CHAPTER VI

TRANSFER REACTIONS

1. INTRODUCTION

Transfer reactions have been of critical importance for the study of nuclear
structure. The results obtained from the study of the stripping (d, p) and pickup
(p, d) reactions involving single-neutron transfer helped to validate the nuclear
shell model by identifying the single-particle states, since to a large extent the
(d, p) reaction can be understood as one in which the neutron in the deuteron
is transferred to a single-particle state of the final nucleus. In the pickup reaction,
a neutron in a single-particle state is picked up by the incident proton to form
the deuteron. Reactions in which a proton is transferred, such as the (*He, d)
and (d, *He), provide similar information regarding the proton single-particle
states. The reactions (t, p) and (p, t) involve the transfer of two neutrons. These
reactions are most useful for study of the superconducting nuclei, such as the
the tin isotopes. In these cases, the (t, p) reaction has a relatively large cross
section for the transfer of two neutrons in the 'S, state, as predicted, for the
formation of the final nucleus in a superconducting state.

In the course of these transfer reactions, energy, momentum, and angular
momentum are exchanged by the projectile and target nucleus, as in the case
for inelastic scattering. But in addition, in the transfer reaction there is a transfer
of mass that produces a fundamental change in the description of the reaction
from that used for inelastic scattering.

The strong specificity of these reactions at modest projectile energies follows
from their surface character, a consequence of the limited penetration of the
deuteron into the nuclear interior. If p,, is the incident deuteron momentum
and p, the momentum of the emerging proton, the momentum p, transferred
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456 TRANSFER REACTIONS

to the target nucleus by the transfer of the neutron to the nucleus is given by
conservation of momentum:

P:=Pp—Ps (1.1
From this equation one can immediately determine the magnitude of p,:
pZ=pp+p;—2pppscosd (1.2)

where 3 is the angle between the direction of the final proton and the direction
of the incident deuteron. The angular momentum transferred, Al,, must be less
than p,R, where R is the projectile—target separation at which the reaction
occurs. Hence
12, +4)* < p?R?

or

(U, + 3)? < (kp + k2 — 2kpk s cos 9)R?
so that
(kpR)* + (k,R)? — (I, + 12

2(kpR)(k R)

cos I < (1.3)

where Ak as usual equals p, and the WKB value of 2, (+ 1)2, has been used.
Classically, then, one expects that the reaction will be forbidden for angles
smaller than 3,,, the angle at which the equality of (1.3) is satisfied. Quantum
mechanically, there will be some penetration into the classically forbidden
region, so that the cross section should show a rise from 3 = 0 with a maximum
at 9,,. One can employ that result to obtain an estimate of the value of /,. R is
treated as an empirical parameter, which, however, must be the same for all
values of I..

For example, consider the 9°Zr(d, p)°'Zr reaction whose cross sections to
various levels in ®!Zr are given in Fig. 1.1. The similarity of the curves labeled
=2 in the left-hand panel, of those labeled ! =4, and those labeled =0 is
striking. If one assumes that the angle at the first peak equals 3,,, one can
identify the I, as well as R by requiring that R have a reasonable value. For
example, the [ =2, Q =133-MeV cross section gives R=54fm for I[,=2,
R=3.1fmforl,=1,and R =7.6fm for [, = 3. When one takes into account the
result obtained from quantitative studies that (1.3) underestimates the value of
R at which the reaction occurs, the most reasonable value of R is 5.4fm and
the [, transferred is 2. Using the same value of R, one can determine /, for the
three curves labeled | =4 to be I, =4. The curves marked ! =0 have their first
maxima at 9 =0, which is presumed to be [, = 0 transfer reaction.

The values I, =0, 2,4 correspond very nicely to shell model expectations. The
nucleus, 2°Zr, is a closed-shell nucleus [see Fig. IV.8.1 in deShalit and Feshbach
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FIG. 1.1. Comparison between measurements and cross sections calculated using the
distorted-waves method for the °°Zr(d,p) °!Zr reaction with 12-MeV deuterons.
Transitions with [ =0, 2, and 4 are shown. [Dickens, Perey et al. (67)]. [From Satchler

(83).]



458 TRANSFER REACTIONS

(74)]. The neutron added in the (d, p) reaction would thus go into the shell,
SO0 N <82 composed of 1g,2d, 3s orbitals (i.e., | =4,2,0), corresponding
precisely to the values obtained for ,.

The °°Zr(d, p) example illustrates the extraordinary specificity of the (d, p)
reaction that occurs at sufficiently low energies. By examining the angular
distribution, one can deduce the orbital angular momentum transferred along
with the captured neutron to the largest nucleus. Of course, a quantitative
understanding of the angular distribution is essential before one can rely on
this conclusion. The results of such a calculation, whose theoretical basis will
be discussed later, are shown by the solid lines in Fig. 1.1. In this calculation
it is assumed that the transferred neutron occupies a single-particle orbital of
the target nucleus. The agreement with experiment is excellent (note the
logarithmic scale for the cross sections)—an agreement with experiment that
is repeated when targets throughout the periodic table are used, thus validating
the single-step character of the transfer reaction mechanism.

The angular distribution is not sensitive! to the value of the total angular
momentum, j, transferred; that is, it does not distinguish between the two possible
values, j =1+ 1. That sensitivity can be obtained in the (4, p) reaction using
polarized deuterons and measuring the asymmetry of the produced protons.
An example is shown in Fig. 1.2.

A qualitative understanding of the origin of the polarization of the proton
emitted in (d, p) reaction (or equivalently, of the asymmetry of the emitted proton
that occurs if the incident deuteron is polarized) has been given by Huby, Refai,
and Satchler (58). For the production of nucleon polarization, it is essential
that an asymmetry of the transition amplitude with respect to the normal to
the scattering plane exist. The absence of such an asymmetry would make the
production of a nucleon with a spin oriented in the “up” direction (i.e., in the
direction of the normal to the scattering plane) indistinguishable from the
production of a nucleon whose spin is in the opposite direction. An asymmetry
will be present in the stripping amplitude for a given direction of the emergent
proton if the amplitude differs according to which side of the target nucleus the
stripping occurs. The origin of the asymmetry in the stripping amplitude lies
classically in the differing paths, involving, for example, a different probability of
absorption, taken by the proton and deuteron according to the side of the
nucleus the deuteron strikes. Quantum mechanically, the asymmetry is a
consequence of the distortion of the incident and emergent waves by the nuclear
field. If the favored value of the projection, m, of the captured neutron is (+ ),
and the spin of the final neutron single-particle state, j, is |+ %, the neutron
spin must be up. Since the incident spin of the deuteron is one, the spins of the
neutron and proton are parallel, the emergent protons will be polarized with
their spins up.

The determination of the spin-quantum numbers as well as of the energies

*There does seem to be some dependence at back angles which is marked for / = 1, but less so for
larger values of ! [see Satchler (83, p. 706)].
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FIG. 1.2. Analyzing powers for p,,, (upper) and p,, (lower) transfers in **Cr (d,p)
reactions at 10 MeV. The curves are from DWA calculations [Kocher and Haberli (72)].
[From Satchler (1983).]

of the single-particle orbits provides obviously important spectroscopic
information. But one can go beyond this to obtain information on the structure
of the nuclear wave function. The single-particle orbit for the neutron provides
only one component of the total wave function, which will, for example, include
as well excitations of the target nucleus plus the neutron in other orbits. From
the magnitude of the (d, p) cross section one can in principle determine the
strength of the single-particle state generated by the (d,p) reaction. More
precisely, the single-particle component of the final-state wave function has the
form

f/l:ﬂ[‘PT(l,Z,...,A)(t)jm(A +1)] (L4)

vA+1

where .o/ is the antisymmetry operator, ‘¥ the target nucleus wave function,
and ¢,,, the single-particle wave function. The quantity (), referred to as the
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spectroscopic factor, measures the strength of the single-particle component in
the final-state wave function, so that

S j) =\/A;_H(&/[‘PT(1,2,...,A)¢J.M(A +1)]I¥A(L,2,...,4,A+ 1)) (15)

and

yllz
Vi=———AVrhjm)+ -

JA+1

&(j) is unity only in the limit of the noninteracting independent particle shell
model for closed-shell target nuclei. This result holds not only for (d, p) reactions
but also for (p,d) reaction. In the later, instead of adding a particle to the
closed-shell target, one creates a “hole” in a filled shell. This is made completely
clear in a formalism in which particle and hole formation are treated
symmetrically, as described in (VI1.9.11) in deShalit and Feshbach (74). However,
in the interacting shell model any state of the 4 + 1 system will consist of a linear
combination of one-particle states and two-particle/one-hole states, three-
particle/two-hole states, and so on. In that case #; will be less than 1; the
deviation from one describing the probability that the system is not in a
single-particle state given by (1.4).

Can the spectroscopic factor be determined experimentally? The answer is
that any such determination is model dependent. To be sure, the cross section
is proportional to ;. But the other factors depend on the models used for
describing the initial and final wave functions as well as upon the interactions
of the proton and neutron with the target nucleus as well as their mutual
interaction. Only if these are well known can &; be determined from the
magnitude of the cross section. Within a given framework, that is, a particular
nuclear model and fixed interactions, the relative value of &; are meaningful,
especially if a consistent picture of the reaction over a range of nuclei can be
established.

