
CHAPTER VI
 

TRANSFER REACTIONS
 

1. INTRODUCTION 

Transfer reactions have Ьееп of critical importance for the study of nuclear 
structure. The results obtained from the study of the stripping (d,р) and pickup 
(р, d) reactions involving single-neutron transfer helped to validate the nuclear 
shel1 model Ьу identifying the single-particle states, since to а large extent the 
(d, р) reaction сап Ье understood as опе in which the пешгоп in the deuteron 
is transferred to а single-particle state of the final nucleus. In the ртскцр reaction, 
а пешгоп in а single-particle state is picked uр Ьу the incident proton to form 
the deuteron. Reactions in which а proton is transferred, such as the еНе, d) 
and (d,3He), provide similar information regarding the proton single-particle 
states. The reactions (t, р) and (р, t) involve the transfer of two neutrons. These 
reactions are most useful for study of the superconducting nuclei, such as the 
the tin isotopes. In these cases, the (t, р) reaction has а relatively large cross 
section for the transfer of two neutrons in the 1So state, as predicted, for the 
formation of the final nucleus in а superconducting state. 

In the course of these transfer reactions, energy, momentum, and angular 
momentum are exchanged Ьу the projectile and target nucleus, as in the case 
for inelastic scattering. But in addition, in the transfer reaction there is а transfer 
of mass that produces а fundamental change in the description of the reaction 
from that used for inelastic scattering. 

The strong specificity of these reactions at modest projectile energies follows 
from their surface character, а consequence of the limited penetration of the 
deuteron into the nuclear interior. If Р» is the incident deuteron momentum 
and Рf the momentum of the emerging proton, the momentum Pt transferred 
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456 TRANSFER REACTIONS 

to the target nucleus Ьу the transfer of the пешгоп to the nucleus is given Ьу 

conservation of momentum: 

Pt = Ро - Р! (1.1) 

From this equation опе сап immediately determine the magnitude of Pt: 

2 2 2 2 GPt =Po+Pj- PoPjCOS\7 (1.2) 

where Э is the angle between the direction of the final proton and the direction 
of the incident deuteron. The angular momentum trапsfепеd, I1lt , must Ье less 
than PtR, where R is the projectile-target separation at which the reaction 
occurs. Непсе 

or 

so that 

(1.3) 

where I1k as usual equals Р, and the WKB value of /2, (l + i)2, has Ьееп used. 
Classical1y, then, опе expects that the reaction will Ье forbidden for angles 
smaller than 3т' the angle at which the equality of (1.3) is satisfied. Quantum 
mechanically, there will Ье some penetration into the classically forbidden 
region, so that the cross section should show а rise from 3 = О with а maximum 
at Эm • Опе сап employ that result to obtain ап estimate of the value of It • R is 
treated as an empirical parameter, which, however, must Ье the same for аll 

values of l t • 

For example, consider the 90Zr(d, р)91 Zr reaction whose cross sections to 
various levels in 91 Zr are given in Fig. 1.1. The similarity of the curves labeled 
1= 2 in the left-hand panel, of those labeled 1= 4, and those labeled 1= О is 
striking. If опе assumes that the angle at the first peak equals 3т' опе сап 

identify the lt as well as R Ьу requiring that R have а reasonabIe value. For 
example, the 1= 2, Q= 1.33-МеУ cross section gives R = 5.4 [т for lt = 2, 
R = 3.1[т for lt = 1, and R = 7.6[т for lt = 3. When опе takes into account the 
result obtained from quantitative studies that (1.3) underestimates the value of 
R at which the ceaction occurs, the most reasonabIe value of R is 5.4[т and 
the lt transferred is 2. Using the same value of R, опе сап determine lt [ос the 
three curves labeled 1= 4 to Ье lt = 4. The curves marked 1= О have theic first 
maxima at Э = О, which is pcesumed to Ье lt = О transfec ceaction. 

The values lt = 0,2,4 correspond very nicely to shell model expectations. The 
nucleus, 90Zr, is а closed-shell nucleus [see Fig. IУ.8.1 in deShalit and Feshbach 
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FIG. 1.1. Comparison between measurements and cross sections calculated using the
 
distorted-waves methad far the 90Zr(d,р) 91Zr геасцоп with 12-МеV deuterons.
 
Transitions with 1= 0,2, and 4 аге shown. [Dickens, Perey et аl. (67)]. [From Satchler
 
(83).]
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(74)]. The пешгоп added in the (d,p) reaction would thus go into the shell, 
50 ~ N ~ 82 composed of Ig,2d, 3s orbitals (i.e., 1= 4,2, О), сопеsропdiпg 

precisely to the values obtained for 11' 
The 90Zr(d, р) example illustrates the extraordinary specificity of the (d,р) 

reaction that occurs at sufficiently low energies. Ву examining the angular 
distribution, опе сап deduce the orbital angular momentum transferred along 
with the captured пешгоп to the largest nucleus. Of course, а quantitative 
understanding of the angular distribution is essential before опе сап rely оп 

this conclusion. The results of such а calculation, whose theoretical basis will 
Ье discussed later, аге shown Ьу the solid lines in Fig. 1.1. In this calculation 
it is assumed that the transferred пешгоп occupies а single-particle orbital of 
the target nucleus. The agreement with experiment is excellent (note the 
logarithmic scale for the cross sections)-an agreement with experiment that 
is repeated when targets throughout the periodic tabIe аге used, thus validating 
the single-step character of the transfer reaction mechanism. 

The angular distribution is not sensitive i to the value of the total angular 
momentum,j, tгапsfепеd;that is, it does not distinguish between the two possibIe 
values, j = 1± t. That sensitivity сап Ье obtained in the (d, р) reaction using 
polarized deuterons and measuring the asymmetry of the produced protons. 
Ап example is shown in Fig. 1.2. 
А qualitative understanding of the origin of the polarization of the proton 

emitted in (d,р) reaction (ог equivalently, ofthe asymmetry ofthe emitted proton 
that occurs if the incident deuteron is polarized) has Ьееп given Ьу НиЬу, Refai, 
and Satch1er (58). For the production of nucleon polarizat(on, it is essential 
that ап asymmetry of the transition amplitude with respect to the normal to 
the scattering plane exist. The absence of such ап asymmetry would make the 
production of а nucleon with а spin oriented in the "ир" direction (i.e., in the 
direction of the normal to the scattering plane) indistinguishabIe from the 
production of а nucleon whose spin is in the opposite direction. Ап asymmetry 
will Ье present in the stripping amplitude for а given direction of the emergent 
proton if the amplitude difТers according to which side of the target nucleus the 
stripping occurs. The origin of the asymmetry in the stripping amplitude lies 
classically in the difТering paths, involving, for ехатрlе, а difТerent probability of 
absorption, taken Ьу the proton and deuteron according to the side of the 
nucleus the deuteron strikes. Quantum mechanically, the asymmetry is а 

consequence of the distortion of the incident and emergent waves Ьу the nuclear 
field. If the favored value of the projection, m, of the captured neutron is (+ 1), 
and the spin of the final neutron single-particle state, j, is 1+ t, the neutron 
spin must Ье ир. Since the incident spin of the deuteron is опе, the spins оС the 
neutron and proton are parallel, the emergent protons wi1l Ье polarized with 
their spins ир. 

The determination of the spin-quantum numbers as well as of the energies 

+There does seem to Ье some dependence at back angles which is marked for 1= 1, but less so for 
larger values of 1[see Satchler (83, р. 706)]. 
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FIG.1.2. Analyzing powers for Рl/2 (upper) and р3/2 (lower) transfers in 52Cr (d,p) 
reactions at 10MeV. ТЬе curves аге from DWA calculations [Kocher and Haberli (72)]. 
[From Satchler (1983).] 

of the single-particle orbits provides obviously important spectroscopic 
information. But опе сап go beyond this to obtain information оп the structure 
of the nuclear wave function. The single-particle orbit for the пешгоп provides 
only опе сотпропеш of the total wave function, which will, for example, include 
as well excitations of the target nucleus plus the пешгоп in other orbits. From 
the magnitude of the (d, р) cross section опе сап in principle determine the 
strength of the single-particle state generated Ьу the (d,р) reaction. More 
ргестзегу, the single-particle сотпропеш of the final-state wave function has the 
form 

1 
---d['Р т(l,2, ... ,А)фjm(А + 1)] (1.4) 
,,/А+l 

where d is the antisymmetry орегагог, 'р т the target nucleus wave function, 
and фjm the single-particle wave function. The quantity У(Л, referred to as the 
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spectroscopicfactor, measures the strength of the single-particle component in 
the final-state wave function, so that 

1/2'_ 1 ФУ (;)- _<d['PT(l,2, ... ,A) jm(A+ 1)Ji'Pf(1,2, ... ,A,A+ 1) (1.5)
JA+1 

and 

У(Л is unity only in the limit of the noninteracting independent particle sheH 
model for closed-shell target nuclei. This result holds not only for (d, р) reactions 
but also for (р, d) reaction. In the later, instead of adding а particle to the 
closed-shell target, опе creates а "hole" in а filled shell. This is made согпртегегу 

clear in а formalism in which particle and hole formation аге treated 
symmetrically, as described in (УII.9.11) in deShalit and Feshbach (74).However, 
in the interacting shell model апу state of the А + 1 system wiJ] consist of а Нпеаг 

combination of one-particle states and two-partic]e/one-hole states, three
particle/two-ho]e states, and so оп. In that case Y j wiJ] Ье less than 1; the 
deviation from опе describing the probability that the system is not in а 

single-particle state given Ьу (1.4). 
Сап the spectroscopic factor Ье determined experimentally? The answer is 

that апу such determination is mode] dependent. То Ье sure, the cross section 
is ргорогпопа! to Y j • But the other factors depend оп the models used for 
describing the initia] and final wave functions as well as ироп the interactions 
of the proton and пешгоп with the target nucleus as well as their пшша! 

interaction. Only if these аге well known сап У j Ье determined from the 
magnitude of the cross section. Within а given framework, that is, а particular 
nuclear model and fixed interactions, the relative value of Y j are meaningful, 
especially if а consistent picture of the reaction over а range of nuclei сап Ье 

established. 
Consistency must also Ье established with respect to other models of 

populating single-particle states. Опе obvious example is the (n,у) reaction, in 
which the neutron after у emission ends ир in the same state produced in the 
(d,р) reaction. Another ехатрlе is the isobar analog resonance. For ехатр]е, 

through the resonant elastic scattering of protons оп ап (N, Z) nucleus, опе 

obtains information оп the analog states in the (N + 1,Z) nucleus [see deShalit 

FIG. 1.3. Angular distributions for nucleon transfer at sub-Coulomb energies for 
difТerent 1transfers. The curves are the results of DWA calculations: (а) (d,р) at 8.0 MeV 
[Erskine, Buechner and Enge et al. (62)]; (Ь) е 70,160) reaction at 67 MeV [Franey 
Lilley and Phillips et al. (79)]. [From Satchler (8JI.] 



