
CHAPTER VIII
 

HEAVYIONS
 

1. INTRODUCTIONi 

Heavy-ion physics is concerned with the reactions induoed Ьу nuclear projectiles 
whose mass number А is greater than or equal to 4. Nuclei ranging in mass 
number from the «-рагцсге to the uranium nucleus Ьауе Ьееп accelerated to 
energies varying from а few МеУ рег nucleon (МеУ/А) to тапу GeV/A. As 
this is being written, ап accelerator at CERN is producing beams of 160 nuclei 
with ап energy~ of 200 GeV/A; at Brookhaven, beams of nuclei ир to З2s with 
energies of approximately 15GeV/A Ьауе Ьесоте available. Experiments at the 
Bevelac at Berkeley Ьауе Ьееп performed with beams of mass number extending 
ир to uranium and with energies extending ир to 2.1 GeV/А. ТЬе capability оС 

lower-energy machines is shown in Fig. 1.1. Of course, to make the story 
complete опе would need to specify, as well, the currents that аге available for 
еасЬ ion species and energy. It is not appropriate here to describe the various 
strategems employed to obtain these beams. Usually, they involve the use оС 

several ассетегаюгв (two or three) operating in tandem. ТЬе plan in еасЬ case 
involves stripping the heavy-ion projectile of some or all of its atomic electrons 
Ьу passing the heavy-ion Ьеат through а stripper, generally а foil. ТЬе process 
increases in efТectiveness with increasing Ьеат energy. ТЬе resulting Ьеаеу ion 
will then Ьауе а large net charge, which permits its acceleration to very high 
energies using electromagnetic fields. ТЬе extraordinarily rich set of рЬепоmепа 

produced when а Ьеаму ion collides with а nucleus has three fundamental 

tBromley (84).
 
~Tbe energy of а 200 GeV/A ion equals 0.32 ergs/A!
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FIG.l.l. Ion energy in MeVjnucleon as а function of the ion mass for а variety of 
facilities as of 1984. [From Bromley (84).] 

sources: the strong electric field of the heavy ion, it large mass, and its сотп­
positeness. 

The magnitude of the electric field at the surface of а nuclei is given Ьу 

(1.1) 

а very strong field that decreases like 1/r2 with increasing distance R from the 
nuclear surface. The energy stored in the field outside ofthe nuclear surface is 

Z2e2 Z2 
Е=--= 1.2- МеУ (1.2)

R А 1 / 3 

which yields аn energy of 67.6 МеУ for 27 Аl and 1362 МеУ for 208рь. 

As а consequence of the strong, long-range electric field, it becomes possible 
for the incident heavy ion to excite the target nucleus electromagnetically. This 
phenomenon, referred to as Coulomb excitation, has Ьееn most important in 
the determination of the епегяу spectrum of deformed nuclei, permitting 
excitations to very high spin values. Аn example is given in Fig. 1.2, obtained 
Ьу 1165-МеУ 232Th projectile incident uроn РЬ nuclei. 



556 HEAVY IONS 

~.., 

:Ю+ ~ 

5 
..,'0 

е.,' 

~'o7­

2 - &~ 

">~ r:j....'O23­

->
Q,J 

~ 
3 

>­
с.:> 
а:: 
ш 
z 
ш 

Z 
О 
~ 
<i 2 
~ 

U 
Х 
ш 

О 

28+ 

'1;1'0
26+ 9i 

2"+ ~ 

22+ 

20+ 

18+ 

16+ 

14+ 

12+ 

10· 

8+ 

б+ 

4· 
2· 

Q:.J 
232Th 

FIG. 1.2. Partial level scheme of 232Th with the transitions seen in the Coulornb 
excitation Ьу 208рь. [From deBoer (84).] 
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The strong electric field сап, in fact, disintegrate the target nucleus. Atthe 
high energies available at the Bevelac, one сап approximately replace the 
incident projectile Ьу а Ьеат of photons (Weizsacker-Williams method) with 
the spectrum 

(1.3)
 

where the photon energy is поз. The photon сап Ье absorbed Ьу the target 
ejecting one or in some cases two nucleons. The cross section for the process 
is given Ьу 

(1.4) 

where ау is the photoelectric cross section. Note that а is proportional to Z2. 
The experimental evidence for this process is illustrated in Fig. 1.3. Неге the 
ratio ofthe cross section to that of 9Be is plotted for 180 beams with 1.7аеУ/А 

energy incident оп а variety of nuclei uр to uranium. Disintegration of the 180 

beams is observed. The solid line gives the cross section generated Ьу 

nonelectromagnetic interaction. [For this separation, see Friedlander and 
Heckman (85).] The deviation from the solid line increases approximately as 
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FIG.l.3. Beam-rapidity fragment production cross-section ratios (normalized to the 9Ве 

cross section for 180 at 1.7AGeV plotted versus mass number of the target. [From 
Friedlander and Heckman (84).] 
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Z2, in agreement with (1.4). There is some dependence оп Z in ау. Detailed 
calculations using an improved Weizsacker-Williams photon spectrum yield 
quite good agreement with experiment. 

Because of the intense electric fields, it is possible for pair production to 
occur in the col1ision of Ьеауу ions. ТЬе observed position energy spectrum is 
shown in Fig. 1.4 for several pairs of Ьеауу ions for the indicated projectile 
energies. ТЬе narrow peak at 300 keV has continued to escaped explanation. 

Because of its large mass, the angular momentum of а Ьеауу ion with respect 
to the center of mass of the target nucleus сап Ье very large. ТЬе angular 
momentum in units of h is classically given Ьу 

(1.5)kR = 0.22 

where Ар and A t are the projectile and target mass number, Е the projectile 
energy in the center-of-mass system in МеУ [=(At/At + Ap)E1abJ, and R the 
sum of the target and projectile radii in fermis. If, for example, Ар"" 48Са, the 
target is 108Pd, and E1ab= 205 МеУ, then kR = 153. Thus if these nuclei were 
to fuse, the resulting compound system could Ьауе а very large angular 
momentum. А proton at the same energy рег nucleon would Ьаее а kR value 
of 2.6. 

When а compound system of high spin is produced, the spin is, from the 
discussion аооуе, approximately perpendicular to the scattering plane. Neutrons 
will generaBy Ье evaporated, but being isotropic, these will not сапу off angular 
momentum. ТЬе isotopes formed in this way mау also decay Ьу у emission. 
For example, in the reaction 48Са e08Pd,4n)152Dy, an isotope of Dysprosium 
is formed. Its y-decay has been measured. Figure 1.5shows the gamma spectrum 
of the highest spin band. ТЬе number marking еасЬ line is the spin of the level 
in 152Dy emitting the y-ray. This band is based оп а prolate "superdeformation" 
described Ьу Bohr and Mottelson (62). [See also the calculations of Dudek and 
Nazarewicz (85).] These authors showed that nucleons moving in an axially 
symmetric deformed oscillator weBwould Ьауе а closed shell for nucleon number 
86 when the ratio of OJх ' the harmonic frequency transverse to the symmetry 
axis, is twice OJz,the harmonic frequency along that axis. ТЬе corresponding 
deformation д [see (VI.I0.14) in deShalit and Feshbach (74)] is i. 

Because ofthe large mass, the projectile has а very short wavelength. Using 

(1.6) 

the Х for 48Са is 0.067 fm with EJa b = 205 МеУ. As а consequence, one сап use 
the methods of physical optics, that is, one сап use the trajectories, obtained 
Ьу solving Newton's equations of motion, as describing the path taken Ьу the 
wavefront rays. Ву calculating the change in phase of еасЬ ray, one сап construct 
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FIG. 1.5. Gamma-ray spectrum in the superdeformed band in 152Dy fol1owing the 
108Pd(48Ca, 4n)1 5 2 D y reaction at 205 MeV. [From Twin et al. (86).] 

the new equiphase wavefront, thus taking the effect of the interaction into 
account (see р. 103). 

The Newtonian trajectory of the projectile in the Coulomb field of force 
exerted Ьу the target nucleus is of obvious importance below and in the neighbor­
hood of the Coulomb barrier energy. That trajectory is а hyperbola in the 
scattering plane given Ьу 

(1.7) 

where r is the distance from the center of charge of the target nucleus and () 
measures the angle made Ьу the vector from the scatterer to а point оп the 
trajectory with respect to the incident direction, as illustrated in Fig. 1.6. ТЬе 

ь 

scatterer 

FIG. 1.6. Coulomb trajectory. 
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angle Э is the scattering angle and 11 is the Sommerfield parameter: 

(1.8) 

Note that r -+ CIJ when f) = Э and also at () = п. ТЬе distance of closest approach, 
d, is obtained Ьу placing dr/d() = О. This yields () = n/2 + Э/2. Therefore, 

(1.9) 

while the impact parameter, Ь, is given Ьу 

11 Э 
Ь = -cot- (1.10) 

k 2 

Note that 11/k = ZtZpe2/hvk = ZtZp(e2/hc)(hc/2E). Numerically, 11/k = ZtZp/ 
1.37Е, where Е is in МеV and 11/k is in fermis. ТЬе straight-line asymptote to 
the hyperbolic trajectory is given Ьу 

у cos Э = х sin Э + Ь (1.11) 

where х is the incident direction and у is perpendicular to х. Finally, the classical 
difТerential cross section is 

аа Ь Idbl (1.12)
dQ = siпЭ dЭ 

Using (1.10), опе obtains the Rutherford cross section: 

аа (11)2 1 (Z Z )2 1 (1.13)
dQ = 2k sin4(Э/2) = 2~v~ sin4(Э/2) 

where и is the reduced mass. ТЬе cross section drops rapidly with angle and 
сап Ье quite large. For ехагпр]е, for 205-МеУ 48Са incident оп 2О8рь, d(]/dQ 
equals 56 свс" -!Э (fm)2, which at Э = 300 becomes 0.896 barn. ТЬе grazing angle 
Эgr , which will play ап important role in тапу of the discussions in this chapter, 
is given according to (1.9) Ьу 

(1.14) 

where R is the sum of the radius of the projectile R p and the radius of the target 
Rt• ТЬе trajectory corresponding to the scattering angle Эg r just touches the 
surface of the target nucleus. 
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FIG. 1.7. Properties of the grazing trajectory. 

As is clear from Fig. 1.6, the Coulomb field has аn efТect similar to that of 
а diverging lens [Frahn (66)]. The efТective source for а point Coulomb field 
is а line source. However, when the nucleus is black, completely absorbing, 
which as we shall discuss later, is the case for most of the energy range of 
interest and for а wide variety of target and projectile nuclei, the grazing 
trajectory and the corresponding source point (х = - bgr csc qJgr) аге of special 
importance. This is because (see discussion оп р. 414) the intensity beyond the 
target nucleus in the forward direction сап Ье ca1culated as if the perimeter of 
the great circle perpendicular to the incident direction acts as а source. If the 
path difТerence between the grazing trajectory labeled (1) in Fig. 1.7 and the 
trajectory passing through the opposite side labeled (2) equals the wavelength 
А, the intensity pattern will Ье of the Fresnel type. If it is much less than А the 
intensity pattern is of the Fraunhofer type. We obtain the conditions 

р» 1 Fresnel, р < 1 Fraunhofer (1.15) 

where 

kb . э 2 2 Эg r (1.16)Р = gr sш gr = 1J cos 2 

Thus when the Sommerfield parameter 1J is large, the angular distribution will 
Ье of the Fresnel type. This will Ье the case if the nuclei involved аге reasonably 
heavy. [Note: Frahn's р is i that given in (1.16).] The angular distribution in 
the geometric optics limit is illustrated in Fig. 1.8. In the physical optics limi~ 

diffraction oscillations will Ье present for Э ~ Эgр while for larger angles, the 
shadow region, Э> Эgр the cross section will decrease rapidly. 
Аn example of Fresnel scattering is shown in Fig. 1.9. The value of р for this 

case is 28. The angular region with the smooth and sharp decrease corresponds 

FIG. 1.8. Angular distribution in the geometric 
~г shadow-.J optics limit. 
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scattering to the ratio of the strengths of the real (V) and imaginary (W) parts of the 
optical potential. In each case V = 40 MeV. [From Satchler (75).] 

to the shadow cast Ьу the target. Large-angle scattering corresponds to small 
values of the impact parameter. For these values the incident trajectory would 
strike the target and Ье absorbed. Ап example of Fraunhofer scattering is shown 
in Fig. 1.10. The value of р for this case is 3. 