Consistency must also be established with respect to other models of
populating single-particle states. One obvious example is the (n,7y) reaction, in
which the neutron after y emission ends up in the same state produced in the
(d, p) reaction. Another example is the isobar analog resonance. For example,
through the resonant elastic scattering of protons on an (N, Z) nucleus, one
obtains information on the analog states in the (N + 1, Z) nucleus [see deShalit

FIG. 1.3. Angular distributions for nucleon transfer at sub-Coulomb energies for
different [ transfers. The curves are the results of DWA calculations: (a) (d, p) at 8.0 MeV
[Erskine, Buechner and Enge et al. (62)]; (b) (!70,'°0) reaction at 67 MeV [Franey
Lilley and Phillips et al. (79)]. [From Satchler (83).]
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462 TRANSFER REACTIONS

and Feshbach (74, p. 102)], which again can be compared with the (d, p) reaction

on the target (N, Z) nucleus.

The striking correlation between the (d, p) angular distribution and nuclear
structure is present only in a limited energy range. At very low energies, below
the Coulomb barrier, the process is dominated by the Coulomb interaction and
the angular distributions are rather featureless (Fig. 1.3). At high energies, the
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FIG. 14. Angular distributions for medium-energy (p, d) reactions. The curves are from
DWA calculations [Kallne and Fagerstrom (79)]. [From Satchler (83).]
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deuteron penetrates into the nuclear interior, and again the angular distribution
does not as directly provide nuclear structure information (Fig. 1.4). It is the
intermediate energy region throughout which the deuteron can penetrate to the
nuclear surface, but not much beyond, that (d, p) experiments manifest their,
specificity most clearly. The reaction in this energy domain is peripheral and
it is this condition that underlies the interpretation of the resulting structured
angular distribution.

2. THE DWA AMPLITUDE

For the most part, the analysis of the (d, p) and (p, d) reactions has been based
on the distorted wave approximation (DWA). Its derivation is, however, not
as straightforward as the DWA for inelastic scattering given in Chapter V. In
that case the DWA amplitude is an approximation to the solution of a pair of
coupled equations obtained by projecting out the incident and inelastic channels.
The effect of the remaining channels was included through an energy averaging
that introduced imaginary components into both the diagonal and coupling
potentials. An important element in this procedure is the orthogonality of
the ground state and the excited state of the target nucleus. To be sure, when
the incident particle is a nucleon or composed of nucleons, this advantage
is diluted by the nonorthogonality introduced by the Pauli principle, but we
have learned how to take account of that feature by the method developed in
Section ITL.S.

Extension to the case of particle transfer is possible, but there is a charac-
teristic problem that must first be resoived. To be concrete, let us consider the
16Q(d, p)! 7O stripping reaction. In that case one must consider at least the two
partitions [Satchler (83)] d + 'O and p + !’O of the 18-particle system. The
natural spatial coordinates of the first partition include the relative distance
between the neutron and proton of the deuteron and the distance between the
center of mass of the deuteron and the center of mass of the 1°O nucleus, and
finally, the (3 x 15) independent internal coordinates of the nucleons making
up the '?O nucleus. The total number of coordinates should be (3 x 17).
However, these coordinates are not convenient for the description of the final
system, which involves the distance between the proton and the center of mass
of the 7O nucleus and the (3 x 16) independent internal coordinates for the
170 nucleus. It is possible to introduce a complete set of the d + '°0O wave
functions that would need to include the continuum states of the deuteron, in
which the neutron and proton are no longer bound in order to include a
description of the final state, p + 17O.

Diagrammatically (Fig. 2.1), the deuteron breaks up at vertex 1, the proton
moving ahead while the released neutron is captured by the '°O nucleus to
form '70. Diagrams of this sort and their corresponding analytic transition
amplitudes are very helpful for forming an intuitional understanding and have
provided the base for theories developed by Shapiro (67) and Schnitzer (64).
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FIG. 2.1. Stripping reaction.

However, they have not for the most part been adopted as the preferred method
for analyzing particle transfer reactions.

The method, which is most commonly used and which by suitable
manipulations leads to the DWA, employs a mixed representation. In the initial
channel, this might include the deuteron and '°O in their ground state plus
excited states of '¢0. In the final channel one would include the proton plus
various states of 7O according to the reaction involved. The total wave function
would then contain contributions from both of these sets of wave functions.
The remainder will be energy averaged with the consequent introduction of
complex potentials. Such a wave function would permit the calculation of not
only the one-step process but also for the multistep process, of which the two-step
is illustrated in Fig. 2.2. The wave function corresponding to that figure would
include the '°0 and !”O ground and first excited states.

A traditional approach to the single-step process [say, (d, p)] has been to
truncate the wave function ¥ of the system as follows:

Y= udp+oxy]+ - 2.1

where ¢ is the residual nucleus wave function (1’0), y the internal deuteron
wave function, and y the initial nucleus wave function. The functions u (proton)
and v (deuteron) to be determined depend on the distance between the proton
and center of mass of 17O, the residual nucleus, and between the center of mass
of the deuteron and 0, the initial nucleus, respectively. .« is the antisym-
metrization operator. The indicated truncation does have a serious drawback.
The omitted terms in the series would contain components such as excited

Two-step

160 One-step 70

FIG. 2.2. One- and two-step contributions to a pickup reaction.
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states of !7O, which together with the proton wave function would have a
substantial overlap with the deuteron channel wave function yy. It therefore
should be included in (2.1) in order to obtain the total asymptotic reaction
amplitude. Similarly, excited continuum states of the deuteron combined with
the 10O wave wave function (ground and excited states) would combine to form
Q0 + p states. These difficulties are very similar to that of exchange scattering
discussed in Section III.5 and are resolved in exactly the same way. We write

¥ = PY + Q¥ 2.2)

where as usual P and Q are projection operators and @ =1—P. P¥ is

PY = o/ [ugp + vyy] (2.3)
Because
(PY|IQ¥)>=0 (2.4)
and the related constraints
(pIQ¥) =0 (2.5)
<xy|Q¥ > =0 (2.6)

Q¥ will not contain any components that can contribute to u¢ or vyy. The
function PW¥ contains all the information required for the determination of the
reaction amplitude. Conditions (2.5) and (2.6) also solve the problems raised by
the identity of the particles involved. The reasoning is identical with that given
in Section I11.5 and need not be repeated.

Before proceeding to a consideration of (2.5) and (2.6), it is useful to point
to another problem associated with ansatz [see (2.1)]. This can be seen if one
substitutes u¢ + vyy for ¥ in the Schrodinger equation

HY = E¥ 2.7

We drop the antisymmetrization operator, &/, to simplify the argument.
Including .« will not change the substance of the discussion. Multiplying (2.7)
from the left by ¢ and integrating over all the coordinates contained in ¢ yields
an equation for u coupled to v. A second equation is obtained by multiplying
by x¢ and integrating. These equations are

(¢|Hu¢p) — Eu=E{ployy) — ($p|Hvgy ) (2.8a)
Cxy|Hoxy > — Ev=E glug ) — (| Uugd (2.8b)

We observe the presence of a coupling term on the right-hand side of each of
these equations, proportional to the energy. These are present because ¢ is not
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orthogonal to yy. The range of this coupling term is given roughly by the radius
of the deuteron, which is relatively large. Some study of this situation has been
made. [See Satchier (83), Section 3.32, for further discussion; see also Ohmura,
Imanishi, Schimura, and Kawai (70); Imanishi et al (74); Cotanch (75); and
Cotanch and Vincent (76).] Satchler summarizes by noting that in the cases
discussed by these authors “the effects [of these terms] appears to be small, not
always negligible on the absolute sense, but with the uncertainties that one
might subjectively associate with the models being used.” In the standard DWA
applications, these overlap terms are generally ignored. As we shall show, terms
of this type (proportional to the energy E) need not appear in the coupled
equations for u and v when the representation (2.2)—(2.6) is used.

These equations are exact. However, the choice for P¥, and the eventual
replacement of QW by an energy average introducing thereby an optical
potential into the equation for P¥, involve some implicit assumptions. The
possibilities not explicitly included in (2.3), such as multistep processes as well
as the polarization of the deuteron under the combined influence of electrostatic
and nuclear fields, are assumed either to be of little importance or to have
effects that vary slowly with the experimental parameters. Under the latter set
of circumstances it may be expected that a correspondingly slow variation in
the optical model parameters determined empirically will suffice to take these
effects into account.

We turn now to (2.2)—(2.6). A complete analysis of these equations has
been given by Dohnert (68,71) [see also Mittelman (64), and Horiuchi (77)].
Formally, the results are quite simple. However, Déhnert’s calculations are quite
complicated, although with the computational aids developed since that paper
appeared they should be much less formidable. In the present context, Dohnert’s
results are important since they demonstrate the existence of the projection
operator P and therefore of coupled equations for 4 and v from which the DWA
can be extracted. Note that the resuits to be obtained below apply, after suitable
but trivial generalizations, to the collision of a heavy ion with a nucleus.

