CHAPTER Vili |
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HEAVY IONS

1. INTRODUCTION?

Heavy-ion physics is concerned with the reactions induced by nuclear projectiles
whose mass number A is greater than or equal to 4. Nuclei ranging in mass
number from the a-particle to the uranium nucleus have been accelerated to
energies varying from a few MeV per nucleon (MeV/A4) to many GeV/A. As
this is being written, an accelerator at CERN is producing beams of *°O nuclei
with an energy’ of 200 GeV/4; at Brookhaven, beams of nuclei up to 28 with
energies of approximately 15 GeV/A4 have become available. Experiments at the
Bevelac at Berkeley have been performed with beams of mass number extending
up to uranium and with energies extending up to 2.1 GeV/A. The capability of
lower-energy machines is shown in Fig. 1.1. Of course, to make the story
complete one would need to specify, as well, the currents that are available for
each ion species and energy. It is not appropriate here to describe the various
strategems employed to obtain these beams. Usually, they involve the use of
several accelerators (two or three) operating in tandem. The plan in each case
involves stripping the heavy-ion projectile of some or all of its atomic electrons
by passing the heavy-ion beam through a stripper, generally a foil. The process
increases in effectiveness with increasing beam energy. The resulting heavy ion
will then have a large net charge, which permits its acceleration to very high
energies using electromagnetic fields. The extraordinarily rich set of phenomena
produced when a heavy ion collides with a nucleus has three fundamental

{Bromley (84).
$The energy of a 200 GeV/A ion equals 0.32 ergs/A!
554 -
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FIG. 1.1. Ton energy in MeV/nucleon as a function of the ion mass for a variety of
facilities as of 1984. [From Bromley (84).]

sources: the strong electric field of the heavy ion, it large mass, and its com-
positeness.
The magnitude of the electric field at the surface of a nuclei is given by

Ze Z MV Z
'E'=PZFE=A_“ 10 V/em (1.1)

a very strong field that decreases like 1/r* with increasing distance R from the
nuclear surface. The energy stored in the field outside of the nuclear surface is

Z22 Z2
4% _ s

E=" =120

MeV (1.2)

which yields an energy of 67.6 MeV for 27Al and 1362 MeV for 2°8Pb.

As a consequence of the strong, long-range electric field, it becomes possible
for the incident heavy ion to excite the target nucleus electromagnetically. This
phenomenon, referred to as Coulomb excitation, has been most important in
the determination of the energy spectrum of deformed nuclei, permitting
excitations to very high spin values. An example is given in Fig. 1.2, obtained
by 1165-MeV 232Th projectile incident upon Pb nuclei.



556 HEAVY IONS

b
b \d
0 &
5 L
©
o 28° el .
27 &
0
6
LF 257 5
2 5 2 o
> .
g L 22+ = 217 o a
= 3[
> 1 - &
19 &
Q : 20+ &
w o} N
Z | 7- &
18* o
Z @
Q | 15° g
- 2_ -
<L . & B
= 16 $ 13- a}@
>L<) r N A% o
LI.J : 1% .’\'P 1"~ 9\‘
b
1 b
|
F
b
ol

232Th

FIG. 1.2. Partial level scheme of 23?Th with the transitions seen in the Coulomb
excitation by 2°*Pb. [From deBoer (84).]
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The strong electric field can, in fact, disintegrate the target nucleus. At the
high energies available at the Bevelac, one can approximately replace the
incident projectile by a beam of photons (Weizsdcker—Williams method) with
the spectrum

2.2 2 .
N(w)dw:gz ¢ (C) do (1.3)
v

where the photon energy is hw. The photon can be absorbed by the target
ejecting one or in some cases two nucleons. The cross section for the process
is given by

Gigzzez (C)zjay(w)dco (14)

n he \v [0}

where o, is the photoelectric cross section. Note that ¢ is proportional to ZZ.
The experimental evidence for this process is illustrated in Fig. 1.3. Here the
ratio of the cross section to that of °Be is plotted for *0 beams with 1.7 GeV/A
energy incident on a variety of nuclei up to uranium. Disintegration of the 30
beams is observed. The solid line gives the cross section generated by
nonelectromagnetic interaction. [For this separation, see Friedlander and
Heckman (85).] The deviation from the solid line increases approximately as
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FIG. 1.3. Beam-rapidity fragment production cross-section ratios (normalized to the °Be
cross section for ‘80 at 1.74GeV plotted versus mass number of the target. [From
Friedlander and Heckman (84).]
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Z?, in agreement with (1.4). There is some dependence on Z in ¢,. Detailed
calculations using an improved Weizsdcker—Williams photon spectrum yield
quite good agreement with experiment.

Because of the intense electric fields, it is possible for pair production to
occur in the collision of heavy ions. The observed position energy spectrum is
shown in Fig. 1.4 for several pairs of heavy ions for the indicated projectile
energies. The narrow peak at 300keV has continued to escaped explanation.

Because of its large mass, the angular momentum of a heavy ion with respect
to the center of mass of the target nucleus can be very large. The angular
momentum in units of # is classically given by

kR =022 E

EMeV Rfm (]5)

where A, and A, are the projectile and target mass number, E the projectile
energy in the center-of-mass system in MeV [=(4,/4, + A,)E,,,], and R the
sum of the target and projectile radii in fermis. If, for example, 4, ~ **Ca, the
target is 1°®Pd, and E,,, = 205 MeV, then kR = 153. Thus if these nuclei were
to fuse, the resulting compound system could have a very large angular
momentum. A proton at the same energy per nucleon would have a kR value
of 2.6.

When a compound system of high spin is produced, the spin is, from the
discussion above, approximately perpendicular to the scattering plane. Neutrons
will generally be evaporated, but being isotropic, these will not carry off angular
momentum. The isotopes formed in this way may also decay by y emission.
For example, in the reaction 48Ca (1°8Pd, 4n)!32Dy, an isotope of Dysprosium
is formed. Its y-decay has been measured. Figure 1.5 shows the gamma spectrum
of the highest spin band. The number marking each line is the spin of the level
in 132Dy emitting the y-ray. This band is based on a prolate “superdeformation”
described by Bohr and Mottelson (62). [See also the calculations of Dudek and
Nazarewicz (85).] These authors showed that nucleons moving in an axially
symmetric deformed oscillator well would have a closed shell for nucleon number
86 when the ratio of w,, the harmonic frequency transverse to the symmetry
axis, is twice w,, the harmonic frequency along that axis. The corresponding
deformation ¢ [see (V1.10.14) in deShalit and Feshbach (74)] is 1.

Because of the large mass, the projectile has a very short wavelength. Using

1 A+ A, 1
A= =455 (o T A L (16)
k AA, Ey.

the % for “8Ca is 0.067 fm with E,,, = 205 MeV. As a consequence, one can use
the methods of physical optics, that is, one can use the trajectories, obtained
by solving Newton’s equations of motion, as describing the path taken by the
wavefront rays. By calculating the change in phase of each ray, one can construct
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FIG. 1.5. Gamma-ray spectrum in the superdeformed band in 32Dy following the
108pd(48Ca, 4n)! 52Dy reaction at 205 MeV. [From Twin et al. (86).]

the new equiphase wavefront, thus taking the effect of the interaction into
account (see p. 103).

The Newtonian trajectory of the projectile in the Coulomb field of force
exerted by the target nucleus is of obvious importance below and in the neighbor-
hood of the Coulomb barrier energy. That trajectory is a hyperbola in the
scattering plane given by

9
1:_Etanzg[l—cscgsin(()——>] (1.7)
r n 2 2 2

where r is the distance from the center of charge of the target nucleus and 8
measures the angle made by the vector from the scatterer to a point on the
trajectory with respect to the incident direction, as illustrated in Fig. 1.6. The

trajectory

scatterer

FIG. 1.6. Coulomb trajectory.
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angle 9 is the scattering angle and # is the Sommerfield parameter:

)2

(1.8)
hv

Note that r — oo when 6 = 9 and also at 8 = n. The distance of closest approach,
d, is obtained by placing dr/d6 = 0. This yields ¢ = n/2 + 3/2. Therefore,

d=?(1+csc§) (1.9)
k 2

while the impact parameter, b, is given by

b="cot? (1.10)
k2
Note that n/k =Z,Z e*/hvk = Z,Z (¢*/hc)(hc/2E). Numerically, n/k=Z,Z,/
1.37E, where E is in MeV and n/k is in fermis. The straight-line asymptote to
the hyperbolic trajectory is given by

ycos3=xsin3+b (L.11)

where x is the incident direction and y is perpendicular to x. Finally, the classical
differential cross section is

do b

— = 1.12
dQ sind ( )

0
a9

Using (1.10), one obtains the Rutherford cross section:

d_o‘_(l)z 1 _(Z,Zp>21 113)
dQ  \2k/ sin*(9/2)  \2u?/ sin*(9/2) (.

where u is the reduced mass. The cross section drops rapidly with angle and
can be quite large. For example, for 205-MeV #8Ca incident on 2°8Pb, do/dQ
equals 56 csc* 19 (fm)?, which at 3 = 30° becomes 0.896 barn. The grazing angle
3,., which will play an important role in many of the discussions in this chapter,
is given according to (1.9) by

R=%(l +oscls,) (1.14)
where R is the sum of the radius of the projectile R, and the radius of the target
R,. The trajectory corresponding to the scattering angle 8,, just touches the
surface of the target nucleus.
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FIG. 1.7. Properties of the grazing trajectory.

As is clear from Fig. 1.6, the Coulomb field has an effect similar to that of
a diverging lens [Frahn (66)]. The effective source for a point Coulomb field
is a line source. However, when the nucleus is black, completely absorbing,
which as we shall discuss later, is the case for most of the energy range of
interest and for a wide variety of target and projectile nuclei, the grazing
trajectory and the corresponding source point (x = — b, csc ¢,,) are of special
importance. This is because (see discussion on p. 414) the intensity beyond the
target nucleus in the forward direction can be calculated as if the perimeter of
the great circle perpendicular to the incident direction acts as a source. If the
path difference between the grazing trajectory labeled (1) in Fig. 1.7 and the
trajectory passing through the opposite side labeled (2) equals the wavelength
4, the intensity pattern will be of the Fresnel type. If it is much less than 4 the
intensity pattern is of the Fraunhofer type. We obtain the conditions

p>1 Fresnel, p <1 Fraunhofer (1.15)

where

. 9,
p = kb, sin 9, = 21 cos® ?g (1.16)

Thus when the Sommerfield parameter # is large, the angular distribution will
be of the Fresnel type. This will be the case if the nuclei involved are reasonably
heavy. [Note: Frahn’s p is § that given in (1.16).] The angular distribution in
the geometric optics limit is illustrated in Fig. 1.8. In the physical optics limit,
diffraction oscillations will be present for 3 <39,,, while for larger angles, the
shadow region, 8 > 9,,, the cross section will decrease rapidly.

An example of Fresnel scattering is shown in Fig. 1.9. The value of p for this
case is 28. The angular region with the smooth and sharp decrease corresponds

1

o /oy

FIG. 1.8. Angular distribution in the geometric
- shadow ~+J optics limit.
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FIG. 1.9. Showing the sensitivity of the structure in the illuminated region of Fresnel
scattering to the ratio of the strengths of the real (V) and imaginary (W) parts of the
optical potential. In each case V' =40MeV. [From Satchler (75).]

to the shadow cast by the target. Large-angle scattering corresponds to small
values of the impact parameter. For these values the incident trajectory would
strike the target and be absorbed. An example of Fraunhofer scattering is shown
in Fig. 1.10. The value of p for this case is 3.

When the nuclear interaction is taken into account, another interference
phenomena becomes important. In Fig. 1.11 we show the trajectories in the
presence of a real Woods—Saxon nuclear potential acting between the heavy
ions in addition to the Coulomb interaction [Glendenning (75)]. Trajectory g
is the grazing trajectory. Trajectory 1 is a Coulomb trajectory, and trajectory
3 shows the effect of the nuclear interaction. The scattering angle for trajectories
1 and 3 are identical. If the interaction surface is free of absorption, one can
expect fluctuations in the angular distribution. Figure .12, which given the
angular distribution for the reaction 5°Ni(80, 1°0)°2Ni(gs.), shows very large
oscillations. Because this reaction involves the transfer of two neutrons, one
can be certain that the nuclear interaction is involved. Baltz, Bond, Garrett,
and Kahana (75) conclude that the absorption component of the optical
potential consists of two parts. One is the interior volume potential, which drops
off very sharply at the nuclear surface. The second is a surface derivative of a
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88 MeV. Optical-model fits using both Woods—Saxon and folded real potentials are
shown. [From Fulmer, Satchler, et al. (81).]
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FIG. 1.11. Four classical orbits described in the text [Glendenning (75).]

Woods—Saxon potential, which is much weaker in the nuclear surface region
but stronger in the nuclear interior. The stronger absorption in the nuclear
interior attenuates its contribution to the reaction, which therefore originates
in the surface. The interference phenomena described above occurs because of
the near transparency of the surface region.

The classical deflection angle ® plays an important role in qualitative
discussions. Its relation to the potential acting between the two nuclei can be
obtained from the WKB expréssion for the phase shift 6, [see Morse and
Feshbach (53, p. 1102)].

® 5 /{2 © k2 )'zd 11
51-’-_— k —U—-r—zdr— '—Fr (.7)

where k? = 2u/h*E,U = 2u/h*V, and A =1+ 1. The turning points r, and r, are
zeros of the respective integrands. Differentiating with respect to 4 yields

65/1 J dr 1 (1.18)
P E—U- 7 Az/r ~/ ,12/r '

A2 p? ,_dr
kz-U—r—2=ﬁr2 (rzdt)

Since
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the first term in (1.18) is

Ab [® 1
2o}
H Jy rer

But the angular momentum Ak can be related to the deflection angle ©:
Ah = ur*®

so the integral becomes |2d®. A similar result is obtained for the second term
in (1.18). The net result is then 3@, where ©, is the total deflection angle,
including the incoming and outgoing trajectories. Equation (1.18) becomes (the
second integral yields just n/2)

9, 1@—7 P ! (1.19)

0h 2 2 o fiE-U-22?

The scattering angles 3 and ® are not identical, as is illustrated by the three
trajectories in Fig. 1.12, with identical values of 3. Bearing in mind that the
sense of rotation is defined with respect to (r x k), the value of @ equals 9 for
case (a) equals — 9 for case (b), and equals (9 — 2n) for case (c). Case (a)
corresponds to a repulsive potential; case (b) and case (c), increasingly stronger
attractive potentials acting along the trajectories.

Finally, we consider collisions in which the complex structure of the projectile
and target enter in an essential fashion. The extraordinarily rich phenomena
that are a consequence have been only partially explored and understood. In
peripheral collisions (d 2 R), elastic scattering, Coulomb excitation, inelastic
scattering, and transfer reactions are the dominant phenomena. There are
sometimes referred to as elastic and quasi-elastic scattering. As the impact
parameter decreases (d < R), deep inelastic scattering, in which much of the
kinetic energy of the incident projectile is converted into internal energy occurs

. /’/&/
b

<
@

FIG. 1.12. Scattering angle 3 for different trajectories.
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FIG. 1.13. Contour plots at sequential times of the density in the center of mass integrated
over the normal to the reaction plane for '°0+4°Ca collision at the laboratory energy of
315MeV. The initial angular momentum is 60 4. [From Negele (82).]
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FIG. 1.14. Contour plots at sequential times of the density in the center of mass
integrated over the normal to the reaction plane for 180 + “°Ca Collision at the
laboratory energy of 315 MeV. The initial angular momentum is 80 4. [From Negele (82).]

so that the kinetic energy of the final nuclei derives mostly from the Coulomb
repulsion. In this class of phenomena, which occurs for the most part with the
heavier nuclei, the nuclei may undergo small changes in A and Z as several
nucleons are interchanged while the angular distribution is strongly anisotropic.
Finally, under suitable conditions the projectile can penetrate and a compound
system is formed. This reaction is referred to as fusion reaction. If the compound
system lives long enough to randomize completely, a compound nucleus in an
excited state is the result. These two classes of reactions, deep inelastic and
fusion, are illustrated in Figs 1.13 and 1.14, obtained by using the time-dependent
Hartree—Fock method (to be discussed later). The first illustrates fusion. We
see that the two nuclei join forming a very elongated nucleus, which then
proceeds in three complete rotations being reduced in size as it does so. The
second illustrates deep inelastic scattering. Again the elongated nucleus is
formed. But after rotating through roughly 90°, it breaks apart. An intermediate
situation in which complete rotations occur but the system does not fuse is
referred to as fast fission.

These qualitative considerations are summarized in Fig. 1.15, in which the
range in angular momentum / (or impact parameter b) for which the various
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FIG. 1.16. Decomposition of the reaction cross sections as a function of the total mass
number A, + A, for the Ni-induced reactions on the even-4 Sn isotopes around
E.,=220MeV. Shaded bars indicate values for the total fusion cross sections; fully
shaded bars give the values for the total quasi-elastic transfer cross sections. [From van
den Berg, Henning, et al. (88).]

processes discussed above are dominant is indicated. The crosshatched areas
involve a mix of the two neighboring types. The possible value of the partial
cross section o(l) is bounded by the geometrical cross section 2n#2l. For the
low angular momenta, compound nucleus formation and more generally
fusion dominate, to be succeeded at higher angular momenta by deep inelastic
scattering. This is followed by quasi-elastic scattering, that is, peripheral (one-
step) reactions, and finally, for impact parameters greater than the interaction
radius by elastic scattering and Coulomb excitation. Of course, these divisions
are not sharp. Indeed, according to Rehm, Van denBerg, et al. (85), their
experimental results indicate that the quasi-elastic processes gradually make
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the transition to deep inelastic as single-particle transfers are replaced by
multistep processes.

It is possible to establish a connection with the concepts employed in the
discussion of the statistical multistep reactions discussed in Chapter VII (see
Section 5 and Fig. 1.1). Note that the interaction time increases, as indicated,
from large to small / values, the formation of the compound nucleus involving
the longest interaction time. The quasi-elastic processes are identical with the
single-step direct reaction, the deep inelastic has all the properties expected of
the statistical multistep direction reaction, while fusion generally is an example
of the statistical multistep compound reaction.

Of course, all values of | will contribute in a given reaction. In Fig. 1.16 we
give an example of the relative magnitudes of each contribution for the reactions
induced by %-°4Ni incident on the various Sn isotones. The energy of the *®Ni
beam is 330 MeV, while the ®4Ni beam has energies 341 and 380 MeV. These
energies correspond to center-of-mass energies roughly 30 MeV greater than
the barrier energy. The proportions of each contribution will vary with the
experimental situation.

2. FUSION

Let us now consider each of these regions in more detail. We begin with fusion.
The discussion will be made in terms of macroscopic variables. The microscopic
description is the subject of Sections 6 to 8. The macroscopic variables describe
the relatively slow motions of the system. The microscopic description is
concerned with the motion of the individual nucleons, which is relatively rapid.
One obvious macroscopic variable is the distance R between the centers of
mass of the colliding nuclei. Another variable that measures the deformation
will be defined later. Models using only the R variable are referred to as
one-dimensional models. The potential energy of the colliding nuclei illustrated
in Fig. 2.1 is taken as a linear combination of a central Woods—Saxon potential,
the Coulomb potential, and the centrifugal potential. Note the minimum or
“pocket,” which decreases in depth as the orbital angular momentum / (and
therefore the impact parameter) increases, until finally at / =/, the minimum
disappears. The depth of the pocket as well as [, decreases as the product Z,Z,
for the interacting nuclei increases. For an impact parameter below /,/k and a
given energy, there will be a finite probability that the system will be trapped
in the minimum for a time sufficiently long for the two nuclei to fuse completely
and form a compound nucleus. That probability increases with the depth and
width of minimum. In detail this is accomplished through mutual excitation,
particle and cluster transfer, and by interpenetration.? These processes occur
not only in the pocket but more generally as the nuclei approach each other,
with the result that some of the kinetic energy of the system is converted into

‘Interpretation and transfer of large clusters are not distinguishable.
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FIG. 2.1. For the system 180 4 12°8p, the sum of the nuclear, Coulomb, and centrifugal
potentials are shown for the indicated values of the angular momentum [. The horizontal
line marks E,,, = 87 MeV. The turning points for various I's are indicated by dots. [From
Glendenning (75).]

internal energy. Thus by the time the barrier region is reached, the kinetic
energy may already be reduced, facilitating the formation of the compound
nucleus even when the initial orbital angular momentum exceeds /,. The con-
version of kinetic into internal energy with the consequent slowing of the nuclei
can be described classically and macroscopically in terms of the action of a
frictional force. Friction is invoked in classical models of the nucleus—nucleus
collision.