1. INTRODUCTION 461 

-u 
~ 
~ 1.5 
<;;'"
Е 
CQ 

~ 
I 
с:
 
о


t 1.0 
ер 

'" '" '" е 
u 

cii 
<= 
с: 
ер 

ф 0.5 
~ 
Q 

О 

Angular distribution 

Bi209 (d, р) Bi210 reaction 

Ed = 8.0 MeV 

• Q = -0.203 MeV, I = О 

• Q = 0.397 MeV, I = 2 

• Q = 1.936 MeV, I = 4 
1 

Observation angle (degrees) 

(а) 

1.0.---т--.,..--"Т"'""-..,....--::_--т---, 

208рь (170, 160) 2О9РЬ 

Ed = 66.95 MeV 

120 140 160 180 

Ост (deg) 



462 TRANSFER REACTIONS 

and Feshbach (74, р. 102)], which again сап Ье compared with the (d,р) reaction 
оп the target (N, Z) nucleus. 

ТЬе striking correlation between the (d, р) angular distribution and nuclear 
structure is present only in а limited energy range. At very low energies, below 
the Coulomb barrier, the process is dominated Ьу the Coulomb interaction and 
the angular distributions аге rather featureless (Fig. 1.3). At high energies, the 
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FIG. 1.4. Angular distributions for medium-energy (р, d) reactions. The curves are from 
DWА calculations [Каllпе and Fagerstrom (79)]. [From Satchler (83).] 
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deuteron penetrates into the nuclear interior, and again the angular distribution 
does not as directly provide nuclear structure information (Fig. 1.4). It is the 
intermediate energy region throughout which the deuteron сап penetrate to the 
nuclear surface, but not much beyond, that (d,р) experiments manifest their, 
specificity most clearly. The reaction in this energy domain is peripheral and 
it is this condition that underlies the interpretation of the resulting structured 
angular distribution. 

2. ТНЕ DWA AMPLITUDE 

For the most рап, the analysis of the (d,р) and (р, d) reactions has Ьееп based 
оп the distorted wave approximation (DWA). Its derivation is, however, not 
as straightforward as the DWA for inelastic scattering given in Chapter У. In 
that case the DWА amplitude is ап approximation to the solution of а pair of 
coupled equations obtained Ьу projecting out the incident and inelastic channels. 
The effect of the remaining channels was included through ап energy averaging 
that introduced imaginary components into both the diagonal and coupling 
potentials. Ап important element in this procedure is the orthogonality of 
the ground state and the excited state of the target nucleus. То Ье sure, when 
the incident particle is а nucleon or composed of nucleons, this advantage 
is diluted Ьу the nonorthogonality introduced Ьу the Pauli principle, but we 
have learned how to take account of that feature Ьу the method developed in 
Section 111.5. . 

Extension to the case of particle transfer is possible, Ьш there is а спагас

teristic problem that must first Ье resolved. То Ье concrete, let us consider the 
160(d,p)170 stripping reaction. In that case опе must consider а! least the two 
partitions [Satchler (83)] d + 160 and р + 170 of the 18-particle system. The 
natural spa6al coordinates of the first partition include the relative distance 
between the neutron and proton of the deuteron and the distance between the 
center of mass of the deuteron and the center of mass of the 160 nucleus, and 
finally, the (3 х 15) independent internal coordinates of the nucleons making 
uр the 160 nucleus. The total number of coordinates should Ье (3 х 17). 
However, these coordinates are not convenient for the description of the final 
system, which involves the distance between the proton and the center of mass 
of the 170 nucleus and the (3 х 16) independent internal coordinates for the 
170 nucleus. It is possible to introduce а complete set of the d + 160 wave 
functions that would need to include the continuum states of the deuteron, in 
which the neutron and proton are по longer bound in order to include а 

description of the final state, р + 170. 

Diagrammatically (Fig. 2.1), the deuteron breaks uр at vertex 1, the proton 
moving ahead while the released neutron is captured Ьу the 160 nucleus to 
form 170. Diagrams of this sort and their corresponding analytic transition 
amplitudes are very helpful for forming ап intuitional understanding and have 
provided the base for theories developed Ьу Shapiro (67) and Schnitzer (64). 
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р 

::
 
FIG. 2.1. Stripping reaction. 

However, they Ьауе not for the most part Ьееп adopted as the preferred method 
for analyzing particle transfer reactions. 

ТЬе method, which is most commonly used and which Ьу suitable 
manipulations leads to the DWA, employs а mixed representation. In the initial 
channel, this might include the deuteron and 160 in their ground state plus 
excited states of 160. In the final сЬаппеl опе would include the proton plus 
various states of 170 according to the reaction involved. ТЬе total wave function 
would then contain contributions from both of these sets of wave functions. 
ТЬе remainder will Ье energy averaged with the consequent introduction of 
complex potentials. Such а wave function would permit the calculation of not 
only the one-step process but also for the multistep process, ofwhich the two-step 
is illustrated in Fig. 2.2. ТЬе wave function corresponding to that figure would 
include the 160 and 170 ground and first excited states. 
А traditional approach to the single-step process [say, (d,р)] has Ьееп to 

truncate the wave function 'Р of the system as follows: 

'Р=d[uф+vхI/J]+'" (2.1) 

where Ф is the residual nucleus wave function е 70), х the internal deuteron 
wave function, and I/J the initial nucleus wave function. ТЬе functions u (proton) 
and v (deuteron) to Ье determined depend оп the distance between the proton 
and center of mass of 170, the residual nucleus, and between the center of mass 
of the deuteron and 160, the initial nucleus, respectively. d is the antisym
metrization operator. ТЬе indicated truncation does Ьауе а serious drawback. 
ТЬе omitted terms in the series would contain components such as excited 

Two-step 

FIG. 2.2. Опе- and two-step contributions to а pickup reaction. 
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states of 170, which together with the proton wave function would have а 

substantial overlap with the deuteron channel wave function 1..1/1. It therefore 
should Ье included in (2.1) in order to obtain the total asymptotic reaction 
amplitude. Similarly, excited continuum states of the deuteron combined with 
the 160 wave wave function (ground and excited states) would сотЫпе to form 
17 О + Р states. These difficulties are very similar to that of exchange scattering 
discussed in Section 111.5 and аге resolved in exactly the same way. We write 

ЧJ = РЧJ + QЧJ (2.2) 

where as usual Р and Q аге projection operators and Q= 1 - Р. РЧJ is 

РЧJ = d[uф + vx.l/I] (2.3) 

Because 

<РЧJIQЧJ> = о (2.4) 

and the related constraints 

<фIQЧJ> = о (2.5) 

<1..1/1 IQЧJ >= о (2.6) 

QЧJ will not contain апу components that сап сопгпоше to иф or vxl/l. The 
function РЧJ contains аН the information required for the determination of the 
reaction amplitude. Conditions (2.5) and (2.6) also solve the problems raised Ьу 

the identity of the particles involved. The reasoning is identical with that given 
in Section 111.5 and need not Ье repeated. 

Before proceeding to а consideration of (2.5) and (2.6), it is useful to point 
to another problem associated with ansatz [see (2.1)]. This сап Ье seen if опе 

substitutes uф + vx.l/I for ЧJ in the Schrodinger equation 

НЧJ = ЕЧJ (2.7) 

We drop the antisymmetrization орегатог, d, to simplify the argument. 
Including ,<;5/ will not change the substance of the discussion. Multiplying (2.7) 
from the left Ьу Ф and integrating over аН the coordinates contained in Ф yields 
ап equation for и coupled to и. А second equation is obtained Ьу multiplying 
Ьу х.Ф and integrating. These equations аге 

<ФIНuФ> - Еи = Е< фlvх.l/I >- <ФIНvхl/l > (2.8а) 

<1..1/1 Iнvx.l/I >- Еv = Е <1..1/1 Iиф >- <1..1/1 Iи иф > (2.8Ь) 

We observe the presence of а coupling term оп the right-hand side of each of 
these equations, proportional to the energy. These are present because Ф is not 
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orthogonal to хф. ТЬе range of this coupling term is given rough1y Ьу the radius 
of the deuteron, which is relatively large. Some study of this situation has Ьееп 

made. [See Satch1er (83), Section 3.32, for further discussion; see also Ohmura, 
Imanishi, Schimura, and Kawai (70); Imanishi et al (74); Cotanch (75); and 
Cotanch and Vincent (76).] Satch1er summarizes Ьу noting that in the cases 
discussed Ьу these authors "the effects [of these termsJ appears to Ье small, not 
always negligible оп the absolute sense, but with the uncertainties that опе 

might subjectively associate with the models being used." In the standard DW А 

applications, these overlap terms are generally ignored. As we shall show, terms 
of this type (proportional to the energy Е) need not арреаг in the coupled 
equations for и and v when the representation (2.2)-(2.6) is used. 

