
CHAPTER VII
 

MULTISTEP REACTIONS
 

1. INTRODUCTION 

ТЬе DWA as used in Chapter V and Section VI.3 describes а single-step reaction 
as exhibited Ьу the explicit арреагапсе of the responsible interaction only опсе 

in the transition matrix element [see (У.4.8) and (VI.2.26')]. Моге picturesquely, 
опе visualizes the incident projectile passing пеаг the target and exciting the 
latter or transferring а particle to it and then departing without further exchange 
of energy or mass. Clearly, it is possible that more than опе interaction сап 

оссцг before the final state is achieved. For example, in the case of а particle 
transfer reaction to the ground state of the residual nucleus, the particle тау 

Ье transferred to form ап excited state of the residual nucleus, which ироп а 

second interaction makes а transition to its ground state. Or in the case of 
elastic scattering of а deuteron, опе step might involve the transfer of the 
deuteron's пешгоп to the target, fol1owed Ьу the second step, in which the 
пешгоп is emitted and combines with the proton to reform the deuteron. Вотп 

of these examples are two-step reactions. ТЬе reader сап devise other examples 
of two-step reactions or indeed, reactions involving тапу steps. Опе refers to 
this class as multistep (direct) reactions. In this chapter we develop the theoretical 
framework in which these reactions сап Ье studied. 

When will the multistep process Ье important? Certainly, when the single-step 
reaction cross section is abnormal1y reduced, as occurs for production at large 
angles, for large energy loss, and for large angular and linear momentum 
transfers. It тау оссцг because of роог overlap between the initial and final 
wave functions (because of роог momentum matching) for deformed nuclei if 
а considerable change in shape were to occur. Оп the other hand, there тау 

Ье specially favored transitions to intermediate states that сап serve as doorway 
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states еп route to the final state. Two reactions we refer to later in this chapter 
тау serve as examples. The excitation of the 47 state of а vibrational nucleus 
сап Ье accomplished Ьу either а single step induced Ьу а fourth-order multipole 
or Ьу two quadrupole steps proceeding therefore through а 27 intermediate 
state. The amplitude for these steps аге comparable. In the transfer (р, t) reaction, 
the ground state-to-ground state reaction is favored in superconducting nuclei. 
In considering the excitation of the 2+ level Ьу this reaction, опе must include 
not only the single-step but also the two-step reaction, in which the first step 
is ground state-to-ground state transition, fo1lowed Ьу ап inelastic excitation. 
Or the inelastic excitation сап оссш in the target nucleus and the transfer to 
the excited state of the final nucleus fo1lows. 

As the change from the initial nuclear structure increases, тпоге steps тау 

Ьесоте important. However, the number of steps is limited since the probability 
for ап individual step is less than unity. At higher energies, the probability for 
апу single step is much reduced, with the consequence that at sufficiently high 
energy the single-step approximation suffices. 
Оп the other hand, at sufficiently low energies the incident projectile тау 

lose so much energy to the target nucleus that it becomes trapped and eventually 
fuses with the target to form а compound nucleus. Reemission of the projectile 
or other particles now occurs through ап evaporation-like process, as described 
in Chapter IV. Of course, if the energy is high enough, the system тау emit 
before the compound nucleus is formed; this process is referred to as pre­
compound reaction. After а number of steps, precompound emission becomes 
improbable and the compound nucleus is formed. In this book we use the term 
statistical multistep compound reaction to describe both the precompound 
emission and the formation of the compound nucleus. 

Of course, in а given reaction, аН of the reaction types discussed аЬоуе сап 

оссш; that is, the reaction сап Ье single-step and multi-step direct. It сап lead 
to the formation of а compound nucleus, or it сап terminate before the 
compound nucleus is formed, as in the multistep compound reaction just 
discussed. These possibilities are reflected in the spectrum of а given reaction 
product at а given emission angle. А typical spectrum [о а (р, n) reaction is 
illustrated in Fig. t.1, where the double differential cross section for the 
production of а neutron at ап energy Еn and at angle 90 is plotted as а function 
of neutron energy. The incident proton has ап energy of some tens of MeV. As 
indicated in the figure, еасЬ of the processes discussed аЬоуе dominates а 

particular spectral region. This is а qualitative rather than а quantitative 
association. But Ьу and large, the excitation of individuallow-lying energy levels 
in the residual nucleus proceeds via the single-step direct process. Оп the other 
hand, the low-energy slow neutrons are for the most part produced after the 
target nucleus and incident proton сотЫпе to form а compound nucleus. As 
опе goes away from the extremes, the mu1tistep processes Ьесоте dominant. 
Оп the low-energy end, emission before the compound nucleus is [иНу developed 
takes place, while at the high-energy end, the increased energy loss to the target 
is more readily obtained in several steps than in опе. In the intermediate region 
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FIG.1.1. Neutron energy (Е) spectrum of ап angle 9 = 90' 

far from the ехтгешев, both the multistep direct and compound reactions рlау 

equally important roles. 
With а change in the angle 90, the relative emphasis оп the various processes 

changes. At forward angles the single direct process will dominate and there 
will Ье relatively little cross section in the 10w-energy part of the spectrum. At 
large angles, the multistep direct process will Ье important for relatively high 
пешгоп energies, while the evaporation and multistep compound reactions will 
dominate the 10w-energy end of the spectrum. 

At 10wenergies of the incident projectile, опе сап expect that the compound 
and multistep compound reactions will dominate since it will Ье relatively easy 
for the projectile and target to fuse after relatively few steps. However, as the 
projectile energy increases, the direct processes becomes increasingly important 
and eventually make the major contribution то the cross section. 

Increasing Е; in Fig. 1.1 maps qualitatively into decreasing interaction time. 
For large Еm the angular distribution is forward peaked, while variation of the 
cross section with projectile energy is slow. Both features are characteristic of 
а зпоп interaction time (i.e., the time during which the projectile and target 
interact). ТЬе slow energy dependence, using the Heisenberg uncertainty 
relation, directly indicates short interaction times. ТЬе forward peaking сог­
roborates this result since the information indicating the incident direction 
is preserved. For small Е; the angular distribution in the evaporation region 
is spherical, indicating complete 10ss of information regarding the incident 
direction and therefore а 10ng interaction time. As опе moves into the multistep 
compound domain, the angular distribution is symmetric about 900 but is 
definitely anisotropic. ТЬе variation in cross section with energy is rapid (see the 
discussion of Ericson fluctuations in Chapter IV), demonstrating that the 
interaction time is relatively 10ng. 
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Опе anticipates that а longer interaction time indicates а greater number of 
steps. Moreover, ап increasing number of steps correlates with increasing 
complexity of the wave function. These correlations аге indicated in Fig. 1.1. 

This sketch of the emitted spectrum omits the influence of special features 
such as giant resonances. This depends criticaHy оп the nature of the interference 
between the resonant and nonresonant amplitudes. If the excitation energy is 
sufficient1y high, so that тапу levels in the residual nucleus сап Ье excited, it 
is anticipated that оп averaging over these levels, the interference term wiJl 
average to zero. ТЬеп the cross section will Ье а sum of the cross sections for 
the resonant and for nonresonant processes. 

ТЬе formal treatment ofmultistep direct processes сап proceed Ьу evaluating 
the transition matrix to nth order in the coupling potential и, where n is the 
number of steps. For example, for а three-step process, 

!!I . = <Ф(-)VФ~+» + Iф(-)v 1 vф~+») 
/1 / 1 \ / Е( +) _ Н 1 

+ I ф(-)v 1 V 1 vф~+») + ... (1.1)
\ f Е(+)-Н Е+ -Н ! 

where ф~+) and Фj+) аге the initial and final wave functions, 1/(E(~) - Н) is the 
intermediate-state propagator, and Н is the intermediate-state Hamiltonian. 
ТЬе spectral decomposition of 1/(Е(+) - Н) provides various possibilities for 
intermediate states. The first term in (1.1) is the single-step,the second term the 
two-step, and the last term the three-step amplitude. We discuss later how these 
terms might Ье evaluated. 

Equation (1.1) is adequate if v is relatively weak but fails if the coupling is 
strong. This is, in fact, the case when the low-lying coHective states are involved, 
for then а particular multipole moment (e.g., the quadrupole) of the coupling 
potential сап produce, with substantial probability, а particular member of the 
band of coHective states. As а consequence, iterations of the coupling сап Ье 

appreciable. Moreover, because of the close relation of the coHective states to 
еасЬ other, there сап Ье phase relations among the various multistep amplitudes 
that wi1J lead to significant interference efТects. Ап expansion like (1.1) is not 
useful urider these circumstances. 

Instead, опе must put аН of these excitations and the ground state оп а 

more-or-less equal footing. Toward this end, опе employs the тultichannel 

optical model described in Chapter V [Eqs. (8.5), (8.6), and (8.7)J, which takes 
the form 

(Е - Нeff)P'I' = О (1.2) 

where Р projects оп to аН the channels of interest. Нeff contains the efТects of 
the omitted channels, usuaHy energy averaged, so that H ef f is ап optical model 
Hamiltonian. Опе must Ье careful to distinguish if from the single-channel 
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optical model of Chapter У. In the first place, Не сс involves explicitly more than 
опе channel, whereas the single-channel optical model deals only with the elastic 
channel; the effects of аll the other channels аге contained in the sing]e-channel 
optical model Hamiltonian. As а consequence, the magnitude of the absorptive 
сотпропеш of the single-channel optical Hamiltonian will Ье larger (often, 
substantiaJly) than the absorptive сотпропеш of Неи' 

Upon expressing Р'!' in terms of the channels included in Р, (1.1) becomes 
а set of coupled Schr6dinger equations. The steps of which we spoke earlier 
аге generated Ьу the coupling between the channels. In principle, опе сап 

proceed Ьу solving these equations exactly, а procedure that is practical only 
if the number of these equations is not too large. Оп the other hand, when the 
number of coupled channels is large, statistical methods сап Ье employed. The 
resulting process is referred to as the statistical multistep direct reaction. There аге 

in-between situations in which the coupling among some special channels has 
to Ье treated exactly, while statistical methods will suffice for the remainder. 

In summary, the multistep direct reactions сап Ье treated using (1) higher­
order DW А, (2) through the use of coupled channels, and finally (3) when 
the number of channels becomes large Ьу using the statistical multistep direct 
theory. As гешагкеё earlier, а discussion of the formation of the compound 
nucleus, including the precompound emission, willlead to the theory described 
as the statistical multistep compound reaction. 