Instead of the transfer of clusters from one nucleus to the other occurring
in the potential minimum, it is clearly possible for them to be emitted before
the compound nucleus is formed. The mass number of the final compound
nucleus will then be less than the sum of mass numbers of the two colliding
nuclei. Moreover, its momentum will be less than the momentum of the incident
projectile, since some momentum is carried off by the emitted cluster, which
can, for example, be an a-particle or heavier nuclear system. This process is
referred to as incomplete fusion. This process is an example of a precompound
or the multistep compound reaction discussed in Chapter VII, in which the
road to complete fusion is interrupted by the emission of a cluster. It differs
from the discussion in Chapter VII in that the remaining fragment can still go
on to fuse.

The clusters carry off angular momentum. This is important because the
compound nucleus may not be able to support the large angular momentum
acquired in its formation. One such bound is provided by the Yrast line [see
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FIG. 2.2. Fusion data from '2C + !2C - 2*Mg as obtained by Kovar, Gessamen, et al.
(79) (diamonds) and Namboodiri, Chulick, and Natowitz (76) (triangles). The solid line

and circles are a result of an Yrast line calculation for 2*Mg by Miilhans, Miiller,
Neegdgard, and Mosel (81) [From Mosel (84).]

Fig. 2.2 and Vandenbosch and Lazzarini (81)]. If the excitation energy and
angular momentum fall to the right of the Yrast line, a compound nucleus will
not be formed. If the angular momentum and energy carried by the emitted
cluster or clusters are sufficient to move the original values of E and J to the
left of the Yrast line, a compound nucleus can be formed. A second limitation
has been discussed by Cohen, Plasil, and Swiatecki (74). The issue is the stability
of a charged rotating nonviscous liquid drop. A rigid moment of inertia is
assumed and the energy calculated for a variety of shapes. Their results are
shows in Fig. 2.3. According to these calculations, the limiting angular
momentum is about 100% for a nucleus with 4 &~ 130. However, for both lighter
and heavier nuclei, the limiting values are considerably less. Again we see that
the precompound emission of clusters may be required if a compound nucleus
is to be formed.

A particular example of a precompound process is referred to as fast fission.
Of course, the compound nucleus formed by fusion may fission. Fast fission
occurs before that compound nucleus is formed. In terms of the behavior shown
in Figs 1.13 and 1.14 in fast fission, complete rotations do occur, but instead
of fusing, the system breaks apart. According to Gregoire, Ng6, et al. (82), during
the rotation and as a consequence of the exchange of energy, momentum and
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FIG. 2.3. The curve [, is the angular momentum at which the fission barrier of a

beta-stable nucleus with mass number A is predicted to vanish. [From Cohen, Plasil,

and Swiatecki (74).]

mass, the system equilibrates and a different radial dependence of the potential
V(R) develops. If this potential does not have a sufficiently deep minimum,
fusion will not occur; fission will. The various possible situations according to
Gregoire, Ngb et al. (82) are illustrated in Fig. 2.4.

This last discussion brings the importance of time scales to our attention.
The relaxation time 7, for the motion of the nucleons to be randomized and
equilibrium established is generally much smaller (expect at small excitation
energies) than the relaxation time for collective motion to disappear. The third
time, 1,,,, of significance is the time it takes the system to penetrate to the
potential minimum. If t,,, is shorter than t,, the system will arrive in the
potential minimum before equilibrium is established. The compound nucleus
will then be formed as described earlier. However, if 7,,, > 7, equilibrium will
develop before the potential minimum is attained. As a consequence, a new
interaction V(R) will operate. Fast fission or deep inelastic scattering may then
occur.

The simple one-dimensional interaction, V(R), does not take into account
the role of deformation. From the point of view of the compound nucleus, the
two nuclei, at their point of contact, for example, form a highly deformed system.
The passage from that situation to the deformation characteristic of the
compound nucleus follows from the nature of the dependence of the potential
energy upon the deformation as well as upon R. This is shown in Fig. 2.5. Nix
and Sierk (77) [see also Moller and Nix (76) and Krappe, Nix, and Sierk (79)]
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calculate the Coulomb and nuclear energy for a variety of shapes of the
interacting nuclei. The diffusivity of the nuclear surface, as well as the finite
range of the nuclear force (central only), is taken into account. No single-particle
effects are included. Dissipation is neglected. The collision is head on, that is,
[=0. The collising nuclei are identical. The deformation is measured by the
elongation, ¢, defined as 2[( Z2) — {Z?)], where Z is along the symmetry axis.
The factor of 2 takes the elongation of both nuclei into account. Two points
in Fig. 2.5 are important. One is the value of ¢ and R at which the two nuclei
are in contact. The other is the fission saddle point. As one deforms the spherical
compound nucleus, the potential energy increases arriving eventually at a
maximum, the fission saddle point. If the nucleus has enough energy to pass
over or penetrate the barrier, fission will occur. If the contact point occurs to
the left of the fission saddle point, compound nucleus formation will occur. This
is generally the case for light nuclei. If, on the other hand, it occurs to the right,
it must have enough energy to pass over the barrier to form a compound
nucleus, as will be required for the heavier nuclei. The extra amount of energy
beyond the barrier is known as extra push [see also Swiatecki (82)]. The =0
situation for a variety of identical colliding nuclei is shown in Fig. 2.6. Clearly,
systems whose total mass number beyond about A =220 will have a low
probability of forming a spherical compound nucleus since the fission saddle
point for heavier compound nuclei lies far to the left of the contact point. The
effect of angular momentum (collisions with a finite value of the impact
parameter) and of the energy of the colliding systems is shown in Fig. 2.7, where
again the interacting nuclei are both '!°Pd but the energy is now 20 MeV above
the barrier energy for [ =0. The fission saddle points for each value of / are



576 HEAVY IONS

o ——r———7——————

09

o8-

o7

Fragment Elongation o {Unils of R4}

05—

~— Spherical 220U  nucleus

04 . L N | — |

as 10 15 20
Distance Between Mass Cenlers ¢ (Units of R)
FIG. 2.7. Dynamical trajectories in the r—o plane for the reaction *'°Pd + !'°Pd - 22°U
at a bombarding energy in the center-of-mass system that is 20 MeV above the maximum
in the one-dimensional zero-angular-momentum interaction barrier. The dashed curve
gives the trajectory for the critical angular momentum /_, =45. [From Nix and Sierk

(771

indicated by the solid dots. The various lines leading from the contact point
indicate the paths of the system on the R—¢ plane. For all <45, the fission
saddle points lie to the right of the trajectory, so that it becomes possible to
form the compound nucleus. On the other hand, for [ > 45, an extra push beyond
20 MeV will be necessary.

Swiatecki (82) has derived a simple algebraic expression for the extra push
energy E,. The final expression, including adjustment of constants through
comparison with experiment, is given by Bjornholm (82) as

E, = 200(x, — 0.7)* MeV

ZZ ZZ
«=(5).05)
A eff A crit

(o Garmiagre ()
A (A1A)3(A17 + 43°)  \Uy

where

where
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A crit A1+A2

(A, A)*3 (AP + 43P

2, =0.0105 2.1)

and
f=075+0.05

Fusion cross sections are determined by observing the products of the decay
of the compound nucleus formed by the reaction. Usually, the compound nucleus
will be highly excited and generally will therefore decay before they are detected.
For light nuclei, nucleon and a-particle emission is compete. For high angular
momentum states, a-particle emission is favored (see Fig. 2.8). y-Ray emission
becomes important near and below the threshold for particle emission. Fission
is not significant for the light nuclei. For medium-weight nuclei, fission will
compete with neutron emission, especially for high-angular-momentum states,
while charged particle decay will be less important because of the Coulomb
barrier. For heavy nuclei only fission and neutron emission compete. A statistical
model calculation showing the competition between neutron and y-ray
deexcitation for %*Er formed by a beam of “°Ar incident on !24Sn is illustrated
in Fig. 2.9. We see that the emission of four neutrons followed by y-ray emission
is the most probable decay chain. By observing the residues, one can verify the
assumption behind the calculation leading to Fig. 2.9.

A considerable help in this endeavor is obtained by observing the multiplicity
(M, of the emitted y-rays. These are related to the average nuclear angular



578 HEAVY (ONS

~ 8 Input Angular
)
E Momentum
00 (12450, xm) 1% %y b
Egeam = 161 MeV
T % a0 @ e
50r
n
40
S
E &
18 3 30t &
@ ab
w
z
S w
Rz
5 e
o
e %\\\\\
w1l &\\\}&\\\\
6 5n
o o " i A " S
=) Q =) o 0 20 40 60 80
INTENSITY
4n
= 8
]
4
o
2 4t
= 5n
i 3n
00 20 40 60 80
4 (h)
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portion in which gamma-ray emission competes. The entry populations for the 3n-5n
evaporation residues are indicated as a function of angular momentum and excitation
energy at the bottom and to the left side of the figure. The predicted entry line is shown
for each y-ray emitting region [Tj@n, Espe, et al. (79)]. [From Stokstad (85).]
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momentum [ by the empirical formula
I=2(M,—4) (2.2)

As is evident from this last discussion, the statistical theory of nuclear
reactions (Section IV.7) plays an important role in the analysis of heavy ion
reactions. This is especially the case when one measures the number of nuclei
of a given type produced in the reaction. For fusion reactions, since each such
nucleus is a consequence of the reaction, one obtains a direct determination of
the number of reactions that have occurred. One must add to this cross section,
referred to as oz (ER = evaporation residues), the cross section that results in
fission, of, to obtain the total cross section. However, both the deep inelastic
and quasi-elastic can contribute to the observed results, especially for the light,
nearly symmetric, colliding nuclei. Statistical theory may be used to separate
the fusion and fission contributions. For heavier nuclei and higher energies,
incomplete fusion may contribute particularly for the larger angular momenta.
One would then find that the statistical theory would underestimate the number
of a-particles, for example, produced. In the case of fissioning nuclei it is possible
to determine the total momentum carried off by the fission fragments. Compared
to the critical momentum, one can determine the missing momentum carried
off before the system fissioned. Note that neutron emission from the compound
nucleus will generally be spherical and therefore not contribute to the linear
momentum balance.

The characteristic symmetry about 90° of reactions involving the formation
of the compound nucleus (see Section IV.7) can be used to separate fusion from
quasi-elastic and deep inelastic reactions. Applying directly the results of the
statistical theory leads to comparisons with experiment that are quite good.
Figure 2.10, which gives the experimental and statistical angular distributions
in the reaction !2C (**N, Li)?>°Ne, is a typical example. A simple classical
consideration [Ericson (60a); Ericson and Strutinski (58)] shows that under
circumstances to be described below the angular distribution obeys a 1/sin §
low. One assumes that the spin of the residual nucleus and emitted particle are
small with the consequence that the orbital angular momentum of the emitted
particle that is perpendicular to the final momentum must align itself with the
angular momentum of the compound nucleus (Fig. 2.11). Moreover, assume
that the spin of the compound nucleus, I, acquired from the collision is also
orbital and therefore in a plane perpendicular to the original direction. The
angular distribution is then proportional to the Dirac delta function §(k £
To obtain the observed angular distribution, we must average over the possible
orientations I:

do IF"(;(T( -])d¢—ljzné(lsin&)cosd))d(b—1 (2.3)
aQ 21, F "o o  2nlsin9 .

completing the proof. Of course, this result fails near 3 =0 and #. The critical
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12C(14N, °Li) 2°Ne reaction at E.,=36MeV (Hanson, Stokstad, et al. (74)]. [From
Stokstad (85).]

¢ - FIG. 2.11. Diagram for classical calculation of the
1,4 angular distribution.

angle according to Ericson is j,/J, where j, is the spin of the emitted particle.
Exampiles of the fit to this distribution are shown in Figs 2.12 and 2.13. Generally,
comparison with experiment shows that the 1/sin 8 distribution provides a good
fit near 90°, but fails as one approaches the forward and backward directions.

In summary, the statistical theory of nuclear reactions can be used to (1)
distinguish fusion from other reaction modes, (2) determine the spin of the
compound nucleus formed, and (3) describe the decay of the compound nucleus,
giving the yield of the particles emitted and their multiplicites. Fusion yields
are also correctly given provided that one takes the density of final states to



2. FUSION 581

|2C('60,a)24Mg
r Ex(®*Mg) =13.5-17.5 Mev

100 \
.\.\(/— 1/sin 8
-~

\‘\‘ E=49.5Mev
~¢

\1.
o

YT Illll

\

1 lllllll

10

do/dw (mb/sr)
\—,«,—r,—,—,-q——,—\o
L V4
e/
//
/’
4
/
/7@
/o
b
H
©
<
™
<
Ll diss |
LI\\—

[ J
-~ -~ : -
g -
-
~1
00— \ —
= el =
- ®\ _
— b \“ n
— -
~N
L 'S 48 Mev
\.\‘ -
- ° -
| | | 1
0° 20° 40° 60° 80°

8

c.m.

FIG. 2.12. Total a-particle angular distributions for E, = 13.5 — 17.5MeV in 2*Mg for
incident energies of 48, 49, and 49.5 MeV. The dashed lines are least-squares fits to the
function 1/sinf [Greenwood, Katori, et al. (72)]. [From Stokstad (85).]

be the density of states of the compound nucleus at the fission saddle point
[see Stokstad (85, pp. 115, 121, et seq.)]. In most cases the number of possible
reaction paths is not small and even the statistical theory calculations become
quite complex. As a consequence, several statistical model computer codes have
been developed. These are listed to Stokstad (85, p. 125). Their use is discussed
in the accompanying text. An important simplification has been recently
obtained by Friedman and Lynch (83), who consider the time evolution of the
evaporating systems. Their procedure should prove to be very useful.

Typical complete fusion cross sections are shown in Fig. 2.14. We note that
in each of these cases the cross section falls on two straight lines. For low
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energies, below the intersection of the two lines, referred to as region I, the
fusion cross section o.p equals the reaction cross section oy, while for larger
energies, region II o « og. The one-dimensional radial model provides a simple
explanation. In the low-energy region domain, the reaction, and therefore the
fusion cross section, is given by

GR=UCF=k£ —Z 21+1)T1

where T, are the transmission coefficients. One can calculate these from the
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Fusion cross sections for 160 + 27Al compared with the formula of Glas and Mosel.
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optical model. A rough analytic approximation is obtained using the sharp
cutoff model, in which

le{l forI<L

0 forl>L
Then

(2.4)

nk ! n , T,
acp=ﬁ;(2 +1)=E(L+l) :—k—zL (2.5)
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Equation (2.4) corresponds to the assumption that for all I’s less than or equal
to L, a minimum in the potential V(R) exists which is of sufficient strength to
trap the system for a long enough time for the interacting nuclei to fuse. For
R > L, this is no longer possible. The value of L is given approximately by the
effective wave number k; at Rg multiplied by Rg, where V(R) has its maximum.
This recipe is verified by an optical model calculation. Thus ‘

V 1/2
L=kyRy= kR,,( 1— ;) (2.6)
so that

V
Ocp = nR§< 1— E") vX)

in agreement with experiment. By comparing with experiment, one can
determine Ry and Vp.

In region II, that is, at greater energies, the collision does not necessarily
lead to fusion. The potential does not have a minimum of sufficient strength
to trap the system. However, fusion can occur some fraction of the time if a
sufficient interchange of mass and energy between the two nuclei has occurred:
macroscopically, if friction has slowed the system down enough. This
slowing-down process is more effective as R decreases, and for a sufficiently
small R, R., will lead to fusion. One can calculate the probability of this
occurring by assuming that for r> R, the wave function for the system
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consisting of the colliding nuclei in this ground state is zero because of the
probability of excitation and mass transfer. Using the WKB method for
penetration through a parabolic barrier [Glas and Mosel (74, 75); Wong (72, 73),
one obtains

1+ 2a(E —Vg)/ho
¢ 2.8)

0]
aCF:Z_ERé n

1+ eZn[E —VB—(Rc/RB)XE -V B)l/ho

where hw measures the width of the barrier and V, is the potential at R.. For

high energies,
2 R 2
- (G) (@)%
Rg Rg

1%
Ocr = nRg(l - f) (2.9)

one obtains

in agreement with experiment. At low energies,

h V,
Ocg = %Rﬁ In[1 + e*™E-Ve)ho] —>nR§(1 — Eﬂ)

in agreement with (2.7). The quantity V. is negative for Fig. 2.14a, while for
Fig. 2.14b and ¢, V. is positive. Empirically,

Re=rc(AP+ A3 re=140.07fm (2.10)

where A, and A, are the mass numbers of the interacting nuclei. Of course,
one can compute o directly from the optical model with appropriate boundary
conditions at R,.

There are substantial disagreements of (2.8) with experiment which are
exhibited when the cross sections for heavy-ion fusion reactions leading to the
same compound nucleus are compared. One would not expect to the fusion
cross sections *N + '2C and 1O + 1°B to differ greatly, but they do. It is also
surprising that the cross section for reaction '*N + !2C differs substantially
from that of reaction !*N + !2C. This has led to the development of an alter-
native explanation of the cross sections for region II based on Yrast line
considerations discussed above [Harar (78); Matsuse, Arima and Lee (82)]. The
critical value, L, is now given by the maximum value L, which is permitted by
the Yrast line. For larger values of L, states of the compound nucleus do not
exist. The value of L is given by the equation

(L+1)

E+o—nrt 5, +Ae (2.11)
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where £ is the Yrast moment of inertia. AQ is the band head energy [Harar
(78)]. Substituting in (2.5), one obtains

aCF=fj(1 +Q'AQ) 2.12)
U E

where p is reduced mass. An example of the efficacy of this equation is provided
by the comparison of the two reactions **N + '2C and !0 + °B, which lead
to the same compound nucleus '®Al. These two reactions give very different
cross sections. However, the relation between E* = E + Q and L determined
empirically for these two reactions is identical. One can go further and compare
the theoretical and empirical .#. One finds that the empirical values of L are
consistently smaller than the values predicted by calculations of the Yrast line.
Vandenbosch (79) and Vandenbosch and Lazzarini (81) make the reasonable
suggestion that the compound nucleus formation will occur only if there is a
sufficient density of levels, which would move the predicted value of L away
from the Yrast line to smaller values of L. According to Mosel (84), the question
of whether it is the density of compound nuclear levels or the density of doorway
states leading to compound nucleus formation has not been resolved.
Investigation of the fusion cross section at higher energies reveal another
straight-line dependence on 1/E, as illustrated in Fig. 2.15. This is referred to
as region III. Matsuse, Arima, and Lee (82) propose a description in which the
cross section for region I is given by (2.7), region II by the Yrast limit, (2.12),
and region I1II by (2.9), where we recall that r. is the distance at which the two
colliding nuclei lose their identity and become the compound nucleus. This
distance can be determined according to Matsuse et al. from the equation giving
the mean-square radius of the compound nucleus mass number A in terms of

O (mb)} o

! L { L

l
001 002 003

[

| L
, 00% 1 (Mev™)
FIG. 2.15. Fusion cross-section excitation function Experiment (¢) compared with
theory of Matsuse et al. [From Matsuse, Arima, and Lee (82).]
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the mean-square radii of the colliding nuclei, 4, and 4,.