When the nuclear interaction is taken into account, another interference 
рЬепоmепа becomes important. In Fig. 1.11 we show the trajectories in the 
presence of а real Woods-Saxon nuclear potential acting between the heavy 
ions in addition to the Coulomb interaction [Glendenning (75)]. Trajectory 9 
is the grazing trajectory. Trajectory 1 is а Coulomb trajectory, and trajectory 
3 shows the effect of the nuclear interaction. The scattering angle for trajectories 
1 and 3 аге identical. If the interaction surface is free of absorption, опе сап 

expect fluctuations in the angular distribution. Figure 1.12, which given the 
angular distribution for the reaction БОNiе8О, 1БО)Б2Ni(g.s.), shows very large 
oscillations. Because this reaction involves the transfer of two neutrons, опе 

сап Ье certain that the nuclear interaction is involved. Baltz, Bond, Garrett, 
and Kahana (75) conclude that the absorption сотпропеш of the optical 
potential consists of two parts. Опе is the interior volume potential, which drops 
ofТ very sharply at the nuclear surface. The second is а surface derivative of а 
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FIG.l.11. Four classical orbits described in the text [Glendenning (75).] 

Woods-Saxon potential, which is much weaker in the nuclear surface region 
but stronger in the nuclear interior. The stronger absorption in the nuclear 
interior attenuates its contribution to the reaction, which therefore originates 
in the surface. The interference phenomena described above occurs because of 
the пеаг transparency of the surface region. 

The classical def1ection angle е plays ап important role in qualitative 
discussions. Its relation to the potential acting between the two nuclei сап Ье 

obtained from the WKB exprlssion for the phase shift д). [see Morse and 
Feshbach (53, р. 1102)]. 

(1.17) 

where k2 = 21J,/h 2E, и = 21J,/h 2V, and л = 1+t. The turning роцпв г., апс г. аге 
zeros of the respective integrands. Differentiating with respect to л yields 

Since 
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the first term in (1.18) is 

_ лh foo dr(~) 
J.l ro r r 

But the angular momentum лh сап Ье related to the def1ection angle Е>: 

so the integral becomes J.: dE>. А similar result is obtained for the second term 
in (1.18). ТЬе net result is then !E>t, where Е>, is the total def1ection angle, 
including the incoming and outgoing trajectories. Equation (1.18)becomes (the 
second integral yields just n/2) 

(1.19) 

ТЬе scattering angles Э and Е> аге not identical, as is illustrated Ьу the three 
trajectories in Fig. 1.12, with identical values of Э. Bearing in mind that the 
sense of rotation is defined with respect to (r х k), the value of Е> equals Э for 
case (а) equals - Э for case (Ь), and equals (Э - 2n) for case (с). Case (а) 

corresponds to а repulsive potential; case (Ь) and case (с), increasingly stronger 
attractive potentials acting along the trajectories. 

Finally, we consider collisions in which the complex structure of the projectile 
and target enter in ап essential fashion. ТЬе extraordinarily rich рЬепоmепа 

that аге а consequence have Ьееп only partially explored and understood. In 
peripheral collisions (d ~ R), elastic scattering, Coulomb excitation, inelastic 
scattering, and transfer reactions are the dominant рЬепоmепа. There are 
sometimes referred to as elastic and quasi-elastic scattering. As the impact 
parameter decreases (d < R), deep inelastic scattering, in which muсЬ of the 
kinetic energy of the incident projectile is converted into internal energy occurs 

а 

ь 

-tЭ' 
---J-

с 

FIG. 1.12. Scattering angle Э for difТerent trajectories. 
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FIG. 1.14. Contour plots at sequential times of the density in the center of mass 
integrated over the погmаl to the reaction plane [ог 160 + 4ОСа Collision at the 
laboratory energy of 315 МеV. ТЬе initial angular momentum is 80 h. [From Negele (82).] 

so that the kinetic energy of the final nuclei derives mostly from the Coulomb 
repulsion. In this class of phenomena, which occurs for the most part with the 
heavier nuclei, the nuclei тау undergo smal1 changes in А and Z as several 
nucleons are interchanged while the angular distribution is strongly anisotropic. 
Final1y, under suitable conditions the projectile сап репепате and а compound 
system is formed. This reaction is referred to as fusion reaction. If the compound 
system lives long enough to randomize completely, а compound nucleus in an 
excited state is the result. These two classes of reactions, deep inelastic and 
fusion, are illustrated in Figs 1.13and 1.14,obtained Ьу using the time-dependent 
Hartree-Fock method (to Ье discussed later). The first illustrates fusion. We 
see that the two nuclei join forming а very elongated nucleus, which then 
proceeds in three complete rotations being reduced in size as it does so. ТЬе 

second illustrates deep inelastic scattering. Again the elongated nucleus is 
formed. But afterrotating through roughly 900, it breaks apart. Ап intermediate 
situation in which complete rotations occur butthe system does not fuse is 
referred to as fast fission. 

These qualitative considerations are summarized in Fig. 1.15, in which the 
range in angular momentum 1 (or impact parameter Ь) for which the various 
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р ...FIG. 1.15. Various reaction types as а 
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FIG.l.16. Decomposition of the reaction cross sections as а function of the total mass 
number A t + Ар for the Ni-induced reactions оп the even-A Sn isotopes around 
Ест = 220 MeV. Shaded bars indicate values for the total fusion cross sections; [иНу 

shaded bars give the values for the total quasi-elastic transfer cross sections. [From van 
den Berg, Henning, et al. (88).] 

processes discussed above are dominant is indicated. The crosshatched areas 
involve а mix of the two neigh boring types. The possible value ofthe partial 
cross section u(l) is bounded Ьу the geometrical cross section 2п';:Ч. For the 
low angular momenta, compound nucleus formation and more general1y 
fusion dominate, to Ье succeeded at higher angular momenta Ьу deep inelastic 
scattering. This is fol1owed Ьу quasi-elastic scattering, that is, peripheral (опе­
step) reactions, and final1y, for impact parameters greater than the interaction 
radius Ьу elastic scattering and Coulomb excitation. Of course, these divisions 
are пот sharp. Indeed, according to Rehm, Уаn denBerg, et al. (85), their 
experimental results indicate that the quasi-elastic processes gradual1y make 
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the transition to deep inelastic as single-particle transfers are replaced Ьу 

multistep processes. 
It is possible to establish а connection with the concepts employed in the 

discussion of the statistical multistep reactions discussed in Chapter УН (see 
Section 5 and Fig. 1.1). Note that the interaction time increases, as indicated, 
from large to smaH 1values, the formation of the compound nucleus involving 
the longest interaction time. The quasi-elastic processes аге identical withthe 
single-step direct reaction, the deep inelastic has аН the properties expected of 
the statistical multistep direction reaction, while fusion generaHy is аn example 
of the statistical muJtistep compound reaction. 

Of course, аН values of 1will contribute in а given reaction. In Fig. 1.16 we 
give аn example of the relative magnitudes of each contribution for the reactions 
induced Ьу 58,64Ni incident оп the various Sn isotones. The energy of the 58Ni 
Ьеат is 330 МеУ, while the 64Ni Ьеат has energies 341 and 380 МеУ. These 
energies correspond to center-of-mass energies roughly 30 МеV greater than 
the barrier energy. The proportions of each contribution will vary with the 
experimental situation. 

2. FUSION 

Let us now consider each of these regions in more detail. We begin with fusion. 
The discussion will Ье made in terms of macroscopic variables. The microscopic 
description is the subject of Sections 6 to 8. The macroscopic variables describe 
the relatively slow motions of the system. The microscopic description is 
concerned with the motion of the individual nucleons, which is relatively rapid. 
Оnе obvious macroscopic variable is the distance R between the centers of 
mass of the colliding nuclei. Another variable that measures the deformation 
will Ье defined later. Models using only the R variable are referred to as 
one-dimensional models. The potential energy of the colliding nuclei illustrated 
in Fig. 2.1 is taken as а linear combination of а central Woods-Saxon potential, 
the Coulomb potential, and the centrifugal potential. Note the minimum or 
"pocket," which decreases in depth as the orbital angular momentum 1 (and 
therefore the impact parameter) increases, until finaHy at 1= lь the minimum 
disappears. The depth of the pocket as weH as lь decreases as the product 2122 
for the interacting nuclei increases. For аn impact parameter below lb/k and а 

given energy, there will Ье а finite probability that the system will Ье trapped 
in the minimum for а time sufficiently long for the two nuclei to fuse completely 
and form а compound nucleus. That probability increases with the depth and 
width of minimum. In detail this is accomplished through mutual excitation, 
particle and cluster transfer, and Ьу interpenetration. t These processes occur 
not only in the pocket but more generaHy as the nuclei approach each other, 
with the result that some of the kinetic energy of the system is converted into 

;Interpretation and transfer of large clusters are not distinguishable. 
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R 

FIG.2.1. For the system 180 + 120Sn, the sum ofthe nuclear, Coulomb, and centrifugal 
potentials are shown for the indicated values of the angular momentum [. The horizontal 
line marks Ест = 87 МеУ. The turning points for various ['s are indicated Ьу dots. [From 
Glendenning (75).] 

internal energy. Thus Ьу the time the barrier region is reached, the kinetic 
energy тау already Ье reduced, facilitating the formation of the compound 
nucleus even when the initial orbital angular momentum exceeds lь. The соп­
version of kinetic into internal energy with the consequent slowing of the nuclei 
сап Ье described classically and macroscopically in terms of the action of а 

frictional force. Епспоп is invoked in classical models of the nucleus-nucleus 
collision. 

Instead of the transfer of clusters from опе nucleus to the other occurring 
in the potential minimum, it is clearly possible for them to Ье emitted before 
the compound nucleus is formed. The mass number of the final compound 
nucleus willthen Ье less than the sum of mass numbers of the two colliding 
nuclei. Moreover, its momentum will Ье less than the momentum of the incident 
projectile, since some momentum is carried off Ьу the emitted cluster, which 
сап, for example, Ье ап cx-particle ог heavier nuclear system. This process is 
referred to as incomplete fusion. This process is ап example of а precompound 
or the multistep compound reaction discussed in Chapter VH, in which the 
road to complete fusion is interrupted Ьу the emission of а cluster. It difТers 

from the discussion in Chapter VH in that the remaining fragment сап still go 
оп to fuse. 

The clusters сапу ofТ angular momentum. This is important because the 
compound nucleus тау not Ье able to support the large angular momentum 
acquired in its formation. Опе such bound is provided bythe Yrast line [see 



FIG.2.2. Fusion data from 12C+ 12C -+ 24Mg as obtained Ьу Kovar, Gessamen, et al. 
(79) (diamonds) and Namboodiri, Chulick, and Natowitz (76) (triangles). The solid lioe 
and circles are а result of ап Yrast line calculation for 24Mg Ьу Mii1hans, МШlеr, 

Neegagard, and Mosel (81) [From Mosel (84).] 

Fig.2.2 and Vandenbosch and Lazzarini (81)]. If the excitation energy and 
angular momentum faB to the right of the Yrast line, а compound nucleus will 
not Ье formed. If the angular momentum and energy carried Ьу the emitted 
cluster ог clusters are sufficient to гпоме the original values of Е and J to the 
left of the Yrast line, а compound nucleus сап Ье formed. А second limitation 
has Ьееn discussed Ьу Cohen, Plasil, and Swiatecki (74). The issue is the stability 
of а charged rotating nonviscous liquid drop. А rigid moment of inertia is 
assumed and the energy calculated for а variety of shapes. Their results are 
shows in Fig. 2.3. According to these calculations, the limiting angular 
momentum is about 100h for а nucleus with А ~ 130. However, for both lighter 
and heavier nuclei,the limiting values are considerably less. Again we see that 
the precompound emission of clusters mау Ье required if а compound nucleus 
is to Ье formed. 
А particular example of а precompound process is referred to as Jast fission. 

