields

TGO =V (TooP)dt " — oF(Todi V) +(Ep — ENTdi V1Y)
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The last term vanishes because of orthogonality, so that

TG0 =P, MY (4.26)

where
hz
M= Y [dro[coj‘véqbﬁ“—(V?,fp}‘)d)ﬁ“] 4.27)

M is an operator in target nuclear space because of the dependence of ¢; on
target nuclear variables such as the radius. Assuming that p ; falls off sharply
beyond the “nuclear radius”, R, the integral in (4.27) should be evaluated within
the nuclear volume. Writing first

-
¢§+) ="+ Pycan

so that for k, ~ k;

2

h
M= — 2; Jd]’o [@7V§¢Scal( - (V(%(P;]¢scan]

and using Green’s theorem yields

2

h
M=— 2 .[dSn(,'[(p Voda — (Vo0 )b ea]

where n, is the outward-pointing normal to the surface. We can break up this
surface integral into two parts; the front half of the nuclear volume in the
shadow and the back illuminated portion. The front half leads to the diffraction
scattering. On that front surface, ¢, scattering equals — €', so that the total
¢ is zero. Hence

hz i i . .
_ dSOno.[eﬁlkf-roVOelki-m _ Vo(e—;k,.ru)e,ki,m:]

front

diff =

It can be shown? [Morse and Feshbach (53, p. 1552)] that the surface integral
can be reduced to a line integral on the edge of the shadowed surface. (If the
scatterer is spherical, this argument is not necessary, as the surface integration
over the spherical surface can be readily performed.) As a consequence, any

The transformation is known as the Maggi transformation (Copson). A Simple proof [Morse and
Feshbach (53, p. 1552)] notes that the quantity in brackets is divergenceless if k, ~ k;, already
assumed. It may then be written as the curl of a vector and by Stokes’ theorem reduced to a line
integral.
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surface will do. We shall use a disk bounded by the surface edge, assuming that
the edge is a circle perpendicular to the incident projectile direction. In that

‘CVCl'lt

h?
M g0 = — ilk; +kfcosl)) J. d¢f bdb e~ ksbsinbcosd

2
_ _ ikk dq’)J- b db ¢~ ksbsintcoss (4.28)
i

Note. It is possible to improve on this result by using the high-energy
approximation for ¢,.. From (4.11),

¢,x|: —e % ole ~Huth "ﬂfm Volbo2ddz _ 4 1

to be evaluated on the shadowed surface, that is, at z, = (R* — b2, For strong
absorption the first term is negligible.

To illustrate the use of this formula, consider the case for which the disk radius
B is given by

B=R+Y ¢, Y;‘;(g, d>) @)

where &,, are operators in the target nuclear space. Such an expansion is
employed in the Bohr—Mottelson picture when the target is a spherical vibrator
[see Chapter VI) in deShalit and Feshbach (74)]. The disk of integration is
circular, passing through the center of the nucleus. Hence 6 in Y,,, is n/2. Then

to first order in &,

— ikh? 2" R be (I — 1m|) |2
Mg = l j d¢{f e-;kfbsnnﬂcos¢bdb+Rzélm(*)ml:?_l"*'_l(l_w]
noJo an 1+ |ml!

[

x P, (O)ei”"’e ~ikfRsin0cos¢}
m

27tlkh2 2l+1(l—|m|)' 1/2
- — Jolk bsin)bdb + R
p U olksbsinf) Zé’"’[ 4n (l+|ml)']

x Pim(0)(—)"20-™ ] (k Rsin 9)] 4.30)

Matrix elements of My, must now be taken between initial and final nuclear
states. The first term in (4.30), under the assumption that the target nuclear
density is constant over the nuclear volume, yields the elastic scattering
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amplitude

2nik?R
M = — 22 ) (k,Rsin6)
usinf

and the differential elastic cross section quoted earlier,

(di)(e” =R2M (4.31)

dQ ) sicc sin? ¢

The inelastic cross section is given by

AN 2+ 1(—|m))
— = kZRZ p Wy 2 5 ] )
(dQ)diff ( )EK r1em ¥ l: (I +|m |)‘(le(0)) ]U (k R sin0)|
4.32)

One can verify that the Blair phase rule is a consequence of (4.32) since P,,(0)
differs from zero only for | + m even.

To finish the calculation we need to specify the properties of the target nucleus
as described by ¥, and '¥; and the quantities &, that follows from the dynamics
upon which (4.29) is based. The nuclear model that can readily be inserted into
this theory is the model of Bohr and Mottelson (62). We consider two situations:

Vibrational Nuclei [see deShalit and Feshbach (74, p. 471 et seq.)]. In this
case the target nucleus is a vibrator with sets of equally spaced levels. The
spacing of each is given by Aw, where w, can be expressed in terms of a mass
parameter B, and a force constant C;:

The excited states can conveniently be thought of as consisting of the ground
state plus a number of phonons. Each of the phonons carries an energy fiw,,
and angular momentum /; with a z component of m. In terms of this model
[see deShalit and Feshbach (74, p. 473)]

h 1/2
bim = ( B, ) b}, (4.33)
(344}

where b} is a boson creation operator, creating a phonon of the /m type. If the
final state involves a one-phonon excitation,

¥, =b ¥,



418 ELASTIC AND INELASTIC SCATTERING

so that
h__fw

(4.34)
2B,w, 2C,

[<CY fEml i1 =

independent of m. Therefore,

Ea (inel) 2 2 ﬁwl 2l+1 (l |m|) 2 }
(dﬂ)difr =R ;2C, 4n {Z(I-H |)|[ im(0) 1% m(k ;R sin 6)| (433)

From its derivation it is clear that Aw,/2C, is a measure of the amplitude of
oscillation away from the spherical equilibrium shape.

The analysis above can readily be extended to multiphonon states by
including higher-order terms in the evaluation of M of (4.30). The Blair phase
rule in its simplest form will not be valid if both single phonon and multiphonon
excitation are equally important. Note that the effects of the Coulomb
interaction, which can be of great importance, have been omitted in this
discussion.

Deformed Nuclei. We begin with the more complex expression for the
deformation given on page 471 of deShalit and Feshbach (74), which we rewrite
as

OR=Y a,,, Y2,.(0'¢) (4.36)
im'

The volume-conserving term has been omitted in (4.36), as it will not play a
role in the excitations discussed below. The angles, (8', ¢'), are in the body-fixed
system, so that the expression in (4.36) needs to be transformed to the scattering
frame [see (A.2.26) in the Appendix of deShalit and Feshbach (74)] as follows:

OR =) a1 DI (0) Y1 (6, ¢) 437
where 6, are the collective coordinates. Therefore,

élm = Z gy D{l) (gk)

The matrix element in (4.32) becomes

C¥pliml ¥ = Z<‘f’f|D”" (CACTIL 292

where the nuclear wave functions are given by (V1.4.9) in deShalit and Feshbach
(74). The value of this matrix element is given by (VL.6.9) in deShalit and
Feshbach (74):
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(I K M flou, DO | LK M)

=(— )M X (21i+1)(21,+1)( Iyt If)

-M, m M,
I, I I
X " KK g | Ky + (=)0
[(_Kf y Ki>< i K> +(—)
I, 1
X K |oy,| — K; 4.38
(_Kf y —K,.)< 1% >} (4.38)

where the quantum numbers I;, K; and M; specify the initial rotational state
of the target nucleus, I, and so on, specify the final state. The matrix elements
of «,, are taken with respect to the intrinsic wave functions describing the
rotational nucleus.