A A
A<r2>A=A1<r2>,.,+A2<r2>Az+‘Tz<r3>

For further details the reader is referred to their paper.

We conclude this section on fusion with a brief mention of the recently
discovered phenomenon of subbarrier fusion [Steadman (85)], which is
illustrated by Fig. 2.16. The center-of-mass energies are far below the Coulomb
barrier energy for two touching spherical nuclei. One would there expect that
the Coulomb interaction would dominate this reaction and that therefore one
should be able to calculate the cross section with some confidence. However,
calculations made with the one-dimensional radial model given approximately
by the solid lines fall far below the experimental values. Nearly all the various
explanations for these major discrepancies can be understood as examples of
coupled-channel calculations, which take into account the vibration of the
nuclear surfaces. As one may expect, the coupling to low-lying collective states
is of major importance. This is illustrated by Fig. 2.17.

Henning, Wolfs et al. (87) have emphasized the importance of nuclear transfer
for the observed fusion enhancement. This is based on experiments using 480
and 3®Ni beams incident on Sn isotopes in which a strong correlation between
the transfer cross section and fusion enhancement is seen. They suggest that
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the neutron transfer opens a doorway through which the system can proceed
to fusion. These reactions are of great importance in astrophysics, where they
play an important role in energy production and element formation [Barnes

(85)7.

3. DEEP INELASTIC SCATTERING?

As has been illustrated in Fig. 1.15, in deep inelastic collisions, the two interacting
nuclei are thought to be in contact for a relatively long time, during which the

combined system rotates through a finite fraction of a complete revolution

Schroder and Huizenga (84); Lefort and Ngo (78).
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emission angles expected from two-body kinematics are indicated by arrows. The curves
represent an evaporation calculation [Wolf and Roche (76).] [From Schréder and
Huizenga (84).]

before separating into two final fragments. The fact that the reaction is essentially
binary is demonstrated by Fig. 3.1, where the angular correlation of the
fragments is shown for differing values of the mass number of the lighter
fragments. The average emission angles of the heavier fragment, calculated by
assuming two-body kinematics, is indicated by arrows. The agreement with the
maxima of the correlation distributions is excellent. The distributions are a
consequence of evaporation of the fragments, so that the original values of 4
must be determined from statistical reaction theory. On the average, the
evaporated particles are emitted isotropically, so that the average provides a
good measure of the direction of the fragment upon separation from the lighter
fragment. The binary character of deep inelastic scattering helps to distinguish
the deep inelastic collision from a fusion reaction that is followed by fission.
The latter is generally symmetric (i.e., the fusion leads to two nearly identical
fragments). If the collision under consideration is between two nuclei with
significantly differing atomic and mass numbers, the deep inelastic process will
lead most probably to two final nuclei with substantially the same value of 4
and Z and not to two nearly identical nuclei.

In general, fusion is improbable for heavier elements (see Fig. 3.2). For these
elements the strength of the Coulomb potential is so great that even with the
addition of an attractive nuclear potential, no “pocket” in the total potential
is formed. Hence no fusion. For this reason, we shall choose the illustrations
of various phenomena associated with deep inelastic scattering to be discussed
below, from collision between nuclei the product of whose charges (Z,Z,) is
greater than roughly 3000.
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FIG. 3.3. Total kinetic energy distribution da/dE of final fragments produced in the
reaction 2°9Bi + 13%Xe at three bombarding energies. The energies were calculated from
the measured projectile-like fragments assuming two-body kinematics. The energy spectra
are integrated over all fragments and reaction angles. The arrow (V,) indicates the

entrance channel Coulomb interaction energy at the strong-absorption radius. [From
Huizenga and Birkelund (82).]
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Another characteristic of deep inelastic collision is the wide range of energies
that can be lost from the kinetic energy of relative motion to internal degrees
of freedom. This feature distinguishes it from the quasi-elastic scattering, in
which the binary final state is retained but the loss of energy is relatively small.
In Fig. 3.3 the cross section for a final kinetic energy E produced by the collision
of 29°Pb with }3°Xe is shown for three differing initial kinetic energies. These
cross sections are obtained after integration over all angles and summing over
all fragments. Near the initial energy we see a strong quasi-elastic peak. At a
lower final energy there is a broad maximum in the distribution corresponding
to an energy loss ranging from 170 MeV for the lowest initial energy to 370 MeV
for the greatest critical energy. The distributions are very broad. Energy
losses as high as 600 MeV for an incident energy of 861 MeV have been recorded.

The dependence of the total kinetic energy cross sections on the atomic
number of the lighter fragment is shown in Fig. 3.4. Quasi-elastic peaks are
seen for the Z of the fragment equal to the atomic number of the projectile
136Xe and nearby {Z) = 57. However, the quasi-elastic peak disappears quite
rapidly as {Z) differs from 54. In these cases the energy distribution follows
a bell-shaped curve. The widths of the distribution as well as the maximum
value of the cross section decreases with increasing {(Z > beyond {Z) = 54.

Two differing types of angular distributions can be seen in deep inelastic
collisions. The strong focusing distribution that prevails in the collisions of the
very heavy nuclei after integration over energy and fragmentation type is

209g; , 136

Bi + Xe

| m& Ejap = 1130 MeV
fﬁ;“ 20° = Ocm = 80°7]

d<o/d Zd (TKE) (arbitrary units)

FIG. 3.4. Double-differential cross section d2a/ -
dZ dE for the reaction 2°°Bi+ !3°Xe at E,, =
1130 MeV integrated over 20° < 6,,, < 80° [Schroder, i
Birkelund, etal. (78)]. [From Schroder and 300 400 500 600 700
Huizenga (84).] Total kinetic energy (MeV)
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FIG. 3.5. Laboratory angular distributions for the 2°°Bi+ !3°Xe reaction at three
energies. The centre-of-mass energies above the Coulomb barrier are 1.75, 3.14, and 5.29
MeV/nucleon, respectively. [From Schroder and Huizenga (84).]

illustrated in Fig. 3.5. The reaction products fall within a narrow angle peaked
roughly at the grazing angle. The strong focusing is also exhibited by the
Wilczynski plot of Fig. 3.6, where a contour plot of d*c/dQ d(TKE) in the
TKE-3,, plane is shown (TKE =total kinetic energy). The ridge of the
maximum cross section stays at a constant angle with increasing kinetic energy
loss, but eventually as in the orbiting case, the rate of energy loss with angle
slows down appreciably. The width of the angular distribution increases as the
energy loss increases.

The angular distribution for each fragment integrated over the final fragment
energies is shown in Fig. 3.7. The strong focusing effect at the grazing angle is
visible for the fragments whose atomic number is near that of the projectile
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FIG. 3.6. Wilczyrmski plot for '37Xe + 2°Bi at E,,, =9 MeV. [From Negele (82).]

Z =54. For changes from 54 of six units or larger the angular distributions
broaden considerable.

The second type of angular distribution is a consequnce of the orbiting
process. It occurs for the lighter systems and higher energies. A typical
Wilczynski plot for the orbiting process is shown in Fig. 3.8. The colliding
nuclei are '8Ar and 2*?Th. Along the maximum cross-section ridge, the angle
at first decreases rapidly, as the energy loss increases, approaching zero, and
then increases quite slowly for further losses in energy. This last branch has been
interpreted by Wilczynski (73) as negative angle reactions. His reasoning is
illustrated by Fig. 3.9. Deep inelastic collisions are supposed to occur for those
values of I (or impact parameters) that lie between [ ; and I,. For [ <[ _,, fusion
dominates, while for [ > [, quasi-elastic processes are the principal reaction
channels. The trajectories near I, will be Coulomb dominated, but as one moves
away from [, the nuclear interaction will become more important, there will
be an energy loss as a consequence, and the trajectory will be bent toward zero
degrees and eventually beyond it to negative angles. Detectors do not distinguish
between negative and positive angles, so that as the reaction angle passes zero,
the cross sections as shown in the Wilczynski plot will be recorded as positive.
We also see that the negative angle branch is closely associated with large
energy loss.

The two types of angular distribution, orbital and angular focusing, are
examples of extreme situations, angular focusing dominating for collisions
between heavy nuclear and lower energies. The transition from one type to
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FIG. 3.9. Illustration of the orbiting phenomenon in damped nuclear reactions.
Trajectories for a band of | waves between /,,, and the critical angular momentum [,
for fusion are depicted at the bottom. The associated cross section pattern is displayed
at the top as a contour diagram plotted vs. final fragment energy E and deflection angle
0. Negative reaction angles correspond to rotation of the intermediate system through
the beam direction (@ = 0°). [From J. Wilczynski (73).]

another has been found to depend empirically [ Galin (76); Moretto and Schmitt
(76)] on the Sommerfield parameter evaluated at the Coulomb barrier:

= e2Z,,Z.[ p J”z G3.1)
h 2(Ecm - VCoul)

FIG. 3.7. Center-of-mass angular distributions of the light fragments from the damped
reaction 2°°Bi+ !3%Xe at E,,, =940MeV as a function of Z. The experimental
double-differential cross sections are multiplied by the factors listed on the right before
plotting. [From Wilcke, Birkelund, et al. (80).]

FIG. 3.8. Contour diagram of d2c/dEdf for the reaction 232Th(*°Ar,K) at
E., = 388 MeV. The circles indicate the predicted correlation between scattering angle

and final energy for.different values of the angular momentum ranging from /= 180 to
250. [From Lefort and Ngo (78).]
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Empirically, orbiting dominates for " < 150, while angular focusing dominates
in the range 250 <7’ <400. For n' = 500 angular focusing is accompanied by
a noticeable tail at larger angles.

As we shall see, correlations among many of the observables are observed.
Some insight into these can be obtained from the dependence of observables
on the interaction time, 7, that is, the time during which the colliding nuclei
interact before separating. One expects that 7 will be smallest for the largest
values of the impact parameter (or /) and will increase as ! decreases. This
suggests two characteristic times, corresponding to two different dynamical
situations. One time, t,, is the time required to achieve a approximate saturation
value of the energy loss, achieved in this case for [ = 300. For larger interaction
times corresponding to smaller values of [, the energy loss increases very slowly
with decreasing I. In the first phase, the conversion of kinetic into internal
energy is generated by the flow of matter, nucleons, or clusters of nucleons from
one nucleus to the other and/or the excitation of giant resonances as the surface
regions of each interact.

A rough estimate of the time involved can be deduced from experiment by the
following argument. In the laboratory frame, assume that the target nucleus is
excited by the flow of nucleons from the projectile while the projectile is slowed
down by the flow of nucleons from the target. The energy carried by each
nucleon entering the target is E/A,, where E is the incident energy of the
projectile. A rough estimate of the total energy transferred to the target is
obtained by assuming thermal equilibrium between the projectile and target.
That energy is (4,/A,+ A,)AE, where AE is the total energy loss. Thus the
number of nucleons transferred to the target is

__Ad, AE
T A,+A E

The time it takes each nucleon to transfer is given approximately by the distance
traversed, on the order of the surface thickness s divided by the Fermi velocity.
Thus the time 1, for the first phase is

. _ns_ AA, s AE

'"“vp A,+A,vp E
Turning to our example, for | = 300, AE = 169 MeV, E = 940 MeV, s ~ 2fm, and
vg/c ~0.27, we obtain 3.6 x 107225 and n ~ 15. This crude result appears to be
of the correct order of magnitude as obtained from calculations using
macroscopic and microscopic models.

The second phase must involve low-lying modes of excitation. The models
suggest that their major effect is the slowing down of the rotational motion.
The mechanism is analogous to the slowing-down action of the tides. The
rotational states are thus the modes excited. The time involves is given by the
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uncertainty principle by

Ty=—

AE

where AE is of the order of 160keV, so that 7, ~ 1072%s, a much longer time
than that occupied by the first phase.

The results above are characteristic of very heavy systems. For lighter ones
the second phase is replaced by fusion, which does not occur for the heavier
systems, as discussed earlier.

These considerations become explicit and quantitative in the macroscopic
friction model of Gross and Kalinowski (78). Two variables are used, the distance
r between the centers and ¢ the angle made by r with the incident direction.
The Newtonian equations of motion are then

d , dv

— (i) — pr¢* +—+ K, i=0 32

dt(ur) wreT+ 4 (3.2)
and

d . .
E(,urz(p)+Kq,r2<p=0 (3.3)

The quantity u is the reduced mass, while K,, the radial friction coefficient, and
K,, the tangential one, are both functions of r. The function ¥, the potential,
nuclear plus Coulomb, is taken to be a function of r only. These are the most
general parity-conserving equations with friction forces linearly dependent on
i and ¢. Gross and Kalinowski take point Coulomb potentials and the folding
potential,

V()= J.Vlﬂr —r'|)p,(r)dr

where V, is a real Woods—Saxon potential describing the interaction of a nucleon
in nucleus designated by the subscript 2, with the nucleus designated by the
subscript 1 integrated over nucleus 2. The function V in (3.2) is Vy + Z,Z,€’/r,
where Vy = 3(V,, + V,,). The function p, is taken from electron scattering. Thus
Gross and Kalinowski (78) use

_ Po _ Yo
plr) = 1 + e~ Rp)ap Vi= 1 + e~ RoVap
po=0.17fm™3 Vy,= —50MeV
Rp=1.12-0864"'3*fm  R,=1254'3 (3.4)

ap=0.54fm a,=0.65fm
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FIG. 3.10. Trajectories given by the friction model for various values of I. The last
contribution to the fusion cross section is [ = 122; the first to the deep inelastic cross
section is [ = 124.) [From Gross and Kalinowski (78).]
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FIG. 3.11. Contour diagram of df /ds df (ub/Mev-rad) versus scattering angle 0.,andE,,
of K ions. The dashed line contains the effects of deformation. [From Gross and
Kalinowski (78).]
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FIG. 3.12. Angular distribution as a function of total kinetic energy for the 2°°Bi + 13¢Xe

reaction at E,,, = 940 MeV. Each energy bin is 26 MeV wide and is integrated over Z

of the light fragments. The centroid energy of each bin is given at each curve. The solid
lines are drawn through the data points. [From Wilcke,Birkelund, et al. (80).]

For the friction coefficients, these authors use the following:
K,=K?(VVy)? K,=K)VVy? (3.5)

These friction coefficients are most important in the surface region. The constants
K? and K are taken from fits to experiment to be 4 x 1072° and 1072°s/MeV,
respectively. The tangential friction is therefore much weaker than the radial
one as might expect.
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The time constant for the decay of the tangential motion as obtained from
(3.3) is of the order of u/K,,, where K, is the ratio of the averages (Kq,r2> and
{r,>. Estimating VV as |V,|/4a, where a ~ ap, + a, = 1.19 fm, one obtains
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FIG.3.13. Z distributions of fragments from the reaction 2°°Bi+ !3°Xe at
Ep, =940 MeV are plotted as a function of final total kinetic energy indicated at the
curves. Energy bins are MeV wide. Solid curves represent Gaussian fits to the data (open
circles). The distribution 558 MeV corresponds to elastically scattered Xe ions and
illustrates the experimental resolution. The arrow (FF) indicates contamination of the
data by events from sequential fission of target-like reaction fragments. [From Wilcke,
Birkelund, et al. (80).]
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which is close to the estimate made above. Gross and Kalinowski have given
some results using (3.2), (3.3), and (3.10) which do (with one further adjustment!)
reproduce the observed date to the extent that their model permits. In Fig. 3.10,
the trajectories for the reaction “°Ar + 232Th, laboratory energy of 379 MeV,
are shown. The trajectories for angular momentum [ > 124 contribute to the
deep inelastic cross section, which those for / < 122 to the fusion cross section.
The process pictured is then of the orbiting type. The resulting path (the solid
line) on the Wilcynski plot is shown in Fig. 3.11. This theory thus does not give
the full details of the Wilcynski plot but only the path followed by the ridge.
The solid line gives a qualitative match to the data. It does not yield enough
energy loss. These authors surmise that this may be caused by an additional
energy loss because of an additional degree of freedom (deformation?) not taken
into account by (3.4) and (3.5). Be that as it may, they effectively increase the
energy loss by increasing the magnitude of the nuclear potential from the
distance of closest approach outward, that is, during the final half of the collision
[see Siwek—Wilczynski and Wilczyniski (76)]. Under this assumption one obtains
the dashed line, now giving an excellent fit. Using the same constants, scaling
the nuclear radii as 4'/3, a good fit is obtained by Gross and Kalinowski for
several cases.

2098 + 136Xe EL = 940 MeV

10 l ‘ * l EMeV) -

FWHM (Z - UNITS)
?
&

r ~
1 I 1 1

50 60 70 80 90
©Ocm(deg)
FIG. 3.14. The FWHM of Z distributions d3¢/dQdEdZ for the indicated final kinetic
energies is plotted versus center-of-mass reaction angle, for projectile-like fragments from

the reaction 2°°Bi + 13®Xe at E,,, = 940 MeV. The horizontal lines represent the fits to
the angle-integrated Z distributions d*>¢/dZ dE. [From Wilcke, Birkelund, et al. (80).]
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FIG. 3.15. Correlation between variance o2 of the Z distribution and total kinetic energy
loss E,,, = — @ for projectile-like fragments from the reaction 2°°Bi + '3°Xe at three
laboratory bombarding energies E;. The curves drawn through the data points are
fits. [From Huizenga and Birkelund (82).]

We learn from this discussion that particularly during the first phase of the
reaction, kinetic energy loss increases as the interaction time increases. Therefore,
one may use kinetic energy loss as a measure of interaction time. This permits
the understanding of the direct experimental measures of various correlations.
For example, we see from Fig. 3.12 the broadening of the angular distribution
as the kinetic energy loss and therefore time increases. Similarly, one can expect
a broadening of the distribution in atomic number Z of the nuclear reaction
products as given in Fig. 3.13. The full width at half-maximum of the
distributions on Z is independent of the reaction angle but does increase
significantly as the kinetic energy loss increases, as shown by Fig. 3.14. These
widths increase more rapidly with energy loss for increasing laboratory energy
(see Fig. 2.15).

4. QUASI-ELASTIC SCATTERING!
We turn next to quasi-elastic scattering, which prevails for large values of the
orbital angular momentum, I, according to Fig. 1.15. In this regime, the

interaction time is relatively small, and direct processes that occur in the surface

tArima and Kubono (84).
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region dominate. These include inelastic excitation of each or both nuclei, as
well as particle transfer. The processes involved are quite similar to that
described for light ions in Chapter VII. Both are surface reactions but probe
different parts of nuclear surface. There is one significant difference, in that
heavy ions upon collision can exchange large amounts of mass, linear, and
angular momentum. This exchange may be accomplished in one step, a cluster
being transferred as a whole. Or in the other limit, the mass may be transferred
sequentially, that is, one nucleon at a time. The sequential process involves a
longer interaction time and is thus a precursor of deep inelastic scattering.
Generally, these large mass and momentum transfers will excite multiparticle—
hole states with high spin.