Of course, the compound nucleus formed Ьу fusion mау fission. Fast fission 
occurs beJore that compound nucleus is formed. In terms ofthe behavior shown 
in Figs 1.13 and 1.14 in fast fission, complete rotations do оссцг, but instead 
offusing, the system breaks арап. According to Gregoire, Ngб, et al. (82),during 
the rotation and as а consequence of the exchange of energy, momentum and 
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100 

100 
А 

FIG. 2.3. ТЬе сигме 1" is the angular momentum at which the fission barrier of а 

beta-stable nucleus with mass пиmЬег А is predicted to vanish. [From СоЬеп, Plasil, 
and Swiatecki (74).] 

mass, the system equilibrates and а different radial dependence of the potential 
V(R) develops. If this potential does not have а sufficiently deep minimum, 
fusion will not оссцг; fission will. The various possible situations according to 
Gregoire, Ngo et al. (82) are illustrated in Fig. 2.4. 

This last discussion brings the importance of time scales to our attention. 
The relaxation time Тn for the motion of the nucleons to Ье randomized and 
equilibrium established is generally much smaller (expect at small excitation 
energies) than the relaxation time for collective motion to disappear. The third 
time, Тарр , of significance is the time it takes the system to penetrate to the 
potential minimum. If Тарр is shorter than Тn , the system will arrive in the 
potential minimum before equi1ibrium is established. The compound nucleus 
will then Ье formed as described earlier. However, if Тарр > Тn , equilibrium will 
develop before the potential minimum is attained. As а consequence, а new 
interaction V(R) will operate. Fast fission ог deep inelastic scattering тау then 
occur. 

The simple one-dimensional interaction, V(R), does not take into account 
the role of deformation. From the point of view of the compound nucleus, the 
two nuclei, at their point of contact, for example, form а highly deformed system. 
The passage from that situation to the deformation characteristic of the 
compound nucleus follows from the nature of the dependence of the potential 
energy uроп the deformation as well as uроп R. This is shown in Fig. 2.5. Nix 
and Sierk (77) [see also M611er and Nix (76) and Krappe, Nix, and Sierk (79)] 
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FIG. 2.6. Locations of the binary macroscopic zero angular-momentum fission saddle 
points in the '-б plane for selected nuclear systems. These systems сап Ье formed in 
symmetric collisions of two neutron-rich fJ-stаblе nuclei. [From Nix and Sierk (77).] 

ca1culate the Coulomb and nuclear energy for а variety of shapes of the 
interacting nuclei. The ditТusivity of the nuclear surface, as well as the finite 
range of the nuclear force (central only), is taken into account. No single-particle 
etТects are included. Dissipation is neglected. The collision is head оп, that is, 
1= О. The collising nuclei are identical. The deformation is measured Ьу the 
elongation, (5, defined as 2 [ <Z2 >- <Z2 >], where Z is along the symmetry axis. 
The factor of 2 takes the elongation of both nuclei into account. Two points 
in Fig. 2.5 are important. Опе is the value of (5 and R at which the two nuclei 
are in contact. The other is the fission saddle point. As опе deforms the spherical 
compound nucleus, the potential energy increases arriving eventually at а 

maximum, the fission saddle point. If the nucleus has enough energy to pass 
over or репепате the barrier, fission will occur. If the contact point occurs to 
the left of tl\e fission saddle point, compound nucleus formation will occur. This 
is generally the case for light nuclei. If, оп the other hand, it occurs to the right, 
it must have enough energy to pass over the barrier to form а compound 
nucleus, as will Ье required for the heavier nuclei. The extra amount of energy 
beyond the barrier is known as extra push [see also Swiatecki (82)]. The 1= О 

situation for а variety of identical colliding nuclei is shown in Fig. 2.6. Clearly, 
systems whose total mass number beyond about А = 220 will have а low 
probability of forming а spherical compound nucleus since the fission saddle 
point for heavier compound nuclei lies far to the left of the contact point. The 
etТect of angular momentum (collisions with а finite value of the impact 
parameter) and of the energy of the colliding systems is shown in Fig. 2.7, where 
again the interacting nuclei are both 110Pd but the energy is now 20 МеУ above 
the barrier energy for 1= О. The fission saddle points for each value of 1 are 
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in the one-dimensional zero-angular-momentum interaction barrier. The dashed curve 
gives the trajectory for the critical angular momentum lcrit = 45. [From Nix and Sierk 
(77).] 

indicated Ьу the solid dots. The various lines leading from the contact point 
indicate the paths of the system оп the R-(J plane. For аН 1~ 45, the fission 
saddle points lie to the right of the trajectory, so that it becomes possible to 
form the compound nucleus. Оп the other hand, for 1> 45, аn extra pushbeyond 
20 MeV will Ье necessary. 

Swiatecki (82) has derived а simple algebraic expression for the extra push 
energy Ех • The final expression, including adjustment of constants through 
comparison with experiment, is given Ьу Bjornholm (82) as 

where 

(Z2) _ 4Z1Z2 + (Л)2 
А - (А А )1/3 (А 1/3 + А 1/3) 1 

еСС 1 2 1 2 сЬ 
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Оесау chains 

in 76 MeV 19F + 27 AI 

4N,ЗN1а 2N2a 1N2a, за 

FIG.2.8. ТЬе most likely chains in the 
reaction 76 МеV 19F + 27Аl are shown for 
difТering angular momenta of the сот­
pound nucleus 46Ti. Неа vy arrows аге for 
с-рагпсге emission, thin ones are for о 10 20 30 

nucleon emission. [From Stokstad (85).] Angular momentum 

Z 2) = 50.9[1-1.78(N1+ N 2-Z1 -Z2)J2
( 
А crit А 1 + А2 

(А А )4/3 (А 1/3 + А 1/3)2
[2 = 0.0105 1 2 1 2 (2.1)
сЬ А + А21 

and
 

f = 0.75 ±0.05
 

Fusion cross sections are determined Ьу observing the products of the decay 
ofthe compound nucleus formed Ьу the reaction. Usually, the compound nucleus 
will Ье highly excited and generally will therefore decay before they are detected. 
For light nuclei, nucleon and !X-particleemission is сотпрете. For high angular 
momentum states, «-рагпсте emission is favored (see Fig. 2.8). y-Ray emission 
becomes important near and below the threshold for particle emission. Fission 
is not significant for the light nuclei. For medium-weight nuclei, fission will 
сотпрете with пешгоп emission, especially for high-angular-momentum states, 
while charged particle decay will Ье less important because of the Coulomb 
barrier. For heavy nuclei only fission and пешгоп emission сотпрете. А statistical 
model calculation showing the competition between пешгоп and y-ray 
deexcitation for 164Er formed Ьу а Ьеат of 40Аг incident оп 124Sn is illustrated 
in Fig. 2.9. We see that the emission of four neutrons followed Ьу y-ray emission 
is the most probable decay chain. Ву observing the residues, опе сап verify the 
assumption behind the calculation leading to Fig. 2.9. 
А considerable help in this endeavor is obtained Ьу observing the multiplicity 

(Му ) of the emitted y-rays. These are related to the average nuclear angular 

40 
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momentum 1Ьу the empirical formula 

1= 2(М у - 4) (2.2) 

As is evident from this last discussion, the statistical theory of nuclear 
reactions (Section IV.7) plays ап important role in the analysis of heavy ion 
reactions. This is especially the case when опе measures the number of nuclei 
of а given type produced in the reaction. For fusion reactions, since each such 
nucleus is а consequence of the геаспоп, опе obtains а direct determination of 
the number of reactions that have occurred. Опе must add to this cross section, 
referred to as O"ER (ER == evaporation residues), the cross section that results in 
fission, о" гь to obtain the total cross section. However, both the deep inelastic 
and quasi-elastic сап contribute to the observed results, especially for the light, 
nearly symmetric, colliding nuclei. Statistical theory тау Ье used to separate 
the fusion and fission contributions. For heavier nuclei and higher energies, 
incomplete fusion тау contribute particuJarly for the larger angular momenta. 
Опе wouJd then find that the statistical theory would underestimate the number 
of «-рашстеэ, for example, produced. In the case of fissioning nuclei it is possible 
to determine the total momentum carried offby the fission fragments. Compared 
to the critical momentum, опе сап determine the missing momentum carried 
otТ before the system fissioned. Note that пешгоп emission from the compound 
nucleus will generally Ье spherical and therefore not contribute to the linear 
momentum balance. 

The characteristic symmetry about 900 of reactions involvingthe formation 
ofthe compound nucleus (see Section IV.7) сап Ье used to separate fusion from 
quasi-elastic and deep inelastic reactions. Applying directly the results of the 
statistical theory leads to comparisons with experiment that are quite good. 
Figure 2.10, which gives the experimental and statistical angular distributions 
in the reaction 12с e4 N, 6Li)2 0Ne, is а typical example. А simple classical 
consideration [Ericson (БОа); Ericson and Strutinski (58)] shows that under 
circumstances to Ье described below the angular distribution obeys а 1/sin 3 
low. Опе assumes that the spin of the residual nucleus and emitted particle are 
small with the consequence that the orbital angular momentum of the emitted 
particle that is perpendicular to the final momentum must align itself with the 
angular momentum of the compound nucleus (Fig. 2.11). Moreover, assume 
that the spin of the compound nucleus, 1, acquired from the collision is also 
orbital and therefore in а plane perpendicular to the original direction. The 
angular distribution is then proportional to the Dirac delta function д(kf' 1). 
То obtainthe observed angular distribution, we must average over the possible 
orientations 1: 

dO" 1 f27t ~ 1 f27t 1 
--"'~- д(kF'I)dф=-- д(lsiп3соsф)dф=-.- (2.3)
do. 2n о 2n о 2nl sш 3 

completing the proof. Of course, this result fails near 3 = О and n. The critical 
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FIG. 2.11. Diagram for classical calculation of the 
angular distribution. 

angle according to Ericson is j f/J, where j f is the spin of the emitted particle. 
Examples of the fit to this distribution are shown in Figs 2.12 and 2.13.Generally, 
comparison with experiment shows that the l/sin Э distribution provides а good 
fit near 900,but fails as one approaches the forward and backward directions. 

In summary, the statistical theory of nuclear reactions сап Ье used to (1) 
distinguish fusion from other reaction modes, (2) determine the spin of the 
compound nucleus formed, and (3) describe the decay of the compound nucleus, 
giving the yield of the particles emitted and their multiplicites. Fusion yields 
are also correctly given provided that one takes the density of final states to 
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FIG.2.12. Total «-рагпс]е angular distributions for Е; = 13.5 - 17.5 МеУ in 24Mg for 
incident energies of 48, 49, and 49.5 МеУ. The dashed lines аге least-squares fits to the 
function 1/sinO [Greenwood, Katori, et al. (72)]. [From Stokstad (85).] 

Ье the density of states of the compound nucleus at the fission saddle point 
[see Stokstad (85, рр. 115, 121, et seq.)]. In most cases the number of possible 
reaction paths is not small and even the statistical theory calculations Ьесоте 

quite complex. As а consequence, several statistical model computer codes have 
Ьееп developed. These аге listed to Stokstad (85, р. 125). Their use is discussed 
inthe accompanying text. Ап important simplification has Ьееп recently 
obtained Ьу Friedman and Lynch (83), who consider the time evolution of the 
evaporating systems. Their procedure should prove to Ье very useful. 