2. COUPLED CHANNELS AND HIGHER·ORDER DWA~ 

It is convenient to combine the discussion of the coupled-channel method and 
the higher-order DWA, which is а particular approximation to the results 
obtained using the coupled-channel method. Moreover, at the start, for reasons 
of simplicity, we shall Ье concerned only with inelastic scattering, in which the 
target nucleus is excited Ьу the incident projectile. It will Ье again assumed, for 
simplicity that the multistep process involves only excited states of the target. 
The Pauli principle required if the projectile is composed of nucleons will also 
Ье disregarded in this discussion. (See Section 111.5, for а rigorous treatment.) 
То obtain the coupled-channel equations, expand Р'!' of (1.2) into the finite 

series 

Р'!' = L фj(о)t/Ji(l, 2, ...) (2.1) 
j 

where t/Ji are the wave functions describing the ground and excited states of the 
target, while Фi depends оп the coordinates of the projectile relative to the 
center of mass of the target nucleus. The optical model Hamiltonian Нeff is the 
sum of the target Hamiltonian H t , the kinetic energy operator Т giving the 

~Tamura (65,74); Satchler (83). 
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relative motion of the projectile-target nucleus system and the interaction V(Pt) 
between the projectile and the target: 

(2.2) 

ТЬе wave functions I/Ji satisfy the equations 

(2.3) 

Inserting (2.1) into (1.2), опе obtains 

[E-ei- T-(l/Jilv(Рt)l/Ji)JФi=L (l/Jilv(рt)l/Jj)Фj (2.4) 
N'i 

These equations are to Ье solved subject to the boundary conditions at infinity. 
These are (1) that except for the incident channel (target nucleus in the ground 
state), аН the ф, Ьепаме as eikirO/,o where k j = [(21l/h2)(E - еЛ 1/2 as '0 ---+ 00; 

(2) the incident channel wave function consists of а plane wave plus ап outgoing 
waуе in the same limit. 

ТЬе first-order DWA for the excitation of the state I/Ja is obtained if опе 

assumes that Фа couples only to the incident спаппе! Фо, whose coupling to Фа 

is neglected: 

(Е - ВО - Т - Vоо}Фо = о 
(2.5) 

(Е - еа - Т - Vаа}Фа = VаоФо 

where we Ьауе adopted the notation 

Vab == <Фаl v(рt)IФь) 

ТЬе second-order DWA is obtained ifone assumes that Фй couples to the other 
states Фь, which, however, couple only to the incident channel: 

(Е-ео - Т- Vоо}Фо=О 
(2.6а) 

(Е - вь - Т - Vьь}Фь = VьоФо 

or 

1 
(2.6Ь)Фь = Е(+) Т ~ VьоФо - еь - - ьь 

ТЬе equation for Фа is 

(Е - Вй - Т - Vаа}Фй = VаоФо + L VаьФь (2.7) 
Ь"'а 
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Substituting for Фь from (2.6), опе obtains 

The transition matrix is then 

where 

The first term is the first-order DWА" while the second is the second-order DWА 

and is in the form given Ьу (1.1). Опе сап evaluate the second-order DWA 
directly from (2.9), but in practice it is simpler to numerica11y integrate the 
equation for Фа, then solve (2.6а) for Фь' Substituting these results in (2.7), опе 

then solves for Фа direct1y. 
When the coupling is strong, опе must resort to the complete coupled 

equations, (2.4), and integrate them numerica11y. Опе procedure, which we sha11 
now develop, reduces the coupled equations to coupled radiallinear difТerential 

equations Ьу eliminating а11 the angle and spin dependence. Assume that the 
potential V р! is а scalar, so that the total angular J of the interacting system is 
conserved. We тау therefore restrict the discussion to partial waves with а 

given J. The angular momentum of the system consists of the spins of the target 
and projectilejr andjp, respectively, added to their relative angular momentum 1: 

(2.10) 

Two coupling schemes that lead to the spin-angle functions with J and М} 

quantum numbers have Ьееп used. The channel spin coupling scheme proceeds 
in two steps, first coupling the spins, 

jr + jp = S (2.11) 

and then coupling S and I to form J: 

S+I=J (2.12) 

The spin-orbit coupling scheme first couples jp and 1to form Jр and then couples 
J p to jt to form J: 

jp + 1= J p 
(2.13) 

Jp+jr =J 
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The wave functions corresponding to these two coupling schemes are connected 
Ьу the 6 - j symbol [see Appendix А, Eq. (2.85), in deShalit and Feshbach (74)]. 
Which coupling scheme is more convenient to use depends оп the physics of 
the problem: Spin-orbit coupling would Ье appropriate when the spin-orbit 
interaction is strong. 

We shall provide ап explicit discussion of the coupled channel for channel 
spin coupling only since the algebra is simplest for that case. In order to верагате 

the geometric factors as completely as possible, the dependence оп l of Фi(О) in 
(2.1) will Ье factored out, leaving only the radial dependence. For а given total 
angular momentum of the system J, z component М, we couple 

with the channel spin wave function Ф a(Sтs; г) to form а wave function with 
J and М: 

(2.14) 

The subscript а orders the possible wave functions whose spin is given Ьу J. 
The variable г represents all the target nuclear coordinates. The functions Фа 

satisfy 

(2.15) 

The integrations are carried out over г, the internal coordinates, and ПО, the 
angular coordinates for the relative motion. The channel spin wave function 
ф(S, тs) is obtained Ьу coupling the target nucleus wave function ф(j/т,) and 
the spin wavefunction хиртр) of the projectile: 

ф a(Sтs; г) = Ф а( (jpj/)S(тs; г) 

= L (jртрj/т,\Sтs)Фij/,т,)х(jр,т р) (2.16) 

Опе now 'ехрапёа Р'Р in terms of Фа(JМ; Sl), in that way providing the 
dependence of Р'Р оп г and ro' The coefficients of the expansion will then 
depend only uроп '0' Therefore, 

(2.17) 

The coefficient А(}М; Sjlд is chosen so that the incident channel associated with 
the ground state of the target and denoted Ьу Sili contains the only incoming 
wave. We shall determine this coefficient later. Introducing (2.17) yields sets of 
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coupled differential equations for Иrж' Only those Иа with the same J and М will 
couple. For а given J, these equations are 

2 
j{Е - Еа + 1'12 [ d _ 1(1 ~ 1)] - (J(S/) 11 V(pt 11 J(S/))}Ua(J(S/); '0)
 

2/l d,o2 
'0
 

J= L (J(S/) 11 V(pt 11 J(S'I')u",(J(S'I');,o) (2.18) 
а*,,'
S',I' 

ТЬе next step is to evaluate the reduced matrix elements of V(pt). For this 
purpose, we expand V(pt) in а multipole series: 

(2.19) 

Note that this expansion assumes а term-by-term factorization of the 
dependence г and '0' which we will justify later. Evaluating the matrix elements 
сап Ье accomplished Ьу using (А.2.54) of deShalit and Feshbach (74). Опе obtains 

(J(S/) I1 v(ptJ 11J(S'I') = ~(- )1+J+s'J2J + 1{:' ~, ~} 

х (S 11 Q;. 11 S')(111 У;. 11/')v;.('0) 

Inserting (А.2.48) of deShalit and Feshbach (74) for (111 У;. 11/'), опе finally has 

(21 + 1)(2/' + 1)(2),+ 1)(2] + 1)
(J(S/) 11 V(pt) 11 J(S'I')) = L (- )1+S+(I' -1)/2 

;. 4n 

А further reduction is possible since S = jt + jp, and Q;. depends only оп r. 
Equation (А.2.55) of deShalit and Feshbach (74) would Ье used for this purpose. 
ТЬе complete formula is given Ьу Тапшга (65). From (2.20) we see that 

S +1= J (а) l' + 1= л (с) 
(2.21 )

S' + l' = J (Ь) S' + S = л (d) 

and 

1+ ), + l' = even number (2.22) 

Equations (2.21а) and (2.21Ь) express the conservation of angular momentum 
in the process. Equations (2.21с) and (2.21d) give the changes in 1and S induced 
Ьу the interaction. From (2.22) опе obtains the conservation of parity. Note 
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that in (2.20) the other properties of the target nucleus are contained in the 
reduced matrix elements (S 11 Qл 11 S'). In principle, these сап Ье determined from 
experimental data and compared with the predictions of the theory of the target 
nucleus. 

As long as S' and l' satisfy (2.21Ь), u(J(S'I')) will Ье coupled to u(J(S1)). ТЬе 

number of coupled equations increases as the number of excited states are 
included in the calculation. It increases as the energy increases. То illustrate, 
suppose that the projectile is ап a-particle (intrinsic spin О), so that S equals 
the angular momentum of the nuclear levels. Suppose these аге 0,2,4, where 
the spin of the ground state is О, and suppose that А. is even. ТЬе value of J for 
the lth particle wave is 1. For S = 2, IJ - SI < l' < J + S, so that for J (= 1) > S, l' 
сап ье 1- 2, 1, ог 1+ 2. Similarly, for S = 4 if J ~ 4, l' сап Ье 1- 4, 1- 2, 1,1+ 2, 
1+ 4. If J < 4, l' сап equal 1+ 4, 1+ 2, 1, and as оп, breaking otТ at 
l' = 4 - J = 4 - 1. Thus if J ~ 4, the number of coupled equations is nine. ТЬе 

number of J's is given approximately Ьу J = lтах , where lтах ~ kjR, where kj is 
the incident value of k and R is the nuclear radius. 

Returning to the coupled equations, (2.18), опе particular (S,1) willcorrespond 
to incident channel. For that сЬаппеl 

ju.(J(S1) -+ e- (k iro - I1C/ 2 ) - S .(S.I. S.I.)ei(k iro - I tt/2 ) (2.23а)
1 ro-oo JI 1 l' 1 1 

For other channels with the same value of J, 

и (J(S'I')) -+ - S (S.I. S'I')ei(k.ro - I ' 1C/ 2 ) (2.23Ь)
1% ro-oo JI1. 1 l' 

SJP(SI; S'I') is the S matrix in terms ofwhich the amplitude for elastic and inelastic 
scattering сап Ье expressed. 

Using (2.23) it is now possible to calculate the reaction amplitudes in terms 
of SJ'Опе first needs the expansion for the incident wave function, 'P~!.." where 

'P(i) = eikr°l/!i(Sjm5i; r) 

= 4n LHkjro)У::"(kдil Y (fo)l/!i(Sjm5i; r)IIII

1т 

= 4nLjl(k ir о)У::"(kд L Ф(JМ;Sil)(lmSim5iIJМ) 
1т JM 

Therefore, 

'P~!.., = 4n Ljl(kirо)У:;"(k;)Ф(J М; S;l)(lmSjmsjIJМ) (2.24) 
1т 

Asymptotically, 

'P(j) -+ 2n; "(e- i[k ;r o - (tt/ 2 )IJ) _ ej [k irO - (1С/ 2 )I J у* (k.)Ф(JМ· S.I)(lmS.m .IJM)
J м k L.. 1т 1 , 1 1 51

irO 
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Because of the interaction, 'P~~ becomes '1'JM: 

Expanding Ф(J М; S'1') according to (2.14), and taking the z direction to Ье along 
kj so that 

опе finally obtains the reaction amplitude: 

(2.25) 

ТЬе cross section is given Ьу 

Although the sums over the m's сап Ье performed analytically, опе gains little 
advantage over inserting (2.25) in (2.26) and summing numerically. 