Conservation rules limit the allowable changes in linear and angular
momentum of each nucleus. Brink (72), (77) has derived approximate classical
conditions expressing these limitations. Brink assumes that the nucleus A4, is
moving with velocity v past the target nucleus A,. The cluster of mass M to
be transferred from 4, to A, has an internal energy in 4, and in A,, equal to
¢, and &, respectively. The interaction time is therefore given by
h/(e, + $ Mv? —¢,). The corresponding length is hv/(e, + 1 Mv*> —¢,) and thus
the momentum of the cluster leaving 4, is

1
hky ==(e;, + 3 Mv? —¢,)
v
The momentum of the cluster in A, can be obtained by symmetry, that is, by

going to the coordinate system in which A4, is moving and 4, is at rest. Then
the momentum of the cluster in A4, is

1
hky= — (e, + 1 Mv> —¢,)
v

The minus sign in front of the expression on the right-hand side is needed since
we wish to compute the momentum of the cluster entering rather than leaving
A,. The reaction proceeds most effectively if the angular momentum leaving
A, matches the angular momentum of the cluster 4, at the surface of A, that s,

R
Al=k1R1=h—;(§Mv2+Q) 4.1)

where

Q=¢ —¢&

Similarly, the momentum and the angular momentum #4, at the surface of 4,
should agree:

R
Ay=—k,R,= hi;(é Mv?:—Q). 4.2)
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The minus sign(— k,R,) takes account of the fact that the rotation in 4, is
opposite to that in A4,.
Eliminating Q between (4.1) and (4.2) yields

A A, M
e 43)
R, R, &
Taking the difference, one obtains
1 My
11_'12=h_v(R1+R2)Q+%(R1"Rz)7 44

Equations (4.3) and (4.4) are the Brink (72,77) kinematic conditions as usually
quoted in the literature. Equation (4.3) expresses the conservation of linear
momentum, while the conservation of angular momentum yields (4.4). These
results hold for the transfer of neutral clusters. If the cluster is charged, one
must include the change in the Coulomb energies in calculating &, —¢,. The
net effect is to replace Q in (4.4) by Q.¢:

(ZleZf - ZliZZi)e2

- @.5)

Qur=0Q—

where Z, and Z, are the atomic numbers of the two nuclei, the subscripts i
and f referring to their initial and final states, respectively, and d is the distance
of closest approach. For other derivations, see Kahana and Baltz (77) and
Ichimura, Takoda, Tamaya, and Nagatami (81); see also Bertsch and Schaeffer
(77).

For a given initial spin 4, one can determine the optimum value, [, of
I'=|4, — 4,| and the optimum value of Q, Q,,,, from (4.3) and (4.4) or (4.1) and
(4.2). The cross section is largest when [ and Q equal or are close to [, and
Q.pr- The range in land Q around /,;, and Q , over which the cross section will be
appreciable is referred to as the | window and the Q window. The width of these
windows, more precisely the windows associated with (4.1) and (4.2), is given
according to Brink (77) by (y,R,)"/* for (4.1) and (y,R,)"/* for (4.2), where y} =
(2M/h?)|e;|. Thus the larger the separation energies |¢;|, the wider the ! window
corresponding to a more localized interaction region, while a narrow I window
corresponds to a less localized interaction region.

The angular distribution of the reaction products reflect the width of the
window. When the / window is large, the angular range in which the reaction
products are found is characteristically narrow. The angular distribution is then
“bell shaped” around the grazing angle, as illustrated by Fig. 4.1.

On the other hand, when the | window is narrow, the angular distribution
shows a diffraction pattern as illustrated by Fig. 4.2. As the figure shows, the
diffraction distribution appears as the energy of the projectile is raised. This
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FIG. 4.1. Typical bell-shaped distributions for transfer reactions with heavy ions at
energies close to the Coulomb barrier. The curves are from DWA calculations with two
different optical potentials. The transitions are labeled by the hole state excited in 207Pb.

[From Ford, Toch, et al. (74).]
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behavior is expected since the penetration of the projectile increases with
increasing energy so that the spatial region over which the interaction occurs
increases.

In the case of a multiparticle transfer, M will be generally be large and the
final state ¢, will be highly excited so that Q will be negative. It thus becomes
favorable for 1; to be small and 4, to be large according to (4.1) and (4.2).
Transfer of large mass clusters will therefore predominately populate high-spin
states.
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In analogy with the use of stripping and pickup reactions to gain information
with regard to single-particle states, one might hope to use cluster transfer
reactions to explore the state of clusters within nuclei; or stated more precisely,
the nature of n-particle correlations, where n is the number of particles in the
cluster. Such a hope is not universally realized, since the cluster transfer must
be observed in the presence of competing (and interfering!) mechanisms such
as sequential transfer reactions, in which the n particles are transferred one by
one. This is demonstrated by Fig. 4.3, where one can compare the importance
of the single-step transfer of the two neutrons (DWA) with their transfer one
neutron at a time.

However, when there is a good match between the correlations that exist in
the final state of the residual nucleus and those of the transferred cluster, the
spectroscopic factor and the cross section will be relatively large. This is the
case for the (t, p) reaction on the tin isotopes. The cluster transferred consists
of two neutrons in the 'S, state, the dominant component of the two-neutron
amplitude in 3H. But this is exactly the nature of the neutron correlations in
the superconducting ground state of the tin isotopes enforced in that case by
the pairing interaction. These form a superfluid band analogous to the rotational
band in deformed nuclei. The ground state-to-ground state transition therefore
has a favorable probability. [See Broglia, Hansen, and Riedel (73) for a review
of this process.] It is found [Scott, Harvey, et al. (77)] that in that case the
cross section for cluster transfer is more than an order of magnitude larger than
the sequential transfer. A similar phenomenon may be expected for the
appropriate reaction with heavy ions. One example is '2°Sn(*20,!°0)Sn,
illustrated in Fig. 4.4.

The experimental and theoretical understanding of one-to-many particle
transfers in heavy-ion reactions is summarized by Arima and Kubono (84), to
which the reader is referred. For this volume it will suffice to present some
salient features. As in the case of light-ion-induced reactions, the angular
distributions, particularly the position of the first peak, depends on the orbital
angular momentum, /, transferred. This is illustrated in Fig. 4.5 for the case of
an a-cluster transfer, 3*Fe(°Li,d)>®*Ni and 3®Ni(°Li,d)%2Zn. In contrast to the
(d, p) reaction, the (p,«) and («, p) reactions are markedly sensitive to the total
angular momentum transferred (see Fig. 4.6). The important effect of the finite
size of the projectile is illustrated by Fig. 4.7. For a thorough study of the
finite-size effect in the (¢, p) reaction, see Bayman (70, 71). In that case Bayman
shows that a substantial increase, often more than an order of magnitude, of
the absolute value of the cross section results. In his case he found that the
finite range effects do not change the angular distributions from that obtained
from zero-range DWA. This conclusion is important because generally the
zero-range DWA yields a cross section that is far smaller than the experimental
one. There are other effects that go in the same direction. Because the theoretical
results depend on the values of the wave functions involved in the surface region,
there is a great sensitivity to the accuracy of these wave functions in that narrow
region. The harmonic oscillator wave functions often used are grossly inadequate
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for the ground-state transitions are too small by factors of Ny = 10(**Ti) and 30.4 (*°Ti).
[From Feng, Udagawa, et al, (76).]
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since their decrease in the surface region is Gaussian rather than exponential.
To obtain better agreement, it then becomes necessary to take linear
combinations of many harmonic oscillator wave functions, as Tonozuka and
Arima (79) found. The inadequacy of these wave functions is more severe in
the case of heavy-ion compared to light-ion projectiles because the cross section
is more sensitive to the wave functions for larger values of the radial variable.

The examples discussed above consider the excitation of discrete levels close
to and including the ground state of the residual nucleus. The excitation levels
in the continuum has also been observed, for example, “°Ca(*°Ne,!®0)**Ti
[Frélich, Shimoda, et al. (79)], in which the '®O spectrum is observed.
Interestingly, the direct a-cluster transfer process is generally accompanied by
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the fragmentation of the incident projectile 2°Ne. The reader should recall that
essentially the same process is responsible for incomplete fusion. The excitation
of continuum levels involves large energy transfers from the incident kinetic
energy to internal energy. In fact, one can regard the quasi-elastic domain as
one in which the elementary transfer processes, which are in part responsible
for fusion and deep inelastic scattering, are revealed. Because of the long
interaction time for the latter reaction types, it is possible to repeat the
elementary transfers several times, leading one way or another to large mass
and energy transfers [see Rehm, vanden Berg, et al. (78)]. Truly massive transfers
are often involved, but sequential transfers one particle or cluster at a time are
equally important. At energies near the Coulomb barrier, the single neutron
transfer is found to be a major part of the reaction cross section. For example,
in the collision of *®Ni with ®Ni and ®*Ni and E_, ~ 100 MeV, one finds
[Rehm, Wolfs, et al. (85)] that the cross section of one and two neutron transfers
is one-third of the reaction cross section and is larger than the fusion cross
section.

The DWA approximation, in this heavy-ion context, does not differ
conceptually from that discussed in Chapter VI on the (4, p) and (p, d) reaction.
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Of course, it is far more complicated both geometrically and numerically, so
that the use of modern computers is essential. Improvements on the DWA can
be obtained with simple generations of the methods described in Chapter VI.
The inclusion of the effects of the Pauli principle, of overlap and the reduction
to coupled channels, are accomplished by exploiting the properties of a
generalized K matrix. That matrix, described by (VI. 2.17), has a rank equal to
the number of channels explicitly included. In the (d,p) case it was two,
corresponding to the deuteron and proton channels. In the case of heavy ions
one may need to include a greater number of exit channels. This is certainly
the case when sequential transfer is important. Once the K matrix is determined,
the next step is to determine its eigenvalues, especially those whose value is 1.
One must eliminate the corresponding eigenstates, by projection or by the use
of the orthogonality condition method of Saito. In any event, one then obtains
the coupled-channel equations, which include rigorously the Pauli principle and
overlap effects. For more details, see the paper by H. Horiuchi (77).

An alternative approach makes the semiclassical time-dependent approxima-
tion for the motion of the heavy ions. At each position in the orbit there is a
transition probability that a reaction will occur. This is calculated quantum
mechanically. This method was used very successfully by Alder, Bohr, et al.
(56) in calculating the electromagnetic excitation of nuclei by charged particles.
Its adaptation to the nuclear excitation in heavy-ion collisions has been
developed by Broglia and Winther (72) and Broglia, Landowne, et al. (74). A
similar procedure was developed by Bertsch and Schaeffer (77).

5. HEAVY-ION RESONANCES'

Resonances in the collision of heavy ions were first observed by Almgqpvist,
Bromley and Kuehner, and (60). The heavy ions involved were '2C and the
center-of-mass energy was about 6 MeV, very close to the Coulomb barrier
energy. The observations included scattering and reaction channels. Since that
time, further resonances have been discovered in the '2C + 12C system, as well
as in the '2C + %0 system, and more recently in the 28Si + 28Si system [Betts
et al. (81)]. However, no such structure was observed for °Ca + 4°Ca. Some
examples are given in the following figures. Figure 5.1 gives the total y-radiation
yields (divided by the Coulomb transmission factor, which removes most of the
energy dependence). Note the large number of peaks and the fact that spin and
parity have been assigned to many. Figure 5.2 shows resonances in the !2C + 10O
system, which appear in the inelastic scattering. Another example is provided
by the radiative capture of '2C by 'O shown in Fig. 5.3. In Fig. 5.4 the 90°
elastic 28Si + 28Si scattering is shown, while in Fig. 5.5 a high-resolution study
of the scattering is recorded. The data exhibit two kinds of structure. There are

tErb and Bromley (84).
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FIG. 5.1. Nuclear structure factors derived from the total y-radiation yields of the
12C 4 12C interaction. The nuclear structure factor is defined by

Eo(E) KR

gabﬂm, “7 FX(KR)+ G3(KR)
L=0

where R = 1.4(12'® + 12'3) and F, and G, are the regular and irregular Coulomb wave
functions, respectively. [From Erb and Bromley (84).]

broad envelopes with a width on the order of 150keV and an energy separation
of the order of a few hundred keV.

Most systems do not resonate. Or stated more carefully, the resonance
amplitudes, if they exist, are not sufficiently strong to be observable. As an
example, see Fig. 5.6, giving the total y-radiation in the neighborhood of the
Coulomb barrier of '°0 + '60. One sees very little structure, which hardly
compares with violent fluctuations, which appear in Fig. 5.1 for !2C 4 '2C.

In analyzing the experimental data, two problems must be solved. In one,
the issue is distinguishing the resonance peaks from the Ericson random
fluctuations. In the other, how can the spin and parity of the resonances be
determined? Turning to the first of these, one can obtain an estimate of the
magnitude of the Ericson fluctuations using the statistical theory of nuclear
reactions. If the peak under study has a width much larger than predicted by
the statistical theory and/or if its magnitude is much greater, it is probably a_
resonance. Another indication is obtained by comparing reactions involving
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the same compound nucleus. If peaks appear in one channel and not in the
other, one is certainly not dealing with Ericson fluctuations. As an example,
see the comparison of 2C(*%0,a)**Mg and *N(!*N,x)>*Mg in Fig. 5.7. The
cross section for the first reaction has structure, the second does not. Second,
if one sums the cross sections for differing channels, the statistical fluctuations
will tend to average out so that peaks in the summed cross section are probably
resonances. Finally, if one can establish a correlation among the peaks in the
various channel cross sections, a resonance of the system is indicated. One must
be careful since the energy of a peak may shift from one channel to the next
by the order of a width because of interference with a nonresonant amplitude.
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An example of this analysis is shown in Figs. 5.8 and 5.9. In Fig. 5.8 the cross
sections to different levels of 2°Ne formed by the reaction 2C(*2C, «)*°Ne are
plotted together with their sum. The shown shows several peaks. The anomalies
at 7.71, 9.84, and 10.59 MeV are studied [Erb et al. (77)]. The widths of the
7.71- and 9.84-MeV peaks are one to two orders of magnitude greater than
that given by a Hauser—Feshbach calculation. The 10.59-MeV peak turns out
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not to have an unusual strength, so that it is probably a fluctuation and not a
resonance. Figure 5.9 gives the angular distribution of the a-particles for the
7.71- and 9.84-MeV peaks. We see that these beautifully follow | P,(cos 3|* and
|Pg(cos 9)|* distributions suggesting the spin of 4 in the 7.71-MeV resonance
and 8 for the 9.84 resonance.

This description provides one method for determining the spin of a resonance.
It is by itself not enough but should be augmented by a study of the energy
dependence of the angular distribution. This is illustrated by Fig. 5.10, where
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one sees the comparatively featureless angular distributions interrupted by
strong oscillatory behavior at, for example, energies 7.71 and 9.84 meV.

Another general procedure is to attempt a phase shift analysis of the elastic
scattering. As long as the number of nuclear partial waves is low, this is a
practical method. A closely related method involves fitting the energy-averaged
cross section by an optical model. To obtain the intermediate structure, one adds
Breit—Wigner contributions to the optical model phase shifts. An example of
the first of these two methods is given in Fig. 5.11. Note that the magnitude of
the S matrix, #,, has deep minima at the resonant energies of 6.65MeV in the
L =2 partial wave and 6.85 MeV in the L = 4 partial wave, thus identifying the
spin of these resonances. Similar analyses have been made at higher energies
by Cosman et al. (82). From the Breit—Wigner fit one can get an estimate of
the ratio I',/I". For the L = 2 case this turns out to be 0.29, while for the L=4
case it is 0.09. Both values are much larger than the statistical estimates of these
partial width ratios.

These analyses provide a list of isolated resonant states. Overlapping states
have been discussed, but disentangling these has not proved practical, especially
for states of high spin. Our first question is: What are the nature of these
resonant states? Qur second is: What is the mechanism that produces these
resonances? And as a corollary: What conditions need to be met?



5. HEAVY-ION RESONANCES 619

| |
2000 :
160(120’ a)Z“Mg
E Elzc = 36.0 MeV
5 1500 —F Ojap = 7.5° 5
5 <8
5 T e <
2 ~
X 1000 - o -
S 8
2 | £
g -f 1 o 0
= 500 5 S it b v i) et S
~ l,?f“ 4 v v )
Wedot, e T o
P \r‘%‘\;“,\* A A .
0 J 1 N "
20 19 18 17 16 15 14
24Mg excitation energy (MeV)
Excitation energy (MeV)
24 23 22 21
1000 2 20 19 18 17 16 15 14 13 12 11 10‘!
5 750 14N (14N, 0)24Mg
a E14N = 28.0 MeV
v
e —_ o
§ 500 Oap = 7.5
k]
3
£ 250
3
=z N
YN
[¢] L 1 ! T ,,'N X Aehnspd s .
0 10 20 30 40 50 60 70 80 90

Distance along plate (cm)

FIG.5.7. Alpha particle spectra from the !'°O(*2C,x)?**Mg and '*N(**N,«)**Mg
reactions. [From Bromley (78).]

With regard to the first question, it is clear that these states are doorway
states. Their widths (~ 100keV) are much smaller than the width of structures
(e.g., shape resonances) generated by an optical model on the order of 2.5 MeV.
On the other hand, these widths are too large to be compound nuclear widths.
Indeed, if very high resolution measurements are made [Bromley (78)], one
finds the Ericson fluctuation structure (see also Fig. 5.5).

We can refer to Section II1.4 for a discussion of doorway states. The
expression for the transition amplitude for a reaction proceeding through an
isolated doorway resonance, (111.4.16), is appropriate here. It is
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The average is over the fine structure. Hpp and Hpj, are the operators connecting
the entrance channel or exit channel wave functions x{* and x{” with the
doorway wave function ,. 77 is the transition for the prompt, nonresonant
amplitude, while I'] is the escape width:

rl = 2“2 |<X(y_)|HPDl/’D>,2
v

which gives the probability that the doorway state will decay into an exit
channel, y.™. The spreading width, I J» gives the probability that the doorway
state will decay into the more complex states. For elastic scattering and a
particular partial wave, the S matrix {S.> can be obtained directly from
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(IT1.4.16). One obtains

— Lyrl_yt
(siy=ee R S '?) (I1.4.18)
(E—E)+3iT;+T;

where J is the phase associated with the prompt (potential) scattering. Note
that the magnitude of {S,,)> squared is

(E—E)l+
C(E—E)+

~4n

We see that this magnitude has a minimum at E = E, as observed (see Fig. 5.11).
We turn now to the second question, the nature of the doorway states and
the mechanism that generates them. In the *2C + '2C case, it is possible to
establish a qualitative understanding. Toward that end, examine Fig. 5.12, where
we have plotted the energy of the observed resonance versus J(J + 1) [Feshbach
(76,77)]. Look also at a plot of the excitation energy centroids of the levels of
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FIG. 5.12. Excitation energy of '2C + '2C resonances as a function of J(J + 1), J = spin
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E, corresponding to grazing [Feshbach (77, 78).]
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[From Feshbach (78).]
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a given J given in Fig. 5.13. The line labeled the “Yale potential” is obtained
by Arima et al. (72) by determining the values of the orbital angular momentum
L and energies at which the potential devised by Reilly et al. (73) to fit the elastic
12C 4 12(C scattering generates a pole in the S matrix. These values of L will
not differ especially from the grazing L. That potential is a central potential
composed of Woods—Saxon forms for both the real and imaginary parts (see
Chapter V). The parameters are V=14 MeV, R=6.18fm, a=035rm,
W=04+0.1E, R,=641fm, and a;=0.35fm. The shallow depth, and
especially the weak imaginary terms, are required to obtain the rather large
oscillations of the observed angular distributions (see Fig. 5.14).

The experimental fact that the centroids are a linear function of J(J + 1) is
noteworthy (see Fig. 5.13). The fact that this straight line follows from the Yale
potential suggests the following model [Feshbach (76)]. At special values of the
energy there will be an optical model resonance ( a peak would be sufficient)
in a given partial wave, say L. The energy width of these peaks is on the order
of a few MeV, and a corresponding lifetime of a few times 10~ 22s. During this
time, the system will couple with other partitions of the *C + !2C system. This
could include inelastic excitations of either or both '2C to such levels as the
2%, 4.43-MeV level or the 0F, 7.63-MeV level. It could include such reaction
channels as *°Ne + « or ®Be + '°0, involving various excited states of these
nuclei. This coupling will convert some of the initial kinetic energy of the system
into internal energy of excitation, making possible the formation of quasi-bound
states. Generally, the coupling will tend to fragment the optical model resonance
(or shape maximum) into a number of resonances of a smaller width as observed
[Fletcher, Foy, et al. (76)]. These are the doorway states, which couple to even
more complex states. Interestingly, the sum of the widths for the doorway state
resonance of a given L is on the order of the width of the optical potential
resonance. This qualitative description leaves problems for the theorists and
experimentalists. For the latter it requires experiments that will determine which
of the various excitations are involved and with what amplitudes. Theoretically,
it is necessary to solve the coupled Schrodinger equations implied by the
description above and to find the conditions under which isolated doorway
state resonances will be developed.