Typical complete fusion cross sections аге shown in Fig. 2.14. We note that 
in each of these cases the cross section falls оп two straight lines. For low 

http:FIG.2.12
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FIG.2.13. The center-of-mass angular distributions of fragments from the reaction 
107,109Ag + 2°Ne at E1a b = 175 and 252 МеУ. For fragment atomic numbers of Z > 15 
curves drawn through the data correspond to do/dQ '" (siпОсm) - l . [From Babinet, 
Moretto, et al. (76).] 

energies, below the intersection of the two lines, referred to as region 1, the 
fusion cross section O'CF equals the reaction cross section O'R' while for larger 
energies, region 11 O'CF« O'R' ТЬе one-dimensional radial model provides а simple 
explanation. In the low-energy region domain, the reaction, and therefore the 
fusion cross section, is given Ьу 

n 
O'R = O'CF = 2 I (21 + l)Т, 

k '=0 

where Т, are the transmission coefficients. Опе сап ca1culate these from the 
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FIG.2.14. Experimental fusion cross sections as а function of (l/E): (а) medium-mass 
system 4ОСа + 4ОСа; (Ь) heavy system 4°Ar + 121Sb. [From Lefort and Ngo (78).] (с) 

Fusion cross sections for 160 + 27Al compared with the formula of Glas and Mosel. 
[From Hodgson (78).] 

optical model. А rough analytic approximation is obtained using the sharp 
cutoff тodel, in which 

ТЬеn 

for 1~ L
Tl={~	 (2.4)

for 1> L 

(2.5) 
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Equation (2.4) corresponds to the assumption that for аН l's less than ог equal 
to L, а minimum in the potential V(R) exists which is of sufficient strength to 
trap the system for а long enough time for the interacting nuclei to fuse. For 
R > Е, this is по longer possible. The value of L is given approximately Ьу the 
effective wave number kB at RBmultiplied Ьу RB, where V(R) has its maximum. 
This recipe is verified Ьу ап optical model calculation. Thus 

V)1/2
L = kBRB= кя, ( 1 - : (2.6) 

so that 

(2.7) 

in agreement with experiment. Ву comparing with experiment, опе сап 

determine я, and VB • 

In region 11, that is, at greater energies, the collision does not necessarily 
lead to fusion. The potential does not have а minimum of sufficient strength 
to trap the system. However, fusion сап occur some fraction of the time if а 

sufficient interchange of mass and energy between the two nuclei has occurred: 
macroscopicaHy, if friction has slowed the system down enough. This 
slowing~down process is more effective as R decreases, апё for а sufficiently 
smaH R, Re, will lead to fusion. Опе сап calculate the probability of this 
occurring Ьу assuming that for r ~ Re, the wave function for the system 
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consisting of the colliding nuclei in this ground state is zero because of the 
probability of excitation and mass transfer. Using the WKB method for 
penetration through а parabolic barrier [Glas and Mosel (74, 75);Wong (72,73), 
one obtains 

hw 1+ е 2 п(Е-V в)/liro 

а =-R2 1n - - - - - - - ----::-- - ----,---- (2.8)
CF 2Е В 1 + е2п[Е-Vв-(Rс/Rв)2(Е-Vв)]fliro 

where hw measures the width of the barrier and Vc is the potential at R c. For 
high energies, 

one obtains 

(2.9) 

in agreement with experiment. At 10w energies, 

in agreement with (2.7). ТЬе quantity Vc is negative for Fig.2.14a, while for 
Fig. 2.14Ь and с, VC is positive. Empirically, 

rc = 1 ±0.07 fm (2.10) 

where А 1 and А2 are the mass numbers of the interacting nuclei. Of course, 
опе сап compute (JCF direct1yfrom the optical model with appropriate boundary 
conditions at Rc. 

There аге substantial disagreements of (2.8) with experiment which are 
exhibited when the cross sections for heavy-ion fusion reactions leading to the 
same compound nucleus are compared. One would not expect to the fusion 
cross sections 14N + 12с апё 160 + 1ОВ to differ great1y, but they do. It is also 
surprising that the cross section for reaction 14N + 12с differs substantially 
fromthat of reaction 15N + 12с. This has led to the development of an alter­
native explanation of the cross sections for region 11 based оп Yrast line 
considerations discussed above [Нагаг (78); Matsuse, Arima and Lee (82)]. ТЬе 

critical value, L, is now given bythe maximum value L, which is permitted Ьу 

the Yrast line. For larger values of L, states of the compound nucleus do not 
exist. ТЬе value of L is given Ьу the equation 

(2.11) 
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where 5 is the Уrast moment of inertia. AQ is the band head energy [Нагаг 

(78)]. Substituting in (2.5), опе obtains 

(2.12)
 

where Jl is reduced mass. Ап example of the еШсасу of this equation is provided 
Ьу the comparison of the two reactions 14N + 12с and 160 + 19в, which lead 
to the same compound nucleus 16Al. These two reactions give very difТerent 

cross sections. However, the relation between Е* = Е + Q and L determined 
empirical1y for these two reactions is identical. Опе сап go further and compare 
the theoretical and empirical 5. Опе finds that the empirical values of L are 
consistently smal1er than the values predicted Ьу ca1culations of the Yrast line. 
Vandenbosch (79) and Vandenbosch and Lazzarini (81) make the reasonable 
suggestion that the compound nucleus formation will occur only if there is а 

sufficient density of levels, which would move the predicted value of L away 
from the Yrast line to smaHer values of L. According to Mosel (84), the question 
ofwhether it is the density of compound nuclear levels or the density of doorway 
states leading to compound nucleus formation has not Ьееп resolved. 

Investigation of the fusion cross section at higher energies reveal another 
straight-line dependence оп 1/Е, as illustrated in Fig. 2.15. This is referred to 
as region 111. Matsuse, Агппа, and Lee (82) propose а description in which the 
cross section for region 1 is given Ьу (2.7), region 11 Ьу the Yrast limit, (2.12), 
and region 111 Ьу (2.9), where we recaH that "с is the distance at which the two 
col1iding nuclei lose their identity and Ьесоте the compound nucleus. This 
distance сап Ье determined according to Matsuse et al. from the equation giving 
the mean-square radius of the compound nucleus mass number А in terms of 

Qf(mb 
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FIG.2.15. Fusion cross-section excitation function Experiment (ф) compared with 
theory of Matsuse et al. [From Matsuse, Arima, and Lee (82).] 
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FIG.2.16. Excitation functions for complete fusion of 58Ni + 58Ni, 58Ni + 64Ni, and 
64Ni + 64Ni. Smooth curves give WKB predictions. [From Beckerman (85).] 

the mean-square radii of the c01liding nuclei, А 1 and А 2 • 

For further details the reader is referred to their paper. 
We conclude this section оп fusion with а brief mention of the recently 

discovered рЬепотепоп of subbarrier fusion [Steadman (85)J, which is 
illustrated Ьу Fig. 2.16. ТЬе center-of-mass energies are far below the Coulomb 
barrier energy for two touching spherical nuclei. Опе wouldthere expect that 
the Coulomb interaction would dominate this reaction and that therefore опе 

should Ье аЫе to calculate the cross section with some confidence. However, 
calculations made with the one-dimensional radial model given approximately 
Ьу the solid lines faH far below the experimental values. Nearly аН the various 
explanations for these major discrepancies сап Ье understood as examples of 
coupled-channel calculations, which take into account the vibration of the 
nuclear surfaces. As опе тау expect, the coupling to low-lying coHective states 
is of major importance. This is illustrated Ьу Fig. 2.17. 

Henning, Wolfs et al. (87) have emphasized the importance ofnuclear transfer 
for the observed fusion enhancement. This is based оп experiments using 16,180 
and 58Ni beams incident оп Sn isotopes in which а strong correlation between 
the transfer cross section and fusion enhancement is seen. ТЬеу suggest that 
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3 25 27 29 31 33 Е С.т. ( М.У) (85).] 

the пешгоп transfer opens а doorway through which the system сап proceed 
to fusion. These reactions are of great importance in astrophysics, where they 
play ап important role in energy production and element formation [Barnes 
(85)]. 

3. DEEP INELASTIC SCATTERINGt 

As has Ьееп illustrated in Fig. 1.15, in deep inelastic collisions, the two interacting 
nuclei are thought to Ье in contact for а relatively long time, during which the 
combined system rotates through а finite fraction of а complete revolution 

:Schroder and Huizenga (84); Lefort and Ngo (78). 
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before separating into two final fragments. The fact that the reaction is essentially 
binary is demonstrated Ьу Fig. 3.1, where the angular correlation of the 
fragments is shown for difТering values of the mass number of the lighter 
fragments. The average emission angles of the heavier fragment, calculated Ьу 

assuming two-body kinematics, is indicated Ьу arrows. The agreement with the 
maxima ;of the correlation distributions is excellent. The distributions are а 

consequence of evaporation of the fragments, so that the original values of А 

must Ье determined from statistical reaction theory. Оп the average, the 
evaporated particles are emitted isotropically, so that the average provides а 

good measure of the direction of the fragment upon separation from the lighter 
fragment. The binary character of deep inelastic scattering helps to distinguish 
the deep inelastic collision from а fusion reaction that is followed Ьу fission. 
The latter is generally symmetric (i.e., the fusion leads to two nearly identical 
fragments). If the collision under consideration is between two nuclei with 
significantly difТering atomic and mass numbers, the deep inelastic process will 
lead most probably to two final nuclei with substantially the same value of А 

and Z and not to two nearly identical nuclei. 
In general, fusion is improbable for heavier elements (see Fig. 3.2). For these 

elementsthe strength of the Coulomb potential is во great that even with the 
addition of ап attractive nuclear potential, по "pocket" in the total potential 
is formed. Hence по fusion. For this reason, we shall choose the illustrations 
of various phenomena associated with deep inelastic scattering to Ье discussed 
below, from collision between nuclei the product of whose charges (ZlZ2) is 
greater than roughly 3000. 
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FIG.3.3. Total kinetic energy distribution d(JjdE of final fragments produced in the 
reaction 209Bi + 136Хе at three bombarding energies. The energies were calculated from 
the measured projectile-like fragments assuming two-body kinematics. The energy spectra 
are integrated over аН fragments and reaction angles. The arrow (Vc) indicates the 
entrance channel Coulomb interaction energy at the strong-absorption radius. [From 
Huizenga and Birkelund (82).] 



З. DЕЕР INELASTIC SСАТТЕRING 591 

Another characteristic of deep inelastic collision is the wide range of energies 
that сап Ье [овт from the kinetic energy of relative motion to internal degrees 
of freedom. This feature distinguishes it from the quasi-elastic scattering, in 
which the binary final state is retained but the [озз of energy is relatively smaH. 
In Fig. З.3 the cross section for а final kinetic energy Е produced Ьу the collision 
of ~~9Pb with ~l6Xe is shown for three differing initial kinetic energies. These 
cross sections аге obtained after integration over аН angles and summing over 
аН fragments. Near the initial energy we see а strong quasi-elastic peak. At а 

10wer final energy there is а broad maximum in the distribution corresponding 
to ап energy [озз ranging from 170 МеУ for the 10west initial energy to З70 МеУ 

for the greatest critical energy. The distributions аге very broad. Energy 
[оввез as high as 600 МеУ for аn incident energy of861 МеУ have Ьееn recorded. 

The dependence of the total kinetic energy cross sections оп the atomic 
number of the lighter fragment is shown in Fig. З.4. Quasi-elastic peaks аге 

seen for the 2 of the fragment equal to the atomic number of the projectile 
~l6Xe and nearby <2> = 57. However, the quasi-elastic peak disappears quite 
rapidly as <2 >differs from 54. In these cases the energy distribution foHows 
а beH-shареd curve. The widths of the distribution as weH as the maximum 
уаluе of the cross section decreases with increasing <2> beyond <2> = 54. 