To obtain the cross section we must take the square of the magnitude of
{¥)lEm|Y; D>, sum over M, and average over M,. We need consider only the
factors outside the brackets in (4.38), since they contain the entire m dependence.
We recall that

1 1 I I,\* 2I,+1
Y en+ner+nl Y i e A 4.39
21,.+1M§,,( el )<—M, m Mi) 2A+1 (439

Note the important result that any dependence on M disappears upon summing
over final states and averaging over initial states. As a consequence, in (4.32)
one can remove the matrix element of &, from the sum on m;

(= |m])!

do \ e 21+ 1
( ) =k2RZZ4n|<\Pf”§1”Wi>|2{Z
1

— Py, (0))*|J (kR sin 6
dQ )/ siee m(l+|m|)!| O ull | }

(4.40)
We see that the excitation of rotational level leads to same angular distribution
as the excitation of a vibrational level for each multiple given by the expression

within the braces in (4.40) and (4.35). The weighting of each multipole will differ.
For the rotational case [see (V1.7.1) in deShalit and Feshbach (74)],

I[CYANGNY D= BiR

A more detailed microscopic theory would need the more detailed statement
for (4.38).

B. Adiabatic Approximation and Elastic Scattering

The calculations described in Section 4.A are examples of the use of the adiabatic
approximation in which the scattering of the projectile is determined in terms
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of properties of the target nucleus that are considered to remain fixed during
the encounter. This is a reasonable description if the passage time for the
projectile is small compared to the periods of the characteristic modes of motion
of the nucleus. The passage time 7, is approximately given by

R roA'3[ mc? ]2
T .~ — A~ - _—
Py c |:2(V+E):|

where V is a measure of the interaction energy given by the real part of the
depth of the central components of the optical potential. It can readily be shown
that the characteristic times associated with rotation and vibration are much
longer than the passage time. However, 7, is much shorter than the characteristic
times associated with single-particle motion only if the energy E is sufficiently
high.

When the adiabatic approximation is valid, one can consider the projectile
scattering to occur in the presence of a fixed configuration of nucleons of the
nucleus. The resulting projectile transition matrix, 7 ,, is then a function of the
target nucleon coordinates. Its matrix element with respect to the initial and
final nuclear states gives an approximation for the transition matrix for the
process.

To be more specific, the many-body Schrodinger equation describing the
projectile—target interaction is

(E—H,—V,,— T, ®=0 4.41)

where H, is the target nuclear Hamiltonian, V,, the interaction of the projectile
with the target nucleons, and T, the projectile kinetic energy. Centre-of-mass
frame variables are assumed. If we now consider the target nucleons to be fixed,
(4.41) becomes a single-channel equation whose transition matrix is
T p(r1,¥2,..-; Ky, k), where 1; are the coordinates of the target nucleons and k;
and k; are the final and initial momenta, respectively. Only when the scattering
is elastic will k,=k; The transition matrix for the nuclear transition ¥;,—» ¥,
in this approximation is given by

T 5i=KY T 1y 2D (4.42)

This adiabatic approximation is an essential part of the multiple scattering
formalism of Chapter II. We now wish to discuss its use when collective
coordinates are the primary nuclear dynamical variables involved in the
collision. In that case we go to the energy averaged optical model as described
in Chapter III, with the consequence that (4.41) is replaced by

(E-T,—=V,pdx=0 (4.43)

where the collective coordinates such as the nuclear radius appear as a parameter



4. INELASTIC SCATTERING 421

in V.. The transition matrix corresponding to (4.43) will then be a function of
the collective coordinates, which we shall symbolize by R, so that

T, =T ,(R;k;, k)
The transition matrix element for the transition is given by
T =LY, T (R;k;, k)¥;> 4.44)
The Austern—Blair result [Austern (70, pp. 278-280)] is a perturbation result

in which R is assumed to be close to a fixed value R,. When the perturbation
involves the projectile coordinates, it is convenient to write J, as follows:

T JR; k. k)= J fe‘ikf"fp(R; r, ro)e’ ™ dr dr, (4.45)

Perturbatively, R is given by

so that
T Rk, k) =T (Ro; ky, k) +0T,
where
4 —iky ikier
0T p=_——— | | e " T )Ry, T, 15)0Re™ ™ dr dr,
=—— | e M TSRV (r, Ro)W{ P (k;, T; Ro)dr (4.46)

Austern and Blair proceed by expanding ¢{*’ in a partial wave series and
evaluating the integrals term by term. This is left as a problem for the reader.

In the case that we are dealing with, surface reactions, it is possible to develop
expression (4.46) further without resorting to a partial wave expansion. Let us
then assume that

O0R=0R(&;r,0,0)
where, as before, £ represents a set of operators operating on the nuclear wave
functions ¥, ;. Then (4.46) becomes

6T, =2 fdre—fkr'ak(f; r,0,9)V(r, RoW ("

We now make use of the fact that 6R can be written as a function of cos 8 and
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e*i® and these can be expressed as differential operators as follows:

) k; k.
cosfe T = .V, e T

i

where the z direction has been chosen along k;. (It is, of course, possible to
make a choice that will result in a more symmetric final expression.) Second,

Hence

8 ik;*V,, i( i 8

59’1,:——{5R|:5;R0, ,— +i
R, kRo “Ro\dk,. ok,

):lfp(RO; k,, ki)} 447
where r has been replaced by R, because of the surface reaction assumptions
and 6R[-] is defined by

SR[&;cos 0, e?] = 6R(E; 6, d)

The net transition matrix given by (4.44) is obtained from (4.47). The quantity
I (Ry; k,, k;) is not the elastic scattering amplitude since k ; # k;. At sufficiently
small angles (where in any event the DWA is most reliable) and for sufficiently
small energy losses, E, and E;, and therefore k, and k;, can be replaced by some
average value. Another approximation suggested by Hahne (67, 68) [see also
Austern (70, p. 280)] is appropriate when the Austern-Blair partial wave analysis
is used. For the formulation above we have only the Schwarz inequality result,

[T o(Ros ks k) <17 H(Ro, Ky, K p)T H(Ro, ki, k)2 (4.48)

This implies that the geometric mean may be adequate but useful at best only
for a low order of differentiation in (4.47).