However, some qualitative conditions follow from (II1.4.16). Obviously, T
that is, the probability of coupling to more complex modes, cannot be too large,
for then the resonant amplitude will be much reduced. This width depends
multiplicatively on the density of the more complex states and the coupling
matrix element. Table 5.1 gives the level density in the compound nucleus relative
to '?C + '2C at the Coulomb barrier energy [Hanson, Stokstad, et al. (74)].

We have only tabulated those cases with the lowest relative level density,
except for the '*N + !*N case, which shows the large effect of the entrance
channel. The condition of low relative level density is not a sufficient condition,
as the absence of resonances in the *Be + '2C reaction suggests. It is proposed
as a necessary condition. It is, in addition, necessary that the matrix elements
coupling the doorway state to more complex states also be small. In the
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TABLE 5.1
Reaction Compound System  E, Coulomb Barrier, Relative Level Density
(MeV)
12Cc 4 12C 24Mg 20.6 1
°Be + '2C 21Ne 21.7 33
12C 4+ 160 288 25.2 3.8
14N + N 288 358 110
12C 4 13C 5Mg 229 7.1
upg 4 12C 23Na 23.8 11
12C 4+ 14C 26Mg 25.7 13
tog 4 12C 22Na 23.0 15

12C 4 12C case this is likely, since both nuclei are deformed, so that the combined
system may not have good overlap with many of the 2*Mg levels present at
20.6 MeV, an example of shape isomerism. This leads to the prediction that
resonances are more likely to be observable when the colliding nuclei are
deformed. In the case of °Be + !'2C, the relatively easy polarizability of °Be
because of the valence neutron makes it likely that the coupling matrix elements
will be relatively large as will be I"!.

Another condition requires that the resonant energy E, fall within the width
of the shape resonance. The shape resonance maximizes the value of the matrix
element {¢;|Hppx!™’> since x\* has its maximum value in the interaction
region. When the coupling between the entrance channel wave function and
the intermediate channels is strong, there may very well be a correspondingly
strong energy shift, which may move E, outside the range in energies in which
xi*) is large. One should also note that the transition matrix element to the
final state <x‘f"|H pp¥ 4> must be sufficiently large so that the particular final
state show the resonance. As a corollary, the cross section to not all final states
will have an observable resonance.

Finally, note that an important parameter is the angular momentum range
over which the incident channel wave function is relatively large. In the case
of 12C + '2C this angular momentum window is narrow. This may not be the
case for other systems. If so, one may well find resonances with differing values
of L within a given energy interval. This is the case for the !2C + '6O system,
where the angular momentum window is on the order of 3 to 4 units. See
Fletcher and Frawley (81) and Braun—Munzinger (81).

It appears that *2C + '2C is a unique system in that the conditions discussed
above for isolated resonances to be observable seem to be satisfied. The
12C 4 160 system is not as clear cut, as there is much controversy with regard
to spin assignments.

The relatively large *?>C + *2C elastic widths reported above imply that the
12C 4+ 12C amplitude, in which both '2C’s are in their ground states, is a
significant part of the entire wave function; or in other words, the probability
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of finding the system in that incident channel is substantial. It is for this reason
that Bromley et al. properly refer to these states as the states of a nuclear
molecule. The existence of components of the wave function in which one or
both of the !2C’s is excited to the 2+, 4.43-MeV level has been detected by
Cormier, Applegate et al. (77) and Cormier, Jackenski et al. (78), for example
by measuring the 4.43-MeV radiation and the correlation of its magnitude with
the resonance structure. This demonstrates that the wave function of the system
is a combination of the elastic channel with channels in which one or both
carbon nuclei are excited and presumably other channels, such as ?°Ne + « and
8Be + 1°0.

The spherical potential (labeled “Yale”) is an oversimplification. In the first
place the carbon nuclei in their ground state are oblate. As a consequence, their
interaction will depend on the relation orientation of their symmetry axes.
Second, as we see next, the Pauli principle plays an essential role.

Harvey (75) has given an intuitive and instructive demonstration of the
importance of the Pauli principle, and at the same time has shown that the
intermediate state is deformed. It is in fact “superdeformed.” As illustrated in
Fig. 5.15, the nucleus C in its ground state, according to the harmonic oscillator
model, consists of four nucleons on the 1s shell and eight on the 1p shell. The
figure shows the nucleon configuration for the two colliding '2C nuclei.
Assuming that the nuclei approach along the z axis with their axes of symmetry
perpendicular to that axis, only the value of n, is presumed to change. For
example, four of the nucleons in the 1s state in the incident carbons will go
into 1s state in 2*Mg*, which precludes its being filled by nucleons in the (001)
state in '2C. These must go to the (002) and (003) state. There is no way of
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FIG. 5.15. Formation of excited states of 2*Mg by 2C + '2C collision. Symmetry axes
are parallel. [From Harvey (75); Rae (87).]
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filling the (010) state in **Mg. The result is a four particle—four-hole state,
substantially deformed.

On the other hand, if the axes of the two carbon nuclei are orthogonal as in
Fig. 5.16, then as shown in the figure the ground state of Mg can be populated.
A collision with this orientation of the symmetry axes cannot produce the
resonant states we have been discussing but rather, would produce the states
of the ground-state band.

Remarkably, this picture has been verified by experiment [Konnerth,
Diirnweber et al. (85)]. These authors studied the spin orientations in the
reaction 2C 4+ 12C—-12C(2*) + 12C(2*) by measuring the directions of both
4.439-MeV y-ray emitted by each 2C(2") in coincidence with each mutually
inelastic scattering event. Taking the axis of quantization perpendicular to the
scattering plane and integrating over the azimuth, it becomes possible to
decompose the cross section for the reaction into components G, |, Here m
is the projection of the spin of the quadrupole radiation and therefore of the
spin of the emitting '2C* on the quantization axis. The results are shown in
Fig. 5.17. The resonance examined are two of those observed by Cormier,
Applegate et al. (77) and Cormier, Jackenski, et al. (78) at E_, =25.6 and
31.5MeV. We see very strong maxima in the &,, cross section, implying that,
for the most part, the spins of the two emitting nuclei are parallel while they
rotate about each other with the appropriate angular momentum. This result
confirms Harvey’s picture presented in Figs. 5.15 and 5.16.

It is necessary to go beyond Harvey’s considerations, to obtain a more
quantitative and clearer understanding. Several models have been studied.
Leander and Larsson (75) and Larsson et al. (76) calculated the potential energy
surface for N = Z nuclei using essentially the Nilsson—Strutinsky procedure.
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Chandra and Mosel (78) used the two-center model, while Rae (87) and Rae
and Marsh (85) employ the cranked-cluster model. The results are quite
consistent.

Leander and Larsson’s results are summarized in Table 5.2 and an example
of (3*Mg) of the potential energy surface is shown in Fig. 5.18. The table lists
the minima together with the ratios of the harmonic oscillator parameters w,:
o, ®,. For many of the minima these are ratios of whole numbers and would
be expected to give rise to superdeformed bands. The ground state of 2*Mg
and the next minimum (¢ = 1.0, y =0, &5 = 0.3) correspond to prolate spheroid
shapes; the next three are oblate (¢ = 1.23, y = 6°), triaxial (¢ = 1.26, y =42°),
and “chain” (¢ = 1.25, y =0). The corresponding density contours as obtained
by Rae and Marsh [Rae (87)] are shown in Fig. 5.19. We see that the chain
consists of 6a clusters in a row; the oblate is given by (d) while the triaxial (g)
appears to be two-carbon nuclei aligned perpendicular to the line joining their
centers. The prolate configuration (e) appears to be of the «—1°0O—-a form. The
triaxial minimum corresponds, then, to the resonances observed by Cormier,
Applegate, et al. (77) and Cormier, Jackenski, et al. (78). With respect to the
resonances at lower energies there is some debate. Rae (87) believes these to be
generated by the prolate configuration, while Cosman (81) and Ledoux,
Ordonez, et al. (84) assign all the resonances to the triaxial minimum. According
to Rae, the Cormier resonances have spins of 16, 18, and 20, starting a new band,
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TABLE 5.2 Properties of the Minima in the Potential Energy Surfaces for the
Doubly Even N-Z Nuclei”

Energy (MeV)

7
Nucleus ¢ €3 &4 (deg) Configuration w,:o,:w, Min. Barr.
12¢ 083 0 0.20 60 (1)~* 2:1:1 0
.11 0 0.24 0 (1)~ 82* 3:3:1 1 14
e 000 O 0.00 0 1:1:1 0
1.04 0 0.24 43 (1)~ 42)* 4:2:1 9 16
12 0 0.24 0 (1)"%2)*3)* 4:4:1 9 20
20Ne 040 0 —0.10 0 (2* 2:2:1 0
117 0 0.24 50 (1)~42)® 8:3:2 9 14
125 0 0.24 0 ()~82)*3)* 5:5:1 13 21
“@*
24Mg 045 O 0.08 20 (2)® 4:3:2 0
1.0 03 020 0 2*3)* ()] 125
123 0 0.24 60 (1)~%(2)'2 3:1:1 8 14.5
126 0 0.24 42 (1)”*2)8(3)* 5:2:1 10 14.5
125 0 0.08 0 (1)~%2)*3)* 6:6:1 20 25
@*er
28gi 049 0 —-0.06 60 (2)'? 2:1:1 0
045 0 0.16 0 ) 3:3:2 1 35
10 03 020 0 *Q3)*4)* 13 15.5
135 0 0.24 60 (1)~*2)'*(3)* 13 17.5
132 0 0.24 35 ()"423(3)* 6:3:1 19 20
@*
328 021 O 0.08 20 ()8 5:4:3 0
068 0 0.08 0 (273" 2:2:1 0.1 45
142 0 0.24 54 ()~*2)~'*(3)® 10:3:2 16 18
1.0 03 020 0 (2%3)*4* 16 17
130 0 0.24 30 (1) 4(2)*3(3)8(4)4 21 23
36Ar 029 0 0.16 60 (2)°¢ 3:2:2 0
074 0 0.16 7 (27 '13(3)% 9 11
145 0 0.24 55 (1)~%2)~**(3)*? 27 275
133 0 0.24 47 ()~%2) *3)%4* 27 275
49Ca 000 O 0.00 0 1:1:1 0
045 0 0.16 50 (2)74(3)* 7:5:4 9 105
084 O 0.08 5 (27 '(3)%4)* 17 18
1.50 0 0.24 60 (1)~%2)~'*(3)'¢ 34 36.5
44Ti 018 0 0.00 0o (3 3:3:2 0
052 0 0.16 38 (2)74(3)® 3 55
086 O 0.16 0 (27 '%(3)'%4)* 11 15
1.50 0 0.24 60 (1)~%(2)~1%(3)!%(4)* 29 315

“The deformation parameters ¢, €3, €4, y are defined in the legend to Fig. 5.18. The last
two columns contain the energy and minimum barrier height relative to the ground-state

minimum,

bgy3=0.05.
Source: Leander and Larsson (75).
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Potential energy (MeV) 4?/"‘ 3 }

by the deformed nuclear potential:
V =1hwp*[1 + 2¢,P,(cos 8,) — 2ecosyP,(cos 6,)
+§esiny /320, d) + Yo —5(0, 6)
+ 263P3(€08 0) + 2633./31(Y33(0, ¢) — Y3 -3(0, 4)
+ 2¢e,P (cos 8,) + 2esPs(cos6,) ]
— khwo[2ls + p(l> — {I2)) 1.

The potential energy in the (e, y) plane, including the macroscopic energy, was calculated
for each value of (¢,7) and then minimized with respect to ¢,. For the (g, ¢,) plane y =0.
For definitions of p,0,, and ¢,, see the original reference. [From Leander and Larsson

(75).]
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FIG. 5.19. Potential energy surface for 2*Mg ( see Fig. 5.19) together with density
contours for the stable cluster configurations. [From Rae and Marsh as described by
Rae (87).]

while Cosman and Ledoux et al. would have spins of 14, 16, and 18, joining in
with the lower-energy band.

In any event it is evident that deformation must be taken explicitly into
account before the 2C + '2C resonances will be understood. However, at the
present time a calculation of the reaction cross sections for the excitation of
the resonances taking deformation into account has not been made.

The various theoretical approaches to the problem of heavy-ion resonances,
particularly in the '2C + '2C and '2C + 'O cases, fit the rubric described
earlier. The intermediate states that couple to the incident channel is taken
to be '2C(g.s.) + *2C(2*) by Imanishi (68,69). Konda, Abe, and Matsuse (79)
include the excitation of both *2C’s to the 2™ state. Similar studies have been
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made by Schied, Greiner, and Lemmer (70) and their colleagues [ Greiner and
Scheid (71)); Fink et al. (72); Park et al. (74)]. The a-particle model of Michaud
and Vogt (69,72) can be considered as equivalent to involving intermediate
states in which the '*C nuclei are excited to the 7.67-MeV 0" level. The
calculations made are of the coupled-channel variety. A simplified version has
been presented by Abe (78). However, these calculations do not take into account
the deformation effects alluded to above.

Other models have been proposed by Cindro (78a), Cindro and Greiner (83),
and Tachello (81). Cindro assumes that the resonance energies are given by the
spectrum of the rotational and vibrational excitations of a quadrupole. Iachello
assumes that the spectrum is that of a three-dimensional vibrator. His
four-parameter expression for the resonances fits the observed spectrum quite
clearly [Erb and Bromley, (81)], but an underlying microscopic justification is
still lacking. The prolate spheroidal configuration (e) of the cluster model
according to Rae and Marsh (85), would provide such a justification. Additional
supporting evidence is provided by time-dependent Hartree—Fock (TDHF)
calculations [Strayer, Cusson, et al. (84); Umar, Strayer, et al. (85); Umar and
Strayer (86)]. See also Satpathy et al. (86) and critical remarks by Kato and
Abe (87).

6. DIFFUSION THEORY

The remaining sections of this chapter are devoted to theory, with emphasis
on the deep inelastic process. It is not possible to review here all of the many
theoretical models that have been proposed for the description of this process.
In this regard not even the Bromley volumes are complete. The semiclassical
method is the subject of a book by Broglia and Winther (1981). The master
equation, which has been used, for example, by Agassi, Ko, and Wiedenmuller
(77, 79), is reviewed by Dietrich (85). The hydrodynamic model, advanced by
W. Greiner and his colleagues, is discussed by Maruhn (85) in the same set of
lectures. A transport theory that takes into account the coupling between the
collective and intrinsic degrees of freedom because of two-body collisions has
been developed by Norenberg (85) [see also Ayik and Norenberg (82) and
Cassing and Norenberg (83)]. He refers to this description as “dissipative
adiabatic dynamics.” Hofmann and Siemens (76, 77) have investigated a linear
response theory. The internuclear cascade has been exploited by Fraenkel and
his colleagues [ Chen et al. (68); Yariv and Fraenkel (79, 81) ] and by Cugnon (82).
This procedure is briefly discussed in Chapter IX. There are many others, other
names to be associated with the above as well as other approaches. In this
chapter we discuss the application of the classical transport equation of Uehling
and Uhlenbeck, by Aichelin and Bertsch [(85)], Aichelin [(86)] as well as the
time-dependent Hartree—-Fock (TDHF) methods [Negele (82)], but not the
adiabatic time-dependent Hartree—Fock method of Villars (77) and Moya de
Guerra and Villars (77). This choice is idiosyncratic, based in part on a prejudice



634 HEAVY IONS

for theories that do not assume thermal equilibrium, based in part on the
availability of examples of quantitative applications.

All of these theories require extensive numerical calculations, making it
difficult to establish an intuitional understanding of the dynamics for a wide
set of parameters. For that reason we first establish some qualitative features
making use of the theory of multistep direct reactions described in Chapter VII,
which is appropriate for the study of deep inelastic processes. Note that the
application of that theory uses the cross section for the single-step process,
which is obtained from the understanding of the quasi-elastic cross sections.
The double differential cross section for the statistical multistep direct process
is given by (VIL.5.29) and repeated below:

[M] - Jdkl Jdka [dzvvm,a(kf,kg][ W (ko 1)]
dQrdU; Loy am JOnp JnPL dQ,dU, dQ,dU,

'__I:dW2,1(k2sk1)—”:d2(71i(k1,ki):| (6.1)
dQ,dU, || dQ,du, '

The cross section for a single-step process is to added. The sum is over a which
indicates the number of steps that is followed by transition to the final states
designated by « + 1 and k,. The momenta #k, are the relative momenta of the
two interacting nuclei, while the subscript « includes the internal quantum
numbers and energies of the states of the two nuclei. Note that the deep inelastic
process is a two-body reaction, so that k| refers to the relative momentum of
the two final nuclei. U, is then the total excitation energy given by

h2
Uf=E—£k} (6.2)

where u is the reduced mass. It is necessary to include the independent variables
describing the exchange of charge and mass. Following Greiner these are taken
to be

nA = P == P 6.3)

where the subscripts t and p refer to the target and projectile, respectively. The
one-step transition probabilities are dependent on the variables #{* and '* and
n, and n'? | where the subscript « denotes the stage. The differential transition
probability is given by (VIL.5.30)

dzwa,a— l(kd’ N ka— 1Ma- l)

dUaan 27I p a)p a)lv(kanw a—1>Ma~ 1)|

where the dependence on #\* and #'? is indicated by 7,. Finally, changes in
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deformation of each of the nuclei in the transition from stage to stage may
occur so that deformation parameters should also be included as independent
variables in (6.4).

Equation (6.1) provides a framework for the calculation of the cross section.
The physics has yet to be inserted, namely the nature of each of the intermediate
stages. There are many possibilities for a heavy-ion reaction and a method for
a rapid exploration has not been developed; presumably, some simulation using
a Monte Carlo evaluation could be used. One therefore turns to an approximate
method that will yield an expression whose form can be compared with
experiment, yielding some overall information on the intermediate stages
involved.

For reasons of clarity we shall suppress, for the time being, the dependence
on n™ and #'®. Define the transfer function Y,(k,) as follows:

m«ﬁfdk‘ - O s .t 64
(2n)® (2n)® dQ,dU, dQ,dU,dQ,dU,
The cross section is then given by
d*o(k ., k; 2n d*w,,,
[#_)} ”Z 2 Y,(k,)
dQ,dU; | .. . ke ) 2n) dU,de
d*o(k,, .k a(k, 4,
=zj v3[ J( v+1 v) d J( v—1 v) :I (6.4/)
vJ@n) L dQpdUs i, ok, dQAUS i o
The transfer function Y, satisfies the equation
dk,_, d*w k,k,_;)
Yyk,)= |t B m Uy (k). 6.5
uk,) J(2n)3 40, dU. ik, - 1) (6.5)

The assumption is now made that the change in momentum in the transition
from stage v — 1 to stage v is small. One may therefore expand Y,_(k,_,) in
terms of Y, _,(k,) as follows:

Yv~1(kv—1) = Yv— 1(kv) + (kv—l k,) VY -1t 2[(kv 1 )'V]zYv— 17
Inserting this equation in (6.5) yields
1
Y(k,)=WPk)Y, (k) +WDk) VY, _ k) + EZ WV, Y, (k) (6.6)
a,b

where

WO = dkv 1 d*w Wov- l(kv’ v— 1) (6.7(1)
' (2m)? dQ,dU,
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dk d*w,,_(k,k,_))
w(vl) — v—1 § — T vyv— IV Py — 17 6.7b
J (2n )3( k) dQ,dU, e
and
dk dzwv,v— l(kv’ kv— 1)

(6.7¢)

(2;;31 (kv— 1 kv)a(kv— 1 kv)b7

ab =

dQ,du,

The subscripts a and b refer to Cartesian components. We simplify (6.6) by
introducing the quantity

f

fi=lIWiky)  wi= vzl fo=1 (6.8)
1 fv*l
and the new dependent variable Z,
Y,
Z,=" 6.9
P
Equation (6.6) becomes
WAZ,~Z,_ )=——[WVV(f,_ Z,_ )]+ 2 WaVV(/, -, Z,_ )

Jv—1 2v 1 ab

(6.10)

We replace the discrete variable v by continuous variables 7 such that At = 1/W?.
Then the left-hand side of (6.10) is given by AZ/Ar, which is approximated by
0Z/01. Note that

v 1
r=a=1W2 (611)

It is clearly a variable that measures the number of stages and can be conveniently
thought of as the interaction time.* It is a function of v and k, among other
variables. One eliminates v on the right side of (6.10) by solving (6.11) for v in
terms of t and k. The equation for Z becomes

oz

P k)[w1 V(fZ) + 3 EwaV Vi fZ)] (6.12)

*If WP is independent of «, 7 = v/W,. If as is more realistic, W2 =e™*'W, Wr = (""" —1)/e’ - 1.
Solvmg for v,v=1/yIn[(1 — W1)e™? + W], which approaches v=1/yIn Wz for large y and Wr—1
for small y.
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where

wi(t, k)= Wik, etc. (6.13)

We have thus obtained a momentum Fokker—Planck diffusion equation for
Z in a very general form. To make further progress, assume that

Wap = 6nbw

and that f depends only on 7. This is accomplished by replacing k in f by k..
See (6.15). Then (6.12) becomes

YA
a—=w1-VZ+%wVZZ. (6.14)
T

Further simplification is obtained by assuming that w is independent of k.
Equation (6.14) can be solved in a closed form when w, is a constant vector
or proportional to a unit vector tangent to the unit sphere in k space. We shall
follow an approximate procedure that reproduces correctly the solutions for
the above assumptions for w,, but is capable of dealing with a more general
form for this vector.