Two differing types of angular distributions сап Ье seen in deep inelastic 
collisions. The strong focusing distribution that prevails in the collisions of the 
very heavy nuclei after integration over energy and fragmentation type is 

209Bi + 13бхе 

qab = 1130 MeV 
200 :s Ост :s 800 

300 400 500 600 700 

Total kinetic energy (MeV) 

FIG.3.4. Double-difТеrепtiаl cross section d2 (J/ 
dZ dE for the reaction 209Bi + 136Хе at =E1a b 

1130МеУ integrated over 200 ~ Ост ~ 800 [Schroder, 
Birkelund, et al. (78)]. [From Schroder and 
Huizenga (84).] . 
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FIG. 3.5. Laboratory angular distributions for the 209Bi + 13БХе reaction at three 
energies. The centre-of-mass energies аооуе the Coulomb barrier аге 1.75,3.14, and 5.29 
MeVjnucleon, respectively. [From Schroder and Huizenga (84).] 

illustrated in Fig. 3.5. ТЬе reaction products faH within а narrow angle peaked 
roughly at the grazing angle. ТЬе strong focusing is also exhibited Ьу the 
Wilczynski plot of Fig. 3.6, where а contour plot of d2(J/df! d(TKE) in the 
ТКЕ-Эс m рlапе is shown (ТКЕ = total kinetic energy). ТЬе ridge of the 
maximum cross section stays at а constant angle with increasing kinetic energy 
[овв, but eventuaHy as in the orbiting case, the rate of energy [овв with angle 
slows down appreciably. ТЬе width of the angular distribution increases as the 
energy [озв increases. 

ТЬе angular distribution for еасЬ fragment integrated over the final fragment 
energies is shown in Fig. 3.7. ТЬе strong focusing effect at the grazing angle is 
visible for the fragments whose atomic number is пеаг that of the projectile 
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FIG.3.6. Wilczymski plot for 137Xe + 209Bi at E1a b = 9 MeV. [From Negele (82).] 

z = 54. For changes from 54 of six units or larger the angular distributions 
broaden considerable. 

The second type of angular distribution is а consequnce of the orbiting 
process. It occurs for the lighter systems and higher energies. А typical 
Wi1czynski plot for the orbiting process is shown in Fig. 3.8. The colliding 
nuclei аге 18Ar and 232Th. Along the maximum cross-section ridge, the angle 
at first decreases rapidly, as the energy [овв increases, approaching zero, and 
then increases quite slowly for further [оввев in energy. This last branch has Ьееп 

interpreted Ьу Wi1czynski (73) as negative angle reactions. His reasoning is 
illustrated Ьу Fig. 3.9. Deep inelastic collisions are supposed to occur for those 
values of 1(or impact parameters) that lie between Icr it and Ig ' fusion• For 1< Icr i t 

dominates, while for 1> Ig , quasi-elastic processes are the principal reaction 
channels. The trajectories near Ig will Ье СоulотЬ dominated, but as опе moves 
away from Ig , the nuclear interaction will Ьесоте more important, there will 
Ье ап energy [овв as а consequence, and the trajectory will Ье bent toward zero 
degrees and eventually beyond it to negative angles. Detectors do not distinguish 
between negative and positive angles, so that as the reaction angle passes zero, 
the cross sections as shown in the Wi1czynski plot will Ье recorded as positive. 
We also see that the negative angle branch is closely associated with large 
energy [овв, 

The two types of angular distribution, orbital and angular focJlsing, are 
examples of extreme situations, angular focusing dominating for collisions 
between heavy nuclear and 10wer energies. The transition from опе type to 
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FIG. 3.9. Illustration of the orbiting phenomenon in damped nuclear reactions. 
Trajectories for а band of 1waves between lmax and the critical angular momentum lcrit 

for fusion are depicted at the bottom. The associated cross section pattem is displayed 
at the top as а contour diagram plotted vs. final fragment energy Е and deflection angle 
е. Negative reaction angles correspond to rotation of the intermediate system through 
the Ьеат direction (О = 00). [From J. Wilczynski (73).] 

another has Ьееп found to depend empirically [Galin (76); Moretto and Schmitt 
(76)] оп the Sommerfield parameter evaluated at the Coulomb barrier: 

2 
e Z Z [ J1/2I Р t r11 

(3.1)'1 = --h- 2(Е - V ) 
Cou l ст 

FIG.3.7. Center-of-mass angular distributions of the light fragments from the damped 
reaction 209Bi + 136Хе at = 940 МеV as а function of Z. The experimentalE1ab 

double-ditТеrепtiаlcross sections are multiplied Ьу the factors listed оп ~he right before 
plotting. [From Wilcke, Birkelund, et al. (80).] 

d2(J/dE dOFIG.3.8. Contour diagram of for the reaction 232Th(40Аг, К) at 
E1ab = 388 MeV. The circles indicate the predicted сопеlаtiоп between scattering angle 
and final energy for ditТerent values of the angular momentum ranging from 1= 180 to 
250. [From Lefort and Ngo (78).] 
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Empirically, orbiting dominates for 1'1' ~ 150, while angular focusing dominates 
in the range 250 ~ 1'1' ;$ 400. For 1]' <: 500 angular focusing is accompanied Ьу 

а noticeable tail at larger angles. 
As we shall вее, correlations among тапу of the observables are observed. 

Some insight into these сап Ье obtained from the dependence of observables 
оп the interaction типе, т, that is, the time during which the colliding nuclei 
interact before separating. Опе expects that т will Ье smallest for the largest 
values of the impact parameter (or l) and will increase as 1 decreases. This 
suggests two characteristic times, corresponding to two different dynamical 
situations. Опе типе, Та' is the time required to achieve а approximate saturation 
value of the energy [озв, achieved in this case for 1= 300. For larger interaction 
times corresponding to smaller values of 1, the energy [овз increases very slowly 
with decreasing 1. In the first phase, the conversion of kinetic into internal 
energy is generated Ьу the f10w of тпапег, nucleons, or clusters of nucleons from 
опе nucleus to the other апп/ог the excitation of giant resonances as the surface 
regions of each interact. 
А rough estimate of the time involved сап Ье deduced from experiment Ьу the 

following argument. In the laboratory frame, assume that the target nucleus is 
excited Ьу the f10w of nucleons from the projectile while the projectile is slowed 
down Ьу the f10w of nucleons from the target. The energy carried Ьу еасЬ 

писlеоп entering the target is Е/Ар, where Е is the incident energy of the 
projectile. А rough estimate ofthe total energy transferred to the target is 
obtained Ьу assuming thermal equilibrium between the projectile and target. 
That energy is (At/A p+ At}AE, where АЕ is the total energy 10ss. Thus the 
number of nucleons transferred to the target is 

AtAp АЕ 
n= ­

Ap+At Е 

The time it takes each писlеоп to transfer is given approximately Ьу the distance 
traversed, оп the order of the surface thickness s divided Ьу the Fermi velocity. 
Thus the time т 1 for the first phase is 

ns AtAp s АЕ 
Т 1 = - = ----=-­

VF Ap+At vF Е 

Turning to our ехатрlе, for 1= 300, АЕ = 169 МеУ, Е = 940 МеУ, s '" 2fm, and 
vF/c '" 0.27, we obtain 3.6 х 10-22 s and n'" 15. This crude result appears to ье 

of the correct order of magnitude as obtained from calculations using 
macroscopic and microscopic models. 

The second phase must involve 10w-lying modes of excitation. The models 
suggest that their major effect is the slowing down of the rotational motion. 
The mechanism is analogous to the slowing-down action of the tides. ТЬе 

rotational states are thus the modes excited. The time involves is given Ьу the 
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uncertainty principle Ьу 

where дЕ is of the order of 160 keV, so that 1"2 - 1О - 20 s, а тuсЬ [опяег time 
than that occupied Ьу the first phase. 

ТЬе results above are characteristic of very heavy systems. For lighter ones 
the second phase is replaced Ьу fusion, which does not occur for the heavier 
systems, as discussed earlier. 

These considerations Ьесоте explicit and quantitative in the macroscopic 
friction model of Gross and Kalinowski (78). Two variables аге used, the distance 
r between the centers and qJ the angle made Ьу г with the incident direction. 
ТЬе Newtonian equations of motion аге then 

d dV 
-(J1i) - J1rф2 + - + К/ = О (3.2)
dt dr 

and 

(3.3)
 

ТЬе quantity J1 is the reduced mass, while K r, the radial friction coefficient, and 
К"" the tangential опе, аге both functions of r. ТЬе function V, the potential, 
nuclear plus Сошопго, is taken to Ье а function of r опlу. These are the most 
general parity-conserving equations with friction forces linearly dependent оп 

f and ф, Gross and Kalinowski take point Сошогпо potentials and the folding 
potential, 

V'2(r) = fv, (1 г - r'l)p2(r') dr' 

where V1 is а real Woods-Saxon potential describing the interaction of а пuсlеоп 

in nucleus designated Ьу the subscript 2, with the nucleus designated Ьу the 
subscript 1 integrated over nucleus 2. ТЬе function V in (3.2) is VN + Z 1Z 2 е

2 /r, 
where VN = i(V

1 2 
+ V2 1 ) . ТЬе function Р2 is taken from electron scattering. Thus 

Gross and Kalinowski (78) use 

p(r) = 1 + e(~~ Rv)/av 

Ро = 0.17 [т - 3 Vo = - 50MeV 

RD = 1.12-0.86А - 1/3 [т R p = 1.25А 1/3 (3.4) 

aD = 0.54fm ар = 0.65fm 
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FIG.3.10. Trajectories given Ьу the friction model for various values of 1. The last 
contribution to the fusion cross section is 1= 122; the first to the deep inelastic cross 
веспоп is 1= 124.) [From Gross and Kalinowski (78).] 
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FIG. 3.11. Contour diagram of df/ds dO (jib/Mev'rad) versus scattering angle Ост and Ест 

of К ions. The dashed line contains the efТects of deformation. [From Gross and 
Kalinowski (78).] 
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FIG. 3.12. Angular distribution as а function of total kinetic energy for the 209Bi + 136Хе 

reaction at E1a b = 940 МеУ. ЕасЬ energy bin is 26 МеУ wide and is integrated over Z 
of the light fragments. ТЬе centroid energy of еасЬ bin is given at еасЬ curve. ТЬе solid 
lines are drawn through the data points. [From Wilcke,Birkelund, et al. (80).] 

For the friction coefficients, these authors use the following: 

к = K O(v v )2 (3.5)qJ qJ N 

These friction coefficients аге most important in the surface region. The constants 
K~ and K~ аге taken from fits to experiment to Ье 4 х 10-23 and 10-25 s/MeV, 
respectively. The tangential friction is therefore much weaker than the radial 
опе as might expect. 
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ТЬе time constant for the decay of the tangential motion as obtained from 
- - 2

(3.3) is of the order of J.l./К ф, where КФ is the ratio of the averages <Кфr ) and 
<r2 ) . Estimating VV as IVol/4a, where а ~ aD + ар = 1.19fm, опе obtains 
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FIG.3.13. Z distributions of fragments from the reaction 209Bi+ 136Хе at 
E1ab = 940 МеV are plotted as а function of final total kinetic energy indicated at the 
curves. Energy bins are МеУ wide. Solid curves represent Gaussian fits to the data (ореп 

circles). The distribution 558 МеУ corresponds to elastically scattered Хе ions and 
illustrates the experimental resolution. The arrow (FF) indicates contamination of the 
data Ьу events from sequential fission of target-like reaction fragments. [From Wilcke, 
Birkelund, et al. (80).] 
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wmch is close to the estimate made аооче. Gross and Kalinowski have given 
some results using (3.2), (3.3), and (3.10) wmch do (with опе further adjustment!) 
reproduce the observed date to the extent that their model permits. In Fig. 3.10, 
the trajectories for the reaction 40Аг + 232Th, laboratory energy of 379 МеУ, 

are shown. The trajectories for angular momentum 1;:: 124 contribute to the 
deep inelastic cross section, wmch those for 1::::; 122 to the fusion cross section. 
The process pictured is then of the orbiting type. The resulting path (the solid 
line) оп the Wi1cynski plot is shown in Fig. 3.11. 'Ппв theory thus does not give 
the fuH details of the Wi1cynski plot but опlу the path foHowed Ьу the ridge. 
The solid line gives а qualitative match to the data. It does not yield enough 
energy [овв. These authors surmise that tms тау Ье caused Ьу ап additional 
energy [овв because of ап additional degree of freedom (deformation?) not taken 
into account Ьу (3.4) and (3.5). Ве that as it тау, they efIectively increase the 
energy [овв Ьу increasing the magnitude of the nuclear potential from the 
distance of closest approach outward, that is, during the final half of the collision 
[see Siwek-Wi1czynskiand Wi1czynski(76)]. Under tms assumption опе obtains 
the dashed line, now giving ап exceHent fit. Using the same constants, scaling 
the nuclear radii as А 1/3, а good fit is obtained Ьу Gross and Kalinowski for 
several cases. 
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FIG.3.14. The FWHM of Z distributions d3(J/dQdEdZ for the indicated final kinetic 
energies is plotted versus center-of-mass reaction angle, for projectile-like fragments from 
the reaction 209Bi+ 136Хе at E1a b = 940 МеУ. The horizontallines represent the fits to 
the angle-integrated Z distributions d2(J/dZ dE. [From Wilcke, Birkelund, et al. (80).] 
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FIG.3.15. Сопеlаtiопbetween variance u~ ofthe Z distribution and total kinetic energy 
[овв E10ss = - Q for projectile-like fragments from the reaction 209Bi + 136Хе at three 
laboratory bombarding energies EL . ТЬе curves drawn through the data points are 
fits. [From Huizenga and Birkelund (82).] 