ТЬе results obtained for other coupling schemes and the methods used for 
integrating the differential equations (2.18) аге discussed in detail Ьу Satchler 
(83) in Chapter 5 of his book. With these formalisms, опе сап discuss inelastic 
and elastic scattering, including as тапу possible steps as needed and 
practicable, extracting from the data the S matrix and finally the target nuclear 
parameters (S 11 Q;.II S'). 

For the case ofthe deformed rotor ofBohr and Mottelson (62), the procedure 
described аооме is generally replaced Ьу the adiabatic approximation. In this 
approximation, the problem is solved, keeping the five macroscopic variables, 
the three Euler angles giving the orientation of the body-fixed axes with respect 
to а frame fixed in space, and the two variables {J and у giving the vibrational 
degrees of freedom about the average deformation fЗо and Уо' It is assumed that 
the variation of these five variables during the course of the interaction will Ье 

small, а condition that is well satisfied аооме а rather low projectile energy. 
Under these assumptions, we solve for the elastic scattering in the body-fixed 

frame, obtaining ап amplitude that is а function of {J and у. Transforming to 
the space-fixed frame, опе obtains ап amplitude that is а function of fЗ, у, and 
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the Eulerian angles. ТЬе amplitudes for inelastic or elastic scattering are obtained 
Ьу taking matrix elements between the initial ground state of the target and 
the final state. 

Let the interaction between the projectile and the target in the body-fixed 
frame Ье 

У" = L V,,(r, а, P)[i"Y"o(r')] * (2.27) 

" 
where we Ьауе assumed axial symmetry, as indicated Ьу the zero projection 
of л along the symmetry axis. DifТering orbital angular momenta will Ье 

coupled so that the coupled equations for adiabatic elastic scattering take оп 

the form 

d2 2 1'(1' + 1)
-+k ---- 27 (1'J-l1 VI/IJ-l>]U~~)(r) = 27L (1'J-l1 VI/"J-l>u~~:(r) (2.28)[ 2dr2 , h h 1" 

where и is the projection of I along the symmetry axis and т is the reduced 
mass. Note that J-l does not change because of the zero projection of У"о in the 
interaction, (2.27). ТЬе indicated matrix elements are readily evaluated using 
(А.2.25) of deShalit and Feshbach (74). Опе obtains 

(1'J-l1 VIIJ-l> = L Vir, a,p)i'- "-"( _)1' 

" 
х[(21/+1)(2Л+l)2/+1]1 /2(1/ 

Л 1)(1/ Л 1) (2.29) 
4n J-l О -J-l О О О 

Using the boundary conditions given in (2.23) suitably modified, опе obtains 
the adiabatic elastic scattering amplitude in the body-fixed frame: 

(2.30) 

where k is taken in the direction of ro. We now refer Y~ and Y1'1' to the 
space-fixed frame using (А.2.26) of deShalit and Feshbach (74): 

Yt(k;) Y,-/k) = L (_)1' У "D(I~, У, ,D(l;)
1".1''' 1.1' l' .-1' 1.1' 1'.1' 

ТЬе product of the two D functions сап Ье expressed in terms of а single D 
using (А.2.75) of deShalit and Feshbach (74) with the result 
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But the sums over J1' and J1" give just the tensor product 

[У,® Y"]L,-M[( - )'-"+M/J2L+ 1], 

so that 

(2.31) 

ТЬе amplitude for а transition from the ground state Si to ап excited state 
S' is given Ьу <S'lfL-м(ki-k)!Si)' In this context,fL._M is а tensor ofrank L, 
сотпропеш М, and will allow the same transitions as ап L multipole with the 
condition S' = Si + L. 

From а practical point of view, the usefulness of this approach is limited Ьу 

the number of coupled differential equations in (2.28). This is determined for а 

given 1Ьу the condition l' = 1+ i.. and the parity condition (l + l' + л) even. For 
а small л, the number of coupled equation will thus Ье acceptable, although 
solutions must Ье obtained for еасЬ J1 and for аН relevant l's. 

З. APPLICATIONS 

ТЬе coupled-channel formalism developed in Section 2 has Ьееп applied to 
elastic and inelastic scattering of а variety of projectiles, nucleons, light and 
heavy ions, pions Ьу а variety of target nuclei, and over а wide range in energy. 
Usually, this method of analysis is applied to direct reactions when the DWA 
approximation or the spherical optical model of Chapter V fails. А rough 
indication of the importance of а given step (а - Ь) where ап energy-conserving 

2excitation of Ь is possible is given Ьу the parameter (1/2n)(J1kb/h ) J Ьа' where J ba 

is the volume integral of the coupling potential, kb the wave number of the 
projectile after excitation of Ь, and J1 the reduced mass. For example, the strength 
of а two-st~p transition а - Ь - с compared to а спе-втер transition а - с is 
given Ьу 

1 J1kb JcbJba 
~---

2n h2 Jca 

If this quantity is small, it is unlikely that the two-step transition will Ье of 
importance. It should ье noted that there will always Ье additional contributions 
from compound nuclear formation. These сап Ье particularly important at low 
energies and back angles. 
А situation most likely to require the use of the coupled-channel equations 

occurs when the target nuclear energy levels are collective. In that case, the 
wave functions of these levels are simply connected, for example, Ьу the 
application of а raising and lowering operator б, enhancing the possibility of 
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relatively strong and coherent coupling between the levels. This will generally 
take place if а significant сотпропеш of the projectile-nucleus interaction is 
proportional to б. Moreover, because of the simple connection, there will Ье 
well-defined phase relations among the various multistep reaction amplitudes, 
including the single step. Under these circumstances, constructive interference 
сап оссцг, leading to а strong enhancement of the amplitude; or of course, the 
interference could Ье destructive, with а consequent anomalous decrease in 
cross section. Moreover, the associated angular distributions will, because of the 
interference, osciJlate irregularly. 

Not surprisingly, inelastic scattering from deformed and vibrational nuclei 
furnishes ап excellent example of the use of а coupled-channel analysis. The 
procedure used was proposed Ьу Glendenning Hendrie, and Jarvis (68) for 
inelastic scattering of 50-МеV cx-particles. А spherical optical model potential 
is adjusted so as to fit the experimental data (angular distribution, total 
cross section, polarization, etc.) for elastic scattering Ьу spherical nuclei in the 
neighborhood of the collective target nuclei to Ье studied and in the projectile 
energy range of interest. In the case of пешгоп scattering to Ье discussed later, 
this analysis is quite extensive, going to the lowest energies, including the strength 
functions (Chapter IV), as well as the zero energy scattering length. This 
potential, (V.2.38), will depend parametrically оп radius parameters R o• R w, 
RD , and Rso, where Ro enters into the central potential. R w is the volume absorb­
ing radius, R D is the surface absorbing radius, and R so is the spin orbit radius. In 
most cases the "'standard" form (V.2.38) has Ьееп used, the radial dependence 
given Ьу the Woods-Saxon form, (1 + e(r-R)/a)-l, and its derivative. То include 
the effects of deformation, опе replaces R (where R сап equal Ro, R w, RD, or 
R so) Ьу (V!.13.1) of deShalit and Feshbach (74): 

(3.1) 

for а vibrational nucleus. ТЬе coefficients cx).1J are operators. For а deformed 
nucleus, as we have seen in the preceding section, the calculations are best 
performed in the body-fixed system, so that опе write 

(3.2) 

where 8' is the spherical angle in the body-fixed case. The coefficients Р). are 
not operators. The next step is to express the resulting potential in the forms 
given Ьу (2.19) and (2.27). For the case of the vibrating nucleus [see (3.1)], this 
is accomplished Ьу expanding the potential in а power series in L cx).1J Y).IJ' The 
matrix elements of Q). [(2.19) and (2.20)] will Ье proportional to the matrix 
elements of cx).1J between various vibrational states. For the deformed nucleus 
according to Tamura (65), the power series in LP). У).О will not Ье adequate for 
large deformations, so that опе must collect аll the contributions to the 
coefficient of У).О from higher powers of L). Р). У).о' 
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2.0~ 

FIG. 3.1. Neutron inelastic scattering cross sections for scattering to first 2+ levels at 
incident energies 300 keV аЬоуе the excitation threshold. [Konobeevskii, Musaelyan, 
Ророу, and Surkova (82)]. [From McEllistrem (85).] 

Let us now turn to one example of the use of coupled equations: namely, 
the study of nuclear reactions induced Ьу neutrons incident оп vibrational and 
deformed target nuclei [McEl1istrem (85)]. ТЬе strong deformation effects оп 

inelastic пешгоп scattering are demonstrated Ьу the strong peak in the Sm, Os, 
and Pt region shown in Fig. 3.1 [Konobeevskii, Musaelyan, Ророу, and Surkova 
(82)]. А similar result is reported Ьу Glasgow and Foster (71), who found that 
the spherical optical model adjusted to fit the пешгоп total cross section for а 

wide range of target nuclei failed for the deformed muclei. Resolution of this 
difficulty required the coupled-channel analysis of the preceding section. In 
Fig. 3.2 а comparison is made between the experimental data for пешгоп 

scattering Ьу 76Se and BOSe and two models, the spherical vibrator and the 
deformed potential model, in which the matrix elements are taken from Coulomb 
excitation. In Fig.3.3 пешгоп scattering Ьу 194pt is compared with the 
predictions of asymmetric rigid rotor model (ARM) of Davydov and Filippov 
[see deShalit and Feshbach (74, р.484)] and the dynamic deformation models 
(PPQ) of Kumar (69,85) or the interacting boson model (IBM) model of Arima 
and Iachello (75,76,78,79)as given for this nucleus Ьу Bijker, Dieprink, Scholten, 
and Spanhoff (80). А careful treatment of the contribution of the compound 
nuclear contribution was necessary because of the low пешгоп energy. In both 
examples, the central real potential and the surface absorbing potential were 
deformed. ТЬе spin-orbit potential was not deformed. А volume absorbing term 
was not included. То obtain the most accurate results, it was found necessary 
to include several of the levels that сап couple to the state whose excitation is 
under study. 