Equations (2.5) and (2.6) reduce to two equations for u and v in terms of U
and V defined by

U={ol¥) V=Y 2.9)

where the integrations are carried out only over the variables in ¢ and yxy,
respectively. Consider first (2.5):

0=C_9[Q¥>=<¢|¥) - (o|P¥) (2.10)

We immediately obtain
U=<{¢|P¥Y)> (2.11)

and similarly,
V=<, yy|P¥)> (2.12)
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Substituting (2.3) in (2.10), one obtains

U={¢|ud)>+ | (vx¥h)>

Defining the operators K,, and K,, by
(1 -Ku={o|up))  K,v=—{o|lL(xy)> (213
the equation for U becomes
U=(1-K,u—K,v (2.14)

Note that operator K,, [identical with K of (II1.5.13)] is Hermitian. This can
be seen formally since the operator

1 -K,,=<{¢|dp)={AP|P) (2.15)
A similar analysis of (2.6) yields

V=(1-K,)v—K!u (2.16)

vu

where K,, is Hermitian since

1=K, =¥l Lp> =LA x>

The operator K,, and K,, contain the effects of antisymmetry while the
nondiagonal K,,, includes the antisymmetry and overlap effects. Defining

. (K
WE(U) ws<u> Ks( s K“”) 2.17)
% v Kl K,

Equations (2.13) and (2.16) can be summarized as follows:

W=(1-Kw (2.18)

where K is Hermitian. This equation is identical in form with (II1.5.15) and its
analysis is completely parallel to that following this equation.
Since K is Hermitian its eigenvalues x, are real and its eigenfunctions w,

forms an orthonormal set. Moreover, (1 — K) is positive definite. To prove this,
note that

(WL = R)w) = Cudp + vy | o (ud + vxy) > (2.19)
Because of the antisymmetry of the ket, this can be written as

(A (up + vy)| o (ud + vxh)) =20 (2.20)
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We can additionally conclude that the eigenvalues of K, K,, are less than 1
K, <1 (2.21)

Since the operators in K involve only square-integrable functions [see (2.13)
and (2.15)], K is bounded. The trace of K, tr K, involves the trace of K,, and
K,, only. These traces have been shown to be bounded in the discussion dealing
with elastic scattering, so that tr K is bounded. We can therefore conclude that
the eigenvalue spectrum of K is discrete.

(1)

p ”) eigenfunctions of K whose
v

. . . u'
Special attention needs to be paid to w(!) = (

eigenvalue x, is unity Kw(" = w("). We shall show that
LU+ vVxy)=0 (222
To prove this, note that
(e + vpp)| o (up + vx)> = {(1 = K)w|(1 — K)w)

Inserting w'? for w in this last equation, we obtain
(WD P + D) WPy + oVx)> = (1= R)w|(1 = K)wt'> =0

Equation (2.22) follows from this result. These solutions, w;”, are referred to
as superfluous solutions [see (I11.5.19)]. These solutions do not contribute to
PY, as follows from (2.22).

These results are for the most part similar to the results obtained for elastic
and inelastic scattering with one notable difference. In elastic and inelastic
scattering the appearance of K and the associated superfluous solutions are
formally a consequence of the nonorthogonality introduced by antisymmetriza-
tion. In the particle transfer case, K and the associated superfluous solutions
arise not only because of antisymmetrization but also because of the overlap
between the cluster wave functions ¢ and yy.

We are now able to invert (2.18):

we ' _w 2.23)

1-K
where the prime superscript on K’ indicates that in the spectral expansion of K,

K=Y kw){w, (2.24)

KeF 1

all eigenfunctions of K with unit eigenvalue are to be omitted. Hence

w= Y WOl W WH=W <4+ ¥

Kat#ll—Ka kex1 1 —K,

Wo ) {We| W
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An explicit expression for the projection operator P of (2.3) can be obtained.
Define matrices @) and (® as follows:

¢>E(¢> (D =($,10) (229)
W

Equation (2.3) can then be written

u
v

PY¥Y = o (D, W)= d(tf),xl//)( )= of (ug + vxy)

Inserting (2.23) and noting that the matrix W is

<¢|‘l’>)
W= ={(D|¥ 2.26
((xd/!‘l’> O (226)
we have

P=dd))1_12/<d> (2.27)

-~

Employing the spectral series for 1/(1 — K’) with

one obtains
1
1 -k,

P=3 d[ua¢+vax¢>

ke # 1

(u + vaxl/']

Once P is known it becomes possible to obtain the Schrodinger equation
for P¥ and the coupled system for u and v. The constraints on u and v are

-~

now carried by the operator (1/1 — K’). The equation for P¥, (II1.2.7), is
(E Hpp— H L H )P‘P—O (I11.2.7)
PP PQ E _ HQQ QP el

Upon energy averaging, the last two terms can be combined into a complex
(i.e., non-Hermitian) optical model Hamiltonian, PH .P:

(E— PH P)P¥ =0 (2.28)
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Multiplying from the left by ® and integrating, one obtains

EW ={®|PH (PY¥Y) = (D|H (P¥) (2.29)
and from (2.27),

EW = <(D|Heff‘sz¢<l)-1—A W>
1-K

= D|H I PW) = (O|H e (udp + vyf)> (2.30)

an equation determining W [see (2.17) and (2.26)]. Note that the operator

(O|LD(1/1 — IE") is just the unit operator since {(®|F/P> equals (1 — K).
Therefore, (2.29) can also be written

1
<<D|(E—Hm)d<bmw> =0 (2.31)

This is a pair of coupled equations for U and V:
(oo Lol L)
(ounal ] o e

o Gomasli L ool 2]}
o nan[ 1] o Jo)

One can immediately obtain the transition amplitude for the (d, p) reaction from
(2.32a):

rum (e naas(d 2] ] ] o)

(2.33)

} > (2.32q)

where U, , satisfies the homogeneous equation (2.32a):

EU0=<¢IHmd{¢I:ﬁ:| +x¢[1’:1—Kr,] }U0> (2.34)
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The quantity U, ;¢ describes the elastic channel proton-residual nucleus wave
function, taking into account the orthogonality to the deuteron—target nucleus
channel but omitting the coupling to that channel, that is, to V. It therefore
satisfies a Schrodinger equation involving just the Hamiltonian, H ,, describing
the effective interaction in the elastic final-state channel:

H (U ;¢)=E(U, 0) (2.35)
The residual interaction giving the coupling to the deuteron channel is

vV =H,—H, (2.36)

Therefore,

) 1 1 .
rue(smrel ] ol tel ) e

With this equation we obtain a complete formal solution of the particle transfer
problem, including the effects of nonorthogonality and antisymmetry. Its
derivation is sufficiently general so that it can be applied to any transfer reaction
(e.g., those induced by heavy ions) for which (2.3) is appropriate and can readily
be generalized to other cases, since the structure given by (2.18) of the relation
between W and w and the Schrddinger equation for PW, (I11.5.26) remains
unchanged.

Problem. Define
1

W :W
J1-K

If

(2.38)

Show that
_ 1 1 _
EW= <<1>|AH= A —— W> (2.39)
JI-R O /1I-FR
In this equation, the operator acting on W on the right-hand side is symmetric,
implying time-reversal invariance.

A number of approximations are commonly applied to (2.37). Many authors
neglect the nonorthogonality kernels K,, and K[ [Eq.(2.13)]. K is then
diagonal, with the consequence that only the effects of antisymmetry in the
initial and final channels are taken into account. For example, (2.34) for U,

becomes
1
~ H — U 2.40
EU, <¢| cfl'(l_K:m) o> (2.40)
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which is just the equation satisfied by the wave function for proton scattering
by the residual nucleus. Since H,; is determined empirically, some of the
coupling and orthogonality effects are included. Similarly, (2.32) for U simplifies

to
< l eff 1 K:m < |( eff) X 1 K,UU

EU — {@|Hot (pu)) = — (PI(E — Hee) (v¥)) ) (2.41)

or

The equation for V becomes

! 1
EV — <X¢|Hefr&7{x¢’ 1_K }V> = — <x¢/|(E—Hefr)ﬁ{¢l_K1U}>

or

EV — ¥ He ol (0x9) > = — W I(E — Hegr) (ud) ) (2.42)

The transition matrix equation (2.37) reduces to

7= (Usproa () viol) 43

= UG o1V DA W) (2.44)

&

where U, now satisfies (2.40). Finally, the approximation in which V{*in (2.43)
is replaced by the “unperturbed” V'), which satisfies

EV, <x¢|Hmﬂ{x¢ — Yo =0 (249)

is made. One obtains

1
Tap = < U%,f’tbl“/f‘”%{ (1 X ) V‘o:’}> (2.46)

or the more familiar form

a/-(D“Aj S 1¢|1f(fid NN (2.46)

As has been pointed out earlier, much of the error of the last approximation
may be reduced because of the use of an empirical interaction for ¥, In
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principle, one could eliminate V' from (2.41) by first solving (2.42) for V in terms
of W and substituting in (2.41). The effects of antisymmetrization as required
in (2.46) or (2.43) can be carried out by direct evaluation of the eigenfunctions
and eigenvalues of the operator K,. These can be used to provide a
representation of 1/(1 — K/ ). Another procedure requires finding only the
eigenfunction of the operator K,, V'Y, with eigenvalue of unity and then
insisting that v, ; be orthogonal to all the v’ [Saito (68, 69)]. For a review of
recently developed procedures, see Arima (78) and Horiuchi (77). A recent
example is in the paper by Kato, Okabe, and Abe (85). Of course, there may
be circumstances in which the non-orthogonality operator K, cannot be
neglected (much here depends on the choice for ¢ and yy). In that event one
must return to the exact 7 ap of (2.37). The DWA result would then be obtained
by replacing V{* by V") in that equation.