We learn from this discussion that particularly during the first phase of the 
reaction, kinetic energy 10ssincreases as the interaction time increases. Therefore, 
опе mау use kinetic energy [овв as а measure of interaction time. This permits 
the understanding of the direct experimental measures of various сопеlаtiопs. 

For ехаmрlе, we see from Fig. 3.12 the broadening of the angular distribution 
as the kinetic energy [озв and therefore time increases. Similarly, опе сап expect 
а broadening of the distribution in atomic number Z of the nuclear reaction 
products as given in Fig. 3.13. The fиП width at half-maximum of the 
distributions оп Z is independent of the reaction angle but does increase 
significantly as the kinetic energy [овв increases, as shown Ьу Fig. 3.14. These 
widths increase more rapidly with energy 10ss for increasing laboratory energy 
(see Fig. З.15). 

4. QUASI-ELASTIC SCATTERING~ 

We turn next to quasi-elastic scattering, which prevails for large values of the 
orbital angular momentum, 1, according to Fig. 1.15. In this regime, the 
interaction time 'is relatively smаП, and direct processes that occur in the surface 

t Arima and Kubono (84). 
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region dominate. These include inelastic excitation of each or both nuclei, as 
well as particle transfer. The processes involved аге quite similar to that 
described for light ions in Chapter УН. Both аге surface reactions but probe 
different parts of nuclear surface. There is оnе significant difference, in that 
heavy ions uроn collision сап exchange large amounts of mass, linear, and 
angular momentum. This exchange тау Ье accomplished in оnе step, а cluster 
being transferred as а whole. Or in the other limit, the mass тау Ье transferred 
sequentially, that is, оnе nucleon at а time. The sequential process involves а 

longer interaction time and is thus а precursor of deep inelastic scattering. 
Generally, these large mass and momentum transfers will excite multiparticle­
hole states with high spin. 

Conservation rules limit the allowable changes in linear and angular 
momentum of each nucleus. Brink (72), (77) has derived approximate classical 
conditions expressing these limitations. Brink assumes that the nucleus А 1 is 
moving with velocity v past the target nucleus А2 • The cluster of mass М to 
Ье transferred from А 1 to А2 has аn internal energy in А 1 and in А2 , equal to 
Е 1 and Е 2, respectively. The interaction time is therefore given Ьу 

h/(t: 1 + iMv2 - Е2 ). The corresponding length is hv/(t: 1 + iMv2 - (;2) and thus 
the momentum of the cluster leaving A i is 

The momentum of the cluster in А 2 сап Ье obtained Ьу symmetry, that is, Ьу 

going to the coordinate system in which А2 is moving and А 1 is at rest. Then 
the momentum of the cluster in А2 is 

1 1 2 )hk 2 = - - ((;2 + 2:Мv - (; 1 
V 

The minus sign in front of the expression оп the right-hand side is needed since 
we wish to compute the momentum of the cluster entering rather than leaving 
А2 • The reaction proceeds most effectively if the angular momentum leaving 
А 1 matches the angular momentum ofthe cluster hA1 at the surface of А l' that is, 

(4.1) 

where 

Similarly, the momentum and the angular momentum hA2 at the surface of А 2 
should agree: 

(4.2) 
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ТЬе minus sign( - k 2R 2) takes account of the fact that the rotation in А2 is 
opposite to that in А г-

Eliminating Q between (4.1) and (4.2) yields 

(4.3) 

Taking the difТerence, опе obtains 

(4.4) 

Equations (4.3) and (4.4) are the Brink (72,77) kinematic conditions as usually 
quoted in the literature. Equation (4.3) expresses the conservation of linear 
momentum, while the conservation of angular momentum yields (4.4). These 
results hold for the transfer of neutral clusters. If the cluster is charged, опе 

must include the change in the Coulomb energies in calculating G1 - G2' ТЬе 

net efТect is to replace Q in (4.4) Ьу Qeff: 

(4.5) 

where Z 1 and Z 2 are the atomic numbers of the two nuclei, the subscripts i 
and f referring to their initial and final states, respectively, and d is the distance 
of closest approach. For other del'ivations, see КаЬапа and Baltz (77) and 
Ichimura, Takoda, Таmауа, and Nagatami (81); see also Bertsch and Schaetтer 

(77). 
For а given initial spin А 1 опе сап determine the optimum value, lopt, оС 

1=I А 1 - А2 1 and the optimum value of Q, Qopt, from (4.3) and (4.4) or (4.1) and 
(4.2). ТЬе cross section is largest when 1 and Q equal or аге close to lopt and 
Qopt. ТЬе range in 1and Qaround lopt and Qopt over which the cross section will ье 

appreciable is referred to as the 1window and the Q window. ТЬе width of these 
windows, more precisely the windows associated with (4.1) and (4.2), is given 
according to Brink (77) Ьу (Y1R1)1/2 for (4.1) and (Y2R2)1/2 for (4.2), where Y~ = 
(2M/h2)IGil. Thus the larger the separation energies [а.], the wider the 1window 
corresponding to а more localized interaction region, while а narrow 1window 
corresponds to а less localized interaction region. 

ТЬе angular distribution of the reaction products reflect the width of the 1 
window. Whenthe 1window is large,the angular range in which the reaction 
products are found is characteristically narrow. ТЬе angular distribution is then 
"Ьеll shaped" around the grazing angle, as illustrated Ьу Fig. 4.1. 
Оп the other hand, when the 1window is narrow, the angular distribution 

shows а difТraction pattern as illustrated Ьу Fig. 4.2. As the figure shows, the 
difТraction distribution appears as the energy of the projectile is raised. This 
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FIG. 4.2. Example of the evolution from а Ьеll­

shaped distribution to the арреагапсе of difТraction
20 40 60 

structure as the energy is raised. [From КаЬапаand 
Bt.m. (deq) Baltz (77).] 

behavior is expected since the penetration of the projectile increases with 
increasing energy so that the spatial region over which the interaction occurs 
increases. 

Inthe case of а mu1tiparticle transfer, М will Ье generally Ье large and the 
final state 82 will Ье highly excited so that Q will Ье negative. It thus becomes 
favorable for А 1 to Ье small and А2 to Ье large according to (4.1) and (4.2). 
Transfer of large mass clusters will therefore predominately populate high-spin 
states. 
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In analogy with the use of stripping and pickup reactions to gain information 
with regard to single-particle states, опе might hope to use cluster transfer 
reactions to explore the state of clusters within nuclei; or stated гпоге precisely, 
the nature of n-particle correlations, where п is the number of particles in the 
cluster. Such а hope is not universally realized, sincethe cluster transfer must 
Ье observed in the presence of competing (and interfering!) mechanisms such 
as sequential transfer reactions, in which the п particles are transferred опе Ьу 

опе. This is demonstrated Ьу Fig. 4.3, where опе сап compare the importance 
of the single-step transfer of the two neutrons (DWA) with their transfer опе 

пешгоп at а time. 
However, when there is а good match between the correlations that exist in 

the final state of the residual nucleus and those of the transferred cluster, the 
spectroscopic factor and the cross section will Ье relatively large. This is the 
case for the (t, р) reaction оп the tin isotopes. The cluster transferred consists 
of two neutrons in the 180 state, the dominant сотпропеш of the two-neutron 
amplitude in -н. But this is exactly the nature of the пешгоп correlations in 
the superconducting ground state of the tin isotopes enforced in that case Ьу 

the pairing interaction. These form а superf1uid band analogous to the rotational 
band in deformed nuclei. The ground state-to-ground state transition therefore 
has а favorable probability. [See Broglia, Hansen, and Riedel (73) for а review 
of this process.] It is found [Scott, Harvey, et al. (77)] that in that case the 
cross section for cluster transfer is more than ап order of magnitude larger than 
the sequential transfer. А similar phenomenon mау Ье expected for the 
appropriate reaction with heavy ions. Опе example is 120Sne80,160)Sn, 
illustrated in Fig. 4.4. 

The experimental and theoretical understanding of one-to-many particle 
transfers in heavy-ion reactions is summarized Ьу Arima and КuЬопо (84), to 
which the reader is referred. For this volume it will suffice to present some 
salient features. As in the case of light-ion-induced reactions, the angular 
distributions, particularly the position of the first peak, depends оп the orbital 
angular momentum, 1, transferred. This is illustrated in Fig. 4.5 for the case of 
ап a-cluster transfer, 54Fe(6Li,d)58Ni and 58Ni(6Li,d)б2zп. In contrast to the 
(d,р) reaction, the (р, а) and (а, р) reactions are markedly sensitive to the total 
angular momentum transferred (see Fig. 4.6). The important effect of the finite 
size of the projectile is illustrated Ьу Fig.4.7. For а thorough study of the 
finite-size effect in the (t, р) reaction, see Вауmап (70,71). In that case Вауmап 

shows that а substantial increase, often more than ап order of magnitude, of 
the absolute value of the cross section results. In his case he found that the 
finite range effects do not change the angular distributions from that obtained 
from zero-range DWA. This conclusion is important because generally the 
zero-range DWA yields а cross section that is far smaller than the experimental 
опе. There are other effects that go in the same direction. Because the theoretical 
results depend оп the values of the wave functions involved in the surface region, 
there is а great sensitivity to the accuracy of these wave functions in that narrow 
region. The harmonic oscillator wave functions often used are grossly inadequate 
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for the ground-state transitions аге too smal1 Ьу factors of N 3 = 1O(44Ti) and 30.4eOTi). 
[From Feng, Udagawa, et al, (76).] 
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since their decrease in the surface region is Gaussian rather than exponential. 
То obtain better agreement, it then becomes necessary to take linear 
combinations of тапу harmonic oscillator wave functions, as Tonozuka and 
Arima (79) found. The inadequacy of these wave functions is more severe in 
the case of heavy-ion compared to light-ion projectiles because the cross section 
ismore sensitive to the wave functions for larger values ofthe radial variable. 