In both of these examples we note that one obtains good agreement with the 
data for both magnitude and angular distributions. Second, it is possible to 
distinguish among various models. In the case of Fig. 3.2 one сап conclude that 
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FIG. 3.2. Scattering cross sections for two Se isotopes. Dashed curves аге for spherical 
vibrator calculations. Solid curves result from use of matrix elements deduced from 
Coulomb excitation measurements. (From McEllistrem (85).] 
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FIG.3.4. Shape elastic scattering cross sections at 2.5 МеУ for пешгоп всапеппя Ьу 

1920S. Curves аге for spherical one-channel (dashed) and for coupled-channel models 
fitted to the total cross section. [From McElIistrem (85).] 

the spherical vibrator model does not describe the Se nuclei. In the Pt case 
(Fig. 3.3) опе sees that the asymmetric rigid-rotor model is inferior to the 
dynamic deformation or the IBM model. (Note that the ordinates in these 
figures are the logarithm of the cross section indicated.) The latter models yield 
а 'у soft description of 194pt for the energy levels, transition probabilities, and 
inelastic пешгоп scattering which the rigid rotor of the ARM model саппот 

match. Another conclusion that сап Ье drawn from Fig. 3.2 and other 
investigations is that within а few percent the quadrupole moment for the cJ1Qrge 
distribution and for the matter distribution аге equal. Моге generally, values 
of the deformation parameters р). obtained from пешгоп scattering аге in 
agreement with values obtained with other probes. 

The effects of deformation are also visible in the elastic scattering. Both the 
spherical potential and the coupled-channel potentials аге adjusted so as to 
yield good agreement with the total cross section for neutrons, with energies 
between 0.25 and 4 МеУ incident оп 1920S. The angular distributions calculated 
with these two options are substantially different (see Fig. 3.4)-with agreement 
with the data being obtained with the coupled-channel analysis. 

FIG. 3.3. (а) Measured and calculated inelastic cross sections for the first four excited 
levels. PPQ is the model of Kumar (69). ARM is the asymmetric гогатог model of 
Davydov and Filippov (58). (Ь) Inelastic scattering cross sections for lowest three excited 
levels. The solid curves are for the ША model. [From MeElIistrem (85).] 
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4. COUPLED-CHANNEL BORN APPROXIMATION (ССВА) AND 
TRANSFER REACTIONS 

The examples of Section 3 demonstrate the strong coupling that а band of 
collective states exhibits in elastic and inelastic scattering, requiring the use of 
coupled channels. In а transfer reaction, one must take that coupling into 
account, as the transition between the target nucleus and the residual nucleus 
mау Ье preceded Ьу inelastic scattering to various members ofthe target nucleus 
band, апс/ог mау Ье followed Ьу inelastic scattering to members of residual 
nucleus collective band states. 

The DWА was based оп а two-channel ansatz for stripping given Ьу (VI.2.3): 

РЧ' = d[uф + vxl/JJ (VI.2.3) 

In this equation, Ф is the wave function of the residual nucleus, Х the internal 
deuteron wave function, I/J the ground-state wave function of the target nucleus, 
and и and v the channel wave functions for the proton and deuteron, respectively. 
The resultant DWA matrix element is given Ьу (VI.2.46'): 

(VI.2.46') 

where VO,i is usually taken to Ье the deuteron optical single-channel wave 
function. (For the definition of the ошег-зугпоо!в, see Section VI.2.) То take 
the excited states of the target nucleus into account (we shall deal with this case 
only; the reader should Ье аЫе to discuss the effect of including the excited 
states of the residual nucleus), one replaces (VI.2.3) as follows: 

(4.1) 

The wave functions for the states of the target nucleus are given Ьу 1/JrJ.' The 
corresponding deuteron-nucleus channel wave functions are given Ьу VrJ.' The 
analysis given in Section VI.2 beginning with (VI.2.3) is readily generalized. The 
major change is in the К matrix, which instead of being а 2 х 2 matrix is now 
an (n + 1) х (n + 1) matrix, where п equals the number of states of the target 
nucleus included in the sum in (4.1). The equations of Section VI.2 сап Ье taken 
over completely if one replaces the vand V of that section Ьу а semicolumnar 
matrix with elements VrJ. and VrJ.' The DWA approximation, now renamed сеВА, 

is obtained Ьу neglecting the overlap integrals and the coupling to the proton 
channel. The result, replacing (VI.2.46'), is 

ff~;CBA) = L <UЪ~}Фlr(J)d(V~~rJ.I/J~Х» (4.2) 
rJ. 

where v~~rJ. are solutions of the many-channel optical model Sсhrбdiпgеr equation 
describing elastic and inelastic scattering of the deuteron Ьу the target nucleus. 
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FIG.4.1. Data and calcu!ations for 1 72уь(р, d)1 71 УЬ !eading to the first two members 
of the ground band. The cross-section sca!e is the experimenta! опе. The probab!e error 
for the absolute cross-section normalization is '" 30%. The coupled-channel calculations 
have Ьееп normalized individually for each state to the data. [From Ascuitto, Кing, 

McVay, and Sфгепsеп (74).] 

These аге just the coupled-channel equations оЕ Section 2 of this chapter. А 

particular procedure for determining the reaction amplitude, known as the 
source term method has Ьееп developed Ьу Ascuitto and Glendenning (69). For 
а review, see Ascuitto and Seglie (84). 

As mау Ье expected, it is important to use the ееВА when the nuc]ei involved 
аге deformed or vibrationa]. Ап example is given in Fig. 4.1, in which the DWA 
and сеВА predictions for pickup reaction 172уь(р, d) are compared with each 
other and with experiment. The improvement obtained using the ееВА is 
striking. 

The analysis sketched above, taking the effect of inelastic channels into 
account, сап readily Ье extended to include а more general set of channels. The 
К matrix сап Ье generalized as that the resulting coupled-channel equations 
would then take both antisymmetry and overlap into account. Neg]ecting the 
latter will then yield а сеВА approximation in the form given Ьу (4.2). The 
nontrivial problem that remains is опе оЕ physics. What аге the important 
channels? Or stated in terms оЕ the multistep сопсерт, what are the important 
intermediate states that need to Ье taken to account? 
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5. STATISTICAL DIRECT AND COMPOUND MULTISTEP REACTIONSt 

When the number of possible intermediate states becomes large, the solution 
of the resulting couple-channel equations becomes impractical and uninforma­
tive.lfthe intermediate states do not have the strong interconnections, exhibited 
for example Ьу the col1ective states, the detailed analysis provided Ьу 

coupled-channel equations should Ье unnecessary. Under each or both of these 
circumstances, а method that will provide reasonably accurate predictions of 
the gross (гпасго) structure ofthe experimental cross section but will not Ье able 
to reproduce the finer details, the microstructure, is suggested. The development 
of such а formalism is the main subject of this section. А statistical method 
similar to опе used in Section IV.7 will Ье employed. It will yield expressions 
for the average cross sections. Such ап analysis will necessarily omit the 
cross sections arising out of special circumstances, such as those associated with 
isolated doorway states. In most cases these are to Ье added to the statistical 
ones we shal1 Ье concerned with now. t 

In this theory, the number of steps сап Ье as large as is necessary. Under 
these circumstances, the genesis of the formation of the compound nuclcus will 
Ье developed automatical1y. The theory provides а step-by-step description of 
this process and will thus include the possibility that it тау Ье interrupted 
before the compound state is achieved, leading to the statistical multistep 
compound reaction. 

We begin Ьу recal1ing the discussion in the introduction to this chapter, 
where it was shown that the various reaction types аге closely correlated with 
the interaction time, which in turn is rough1y measured Ьу the number of steps 
involved. The greater the number of steps, the greater the complexity of the 
wave functions. The wave function associated with the single-step direct reaction 
is the simplest and that describing the compound nucleus is the most complex. 
The multistep direct reaction тау involve several steps. The multistep compound 
reaction will also involve several steps. For each of these, the process тау Ье 

terminated Ьу emission to the final state. The f1их that survives goes оп to form 
the compound nucleus. Thus the wave function for the multistep compound 
reaction has components from the steps leading to the compound nucleus plus 
the compound nuclear component. 

This discussion suggests that it would Ье advantageous to classify the states 
of the system in increasing order of complexity. Ап example employing the shel1 
model is illustrated in Fig. 5.1. The incident channel consists of а nuclear 
projectile and а target nucleus represented schematical1y Ьу nucleons in а 

potential well. As а result of the interaction between the incident nucleon and 
the target nucleus, опе of the nucleons in the nucleus will gain energy while 
the projectile will lose energy. Two situations сап occur: опе set of states, in 
which попе of the nucleons are in the continuum, is labeled Qspace, and another 

tFeshbach, Kerman, and Koonin (80); Feshbach (73); Bonetti, Chadwick, Hodgson, Carlson and
 
Hussein (91).
 
:See, however, Bonetti et аl. (91) Sec. 6.
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FIG.5.1. Schematic shell model example of increasing complexity. 

set, in which at least опе nucleon is in the continuum is labeled Р space. In Q 
space the interaction results in the formation of а two-particlejone-hole (2p-lЬ) 

state. Further interactions сап result in 3р-2Ь states; 4р-3Ь states, and so оп. 

These (the 1р, 2р-l Ь, 3р-2Ь, етс.) are а series of states of increasing complexity. 
In the case of the Р space, the target nucleus, оп interacting with the projectile, 
сап Ье excited to а 1р-l h state, and оп further interactions with the projectile, 
Ье excited to а 1р-l h state, а 2р-2Ь state, and so оп, again а series of states of 
increasing complexity. 

More generaHy, the Hilbert space of the problem сап Ье broken ир into 
orthogonal subspaces, еасЬ ofwhich contains аН the states of а given complexity. 
This partition is illustrated in Fig. 5.2. In terms of the example, the "Ьох" Р о 

contains the incident nucleon plus the unexcited target nucleus. ТЬе Р 1 Ьох 

contains аН the lp-lЬ excitations and опе nucleon in the continuum. ТЬе Р2 
Ьох contains аН the 2р-2Ь excitations, and so оп. Оп the other hand, the Ql 
Ьох .сотпашв аН the 2р-l h excitations, the Q2 the 3р-2Ь excitations, and so 
оп. ТЬе chain ends at Q,. The rth stage is defined to Ье the опе at which the 
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FIG. 5.2. Partition of Hi1bert space into subspace of increasing complexity indicated Ьу 

the subscript. 

system is "trapped" as described in the introduction to Section 5; that 
is, the ratio of probability of emission compared to the probability of developing 
more complex configurations is small. This сотпропеш of the wave function 
therefore, lives, а relatively long time and "equilibrium" is established. It should 
Ье referred to as the compound nuclear component, while precoтpound or 
preequilibriuт refers to the preceding (r - 1) stages. At low energies, опе тау 

expect that r will Ье small; that is, the compound nucleus is established after 
just а few interactions. 