These equations are exact. However, the choice for РЧJ, and the eventual 
replacement of QЧJ Ьу ап energy average introducing thereby ап optical 
potential into the equation for РЧJ, involve some implicit assumptions. ТЬе 

possibilities not explicitly included in (2.3), such as multistep processes as well 
as the polarization of the deuteron under the combined influence of electrostatic 
and nuclear fields, are assumed either to Ье of little importance or to Ьауе 

effects that vary slowly with the experimental parameters. Under the latter set 
of circumstances it тау Ье expected that а correspondingly slow variation in 
the optical model parameters determined empirically will suffice to take these 
effects into account. 

We turn now to (2.2)-(2.6). А complete analysis of these equations has 
Ьееп given Ьу Dohnert (68,71) [see also Mittelman (64), and Horiuchi (77)]. 
Formally, the results are quite simple. However, Dohnert's calculations are quite 
complicated, although with the computational aids developed since that paper 
appeared they should Ье тисЬ less formidable. In the present context, Dohnert's 
results are important since they demonstrate the existence of the projection 
operator Р and therefore of coupled equations for и and v from which the DWA 
сап Ье extracted. Note that the results to Ье obtained below apply, after suitable 
but trivial generalizations, to the collision of а Ьеауу ion with а nucleus. 

Equations (2.5) and (2.6) reduce to two equations for и and v in terms of И 

and V defined Ьу 

U=<ФIЧJ) V = <хф IЧJ ) (2.9) 

where the integrations are carried out only over the variables in Ф and хф, 

respectively. Consider first (2.5): 

0= <ФIQЧJ) = <ФIЧJ) - <ФIРЧJ) (2.10) 

We immediately obtain 

и = <ФIРЧJ) (2.11) 

and similarly, 

v = <хt/JIРЧJ) (2.12) 
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Substituting (2.3) in (2.10), опе obtains 

и = <фld(uф) + <фld(vхt/J) 

Defining the operators Кии and Кир Ьу 

(2.13) 

the equation for и becomes 

(2.14) 

Note that operator Кии [identical with К of (l1I.5.13)J is Hermitian. This сап 

Ье seen formally since the operator 

(2.15) 

А similar analysis of (2.6) yields 

(2.1 6) 

where Крр is Hermitian since 

1- K vv = <хФIdxt/J ) = <dXt/JIхФ ) 

The operator Кии and K uv contain the efТects of antisymmetry while the 
nondiagonal K uv includes the antisymmetry and overlap efТects. Defining 

(2.17) 

Equations (2.13) and (2.16) сап Ье summarized as follows: 

W=(1-K)w (2.18) 

where К is Hermitian. This equation is identical in form with (111.5.15) and its 
analysis is completely parallel to that following this equation. 

Since К is Hermitian its eigenvalues Kr: аге real and its eigenfunctions Wr: 

forms ап orthonormal set. Moreover, (1 - К) is positive definite. То prove this, 
поте that 

<wl(1 - K)w) = Сиф + vхt/Jld(uф + VXt/J) (2.19) 

Because of the antisymmetry of the ket, this сап Ье written as 

<d(uф + vхt/J)/d(uф + vXt/J) ~ о (2.20) 
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We сап additionally conclude that the eigenvalues of К, к'" are less than 1: 

(2.21) 

Since the op~rators in К involve only s~uare~ntegrable functions [see (2.13) 
and (2.15)], К is bounded. The trace of К, tr К, involves the trace of Кии and 
Крр only. These traces have been shown to Ье bounded in the discussion dealing 
with elastic scattering, so that tr К is bounded. We сап therefore conclude that 
the eigenvalue spectrum of К is discrete. (1))

Special attention needs to Ье paid to w~l) = (:r
11 

,eigenfunctions of К whose 

eigenvalue к" is unity KW~11 = W~l). We shall show that 

(2.22)
 

То prove this, поте that 

(.s:1(uф + vхФ)I.s:1(uф + vхф» = <(1- K)wl(l- K)w> 

Inserting W~l) for w in this last equation, we obtain 

Equation (2.22) follows from this result. These solutions, w~ll, are referred to 
as superjluous solutions [see (11I.5.19)J. These solutions do not contribute to 
Р'Р, as follows from (2.22). 

These results are for the most part similar to the results obtained for elastic 
and inelastic scattering with опе notable difference. In elastic and inelastic 
scattering the арреагапсе of К and the associated superfluous solutions аге 

formally а consequence ofthe nonorthogonality introduced Ьу antisymmetriza
tion. In the particle transfer case, [( and the associated superfluous solutions 
arise not only because of antisymmetrization but also because of the overlap 
between the cluster wave functions Ф and хф. 

We are now able to invert (2.18): 

1 
w=--~-W (2.23)

l-K' 

where the prime superscript оп [(' indicates that in the spectral expansion of [(', 

[(' = L KaWa><Wa (2.24)
IC.* 1 

аН eigenfunctions of К with unit eigenvalue are to Ье omitted. Непсе 
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Аn explicit expression for the projection operator Р of (2.3) сап Ье obtained. 
Define matrices Ф) and <Ф as follows: 

(2.25) 

Equation (2.3) сап then Ье written 

Р'Р = d(ф, w) = d(Ф,х",)(:) = d(uф + vx"') 

Inserting (2.23) and noting that the matrix W is 

W=( <ФI'Р) )=<фl'Р) (2.26)
<x"'I'P) 

we have 

Р=dф)_1_~ 'Ф (2.27)
1-К'\ 

Employing the spectral series for 1/(1 - ](') with 

оnе obtains 

Оnсе Р is known it becomes possible to obtain the Schrodinger equation 
for Р'Р and the coupled system for u and v. The constraints оп u and v are 
now carried Ьу the operator (1/1 - ]('). The equation for Р'Р, (111.2.7), is 

(111.2.7) 

Upon energy averaging, the last two terms сап Ье combined into а complex 
(i.e., поп-Негпппап) optical model Hamiltonian, РНенР: 

(Е - РНенР)Р'Р = О (2.28) 
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Multiplying from the left Ьу Ф and integrating, опе obtains 

(2.29) 

and [гогп (2.27), 

EW=/ ФIНессdф_l~~ W)
\ l-К' 

= <фIНессdфw) = <ФIНеrrd(uф + v1.I/l) (2.30) 

ап eqиа tion determining W [see (2.17) and (2.26)]. Note that the operator 
<фldф(ljl - К') is just the unit operator since <фldф) equals (1- К). 
Therefore, (2.29) сап also Ье written 

/ ФI(Е - Несс)dф _1~~ w) = о (2.31)
\ l-К' 

This is а pair of coupled equations for и and V: 

Еи - ( ф IHeCcd{ ф [ 1 ~ ]('1и + 1.1/1 [ 1~ K~ 1и} и ) 

= - ( ФI(Е - Н,,,)'" {Ф[1~ к1 + ХФ[ ~ кI} ) (2.32а) 

EV- (хФIН<fr"'{Ф[l ~ к1 + ХФ[ 1~ k]J v) 
= - (ХФI(Е - Н,,,),,,{ Ф[l ~ к1 + ХФС ~ K,]Ju) (2.32Ь) 

One сап immediately obtain the transition amplitude for the (d, р) reaction [гогп 

(2.32а): 

where и О,! satisfies the homogeneous equation (2.32а): 
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The quantity иО,fф describes the elastic channel proton-residual nucleus wave 
function, taking into account the orthogonality to the deuteron-target nucleus 
channel but omitting the coupling to that channel, that is, to V. It therefore 
satisfies а Schrodinger equation involving just the Hamiltonian, НJ' describing 
the effective interaction in the elastic final-state channel: 

(2.35) 

The residual interaction giving the coupling то the deuteron channel is 

"'/,(Л-Н Н (2.36)r = eff - J 

Therefore, 

ff,p = ( U~~}Фlr(f)d{ {1~ k1 + ХФ[ 1 ~ k,JJ V:+I) (2.37) 

With this equation we obtain а complete formal solution of the particle transfer 
problem, including the effects of nonorthogonality and antisymmetry. Its 
derivation is sufficiently general so that it сап Ье applied to апу transfer reaction 
(e.g., those induced Ьу heavy ions) for which (2.3) is appropriate and сап readily 
Ье generalized to other cases, since the structure given Ьу (2.18) of the relation 
between W and w and the Schrodinger equation for РЧ', (111.5.26) remains 
unchanged. 

ProbIem. Define 

- 1 
W= W 

JI-K' 
(2.38) 

Show that 

- (1EW= Ф 1~ Неff~rv1Ф 1-)~ W (2.39) 
~ ~ 

In this equation, the operator acting оп W оп the right-hand side is symmetric, 
implying time-reversal invariance. 