C. Formal DWA

The numerical evaluation of the direct transition matrix element given by (4.8)
and (4.9) for a given model of the nuclear structure has been studied extensively,
and a number of computer codes for this purpose have been developed and
widely used. In this section we carry out the kinematic reductions to the point
where numerical methods must be invoked. To illustrate the methods involved,
we consider the somewhat simplified case for which the optical potential defining
the distorted wave functions ¢,; is spin and isospin independent, as is
appropriate when the exciting projectile is an a-particle.
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Consider the form factor ¥” (r,) defined by (4.9). Because of the antisymmetry
of the wave functions ‘¥, ;, (4.9) can be rewritten as

YV 1ilbe) = AT M po(rg, vy) | M > (4.49)

where A4 is the mass number of the target nucleus and J,; and M, ; are the
angular momentum quantum numbers for the nuclear states involved. Recall
that r, is the projectile coordinate. The interaction can be expanded in a multipole
series:

v(rg, 1) = Z vy(ro, 71 )( _)IT(P“(O)T::)(I)

Lu

where T is a spherical tensor that depends on spherical angular coordinates
and spin.? Taking the matrix element in (4.49) and using the Wigner—Eckart
theorem, one obtains

-M, u M,

"Vf,-=AIZ(—)’f-“f(

)(J; loro, r) TOMI TN =)'TY  (4.50)

where the reduced matrix element involves an integration over r,.
From the properties of the 3 — j symbol it follows that the angular momentum
transferred equals I:

']j'==‘]i‘FI

If v is spin independent, so that TQ’~Y,,, the transferred parity is (=)' If
J;=07, a spin independent v, will excite only states of natural parity, that is,
states with spin ! and parity (—), such as 0%, 17, 2*, and so on. When spin
dependence is included, TL” can include as well

[ikYk ®6]L‘:) = Z (kxl’ 1K2|lm)(ikka|)6x; (451)

KiK2

To indicate the composite character of such a term, the notation T%" is often
used. We shall for the most part not use this more detailed notation in this
section. The presence of such terms as well as spin-dependent terms will permit
transitions in which for J, =07, states of unnatural purity can be excited.
The reduced matrix element in (4.50) is directly dependent on the nondigonal

*If there is no spin dependence,

4r

v(ro, Iy) = LZ"IUI(rO’ ) A+ 1 ('Y i(B0))* (' Yi(£,))




424 ELASTIC AND INELASTIC SCATTERING

density matrix, p;. The matrix element can be determined from

I
NI, | olro, r)T® ) J;
(_Jf m Ji>( sllodro, r )TN J3)

= JT;(JI,M,=Jf;rl,rz,...)v,(ro,rl)Tﬁ,‘.’(fl)‘I’i(J,-, M;=J;r,ry-)dr dr,--
=fpfi(rl)v,(ro,rl)Tx’(fl)drl 4.52)
where
Pri= J‘I’}‘(Jf,Mf =Jr,0, )Y, Mi=Jgryg, 1y, )drg -

As a probe of nuclear structure, inelastic scattering thus provides information
on p ;. Other probes (e.g., inelastic electron and pion scattering) act similarly,
however weighting p; in different ways, depending on the excitation interaction
responsible. That is, the operator, v(r,,r;) in (4.26) depends on the probe
involved, but p,; does not change. By using a variety of probes it is possible
to determine the space-symmetry structure of both p, and the interactions
involved. It should be emphasized that this conclusion relies on the validity of
the DWA.

We now insert multipole series (4.50) into the expression for the transition
matrix J ;:

T =B il (453)

where ¢{*'7) are solutions of the optical model Schrédinger equation with
indicated outgoing and incoming boundary conditions. Expanding these in a
partial wave series (the assumption of spin independence for reason of simplicity
is made at this point) yields

u,(r)
k.r

=Y /A2l + 1)@,,.0(|2‘.-f)e”n“%) (4.54)

¢ =Y (21 + it Py (k; #)en

The complex conjugate (,b‘f‘)‘ is

¢S =Y @+ )P, (—k, ~f)e-'6:,_”;r(”
fr
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Using the properties of P, , such as the addition theorem, we obtain
-r * (i £ L o, W)
¢ =4n) Yy, kD) Yy (KoK )e s o 4.55)
i)
Combining these results with (4.50) it is an easy matter to obtain J ;:

: J I J; l [
T i =(4n)32Y (=) Mstmtig—my 4 : )( 4 ')./21-+1
s (4m) Z( ) (_Mf m M, m 0 ¢

< IO(1,J lsJ.-)ei(""'”")Yt,.m,(ﬁi'r‘f) (4.56) ‘

where I® is given by

4nA ’
I, J,510,) = k"—k(J,t, 1 TO©),(ro, r)TO) | T 1) 4.57)
I

We now must average the square magnitude of  ;; over M; and sum over M.
One obtains, using the 3 — j normalization [(A.2.70) in the Appendix of deShalit
and Feshbach (74)],

: Y Tl =@’y @l + Dol + 1)(—)"+l"_m’-m1’

Ui+ 1, Ql+1)QJ,+1)

l l I r l L
8 ( f ‘ )( f ! ) Yl!m, lem:{
-m; —m 0 —-m; —m 0

x Ot a TR IO J LI T ) (4.58)

This can be written as a sum over multipole order as follows:

Y (SPTmyek+)

Iy dlijmg

i 1
Tl =@y —
2Ji+1u§u,| sl =) f,v,:(zt+ A

[P R . 2
)Y IO 5 1T )Pt 80 (459
X (__ mf —-m 0) lymy (f J ) 4 ( )

a result that is often the most convenient one to use. However, it is possible to
carry (4.58) further by expanding the product of the Y’s in (A.2.35) of deShalit
and Feshbach (74):

o @+ D@L+ DRA+])

x(l’f I l)( I I l)Yh
0 0 0/\—m; m, pu
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The resultant product of 3 —j symbols can be summed to a 6 —j symbol using
(A.2.93) of deShalit and Feshbach (74). Finally, relating the result to the reduced
matrix element of Y, gives

1 —)@a+1) (1, 1, 2
) LA i e cuts Ul | /4m Y, | LIy
2J;+1 Q@J+DERI+D\0 0 0

x @ity o, =LA O J LIV DT g5 BT Pk -k

(4.60)

The cross section is obtained by multiplying this result by (u/2nh%)?(k +/k;). The
total inelastic cross section o{{"*" is given by

. ’k 1
a(;“e" — H . _fz —|I”)(lf']j; liJi)lze—Zlm(51f+6n) (4.61)
2rh? ) k< QI+ DRI+ 1)

The properties of the reduced matrix element of Y, in (4.60) provide most
of the kinematic properties of the reaction. It vanishes unless

L+1=1,
L+l=1, (4.62a)
L+h=1,

L+a=l, (4.626)

I;+1;+ A =even number
I + 1 + A = even number (4.62c)
where the last equation is a property of the 3 — j symbol multiplying the reduced
matrix element of Y,. Relations (4.62a) show that / is the angular momentum
transfer. Equation (4.62b) yields the C.N. Yang result on the complexity of the
angular distribution, namely that 2 <min(21;, 2;). Other properties are present

in the I® factors that contain the reduced matrix elements of T%. These will
be proportional to [see (A.2.48) in deShalit and Feshbach (74)]

J, I 1,.>
(@) (o o 0) and (b (0 0 o (4.63)

The first of these combined with the results (4.59a) yields conservation of angular
momentum for the reaction
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while the evenness of J,+ 1+ J; and I, + [+, yields conservation of parity.
The dynamics of the reaction is contained in the I factors, as these involve
integrations over v(r,, r; ). Note also the exponential factors in (4.60) and (4.61),
which explicitly demonstrate the effects of absorption in both the initial and
final optical model channels.