То progress further, two principal assumptions are made. ТЬе first is the 
chaining hypothesis. It assumes that the interaction сап change the complexity 
of the wave function Ьу at most опе unit. Thus the interaction сап тпоуе the 
system from Ьох Р 3 to boxes Р4 and Р 2 but not to опе labeled Р 5- Ап identical 
condition holds for the boxes Q/I and for transitions from Qspace to Р' space. 

Опе сап distinguish two difТering processes corresponding to the two chains, 
Р' and Q. In опе, referred to as the statistical тultistep coтpound reaction, the 
system is confined to the Q-space chain. А transition to the final state сап occur 
at апу stage along the chain in Q space Ьу а transition to Р space as indicated 
in Fig. 5.2 and then to the final state. Because of the chaining hypothesis, three 
stages in Р space, Рт Р /1 ± l' will Ье involved as the emission from а given stage. 
ТЬе final wave function is composed of contributions from аll stages, as indicated 
in Fig. 5.2. At еасЬ stage there is а probability that the reaction terminates and 
а probability that it continues оп to the next stage. When the latter probability 
is unity, complete equilibrium will develop and the compound nuclear 
evaporation process will dominate. ТЬе chaining hypothesis is exact if the 
residual interaction acting in еасЬ chain is composed of two-body potentials. 
Note that the chaining hypothesis is the generalization of the doorway state 
hypothesis of Chapter 111. That hypothesis asserted that there was а state or 
states through which the system had to pass before the compound nucleus is 
formed. As сап Ье seen from Fig. 5.2, such states are contained in subspace Q. 
But now wave functions in subspace Q2 act as doorways for the rest of the 
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chain. А statistical theory involving the primary doorways, those in Ql' is, in 
retrospect, contained in the paper Ьу Вlock and Feshbach (63). 

ТЬе second process, indicated in Fig.5.2, is опе in which the system is 
confined to Р' space and is referred to as the statistical multistep direct process. 
ТЬе equations describing that reaction type are just the coupled equations, аll 
of them, which was the main subject of the preceding sections of this chapter. 

ТЬе second principal assumption is the random phase approximation. This 
was discussed in Section TV.7. ТЬе principal result is as follows: Let 

(5.1) 

Moreo\'er, \et the -phase a\'erage lsee Sect\oI\ lV.1, the e<\uat\oI\ \)e\ow ~lV .1.2)1 
оУ u and иn Ье zero: 

<и> =0 (5.2) 

(Н these conditions are not satisfied, consider и - <и> and иn - <иn » , ТЬеп the 
random phase approximation yields 

(5.3) 

In applying the random phase approximation, опе assumes that the phases of 
the components, иn , аге random, and that еасЬ value of the phase occurs with 
equal probability. Therefore, the phase-averaged values yield the expectation 
value of и and lul2 

. We recall the physics underlying the random phase 
hypothesis. It is that the wave functions are so complex that the matrix elements 
of the short-range interaction involving them are to а good approximation 
random variables. ТЬе consequence, according to (5.3), is the absence of апу 

interference terms. 
This is, of course, not the case when the states involved аге members of а 

collective band, а situation we described earlier in this chapter. Гп that event, 
for example, when the nuclei are deformed, опе must expand the Р subspace 
of Fig. 5.2 to include the solutions of the coupled equations as described in 
Section 2. ТЬе initial wave function for subspace Р is then given Ьу (2.1 7) or 
the adiabatic "elastic" wave function involving the uj~)(r) in (2.28). 

ТЬе random-phase approximation has ап immediate consequence for the Q 
chain. Since аll the states involved are bound, the appropriate quantum numbers 
are angular momentum and parity. ТЬе sum over n becomes а sum over these 
quantum numbers. Equation (5.3) tells us that terms with differing parity do 
not interfere. If the иn are transition matrix elements, Iu 12 wi1l Ье proportional 
to the differential cross section and опе сап immediately draw the conclusion 
that the angular distribution for the statistical multistep compound reaction 
will Ье sym.metric around 900, ап important result. [For а more detailed 
discussion, see the discussion following (1V.7.9).] 
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Iп the case of the statistical multistep direct reaction, the quantum numbers 
involved include not only Ьу the angular momentum and parity of the residual 
nucleus but also the momentum k of the system in the continuum state. The 
angular distribution is, as we shall see, quite similar to that of the single-step 
direct reaction, that is, peaked in the forward hemisphere. It will difТer from 
the single-step angular distribution in not decreasing as rapidly as the single 
step as the backward hemisphere is approached. The substantially difТerent 

behavior of the Q-chain and P-chain wave functions requires partitioning of 
the Hilbert space into the Q and Р sectors. 

А. Statistical Multistep Direct Reactions 

We begin with 

(1.2) 

where Нeff is the multichannel optical model Hamiltonian. This equation was 
the starting point for the coupled-channel analysis discussed in Section 2. As 
in that case, опе decomposes H eff with а diagonal рап, H<DJ, and а coupling 
interaction v with respect to ап appropriate set of wave functions: 

H eff = H<DJ + v (5.4) 

Iп the example of inelastic scattering discussed in Section 2, that set is made 
ир of the wave functions t/J а for the states of the target nucleus, so that 

а а 

и= L t/Ja>(t/JaIHefft/Jp>(t/JP (5.5) 
а*Р 

Iп terms of H<D) and и, (1.2) сап Ье rewritten as follows: 

(5.6) 

where ф~ +) the incident wave satisfies 

(5.7) 

The ff matrix for transitions induced Ьу v following from (5.6) is 

ff .=(Ф<-)vР'Р~+»=v .+\Ф<-Jv 1 vФ<+J) (5.8)
/1 / ! /1 / Е< + ) _ н 1 

eff 
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where Фj-) is а solution of (5.7) describing the final state and L'fi is defined Ьу 

(5.9) 

The first term in (5.8) is the single-step amplitude. The multistep (more than 
опе) is given Ьу the second term. We shall refer to it as ffjП;Sd), where (msd) 
symbolizes multistep direct. Explicitly, 

w(msd) _ " w(l') (5.10)ил -~ил 

11 

where 

(5.11) 

Тп this equation Р /.L is а projection operator that projects onto the subspace Р l' 

of Fig. 5.2. These operators satisfy the orthogonality condition, 

(5.12) 

[п terms of these operators 

(5.13) 

Equation (5.11) makes use of this expansion as well as the chaining hypothesis,~ 

which asserts that the interaction takes the system from its initial state to the 
subspace Р l' The amplitude ff<;/ describes passage of the system from the initial 
state to the first-stage subspace projected Ьу Р l' followed Ьу propagation until 
the ,uth stage is reached. At this point the transition to the final state occurs. 

The chaining hypothesis is now employed to factorize P v(E(+)-Неп)-lр 1. 
[п the appendix to this chapter it is shown that 

(5.14) 

Непсе 

~There is по implied limitation sincc опе сап always define the subspace Р I as containing those 
wave functions ge.nerated [готп ф ; Ьу the action о[ v and orthogonalized with respect го v [see 
Feshbach. Кеппап, and Koonin (80)]. 
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In these equations G/l satisfies the recurrence relation 

(5.16) 

and 

1
G ---­ (5.17)
м- E-H(D) 

м 

м is chosen to Ье so large (М -+ (0) that Gм + 1 сап Ье taken to Ье zero. This 
corresponds to the cutofТ used in the coupled-channels analysis of Section 2 to 
obtain а finite number of equations. Неге, however, по limit is placed оп М. 

Inserting (5.15) into the expression (5.11) for ff<;/ yields 

(5.18) 

Thus the system enters subspace Р 1 via the interaction Vli' propagates in this 
space according to G1 , makes а transition to subspace Р2 , and so оп, eventually 
arriving at the Р /l subspace and after propagation in that space makes а tran­
sition to the final state. 

ТЬе multistep cross section is proportional to 

In virtue ofthe random-phase hypothesis, only the и = vterms survive. Hence 

(5.19) 

То proceed further, we make а spectral decomposition of G/l using the 
eigenfunctions of G;: 1 defined Ьу 

(5.20) 

where Ещt and h2/2тk~ аге the energies of the residual nucleus and the particle 
in the continuum, respectively. Then 

(5.21) 
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where~ 

<,j;(+) ,1,(+» = д 
'/' I1.,р' '/'(111. I1.Р 

As Austern and Vincent (74) pointed out, the terms in this expansion will 
fluctuate strongly. Their phase must Ье carefully taken into account to obtain 
а correct result. Since G(f is well behaved, there must Ье considerable interference, 
resulting in substantial cancellations. The use of the random phase 
approximation under such circumstances would therefore lead to serious errors. 
Resolution of this difficulty [Feshbach (85, 86)] exploits the fact that G(J is well 
behaved. Therefore, опе сап energy-average G(f without afТecting its value 
appreciably. The result of the averaging yields the following replacements: 

(5.22) 

to Ье made within the interaction region. The functions Х<±) аге eigenfunctions 
ofa new Hamiltonian ВеН ' The change from Н еН is а consequence ofthe energy 
average. This energy is noted at this point because it emphasizes the character 
of G(J' However, it should Ье noted than ап energy average is required in апу 

event Ьу the developments that follow. 
We now substitute (5.21) into (5.19), making the replacements given Ьу (5.22) 

in the matrix elements. То illustrate the resulting calculation, consider the terms 
in (5.19), which deal with G1 and couples to states in Р2: 

where 

(5.24) 

Опе now makes use of the random phase approximation, which asserts that 

tLet	 Не ГГ = НО + v. Let ФО~ Ье an eigenfunction of Но. Then 

(+)_ +__1_.. У
Фва - Ф'" Е( + ) _ н Ф a~ 

eff 

and 

_ 1 
.1,(+) - Ф + уtф 
'1' ва - a~ ь;< +) _ н t a~ 

eff 



532 MULTISTEP REACTIONS 

the only surviving contribution to the sum оуег а and р сотпев from the rx = р 

terms. We note again that this assumes that the matrix elements of v appearing 
in (5.23) and (5.19) аге random variables with ап average value of zero. The 
resulting sum оуег а involves ап energy integral омег 81а" This integral сап Ье 

done presuming that the major contributions соте from the singularities in the 
propagators. Then опе тау replace the matrix elements in (5.23) Ьу energy 
averages taken in the neighborhood of the singularity. The integral оуег е 1 а 
becomes 

where Рl is the density of states, 1.'3.' М is а product of the matrix elements 
VyaVaiViaV:y' which we replace Ьу а constant with respect to е 1 а , obtained Ьу 

suitably energy averaging about the singularities in the denominator. Опе then 
obtains 

The last factor сап Ье written as the sum of а principal values and b-function. 
Equation (5.25) is now inserted into (5.23) and the integration омег k 1 and k'l 
performed. Assuming а slow variation of М with respect to k'l пеаг k 1 , the 
principal-value рап ofthe integral оуег k~ vanishes. When k'l ditТers appreciably 
from k 1 , the integrand is zero as а consequence of the random phase 
approximation as applied to the sum омег о: Непсе 

Thus 

(5.26) 

where 

(5.27) 

and the prime оп the sum оуег rx indicates that only those configurations in 
the subspace Р 1 whose energy equals и 1 аге to Ье included in the sum. The 
final step is to apply ·the random phase approximation to the sum: 
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,
L Vy(l (k 2 , k l )V(lJk l, ki)V~(ki' k l11'l )V(ly,(k l 11'l' k~) 

The bracketed expression is defined Ьу this equation. The replacement of С( Ьу 

the numerical subscript serves to indicate that ап average of the matrix element 
over the states in subspace Р 1 must Ье taken. 