We assume that

3/2
Z(k,1)=( ) e~ (/em K=k (6.15)

2nwt

where k, is a function of t reducing to k, at = 0. Note that Z(k, 1) - d(k — k)
as 7— 0. Here k, is taken to be k; the incident k for the collision of light nuclei.
For heavy nuclei when the collision is Coulomb dominated, k, is taken to be
equal in magnitude to k; but with the direction given by the grazing Coulomb
orbit at the point of grazing. To determine k, we calculate

k)= JkZ(k, 1)dk (6.16)

Equation (6.14) will then yield a differential equation for k..
We assume the following form for w, linear in k

w, = we + we(ko x k) + 2wpk (6.17)

where w. is a constant vector independent of k. Multiplying (6.14) by k

and integrating yields
dk,
dr

= —[wc+ (ko x k)wg + wpk,] (6.18)
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These equations can be integrated subject to the condition k(0) = k. Let the
direction along k, to be designated by the O subscript. One obtains

(K)o = ko e~ o — Mo (1 _ gmwor) (6.19)

Wp

and

1 ~ -
k), = ﬁ{k0 x (ko x Wo)[wp(l — cos wgTe ™ ¥P7) + wgsinwgte™ *P7]
D R

+ (Ko % We)[Wr(1 — cos wgte ™ ™P7) — wpsin wgte *P]} (6.19a)

Here (k,) | is the component of k, in the plane perpendicular to k,. The sinusoidal
terms describe a damped rotation in the (k,), plane with a radius given by

wei//Wh + wi. For large 1
(k)L —

1
1> 2 2
) + Wg

[(f‘o x (f‘o X We))wp + (ﬁo X We)we] (6.20)

The component of k, in the k, direction decreases because of the damping of
the k, term. It is also affected by the O component of w¢, subtracting or adding
according to whether wc,, is positive or negative; wj, is a magnitude and therefore
positive. Asymptotically

(ko — — o (6.21)

Wp

The value of kZ, which is proportional to the average kinetic energy is given
by the sum (k.)} + (k,)3, where

2 2

w _ - w
k)? =— €L (1 —2coswgte "Pi4e 2wy __,  "CL _
2t 2 2 R — 2 2
wp + Wi © wp+wg

(6.22)
2 2
e w92

Wp wh

Returning to (6.15) for Z(k,t) we see that as t increases, Z broadens while
its center moves from the direction k, to k, given by (6.19). For the motion of
k, one can “predict” the solid center lines in Fig. 3.6 (if wc, wg and wy, are
known or fitted, if not) where E would be obtained from (6.22) and the deviation
from the original k, direction from the equation

(kr) €L
(k 1:)0

tan (9 — 0p) = (6.23)
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where 0, is the direction of k,. Note that k, and the energy approach constant
asymptotic values, as indicated by Fig. 3.6. Subsequently the energy loss is
dominated by excitation of low-lying modes which are described on page 596
as a process that involves long interaction times and a smaller rate of energy
loss. This would require a different set of values of w¢, wg, and wp as obtained
for example from (6.7).

The function Y(k,7) is now obtained from (6.9). Making the reasonable
approximation that W? is independent of « (we have already assumed that it
is independent of k), f, is given by. (W,)". Converting from v to T dependence,
we parametrize f, by

fi=foe™™ (6.24)
since 7 is proportional to v. With Y(k, t) known, the cross section can be obtained

by summing over v according to (6.4). The sum over v is replaced by an
integration over t:

Y- Wofdf

Hence

d’c 4nu J' J’
=— W, |Ydt=W,|(s,,,+5s,_ )Y (k/,1)d
[dede]msd w2k, ° 0 [(Sys1+5,- YKy 7)

13

~ 2W0§-[Y(k »T)dT (6.25a)

where we have assumed that

k, d*olk,, . k,)

~(2m)36(k, —k 6.25b
ki dQ,dU, (2n) ok, —ky)s, 4 4 (6.25b)

kv+1=k_f

To obtain these equations we have assumed that the angular distribution is
sharply pointed in the direction of k, and that the energy is not substantially
changed. Finally, it is assumed that s, varies slowly with v and can be replaced
by an average 5.

We now consider the integral.

R
_ — —yr—(1/2tw)(k — k;)?
I= JY dr=f, L Gron i v k= ko (6.26)

As an example of the results which follow from this analysis we taken wg =0.
Then

k,=ko—<%+ko)(1 —e"P)  wg=0 6.27)
D
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Furthermore, assume that w1 < 1. The conditions under which this inequality
will hold will be determined in what follows. Then

k., ~k,+ k1 (6.28)
k; = —(wc +kowp)
With this approximation, the integral can be done exactly. However, to identify
the important value of T and so be able to assess the range of validity of the
result, we shall use the method of steepest descents. Toward that end one places
the derivative of the exponent in (6.26) equal to zero. Solving for 7, one finds that
_ (ko —k)?

=
ki +2yw

(6.29)

We thus see that w,T will be small if |k, — k| is sufficiently small. For small w,
the condition is

ko — k|

0

« 1 (6.30)

WDT ~

This condition restricts the region of applicability to the forward quadrant but
does not strongly restrict the difference between k, and k.
The steepest descent result for the integral, (6.26) yields

Jo 1 1
I(k) = ——[K,lko— k| +k; (kg — k) 6.31
(k) ﬂ(2nw)|ko_k|exp w[ 11ko | 17(ko )] (6.31)

where K7 =k} + 2yw. The cross section is from (6.25)

2
[d"} = 2W,sI(k ). 632)
dQ,dU; |

The peak of the angular distribution will occur at the minimum of the
bracketed expression in (6.31). Let 9 be the angle between k, and k and let the
minimum occur at $. Assuming 9 to be small, one finds that

kylko —k|siny
kok, + ky|ko — k|cos Y

(6.33)

sin 3=

where ¥ is the angle between k, and the component of k, in the (k,k,) plane.
For 9 near J the angular distribution is Gaussian.

The energy spectrum at each angle can also be determined from (6.31).
Generally, one finds that as the angle increases the rate of exponential decrease
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of the cross section increases. [One can always obtain an exponential decay with
E for any function e~/*® for small E, — E as long as f'(E,) is positive as it is
in this case.] This is identical to the exponential decrease obtained in the
statistical theory [see (1.4.5) to (I.4.7)]. One thus finds the statement in the
experimental literature that the “temperature” decreases with increasing angle.
However, as we see from the calculation one cannot conclude that the system
has approached a thermal equilibrium. For that conclusion to be correct the
angular distribution must be spherical corresponding to an angle-independent
temperature.

There are other variables, besides the momentum k, such as mass and charge
asymmetry [see (6.3)], and deformation parameters, which can change with
each stage of the multistep process. The discussion given above presumes a
known path in reaction space or an averaging over the various possibilities.
However, this is not adequate when, for example, we wish to calculate the
charge and mass distributions of the final fragment. In the analysis to be
presented below, we develop a Fokker—Planck equation which explicitly
contains the effects of the mass asymmetry ‘4. Analogous equations can readily
be obtained for variations in charge asymmetry or other parameters.

One must first make explicit the dependence of d*w/dQ dU on 1 as follows:

2 3 (4) (A)
d W(ka5 a— 1)dk d (kasr’ k 1’r’a l)dk

d® (6.34
dULdQ, T dULdQ,dn® amr =y (639)

giving the probability that the system will undergo a transition from a
momentum between k,_, and k,_, +dk,_, and a mass parameter between
n®, and 'Y +dnt, to k, and n'?, respectively. Equation (6.1) is replaced

by

dsa(kjW ’7('4) k;'hA)) J dk d’](A) Wm a(kf, 'IM), ka"(A))
aQ,du dr](A) 2n )3 (2 )3 dQ dedn"“
x [d3 w1 (Koo 15 Ky 152 ] l: Wy Ky m5Y, k1’1(1A))]
dQ,dU ,dn'» dQ, dU, dn?t
dzal,(kn (1A)’ ;’I(A))
" [de,,w @39
One now introduces the function Y,(k,,#n") [see (6.4)]:
dk, d dk a3
ya(ka,,,;mzj 1 "J o<ty | PVapm
2n) ) dQ, dU, dn®
dw, | 3wy, (6.36)

U dQ, dU, dn'® dQ, dU | dn'®



642 HEAVY IONS

The differential cross section in terms of Y, is

d3a(kf’ r’(A) kz"hA)) 27[# (A) dawm,v
zm v (27[)3

dQTEfdnw ' ™ 4U ;dQ, dn®

The function Y, satisfies the equation

dk d*w k,, Pk _ .,y
Y‘, kv, (4) a vr_ld i vv—= 13w iy 5By — 150y —1, Y k , (A4) 6.38
(%)= f(zw vt dU, dQ, dn'® ill-p i) 639

The assumption is made that the change in momentum and Y in the transition
from stage v—1 to stage v is small. One may therefore expand Y, _,(k,_,,#n',)
in terms of Y, _, (k,,n") as follows:

oY
Y (k‘. 1> "(VA)l = v—1(kw ”E,A)) (kv -k ) VY 1t (”(VA)1 - "(,,A))%)l
ons
+1 k,_,—k)V+@n?, —n?)— 0 2Y
2 " on (A) v-1
Inserting this equation into (6.38) yields
Yk, n$0) = WY, (k,_,n$?,
(k,, 7$")
+ [w:w»vx_l(kv,nm R
+ = 52 Z weoy v, Y, _ (k,n")
ay 1 %Y
+ WD v( - V(A; ) + S WP on VR (639)

where the coefficients W are generalizations of (6.7). Reducing this equation
follows the procedure described after (6.7). The function Z, is introduced as
before by

Y v
Z= 1 L=l
v 1

Finally, the interaction time variable t by

v
; (00)

a
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One finally obtains

z_ 1 | . 01 Z) 20
ot f(t,k,r;"”)[w VUZ)+ Wt Z GOV, V,(/2)
a(fZ) 2(/2)
(11), (02)
TV e T o ] (6.40)

We again make the assumption that f is independent of k and #* so that (6.40)
becomes

0Z 0z
. — wl(10). (01) (20)
2 =" ‘VZ +w on pRTTRE Z v.V,Z
0z 1 0z
+ WDV — 4 -0 —— (6.41)

a “ 9 ('5,7(A)2

One can now follow the procedure described after (6.13). We shall leave the
discussion to the reader, the coupling between the k and ' dependence being
the new feature of interest.

We shall content ourselves with integrating both sides of (6.41) with respect
to k. Assuming that all the coefficients are independent of k [compare with
6.17)], let

()= J Z dk (6.42)

Then

aC wOD 7> ot 4 - W(OZ) (72Q'

ot on“ 2 o*n (6.43)

This equation can be integrated. Let

n=n?+wr =1
Then
o + % wb — W(m)a_C + 1 W(oz)ﬂ
ot o o 2 oy
or

A _1 oy 0L
o 2 o
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The solution has the one-dimensional form [see (6.15)]

1 1/2
(', 7) = <—2 el A A (6.44)
nw T

where #?(0) is the initial value of #“Y. The mass asymmetry is in this
approximation a Gaussian whose center changes linearly with T and whose
width changes like t!/2.

Returning to (6.37) for the cross section, and once again utilizing (6.24) and
(6.25a), one obtains

1 Lol nP e ni®) _ dnpfosW OO [ dre 2RI e n
Toaadadnd T rk (2mw(©2)7)¥2
dQ,dnf ; 0 aw'®)1)

The integral can be performed, yielding

jdk ok, n. ki) 44/ 2mpfy SWOO

s “w 2
dedU,finf hoky  |n—nol
x e~ VWODVZywOD + (w02 | g — g(A)(0)] + wlOD (™ — (A0

(6.45)
The distribution is no longer symmetric about 7" = n§Y, falling off less rapidly
for 7" < n“(0) when w®" is positive, and vice versa when it is negative.

7. THE LORENTZ, BOLTZMANN, UHLENBECK, AND UEHLING (LBUU)
METHOD!

This method for treating heavy-ion collisions is based on a classical
(nonquantum) method, describing the motion of 4 particles, employed in kinetic
theory [Huang (87)]. The Hamiltonian determining the many-body motion is
taken to be

A 2
H= ) [p,. + V(r,-)]+ )} o([r; — 1)) (7.1)
i=1| 2m i<j

The potential V is the mean potential and v is the residual two-body potential.
One asks for the distribution function f(ry,r,,...,r P, P2 Past), the
number density for finding particle 1 at r; with a momentum p,, particle 2 at
r, with momentum p,, and so on, at a time ¢. The one-particle distribution
f1(ri;py) defined as the number density at a time ¢ for finding a particle at r,

tHuang (87).
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with momentum p, is given by

Silrspt)= jdrz dpydrsdps - f(ry, 12,3, T P1, P2 Pas- -, Past)  (7.2)
The number density at a time for finding s particles atr,r,,...,r, with momenta
pl’p2""9ps iS

A=
T (A—s)

VELSREE A9 PRI B3)) fdrs+1 cedtydp o dpy f(Xy TPy Pas )

(7.3)

The normalization of f is given by

Jdﬂ codrydpydp f(Xy TGPy P )= jdr1 dp, fi(ri;pist)=A  (74)

The probability density p is obtained from the number density by division by A4:

1
pm~¢ﬁm~mpﬂ=zfm~¢nm~mnﬂ (7.5)

The space defined by the vectors r,---r,,p,---p, is referred to as phase space.
Its dimension is 64. We will denote a vector with components r, ---p, by ¢, so
that (7.4) reads

Jﬂf@0=A

Since p is a probability density, the average value of any function O({) in phase
space is given by

<0©>=J%MOWQ

Because the number of particles is conserved as a function of time, the density
must satisfy the equation of continuity:

0 .
% + div(pv) =0 (7.6)
ot
where v, is the velocity in phase space with components ft,f,,...,p,. The
divergence is taken in the 6A4-dimensional space. Using this equation and
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Hamilton’s equation, Liouville’s theorem,

dp
—=0 7.7
dt (7.7

can be obtained. The proof follows. First note that

dp 6p
— +Vp-
dt ot
From (7.6) we have
0
_% Vp-v,+pdivy, (7.8)
ot
where
diVVC Z[ rt r1+ )p:]
But
r,=(V,).H p;=—(V,)H
so that

divv, =0 (19)

The flow in phase space is like that of an incompressible fluid. Inserting this
equation into (7.8) and the result in the equation for dp/dt yields (7.7).

The Liouville theorem is the fundamental equation of kinetic theory. We
shall return to it later. For the present we shall consider directly the equation
satisfied by f,. Recall that f,(r, p)drdp is the number of particles in drdp at r
and p. The function f; changes with time because (1) as a consequence of their
velocity, particles leave the volume dr; (2) the particles are acted on by the mean
field forces (— VV;) changing their momenta; and (3) particles collide with each
other as induced by Z(v|r; —r;|).

If there are no collisions, the points in a volume element dp dr will simply
move into another volume element located at r+ vdt and p—(V,V)dt. The
change in f, in a time dt will be written (0f,/0t).,,. Therefore,

fl(r+vdt,p—(V,V)dt,t+dt)=f1(r,p,t)+(aaftl) dt
coll

or

af

al+va1 V,V-V,f = (Ml) (7.10)
coll

ot
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We assume that only binary collisions are important. The effects of a collision
will depend on the number of pairs in a volume element dr with momenta p,

and p, in the volume dp, dp,. Let this be F(r,p,,p,,t)drdp, dp,. The number
of particles leaving dr dp, per unit time because of collisions is

drdp, JJF(T>P1, P2, t)dw(p’, P, ; P1P2) dp, dp, (7.11)

Here dw is the probability per unit time that a pair of particles with momenta
p; and p, will, upon collision, acquire momenta p’; and p’,. Since we are interested
only in the total number of particles leaving dr dp,, we integrate over p, and p).
The value of p) is given by energy and momentum conservation. The value of
dw is

27[ : ’ 2 / /
dw(p', 53 P1sP2) = ;Jip(E)lf(pl—>p1,p2—>pz)|2dﬂ (7.12)

where j; is the magnitude of the incident current density, |v; —v,| and 7 is
the transition matrix. Inserting (7.12) into (7.11) yields

do

drd F(r,p,,p,t —
r Pl'[f (r, P, P2 )| Vy ledQ’

(P~ P, P2 =Py dp, dY  (7.130)
Similarly, the number entering volume element drdp, because of collisions is

do

drdm”F(r,p’lp’z,t)lv’l V2l P PP~ p)dp, A (7.13D)
Using detailed balance gives

|7 (P~ Py P~ P21 =17 (Py = P1s P, = o)
One may rewrite (7.13b) as follows:
/ U do- J
drdp, | | F(r,p}, p5 )|V, —vzlﬁdp2 dQ (7.149)
Combining (7.13a) and (7.13b) yields
ot

0 do
(L) = '”dpz dQ'|v, — sz@[F(r,p’pp’za )= F(r,py,py,1)] (7.15)
coll

To obtain the Lorentz—Boltzmann equation, one further approximation is made.
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It is assumed that the probability of particle 1 being at r with momentum p
does not depend on the position or momentum of particle 2. Hence

F(r’pl’ pZ,t)zfl(npl,t)fl(rspZ’ t) (715’)

Introducing this assumption into (7.15), one can now complete (7.10). One finds
that

afi

d
+V'Vrf1—VrV'V,,,f1=JdP2dQ'|V1—V2| LSSy~ fuf2] (116

ot aqQy

where [, is f;(r,p},t), and so on. The values of p, and p), on the right side of
this equation are given by conservation of energy and momentum applied to
the binary collision. Equation (7.16) is referred to as the Lorentz—Boltzmann
equation. Because of assumption (7.15), one expects it to be most useful for
dilute systems. To improve upon (7.16) it is necessary to consider correlations,
and therefore f, of (7.3), s=2 for correlations, and more generally, f; for
higher-order correlations. As we shall show, f, coupled only to f,,, that is,
f1 to f,, f> to f5. This is a consequence of the assumption that the particle
interaction potentials [see (7.1)] are two-body. This system of equations is called
the BBGKY (Bogoliubov, Born, Green, Kirkwood, Yvon) hierarchy. We shall
follow Huang (87) in developing these equations.