The examples discussed above consider the excitation of discrete levels close 
to and including the ground state of the residual nucleus. The excitation levels 
in the continuum has also Ьееп observed, for example, 40CaeoNe,160)44Ti 
[Fr61ich, Shimoda, et al. (79)], in which the 160 spectrum is observed. 
Interestingly, the direct «-сшыег transfer process is generally accompanied Ьу 
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are the DWА calculations. [From Fulbright, Strohbusch, et al. (75).] 
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the fragmentation of the incident projectile 2°Ne. The reader should recaB that 
essential1y the same process is responsible for incomplete fusion. The excitation 
of continuum levels involves large energy transfers from the incident kinetic 
energy to internal energy. In fact, опе сап regard the quasi-elastic domain as 
опе in which the elementary transfer processes, which аге in рап responsible 
for fusion and deep inelastic scattering, аге revealed. Because of the long 
interaction time for the latter reaction types, it is possible to repeat the 
elementary transfers several times, leading опе way or another to large mass 
and energy transfers [see Rehm, vanden Berg, et al. (78)]. Truly massive transfers 
аге often involved, but sequential transfers опе particle ог cluster at а time are 
equal1y important. At energies near the Coulomb barrier, the single пешгоп 

transfer is found to Ье а major part of the reaction cross section. For example, 
in the collision of 58Ni with 58Ni and б4Ni and Ест'" 100 МеУ, опе finds 
[Rehm, Wolfs, et al. (85)] that the cross section of опе and two пешгоп transfers 
is one-third of the reaction cross section and is larger than the fusion cross 
section. 

The DWA approximation, in this heavy-ion context, does not difТer 

conceptual1y from that discussed in Chapter УI оп the (d,р) and (р, d) reaction. 
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Of course, it is far more complicated both geometrically and numerically, so 
that the use of modern computers is essential. Improvements оп the DWА сап 

Ье obtained with simple generations of the methods described in Chapter VI. 
ТЬе inclusion of the effects of the Pauli principle, of overlap and the reduction 
to coupled channels, are accomplished Ьу exploiting the properties of а 

generalized К matrix. That matrix, described Ьу (VI. 2.17), has а rank equal to 
the number of channels explicitly included. In the (d,р) case it was two, 
corresponding to the deuteron and proton channels. In the case of heavy ions 
опе тау need to include а greater number of exit channels. This is certainly 
the case when sequential transfer is important. Oncethe К matrix is determined, 
the next step is to determine its eigenvalues, especially тпове whose value is 1. 
Опе must eliminate the corresponding eigenstates, Ьу projection or Ьу the use 
of the orthogonality condition method of Saito. In апу event, опе then obtains 
the coupled-channel equations, w,hich include rigorously the Pauli principle and 
overlap effects. For more details, see the paper Ьу Н. Horiuchi (77). 

Ап alternative approach makes the semiclassical time-dependent approxima­
tion for the motion of the heavy ions. At еасЬ position in the orbit there is а 

transition probability that а reaction will occur. This is ca1culated quantum 
mechanically. This method was used very successful1y Ьу Alder, Bohr, et al. 
(56) in ca1culating the electromagnetic excitation of nuclei Ьу charged particles. 
Its adaptation to the nuclear excitation in heavy-ion collisions has Ьееп 

developed Ьу Broglia and Winther (72) and Broglia, Landowne, et al. (74). А 

similar procedure was developed Ьу Bertsch and Schaeffer (77). 

5. HEAVY-ION RESONANCESt 

Resonances in the collision of heavy ions were first observed Ьу Almqvist, 
Bromley and Kuehner, and (60). ТЬе heavy ions involved were 12с and the 
center-of-mass energy was about 6 MeV, very close to the Coulomb barrier 
energy. ТЬе observations included scattering and reaction channels. Since that 
time, further resonances have Ьееп discovered in the 12с + 12с system, as well 
as in the 12с + 160 system, and more recently in the 28Si+ 28Si system [Betts 
et al. (81)]. However, по such structure was observed for 4ОСа + 4ОСа. Some 
examples are given in the following figures. Figure 5.1 gives the total y-radiation 
yields (divided Ьу the Coulomb transmission factor, which removes most of the 
energy dependence). Note the large number of peaks and the fact that spin and 
parity have Ьееп assigned to тапу. Figure 5.2 shows resonances in the 12с + 160 
system, which appear in the inelastic scattering. Another example is provided 
Ьу the radiative capture of 12с Ьу 160 shown in Fig. 5.3. In Fig. 5.4 the 900 
elastic 28Si+ 28Si scattering is shown, while in Fig. 5.5 а high-resolution study 
of the scattering is recorded. ТЬе data exhibit two kinds of structure. There are 

~Erb and Bromley (84). 



614 HEAVY IONS 

10 2+ 

~ 2+ 2+ 12с+ 12с 
u 

2+~ у- RАDIАТЮN8 
LLJ 
се 2+ о YALE ОАТА::> 

4+.... • MUNSTER ОАТАu 
~ 6.... 
сп 

се 
<1 
LLJ 
-J 
U 
::> 4 
z 
~ 

>
fi 
-J 2~ 
се 

O .......----'--------"----::----"":---~~--.....L..---....L...---.......J
 
3 4 5 7 8 9 Ю 

yields of the 

Еа(Е) KR
TL - -,------,-----­

10 - Fi(KR) + Gi(KR)L (2L + I)TL 
L=O 

where R = 1.4(121/3 + 121/3) and F L and GL are the regular and irregular Coulomb wave 
functions, respectively. [From Erb and Bromley (84).] 

broad envelopes with а width оп the order of 150keV and ап energy separation 
of the order of а few hundred keV. 

Most systems do not resonate. Or stated more carefully, the resonance 
amplitudes, if they exist, аге not sufficiently strong to Ье observable. As an 
example, see Fig. 5.6, giving the total y-radiation in the neighborhood of the 
Coulomb barrier of 160 + 160. Опе sees very little structure, which hardly 
compares with violent fluctuations, which appear in Fig. 5.1 for 12с + 12с. 

In analyzing the experimental data, two problems must Ье solved. In one, 
the issue is distinguishing the resonance peaks from the Ericson random 
fluctuations. In the other, how сап the spin and parity of the resonances ье 

determined? Turning to the first of these, опе сап obtain ап estimate of the 
magnitude of the Ericson fluctuations using the statistical theory of nuclear 
reactions. If the peak under study has а width much larger than predicted Ьу 

the statistical theory апё/ог if its magnitude is much greater, it is probably а . 
resonance. Another indication is obtained Ьу comparing reactions involving 
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the same compound nucleus. If peaks арреаг in опе сЬаппеl and not in the 
other, опе is certainly not dealing with Ericson fluctuations. As ап example, 
see the comparison of 12Ce60,a)24Mg and 14Ne4N,a)24Mg in Fig. 5.7. ТЬе 

cross section for the first reaction has structure, the second does not. Second, 
if опе sums the cross sections for difТering channels,the statistical fluctuations 
will tend to average out so that peaks in the summed cross section are probably 
resonances. Finally, if опе сап establish а correlation among the peaks in the 
various сЬаппеl cross sections, а resonance of the system is indicated. Опе must 
ье careful since the energy of а peak тау shift from опе сЬаппеl to the next 
Ьу the order of а width because of interference with а nonresonant amplitude. 
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Ап example of this analysis is shown in Figs. 5.8 and 5.9. In Fig. 5.8 the cross 
sections to difТerent levels of 2°Ne formed Ьу the reaction 12се -с, cx)2°Ne are 
plotted together with their sum. The shown shows several peaks. The anomalies 
at 7.71, 9.84, and 10.59 МеУ are studied [Erb et al. (77)]. The widths of the 
7.71- and 9.84-МеУ peaks are опе to two orders of magnitude greater than 
that given Ьу а Hauser-Feshbach calculation. The 10.59-МеУ peak turns out 
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FIG.5.4. Excitation function for 28Si + 28Si elastic scattering at Ост = 900. [From Erb 
and Bromley (84).] 

FIG.5.5. High-resolution cross-section of 
thesummed elastic and inelastic excitation 
function for the 28Si + 28Si system. [From 
Betts, Dicenzo, and Peterson (81).] 

not to have ап unusual strength, so that it is probably а f1uctuation and not а 

resonance. Figure 5.9 gives the angular distribution of the a-particles forthe 
7.71- and 9.84-МеV peaks. We see that these beautifully follow IP4(cos312 and 
IPs(cos 3)12 distributions suggesting the spin of 4 in the 7.71-МеV гезопапсе 

and 8 for the 9.84 resonance. 
This description provides опе method for determining the spin of а resonance. 

It is Ьу itself not enough but should Ье augmented Ьу а study of the energy 
dependence of the angular distribution. This is i1lustrated Ьу Fig. 5.10, where 



618 HEAVY IONS 

4r---r------.,.-----r----~--_____,r_--....,...---..,_--__, 

13 

I • CAL ТЕСН DАТА I 

{ 
12 j-'NUCLEAR STRUCTURE FACTOR: Е ст(Е) 2: (2t+I) Tt 

/'0 
teven 

б 

~ 
u 3 
~ 
I.LJ 

~ 
~ 
u 
:::> 
а:: 2 
~ 
(J') 

а:: 
<t 
I.LJ 
.-J 
U 
:::> 
z 
I.LJ 
> 
~ 
.-J 
I.LJ 
а:: 

7 8 9 10 

CENTER OF MASS ENERGY - Ме V 
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one sees the comparatively featureless angular distributions iпtепuрtеd Ьу 

strong oscillatory behavior at, for example, energies 7.71 and 9.84 теУ. 

Another general procedure is to attempt а phase shift analysis of the elastic 
scattering. As long as the number of nuclear partial waves is low, this is а 

practical method. А closely related method involves fitting the energy-averaged 
cross section Ьу an optical model. То obtainthe intermediate structure, опе adds 
Breit-Wigner contributions to the optical model phase shifts. Ап example of 
the first of these two methods is given in Fig. 5.11. Note that the magnitude of 
the S matrix, 1JL' has deep minima at the resonant energies of 6.65 МеУ in the 
L = 2 partial wave and 6.85 МеV in the L = 4 partial wave, thus identifying the 
spin of these resonances. Similar analyses have Ьееп made at higher energies 
Ьу Cosman et al. (82). From the Breit-Wigner fit one сап get an estimate of 
the ratio Гel/r. For the L = 2 case this turns out to Ье 0.29, while for the L = 4 
case it is 0.09. Both values are much larger than the statistical estimates of these 
partial width ratios. 

These analyses provide а list of isolated resonant states. Overlapping states 
have Ьееп discussed, but disentangling these has not proved practical, especia11y 
for states of high spin. Our first question is: What are the nature of these 
resonant states? Our second is: What is the mechanism that produces these 
resonances? And as а corollary: What conditions need to Ье met? 
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With regard to the first question, it is clear that these states are doorway 
states. Their widths ("" 100keV) are тuсЬ smaller than the width of structures 
(e.g., shape resonances) generated Ьу ап optical model оп the order of 2.5 МеУ. 

Оп the other hand, these widths are too large to Ье compound nuclear widths. 
Indeed, if very high resolution measurements аге made [Bromley (78)J, опе 

finds the Ericson fluctuation structure (see also Fig. 5.5). 
We сап refer to Section 111.4 for а discussion of doorway states. ТЬе 

expression for the transition amplitude for а reaction proceeding through ап 

isolated doorway resonance, (111.4.16), is appropriate here. It is 

(111.4.16) 
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ТЬе average is over the fine structure. HDPand HpDаге the operators connecting 
the entrance channel or exit channel wave functions x~+) and xj-) with the 
doorway wave function t/J d' f/P is the transition for the prompt, nonresonant 
amplitude, while Г Jis the escape width: 

rJ = 2nL l<х~-)IНрDt/JD>12 
у 

which gives the probability that the doorway state will decay into an exit 
channel, x~-). ТЬе spreading width, Г~, gives the probability that the doorway 
state will decay intothe more complex states. For elastic scattering and а 

particular partial wave, the S matrix <Sel > сап Ье obtained directly from 
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(111.4.16). Опе obtains 

(111.4.18) 

where д is the phase associated with the prompt (potential) scattering. Note 
that the magnitude of (Sel) squared is 

We see that this magnitude has а minimum at Е = Ed as observed (see Fig. 5.11). 
We turn now to the second question, the nature of the doorway states and 

the mechanism that generates them. In the 12с + 12с саве, it is possible to 
establish а qualitative understanding. Toward that end, examine Fig. 5.12,where 
we have plotted the energy of the observed resonance versus 1(1 + 1) [Feshbach 
(76,77)J. Look also at а plot of the excitation energy centroids of the levels оС 
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а given 1 given in Fig. 5.13. ТЬе line labeled the "Yale potential" is obtained 
Ьу Arima et al. (72) Ьу determining the values of the orbital angular momentum 
L and energies at which the potential devised Ьу Reilly et al. (73) to fit the elastic 
12с + 12с scattering generates а pole in the S matrix. These values of L will 
not difТer especially fromthe grazing L. That potential is а central potential 
composed of Woods-Saxon forms for both the real and imaginary parts (see 
Chapter У). ТЬе parameters are V = 14 МеУ, R = 6.18 fm, а = 0.35 пп, 

W = 0.4 + 0.1 Е, R1 = 6.41 fm, and aI = 0.35 fm. ТЬе shallow depth, and 
especially the weak imaginary terms, are required to obtain the rather large 
oscillations of the observed angular distributions (see Fig. 5.14). 