А number of approximations are commonly applied to (2.37). Мап)' authors 
neglect the nonorthogonality kernels Кир and KZv [Eq. (2.13)]. К is then 
diagonal, with the consequence that only the effects of antisymmetry in the 
initial and final channels are taken into account. For example, (2.34) for иО 

becomes 

(2.40) 
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which is just the equation satisfied Ьу the wave function for proton scattering 
Ьу the residual nucleus. Since H eff is determined empirically, some of the 
coupling and orthogonality effects аге included. Similarly, (2.32) for U simplifies 
to 

or 

Еи - <ФIНеffd(фu) = - <ФI(Е - Неff)d(vхф) (2.41) 

The equation for V becomes 

or 

EV - <хФIНеffd(vХ'/J) = - <X'/JI(E - неfаd(uф) (2.42) 

The transition matrix equation (2.37) reduces to 

where Uо now satisfies (2.40). Finally, the approximation in which V~+) in (2.43) 
is replaced Ьу the "unperturbed" Vb~/' which satisfies 

(2.45) 

is made. Опе obtains 

ff<DWAj = \ U<-)Ф/1/<Лd{( __l_) V<+.J}) (2.46)
dp 0./ 1 _ К' О .• 

VV t' 

ог the гпоге familiar form 

(2.46) 

As has been pointed out earlier, much of the еггог of the last approximation 
тау Ье reduced because of the use of an empirical interaction for 1/<Л. In 
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principle, one could eliminate V from (2.41) Ьу first solving (2.42)for V in terms 
of W and substituting in (2.41). The effects of antisymmetrization as required 
in (2.46) or (2.43) сап Ье сапiеd out Ьу direct evaluation of the eigenfunctions 
and eigenvalues of the operator Кии • These сап Ье used to provide а 
representation of 1/(1 - K~J Another procedure requires finding only the 
eigenfunction of the operator К ии , V~l>, with eigenvalue of unity and then 
insisting that VO,i Ье orthogonal to аН the v~1) [Saito (68, 69)]. For а review of 
recently developed procedures, see Arima (78) and Horiuchi (77), А recent 
example is in the рарег Ьу Kato, Okabe, and АЬе (85). Of course, there тау 

Ье circumstances in which the non-orthogonality operator Ки и саппот Ье 

neglected (much here depends оп the choice for Ф and xljJ). In that event one 
must return to the exact !Y dp of (2.37). The DWA result would then Ье obtained 
Ьу replacing V: + > Ьу V~~/ in that equation. 

In principle, the application of (2.46)is straightforward. One must first obtain 
the elastic channel wave functions for the deuteron-target nucleus and the 
proton-residual nucleus systems with appropriate attention to the requirements 
of antisymmetry. These wave functions аге solutions of а Sсhrбdiпgеr-tуре 

equation [see (2.45) and (2.40)]. Since we are considering а prompt process, Нeff 
is taken to Ье an optical model complex Hamiltonian, while Нf is the diagonal 
part of H eff in the (p-nucleus) channels, and r(Л is the nondiagonal part. Note 
that one must Ье careful to maintain the permutation symmetry ofthe underlying 
Hamiltonian in choosing """"(Л. А simple procedure is to antisymmetrize и 6~} 

before inserting r(Л and multiply Ьу l/А + 1, where А +1 is the total number 
of nucleons. 

In actual practice, the elastic channel wave function is obtained as а solution 
of the single-channel optical model Hamiltonian which has been adjusted so 
that the resulting elastic scattering cross sections agree with experiment. UsuaHy, 
these wave functions do not satisfy the Pauli exclusion principle so that its effect 
must in some fashion and to some extent Ье contained in the empirical potential 
used.This is more explicit when the potential is а folded one, as antisymmetry 
gives rise to an exchange term. One is in serious danger of overcounting if опе 

simply orthogonalizes the empirical wave functions with respect to xljJv~1) 

[Fleissbach and Mang (76); Fleissbach (78)]. One should obviously return to 
the original elastic scattering problem and readjust the optical potential so that 
orthogonality with respect to the supertluous solutions and agreement with the 
experimental data are obtained simultaneously. 

Post-prior Representations. Equation (2.33)for!Y сап Ье condensed Ьу staying 
with the Ф, W formalism [see (2.26)J. It becomes 

g-fi = <W6~}ФI(Е - Неff)d(Фw~+» > 

= - ( W~~}ФI(Е -Heff)d{Ф(l ~ R,)W:+>}) (2.47) 
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and the altemative expression 

&-л = - (d(ФWj-))I(Е - Неff)W~~/Ф> 

= -( шt(1 ~KI Wj-»)I(Е-Неff)WЬ~/Ф) (2.48) 

ТЬе circumflex оп &- is а reminder that &- is а matrix and that опе must specify 
the initial and final states. For the stripping (d,р) геаспоп, WЬ~}Ф in (2.47) 
is, according to (2.33), the proton-nucleus unperturbed final-state wave function 
Uь~}ф, ТЬе function w~+)Ф is the exact initial сЬаппеl deuteron nucleus wave 
function Xt/Jv~+). With these substitutes, (2.47) and (2.33) Ьесоте identical. Опе 

сап then obtain (2.37) for ffdp ' This result is referred to as the postrepresentation 
of the transition amplitude, since it involves the residual interaction in the final 
channel, у(Л. 

In using (2.48) to obtain ап expression for the stripping transition amplitude, 
the unperturbed initial state is given Ьу Xt/J v~~/; the final-state сотпропеш of 
interest is фuj-). Thus опе obtains 

We now introduce the Hamiltonian Н, for the initial сЬаппеl 

н '(Xt/J v< +)) = E(Xt/J v< +.») (2.50)1 0,1 0.1 

and the residual potential in the initial channel, y(i): 

(2.51) 

Equation (2.49) then becomes 

which should Ье compared with (2.37). This is known as the priori representation, 
since it involves the residual interaction in the initial channel. ТЬе analog of 
the (2.46') Ьесотпез, ироп neglecting Кии, 

(2.53) 

ТЬе two expressions (2.52) and (2.33) are equal numerically if по further 
approximations are made. Which опе is used is а гпапег of convenience, as 
approximations in their evaluation тау Ье made with greater validity when 
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оnе rather than the other is used, as we shаП see. We emphasize оnсе more 
that the use of the operator К' is essential if antisymmetry, overlap, and 
continuum efТects аге to Ье properly included. 

з. APPLICA·rIONS 

This section is concerned with the implementation of the discussion of the 
preceding section to the process of stripping. The starting point is the post
transition (or the corresponding prior transition) matrix element given Ьу (2.37) 
and the DW А form (2.46), in which overlap and the perturbation of the 
deuteron-target nucleus wave function arising from the possibility of the 
transition to the proton-nucleus system аге neglected. (The error resulting from 
this last approximation is reduced considerably Ьу the use of а semiempirical 
potential between the deuteron and the target nucleus, which to some extent 
must include the efТects of the two-step processes, in which, for example, the 
пешгоп is stripped from the deuteron Ьу the target nucleus and then in the 
second step is picked uр Ьу the proton to reform the deuteron.) Elements 
entering into the calculation consist of the initial and final wave functions and 
the residual interactions 1'(Л or «». 

According to (2.36), 

"J/"(Л-Н -Н 
r - еСС f 

The Hamiltonian НеСС is gеnеrаПу chosen to Ье of the form 

(3.1) 

where НА is the Hamiltonian for the target nucleus, Т1 and То the kinetic energy 
operators for the пешгоп and proton, WO,A is the interaction of the proton with 
the target nucleus, W 1,A that of the neutron, and w(O, 1) the neutron-proton 
interaction. The final Hamiltonian is given Ьу 

Hf=HA + Т1 + Wl,A + ТО + W (3.2а) 

= НА + 1 + То + W (З.2Ь) 

Неге W is а тпеап, gеnеrаПу complex potential representing the interaction 
between the proton and the residual (А + 1) nucleus. Taking the difТerence 

between (3.2) and (3.1) yields 

1'(Л = WO,A + w(O, 1) - W 

А+l 

= L w(O,i) - W (3.3) 
i= 1 
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The mean potential w саппот induce any transitions, so that its (d, р) matrix 
element vanishes. Непсе, from (2.46'), 

g-<DWA) = (u<-)ф] A~l w(O, i)d(V<+'>Хф)) (З.4)dp 0.1 ~ 0,1 
i= 1 

One now makes the spectator approximation. Qualitatively it is assumed that 
the proton does not participate in the reaction. More precisely, one assumes 
that the only terms in the sum over W(O, i) that contribute significantly to g-dp 

are those for which the nucleons denoted Ьу i are neutrons. Moreover, since 
the wave function ф, as wel1 as the indicated initial state, are antisymmetric in 
the пешгоп coordinates, one obtains 

g-~~WA) ~ (N А + 1)( Uъ~}Фlw(О, l)d(vъ~/хф)> (3.5) 

where N А is the number of neutrons in the target nucleus. Final1y, ifthe exchange 
integrals in this equation are smal1, as is often the case, one obtains the simple 
result 

g-<DWA)~(N + l)(U<-)Фlw(О,l)v<+'>хФ> (З.6)dp А 0.1 0.1 

Forms (3.5) and (З.6) are most convenient because w(O, 1) has а short range, so 
that domains in which the neutron-proton верагапоп is large do not contribute 
to g-dp' Exploiting this feature leads to а considerable simplification, as we shal1 
now show. 

We need to make explicit the spatial arguments of the functions occurring 
in (3.5). The function Х as wel1 as w(O, 1) depends оп г 1 - г о, where rО is the 
proton coordinate and г 1 the пешгоп. The function v depends оп the верагапоп 

of the deuteron center of mass from the center of mass, г А' of the target nucleus: 
that is, 

(З.7) 

ТЬе function U depends оп the separation of the proton from the center of 
mass of the target nucleus and the neutron: 

(З.8) 

Equation (3.6) becomes 

g-~~WA)= fdr pfdrDfdr2 ... UЪ~}*(rр)фj(rl -rА,r 2 -rА , ) 

х w(r1 -rо)vъ~/(rD)х(rl -r О)Фi(r2 -rА,r з -r А , ) 
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Performing the integration over r 2 , r з,'" yields 

so that 

fТ~~WA) = (NА + 1)fdrpfdrDU~~}*(rp)fji(rl - - ro)v~~/(rD)rA)w(r 1 - rO)x(r1

(3.10) 

We now evaluate wx in the limit of zero range of the neutron-proton 
potential. Neglecting the tensor force between neutron and proton, the 
Schrodinger equation satisfied Ьу Х is 

(3.11 ) 

where the dependent variable is r 1 - ro. The eigenvalue у2 is related to the 
binding energy В of the deuteron Ьу 

Solving (3.11) for wx yields 

(3.12) 

For zero range w, 

Х = N е - yr/r == N -
и 

(3.13) 
r 

where N is the normalization. N сап Ье expressed in terms of the effectiverange 
о. 