One begins with the Liouville theorem, (7.7):

ap
—4v,V =0 7.7
ot VeV (.7

In component form,

Vc'Vp = Z [t;-V,p+ pi'VpiP]

i

= YLV, H)V,, — (V. H) 'V, ]p

Introducing H as given by (7.1), one obtains

ap -
— 4+ hp=0 7.17
o apP (7.17)

where

;1,1 = Z[:Vr. + {F:_ Z an)(|l',-—l'jl)}'vpi:|

i#j

Y Py (7.18)
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Here
S=%v, +F, F=-vV (7.19)
m
and R
Py=KyVy, +KirV, Ky= =V, o|r;—r;)) (7.20)

The distribution function f; then satisfies

of _ Al p_ A .
o (A—s) .[dgs“ o (A—s) Jdisﬂhf*p (7.21)

where
a¢,, ,=dr, ,dr._ ,--dr,dp ,  dp,, , -dp,

We now break up h, into terms that depend on {; to {, and those that depend
on{ ,, toly

~ ~ ~ S A .
hy=h+h,_ + Z Z P (7.22)
i=1 j=s+1
Note that
f dl,, hy_p=0 (7.23)

since h involves momentum-dependent gradient operators linearly while K;;
depends only on spatial coordinates. Equation (7.22) would not be correct if
the two-body potential were velocity dependent.

Inserting (7.22) into (7.21) yields

of, -
—S+hs s— =
ot J; (A

A! s A .
jdcw 1 Z Z P ijP
—s)!

i=1j=s+1

Al N
- l_; -”drsﬂdl’sﬂmp;,sﬂ Jdcs+2p
- ders+1 dps+1( Z ﬁi.s+1)fs+1 (7.24)
i=1

from (7.20), one finally obtains the BBGKY hierarchy:

Il

Substituting for P,

is+1

6 N s
a{s+hsfs= - ders+1dps+l( Z Ki,s+1'Vp.-fs+1) (7.25)
i=1
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For example,

0
af: Ly hi S = “dr2 dp;K,2'V,, f2 (7.26a)
0
6fz hyfs= JJ\drs dp3 K3V, +Ky3V, )3 (7.26h)

To obtain the Lorentz—Boltzmann equation (7.16), one truncates (7.25) by
placing f5 and df,/0t = 0. Finally, one assumes that f,(r, p,r,p,) can be written
as f,(ry,p,)f,(r,, p,) thereby dropping two-body correlations.

The solutions of the Lorentz—Boltzmann satisfy conditions that follow from
conservation laws such as conservation of mass, momentum, and energy satisfied
in the two-body collision. Following Huang, let x(r,p) be such a conserved
quantity, that is,

x(r,py) + x(r,py) = x(r, p\) + x(r, p3) (7.27)

J= J(afl) x(r.p)dp =0 (7.28)
ot coll

We use expression (7.11), bearing in mind the symmetries satisfied by F and
dw.

Equation (7.28), including now explicitly the conservation of energy and
momentum, is

We can now show that

= Jdl’l dp, dp, dp30(E, + E, — E| — E})6(p, + p, — P, — D))
X W(p', Py, P1s P2) LF (N, P, 95, 1) — F(r, py, pa, ) 12(r, py)
Now we note that J is unchanged if under the integral spin we exchange p,
and p, or p, and p) together with the exchange of p, and p), or if one exchanges

p, and p), together with p, and p/,. This result is a consequence of the symmetry
of both w and F. Performing the exchanges and adding the results yields

J= fdpl dp, dp, dp,d(E; + E; — E| — E})é(py + P2 — P} — )

X W(p/p plzs P, Pz)[F(r’ p’p prz’ t) - F(l‘, PP t)]
x [x(r,py) + x(r,pz) — x(r, p}) — x(r, p3)]

Hence because of conservation condition (7.27), J = 0, proving (7.28).
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As a consequence of this equation, one obtains from the Lorentz—Boltzmann
equation the equation

Jdpx(r p)[ Zp' Z ‘ ,-af ‘]= 0 (7.29)

where
Fi = — V,.U

We now rewrite this equation so that no derivatives act on f, under the integral
sign. Thus

0
0= a_[dpr1+2~ dp - ZJ ("' a")fl
m

+ ZFIJ‘dpa(gil)—;Fijdp(%)fl (7.30)

Integrating the fourth term on the right yields zero. We introduce the definitions

JdpAf: _ lf
(Ay= [dpf, n dpAf,

1
=P
m

Note that n, the number of particle density, is a function of r and ¢. Equation
(7.30) becomes

=i<nx>+Vr‘<nVX>=<"V'V,X>—<£F'Vux> (7.31)
ot m

The functions n and F can be removed from inside the brackets since they do
not depend on p.
For conservation of mass, y = m,(7.31) becomes the equation of continuity:

%’: +V, () =0 (7.32)

where
u=v) (7.33)

For conservation of momentum, y = mv,

0=é(nv)+V,-n<vv> —lnF (7.34)
ot m
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where the dot product in the second term is with the v that immediately follows the
dot. We now replace {vv) as follows: ’

dvww) ={(v—u)(v—u)) + uu

Substituting in (7.26) and using (7.24), one obtains

1
n[—a—‘f+(u-V)u]=—nF+V~n<(v—u)(v—u)> (7.35)
at m
The pressure tensor P;; is defined by
Py =mnl(v; —u)(v; —u;)) (7.36)
so that
1 >
n[a—u+(u-V)u}=nF+lV-P (137
ot m m
where

«— aPi‘
VP =Yg

Problem. Prove that this quantity is conserved in a two-body collision.

Finally, we exploit the conservation of energy by letting y = %|v —u|?. The
analysis is straightforward. The result is

oT 2 2o

— 4+ .VrT+_V'~ _—__,PA 7.38
n o nu 3 q 3 (7.38)

where

ij
and
1/0u;, OJu;

A=~ 2+ 7.40
J 2(axi 53(}) ( )

T is the temperature in energy units:
T=4(v—up?
The vector q measures the heat flux:

q=ind{(v—u)lv—u>y (74))
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The exploitation of (7.32), (7.37), and (7.38) requires evaluation of the average
values indicated by the bracket and therefore knowledge of f,. If, for example,
one assumes local thermal equilibrium, so that f, is given locally by the Maxwell
distribution,

",
(2nmT)>*?

—(m/2T)v —u)?

fi=

one obtains the equations describing nonviscous hydrodynamics. If f, is
improved by a first-order term, one obtains the Navier—Stokes equation for
viscous flow [see Huang (87]. Therefore, the equations of hydrodynamics are
an approximation to the Lorentz—Boltzmann equation obtained by averaging
that equation over an assumed distribution function.

A. Quantum Transport!

The discussion above is classical so that the question of quantum effects naturally
surfaces. Of course, the exact evaluation of the quantum effects requires the
solution of the quantum-mechanical many-body problem. What would be useful
would be a statement of the quantum problem, which is similar in form to the
Lorentz-Boltzmann equation. The analog to the one-particle distribution
function is given by one-particle Wigner function (30) defined by

3
Swrk1)= (%) jdroeik"Ow*(r — 3ro, Y (r + 3¥o, 1) (7.42)
74

or

IV 1 I
fw(r,k,t):<ﬁ) Jdroe ik '°p<r—§ro,r +§ro,t) (7.43)

Integrating fy with respect to k yields

wa(r, k,t)dk = p(r,t) (1.44)

Taking moments, one finds that

wa(r, k, t)k dk = (;_J J'ko'droiVoe-“‘"w*(r - t)t//(r + %%)

(L) T faroem Loty

{Carruthers and Zachariasen (83); Zachariasen (85).
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_ 1 3 —ikero 1 * To ro
=(g5) [ [aroe ] = (W (r=3 e (e +50))
1 * N ro ro
+E¢ (r 7,t)le<r+2,.t)J

J fwr k) P dk =jr, ) (7.45)
m

or

Finally,
pZ
J Sw(r, k, t)ﬂ dk = K(r,t) (7.46)

where K(r,t) is the kinetic energy density. [The reader should verify (7.46).]
These results, (7.44), (7.45), and (7.46), are identical to those that can be obtained
using the classical distribution function. But the Wigner distribution is not a
probability distribution, as is the case for the classical distribution. This follows
because fy is not positive definite. Because of the close similarity to the
Boltzmann distribution function, it is not surprising that f, satisfies a
Lorentz—Boltzmann type of equation. To demopstrate this, evaluate 0 fg/0t
using the Schroédinger equation:

L Oy Lo
lhﬁ Hy and th—Hlp

assuming H to be Hermitian. One obtains

(4 o vy

Replace H by — (h*/2m)V?* + V, where V? operates on the dependence on the
spatial coordinates r — ro and r + 1ro. The result, after some simple algebra, is

oo e om

In the limit where V is assumed to be smooth, so that
Yo l'o‘
V(r+7) = V() + vy
(7.47) becomes

af’” mvrfw VV-V,fW=0 (7.48)
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identical with the Lorentz—Boltzmann equation (7.15) when the collision term
(0f/0t)con 1s zero. Equation (7.48) is known as the Vliasov equation.

This treatment can be generalized to the many-body problem, employing an
A-particle Wigner distribution function [see Zachariasen (85)]

f(vg)(klarl’kz’r?,s'~"kA’rA’t)
1 34
= <£> Jdr’l J‘drlA exp(—iZk, r)W*(@r, —3r,,...,r,— 31,1

W, + I, e+ 10,,0) (7.49)

One can, in analogy with the procedure used to derive the BBGKY hierarchy,
define reduced distribution functions 1§ by

f(s) = (27!)3s dl‘s+ 177 drA dks+ 17" dkAf(N) (7'50)
w w

Applying the Schrodinger equation to (7.49), one finds a set of equations in
which [ is coupled to f§* Y, the quantum analog of the BBGKY hierarchy.
We shall not pursue this discussion further since as far as this author knows,
no application of these quantum equations to heavy-ion reactions has been
made.

B. Applications

Before it is possible to apply the Lorentz—Boltzmann equation to heavy-ion
reactions it is necessary to take the Pauli principle into account. The necessary
modification has been derived by Uehling and Uhlenbeck (33). Instead of (7.16),
one obtains

0
§+V~V,f1 —V, V'V, f;

d
= JdpldQ’|v1 - Vzld—;;, {f/1flz(1 - =)= f1f:(1 —f,1)(1 -f'z)}
(7.51)

The additional factors are intuitively obvious. Scattering out of p; and p), in
p: and p, is not possible if the states p, and p, are occupied. Equation (7.51)
is referred to as the Boltzmann—Uehling—Uhlenbeck equation (BUU).
Aichelen and Bertsch (85); Aichelin (86) [see also Kruse et al. (85) and
Stocker et al. (81)] have applied (7.51) to the study of heavy-ion reactions. [For
additional references, see Aichelin (86).] Since the equation is classical, its use
is limited to sufficiently high energies. At very high energies the intranuclear
cascade model, discussed in Chapter IX, and to which (7.51) reduces, is
appropriate. At low energies, where the Pauli blocking reduces the impact of
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the collision term, one may use the time-dependent Hartree—Fock (TDHF)
method, discussed in Section 8. Equation (7.51) applies when the collision term
and/or the mean potential, V (which can be neglected at high energies), are
significant. In their studies, Bertsch and Aichelin have investigated !>C + '°0O
at 25MeV/A4, 2C 4 '2C at 84 MeV/A4, %0 + '°7Au at 25 and 250 MeV/A4, and
12C 4+ 197Au at 84 MeV/A. The collisions with °7Au are most important since
one can study the progress toward equilibration, the possible presence of hot
spots, and other local properties, such as density and local thermal equilibrium.
One can also study the validity of the spectator model in which it is assumed
that the reaction occurs only in the region where the projectile and target nuclei
overlap.

Predictions can be made only for single-particle spectra and angular
distribution. For the light nuclei, Coulomb effects are neglected, while for the
heavy nuclear targets, Coulomb effects are neglected after the first nucleon-
nucleon collision.

These authors find that the course of the reaction is determined by the relative
importance of the mean field, the collision term, and the Pauli principle. At the

] |
84A MeV C + Au
- -1
180 fm/c
0.5 p— ° — 05
0000° %0004
@ 0000°° o)
R = =1 <
2 5
e 120 fm/c =
£ £
d o
e o =
= %009 S
° w
0000’ -
= ¢¢ J:
40 fm/c °
0.5 f— °°°° ~ o5
oa
o Doooo 0
-180 +180, - 180 180
9 (deg)

FIG. 7.1. Angular distribution and average kinetic of emitted protons as a function of
time. Positive angles correspond to positive values of the x component of the momentum
of the emitted particles. [From Aichelin (86).]
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lower end of the energies considered, the mean field and the Pauli principle
dominate. The nucleons of the incident projectile are more readily trapped by
the mean field but have a longer mean free path. Fusion is the endpoint of the
reaction. The single-particle spectrum is exponential but with a slope parameter
increasing as a function of angle in agreement with the discussion in Section 6,
which relies on a Fokker—Planck equation in the momentum space. At higher
energies, 84 MeV/A, the multistep direct reaction as well the multistep
compound reaction become significant. The reaction thus shows a substantial
preequilibrium component which develops during the early stages of the
reaction. The mean field does trap some particles, so that the final stages of
the multistep compound leads to a final remnant compound nucleus which
oscillates radially. The angular distribution consists of roughly two components.
The preequilibrium reaction gives rise to a forward peaked anisotropic
distribution, while the remnant compound nucleus will emit isotropically in the
center of mass. At the highest energy considered, 250 MeV/ A, the collision term
dominates in the overlap region. However, these authors state that even at this
energy a clear-cut separation between participant and spectator nucleons is not
possible. The multistep direct reaction with its forward peaked angular

108

| 1 1 1B
84A MeV C + Au
108 = — Data Jakobsson et al
o o BUU equation
104
103
< 2
g 10
s
é 10! % 0 o —7
R 2 8 %4
S|g 1001 Q0 =9°(x10% 7 } T -
107! 2 § T
1072 jw [~ -
10-3 120° (x 10™%) _
—
1074 1 ] l
0 36 72 108 144 180

Energy (MeV)

FIG.7.2. Proton spectrum produced by the reaction '2C+!°7Au at 84 MeV/A
compared with the results of Jakobsson et al. (82). [from Aichelin (86).]
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distribution is dominant, and even in the overlap region complete equilibrium
is not achieved.

The predicted single-particle spectrum is compared with experiment
(84 MeV/A) in Fig. 7.1. Substantial agreement (note that this is a semilog plot)
is obtained. However, the slope parameter for the high-energy tails increases
with angle, in agreement with the momentum space Fokker—Plank equation
[see (6.31) et seq.] Correspondingly, the angular distribution is strongly
anisotropic, indicating the dominant presence of multistep direct processes (see
Fig. 7.2). A similar result prevails at 250 MeV/A. Equilibrium, which requires
an isotropic distribution, is not attained. The author concludes that the
hydrodynamic approach is not valid at 84 MeV/A, and this writer would
add—probably not at 250 MeV/A.

8. TIME-DEPENDENT HARTREE-FOCK METHOD*

The Lorentz—Boltzmann approach of Section 7 is not valid in the low-energy
domain (energies ~ 10 MeV/A). The Pauli principle and quantum effects must
be treated carefully. Because of the Pauli blocking, the effect of collisions of a
low-energy nucleon with the nucleons of the nucleus is strongly reduced,
increasing the mean free path so that at 10 MeV it is on the order of the diameter
of the nucleus. As many fewer nuclear states are involved, quantum effects
become significant. However, it is just under this regime that the mean field
approximation becomes valid. The nucleon is acted on by an average field
generated by all the nucleons in the nucleus whose coordinates essentially
disappear from the problem to be replaced by the parameters describing the
mean field (e.g., the nuclear radius). The zeroth approximation to the mean field
is the Hartree—-Fock approximation. To improve upon it, one can use the
time-dependent Hartree—Fock (TDHF), described in Section I11.3 of deShalit
and Feshbach (74). As shown there, for small deviations from the Hartree-
Fock approximation, one obtains the RPA approximation [Thouless (61),
Kerman and Koonin (76)]. However, in the case of heavy-ion collisions, we are
concerned with relatively large deviations. The method to be used was first
proposed by Dirac (30), and applied to large-amplitude dynamics and heavy-ion
collisions by Kerman and Koonin (76) and Bonche, Koonin, and Negele (76)
to a one-dimensional case.

We begin with a variation principle for the time-dependent many-body
Schrodinger equation:

55=0 8.1)

{Kerman and Koonin (76); Negele (82); Davies, Devi, Koonin, and Strayer (84); Pal (85).
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where

S= jdt jdrl coodrydr’ - dr, WP, -ooT,, t)
., 0
-[mat—H(rl---r,,;r’1 --~r;):|‘l‘(r'1---r;, t) (8.2)

Varying ¥* yields the time-dependent Schrodinger equation for W. The trial
function to be used in TDHF is a time-dependent Slater determinant:

l/jl(rl’t) |//1(r2,t) l/’l(rn’l)
_1_ Yo(r,t) Yu(ry,t) oo Yu(r,t)

'//su = (8.3)
n! : : :
ll’n(rl) t) l/’n(r29 t) o !I]n(rm t)
where the trial single-particle wave functions are orthonormal:
W)Y (r, 1)) =0, (84)

Inserting W, for W in (8.2) and varying with respect to ¥ yields the one-body
equation for y.;

W,

ih 5{' = Tl/,v + Z J.dr2dr11 dr’z‘/’:(rZ’ t)ﬁ(rl’ rZ; rlp r;)wu(rlzr t)'/’v(r,p t)
un

=(T+Vy, (8.5)

In this equation, T is the kinetic energy operator. We have assumed that the
potential v in H is two-body operator:

ory .11 ... T)= u(r;, T l':-,l';)é(l‘l —r) 0 — o, — T, )

o, —r;_)o(r;y — ;) O(r, — 1))
The quantity & in (8.5) is then

(I, Ty Ty, Ty) = 0Ty, T T, Ty) — U(F, Ty ToT)) (8.6)

Equation (8.5) yields a set of coupled nonlinear equations whose solutions give
the time and spatial dependence of the single-particle wave function y (r, t).
The time-independent Hartree—Fock equations are obtained by assuming that
each particle wave function has an exponential dependence on time. Note that
when v satisfies translational invariance, that is,

oy, ¥y, 1) = 8(r; — 1)o(r, —rp)u(r, —ry)
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then
0= [d(r; —r))o(r, —r}) — d(r; —r,)d(r, —ry)Jo(r, —r,)

Equation (8.5) becomes

i Ul
ot

=Ty, + ). Jdrz[lllt(rz)l//u(rz)%(rl) —YuE Y (e Y (r) My — 1) (37)

The first term in brackets is the direct or Hartree term, the second term is the
exchange or Fock term. The direct term is local, while the exchange term is
nonlocal.

The trial function, Wy, will not provide a complete description of the nuclear
state no matter how accurately (8.5) is solved, as only the correlations induced
by the Pauli exclusion principle are present. The correlations induced by the
potential v are not. As a consequence, one can expect that the matrix elements
of only single-body operators will be given accurately using ¥g,,. It would not
be correct to use W, to evaluate matrix elements of two- (or more) body
operators.

The TDHF equations (8.5) imply a number of conservation laws. One asserts
that the orthonormal condition (8.4) holds at all times ¢. To prove this, consider

d Jdnl/*(r O (r, 1) j ( i, + Ehp )

Substituting from (8.5), one obtains

% ey, O (r, 1) = — %Jdr[!//f(T+ MW, —yHT+Vi,1=0

The expectation value of any one-body operator that commutes with H is
conserved [Koonin (79)]. To prove this, we calculate

d 0 v ~ oy (r,t

gy YspO¥s2 = Zfdfdr [ V0 o r)(r, 1) + Y, )o(r, r')La(t )]

Replacing the time derivatives by the right-hand side of (8.5) yields
%(‘PSDO‘I’SD> = é\; drdr [y *(r, ) (O — #OW (¥, 0)]

where
H=T+V
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The proof is completed by replacing V by its definition in (8.5). Quantities that
are conserved include the expectation value of s#, the TDHF energy, the
expectation value of the total momentum, and the total angular momentum.