Substituting (5.28) into (5.26) yields 

This result сап Ье substituted in (5.19) and the analysis repeated with respect 
to the variables у, у', k'2' and so оп, until опе comes to the ,uth contribution, 
which connects to the final state. 

There is still опе гпоге averaging to Ье performed. The final state Фj-> is а 

linear combination of contributions from each subspace. Experimentally, it is 
not generally possible to isolate а particular final state; rather, the energy average 
is measured. We must therefore take ап energy average of the resuJts obtained 
from (5.19), that is, over Фj- >. If опе again assumes that the contribution from 
each subspace is random, and therefore employs the random phase 
approximation, the cross section becomes ап incoherent sum of contributions 
from the subspaces connected to the ,uth Ьу the interaction v. Because of the 
chaining hypothesis, this will include contributions from PIl+ 1 and PIl- l . The 
average multistep difТerential cross section following from (5.19) сап now Ье 

obtained. The sing/e-step cross section must Ье added to the multistep 
contribution to obtain the complete answer. 

The multistep contribution denoted Ьу the subscript msd is 

х [d2 
w1l,1l- 1 (k ll , kll - l )] ... [d 2

W 2 , l (k2,k l )] [d 2
(J lJk l, kJ] 

dQlldИIl dQ2dИ2 dQldИ l 

(5.29) 

where 

d2~~',~'-l(kv,kv-l)=2n2 (k) (И )Iv(k k _ )12 (5.30)dИ dQ Р v р; v v' v 1 av 
v v 

measures the probability that the system passes from the (v - l)st stage to the 
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vth with the continuum particle momentum changing from k y - 1 to k y The• 

density of states of the continuum particle and the residual nucleus аге given 
Ьу p(kJ and ру(Иу), respectively, where 

h2 

Е= Иу + -k~ (5.31) 
2т 

Final1y, dali/d0 1 dИ 1 is the average cross section for forming the first stage. It 
is given Ьу 

(5.32) 

Note that in these formulas the distorted wave for the continuum particle has 
Ьееп normalized to а plane wave of unit amplitude at infinity. 

The statistical multistep direct cross section, (5.29), for J! steps is expressed 
as а convolution of the probabilities for each step to оссцг. Quantum mechanics 
enters only in the caIculation of these probabilities, which involves а DWA-type 
matrix element й, whose magnitude squared is to Ье averaged over the possibly 
excited configuration. Energy is conserved at each step. 

Since each factor in (5.29) is forward peaked, опе тау expect the multistep 
angular distribution to Ье forward peaked but general1y broader than that of 
the single step, reflecting the number of stages contributing significantly. 

Problem. Assume that each factor in (5.29) is а function of the momentum 
transfer, ky - k v- 1 , occurring at step. Evaluate the integral in (5.29), showing 
that it has the form 

where 

Show from this result that the integral in (5.29) will have а broader angular 
distribution than that given Ьу the individual step. 

В. Statistical Multlstep Compound Reactlons 

The separation of the :!7 matrix into а direct term and а fluctuating опе with 
vanishing average value using the results of Kawai, Кеппап, and МсУоу (73) 
has Ьееп discussed- in Section IV.8. The direct reactions described Ьу the direct 
term ha ve Ьееп the subject of the discussion in the chapter ир to this point. 
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We turn now to а consideration of the fluctuating term, which has its origin 
in the Q-subspace chain of Fig. 5.2. Equation (IV.8.8) gives the f/ matrix for that 
case: 

f/<"!SC) = \Ф(-)V 1 V ф~+») (5.33)
п f PQE h опп 

- QQ 

where 

(5.34) 

Vp Q is defined Ьу (IV.8.6), H Q Q equals QHQ, and Нор! is the multichannel optical 
model Hamiltonian. We see that the effect of the Р subspace is included in hQQ 
through its dependence оп H opt • 

The analysis of f/jП;SС) given Ьу (5.33) parallels completely that of f/<;:Sd) 
following (5.11). First опе сап write f/jrт;SC) as а linear combination of amplitudes 
coming from each stage: 

r 
oт(msc) _ " от<т) 
dji -L.dji (5.35) 

1 

where 

f/(~) = \Ф<-)V 1 V ф~+)) (5.36)
fl f га; Е h о.пп 

- QQ 

where 

and Qm is the projection operator for subspace Qm' As in (5.14), 

(5.37) 

where 

and 

(5.38) 

[see (5.16)]. 
Note that the sum over т in (5.35)terminates at т = г, so that Gr = (Е - hrr ) - 1. 

Equation (5.37) is now to Ье inserted in (5.36). Опе obtains 
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[Согпраге with (5.11)]. Recall that 

where the left-hand side gives the component in space Qk of the exact solution 
of the Schrodinger equation for the system. Using (5.37) yields 

(5.40) 

so that (5.39) сап Ье written as follows: 

у(т) - (Ф(-)V G V Q 'Р(+» (5.41)fi - f Рт т т,т - 1 m - 1 i . 

We need to calculate the energy average of Iffj~)12. Rapid variations in the 
energy dependence of Yj~) is assumed to originate in the propagators Gk • From 
(5.38) we see that ап implicit source of energy dependence is given Ьу the term 
Vk .k + 1 Gk+ 1 Vk+ l,k" We shall now describe опе set of circumstances (verifiable 
in а detailed calculation) under which the energy dependence of this term сап 

Ье neglected. ТЬе inverse of Gk+ 1 will have eigenfunctions and eigenvalues given 
Ьу 

(5.42) 

and 

(5.43) 

Since Gk+ 1 is not generally Hermitian, the eigenvalue Ek + 1,а will Ье complex: 

Е = Е _ i Гk+ 1,а (5.44)k+ 1,а k+ l,а 2 

In terms of these eigenfunctions, 

We see that the energy dependence of Wkk will Ье smooth over the energy 
variation given Ьу Г, + l,a' For the purpose of energy averaging and employing 
the random phase approximation, it is necessary that тапу states t/!k,fI ье 

continued in that interval, leading to the condition 

or (5.45) 

where Pk is the density of levels in kth subspace, Dk the energy spacing, and 
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ГН 1 the average value of ГН 1 а' Under this condition, self-averaging takes 
place. ТЬе condition is equivalent to the statement that the Рощсаге time for 
the kth stage is large compared to the lifetime of the states in the (k + 1)st stage. 
Condition (5.45) сап Ье checked Ьу direct calculation. In the examples to ье 

described, the condition is well satisfied. 
Assuming (5.45), it becomes possible to expand Ст in (5.41) in а вреспа] 

series so that 

ff("!) = "<Ф(-)V ./, ) 1 <.i: V Q '1'(+» (5.46)/1 ~ / pm'l"m.a Е 'l"m,a т,т- 1 т-l i 
-Е:т а 

when Ета varies slowly with energy. 

ProbIem. Prove that the energy а verage of fft;:) is zero. 

То obtain the cross section we need to compute the energy average of 
Iffj~SC)12: 

Iff~Sc)12 = I (ffj~'»)*(ffj~»)-+ II(ffj~»)12 
тт' m 

where the random-phase approximation is used to obtain the last expression. 
Using (5.46) yields 

Iffj~)12 = I <Фj-)Vртt/Jт.а)~<Фт,а Vm.m- 1 Qm-l 'I'~+» 
аР -Е:т а 

1 ­
х <Ф(-)V ,/,)* <./, V Q '11(+»/ Pm'l"m.P Е * 'l"m,p т,т-l т-l i 

- Е: т р 

Again because of the random-phase approximation the double sum сап Ье 

col1apsed to а single sum since only the а = р terms survive. Therefore, 

ТЬе energy average is taken assuming that only the variation of the energy 
denominator is important and that the energy variation of the matrix elements 
is slow, so that their magnitude squared сап Ье replaced Ьу an average value 
over the set t/J та' ТЬе resu1t is 

<Iff("!)1 2 ) = Г~) <I<Фт.аVт,т-l Qm-l 'II~+» 12) (5.47)
/1 Г D 

т т 

Where 

(5.48) 
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is referred to as the escape width. Опе now uses (5.40) again оп the remaining 
factor in (5.47), to obtain 

<1§"j~)12> = Г~).Г~_l <1<t/im-1.(ZVm-1.m-2Qm-2Ч'~+»12> 
-гm Гm 1 Dm - 1 

where 

(5.49) 

is referred to as the spreading width. The averages аге over the states in the тth 

and (т - 1)st subspaces. Iterating, опе obtains 

(5.50) 

where 

гу) = 2n<I<1jI1(ZV1РФ~+) >12 > (5.51) 

Therefore 

(5.52) 

It is convenient to normalize ф~+) and фj-) so that the widths have the dimension 
of ап energy and §" is dimensionless. This is the case if the normalization is 
рег unit energy. The cross section for а given сЬаппеl with quantum numbers 
designated Ьу у is given Ьу 

n r г<л[m-1 Г l ] 2nГ ( i)
(Jj~SC) = - L --...!!!...- П ---.! __1_ (5.53) 

L k2 m = 1 Г; 1 Г, D1 

while the expression for the angular dis1ribution is given Ьу (5.55'). 
Equation (5.52) сап Ье described as а product of factors with relatively simple 

meaning. The first (2nr~i)/D1) is the strength function measuring the probability 
of the system making the transition from the incident channel to the first 
subspace Qг- This is followed Ьу а product that measures the attenuation because 
of emission еп route to the тth channel and finally, the branching ratio for 
emission from the тth subspace. the total widths Гk аге generallly not the sum 
of the escape and spreading widths [see Feshbach, Кеппап, and Koonin (80)] 
except in the case of weak coupling between the Р and Q spaces. 