It follows that 

r<>? u2 dr = l-УРt 
Jo 2у 
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But 

OO f.oo 1 - ур
х2 dr = 1 = 4nN 2 и 2 dr = 4nN 2 

!

f.о о 2у 

Solving for N yields 

1 ( 2у ) 1/2 
N= ~ l-ур! (3.14) 

ТЬе current value of Р! is 1.767 [т. 

Inserting (3.13) into (3.12) yields 

( 
2у )1/2 п 2 

WX = J4n - -b(r) 
l-ур! т 

(3.15) 

We сап now return to (3.10) and replace the integration variables rp and ro Ьу 

rA - r 1 == R and г == r 1 - ro. Integrating over г, опе obtains, including the 
Jacobian of the тгапвюппапоп, 

ff~DWA)=~h2(~)1/2 А+2 (N + l ) 
р т 1 - УР! 2(А + 1) 

A 

х fdRU<-)*(~R)f*.( -R)v<+.)(R) (3.16)
o,j А + 1 /1 0,1 

ТЬе zero range approximation reduced the six-dimensional integral, (3.10), to 
а three-dimensional опе. ТЬе latter is readily evaluated Ьу expanding u<-) and 
v< +) in а partial wave series, so that (3.16) becomes, after making the relatively 
simple angular integration and evaluating spin matrix elements, а sum of 
one-dimensional integrals. ТЬе function U~~} is generally taken from the optical 
model analyses of the proton-nucleus interaction described in Chapter У. А 

similar optical model analysis has Ьееп made of the deuteron-nucleus 
interaction. However, it should Ье remembered that ап understanding of the 
latter is based оп а тисЬ smaller data рооl than that available from the 
proton-nucleus interaction. А table of optical model parameters for the deuteron 
projectile is given in Section 4. 

ТЬе overlap function f/i(R) is, in the independent-particle description of the 
nucleus, proportional to а single-particle wave function. As we discussed earlier, 
the residual interactions will add multiparticle components to the nuclear 
wavefunctions. However, these саппот contribute to fл and to ff~~WA). Thus 
the efТect of the residual interaction is to reduce the strength of the single-particle 
сотпропеш since the total nuclear wave function is normalized to unity. This 
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is taken into account Ьу the introduction ofthe spectroscopicfactor:7 [see (1.5)]: 

(3.17) 

Putting the arguments of :71(2 equal only to the angular momentum j of the 
пешгоп single-particle orbital ф , is an assumption, since in principle ffj could 
depend оп other properties of the initial and final nuclei. ТЬе function ф , is 
assumed to Ье orthogonal to ф. We remind the reader that in the limit of the 
independent-particle model, when the target is а closed-shell nucleus, :7, with 
the normalization аооуе, is unity. This completes the d·escription of the various 
factors entering into (3.16) for the transition matrix f7dp' 

Some qualitative conclusions that follow from (3.16) [ог the transition matrix 
f7~~WA) сап now Ье drawn. Since both the U(-) and v(+) are wave functions 
describing the motion of particles in an absorptive potential, their magnitudes 
will Ье reduced in the пцстеаг interior. As а consequence, those partial waves 
of U( -) and v( +) that аге large at the nuclear surface will make the most important 
contribution to the transition matrix. Roughly, this will occur for those partial 
waves lj and [! of v(+) and и':', respectively, satisfying the conditions 

(3.18) 

(3.19) 

Непсе the orbital angular momentum L of the single-particle nuclear wave 
function Ф of (3.17) which will Ье most strongly populated will satisfy the 
condition 

(3.20) 

Under these circumstances (Iarge absorption) the (d,p) reaction is а surface 
reaction, 

These conclusions сап easily Ье deduced from the overlap integral in (3.16) 
Ьу making а partial wave series for U(-) and и(+). For this purpose it is not 
necessary to take spin onto account, so that 

I(2l i + 1)i 1 iР,Jk(f)е Ыv~~/ = / iф,Jr) = ~I~iliYli.Oeblli<pIJr) (3.21) 
lj 

and 

(3.22) 
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Finally, let 

ТЬе transition matrix becomes 

XfdQY/.oYim У1м., /' f 

where 

(3.23) 

ТЬе angular integral сап Ье performed using (А.2.35) [гот the Appendix in 
deShalit and Feshbach (74): 

so that 

х [(2/
i 
+ 1)(21

! 
+ 1)(2L+ 1)]1/2(/i L l! )(li L [f) (3.24) 

О М т! О О О 

ТЬе 3 - j coefТicients yield not only the angular momentum conservation 
condition of (3.20) but parity conservation as well, since li + L + 1f must Ье even. 
ТЬе magnitude ofthe factor ехр [;(15/; + д/)J, is, [от absorption optical potentials, 
much less than unity [от small l's rising sharply to unity at the grazing values 
of li and 1f given approximately Ьу (3.18) and (3.19). ТЬе integral 1 will tend to 
zero as li and 1f exceed these grazing values since the corresponding angular 
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momentum barriers Ьесоmе important beyond the nuclear radius. The integral 
1 will Ье small for these values of li and 1f for which the absorption is large, 
that is, for li and 1f considerably smaller than the grazing values. As Austern 
(61) pointed out, this is а consequence of destructive interference between the 
optical пюце] deuteron and proton wave functions. As the reader should verify, 
the radial wave functions for each of these waves inside the пцстеаг interior 
will for the most part Ье of the form ехр( - iKr)jr, where К is the ппегпа] 

0.3 

0.2 

0.1 ....... 
ъ......

·0. 
1

· · · · · · · · ·. . 
·.0:1(21 + 1)1312l2. 11 
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oL-__---J. .....L. ....J... ...J.... .I.,.........I 

2 4 б В 10 12
 

FIG.3.1. ТЬе 1window. ТЬе modulus ofthe stripping integrals contributing to ап ~I = 2
 
transfer reaction 24Mg (d,p) 25Mg, ground state at Ed = 10.1 МеУ plotted against 12 = lf·
 
[From Ноорег (66).]
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momentum appropriate for each particle. This is not correct near r = О, but in 
that region the magnitude of the deuteron wave function is small as а 

consequence of the absorption. Elsewhere the product in the integral of 1 will 
f1uctuate strongly and 1 will Ье small. 

These arguments demonstrate the existence of ап 1window-that there is а 

range in 1/ and lj, respectively, for which ехр(д/; + д/)I is appreciable. It is 
negligible if Ij or 1/ fall outside these ranges. This is illustrated in Fig. 3.1. 

The impact of the 1 window оп the angular distribution сап Ье seen from 
(3.24). The angular distribution will Ье oscillatory with а frequency that willlie 
between n/21та х and n/2Imin , where Imax and Imin аге the maximum and minimum 
values of 1/ or lj. 

Examination of the integral 1 yields another qualitative result that could 
have Ьееп anticipated-that the momentum transfer is bounded Ьу the 
"momentum" of the captured пешгоп. That is, 

(3.25) 

where 181, the binding energy of the captured пешгоп. is given Ьу the Q of the 
reaction plus the binding energy of the deuteron, 2.246 МеУ. As k/ and k j 

increase, this inequality implies that the reaction proceeds when k/ is about 
equal to ki, this is, for good momentum matching. "Good momentum matching 
gives slow radial oscillations and large overlaps only in the nuclear surface 
region where the distorted wave functions аге not yet affected Ьу absorption" 
[Austern, Iseri et al (87)]. Since when multiplied Ьу the nuclear radius, the 
left-hand side ofthis inequality gives the maximum angular momentum transfer 
L, we see that for а given (d, р) reaction, L is generally limited to fairly small 
values. 

The discussion аооуе does not take the spin variable into account. For а 

given L of the captured neutron, two values of j, its total angular momentum, 
L ± t, are possible. These correspond to two different single-particle states and 
therefore to two different radial wave functions XL, so that 1 is spin dependent. 
The spin dependence of the proton and deuteron optical potential as well as 
the deuteron D state will give f7 additional spin dependence. However, the net 
efТect is quite small, although it тау Ье observable, as indicated Ьу Fig. 3.2. А 

deep minimum at the back angles is seen for the 1= 1 transfer for Pl/2 and not 
for РЗ/2' The spin dependence is much more dramatically revealed in experiments 
that measure the polarization of the proton, or if the deuteron Ьеат is polarized, 
the vector analyzing power, as illustrated in Fig. 3.3. (Polarization is discussed 
in Appendix с.) 

When spin is included in the discussion, the angular momentum balance 
must Ье reconsidered. If J j is the spin of the target nucleus, SD that of the 
deuteron, J/ that of the final nucleus, and spthe spin of the proton, conservation 
of angular momentum requires that 

(3.26) 
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FIG.3.2. Summary of j-dependent effects in (d,р) reactions. ТЬе curves represent the 
trend of the experimenta\ data [ог different j values [Schiffer (68)]. [From Вагген and 
Jackson (77).] 

The assumption that the transferred пешгоп is in а single-particle state leads 
to the requirement 

J f = J i +j/l = J i + L + в, (3.27) 

where L and 5/1 are the angu)ar momentum and spin of the пешгоп. Substituting 
(3.27) into (3.26) yields 
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FIG. 3.3. Vector analyzing power for various (d,р) reactions [Glashauser and Thirion 
(69)]. [From Barrett and Jackson (77).] 

Presuming the absence of spin-dependent terms in the optical potentials of the 
proton and deuteron and in the neutron-proton potential yields (3.20). Непсе 

the equation above reduces to the obvious result 

53Сг (8·0 МеУ) 

1>Е.= \·00 
41Са (7·0 МеУ) 

оЕ.=О·ОО 

(Ь) 

Since the deuteron is in а spin-l state, the captured пешгоп and the emerging 
proton must also Ье in а spin-l state. If the deuteron spin is parallel or 
antiparallel to the normal to the scattering plane, the bound пешгоп and the 
emergent proton spins wi11 Ье parallel. If the spin of the deuteron lies in the 
plane, the пешгоп and рготоп spins wi11 Ье antiparallel. If the incident deuteron 
Ьеаm is unpolarized, the three deuteron spin states wi11 have equal populations. 