Some further insight into the kinematic factors can be obtained for strong
absorption in the limit [; ; » 1. In the case of strong absorption, the contribution
to (4.60) comes from a narrow range of [; and of I, so that |;~ [} and lf 1.
It therefore becomes a good approximation for the expression appearing 1n
(4.60):

(lf s )(lllf||\/4nY i)

0 0 0

= (=)0 SR+ D2+ DR+ DRI+ DA+ 1)
I I

I L .
x(, Il i)(, I i){, Iy l} 464)
o 0 0/\o oo/l 1 2

to replace /; and I; by an average value, 1;, and similarly, [ s and I’ by l Then,
using the result vahd for large I; s [Brusaard and Tolhoek (57); Bledenharn (53);
Racah (51)], we have

T 7 NI+ L+,
{i’ l_f l } ~ E ) - P (cos ;1))
I LA 2+ 0@+ 1)

cos(I(I;'1,)) = +1H— l.-(l,»;_ll) —T (I, +1)
ity

so that

(’f s )(111 I /4rY ) Bl = (= /@ + D@L + )RE+ 1)

0 0 0
o A)(li v ,1) .
i *\P.(cos [T, T
X(o o o)\o o o) Frcostdl)

(4.65)

From the expression for cos(l ‘1 1), we see that | P;| achieves a maximum value
close to unity when I=1,+1, s, for then the cosine is close to +1. The two
vectors, the incident angular momentum |; and the final 1, tend to line up, to
be parallel or antiparallel, the net sum being equal to the multipole order I. If
the multipole order is large (e.g., J, > 1,J, > J,), then either I or I; or both are
large. As we shall see, the matching condition that maximizes the integrals IV
when the energy of the incident beam is much larger than the excitation energy
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yields [; ~ I,. Under these conditions [;~ [, ~ /2, so that the maximum value
of A will be /, the multipole order. At sufficiently high energy and large multipole
order, the angular distribution (4.60) will reflect the multipole order quite
directly. This consequence has clearly been verified by inelastic proton scatter-
ing experiments for energies in the range above 100 MeV. Here it has been
possible to determine, as we shall discuss, the nature of the coupling potential
o(rg,Ty).

To go further it is necessary to examine the integrals I”. We take the simple
case, the excitation of a single nucleon creating a residual nucleus in a particle-
hole state. Consider the excitation of a nucleon in an orbital (j;, A;, m;), to another
orbital (j,, A, m,), where j is the total nuclear spin, m its z projection, and A
the orbital angular momentum. The corresponding wave function is

R
|]mAS> = Z <jm|AmA%ms>?/A,mA}:s,msr—A
ma 0

Additionally, to keep the discussion as simple as possible, let the interaction
v(ry, ry) be spin independent, so that

1
TS") - @lm

It immediately follows that

4 . .
I(“(lfjf; lij)= k_%(lf 1%, li)(jf Af%” Y, "jiAi%)'ﬁ(l)(lfJf; liji) (4.66)
rKi

where

j(”(lfjf; Lij)= JJ“:,(’O)RX,(H 0o, 71 Uy (ro) R (ro) dro dry (4.67)

The reduced matrix elements are given in (A.2.48) and (A.2.49) of deShalit and
Feshbach (74):

I
Uyl /4n, || ) = i+ P52 4+ 1)L+ 1)1+ 1)”2(0 0 g)
. i1
(ff"f%wﬂ@rlfiAl-%)=(i)2’f+“1%[1+(—)Af“”‘]<]'1 0 jf)(zjf+1)”2
2 2

x (2j; + D21 + 1)1/2
We note parity conditions

I +1;+ I, = even number

A, + A; +1=even number
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so that the parity change in the projectile wave function is compensated by
the parity change in the nuclear transition.

The double radial integral depends on the transition densities, p{¥’ = R} Ry,
and p‘f,’ = u,u;,. The Coulomb repulsion plays an important role Obv1ously,
a strong repulsion will reduce the value of pf. The density p{? will also be
reduced in the nuclear interior if the effectlve absorption in the projectile
channels is large. Under these circumstances, Coulomb repulsion and/or strong
absorption, surface reactions will be favored. The cross section will be greatest,
then, for nuclear densities p{ which peak at the surface, an effect that is
strengthened if v/(ry,r;) is ]argest on the surface or short ranged. Maximum
overlap at the surface occurs for /9 and I? such that

For I, and [, greater than I? and 1%, respectively, the angular momentum barrier
will further reduce the amplltude of u;, and u,, so that ¥ ® will be small for
these values of /; ;. Thus the major contrlbutlons to the angular distribution
comes from a narrow range in [; and [, a result that has been employed above
and in agreement with results obtained using the WKB approach leading to
(4.20).

D. Exchange Effects

The effect of antisymmetry with respect to the incident nucleon has not been
explicitly considered. In the “naive” approach the incident-state (and similarly
for the final-state) wave function used above is antisymmetrized:

¢ OW(1,2,..) > A [SOWL,2,.. ( ZPou>¢‘+’¢/(12 ) (4.68)

where P, is the permutation operator, for example,

Po1 ¢V (0Wi(1,2,..) = ¢ (¥:(0,2,..)

However, this procedure is incorrect since the resulting initial- and final-state
wave functions are not orthogonal. In fact (see Section I1L.5),

1
A—H<ﬂ¢‘f"(0)¢f(1,2,---)IM¢E+’(O)!/A-(1,2,-~-)> = {16, — Kl di ™)

where

K ;i(r, 1) = ACY,(n,1p,. . |Yi(To, 75, .. (4.69)
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The resolution of this problem is indicated by the discussion of the impact

of the Pauli principle upon the theory of reactions in Section IIL.5. We recall
[Eq. (I11.5.33)] that

EUv = Z <|//v(Heff‘d‘//v'uv'> (470)

1
=Z <¢v|HeffA¢v’(1tE,) ) "Uv”> (4'71)

which are simply the coupled channel Schrodinger equations in which the target
wave functions range through a finite set {y,}, v=1,...,n. U, is the projection
of the Schrodinger wave function on ¥,:
U,(0) =<y (1,2,.. )I¥) 4.72)
The function u, is given by [see (I11.5.15)]
Uv =U,— Z K’vv’uv' = (1 - K)I)vv‘uv' (473)

where all eigenstates @V of K,, with eigenvalues 1 have been removed, as
indicated by the prime on K. These are the superfluous solutions of Section IILS
satisfying the condition (I11.5.9)

&IZ OJLIV)IPV =0 4.74)
v
Hence

K, =K, Yol ol (4.75)

av

From (4.71) the DWA amplitude with Pauli principle included is

Z v(r07 ri)

i

1 1
, = _ U » = - Ui
u" Z(l _K’)v'v” ' (1 _K,)v‘i

where the last of these equations is a consequence of the initial condition on
U,.. Equation(4.75) implies orthogonality of Uy, with &>y u,.
- Orthogonality does indeed follow:

Y Yult >> 4.76)

(dir) _ (-)
g—ﬁlr —<Uf wf




4. INELASTIC SCATTERING 431
CUps|l A u, > =Z<U(f_)|(1 —K')py [u)

1

= U21-K)y| —— ) 1UWM
U ),V(I*K,)“l )

=< Uff—)léfilU§+)> =0

since i #f.

Evaluation of (4.76) requires the determination not only of U, and U; but
also of the eigenvalues and eigenfunctions of K, those for which the eigenvalues
are neither 1 or zero. The problem of determining K for the shell model
description has been solved by Friedman (67) Some of his results are given in
Section IILS (see (I11.6.51) and (I11.6.52)]. In the case where the eigenvalues of
K are 0 and 1, y; equals U;. This simplest case occurs if the wave functions ¢,
are Slater determinants made up of mutually orthogonal single-particle wave
functions.

Returning to (4.76), one obtains

Z U(l'o, rj)

J

y%ir) = < U(f_)(ro)!/’f(rn r,...)

z U (r,ry,.. ')“‘v+)(ro)>

z l{(ro; l'j)

j

- A<U(f_)(ro)'//f(r1, ry,...)