Final1y, it is necessary to average d(J~msc)/dU over the final states since 
experimental1y it is not possible to distinguish among them. The final wave 
function Фj-) in (5.48) for г~) is composed of contributions from аll stages, P

Il 
• 

However, because of the chaining hypothesis, the states in subspace Qm сап 
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make transitions only to Рт' Рm-l' and Рт+ г- Assuming that the coupling 
among the various P

Il 
spaces is strong, the wave function Фj-) will Ье "well 

mixed", so that to а good approximation the probability of the сотпропеш of«: being in subspace of P
Il 

is given Ьу р~)(И)/р(У)(И) when p~) is the density 
of the states in subspace Р11 with сЬаппеl quantum numbers symbolized Ьу у, 

and Р(У)(и) is the total density of channels ofthe type у at the excitation energy И: 

Р(У)(и) = LP~)(U) 
11 

With this assumption 

(5.54) 

where Г~~ is given Ьу 

where i-) is given Ьу (5.22). ТЬе average is taken over the indices fЗ and а. 

We сап now average ajSC) over а small energy interval dU, where U is the 
excitation energy of the residual nucleus. ТЬе right-hand side of (5.53) is 
multiplied Ьу p(Y)(U)dU and Г:!) is replaced Ьу its average value, 
р~)(И)Г~~(И)/р(У)(И). We thus finally obtain 

d( a~msc» = ~ t mfl <р~)(И)Г~~(И)>[mf1 riJ 2л:Г~) (5.55) 
dU k2 т=1 ll=m-1 Гт 1 Г, D1 

ТЬе сЬаппеl parameters у аге, for exampJe, those used in Section 2: namely, 
сЬаппеl spin S, critical angular momentum 1, and total angular momentum J. 
ТЬе angular distribution is obtained in the standard way, with the result. 

d2 q (_ )S-S' d (msc) 
--= L z,(lJlJ; SL)Z,(/'Jl'J; S'L)PL(cos Э)~ (5.55')
dQ dU (21 + 1)(2i + 1) dU 

where 

z'(IJlJ; SL) = (- )s+J+L(lsJ 11 YL II/SJ) 

= о unless L is even 

Formula (5.55) appears to Ье similar to that used in the preequilibrium 
theories reviewed, for example, Ьу Вlапп (72). It is not identical, as the latter 
refer to the angle integrated cross section and do not predict angular 
distributions. Because of the random-phase approximation, the statistical 



--

540 MUL TISTEP REACTIONS 

multistep compound reaction cross section is symmetric about 900. Note finally 
that (5.55) automatically contains the compound nuclear contribution to the 
cross section given Ьу the rth term in (5.55). 

Because of the preliminary stages through which the system has to pass 
before апiviпg at the statistical compound state, the Bohr independence 
hypothesis and its consequence the statistical reaction theory (Hauser-Feshbach) 
must Ье modified. This is seen most readily if we return to (5.55) and examine 
just the compound nuclear term, the rth term: 

(5.56) 

Since the Q, subspace is the last subspace in the chain, г, is equal to the escape 
width: 

г = г' = "г(с) (5.57), , L.. , 

where the sum is over аН possible final states. Let the transmission factor Те 

Ье given Ьу 

2nг(е) 

Те = ' 
D, 

ТЬеп 

(msc) _ п Т, Т, 
(J --- (5.58)
Л" - k2 ~ Т 

с е 

ТЬе factor Ti is 

(5.59) 

Although (5.58) is similar to the Hauser-Feshbach expression, it сап difТer 

substantially because of the ртевепсе pf the depletion factor, that is, 

r г! 
(J("!sc) = а П----.! (5.60)

[1,' HF Г 
k = 1 k 

Неге (JHF is the Hauser-Feshbach expression. Moreover, since the depletion 
factor depends оп the nature of the entrance channel, which determines the 
quantification of complexity and therefore the partition of Hilbert space in Р 

and Q and of Q into Q/L' the Bohr independence hypothesis is violated. 
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Опе interesting sum rule сап Ье obtained from (5.53). Sum this cross section 
over аll possible final states to obtain the total reaction cross section, а: 

(5.61) 

If now опе makes the weak PQ coupling approximation 

(5.61) reduces to 

n 2nГ~) 
а=---- (5.62)

k2 и, 

Thus the total reaction cross section is proportional to the strength function 
for the formation of doorway states in subspace Ql' 

6. APPLICATIONS 

ТЬе results ofSection 5 [Eqs. (5.29) and (5.55)] have Ьееп applied to the analysis 
of experiments in which the incident and emerging particles аге nucleons, such 
as (р, р'), (n, n'), (р, n), (n, р), and (р, n). Projectile energies range from 14 to 65 
МеУ, while а variety of target nuclei, including medium heavy as well as heavy 
nuclei, were used. There have Ьееп а few calculations сапiеd out for 3Не- and 
"Не-пкшсео reactions [Bonetti, Соlli-Milazzo, and Melanotte (81)]. Generaliza­
tions have Ьееп developed (and explained) which are appropriate for the study 
of reactions with multiparticle final states [Feshbach (79); Ciangaru, Chang, et 
al. (84); Field, Bonetti, and Hodgson (85)]. 

ТЬе calculations for nucleon induced reactions have Ьееп сапiсd out Ьу 

Colli-Milazzo, Bonetti, Hodgson, and their colleagues in тпоге than а dozen 
papers [de Rosa, Inglima, et al. (78); Bonetti, Caninasio, Colli-Milazzo, and 
Hodgson (81); Bonetti, Colli-Milazzo, and Melanotte (81а, 81Ь, 83); Bonetti, 
Colli-Milazzo, et al. (80, 82а, 82Ь); Bonetti and Columbo (83); Avaldi et al. (80); 
Austin et al. (80), Field et al. (86) Holler et al. (85)]. It is not possible to describe 
the details involved in these тапу analyses. We shall give some examples of 
the results obtained, together with the principal conclusions. 

ТЬе elements that enter into the calculation include the residual potential 
responsible for the transition between stages, the bound-state wave functions, 
and the wavc functions for the particle in а continuum state. ТЬе choice is 
guided Ьу the standard DWА results. In the more precise calculations, the 
residual interaction is taken to Ье а Yukawa potential. Distorted waves for the 
continuum and the bound-state wave function are obtained using а 

Woods-Saxon potential selected in accord with elastic scattering and single-step 
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DWА results available in the energy range and for the target of interest. Overall 
good agreement with experiment, illustrated below, was obtained with identical 
residual interactions employed in аН cases: target nuclei, excitation energy and 
angle, and for both statistical mu1tistep direct and compound reactions. That 
strength between unlike nucleons is taken to Ье 27 МеУ with а range of 1[т 

[Bonetti and Columbo (83), Bonetti, Colli-Milazzo, and Melanotte (81а)]. 

Rough calculations have also Ьееn made for the statistical multistep compound 
reaction with д function residual potential and constant bound-state wave 
functions. It turns out that the etТect of these approximations оп the energy 
spectra and angular distributions is smaH. 

In each situation it is necessary to choose а path in reaction space; that is, 
what are the stages in which the system сап Ье found? For example, in the (р, n) 
statistical multistep direct case {Bonetti, Colli-Milazzo, and Melanotte (81а)], 

the first stage is generated Ьу а charge exchange scattering with the formation 
of а proton-particle-neutron-hole in the target nucleus plus а пешгоп in the 
continuum. The more complex states, Рn' involve np-nh states with а пешгоп 

in the continuum. Clearly, there are таnу other possibilities. For example, the 
charge exchange scattering could Ье postponed to а later stage. 

The sensitivity of the results to the various paths in reaction space has not 
Ьееn studied systematically. However, Bonetti, Colli-Milazzo, and Melanotte 
(81а) found that for their several cases they need not distinguish between the 
neutrons and protons provided that аn averaged interaction strength is used 
and except for the initial and final step. Chao, Hachenberg, and Hiifner (82) 
have emphasized the importance of the first step and suggest а relative 
insensitivity to the nature of the succeeding stages. 

The density ofparticle-hole states required in both SMC and SMD processes 
is given Ьу the Ericson (60с) expression. We give а simple derivation of the 
result. Оnе assumes а constant density g of single-particle states; that is, the 
probability that а particle has аn energy between х and х + dx is g dx. Then 
the probability that р particles and h holes (N = р + h = exciton number) have 
аn excitation energy Е is 

(6.1) 

where we have assumed that g is а constant, аn assumption which сап Ье easily 
modified. Replacing the д function Ьу its integral representation 

Р 11) 1 Joo .д Е - LXi- LYi = - dke,k(E-LХ;-LУi) 
( 

1 1 2n - 00 

Equation (6.1) becomes 

oo oo
p~~)(E) = ~ ~N , Joo dkeikE( r dxe-ikХ)Р( r dye-iky)h 

2n р. h. - 00 Jо Jо 
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For the х and у integrals to Ье convergent, the path of the k integration must 
Не in the lower half of the complex k plane. Опе obtains 

i kE 1 gN foo e 
(N) Е --- dk-­Р рЬ ( ) - 2 , h' ('k)N

пр .. -00 l 

Using the Cauchy integral formula yields the Ericson result, 

(N)(E) _ g(gE)N:- 1 (6.2)
Р рЬ - р! h! (N - 1)! 

То obtain the density of particle-hole states formed from single-particle states 
of а given Г, опе must multiply (6.2) Ьу spin distribution function (lV.5.54), 
yielding 

(6.3) 

··с. (p,n) 

10 

Ер. 45 MeV 

U.10MeV 

LTR .. 1 

" I d 5/2 
Р I I 1/2 

" 2 р 3/2 
2 s 1/а 

---р 

" I t 5/2 
I d 3/2 

Р 

10 '-- ...J.... .....L. ---J'--_ 

О 50 100 1508 
с.т. 

FIG.6.1. Calculated difТerential cross sections for some typical transitions in 48Са at 
45 МеУ between shell model states corresponding to дL = 1, showing their overall 
similarity. [From Bonetti, Camnasio et al. (81).] 
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In the shell-model basis, the states in stage п + 1 difТer from those in stage п 

Ьу а particle-hole excitation; that is, N = 2, р = 1, and h = 1. 
The average of the square matrix elements is given Ьу 

(lV(kj,kf )1
2 

) =	 L(2L+ 1)(IV(k j,kf , Ll Z ) R 2(L) 
L 

and 

[ d2U(ki' kf)J ) = L (2L+ 1)p(Z)(E)R2 (L )\ с»
 
\ d и dQ single step L dQ L
 

in the case that the spin of the target is zero and if the spin of the nucleons is 
neglected (then J = L). The average over (dujdQ)L for various possible values of 
the particle-hole angular momenta is readily accomplished because of the 
similarity ofthe results for each ofthe possibilities. This is illustrated Ьу Fig. 6.1. 

Some results that illustrate the degree of agreement with experiment will 
now Ье presented. Note that in аll cases the log of the cross section is plotted. 
Figures 6.2 to 6.5 compare the results of а multistep direct calculation of the 
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FIG.6.3. Neutron energy spectrum for the 
reaction 120Sn(p, n), Ер = 45 МеУ ест = 900 
(see legend for Fig.6.2). [From Avaldi, 
Bonetti, and Col1i-Milazzo (80).] 