э. APPLICATIONS 485 

Therefore, the пешгоп and the proton spin will Ье рагаllеl оп the average. 
Непсе Ьу observing the emerging proton spin, опе determines the captured 
пешгоп spin and therefore the total angular momentum, L ± t, of the пешгоп 

state. We shallleave the verification of the discussion аооуе as ап exercise [ог 

the reader. 
The cross section is obtained Ьу squaring 3, given Ьу (3.24), summing оуег 

mJ , averaging оуег the deuteron spin, and multiplying Ьу the ratio ofthe emitted 
сипепt to the incident сипепt. The latter contains the factor (N А + 1). Опе 

obtains 

d(J 1(A+2)2k J.l'J.l ( 2у )
~=---- ~-ч --- Y'(rx,L)(2L+ 1)~) - )1(21+ 1)(21/+ 1)(21;+ 1)

dQ. 3 А+ 1 k j т 1-УРt 1;1\ 

1/1/ 
1 

х (21 + 1)(21' + 1)ei(JliHI/-J;;-Jij >(I/ LlJ)(I~ L1~)
 
J J 000000
 

х 1J l'J 1)(1.
I 

1:
I 

1){1'
I 

l'
/ 

1}
/([.[ L)/*(t:l' L)P (сов Э) (3.28)( О О О О О О l' 1 1 I J I J 1 

J J 

This formula is less formidable than it looks because the sums оп lJ~, lJ , and 
l! аге оуег а limited range because of the 1window discussed earlier. t The sum 
омег 1 is limited as а consequence. We also see that the maximum value of 1 is 
the least of the maximum values of 21; and 21J . 

The derivation of (3.28) makes а питЬег of approximation that we shall 
now review. We have mentioned the neglect of spin-dependent terms in the 
proton and deuteron optical potentials as well as the D component of the 
deuteron wa уе function. Because these terms аге comparatively small, а 

perturbation treatment is useful [see Satchler (83, р. 384)]. The inclusion of 
spin-orbit coupling in the optical ротеппа'в will not modify the angular 
distributions greatly. However, the омегай magnitude andtherefore the врестго
scopic factors extracted [гогп the data сап Ье changed substantially [Lee, 
SchifТer, et al. (64); Seth, BiggerstafТ, Miller, and Satchler (67)]. There аге special 
efТects. For example, as we noted аЬоуе, а systematic efТect [ог 1= 1 transfer is 
observable. The spin-orbit coupling in the optical potentials is responsible [Lee, 
SchifТer, et al. (64)]. А similar efТect is seen [ог 1= 2 and 1= 3 transfers. In this 
case both the spin-orbit coupling in the optical potentials and the D state of 
the deuteron аге sources of the efТect [Delic and Robson (74)]. 

We turn next to the zero range approximation, (3.13) and (3.15). То obtain 

~Highly developed computer codes make comparison оГ experiment with stripping theory 
correspondingly straightforward. 
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the next order, return to (З.10) and insert the variables given Ьу (З.7) and (З.8): 

ff(DWA) = (NА + 2 + 1)fdrfdRU(-)*(~R + r)
dp 2(А + 1) А 0.1 А + 1 

х fji( - R)w(r)x(r)v~~/(R + !r) (З.29) 

The next step is to expand u~~} and v~~/ in а Taylor series in г and perform 
the r integration assuming that w(r)x(r) is spherically symmetrical. One then 
obtains after some simple manipulations 

where 

(З.З1а)В= fdrwx 

(З.31h) 

The potentials 1/n' 1/р' and 1/D аге, respectively, the binding potential of the 
neutron, the optical potential for the proton, and the optical potential for the 
deuteron. В is given Ьу (ED + IEnl- Ер), where IЕnl is the binding energy of the 
пешгоп. In deriving (З.ЗО) the limit of А -+ 00 was taken except for the argument 
of 1/р • 

As one сап immediately verify, when (З.15) is used, the first term, independent 
of р, of (З.ЗО) agrees with (З.16). The use of (З.З1а) provides some flexibility, 
however, since it makes possible the use of а more realistic expression for wx. 
The term proportional to р сап readily Ье included in the calculations. The 
efТect of the р term is to reduce the contributions [гогп the interaction region. 
А comparison with the exact calculation is shown in Fig. З.4. See Dickens, 
Drisco, Регеу, and Satchler (65), Stock, Bock, et al. (67), and Santos (7З) for 
further discussion. 

In passing, поте that the Регеу efТect (efТective mass) will also reduce the 
amplitude of the proton and deuteron wave functions in the interaction region. 
The Perey efТect is а consequence of the попюсапту and energy dependence of 
the optical potential. 
Рап of that nonlocality is generated Ьу the Pauli principle, which tends to 

reduce the amplitude of the proton and пешгоп wave functions when they 
overlap the target and the residual nuclei. An6symmetry сап Ье included to 
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some extent Ьу adding in the exchange integral to (3.10). Моге accurately, the 
analysis of Section 2 should Ье used, including both the antisymmetry and 
nonorthogonality efТects. That this is possible is demonstrated Ьу the 
calculations of Dбhпеrt (71) and those of several Japanese physicists, for 
example, Horiuchi (77). For ап approximate treatment of antisymmetry that 
permits continued use of (3.1), see Johnson, Austern, and Hopes (82). The 
substantial agreement between DWA theory and experiment, particularly in 
the critical forward angle region, indicates that these efТects, at least as far as 
the angular distribution is concerned, are small. 

4. ТНЕ DEUTERON-NUCLEUS INTERACTION 

The DWA amplitude depends strongly оп the distorted deuteron wave function 
and therefore оп the deuteron optical model. The deuteron has а comparatively 
large structure (diameter '"'" 4.4 fm) and is very loosely bound (В.Е. = 2.246 МеУ). 

It сап therefore readily "break ир" when subjected to external forces provided 
Ьу the target nucleus, а process that is aided Ьу the Pauli exclusion principle. 
Deformation of the deuteron without breakup сап also оссцг, but breakup is 
more likely. As а consequence, one finds strong deuteron absorption when the 
deuteron penetrates the nuclear interior. It is this strong absorption that is the 
most important factor in producing the 1window of Section 3. 

As in the nucleon case, опе approach to the deuteron optical model potential 
has Ьееп empirical; that is, the parameters of ап optical potential of ап assumed 
form аге adjusted so as to fit the observed deuteron-nucleus elastic scattering. 
А second approach attempts to relate the deuteron optical model with the 
underlying nucleon-nucleon forces. At а simple level, the folding model is used. 
It sufТers from the obvious omission of the breakup channels and thus leads to 
а serious underestimate of the absorption component. А more complete 
treatment based оп the general analysis developed in Chapter III and used in 
Section 2 of this chapter has Ьееп carried out Ьу Dбhпеrt (71).Dбhпеrt includes 
the efТects of antisymmetry, which involves the possible exchange of опе or both 
of the deuteron nucleons with those in the target nucleus. The efТects of breakup 
(as well as multistep processes) оп stripping are included as well. This is ensured 
Ьу the orthogonality conditions (2.5) and (2.6). However, the Dбhпеrt procedure 
does not permit а calculation of the breakup that occurs in а deuteron-nucleus 
collision. А correct description of the nonlocality induced Ьу the Pauli principle 
as well as the contribution coming from the finite size of the deuteron is thus 
obtained. Опе сап at this point insert the nucleon-nucleon potentials as well 
as the wave functions for the target nucleus to obtain the deuteron optical 
model potential, recognizing from the beginning that only the elastic ampljtude 
сап Ье described Ьу such а potential. Such а calculation does not seem to have 
Ьееп сапiеd out for the deuteron [see Dбhпеrt (71)], although Horiuchi (77) 
has performed the equivalent calculation for tX-раrtiсlе nucleus interaction. А 

less ambitious program employs the form derived Ьу Dohnert for the empirical 
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analyses of the elastic scattering of the deuteron Ьу the target nucleus, thereby 
avoiding the difficulties associated with the microscopic approach. 

However, most of the analyses reported in the literature use directly а simple 
empirical form for the deuteron optical potential, similar to that employed for 
the nucleon optical potential described in Chapter У. ТЬе Ьоре, underlying this 
convenient approach, is that the potential so obtained will yield wave functions 
that mimic the exact ones faithfully and so include effects such as antisymmetry 
and nonlocality implicitly. This сап Ье the case only if the assumed form for 
the potential is sufficiently flexible so as to Ье capable of including the effects 
arising from nonlocality, such as the Perey effect (see р. 346). 

ТЬе local form commonly used is [see (V.2.38)] 

V (D ) - ,J/" S.L,J/"
орт - , с + , 50 (4.1) 

where 

апа 

1 r - r i A
1 / 3
 

f(x)=- х=----

1 + еХ 

Jt: W, WD , аге constants, while ri and а, тау Ьауе differing values for хе,V50 

x w, x d, and Х5О ' V e ou \ is identical with that used in (У.2.38). S is the spin operator 
for the deuteron, normalized so that S2 = 2. 
А thorough analysis has been made of the data available at the time to 

obtain а global optical model for deuteron energies ranging from 12 to 90 МеУ 

Ьу Daehnick, Childs, and Vrcelj (DCV) (80) and for nuclei with mass between 
37 Аl and 2З8Тh. Their results аге given in Table 4.1. Note that the DCV form 
assumes that X w = x D• As in the nucleon case, the central potential depth V 
decreases with increasing Е, while the diffusivity grows with Е. ТЬе volume 
absorption W is less important than the surface absorption WD at the lower 
energies but is of equal importance at the highest energy. ТЬе diffusivity of the 
absorption potential, aw, exhibits а dependence оп neutron shell closure. ТЬе 

spin-orbit coupling decreases with increasing energy. Daehnick et al. (80) Ьауе 

also considered а complex spin-orbit coupling and Ьауе included in their table 
values of the parameters for nonrelativistic dynamics. 