Z d’v(rOa ry,.. .)u(‘,+)(l'1)>

or

'9-(}1(“) = A<U(f-)(r0)l/’f(r1’ Fo,..)v(rg, 1)1 — P01)|z.//v(rla Ty .)u(v+)(r0)>

A

Z v(ro, 1))

2

- A<U‘f’(ro)l//f(r1,rz,--~)

Zwv(ro,rz,...)u‘v”(rl)> 4.77)

Thus .7 (" consists of a direct term [the first term in (4.77)], an exchange term
referred to as the knock-on term [the second term in (4.77)], and finally, the
heavy-particle stripping term [the third and last term in (4.77)]. The knock-on
term is just what would be expected if one is dealing with a two-body interaction
in which the rest of the target (the core) does not participate in the reaction,
that is, acts as spectator. In the heavy-particle stripping term the particle labeled
1, becomes unbound while the particle labeled r, becomes bound, under the
influence of interactions, vy, + vg3---. This is most unlikely, being proportional
to the “amount” of u'*) (r,) present in ¥ /(r---), going to zero if u{*) and ¥, are
orthogonal. This, indeed, would be the case if ¥, is a Slater determinant of
bound orthogonal orbitals and u{*) is a continuum wave function that is
orthogonal to all bound single-particle wave functions. It is the virtue of anti-
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symmetrization and the elimination of the superfluous states that one is not
required to include, in the sum over v in (4.26) and (4.77), terms in which any
of the target nucleons are in continuum orbitals. It appears, therefore, to be a
good approximation to drop the last term in (4.77), that is, to use models in
which the u, are orthogonal to ¥ .

Finally, one makes the approximation of dropping all but ¢; in the sum over
v in the leading terms of (4.77), so that

y‘fdiir) > A< U(f_)(ro)'//f(ru Fps . ) o(e, 1)1 = Po ) Wiy, 1p, . Jui T (rg) > (478)

This result is also obtained in the high-energy limit where first-order multipole
scattering theory applies. The impulse approximation, in which the incident
projectile interacts only with one of the nucleons in the nucleus, is applicable
and only the two-body Pauli principle, as in (4.78), is involved. Comparing
(4.78) with (4.76), we see that this approximation is valid only when the
eigenvalues of the K matrix are either 1 (the Slater determinant case) or zero.
When this is not the case [Friedman (67) provides important examples; see
Chapter 1117, the orthogonality between the initial and final states is destroyed
in this approximation and one must keep the sum over v in (4.77).

The importance of the errors induced by the approximations is not clear.
The initial wave functions and the interactions vy, used in (4.78) are determined
empirically, for example, from elastic scattering. Then some of the required
attributes of the wave functions used in (4.78) may be implicitly contained.
However, that these sufficiently reduce the error remains, at the present time,
a speculation.

The operator Py, equals the product of the space exchange Pj,, spin exchange
Pg,, and the isospin exchange operators Py ,:

Py, =Py, Pg, Py,
Introducing the projection operators PST of (2.84), where S and T are the spin
and isospin quantum numbers of the two nucleon system, respectively, one
obtains
Poy = Piy(PyL— POL— P10 + P

=P5, Z( _)S+TP£)S1T)

Therefore, using (2.89) yields
vo1(1 = Poy)= ) v5"PG (1 — Po,)
ST

= SZ oS PEPI — (=) TPy ] (4.79)
T

When S + T is odd (i.e, in states in which the relative wave function is even),
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the direct and exchange terms add, whereas when S+ T is even, they have
opposite signs,
Inserting (4.79) into the expression for the transition matrix (4.78) yields

—AZ<U‘ (T ey, s OGP PEI — (= P TP )Ii(ry, s 1 Jul(xo) >

where the spin and isospin coordinates are explicitly given. Then
ar — -
4 fi— A ; [< U(f )(rO’ [f)|p(ST)(r15 60» tO)ng;uf-'.)(rO’ S07 [0)>

—(=)PTUS s St K P (x5 1o00To)vg tul F(ry, 56, t5) >] (4.80)
where
pﬁT)(rl’GOtO) = <'/’f("1 )|P(ST)|‘// (ry---)> (4.81)
and
K(fsin(rﬁro,co'f)=<l//f(r1,51’t1;- (ST)W("O,S'DH’ ) (4.82)
The transition densities p}” are a generalization of the one-body densities
discussed earlier [see the note following (2.82)]. They occur in the Born
approximation (distorted or plane wave) treatment of the inelastic scattering
from y; to Y, produced by a collision with a nucleon, pion, electron, and so
on. Generally, then, these densities can be deduced by considering the data
obtained with all of these projectiles. The data obtained with electrons play a
central role since in that case the interaction is best known, although exchange
current effects do introduce some uncertainties.

The mixed density K3(r;, 1) is present only for the nucleon projectile case
because it is only then that the Pauli principle acts. It does, however, occur when
second-order (multi-step) processes are considered and then is intimately related
to the correlation function [see Feshbach (81}].

Cfi(rb 1) = pr, 1) — pri(ry)pi(rs) — prp(r)psdr,)

However, up to now it has proven difficult to extract this quantity from
experiment.

In a complete DWA theory one will need to diagonalize K$;"(r, 1) to most
readily obtain orthogonality as discussed earlier in this section, and that
diagonalization can be used in this context as well. We write (dropping the
superscripts S and T for notational simplicity)

Kfl 15 l‘O z W(f) )>< wff)(ro)

where w, are the eigenfunctions of K and w!/ is its component in the final state
channel in (see the discussion in Section IIL.5). These are single-particle wave
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functions. They are finite in number and permit a relatively simple evaluation
of the exchange term in (4.80), which involves the matrix elements

¥ U ww e ,) 0o, |W(re)ul (r,) >

The local approximation is generally used in evaluating the exchange term
in (4.80). The technique is identical with that used in the discussion following
(2.9). Consider (suppressing spin variables)

Vexch(ro)u:’+)(r0) = J\Kﬁ(rls rou(r, — ro)"f—“(ﬁ) dr, (4.83)

Introducing p =r, —r,, we obtain

»

Voralroltf60) = | K -+ v retol o + p)
= JU(P)Kfi(p + ¥y, ro)ei[(p.ﬁ)mdl’ugﬂ(ro) (4.83)
where the operator ip/h =V operates only the r, variable, so that

Vexen(fo) = J‘U(P)K j‘i(p + To, ro)ei[(p~ﬁ)/h] dp (4.84)

The Perey-Saxon approximation consists in replacing operator p/h by the
incident momentum p,/h = k;. A somewhat more elaborate approximation takes
the variation of the index of refraction inside the interaction region into account:

A 2 1/2
2»[,2%‘(12 - Vopl(ro)] @85)

With this replacement of p, V,,..(ro) becomes a local operator. A further
approximation is made by Petrovich, McManus et al. (69, 79) and Love (79a).
When k; is very large, that is, for sufficiently large energies, the value of V., (r,)
comes mostly from small values of p, so that in that limit

Vexen(®o = p fi(ro) J eik"pv(P) dp
= prilro)oik;) (4.86)

where ¥ is the Fourier transform of v.
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With the local approximation, (4.80) becomes

T =AY AUEMVED, ~ (=) TV RIS r0)) (487)
ST
where

Ve = [ drip 7 (r)0°"(01) (4.88)
We note that in this approximation only the single-particle transition density
P enters in both (4.86) and (4.88). This represents a great reduction in the
complexity of the calculation, and as noted earlier, permits the use of empirical
information on p@™(r) available for example from electron scattering.