The time-dependent Hartree—Fock equations can be reexpressed in a
representation-independent form using the density matrix p(r,r’, t), where

p(r v = nJW*(r, I L)W, T, .., )dry - (8.8)

The expectation of a one-body operator Zié(ri, r;)is

CP*OW D = | O, vp(r,r, t)drdr’) = tr Op (8.9)

where the trace is taken with respect to the spatial coordinates. We note another
property of p using determinantal wave functions, (8.3), for ¥. In that case

P T5t) =Y Y (5, WA, 1) (8.10)
m
and
Jp(r, 0o, r”; )dr’ = p(r, 1", 1) (8.11)
Or in operator language,
pP=p (8.12)

In terms of p, (8.7) becomes

W,
ih(% =Ty, + J\dl'zp(l'z, Fo (e — T (ry, 1)

- JerP(rla Fo o(r; —ro ) (ry) 8.13)
which we abbreviate as follows:
0
ih—a'”t—“= Jh(rl,rz; W) dr, (8.14)

It is now possible to derive the equation of motion for p using the representation
(8.10). One obtains

0
lh£ = JerEh(r’ r2’ t)P(rz, rla [) - p(l’, l'2, t)h(l'2, rla t)] (8'15)
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Equation (8.15) can be written

iha—p =[h,p] (8.16)
ot

The one-body Hamiltonian, h, depends on p, so that (8.15) is nonlinear, as is
the equation for ..

Equations (8.12) and (8.16) are the starting points for Baranger and Vereroni’s
(78) formulation of the adiabatic limit to TDHF. These authors point out that

p=e¥pje X (8.17)

satisfies (8.12), where p, is time even and satisfies pé = po- When y is sufficiently
small, p may be expanded in a power series in terms of the odd and even
components of p. The equations relating them is obtained from (8.16). By
constraining p, to be time even, the odd-time dependence is given by y.

We return to the TDHF single-particle equation (8.5). To complete the
description of this equation, one needs to specify the interaction potential, 7,
and the initial conditions. Integration of these equations is a very large task,
so that one seeks to minimize the labor involved subject to the condition that
no essential physics be lost. In this case, one selects a § that leads to local mean
field, V, in (8.15). Toward this end one starts with the Skyrme potential [see
Eq. (VII.18.24) in deShalit and Feshbach (74)] which leads to (VII.18.29) in the
same reference for the single-particle Hamiltonian H(r). Most of the calculations
do not keep the spin-orbit terms, while the terms in the gradient of the density
are replaced by a Yukawa-type interaction. The exchange properties of the last
are chosen so that the resulting potential is local. Finally, one notes that
(VII1.28.29) of deShalit and Feshbach (74) is correct only for a stationary system
such as the ground state. For moving system, (VI1.18.29) of the same reference
is written in a Galilean invariant form. This means that terms like pT, where
T is the kinetic energy density 3|V, |2, are replaced by pT — J? where,

J=3Im [y*vy,] (8.18)

The resulting single-particle Hamiltonian is

hz
H= JH (r)d(r) = Id(r){z—m(Tn + Tp) + 3to[ (2 + Xo)pup, + 3(1 — xo)p7 + p;)]
+ %(tl + t2)[(pn + pp)(Tn + Tp) - (Jn + Jp)z]
+ %(tZ - tl)[pnTn - Jf + ppr - ley] + %ta(Pnpﬁ + ppp:)}

+ 30LE(pn, pa) + E(pps )] + V.E(prs ) + Clpp pp)  (8:19)
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TABLE 8.1 Parameters of the Effective Hamiltonian
Density [Eq. (8.19)]

SK 11 SK 111 Local
to(MeV-fm®)  —10449  —33347  —497.726
Xo 4.01 1.743 0
t,(MeV-fm®) 585.6 395.6 0
t,(MeV-fm?) -27.1 —95.0 0
t;(MeV-fm°®) 9331.0 14,000.0 17,270.0
v.(MeV) —444.85 —355.79 —363.044
v,(MeV) —868.63 —619.60 —363.044
u(fm™1) 2.175 2175 2.175
m*/m 0.58 0.76 1

Source:  Negele (82).

The quantities E; and C are defined as follows:

—plr—r|
E,(pur py) = ”dr dr's pdT)PHF)

e
Ir—r'|

Clop py) =3¢’ ”d' ar PA0PT)

lr—rj

(8.20)

The parameters of this Hamiltonian are to ty,t,,t,,¢5,0;,0,, and u. The
parameters [see discussion in deShalit and Feshbach (74, p. 626)] are fixed by
the volume, surface, symmetry energies, and the value of the effective mass, m*.
The value of the parameters are listed in Table 8.1 for these variants of the
Skyrme potential.

The Hamiltonian governing the evolution of the single-particle wave function
will have the form [see (VII.18.33) in deShalit and Feshbach (74)]

h? |
—-V—V+Um+-(VI+1-V
2m* *) 2i( )

where m*, U, and I depend on the densities and currents present in (8.19). A
list of the calculations done with each of the forces above is given by Negele (82).

We turn next to the initial conditions obtained when the ions are far apart.
Each ion is described by a Slater determinant. The single-particle wave functions
are given by solutions of the Hartree-Fock equations boosted to the initial
velocity of the ion. If the solutions of the Hartree-Fock equations are /°(r)
with energy ¢,, the boosted initial wave function is

tﬁ‘j’(r, t) = e—ih(sv+E/A)tei(K/A)-r|/,(v0)(r _ Vt) (821)
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where E is the kinetic energy of the ion and #K is its momentum. The density
matrix and potential energy transform as follows:

P(i)(l', l", t) — eil(/A.(r—r’)p(O)(r —t, r— V[) (822(1)

and
VO(r,r't) = KA~ yOn vy v —vt) (8.22b)

The Slater determinant formed using ¥ cannot be factorized into a wave
function, depending only on the center-of-mass coordinate and a wave function,
depending only on coordinates relative to the center of mass, R. The latter wave
function will also depend on R. However, it vanishes when R is outside the ion.
Therefore, one is dealing with a center-of-mass wave packet 2R in diameter,
where R is the nuclear radius. The corresponding spread in the center-of-mass
momentum is

h
Ao =——
pcm 2R

and the spread in energy is

AE h

E  RQmAE)'?

For an oxygen beam whose energy is 2 MeV/A, AE/E = 0.07, suggesting that
the results of the TDHF approximation for light projectiles has a limited validity.

A. Collision of Semi-infinite Slabs

The collision of two semi-infinite slabs of finite thickness permits great
calculational simplifications. In addition, slab collisions permit a clear-cut study
of the behavior of the longitudinal degrees of freedom. This is especially
instructive because in the fully three-dimensional collisions the coupling between
longitudinal and transverse motion proves to be weak.

The single-particle wave functions are of the form f(x, y)@,(z, t)x.,» Where x
is a spin-isospin wave function. When f(x, y) is a plane wave, exp (ik , *r), where
hk | is the transverse momentum, the function, ¢,(z,t) satisfies, as indicated, a
one-dimensional time-dependent Schrddinger equation. The interaction
potential uv(r,r’) is given by

—plr—r'|
B(n,F) = tod(F — ') + L130(r — 1')p(r) + V°e|_—’l 1644p) (823
uir—r

where P, is the space-exchange operator. The combination (32 + ;5 P,) is chosen
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so that the resulting mean field, V(z,t), is local and has no spin or isospin
dependence. Substituting in (8.4) yields

Vo [® ,
Wmh%ﬂmH%@%ﬁ+hgj dz plz, 1)e ™71 (8.24)
[T

and

2 22
00 _ 12 0%,

ot 2m 0z

+ V(z, t)p, (8.25)

Initially (¢t = 0, not boosted), ¢,, is the self-consistent Hartree—Fock solution of

h* d*

©) _
=~ 2mdz?

o) + V(2)$,” (8.26)

To complete (8.25) and (8.26) an expression for p(z,t) in terms of ¢, is needed.

T T Y T T T T

T 1] LJ LS e
0 E/n=.5MeV t=0_|
-

p(2) (Fm™)

10.625 |

1+075 |

t=0875

T

N 1+1125 |
—
N 1:1.25 |
—h
o 1:1.375_
A
B 1=1.5

45 -2 -9 -6 -3 0O 3 6 9 2 I5
Z(Fm)
FIG. 8.1. Density distributions for E/A = 0.5 MeV [From Negele (78).]
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We begin with (8.10). Initially [not boosted; see (8.22)],
(0) ) 2 dk 0)(,\|2
pNz) = XY, (r, 1) =4) Wﬂ(kl)ltbn (2)|

The integration on k, covers the range from ¢, to &, the Fermi energy, with
the result

pO2) =2 4,160z (8.27)
where
2m
A, = h? (er — &) (8.28)

Since there is no coupling between the transverse and longitudinal modes, p(z, t),

—_ t=0
0.10F

3

- — T T T T T T T
O'ZOE E/a=3.5 Mev j
J

p(Z)(fm

-lé -1'2 .9 -6 -3 6 '3 éi E 15
Z(fm)
FIG. 8.2. Density profiles p(z,t) at sequential times t, specified in units of 10~ 2!s, for a
cm energy E/A =3.5MeV. [From Negele (82).]
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as needed for the calculation of V(z,t), (8.24), is
p(z,t) = ZA,|p,(z, 1) (8.29)

The initial conditions are obtained by boosting the wave functions appropriately
[see (8.21) et seq.]. The solutions are obtained by numerical integration of (8.25)
using (8.29). In the calculations to be reported below, the constants used are
taken from the “local” column in Table 8.1. These yield a nuclear matter density
of 15.77 MeV per particle at kp = 1.29fm~?,

Figures 8.1, 8.2, and 8.3 give the density profiles as a function of time for
the incident energies 0.5, 3.5 and 25 MeV/A. In the first (Fig. 8.1), fusion is
indicated. In Fig. 8.2 the two slab pass through each other, but the final states
of both systems are highly excited. In the high-energy case, fragmentation occurs.
A detailed examination of these examples reveals two phenomena: (1) because
the collision modifies the relative phases, the original coherence of the
single-particle wave functions is destroyed; and (2) strong dissipation occurs.
The second is related to the first since the destruction of the coherence
characteristic of the ground state leads inevitably to excitation, so that some
of the initial kinetic energy is converted into excitation energy. The large loss
of kinetic energy is shown in Fig. 8.4. There are some energies, for example,
near E/A =2 MeV, for which the energy loss is reduced. The loss of coherence
occurs because the changing mean field affects each single-particle wave function
differently, as can be seen from Fig. 8.5..-Importantly, one sees that although
two-body collisions are not included, the variety of phenomena, especially
the large dissipation observed in heavy-ion collisions, is reproduced by
the TDHF.

B. Collision of Realistic Systems

The integration of the time-dependent single-particle equations obtained from
(8.19) by varying y¥* is a formidable task. One must keep track of (4, + A4,)
complex numbers in a (3 + 1)-dimensional space. Simplifications in addition to
those already described are essential for a programmatic study of many cases.
As we shall see, these involve restricting the functional dependence of the
single-particle wave functions, effectively decreasing the number of degrees of
freedom of the system. Such constraints will reduce the dissipation and increase
the time required to establish equilibrium. With this caveat in mind we shall
now proceed to describe two simplifications commonly used. [See Davies, Devi,
Koonin, and Strayer (84) and Negele (82) for a more complete discussion of
these and other methods.]

One procedure reduces the dimensionality to 2 + 1 dimensions by assuming
axial symmetry. In the “clutching” model [Koonin, Davies, et al. (77)], the
single-particle wave functions are taken to be

¥, (0) = 1, (r, 2)e"™? (8.30)
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FIG. 8.3. Density profiles as a function of time for center-of-mass energy E/A = 25MeV.
[From Negele (78).]
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FIG. 8.4. Density profiles and velocity distributions for separating slabs showing particle
emission. Only the left-hand plane is shown for this symmetric collision. The velocity
is specified by f = v/c. [From Negele (82).]

In this equation cylindrical coordinates are used, the symmetry axis is along z,
and Am,, is the angular momentum around the symmetry axis. The single-particle
time-dependent equation for ¢, now reduces to an equation for y,. The wave
functions ¢, are regarded as intrinsic wave functions of a rotator as in the
Bohr—Mottelson—Nilsson mode. One must add to the Hamiltonian of (8.1) the
rotational energy in the form L?/2.#(p), where L is the initial angular momentum,
a constant of the motion, and .#(p) is the moment of inertia. The rotation is
about an axis perpendicular to the reaction plane. The moment of inertia is
taken to be that of two point masses a distance R apart when the colliding
nuclei are not overlapping:

A4y g

52 m
A + A,

point —

When the nuclei overlap (taken to be when the overlap density is one-half the
saturation density), the rigid moment of inertia is used, that is,

S rigia =27 der dz(z* + r)p(r, 2)
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FIG. 8.5. Contributions of individual single-particle wave functions for the collision
shown in Fig. 8.2. In the upper graphs, the mean field is denoted by the long-dashed
line, with the scale shown to the right. The contributions to the density of the lowest
orbital and third orbital originating in the left slab are indicated by the solid and
short-dashed lines, respectively. The bottom graph displays the contributions of the
second and fourth orbitals at the final time. [From Negele (82).]

In a second procedure referred to as the “2D frozen approximation” [Devi and
Strayer (78), Koonin, Flanders, et al. (78) ], it is assumed that y, can be written

Vur, ) = 0,(x,y,)1,(2) 8.31)

This approximation is based on the presumption that most of the dynamical
effects occur in the reaction plane, that is, that there is little change in the z

UL 133 T O
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dependence of y, with time. This ansatz is borne out by the few
three-dimensional calculations that have been performed. The function y, is
chosen at t = 0 to be a harmonic oscillator wave function whose scale is chosen
so as to minimize the Hartree—Fock energy for the separated nuclei. This model
has an important advantage over the clutching model in that it permits the
excitation of nonaxially symmetric modes, thereby permitting more possibilities
for energy dissipation and a more rapid approach to fusion and equilibration.

A further approximation, the “filling approximation”, is made with respect
to open-shell nuclei whose Hartree—Fock states would show a high degeneracy.
For these cases the expression for p (at ¢t =0) given by (8.10) is replaced by

PO = Lm0 X(r', 0) (8.32)

where n, are the fractional occupation probabilities. This quantity is adjusted
so that the resulant mean field is spherically symmetric; that is, n, = 1 for filled
shells and equal to m/2(21+ 1) for a shell of orbital angular momentum !/
containing m particles. Moreover, these probabilities are assumed to be time
dependent.

The TDHF theory provides a microscopic understanding of the macroscopic
parameters described in Sections 1 to 5. Good qualitative understanding or
agreement is obtained for the most part. There are discrepancies. For example,
the experimental values of the widths of the charge and mass distributions are
very much larger than the TDHF values. Cross sections cannot be obtained,
as that would involve calculating the matrix elements of a many-body operator.
The TDHF method is accurate for the matrix elements of one-body operators.
In view of the approximation made, more precise methods for evaluating their
validity and in estimating the theoretical error on the TDHF calculations are
needed. At the present time, tests are made by comparing the resuits obtained
using, for example, the models described above with each other and/or with
three-dimensional calculations for various cases, colliding nuclei, energy, and
angular momentum.

We consider fusion first. A good example is shown in Fig. 8.6. More generally,
a fusion event is defined as “one in which the coalesced one-body density survives
through at least one rotation or several oscillations of its rms radius” [ Davies,
Devi, Koonin, and Strayer (84)]. The fusion cross section is defined by the
equation

Gor = K_Lglf(zur D=5+ D2 =+ 17 (8.33)

Note that this equation differs from (2.5) in that it leaves open the possibility
that the orbital angular momenta from I/ =0 to [ =1,, — 1 do not contribute to
the fusion cross section. For a given reaction, the values of l,, and I, are
determined by interpolating TDHF calculations for various values of I
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FIG. 8.7. Fusion excitation functions for (a) !2C + '®0O and (b) 2C + 80 collisions are
compared with the experimental data. [From Krieger and Davies (79).]

TABLE 8.2
(lM)max

System TDHF Liquid Drop
160 + %0 31 32

160 + 27A1 45 43

160 + **Mg 42 42

160 + 4°Ca 62 58

285i + 28Gi 50 58
40Ca +%°Ca > 60 67

160 + 23Nb =71 86
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system. [From Negele (82).]
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An example of the agreement of experiment with theory is illustrated in
Fig. 8.7. One notes the linear dependence on 1/E in agreement with (2.7),
permitting a determination of the macroscopic parameters Ry and Vj of that
equation. This is shown in more detail in Fig. 8.8, where the value of /,, using
(2.6) is plotted against the TDHF results. In Table 8.2 we compare the maximum
vaue of [, as a function of energy beyond which fusion does not occur (as
discussed in Section 2, the compound nucleus cannot sustain higher values of
l,;) with the values obtained from the liquid-drop model [Cohen, Plasil and
Swiatecki (74)].

One of the surprising results obtained in TDHF calculations is the existence
of a minimum value of [, [,, of (8.33) which is greater than zero. This is referred
to as the angular momentum window. This is illustrated in Fig. 8.9.

We turn next to deep inelastic collisions. We restrict the discussion to heavy
nuclei, for in those cases the collision is dominated by the deep inelastic process,
as fusion is highly improbable. Consider the collision of *3¢Xe with 2°°Bi ata
laboratory energy of 1130 MeV (about 8.3 MeV/A4). The time evolution of the
TDHF proton and neutron potentials along the symmetry axis for /=100 is
shown in Fig. 8.10. We see the merging of the two potential wells to form a

. d?e mb
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FIG. 8.11. Comparison of calculated points with the experimental Wilczynski plot for
136Xe + 299Bi at E,, = 1130 MeV. The calculated points for various initial orbital
angular momenta are connected by a full line. [From Dhar, Nelson, Davies, and Koonin

(81).]
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FIG. 8.12. Equidensity contours at various times during a 86Kr + '3°La collision at
En,=710MeV and /= 100. The symmetry axis lies along the line joining the mass
centers of the projectile and target. All times are in units of 10™2's. [From Davies,

Sandhya Devi, and Strayer (79).]
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common well and then the reformation of the original two wells plus an
additional well. More about this later. A popular way of summarizing the
experimental data is the Wilczynski plot, in which the cross section contours
are plotted in the total kinetic energy, and 6, plane. Such a plot is shown in
Fig. 8.11. The TDHF calculations are given by the connected points, which plot
the total kinetic energy versus the scattering angle. Each impact parameter
(indicated by I} in a TDHF calculation yields a point on this line. It is presumed
that the line will follow the ridge of the cross section contours. We see the
characteristic very rapid drop on kinetic energy followed by a slower rate of
decrease. We also observe that the TDHF energy loss at “small” [ is not as
large as the experimental results require. This is a common failure of the TDHF
calculation (and the charge and mass distribution mentioned above). However,
apart from this problem, the TDHF results are in semiqualitative agreement
with experiment. One feature should be noted—namely, that there is a large
interchange of target and projectile nucleons. One may also use the calculations
to compare with the macroscopic phenomenology of Nix and Sierk discussed
in Section 2. These authors introduce the coordinates R, measuring the
separation of the ions, and o, the elongation.

The TDHF calculation predicts the early emission of neutrons in the process.
This occurs because the projectile nucleon energy in the common well (see
Fig. 8.10) exceeds the Fermi plus binding energy. A more unexpected
phenomenon is the production of an a-particle at scission. This is illustrated
in Fig. 8.12. Returning to Fig. 8.10, we note the formation of three wells at
2.4 x 10" ?'s. The well in the center governs the evolution of the a-particle.

The TDHF method thus provides good insight into the dynamics of the
low-energy heavy-ions collisions. Its major failure is that it does not provide a
method for the calculation of cross sections.
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