In principle, the appllcatlon of (2.46) is straightforward. One must first obtain
the elastic channel wave functions for the deuteron-target nucleus and the
proton—residual nucleus systems with appropriate attention to the requirements
of antisymmetry. These wave functions are solutions of a Schrddinger-type
equation [see (2.45) and (2.40)]. Since we are considering a prompt process, H
is taken to be an optical model complex Hamiltonian, while H , is the diagonal
part of H, in the (p-nucleus) channels, and ¥/ is the nondiagonal part. Note
that one must be careful to maintain the permutation symmetry of the underlying
Hamiltonian in choosing ¥"Y). A simple procedure is to antisymmetrize U {
before inserting ¥"*) and multiply by 1/4 + 1, where 4 +1 is the total number
of nucleons.

In actual practice, the elastic channel wave function is obtained as a solution
of the single-channel optical model Hamiltonian which has been adjusted so
that the resulting elastic scattering cross sections agree with experiment. Usually,
these wave functions do not satisfy the Pauli exclusion principle so that its effect
must in some fashion and to some extent be contained in the empirical potential
used.This is more explicit when the potential is a folded one, as antisymmetry
gives rise to an exchange term. One is in serious danger of overcounting if one
simply orthogonalizes the empirical wave functions with respect to xyw'!
[Fleissbach and Mang (76); Fleissbach (78)]. One should obviously return to
the original elastic scattering problem and readjust the optical potential so that
orthogonality with respect to the superfluous solutions and agreement with the
experimental data are obtained simultaneously.

Post-prior Representations. Equation (2.33)for 4 can be condensed by staying
with the @, W formalism [see (2.26)]. It becomes

g

(WG OI(E — Hee)t (W)

~(wiie-ngefo( g mol)  ea

Si
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and the alternative expression

T o= — (A@W)(E — H) WSO

=—{( o 1,W<*’
1-K 7

The circumflex on .7 is a reminder that 7 is a matrix and that one must specify
the initial and final states. For the stripping (d,p) reaction, W{ )® in (2.47)
is, according to (2.33), the proton—nucleus unperturbed final-state wave function
U§ )¢. The function W{*® is the exact initial channel deuteron nucleus wave
functlon o). With these substitutes, (2.47) and (2.33) become identical. One
can then obtain (2.37) for 7 ,,. This result is referred to as the postrepresentation
of the transition amplitude, smce it involves the residual interaction in the final
channel, v,

In using (2.48) to obtain an expression for the stripping transition amplitude,
the unperturbed initial state is given by yyV{'); the final-state component of
interest is ¢u’™. Thus one obtains

Tu= (o 2 i) Jur e -y

(E—Hm>wgt.-’cb> 2.48)

(2.49)
We now introduce the Hamiltonian H; for the initial channel
H(b V) = EGub VY (2.50)
and the residual potential in the initial channel, ¥
v =H_ — H, (2.51)

Equation (2.49) then becomes

(ol ) o) Jo i)

which should be compared with (2.37). This is known as the priori representation,
since it involves the residual interaction in the initial channel. The analog of
the (2.46') becomes, upon neglecting K,

ﬂ-LBWA) _ <ﬂug—f)¢| 1/‘(1)0(+)X|//> (2.53)

The two expressions (2.52) and (2.33) are equal numerically if no further
approximations are made. Which one is used is a matter of convenience, as
approximations in their evaluation may be made with greater validity when
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one rather than the other is used, as we shall see. We emphasizé once more
that the use of the operator K’ is essential if antisymmetry, overlap, and
continuum effects are to be properly included.

3. APPLICATIONS

This section is concerned with the implementation of the discussion of the
preceding section to the process of stripping. The starting point is the post-
transition (or the corresponding prior transition) matrix element given by (2.37)
and the DWA form (2.46), in which overlap and the perturbation of the
deuteron—target nucleus wave function arising from the possibility of the
transition to the proton—nucleus system are neglected. (The error resulting from
this last approximation is reduced considerably by the use of a semiempirical
potential between the deuteron and the target nucleus, which to some extent
must include the effects of the two-step processes, in which, for example, the
neutron is stripped from the deuteron by the target nucleus and then in the
second step is picked up by the proton to reform the deuteron.) Elements
entering into the calculation consist of the initial and final wave functions and
the residual interactions ¥ or ¥ @,
According to (2.36),

v = Hee— Hj
The Hamiltonian H. is generally chosen to be of the form
He“'=HA+T0+T1+W0’A+W1,A+W(O,l) (3.1)
where H , is the Hamiltonian for the target nucleus, T, and T, the kinetic energy
operators for the neutron and proton, w, 4 is the interaction of the proton with
the target nucleus, w, , that of the neutron, and w(0, 1) the neutron—proton
interaction. The final Hamiltonian is given by

HszA+T1+W17A+T0+W (3.2a)

=H,,,+To+w (3.2b)

Here w is a mean, generally complex potential representing the interaction
between the proton and the residual (4 + 1) nucleus. Taking the difference
between (3.2) and (3.1) yields

VD =wy +w0,1)—w

A+1
=Y wo,i)—w (3.3)

i=1
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The mean potential w cannot induce any transitions, so that its (d, p) matrix
element vanishes. Hence, from (2.46),

14

DWA -
= (i)

Ail w(0, ). (v} 1) > (34

i=1

One now makes the spectator approximation. Qualitatively it is assumed that
the proton does not participate in the reaction. More precisely, one assumes
that the only terms in the sum over w(0, ) that contribute significantly to 7,
are those for which the nucleons denoted by i are neutrons. Moreover, since
the wave function ¢, as well as the indicated initial state, are antisymmetric in
the neutron coordinates, one obtains

T PVA & (N, + 1)U )P0, 1) (05 1) (3.5

where N , is the number of neutrons in the target nucleus. Finally, if the exchange
integrals in this equation are small, as is often the case, one obtains the simple
result

g-(DWA) ~(N,+ 1)<U ¢|w(0 1 Ug',);(l//) (3.6)

Forms (3.5) and (3.6) are most convenient because w(0,1) has a short range, so
that domains in which the neutron-proton separation is large do not contribute
to 7 ,,. Exploiting this feature leads to a considerable simplification, as we shall
now show -

We need to make explicit the spatial arguments of the functions occurring
in (3.5). The function x as well as w(0, 1) depends on r, —r,, where r, is the
proton coordinate and r, the neutron. The function v depends on the separation
of the deuteron center of mass from the center of mass, r , of the target nucleus:
that is,

r —rg

rp=r,—5(0r +r5)=r,—1, + (3.7)

The function U depends on the separation of the proton from the center of
mass of the target nucleus and the neutron:

Ar +r1, A
r,=—>-———ry=——(ry—r)+r,—r 38
P T AT 0 A+1(A )+ —1g (3.8)

Equation (3.6) becomes

y(DWA)_Jdr jdrnjdrz U m(r JOF(E —r 0y —1y,..)

x w(r; — ro)v(+)(rp Xty —roWir, —r 13 —1,,..)
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Performing the integration over r,,r;,--- yields
CPpry =TTy = Yt — 1, Ty — 1)y = f 20, —x ) (39)
so that
TN =(Ny+1) fdfp den UG * ) f Firs —r)wiry —ro)x(ry —ro)vg (rp)
(3.10)
We now evaluate wy in the limit of zero range of the neutron—proton

potential. Neglecting the tensor force between neutron and proton, the
Schrodinger equation satisfied by y is

V2x+(—y2—%w)x=0 (3.11)

where the dependent variable is r; —r,. The eigenvalue y? is related to the
binding energy B of the deuteron by

h2
y’=—B8B
m
Solving (3.11) for wy yields
hz
wy=—(V*—y*)x (3.12)
m
For zero range w,
_ u
{=Ne Y/r=N- (3.13)
r

where N is the normalization. N can be expressed in terms of the effective range
P

p,EZJ (e” 2" —u?)dr
0

It follows that

© 1=
J Wdr=-——_"0
0 2y
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But

© © 1
J del'=1:47tN2f uldr=4nN? z/p'

0 0 Y

Solving for N yields

2 1/2
- geli)
T — /P

The current value of p, is 1.767 fm.
Inserting (3.13) into (3.12) yields

1/2 hZ
wy = \/4.7:(1 EYW ) =500 (3.15)

We can now return to (3.10) and replace the integration variables r, and r, by
r,—r, =R and r=r, —r,. Integrating over r, one obtains, including the
Jacobian of the transformation,

R 2y \'? A+2
FOWN _ i ( ) N+1
@ " m\1—1p, 2warp et

x JdRU%T}*(AiH R)f}i(_R)UE)Ti)(R) (3.16)

The zero range approximation reduced the six-dimensional integral, (3.10), to
a three-dimensional one. The latter is readily evaluated by expanding U~ and
v'*) in a partial wave series, so that (3.16) becomes, after making the relatively
simple angular integration and evaluating spin matrix elements, a sum of
one-dimensional integrals. The function U} ) is generally taken from the optical
model analyses of the proton—nucleus interaction described in Chapter V. A
similar optical model analysis has been made of the deuteron—nucleus
interaction. However, it should be remembered that an understanding of the
latter is based on a much smaller data pool than that available from the
proton—nucleus interaction. A table of optical model parameters for the deuteron
projectile is given in Section 4.