The analysis leading to (4.87) requires modification for the spin-orbit and
tensor interactions present for the spin triplet state of the projectile nucleon
and target nucleon. For example, consider the case of the spin-orbit interaction,
(2.90), appearing in components of VT V1% and V!, in the form

v"3(p)3(00 + 6,):[(r; — 1) X (py — Po)] = v™(p)(6, + 6,) (p x p,) (4.89)

In evaluating VL) using the procedures described above, one needs explicitly
to include the result that V%) vanishes when K ; is independent of r, which
we shall now demonstrate. Under this condition

xch

VEh ~ Jv”(p)(p x V )u(r,) dp

Integrating by parts gives

Vg(lc‘k)x ~ J[(P) X VpULS(P)]u(rl) dp=0 K,; constant
In the analysis that follows we take this result into account by replacing
Kifry,rg) by AKfi:

AK ;= K 4(rg + p,1o) — K 7i(ro, 1)

The 6, term will be considered in detail. Because 6, + ¢, automatically selects
triplet (S = 1) states, one can drop the operator P5T in (4.79). Inserting (4.89)
into (4.84) yields

~

Via(re) =0 | dpAK ;i(ro +p, ro)u"(p)[p x Pp]ei[(p.p(’)/h]

exch
Y

=60 | dpAK 1i(ro + p. 7)o *(p)[p X poJe P

~

=0q" dpAKfi(rO +p, ro)ULs(p) [hivpo X Pol e'lepo/hl (4.90)

Y
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or using hiV, =r,, and making the Perey-Saxon approximation p,— #k; in
the exponent, one finally has

exch

Vs (ro) = .[dPAK 7i®o + P, ro)ULs(p) eiki'pco'Lo
Lo=ry xpo 4.91)

Problem. Verify (4.90) using Fourier transforms to momentum space of u(r,),
and so on.
In the high momentum limit,

1 (k)
ngch(rO) = Eki'v 1Kﬁ(l’1, To)i-o T 6o°Lo 4.92)

where

ViKfi(r,¥g)1 oo = lim V, K p(ry,xo)

ri—ro

A local approximation can also be derived for the ¢, term in (4.89). However,
K ;;(r;,ro) must be replaced by a vector K%, in spin space:

K(risro) = (Y slrysyty, .. Jlog (Y (ro, 51,845 (4.93)

a term that is important if the transition involves a spin-flip of a target nucleon.

5. THE INTERACTION POTENTIALS

In this section we discuss the interaction potentials, v, to be inserted into the
expression for the direct process inelastic J matrix. For the present, our
attention will be focused on their derivation from the nucleon—nucleon force.
Comparison with experiment is deferred to Section 6. Prediction of experimental
results depends on both v, and the properties of the incident and final wave
functions as contained in the transition density matrix.

Bertsch, Borysowicz, McManus, and Love (77) [see also Love, Scott, et al.
(78) and earlier work of Slanina and McManus (68)] proceed by fitting the
potentials v, so as to have the same matrix elements, in an oscillator basis, as
the elements of the G matrix determined, for example, from the application of
the G-matrix method to semiempirical nucleon—nucleon forces. The central and
spin-orbit potentials are taken to be the sum of three terms, each of the Yukawa
form, with the ranges 1.4, 0.7 and 0.4 fm. The first of these is the range of the
one-pion exchange potential; the other two are phenemenological, correspond-
ing to intermediate and short-range potentials. The final recommended inter-
action (M3Y) is based primarily on the Reid nucleon—nucleon potential [Reid
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(68)]. This interaction potential is real and independent of density. It is appli-
cable for the energy range E $60MeV. The resulting potentials are given
in Fig. 5.1.

Petrovich, Stanley, and Bevelacqua (77) point out that the M3Y interaction
does not lead to saturation. They add a density-dependent term proportional
to the density to achieve saturation. On the other hand, Geramb, Brieva, and
Rook (79) use the more recently developed “Paris” nucleon—nucleon potential
[Lacombe, Loiseau, et al. (80)]. The local density approximation [see Vol.
deShalit and Feshbach (74)] is used, employing plane wave matrix elements.
These are matched for each value of the density and energy by the plane wave

10°

104

10* 103

3 — 2 -

‘"§ 10 “:E 10

> >

z s

2 3 -

= 102 - =10t —
10! - 1% —

FIG.5.1. (@) TE component of the interaction as fitted to three Yukawas is shown in
configuration space (V¥ in MeV versus r in fm and labeled by r) and in momentum space
(Vin MeV-fm? versus k in fm ™! and labeled by k). The change in sign of the interaction
near the origin is shown in the figure. TE = Central triplet (S=1) even (T =0) [see
(2.86).] (b) SE component of the interaction same convention as (a)]. SE = singlet (S =0)
even (T =0) [see (2.86)]. (c) TNE component of the interaction. The solid and dashed
curves correspond to r? Yukawa-type fits. The solid circles correspond to ROPEP fit
(same convention (a)]. TNE = tensor even (T = 0). (d) TNO component of the interaction
[same convention as (a)]. TNO=tensor odd (T=1). (¢) LSE and LSO
components of the interaction [conventions as in (a) except Vis in MeV-fm>]. LSE = spin
orbit, T = 0, LSO = spinorbit T = 1. (f) SO and TO components of the interaction from
Elliott matrix elements (same convention as in (a)]. SO =singlet central, T =1.
TO = triplet central, T = 1. [From Bertsch, Borysowicz, McManus, and Love (77).]
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matrix elements of a sum of four Yukawa potentials. Several averages are
performed (over the Fermi sphere for the target nucleons, over angular momenta)
to finally obtain a local potential. The details are given in the original paper
[see also Geramb (83)]. The resulting interactions are complex and are density
and energy dependent. They do not appear, however, to include the effective
mass correction of Equation (2.21). Neither do Petrovich and Love (81) and
Love and Franey (81), who advocate the use of the M3Y at low energies
(< 100 MeV) and the free-space nucleon—nucleon transition matrix as derived
as the first term of the multiple scattering approximation (see Chapter II) for
higher energies. The plane wave matrix elements are matched by the matrix
elements of a sum of Yukawa potentials. The resulting interactions are complex
and energy dependent. They are not density dependent.

Typical results following from the Brieva, Rook, and Geramb approach are
shown in Fig. 5.2, in which the real and imaginary parts of 7§, the isoscalar
central, are shown as a function of g, the momentum transfer, where

i, (q = Je"q"vgo(r) dr

and of the density, which is related to the parameter k; by
kp=(3np)'"

Recall that kz~ 1.36 fm ™' corresponds to normal nuclear density. Note the
change in sign of Red§, and Im %, These provide the input required to
construct the local density approximation to v§,(|r, — r;|), the density employed,
and therefore the choice of the various curves shown in Fig. 5.2, being evaluated
at the average position of the two points r, and r, [i.e., at 2(ro +r)].

Figure 5.2 also contains the results obtained by Love and collaborators
[Love and Franey (81)]. It is clear that at this energy (140 MeV) there is a
substantial difference, so that the effect of the nuclear medium is significant and
cannot be disregarded. Nevertheless, qualitatively the Brieva et al. curves are
similar to the Love—Franey free-space results, so that within an overall reduction
factor, one can obtain qualitatively useful results using the Love-Franey
interaction. However, it cannot be expected to be quantitatively valid.