Examples of the quality of the fits obtained are given in Figs 4.1 to 4.4. ТЬе 

fits оп the whole are quite good, although there are some deviations ofsignificant 
size, but these are not systematic. Note that the ordinate scale is logarithmic. 
ТЬе authors believe that in part these тау Ье а consequence of structure effects 



490 TRANSFER REACTIONS 

тABLE 4.1 Recommended Global Parameter 
Prescriptions That Fit а Wide Range оС Deuteron 
Scattering Data 11 

v = 88.5 -О.26Е + O.88ZA -1/3 МеУ 

'0 = 1.17 fm 
ао=О.709+0.0017Е fm 
W = (12.2+О.О626Е) х (1 - efJ) МеV 

Wv = (12.2 + 0.026E)e fJ МеУ 

'w = 1.325 fm 
Qw = 0.53 + 0.07А 1/3 - O.04I: ie-

Щ fm 
'с = 1.30 fm 

У. о = 7.33 - 0.029Е МеУ 

'.0 = 1.07 fm 
а. о =0.66 (т 

apotential паше: 79 DCV L (nonrelativistic kinematics only). А, 

гпавв number; Z, proton number; {3 = - (Е/l00)2; JJ.i = 

[(М ; - N)j2]2, where М; = magic numbers (8, 20, 28, 50, 82, 
126);N, пешгоп пишЬет; Е, deuteron laboratory energy(MeV). 

118 MeV 

90 180 

FIG.4.1. Comparison of 11.8-МеУ data with predictions of potential L (ТаЫе 4.1). 
[From Daehnick, Childs, and Vrcelj (80).] 
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о 60 120 о 60 120 

8 (deg )
с.гп. 

FIG.4.2. Comparison of52-МеV data with predictions ofpotential L(TabIe 4.1). [From 
Daehnick, Childs, and Vrcelj (80).] 

and, at low energies, of contributions of compound elastic scattering. Resolution 
limitations are important for deformed nuclei targets when these have low-lying 
excited states. Reaction cross sections obtained from the optical model аге 

systematically higher than the experimental values, indicating perhaps а need 
to modify the Woods-Saxon shape used in (4.1). 

It is interesting to сотпраге these phenomenological results with those 
obtained for the neutron-nucleus (n-nucleus) and proton-nucleus (p-nucleus 
interactions) (see ТаЫе У.2.1). We see that the real central (d-nucleus) potential 
is much greater than the corresponding nucleon potentials. Moreover, it differs 
substantially from the sum of the (p-nucleus) and n-nucleus real central 
interactions. However, the diffusivity ао is not very different. Both the imaginary 
central volume and surface terms, Wand WD, of the (d-nucleus) potential are 
very much larger than the corresponding nucleon-nucleus савеч ТЬе spin-orbit 
terms аге not very different. Qualitatively, the difference тп .пе real central 
deuteron potential from the sums of the nucleon potentials сап Ье understood 
as а consequence of the finite size of the deuteron, while greater absorption 



492 TRANSFER REACTIONS 

! I ! ! ! I 

о 30 ба 90 О 30. БО 90 

ее.т. (deg ) 

FIG.4.3. Comparison of 80- to 90-МеУ data with predictions ofpotential L, (ТаЫе 4.1). 
[From Daehnick, Childs, and Vrcelj (80).] 

occurs because the penetrating deuteron breaks uр readily in view of its small 
binding energy. 

It has Ьееп pointed out that а two-step process involving breakup could Ье 

of some importance for stripping. The first step involves the breakup of the 
deuteron (i.e.,а transition to the n-р continuum state) because of the interaction 
with the target nucleus followed Ьу the capture of the пешгоп Ьу the nucleus. 
In principle, this efТect could Ье estimated using perturbation theory or the 
Dohnert procedure. Instead, the strategy in which the deuteron optical potentiaJ 
has Ьееп modified has Ьееп used. This has the convenience that the standard 
DWА formula whose evaluation Ьу computer is а thoroughly tested and 
available procedure сап Ье used. We discuss this approach in Section 6. 

5. OVERLAP WAVE FUNCTION 

The overlap wave function f/i(r) is defined as 

(3.9) 
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FIG.4.4. Comparison of the predictions of the potentia! (ТаЫе 4.1) with vector 
po!arization data. [From Daehnick, Childs, and Vrce!j (80).] 
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where integration омег the coordinates соттоп to I/J and Фг is assumed. ТЬе 

functions I/Ji and ФJ аге the wave functions describing the target and residual 
nuclei. From the Schrodinger eq uations satisfied Ьу I/J i and Ф J' опе immediately 
obtains 

(5.1) 

where 

(5.2) 

ТЬе energy (Е, - Е J) equals the energy required to break ир the final nucleus 
into the initial nucleus plus а zero-energy пешгоп. 

ТЬе overlap wave function generally used in а stripping DWА calculation 
is obtained Ьу solving the Schrodinger eq uation for а пешгоп moving in the 
теап field of the target nucleus. ТЬе latter is taken to ье ап empirical potential 
such as the Woods-Saxon potential [see Веаг and Hodgson (78)) whose 
parameters аге appropriate for the target nucleus and the пешгоп single-particle 
state under study, and of course satisfy (5.1) and (5.2). This last condition is 
important to the extent that the reaction occurs at the surface. Harmonic 
oscillator wave functions аге not adequate because they do not satisfy (5.1) and 
(5.2). Obviously, the тоге realistic the models used in terms of the experimental 
evidence that they сап explain, the тоге meaningful is the understanding of 
nuclear structure that сап Ье extracted from the one-particle transfer reactions. 

The overlap waуе function is significantly modified when the target апё/ог 

the residual nuclei are deformed, since the effects of deformation аге most 
important оп the surface region. The deformed potential is obtained from а 

spherical опе that has Ьееп found suitable [ог spherical nuclei in а nearby range 
of the periodic table. Опе сап, for ехатрlе, expand the radius parameter R in 
а multipo)e series. [See Rost (67) and Bang and Vaagen (80) for details.J 

6. THREE·BODY MODELi 

ТЬе three bodies in this model аге the пешгоп. the рготоп, and the target 
nucleus. The neutron-nucleus and proton nucleus interactions аге taken to ье 

the optical model potentials, while the neutron-proton interaction usually is а 

simplified version of the nucleon-nucleon interaction, al10wing of course [ог the 
formation of the deuteron. The optical model potentials include the efТects of 
the excitation of the target nucleus оп the elastic scattering of the neutron and 
proton Ьу the nucleus. Otherwise, the nucleus is inert, so that inelastic and 
fragmentation processes аге not included in this model. 

: Austern, Iseri, et al. (87). 
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The focus of the study of this system is оп the effect of breakup оп the 
wave function and оп the elastic scattering of the deuteron. The approximations 
used eliminate the stripping channel. Stripping is calculated in the next order 
of approximation Ьу using the three-body model wave function in the DWA 
transition amplitude. The implied assumption is that the stripping channel does 
not induce а substantial change in the wave function. 

The simplest Schrodinger equation for the three-body model has the foHowing 
form: 

The quantities Тр and Т; are the kinetic energy орегатог for the proton and 
пешгоп respectively, V is the neutron-proton interaction, and V + iW andpn p p 

Vn + iWn аге optical model potentials. The energy dependence of the empirical 
optical model parameters present а problem in that the energy at which these 
parameters should Ье used is. not clear. The practice has Ьееn to evaluate them 
at аn energy equal to Е/2 оп the supposition that the пешгоп and proton share 
the energy еqчаllу, as is approximately the case for the incident deuteron. There 
is in addition а threshold effect; the absorption potential Wn must go to zero 
when the proton energy exceeds Е, since then the neutronis bound. То take 
this effect into account, Wn in (6.1) is replaced Ьу 

(6.2) 

where (J is the unit function and hp is the proton Hamiltonian 

(6.3) 

А similar modification is suggested for Wp' 

Оnе should also take antisymmetry into account. The wave functions of the 
пешгоп and proton must Ье orthogonal to the wave functions of the nucleons 
in the target nucleus. 

In most of the calculations that have Ьееn performed, the threshold effect 
and the antisymmetry are neglected. Estimates of the latter are discussed Ьу 

Austern. We then return to the Schrodinger equation, (6.1). 
We discuss three procedures that have Ьееn used to obtain approximate 

solutions to (6.1). In аН of these approximations, the variables 

R=rp+rn (6.4)
2 

are used. Letting 

U= V +iW 
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the potential in (6.1) becomes 

(6.5) 

А Coulomb term иc(R), dependent оп R only, is added to (6.5). Since the 
dependence of the Coulomb potential оп г is neglected, this term wilI have по 

efТect оп break ир. 

А. Watanabe Potential t 

This is obtained Ьу taking the expectation value of (6.1) with respect to the 
internal deuteron wave function Фd(r), omitting the »о, state сотпропеш of Фd' 
This yields the equation 

(6.6) 

where Тя is the kinetic energy of the center of mass of the neutron-proton 
system, 

(6.7) 

and 

ljJ(rР' rn) == 'P(r, R) (6.8) 

has Ьееп approximated Ьу 

(6.9) 

ТЬе Watanabe potential isjust ап example ofthe folding potential [see (У.2.76)]. 

In view of (6.9), the breakup сЬаппеl is not included. 

В. The Adiabatic Approximationt 

We first rewrite (6.1) in the neutron-proton relative and center-of-mass 
coordinates, г and R, respectively: 

(6.10) 

tWatanabe (58).
 