The overlap function f(R) is, in the independent-particle description of the
nucleus, proportional to a single-particle wave function. As we discussed earlier,
the residual interactions will add multiparticle components to the nuclear
wavefunctions. However, these cannot contribute to f; and to 7 PV, Thus
the effect of the residual interaction is to reduce the strength of the single-particle
component since the total nuclear wave function is normalized to unity. This
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is taken into account by the introduction of the spectroscopic factor & [see (1.5)]:

S (a, j)p,(R)
JN,+1

Putting the arguments of &!/2 equal only to the angular momentum j of the
neutron single-particle orbital ¢; is an assumption, since in principle f; could
depend on other properties of the initial and final nuclei. The function ¢; is
assumed to be orthogonal to . We remind the reader that in the limit of the
independent-particle model, when the target is a closed-shell nucleus, &, with
the normalization above, is unity. This completes the description of the various
factors entering into (3.16) for the transition matrix 7 ,,.

Some qualitative conclusions that follow from (3.16) for the transition matrix
T P¥A can now be drawn. Since both the U™ and v'*’ are wave functions
describing the motion of particles in an absorptive potential, their magnitudes
will be reduced in the nuclear interior. As a consequence, those partial waves
of U™ and v'* that are large at the nuclear surface will make the most important
contribution to the transition matrix. Roughly, this will occur for those partial
waves I; and I of v'*) and U!7), respectively, satisfying the conditions

f1(R) = (3.17)

Ak,
—FP2 R~1 3.19
A+1 7 (3.19)

Hence the orbital angular momentum L of the single-particle nuclear wave
function ¢ of (3.17) which will be most strongly populated will satisfy the
condition

L=I—1, (3.20)

Under these circumstances (large absorption) the (d,p) reaction is a surface
reaction,

These conclusions can easily be deduced from the overlap integral in (3.16)
by making a partial wave series for U‘™) and u‘*). For this purpose it is not
necessary to take spin onto account, so that

007 =¥ Q2L+ Di"P,(k; B iy (r) = /anY /2 + 1Y, geq,(r) (3.21)

I
and
UGS =Y Q2+ Vi~ P, (kBe sy, (r)

Iy

=4n ) i"erY,

Iymyg

kok)Yy, (kD)W (r) (3.22)

ly.myg
l],"lf
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Finally, let

¢ 1) = 1. Y, (ki D)

The transition matrix becomes

R 2y \2 A+2
FOWA) _ (g2 S a, L) /N 4+ 1
a =40 m(l—m) VN T

X Z Y 211 + li,i_!fei(6'i+6’f)1(lia lf, L) Ylf‘mi(f(i'];f)

Li,ly
x JdQY,bOY* Y%,

lymg

where

1,1, L) = JWL,w,,.erZ dr (3.23)

The angular integral can be performed using (A.2.35) from the Appendix in
deShalit and Feshbach (74):

QL+ D@, + DERL+ 1) V2
deY,hDY,’;_mIY;M =[ f4ﬂ

x(z,. L 1 )(k L z,)
0 M m/J\0 00

so that

g(DWA)=(4n]3/zh2( 2y 1/2'%1/2(“ L)\/N7+1 A+2
dp m\1—7yp, ’ AT A+

x ¥ 2+ 1t (1 LY, L (kek))

Liyly

ol Ll )(1,. L lf)
x [+ )21, + )L+ 1)] (o v m o o o (3.24)

The 3 —j coefficients yield not only the angular momentum conservation
condition of (3.20) but parity conservation as well, since /; + L+ [, must be even.
The magnitude of the factor exp [i(5,, + 6,})], is, for absorption optical potentials,
much less than unity for small I’s rising sharply to unity at the grazing values
of I, and [, given approximately by (3.18) and (3.19). The integral I will tend to
zero as [; and [, exceed these grazing values since the corresponding angular
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momentum barriers become important beyond the nuclear radius. The integral
I will be small for these values of /; and {; for which the absorption is large,
that is, for /; and [, considerably smaller than the grazing values. As Austern
(61) pointed out, this is a consequence of destructive interference between the
optical model deuteron and proton wave functions. As the reader should verify,
the radial wave functions for each of these waves inside the nuclear interior
will for the most part be of the form exp(— iKr)/r, where K is the internal

03}l
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FIG. 3.1. The [ window. The modulus of the stripping integrals contributing to an Al =2
transfer reaction 2*Mg (d, p) 2°Mg, ground state at E, = 10.1 MeV plotted against [, = .

[From Hooper (66).]
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momentum appropriate for each particle. This is not correct near r =0, but in
that region the magnitude of the deuteron wave function is small as a
consequence of the absorption. Elsewhere the product in the integral of I will
fluctuate strongly and I will be small.

These arguments demonstrate the existence of an  window—that there is a
range in [, and [, respectively, for which exp(d, +51,)I is appreciable. It is
negligible if /; or I, fall outside these ranges. This is illustrated in Fig. 3.1.

The impact of the I window on the angular distribution can be seen from
(3.24). The angular distribution will be oscillatory with a frequency that will lie
between n/21 . and n/2] ; ,where! . and [ . arethe maximum and minimum
values of I, or [;.

Examination of the integral I yields another qualitative result that could
have been anticipated—that the momentum transfer is bounded by the
“momentum” of the captured neutron. That is,

A 2m
kp—kj|< [— 325
Tk ‘ [zl (3.25)

where |¢|, the binding energy of the captured neutron, is given by the Q of the
reaction plus the binding energy of the deuteron, 2.246 MeV. As k, and k;
increase, this inequality implies that the reaction proceeds when k, is about
equal to k;, this is, for good momentum matching. “Good momentum matching
gives slow radial oscillations and large overlaps only in the nuclear surface
region where the distorted wave functions are not yet affected by absorption”
[Austern, Iseri et al (87)]. Since when multiplied by the nuclear radius, the
left-hand side of this inequality gives the maximum angular momentum transfer
L, we see that for a given (d, p) reaction, L is generally limited to fairly small
values.

The discussion above does not take the spin variable into account. For a
given L of the captured neutron, two values of j, its total angular momentum,
L+ 1, are possible. These correspond to two different single-particle states and
therefore to two different radial wave functions y,, so that I is spin dependent.
The spin dependence of the proton and deuteron optical potential as well as
the deuteron D state will give 4 additional spin dependence. However, the net
effect is quite small, although it may be observable, as indicated by Fig. 3.2. A
deep minimum at the back angles is seen for the /=1 transfer for p,,, and not
for p,,,. The spin dependence is much more dramatically revealed in experiments
that measure the polarization of the proton, or if the deuteron beam is polarized,
the vector analyzing power, as illustrated in Fig. 3.3. (Polarization is discussed
in Appendix C))

When spin is included in the discussion, the angular momentum balance
must be reconsidered. If J; is the spin of the target nucleus, s, that of the
deuteron, J , that of the final nucleus, and s, the spin of the proton, conservation
of angular momentum requires that

min®

Jit+sp+l=J,+s,+1, (3.26)
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FIG. 3.2. Summary of j-dependent effects in (d, p) reactions. The curves represent the
trend of the experimental data for different j values [Schiffer (68)]. [From Barrett and

Jackson (77).]

The assumption that the transferred neutron is in a single-particle state leads
to the requirement

Jy=J;+j,=d;+L+s, (3.27)

where L and s, are the angular momentum and spin of the neutron. Substituting
(3.27) into (3.26) yields

sg+h=L+1,+s,+s,
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FIG. 3.3. Vector analyzing power for various (d, p) reactions [Glashauser and Thirion
(69)]. [From Barrett and Jackson (77).]

Presuming the absence of spin-dependent terms in the optical potentials of the
proton and deuteron and in the neutron—proton potential yields (3.20). Hence
the equation above reduces to the obvious result

Sd=S,,+Sp

Since the deuteron is in a spin-1 state, the captured neutron and the emerging
proton must also be in a spin-1 state. If the deuteron spin is parallel or
antiparallel to the normal to the scattering plane, the bound neutron and the
emergent proton spins will be parallel. If the spin of the deuteron lies in the
plane, the neutron and proton spins will be antiparallel. If the incident deuteron
beam is unpolarized, the three deuteron spin states will have equal populations.