Itis therefore appropriate to examine the results obtained by Love and Franey
(81) given in Fig. 5.3, in which the magnitudes of the effective interactions are
plotted as a function of the momentum transfer, g, for energy ranging from 100
to 800 MeV. As the energy increases, these effective interactions should become
increasingly accurate. At the lower energies, the omitted medium effects become
significant. In discussing these results, note that the relevant components of v
[for normal parity transition from spin-zero target ground states is An = (—)’,
where J is the spin of the excited state] are the central interactions, vy, and
vy, and the spin-orbit terms, v"%, while the abnormal parity transitions
[Anr =(—)’*!] are dominated by the spin-orbit, tensor and spin-dependent
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parts of the central terms, v,, and v,,. The parity change is accompanied by
a spin flip of the target nucleon.

Problem. Prove this last statement.

We first discuss the normal parity transitions. In both v,, and v,,, note the
strong minima in the range 100 MeV < E <210 MeV for g ~ 1.6 fm L. In this
domain, the spin-orbit contributions, especially v“5(T = 0), will dominate. At
low ¢, the dominant contribution will come from scalar—isoscalar v,,. The latter
is illustrated by Fig 5.4, which shows vy, vy, v, 0;-

Turning next to the unnatural parity excitations, the T =1 contribution is
dominated at small g by v, ,. At larger g and for the lower group of energies a
minimum is present in v, ,, and vT(T = 1) should dominate. For T = 0, the tensor
term v"(T = 0) is strongest at low g. At larger g, v,,, v*5(T=0) and +"(T=0)
will all be important. Note that the last two are relatively constant for large g
and slowly varying with energy.

We note the important result that the corresponding components of the
density matrix will be measurable. For example, low-g normal parity transitions
will be sensitive to the scalar density p°°. While for abnormal parity transition,
the spin components p'! and p'° will be important. If, on the other hand, the
nuclear structure is well known, the interactions can be extracted from
experiment.

500
B0
400 — —t
e
S 300— -
[}
= L -
S
o 200 — -
=
b U(i‘ -
TN
L "
vio
0 | i S .
0 200 400 600 800
Ep (MeV)

FIG. 54. Energy dependence of the magnitude of the central parts of the N—N t matrix
as described in Fig. 5.3. [From Love and Franey (81).]
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G-Matrix Method [Mahaux (79); Brieva and Rook (78)]. In this section we
briefly outline and G-matrix method used in the lower-energy range to obtain
the effective two-body interaction. The procedure used is called the
Brueckner—Hartree—Fock method. [We refer the reader to deShalit and
Feshbach (74), (VII1.18.13) and (VII.18.14).] The first of these is the equation for
the G matrix,

GEe)=v+v Or Gle) (5.1)
€— Iy

where v is the nucleon-nucleon potential, @ is the Pauli operator that projects
on to unfilled states, and H,, is the unperturbed Hamiltonian:

Hy= Zhi
kl
h,=— 4+ U, (5.2)
2m

where U, is a one-body potential chosen so as to minimize higher-order effects
in the evaluation of the energy:

E =) <i|Tliy + 33 <ijlGle + )i (53)

In the positive energy domain the Bethe—Goldstone equation (5.1) is replaced,
using lower case g, by

Qr

o g9 (5.4)

gEY=v+v

The resulting nucleon—nucleus interaction is then given by an extension of the
second term of (5.3) as

Veerlk, EY="3. <k, jlg(E + e()))Ik, j> (5.5)

J<kr

This is the Brueckner—Hartree—Fock approximation for V¢ for positive energies
E. It contains the effects of particle—hole excitations but not, for example,
excitations involving two or more holes. It is thus the first term in an expansion
in the number of hole lines. Evidently, g is the effective two-nucleon interaction
inside the nucleus.
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There remains the problem of choosing U, in (5.2). Jeukenne, Lejeune, and
Mahaux (76) use a self-consistent procedure as follows. Take

U(k)=Re Vg (k, E(k))
where

2
E(k)= LS + Re Vi (k, E(k))
2m
[Compare with (2.32).] Since H, depends on U, an iterative procedure is used,
determining g, U, and V¢ simultaneously.

Jeukenne, Lejeune, and Mahaux (76) [see also Mahaux (78) and Brieva and
Rook (77,78)] have applied this method to the case of infinite nuclear matter,
thereby deriving values of g and V4, for various values of the density. Several
differing approximations are made by each group which we will not parsue
here. Using the local density approximation permits the approximate extension
to finite nuclei. The results, as we have indicated earlier, are surprisingly good
and as also shown by the comparison of the theoretical and empirical volume
integrals of the potential shown in Fig. 5.5. One must bear in mind the omission,
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FIG. 5.5. (b) Dependence on A of the volume integral per nucleon of the imaginary part
of the optical model potential. The dots are obtained from a compilation of empirical
values for 17 ( + 8) MeV protons and for 5 (4 3} MeV neutrons. The theoretical curves
refer to E, =25MeV and E, = 5 MeV (short dashes) and E, =10 MeV (full curve with
dots) [Jeukenne, Lejeune, and Mahaux (76)]. [From Mahaux (79).]

at least explicitly, of surface effects which in finite nuclei contribute importantly
to the absorptive potential. Of equal, if not greater concern is the failure of the
Brueckner—Hartree—Fock method [see Chapter VII in deShalit and Feshbach
(74)], without some additional phenomenological devices, to predict the nuclear
matter binding energy/nucleon as well as the properties of the bound states of
finite nuclei.

6. COMPARISON WITH EXPERIMENT

We select a few examples from the immense literature on this subject. In
comparing the direct interaction theory of inelastic scattering with experiment,
one should bear in mind its major conceptual approximation. The assumption
(see Sections 1 and 4) is made that the process can be described by a single
step; that is, reaction paths in which the system passes through the intermediate
states are not important. As we discuss in a later chapter, this is not the case
for nucleon projectile energies in the range 25 to 65MeV, where the multistep



446 ELASTIC AND INELASTIC SCATTERING

contributions have been calculated [Bonetti, Colli-Milazzo Doda and P. E.
Hodgson (82)]. At the endpoints of this interval the single-step direct process
contributes 82% and 70%, falling to 50% in between, respectively, indicating
that the multistep process becomes unimportant for energies somewhat below
25MeV and above 65MeV. These multistep contributions become more
important as the scattering angle and/or the energy loss increases. Thus, at and
below ~ 65MeV, one can expect agreement of the DWA with experiment only
at forward angles and small energy loss. In addition, because simple wave
functions are used to describe the initial and final nuclear states, a normalization
factor must be introduced to obtain the correct order of magnitude of the cross
section. That factor is generally much smaller than unity, indicating that the
model wave function used is a small component of the exact wave function.
Above ~ 65MeV, the nucleus is sufficiently transparent so that one-step
processes dominate.