FIG.6.4. Neutron energy spectrum for the 
reaction 120Sn(p, n),Ер = 45 МеУ ест = 120° 
(see legend for Fig.6.2). [From Avaldi, 
Bonetti, and СоПi-МНаио (80).] 
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FIG.6.5. Neutron angular distribution for the reaction 120Sn(p, 11), Ер = 45 МеУ. ТЬе 

solid lines are calculated results. [From Avaldi, Bonetti, and Colli-Milazzo (80).] 

Sn(p, n) cross sections for 45-МеУ protons [Avaldi, Bonetti, and Col1i-Milazzo 
(80)]. Good agreement is obtained. ТЬеге is some deviation at low пешгоп 

energies, where there is а contribution from the multistep compound process 
not included in the calculation. We поте that the single-step process gives 
ассшаге results only with а low excitation energy of the residual nucleus and 
in the forward direction. But as the excitation energy increases and/or the 
emission angle increases, the contribution of the two-step and then the three-step 
process becomes important. No тоге than three steps аге required in the angular 
range beyond 1500. ТЬе calculated angular distribution shown in Fig. б.5 

matches experiment throughout the angular range. Similar calculations have 
been performed for а (р, n) reaction, proton energy 45 Ме У, for а number of 
nuclei [Bonetti, Col1i-Milazzo, and Melanotte (81а)] with similar success. ТЬе 

need to include contributions from the SMC process as the proton energy 
decreases is shown in Fig. б.б. 

http:10-2'-----..L
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12 10 

FIG.6.6. Neutron energy spectrum for the reaction 120Sn[p,n) Ер = 25 МеУ, ест = 1100; 
-----, total; ---, multi step direct, -----, multistep compound. [From 
Colli-Milazzo private communication quoted in Feshbach (86).] 
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FIG.6.7. Transmission probability <r~.1>I<rNJ> as function of J in the case of 40Ca(n, 
р)
 

[From Bonetti, Colli-Milazzo, and Melanotte (83).]
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FIG.6.8. Level density ofthe various composite nuclei as а function ofthe stage N ofthe 
precompound chain: (1) l04Pd, (2) 90Zr, (3) 6°Ni, (4) 41Са, (5) ЗОР, and (6) 28Si. [From 
Bonetti, Colli-Milazzo, and Melanotte (83).] 

We turn next to some examples of the statistical multistep compound (SMC) 
reactions. "Equilibrium" sets in at about the fourth step, as indicated Ьу Fig. 
6.7, where we see that Ьу the third step the branching ratio to the fourth step 
is approximately 0.9. Note that the level density at the fourth stage is оп the 
order of 10 times that at the third stage (see Fig. 6.8), so that the self-averaging 
condition of Tang Xuetian (81) is weB satisfied. It is important in the SMC 
calculations to include only bound orbits, as emphasized Ьу Вопеш, 

Colli-Milazzo, and Melanotte (83). Two examples are shown, In Fig. 6.9 а 

comparison is made between experiment and theory for the 51V(p,n)5 1Cr 

reaction, for а proton energy of 22 MeV. We see the striking failure of the 
evaporation model and the good agreement that is obtained when the SMC 
theory, which takes into account the emission that occurs before the equilibra­
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FIG.6.9. Double differentialspectrum for the reaction 51 V(p, n) 51Cr,Ер = 22 MeV,e = 1440. 
Experimental points from Grimes, Anderson, et al. (71) are given Ьу circles, the calculated 
evaporation spectrum Ьу the squares, and the total statistical multistep compound Ьу 

the crosses. [From Feshbach, Кеппап, and Koonin (80).] 

tion (rth) stage, is reached. In Fig. 6.10 а comparison is made юг the case of 
14-МеУ neutrons incident оп 93Nb, including the (n,n'), (n,2n), and (n,рn) 

contributions. ТЬе dashed line gives the contribution Crom the rth stage (the 
evaporation component) [от (n,n'), the dotted line [ог the (n,2n) and (n, рn). 

ТЬе behavior of parameters оС the SMD theory is shown in ТаЫе 6.1. In 
this table а is the spin cutofТ parameter, 6а/п 2 gives single-particle density g, 
Vo is the strength оС the Yukawa potential with а range of lfm [used Cor the 
residual (р - n) potentialJ, Vo is the strength averaged over the р - n and n - n 
interaction strengths, and finally, the ratio of the single-step cross section to 
the total is shown. Bonetti and Columbo (83) show that the strength оС the 
potentials used in the SMC is consistent with that given Ьу the table. 

ТЬе statistical multistep direct theory has also Ьееп employed to predict the 
inelastic scattering of 6S-МеV polarized protons Ьу 58Ni [Bonetti, Colli­
Milazzo, et al. (82Ь)]. Comparisons with the measurements of Sakai, Новопо, 

et al. (80) show excellent agreement with the angular distributions and 
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FIG.6.10. (а) Energy spectrum of neutrons emitted at 300 and 1500 from 93Nb at an 
incident neutron energy of 14 MeV. The experimental data of Salnikov, Lovchikova 
et аl. (70, 71) are compared with the втацвпса! multistep compound ca1culations. 
(Ь) Energy spectrum of protons emitted at 1500 [гогп 93Nb at an incident neutron energy of 
14Ме У. The experimental data of Grimes, Anderson, et аl. (78)аге compared to statistical 
multi step compound calculations. For both (а) and (Ь) the curves labeled with N show 
the contributions of the N-step process. The dashed and dotted lines give the 
contributions of r stage processes which for case (а) аге (n,n') and (n,2n) + (n,рn), 

respectively; for (Ь) they аге (n, р) and (n, пр), respectively. [From Field, Bonetti, and 
Hodgson (86).] 
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TABLE 6.1 

2/6g)(MeV- 1Target (J а( = n ) Vo(MeV) Vo(MeV) (J 1/и tot 

48Са(Ер=45МеУ) 1 7.4 27.5 15.5 0.55 

90Zr(Ep=45 МеУ) 1.4 10 27.5 17 0.55 

120Sn(Ep= 25 МеУ) 1.8 16 27.5 16 0.82 

129Sn(Ep= 35 МеУ) 1.8 16 27.5 16 0.72 

208РЬ(Ер = 4 5 МеУ) 2.4 13 27 15 0.47 

Source: Bonetti and Colambo (83). 

analyzing power. Agreement with the latter is good only for relatively low 
excitation, и = 10 and 14 МеУ but fails in the intermediate angular range 
450 < Э < 1100 for и = 18 and 22 МеУ. Presumably, the inclusion of the MSC 
process is needed for these large excitation energies. 
А number of conclusions сап Ье drawn from this analysis: The division of 

the statistical reaction ргосевз into multistep direct and multistep compound 
components appears to Ье useful and important. The multistep direct process 
dominates at the higher projectile energies, while the multistep compound is 
important for large excitation energies of the residual nucleus as well as for 
lower projectile energies. At sufficently low energies the system is "trapped" оп 

the first step so that there is по precompound emission. Therefore, at low 
energies, compound nucleus formation dominates. As the energy increases, the 
precompound emission (as given Ьу the SMC theory) must Ье included, as the 
evaporation theory fails Ьу orders of magnitude. At still higher projectile 
energies, the SMD process begins to Ье important and eventually is dominant, 
with the exception of cases in which the residual nucleus is highly excited and 
the emerging particle has а low energy. For these reactions the SMC process 
must Ье taken into account. Moreover опе learns that the single-step direct 
process (DWA) is inadequate for proton energies lying between 25 and 65 МеУ. 

It provides only 55% of the cross section for Ер = 45 МеУ. 

7. SUMMARY 

In this chapter we have discussed the inf1uence of multistep processes оп nuclear 
reactions. In Sections 2 and 3 we considered examples in which relatively few 
levels of the target andjor residual nucleus could Ье involved as intermediate 
steps in а multistep process. For these cases а coupled-channel description was 
employed. In Section 4 the influence of inelastic multistep processes оп particle 
transfer reactions was considered. Here the coupled-channel Born approximation 
(ССВА) was used, in which the coupled-channel description was used to describe 
the mutual and final states and the transfer reaction was calculated as а 

single-step process. It was found that multi-step processes were important when 
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the states of the nuclei involved are collective (e.g., vibrational or rotational). 
When the number of states involved is large, we suggest the statistical theory 
developed in Section 5, with applications in Section 6. Мапу of the concepts 
used were developed Ьу ап earlier semiclassical theory based оп pioneering 
papers Ьу Griffin (66,67) and Weisskopf (60).This analysis is reviewed Ьу Blann 
(75). For а comparison between the SMC theory and the semiclassical theory, 
see Holler, Kaminsky, et al. (85). Other theories of the MSC process are given 
Ьу Agassi and Weidenmiiller (75), Mantzouranis (76), and Friedman, McVoy, 
Hussein, and МеНо (81). ТЬе latter authors develop formalisms that do not 
require the use of the chaining hypothesis but are more difficult to apply. Other 
theories for the SMD reaction Ьауе Ьееп proposed Ьу Тагпцга, Udagawa, and 
Lenske (82), Agassi, Mantzouranis and Weidenmiiller (75), and Mantzouranis 
(76). ТЬе first of these is limited to two-step processes, while the latter uses the 
Pauli master equation, involving, however, some ad Ьос assumptions regarding 
the underlying nucleon-nucleon interaction. 

ТЬе theory presented in Section 5 has а wide range of applicability, far wider 
than as described in the applications described in Section 6. In particular, the 
application to Ьеаму ion reactions has not yet Ьееп developed except for the 
light helium ions (see, however, Section VIII.6). It would also Ье useful in 
determining the nature of the background in giant resonance reactions, 
permitting а more ассшаге determination of the widths of the resonances. 

APPENDIX 

ТЬе propagator С§ = (Е(+) - H(D»)-l is defined Ьу 

(А.!) 

ТЬе quantity of interest is С§ /l: 

(А.2) 

Multiplying (А,I) from the left Ьу P/l and from the right Ьу Р 1 leads to а set 
of coupled equations for С§ /l: 

(А,З) 

When J1=M, 

or 

С§М = GMVM,M-l С§ М-l (А.4) 
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where 

Turn next to (А,З) with Il = М - 1: 

Substituting from (А.4) yields 

Therefore, using recurrence relation (5.16) yields 

(А.5)r§ м - 1 = Gм - 1 V М - 1.М - 2 r§ М - 2 

One сап now proceed stepwise to consider the equation satisfied Ьу r§ м _ 2' The 
solution will have the same form as (А.5): 

(А,6) 

Опе сап now use mathematical induction to establish (5.14): 

(5.14) 
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