-
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Therefore, the neutron and the proton spin will be parallel on the average.
Hence by observing the emerging proton spin, one determines the captured
neutron spin and therefore the total angular momentum, L+ 1, of the neutron
state. We shall leave the verification of the discussion above as an exercise for
the reader.

The cross section is obtained by squaring Z, given by (3.24), summing over
m,, averaging over the deuteron spin, and multiplying by the ratio of the emitted
current to the incident current. The latter contains the factor (N, + 1). One
obtains

dadp 1(A+2)2kfﬂ.‘uf( 2y )
—or=_{ - ) P T |F e DRL ) Y () @+ D@L+ D21+
Ily
i
><(2lf+1)(21'f+1)e“é'.+ﬁu—ﬁz:—a;;)(’i L U)(ﬁ LI
000/\oo0o0

x(l, I, 1)(@ L 1) bk D s DPcos9)  (3.28)
o 0 oo o o/l 1 | ily itpL)P(cos 3.

This formula is less formidable than it looks because the sums on LI}, I, and
I'; are over a limited range because of the / window discussed earlier. The sum
over ! is limited as a consequence. We also see that the maximum value of [ is
the least of the maximum values of 2/; and 2I,.

The derivation of (3.28) makes a number of approximation that we shall
now review. We have mentioned the neglect of spin-dependent terms in the
proton and deuteron optical potentials as well as the D component of the
deuteron wave function. Because these terms are comparatively small, a
perturbation treatment is useful [see Satchler (83, p. 384)]. The inclusion of
spin-orbit coupling in the optical potentials will not modify the angular
distributions greatly. However, the overall magnitude and therefore the spectro-
scopic factors extracted from the data can be changed substantially [Lee,
Schiffer, et al. (64); Seth, Biggerstaff, Miller, and Satchler (67)]. There are special
effects. For example, as we noted above, a systematic effect for I = 1 transfer is
observable. The spin-orbit coupling in the optical potentials is responsible [Lee,
Schiffer, et al. (64)]. A similar effect is seen for / =2 and [ = 3 transfers. In this
case both the spin-orbit coupling in the optical potentials and the D state of
the deuteron are sources of the effect [Delic and Robson (74)].

We turn next to the zero range approximation, (3.13) and (3.15). To obtain

‘Highly developed computer codes make comparison of experiment with stripping theory
correspondingly straightforward.
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the next order, return to (3.10) and insert the variables given by (3.7) and (3.8):

A+2 A
T PWA) N,+1) |dr [\dRU(*’* —R
dp 2(A+1)( A ) 0.f A+] +r

x f (= R)w(r)y(r)v§ (R + 31) (3.29)

The next step is to expand U} ) and v{’) in a Taylor series in r and perform
the r integration assuming that w(r)x(r) is spherically symmetrical. One then
obtains after some simple manipulations

- (DWA) _ of A4 ) (+)
T = A2 v+ 08 [aru( AR - R
x{1+lp(ﬂ)[~;f ®R)+7 (AR)—V (R)+B}} (3:30)
sP\mz) " " NA+1 P ‘
where
B= jdr wy (331a)
pB= Jdr 2wy (3.31d)

The potentials ¥*,, ¥",, and ¥"}, are, respectively, the binding potential of the
neutron, the optical potential for the proton, and the optical potential for the
deuteron. B is given by (Ep, + |E,| — E ), where | E,| is the binding energy of the
neutron. In deriving (3.30) the limit of A — oo was taken except for the argument
of v .

Aspone can immediately verify, when (3.15) is used, the first term, independent
of p, of (3.30) agrees with (3.16). The use of (3.31a) provides some flexibility,
however, since it makes possible the use of a more realistic expression for wy.
The term proportional to p can readily be included in the calculations. The
effect of the p term is to reduce the contributions from the interaction region.
A comparison with the exact calculation is shown in Fig. 3.4. See Dickens,
Drisco, Perey, and Satchler (65), Stock, Bock, et al. (67), and Santos (73) for
further discussion.

In passing, note that the Perey effect (effective mass) will also reduce the
amplitude of the proton and deuteron wave functions in the interaction region.
The Perey effect is a consequence of the nonlocality and energy dependence of
the optical potential.

Part of that nonlocality is generated by the Pauli principle, which tends to
reduce the amplitude of the proton and neutron wave functions when they
overlap the target and the residual nuclei. Antisymmetry can be included to
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some extent by adding in the exchange integral to (3.10). More accurately, the
analysis of Section 2 should be used, including both the antisymmetry and
nonorthogonality effects. That this is possible is demonstrated by the
calculations of Dohnert (71) and those of several Japanese physicists, for
example, Horiuchi (77). For an approximate treatment of antisymmetry that
permits continued use of (3.1), see Johnson, Austern, and Hopes (82). The
substantial agreement between DWA theory and experiment, particularly in

the critical forward angle region, indicates that these effects, at least as far as
the angular distribution is concerned, are small.

4. THE DEUTERON-NUCLEUS INTERACTION

The DWA amplitude depends strongly on the distorted deuteron wave function
and therefore on the deuteron optical model. The deuteron has a comparatively
large structure (diameter ~ 4.4 fm) and is very loosely bound (B.E. = 2.246 MeV).
It can therefore readily “break up” when subjected to external forces provided
by the target nucleus, a process that is aided by the Pauli exclusion principle.
Deformation of the deuteron without breakup can also occur; but breakup is
more likely. As a consequence, one finds strong deuteron absorption when the
deuteron penetrates the nuclear interior. It is this strong absorption that is the
most important factor in producing the ! window of Section 3.

As in the nucleon case, one approach to the deuteron optical model potential
has been empirical; that is, the parameters of an optical potential of an assumed
form are adjusted so as to fit the observed deuteron—nucleus elastic scattering,
A second approach attempts to relate the deuteron optical model with the
underlying nucleon—-nucleon forces. At a simple level, the folding model is used.
It suffers from the obvious omission of the breakup channels and thus leads to
a serious underestimate of the absorption component. A more complete
treatment based on the general analysis developed in Chapter I1I and used in
Section 2 of this chapter has been carried out by Déhnert (71). Déhnert includes
the effects of antisymmetry, which involves the possible exchange of one or both
of the deuteron nucleons with those in the target nucleus. The effects of breakup
(as well as multistep processes) on stripping are included as well. This is ensured
by the orthogonality conditions (2.5) and (2.6). However, the Déhnert procedure
does not permit a calculation of the breakup that occurs in a deuteron—nucleus
collision. A correct description of the nonlocality induced by the Pauli principle
as well as the contribution coming from the finite size of the deuteron is thus
obtained. One can at this point insert the nucleon—nucleon potentials as well
as the wave functions for the target nucleus to obtain the deuteron optical
model potential, recognizing from the beginning that only the elastic amplitude
can be described by such a potential. Such a calculation does not seem to have
been carried out for the deuteron [see D6hnert (71)], although Horiuchi (77)
has performed the equivalent calculation for a-particle nucleus interaction. A
less ambitious program employs the form derived by Dohnert for the empirical
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analyses of the elastic scattering of the deuteron by the target nucleus, thereby
avoiding the difficulties associated with the microscopic approach.

However, most of the analyses reported in the literature use directly a simple
empirical form for the deuteron optical potential, similar to that employed for
the nucleon optical potential described in Chapter V. The hope, underlying this
convenient approach, is that the potential so obtained will yield wave functions
that mimic the exact ones faithfully and so include effects such as antisymmetry
and nonlocality implicitly. This can be the case only if the assumed form for
the potential is sufficiently flexible so as to be capable of including the effects
arising from nonlocality, such as the Perey effect (see p. 346).

The local form commonly used is [see (V.2.38)]

Vai="7c+8 1Y, (4.1)
where
. i d
Vo= Voou — W (xg) —i| WF(xw)—4Wp— f(xp)
dx,,
A\ 1d
o (Y
mc rdr
and
1 r—r AL
f(x) = ™ X=—
1 +e . a;

V, W, Wy, V, are constants, while r; and a; may have differing values for x,
Xw, X4, and x . V., is identical with that used in (V.2.38). S is the spin operator
for the deuteron, normalized so that §2 = 2.

A thorough analysis has been made of the data available at the time to
obtain a global optical model for deuteron energies ranging from 12 to 90 MeV
by Daehnick, Childs, and Vrcelj (DCV) (80) and for nuclei with mass between
37A1 and 23®Th. Their results are given in Table 4.1. Note that the DCV form
assumes that x,, = x;,. As in the nucleon case, the central potential depth V
decreases with increasing E, while the diffusivity grows with E. The volume
absorption W is less important than the surface absorption W), at the lower
energies but is of equal importance at the highest energy. The diffusivity of the
absorption potential, ay, exhibits a dependence on neutron shell closure. The
spin-orbit coupling decreases with increasing energy. Daehnick et al. (80) have
also considered a complex spin-orbit coupling and have included in their table
values of the parameters for nonrelativistic dynamics.