~ Johnson and Soper (70).
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where 

and hn p is the neutron-proton Hamiltonian 

(6.11 ) 

Т• is the kinetic energy of the relation motion of the пешгоп and proton. The 
adiabatic approximation is obtained Ьу replacing hnp Ьу -16d l, where 6d is the 
binding energy of the deuteron, with the result 

(6.12) 

This equation is solved as а scattering problem in the variable R; the variable 
г is taken to Ье а parameter, so that solutions аге calculated for each value of 
r. The incident wave is taken to Ье Фd(r)е i К ' R • Deuteron elastic scattering is 
obtained Ьу taking the expectation value of the outgoing сотпропеш of t/JAD 
with respect то the deuteron wave function ФАr). Breakup is obtained Ьу taking 
the expectation value with respect to the neutron-proton continuum wave 
functions, ф(k, r). 

С. Coupled Equations~ 

The Watanabe wave function, (6.9), is the first term in а more complete expansion 
of 'P(R, r) in terms of the bound state (the deuteron) and the continuum states 
of two nuclear system. Austem, Iseri, et al. (86) write 

(6.13) 

In this equation jJ(R) and gfL(Л' R) аге unknown functions to Ье determined 
Ьу the coupled equations obtained when (6.13) is substituted for the wave 
function in the Schrodinger equation. The continuum wave function Фr(k,г)l'rm 

satisfies the neutron-proton equation: 

[6(k) - Т• - Vрn(г)JФr(k, г) Yrm(r) = о 

h2k2 

f,(k)=~ (6.14) 
М 

~ Austern, lseri, et al. (89). 
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The parameter А gives the center-of-mass momentum of the neutron-proton 
system, so that 

(6.15) 

[Y/(r), YLCR)]JM = L <JMllm,LfJ.) У/m(f)УцЛ~.) (6.16) 
m,ll 

The first term of (6.13) describes elastic deuteron scattering, and the second 
term describes the breakup сотпропеш. The expansion in 1 permits the 
description of the effects connected with the orientation of the deuteron. 

Inserting (6.13) into the three-body Schrodinger equation leads to ап infinite 
set of coupled differential~integral equations. Some method of truncation is 
needed. The dynamical origin of the coupling is in the potential И: 

(6.17)
 

This сап Ье expanded in а multipole series: 

U = L U/(r,R)P/(i-R) (6.18) 
/ 

If U р ~ Un' which is nearly true, the зшп. goes over the еуеп fs only. Truncation 
о! this series at 1= 1т ах is reasonable physically. А posteriori verification сап Ье 

obtained, and in fact lmах equals 2; that is, only two terms in (6.18)are needed. 
This is demonstrated Ьу ТаЫе 6.1, which gives the partial cross sections as 

lmах is increased beyond 2 for J = 17,the dominant wave in the example discussed 
Ьу Austem, Iseri, et al. (87). The 1= 1 contribution is found to Ье unimportant. 

TABLE6.1 Partial Cross Section a:J
) for J = 17 

с: 2 4 6 О 

(7(17) 4.067 3.930 3.989 10.273 
о 

(7(17) 12.596 11.651 11.3512 
(7(17) 1.830 1.6844 
(7(17) 0.202
бL (7(J)
1 1 16.663 17.411 17.226 10.275 

(7(J) 
еl 

74.230 73.502 73.568 90.106 
(7(J) 99.444 100.32 100.33 93.429react 
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FIG. 6.1. Elastic scattering cross-sections for d + 58Nio Comparisons аге made between 
the Watanabe model, the adiabatic approximation, and the coupled-channel (CDCC) 
calculations [УаЫго (85)]. [From Austern, Iseri, et al. (87).] 

We also see that the Watanabe (l = О) term is not usable. То Ье consistent, опе 

must similarly cut off the expansion over 1in (6.13) at 1in (6.13) at 1= lmзх' The 
Schrodinger equation [ог t/J(r, R) now becomes а finite set of coupled 
integrodifТerential equations. These must Ье solved numerically. In making this 
truncation, the stripping channel asymptotic amplitude vanishes faster than 1/г, 

80 that this formulation сап yield а finite stripping amplitude only in the next 
approximation, described below. 

The Watanabe potential is obtained if only the first term in (6.13) is retained. 
The adiabatic approximation сап Ье obtained from (6.13) if e(k) is appropriately 
replaced Ьу - Ied 1, ог as is sometimes done, Ьу а constant that сап Ье used as 
а parameter. Of the three approaches, the coupled-equation description should 
thus Ье regarded as the most precise. 

The elastic scattering and breakup cross sections calculated using these three 
approximations аге shown in Figs 6.1 and 6.2. From Fig. 6.1 we note that the 
Watanabe cross section is in substantial disagreement with the coupled-equation 
results beyond about 300.The adiabatic cross section is in much better agreement 
departing [гот the coupled-equation results at about 900. Оп the other hand, 
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FIG.6.2. Comparison of breakup cross sections of 56-МеУ deuterons Ьу 12с with 
calculations Ьу CDCC, DWBA, and the adiabatic models. In this experiment the neutron 
detector is fixed at e~ = 150 [Yahiro, Iseri, Kamimura, and Makano (84); Yahiro 85)]. 
(From Austem, Iseri, et al. (87).] 

the adiabatic breakup cross section (Fig. 6.2) has а slope similar to that obtained 
with the coupled equations but fails when the proton angle 8; deviates 
substantially from the пешгоп angle 8;. 

The importance of the 1= 2 term for the elastic scattering, which gives rise 
to the deviation from the Watanabe results, сап also Ье seen when ап optical 
model potential is fitted to the coupled-equation elastic scattering. The 
Watanabe potential has а very diffuse surface. But according to Austern, Iseri, 
et al. (87), when the effect of the 1= 2 multipole is included, the diffusiveness of 
the optical model potential is reduced to а value equal to that of the nucleon 
optical model potential. This is in good agreement with the empirical results 
of Section 4. А similar behavior is found when the adiabatic model is used. 

Stripping сап Ье calculated оп the basis of the three-body model using the 
!J-matrix element 

(6.19) 

where the outgoing nucleon is а proton and Ф( + '(гр' гn) is chosen to Ье the 
three-body model eigenfunction corresponding to ап incident deuteron. Тп the 
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FIG.6.3. Cross sections for 58Ni(d,р) 59Ni(3p,g.s.)at Ed = 80 МеУ obtained from СОСС, 

АО, Watanabe, and DWA Calculations [Iseri (85)]. [From Austern, Iseri, et аl. (87).] 

zero range approximation, 

(6.20) 

with 

ф< + >(kd, R) = 8 fdr Vр,,(г)ЧJ< + '(г, R) (6.21) 

Roughly, ф<+) '" ЧJ<+>(О,R). 

We now look for the effects оп stripping of the break ир channels. These 
аге two in number. First the ртевепсе of the breakup channels will draw Лuх, 

so that the contribution of the ФDfJ(r) term in (6.13), to Ье referred to as the 
elastic contribution, will Ье reduced. Second, in the event of poor momentum 
matching, thereby reducing the elastic contribution (see р.482), the breakup 
contribution тау Ьесоmе important since there will Ье а range in k in the 
breakup сотпропеш of (6.13) which permits good momentum matching. 

These effects аге illustrated in Figs 6.3 to 6.5. In Fig. 6.3 we compare the 
calculations using the deuteron wave function provided Ьу the Watanabe 
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FIG.6.6. Cross section for the reaction 208рь (р, d) at Ер = 22 МеУ. The incident ргогопз 

аге polarized [Iseri (85)]. (From Austern Iseri, et al. (87).] 

FIG.6.4. Decomposed cross sections for 58Ni(d, р) 59Ni(2p, g.s.) at Ed = 80 МеУ [ог the 
CDCC and AD calculations showing the contributions [ог the elastic and breakup 
processes [Iseri (85)]. [From Austern, Iseri, et al. (87).] 
FIG.6.5. Modulus of the overlap integral I [ог 58Ni (d, р) 59Ni (2р, g.s.) at Ed = 80 and 
21.6 МеУ. The angular momentum Lp is taken to equal Ld - 1 [Iseri (85)]. [From Austern, 
Iseri, et al. (87).] 
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potential, the adiabatic approximation, the coupled-equation procedure, and 
the DW А. In the last case, а deuteron potential that yields а coupled-equation 
elastic cross section. Comparison of the coupled equation with the Watanabe 
result demonstrates the importance of breakup, especially at the larger angle. 
The adiabatic cross section and the DW А also disagree with the coupled
equation results. In the former case, which includes breakup, the deviation from 
the coupled equation results is presumably due to the inaccuracy in the breakup 
amplitude because of the adiabatic assumption. Phase relations are extremely 
important in this situation. But in addition, the adiabatic approximation 
includes only the 1= О breakup contribution not the 1= 2. This effect in important 
at lower energies. 

Further insight is obtained from Fig. 6.4 in which are plotted the elastic and 
breakup contributions to the stripping cross sections for both the adiabatic and 
coupled-equation approximations. In the coupled-equation case, поте that the 
breakup contribution dominates beyond proton angles of 500. In the adiabatic 
case this crossover does not occur. In fact, the breakup cross section is much 
smaller than the elastic cross section over the entire angular range. Figure 6.5 
demonstrates that breakup reduces the contribution to stripping made Ьу the 
smaller deuteron angular momenta in the Watanabe calculation. Breakup 
thereby emphasizes the surface character of stripping. 

In Fig. 6.6 the three methods аге compared with experimental data. We see 
that in these cases, Ьу far the best results аге achieved with coupled equations. 
The adiabatic approximation is а considerable improvement over the Watanabe 
recipe, especially at large angles. 

In conclusion, the single-step DWА approximation of Section 3 сап Ье 

considered to Ье valid only in the forward angular range. Employing the 
adiabatic model will result in а substantial improvement. But the use of the 
more exact coupled-equation method is computationally laborious, limiting its 
utilization for the analysis of data. 
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