In addition to the coupling potentials of Section 4.D, to obtain a theoretical
prediction to compare with experiment, one needs the distorted incident and
outgoing nucleon wave function as well as the density matrices describing the
nuclear transition [see (4.81)]. In principle, the distorted wave functions should
be obtained as solutions of the Schrodinger equation using the folding optical
potential obtained from the same “two-body” interactions used in deriving the
interaction potentials for inelastic scattering. This procedure is not always used;
rather, the empirical optical model, adjusted to fit the elastic scattering data,
is used. This inconsistency is faced if the folding potential optical does not
give a good fit to the elastic scattering. Generally, also, the orthogonality
requirements on the initial and final wave functions [see the discussion following
(4.68)] are not rigorously satisfied. With regard to derivations of the interaction
potentials from the empirical nucleon—nucleon forces, it should be mentioned
that the effects of effective nuclear mass [see (2.37)] are not taken into account.

Using the representation of the effective two-body potential given by (2.86),
one sees that the density matrices that are needed include isoscalar and isovector
components of p:

p3i= Yy o —r)ly:>
b= (109 e e

)
)

Z o(r— ri)Li‘ '/’;>

N’

Z S(r—ry)o;r

~—

P i
pf,
pf(

t//f(rl

N—

o
o
<

Z_‘S(T - ri)o'i']-‘i‘l//i>



6. COMPARISON WITH EXPERIMENT 447

6 T L L LN ¥ 1 1 I Ll T 1 T T 7 1 L T
. "Siep) ®Si" 67, Tel DWIA; GERAME -~BAUMOFF |
: 14.35 Mev

K00 Mev 135 MoV 180 MoV |

o (mb/sr)

q (Mev/ic)

FIG. 6.1. Momentum transfer dependence of the cross sections for proton inelastic
excitation of the 67, T = 1 state at 14.35 MeV in 23Si. The curves are DWIA calculations
(multiplied by 0.25) using the Geramb—-Bauhoff effective interaction and optical potentials
appropriate for the various incident energies. [From Olmer (83).]

Electron scattering from nuclei can provide information on these density
matrices, but, of course, for a particular isovector and isoscalar combination,
since the electron interacts primarily with the nuclear protons.}

We shall give two examples of the applications of this analysis in the
multi-hundred-MeV range. In the first, reported by Olmer (83), inelastic proton
scattering from 28Si to its 67, T=0, T =1 states® is compared to several
theoretical interaction potentials, v;;. We shall compare with the Geramb-
Bauhoff interaction (80) based on the Paris potential Lecombe et al. (80). The
ground state of ®Si contains six ds, orbital neutrons and six ds,, protons. The
excitation lifts one of these to the f-,, forming the particle~hole configuration
(f7/2d5,3)- These states are referred to as “stretched” since they correspond to
the maximum possible spin for this configuration. Harmonic oscillation wave
functions derived from inelastic electron scattering from the same nuclei are used
for these orbitals. The “unnatural parity” of the resultant 6~ states requires the
action of parity-changing parts of the interaction; that is, the spin—spin,
spin—orbit, and tensor terms should be dominant.

The comparison between theory and experiment is shown in Fig. 6.1 for the
excitation of the T =1 state. As one can see, these transitions are dominated

*The use of other probes, such as pions, kaons, and so on, can provide additional information.
Elastic scattering by positive kaons would, in fact, be most effective in this regard.
¥0lmer reports on excitations of the 5* state, as well.
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FIG. 6.2. Momentum transfer dependence of the analyzing powers for proton inelastic
excitation of the 6, T = | state at 14.35MeV in 28Si. [From Olmer (83).]

by the tensor terms in qualitative agreement with the discussion presented in
the preceding section. Agreement is not good for low momentum transfer, g,
and lower E. Note that these are semilog plots of the cross section. Moreover,
an overall reduction of the theoretical prediction by } is required to obtain the
correct magnitude. In Fig. 6.2 the analyzing powers, 4, are shown. Although
the magnitude of A4 is correctly predicted, the shapes, as a function of ¢, are
not. The cross section for the excitation of the T=0,6" state is shown in
Fig. 6.3. This time, the predicted magnitudes must be multiplied by a factor of
0.15. And again, there is a problem with the comparison at low ¢, and E. Note
that the tensor and LS components dominate, in disagreement with the quali-
tative remarks of the preceding section. Obviously, much remains to be done!
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FIG. 6.3. Momentum transfer dependence of the cross sections (for proton inelastic
excitation of the 6, T = 0 state at 11.58 MeV in 28Si. The curves are DWIA calculations
(multiplied by 0.15) using the Geramb—Bauhoff effective interaction and optical potentials
appropriate for the various incident energies. [From Olmer (83).]

A more satisfactory picture is presented by Kelly (83) for the elastic scattering
of 135-MeV protons by '°0. The Paris potential is used, as developed by Brieva,
Geramb, and Rook (78). Figure 6.4 compares the experimental elastic scattering
and the analyzing power with the resultant theoretical predictions. The
agreement is by no means perfect, but it must be remembered that there are
no adjustable parameters! The inelastic scattering to the “normal” 1~ and 3~
state in 'O is shown in Fig. 6.5. The agreement is very good, indeed. This
indicates that the isoscalar spin-independent central component is given
correctly by the microscopic theory of Brieva et al. Most important, the
Love—Franey interactions, in which there are no medium corrections, fail to
reproduce the inelastic cross section. We see from these data (the same can be
inferred from Olmer’s result) that the effective two-nucleon interaction is density
dependent.

A few examples of comparisons at lower energies employing the M3Y
interaction in the folding model will now be discussed. The paper of
Bertsch, Barysowicz, McManus, and Love (77) in which this interaction was
introduced contains a number of comparisons. As is generally the case in this
energy range, an empirical optical model is used to describe the projectile wave
functions. Figure 6.6 presents a comparison between experimental and theory
for the excitation of states of normal parity 37, 5~ in 2°8Pb by inelastic proton
scattering.

The theory does provide reasonable agreement with the shapes of these
angular distributions. The dominant role of the central component of the
interaction is evident. On the other hand, the prediction of the cross section
for the excitation of unnatural parity levels in *°Ca is less successful (see
Fig. 6.7). The central part of the interaction alone is inadequate, as expected,
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FIG. 6.5. Differential cross section and asymmetry for the inelastic scattering of protons
by %0 to the 17 and 3~ levels compared with the LDA using the Paris potential.

[From Kelly (83).]
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FIG. 6.6. Excitation of lowest 3~ and 5~ states in 2°°Pb by 35-MeV protons. The solid
lines are theory the dotted line is with the central odd interaction removed, and the
dashed line is with the central even interaction only. [From Bertsch, Borysowicz,
McManus, and Love (77).]
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FIG. 6.7. Excitation of 27, T =0 and 1 states in *°Ca by 35-MeV protons. Conventions
are as in Fig. 6.6. [From Bertsch, Borysowicz, McManus, and Love (77).]
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indicating the importance of spin-dependent terms. The disagreement becomes
more severe when the excitation energy increases, as Bertsch et al. demonstrate
for the 47 (T =0 and T = 1) levels in *°Ca.

In a more recent comparison, Fujiwara et al. (83) study the excitation of the
1* levels in 3®Ni by 65-MeV protons. Their results are shown in Fig. 6.8. We
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observe the excellent agreement for the excitation of the 2.903- and 5.166-MeV
levels, aside for normalization factors of 0.31 and 0.24, respectively. The different
shapes are in large part a reflection of the differing structure of the final states.
The quality of the agreement decreases and the normalization factors become
rather small with increasing excitation energy. The magnitude of the apparent
disagreement in the forward direction is sensitive to the optical model
parameters, as the authors points out.
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