Examples of the quality of the fits obtained are given in Figs 4.1 to 4.4. The
fits on the whole are quite good, although there are some deviations of significant
size, but these are not systematic. Note that the ordinate scale is logarithmic.
The authors believe that in part these may be a consequence of structure effects
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TABLE 4.1 Recommended Global Parameter
Prescriptions That Fit a Wide Range of Deuteron
Scattering Data*

V=88.5—0.26E+08824 ' MeV
ro=1.17 fm
aq =0.709 + 0.0017E fm
W =(12.2+0.0626E) x (1 — &) MeV
W,=(122+0.026E)e?  MeV
rw = 1325 fm
ay = 0.53 +0.074Y3 —0.04Z e % fm
r.=130 fm
V,=733-0029E MeV
ro =107 fm
ayy =0.66 fm

“Potential name: 79 DCV L (nonrelativistic kinematics only). A4,
mass number; Z, proton number; B= —(E/100)% u;=
[(M;— N)/2]%, where M;= magic numbers (8, 20, 28, 50, 82,
126); N, neutron number; E, deuteron laboratory energy (MeV).
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FIG. 4.2. Comparison of 52-MeV data with predictions of potential L (Table 4.1). [From
Daehnick, Childs, and Vrcelj (80).]

and, at low energies, of contributions of compound elastic scattering. Resolution
limitations are important for deformed nuclei targets when these have low-lying
excited states. Reaction cross sections obtained from the optical model are
systematically higher than the experimental values, indicating perhaps a need
to modify the Woods—Saxon shape used in (4.1).

It is interesting to compare these phenomenological results with those
obtained for the neutron—-nucleus (n—nucleus) and proton-nucleus (p—nucleus
interactions) (see Table V.2.1). We see that the real central (d—nucleus) potential
is much greater than the corresponding nucleon potentials. Moreover, it differs
substantially from the sum of the (p—nucleus) and n-nucleus real central
interactions. However, the diffusivity a, is not very different. Both the imaginary
central volume and surface terms, W and W), of the (d—nucleus) potential are
very much larger than the corresponding nucleon—nucleus cases. The spin-orbit
terms are not very different. Qualitatively, the difference 1 .he real central
deuteron potential from ihe sums of the nucleon potentials can be understood
as a consequence of the finite size of the deuteron, while greater absorption
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FIG. 4.3. Comparison of 80- to 90-MeV data with predictions of potential L, (Table 4.1).
[From Dachnick, Childs, and Vrcelj (80).]

occurs because the penetrating deuteron breaks up readily in view of its small
binding energy.

It has been pointed out that a two-step process involving breakup could be
of some importance for stripping. The first step involves the breakup of the
deuteron (i.e., a transition to the n—p continuum state) because of the interaction
with the target nucleus followed by the capture of the neutron by the nucleus.
In principle, this effect could be estimated using perturbation theory or the
Dohnert procedure. Instead, the strategy in which the deuteron optical potential
has been modified has been used. This has the convenience that the standard
DWA formula whose evaluation by computer is a thoroughly tested and
available procedure can be used. We discuss this approach in Section 6.

5. OVERLAP WAVE FUNCTION

The overlap wave function f;,(r) is defined as

Sri0) = (Yo, rs,.. ) @, 15,..)) (3.9
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where integration over the coordinates common to ¥ and ¢, is assumed. The
functions ¥; and ¢, are the wave functions describing the target and residual
nuclei. From the Schrédinger equations satisfied by ¥; and ¢ ;, one immediately
obtains

Fil®) e (5.1)
where

2

h—T(Ei —E;) =¥ (52)

The energy (E; — E) equals the energy required to break up the final nucleus
into the initial nucleus plus a zero-energy neutron.

The overlap wave function generally used in a stripping DWA calculation
is obtained by solving the Schrédinger equation for a neutron moving in the
mean field of the target nucleus. The latter is taken to be an empirical potential
such as the Woods—Saxon potential [see Bear and Hodgson (78)] whose
parameters are appropriate for the target nucleus and the neutron singie-particle
state under study, and of course satisfy (5.1) and (5.2). This last condition is
important to the extent that the reaction occurs at the surface. Harmonic
oscillator wave functions are not adequate because they do not satisfy (5.1) and
(5.2). Obviously, the more realistic the models used in terms of the experimental
evidence that they can explain, the more meaningful is the understanding of
nuclear structure that can be extracted from the one-particle transfer reactions.

The overlap wave function is significantly modified when the target and/or
the residual nuclei are deformed, since the effects of deformation are most
important on the surface region. The deformed potential is obtained from a
spherical one that has been found suitable for spherical nuclei in a nearby range
of the periodic table. One can, for example, expand the radius parameter R in
a multipole series. [See Rost (67) and Bang and Vaagen (80) for details. ]

6. THREE-BODY MODEL!

The three bodies in this model are the neutron, the proton, and the target
nucleus. The neutron—nucleus and proton nucleus interactions are taken to be
the optical model potentials, while the neutron—proton interaction usually is a
simplified version of the nucleon—nucleon interaction, allowing of course for the
formation of the deuteron. The optical model potentials include the effects of
the excitation of the target nucleus on the elastic scattering of the neutron and
proton by the nucleus. Otherwise, the nucleus is inert, so that inelastic and
fragmentation processes are not included in this model.

M. Iseri, et al. (87).

_—
-
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The focus of the study of this system is on the effect of breakup on the
wave function and on the elastic scattering of the deuteron. The approximations
used eliminate the stripping channel. Stripping is calculated in the next order
of approximation by using the three-body model wave function in the DWA
transition amplitude. The implied assumption is that the stripping channel does
not induce a substantial change in the wave function.

The simplest Schrodinger equation for the three-body model has the following
form:

[E - Tp— Tn - Vpn - (Vp + le) - (Vn + iWn)]l/’(rp’ I'") =0 (61)

The quantities T, and T, are the kinetic energy operator for the proton and
neutron respectively, V,, is the neutron—proton interaction, and V, +iW, and
V, + iW, are optical model potentials. The energy dependence of the empirical
optical mode] parameters present a problem in that the energy at which these
parameters should be used is not clear. The practice has been to evaluate them
at an energy equal to E/2 on the supposition that the neutron and proton share
the energy equally, as is approximately the case for the incident deuteron. There
is in addition a threshold effect; the absorption potential W, must go to zero
when the proton energy exceeds E, since then the neutron is bound. To take
this effect into account, W, in (6.1) is replaced by

W, - W( E)B(E —h,) (6.2)'

r,—
2

where 6 is the unit function and h, is the proton Hamiltonian
h,=T,+V, (6.3)

A similar modification is suggested for W,

One should also take antisymmetry into account. The wave functions of the
neutron and proton must be orthogonal to the wave functions of the nucleons
in the target nucleus.

In most of the calculations that have been performed, the threshold effect
and the antisymmetry are neglected. Estimates of the latter are discussed by
Austern. We then return to the Schrodinger equation, (6.1).

We discuss three procedures that have been used to obtain approximate
solutions to (6.1). In all of these approximations, the variables

_fptl

5 (6.4)

r=r,—r, R
are used. Letting

U=sV+iWw
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the potential in (6.1) becomes
r r
U,,(R+§>+ U"<R—E)+ Voup(r) (6.5)

A Coulomb term U(R), dependent on R only, is added to (6.5). Since the
dependence of the Coulomb potential on r is neglected, this term will have no
effect on break up.

A. Watanabe Potential®

This is obtained by taking the expectation value of (6.1) with respect to the
internal deuteron wave function ¢,(r), omitting the 3D, state component of ¢,.
This yields the equation

[E +|&4] — Tg = Uc(R) — Uy () JY(R) = 0 (6.6)
where Ty is the kinetic energy of the center of mass of the neutron—proton
system,

, r r
UW,.rEJdrldu(r)lz[Up(R+§)+UH<R—5)] (6.7)
and
Y(r,r,)="rR) (6.8)
has been approximated by
¥(r,R) = ¢,(n)¥(R) (6.9)

The Watanabe potential is just an example of the folding potential [see (V.2.76)].
In view of (6.9), the breakup channel is not included.

B. The Adiabatic Approximation*

We first rewrite (6.1) in the neutron-proton relative and center-of-mass
coordinates, r and R, respectively:

(E—h Tg— U@ RYW(,R)=0 (6.10)

np

fWatanabe (58).
*Johnson and Soper (70).
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where
ur,R)=U,+U,+ U,

and h,, is the neutron—proton Hamiltonian
hyy=T,+V,, (6.11)

T, is the kinetic energy of the relation motion of the neutron and proton. The
adiabatic approximation is obtained by replacing h,, by — |&,|, where ¢, is the
binding energy of the deuteron, with the result

(E + |&g| — T — U(r, R)WY*2(r,R) =0 6.12)

This equation is solved as a scattering problem in the variable R; the variable
r is taken to be a parameter, so that solutions are calculated for each value of
r. The incident wave is taken to be ¢,(r)e’®'R. Deuteron elastic scattering is
obtained by taking the expectation value of the outgoing component of 4P
with respect to the deuteron wave function ¢,(r). Breakup is obtained by taking
the expectation value with respect to the neutron—proton continuum wave
functions, ¢(k,r).

C. Coupled Equations?

The Watanabe wave function, (6.9), is the first term in a more complete expansion
of W(R,r) in terms of the bound state (the deuteron) and the continuum states
of two nuclear system. Austern, Iseri, et al. (86) write

¥Y(r,R)= Z Arm %WJM(I, R)
W rp(0, R) = ¢p(0) /(R Y0 (R)

J+1 0 ~
+2 X J dk gk, gy (4, R)LY(#), YL (R)];n  (6.13)

1 L=J-1ltJo

In this equation f’(R) and g}, (4, R) are unknown functions to be determined
by the coupled equations obtained when (6.13) is substituted for the wave
function in the Schrodinger equation. The continuum wave function ¢,(k,r)Y,,
satisfies the neutron—proton equation:

[e(k) — T, — Voulr)1ilk, 1) Y, (F) = O

h?k?

k=" (6.14)

*Austern, Iseri, et al. (89).
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The parameter 4 gives the center-of-mass momentum of the neutron—proton
system, so that

B h22(k)
E =¢(k) + v (6.15)
Finally, [ Y(f), Y.(R)], is given by
[YiE), Y R Isp = 3 <IM|Im, L) Y, (F)Y, (R) (6.16)

The first term of (6.13) describes elastic deuteron scattering, and the second
term describes the breakup component. The expansion in [ permits the
description of the effects connected with the orientation of the deuteron.

Inserting (6.13) into the three-body Schrédinger equation leads to an infinite
set of coupled differential-integral equations. Some method of truncation is
needed. The dynamical origin of the coupling is in the potential U:

u=U,(R+1)+U,(R=-L)+uU. (6.17)
AT T2 2 |

This can be expanded in a multipole series:

U =Y U(r,R)P,(iR) (6.18)
1

If U,~ U, which is nearly true, the sum goes over the even I's only. Truncation
of this series at | =1,,,, is reasonable physically. A posteriori verification can be
obtained, and in fact [ ,, equals 2; that is, only two terms in (6.18) are needed.

This is demonstrated by Table 6.1, which gives the partial cross sections as
I .. is increased beyond 2 for J = 17, the dominant wave in the example discussed
by Austern, Iseri, et al. (87). The I =1 contribution is found to be unimportant.

TABLE 6.1 Partial Cross Section ¢” for J =17

Imx 2 4 6 0
g1 4,067 3.930 3989 10273
g " 12.596 11.651  11.351
a!? 1.830 1.684
gll” 0.202
Y0t 16.663 17411 17226 10275
o 74.230 73502 73568  90.106

pa) 99.444 100.32 100.33 93.429

react
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FIG. 6.1. Elastic scattering cross-sections for d + 8Ni. Comparisons are made between
the Watanabe model, the adiabatic approximation, and the coupled-channel (CDCC)
calculations [Yahiro (85)]. [From Austern, Iseri, et al. (87).]

We also see that the Watanabe (! = 0) term is not usable. To be consistent, one
must similarly cut off the expansion over /in (6.13) at  in (6.13) at [ =1_,,. The
Schrodinger equation for (r,R) now becomes a finite set of coupled
integrodifferential equations. These must be solved numerically. In making this
truncation, the stripping channel asymptotic amplitude vanishes faster than 1/r,
so that this formulation can yield a finite stripping amplitude only in the next
approximation, described below.

The Watanabe potential is obtained if only the first term in (6.13) is retained.
The adiabatic approximation can be obtained from (6.13) if e(k) is appropriately
replaced by — |g,|, or as is sometimes done, by a constant that can be used as
a parameter. Of the three approaches, the coupled-equation description should
thus be regarded as the most precise.

The elastic scattering and breakup cross sections calculated using these three
approximations are shown in Figs 6.1 and 6.2. From Fig. 6.1 we note that the
Watanabe cross section is in substantial disagreement with the coupled-equation
results beyond about 30°. The adiabatic cross section is in much better agreement
departing from the coupled-equation results at about 90°. On the other hand,
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FIG. 6.2. Comparison of breakup cross sections of 56-MeV deuterons by '?C with
calculations by CDCC, DWBA, and the adiabatic models. In this experiment the neutron
detector is fixed at 0% = 15° [Yabhiro, Iseri, Kamimura, and Makano (84); Yahiro 85)].
(From Austern, Iseri, et al. (87).]

the adiabatic breakup cross section (Fig. 6.2) has a slope similar to that obtained
with the coupled equations but fails when the proton angle 0} deviates
substantially from the neutron angle 6%.

The importance of the / =2 term for the elastic scattering, which gives rise
to the deviation from the Watanabe results, can also be seen when an optical
model potential is fitted to the coupled-equation elastic scattering. The
Watanabe potential has a very diffuse surface. But according to Austern, Iseri,
et al. (87), when the effect of the / = 2 multipole is included, the diffusiveness of
the optical model potential is reduced to a value equal to that of the nucleon
optical model potential. This is in good agreement with the empirical results
of Section 4. A similar behavior is found when the adiabatic model is used.

Stripping can be calculated on. the basis of the three-body model using the
Z -matrix element

T ap= Uy 'Ky T W r )V, A r,) > (6.19)

where the outgoing nucleon is a proton and y*'(r,,r,) is chosen to be the
three-body model eigenfunction corresponding to an incident deuteron. In the
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FIG. 6.3. Crosssections for >®Ni(d, p) >Ni(3p, g.s.) at E, = 80 MeV obtained from CDCC,
AD, Watanabe, and DWA Calculations [Iseri (85)]. [From Austern, Iseri, et al. (87).]

zero range approximation,

(7 aplzr = [deﬁ,_’*(R)l//,‘.‘(R)d)‘“(kd, R) (6.20)

with
¢k, R)=8 Jdr Vo (r, R) 6.21)

Roughly, ¢'*) ~ ¥*)(0, R).

We now look for the effects on stripping of the break up channels. These
are two in number. First the presence of the breakup channels will draw flux,
so that the contribution of the ¢,f”(r) term in (6.13), to be referred to as the
elastic contribution, will be reduced. Second, in the event of poor momentum
matching, thereby reducing the elastic contribution (see p. 482), the breakup
contribution may become important since there will be a range in k in the
breakup component of (6.13) which permits good momentum matching.

These effects are illustrated in Figs 6.3 to 6.5. In Fig. 6.3 we compare the
calculations using the deuteron wave function provided by the Watanabe
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FIG. 6.6. Cross section for the reaction *°®Pb (p,d) at E, = 22 MeV. The incident protons
are polarized [Iseri (85)]. (From Austern Iseri, et al. (87).]

FIG. 6.4. Decomposed cross sections for *¥Ni(d, p) **Ni(2p, g.s.) at E; =80 MeV for the
CDCC and AD calculations showing the contributions for the elastic and breakup
processes [Iseri (85)]. [From Austern, Iseri, et al. (87).]

FIG. 6.5. Modulus of the overlap integral I for *®Ni (d, p) *°Ni (2p, g:s.) at E, = 80 and
21.6 MeV. The angular momentum L, is taken to equal L, — 1 [Iseri(85)]. [From Austern,
Iseri, et al. (87).]



504 TRANSFER REACTIONS'

potential, the adiabatic approximation, the coupled-equation procedure, and
the DWA. In the last case, a deuteron potential that yields a coupled-equation
elastic cross section. Comparison of the coupled equation with the Watanabe
result demonstrates the importance of breakup, especially at the larger angle.
The adiabatic cross section and the DWA also disagree with the coupled-
equation results. In the former case, which includes breakup, the deviation from
the coupled equation results is presumably due to the inaccuracy in the breakup
amplitude because of the adiabatic assumption. Phase relations are extremely
important in this situation. But in addition, the adiabatic approximation
includes only the /=0 breakup contribution not the / = 2. This effect in important
at lower energies.

Further insight is obtained from Fig. 6.4 in which are plotted the elastic and
breakup contributions to the stripping cross sections for both the adiabatic and
coupled-equation approximations. In the coupled-equation case, note that the
breakup contribution dominates beyond proton angles of 50°. In the adiabatic
case this crossover does not occur. In fact, the breakup cross section is much
smaller than the elastic cross section over the entire angular range. Figure 6.5
demonstrates that breakup reduces the contribution to stripping made by the
smaller deuteron angular momenta in the Watanabe calculation. Breakup
thereby emphasizes the surface character of stripping.

In Fig. 6.6 the three methods are compared with experimental data. We see
that in these cases, by far the best results are achieved with coupled equations.
The adiabatic approximation is a considerable improvement over the Watanabe
recipe, especially at large angles.

In conclusion, the single-step DWA approximation of Section 3 can be
considered to be valid only in the forward angular range. Employing the
adiabatic model will result in a substantial improvement. But the use of the
more exact coupled-equation method is computationally laborious, limiting its
utilization for the analysis of data.
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