ТЬе experimental fact that the centroids are а linear function of 1(1 + 1) is 
noteworthy (see Fig. 5.13). ТЬе fact that this straight line follows from the Yale 
potential suggests the following model [Feshbach (76)]. At special values ofthe 
energy there will Ье ап optical model resonance ( а peak would Ье sufficient) 
in а given partial wave, say L. ТЬе energy width of these peaks is оп the order 
of а few МеУ, and а corresponding lifetime of а few times 10- 22 s. During this 
time, the system will couple with other partitions of the 12с + 12с system. This 
could include inelastic excitations of either or both 12с to such levels as the 
2 +, 4.43-МеV level or the 0+, 7.63-МеV level. It could include such reaction 
channels as 20Ne + (х or 8Ве + 160, involving various excited states of these 
nuclei. This coupling will convert some of the initial kinetic energy of the system 
into internal energy of excitation, making possible the formation of quasi-bound 
states. Generally, the coupling will tend to fragment the optical model resonance 
(or shape maximum) into а number of resonances of а smaller width as observed 
[Fletcher, Foy, et al. (76)J. These are the doorway states, which couple to еуеп 

more complex states. Interestingly, the sum of the widths for the doorway state 
resonance of а given L is оп the order of the width of the optical potential 
resonance. This qualitative description leaves problems for the theorists and 
experimentalists. For the latter it requires experiments that will determine which 
of the various excitations are involved and with what amplitudes. Theoretically, 
it is necessary to solve the coupled Schr6dinger equations implied Ьу the 
description above and to find the conditions under which isolated doorway 
state resonances will Ье developed. 

However, some qualitative conditions follow from (111.4.16). Obviously, Г!, 

that is, the probability of coupling to more complex modes, cannot Ье too large, 
for then the resonant amplitude will Ье тисЬ reduced. This width depends 
multiplicatively оп the density of the more complex states and the coupling 
matrix element. Table 5.1 gives the level density in the compound nucleus relative 
to 12с + 12с at the Coulomb barrier energy [Hanson, Stokstad, et al. (74)]. 

We have only tabulated those cases with the lowest relative level density, 
except for the 14N + 14N case, which shows the large efТect of the entrance 
channel. ТЬе condition of low relative level density is not а sufficient condition, 
as the absence of resonances in the 9Ве + 12с reaction suggests. It is proposed 
as а necessary condition. It is, in addition, necessary that the matrix elements 
coupling the doorway state to more complex states also Ье small. In the 
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TABLE 5.1 

Reaction Compound System Е; Сошогпо Barrier, Relative Level Density 
(МеУ) 

12с + 12с 24Mg 20.6 1 
9Ве + 12с 21Ne 21.7 3.3 
12с + 160 28Si 25.2 3.8 
14N + 14N 28Si 35.8 110 
12с + 13с 25Mg 22.9 7.1 
11В+ 12с 23Na 23.8 11 
12с + 14с 26Mg 25.7 13 
1ОВ + 12с 22Na 23.0 15 

12с + 12с case this is likely, since both nuclei are deformed, so that the combined 
system тау not have good overlap with тапу of the 24Mg levels present at 
20.6 МеУ, ап example of shape isomerism. This leads to the prediction that 
resonances are more likely to Ье observable when the colliding nuclei are 
deformed. In the case of 9Ве + 12С, the relatively easy polarizability of 9Ве 

because of the valence пешгоп makes it likely that the coupling matrix elements 
will Ье relatively large as will Ье г-. 

Another condition requires that the resonant energy Ed faH within the width 
of the shape resonance. ТЬе shape resonance maximizes the value of the matrix 
element <ф, IНDPX~ +) > since X~ +) has its maximum value in the interaction 
region. When the coupling between the entrance channel wave function and 
the intermediate channels is strong, there тау very weH Ье а correspondingly 
strong energy shift, which тау move Ed outside the range in energies in which 
X~ +) is large. Опе should also note that the transition matrix element to the 
final state <xj-) Iн PDI/!d >must Ье sufficiently large so that the particular final 
state show the resonance. As а coroHary, the cross section to not аН final states 
will have ап observable resonance. 

FinaHy, note that ап important parameter is the angular momentum range 
over which the incident channel wave function is relatively large. In the case 
of 12с + 12с this angular momentum window is narrow. This тау not Ье the 
case for other systems. If so, опе тау weH find resonances with differing values 
of L within а given energy interval. This is the case forthe 12с + 160 system, 
where the angular moment·um window is оп the order of 3 to 4 units. See 
Fletcher and Frawley (81) and Braun-Munzinger (81). 

It appears that 12с + 12с is а unique system in that the conditions discussed 
above for isolated resonances to Ье observable seem to Ье satisfied. ТЬе 

12с + 160 system is not as clear cut, as there is тисЬ controversy with regard 
to spin assignments. 

ТЬе relatively large 12с + 12с elastic widths reported above imply that the 
12с + 12с amplitude, in which both 12C'S are in their ground states, is а 

significant part of the entire wave function; or in other words, the probability 
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of finding the system in that incident channel is substantial. It is for this reason 
that Bromley et al. properly refer to these states as the states of а nuclear 
molecule. ТЬе existence of components of the wave function in which опе or 
both of the 12C'S is excited to the 2+, 4.43-МеУ level has Ьееп detected Ьу 

Cormier, Applegate et al. (77) and Cormier, Jackenski et al. (78), for example 
Ьу measuring the 4.43-МеV radiation and the correlation of its magnitude with 
the resonance structure. This demonstrates that the wave function of the system 
is а combination of the elastic channel with channels in which опе or both 
carbon nuclei are excited and presumably other channels, such as 2°Ne + rl and 
8Ве + 160. 

ТЬе spherical potential (labeled "Yale") is ап oversimplification. In the first 
place the carbon nuclei in their ground state are oblate. As а consequence, their 
interaction wi1l depend оп the relation orientation of their symmetry axes. 
Second, as we see next, the Pauli principle plays ап essential role. 

Harvey (75) Ъas given ап intuitive and instructive demonstration of the 
importance of the Pauli principle, and at the same time has shown that the 
intermediate state is deformed. It is in fact "superdeformed." As illustrated in 
Fig. 5.15, the nucleus С in its ground state, according to the harmonic osci1lator 
model, consists of four nucleons оп the 1s shell and eight оп the 1р shell. ТЬе 

figure shows the nucleon configuration for the two colliding 12с nuclei. 
Assuming that the nuclei approach along the z axis with their axes of symmetry 
perpendicular to that axis, only the value of nz is presumed to change. For 
example, four of the nucleons in the Is state in the incident carbons wi1l go 
into Is state in 24Mg*, which precludes its being filled Ьу nucleons in the (001) 
state in 12с. These must go to the (002) and (003) state. There is по way of 
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filling the (010) state in 24Mg. The result is а four particle-four-hole state, 
substantially deformed. 
Оп the other hand, if the axes of the two carbon nuclei are orthogonal as in 

Fig. 5.16, then as shown in the figure the ground state of 24Mg сап Ье populated. 
А collision with this orientation of the symmetry axes саппот produce the 
resonant states we have Ьееп discussing but rather, would produce the states 
of the ground-state band. 

Remarkably, this picture has Ьееп verified Ьу experiment [Konnerth, 
Diirnweber et al. (85)]. These authors studied the spin orientations in the 
reaction 12с + 12с-+ 12С(2+) + 12С(2+) Ьу measuring the directions of both 
4.439-МеУ y-ray emitted Ьу each 12С(2+) in coincidence with each mutually 
inelastic scattering event. Taking the axis of quantization perpendicular to the 
scattering plane and integrating over the azimuth, it becomes possible to 
decompose the cross section for the reaction into components 61m111m21' Неге т; 

is the projection of the spin of the quadrupole radiation and therefore of the 
spin of the emitting 12с* оп the quantization axis. The results are shown in 
Fig. 5.17. The resonance examined are two of those observed Ьу Cormier, 
Applegate et al. (77) and Согпцег, Jackenski, et al. (78) at Ест = 25.6 and 
31.5 МеУ. We see very strong maxima in the 622 cross section, implying that, 
forthe most рап, the spins of the two emitting nuclei are parallel while they 
rotate about each other with the appropriate angular momentum. This result 
confirms Harvey's picture presented in Figs. 5.15 and 5.16. 

It is necessary to go beyond Harvey's considerations, to obtain а more 
quantitative and clearer understanding. Several models have Ьееп studied. 
Leander and Larsson (75) and Larsson et al. (76) ca1culated the potential energy 
surface for N = Z nuclei using essentially the Nilsson-Strutinsky procedure. 
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Chandra and Mosel (78) used the two-center model, while Rae (87) and Rae 
and Магвп (85) employ the cranked-cluster model. ТЬе results are quite 
consistent. 

Leander and Larsson's results are summarized in Table 5.2 and ап example 
of e4Mg) of the potential energy surface is shown in Fig. 5.18. ТЬе table lists 
the minima together with the ratios of the harmonic oscillator parameters шх : 

Шу: оз ; For тапу of the minima these are ratios of whole numbers and would 
Ье expected to give rise to superdeformed bands. ТЬе ground state of 24Mg 
and the next minimum (Е = 1.0, у = О, t: з = 0.3) correspond to prolate spheroid 
shapes; the next three are oblate (Е = 1.23, у = 60), triaxial (Е = 1.26, у = 4Г), 

and "chain" (Е = 1.25, у = О). ТЬе corresponding density contours as obtained 
Ьу Rae and Marsh [Rae (87)] are shown in Fig. 5.19. We see that the chain 
consists of 6а clusters in а row; the oblate is given Ьу (d) while the triaxial (g) 
appears to Ье two-carbon nuclei aligned perpendicular to the line joining their 
centers. ТЬе prolate configuration (е) appears to Ье of the "а- 1 6О-а form. ТЬе 

triaxial minimum corresponds, then, to the resonances observed Ьу Cormier, 
Applegate, et al. (77) and Cormier, Jackenski, et al. (78). With respect to the 
resonances at lower energies there is some debate. Rae (87) believes these to Ье 

generated Ьу the prolate configuration, while Cosman (81) and Ledoux, 
Ordonez, et al. (84) assign аН the resonances to the triaxial minimum. According 
to Rae, the Cormier resonances Ьа уе spins of 16, 18, and 20, starting а new band, 

http:100�.---.�
http:100�--.---..,.......--�----�
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TABLE5.2 Properties of the Minima in the Potential Energy Surfaces for the 
DoubIy Even N-Z Nuclei a 

Energy (МеV) 
у 

Nucleus Е Ез Е4 (deg) Configuration Wx:Wy:Wz Min. Вап. 

12с 0.83 О 0.20 60 (1)- 4 2: 1: 1 О 

1.11 О 0.24 О (1)- 8(2)4 3:3:1 1 14 
160 0.00 О 0.00 О 1: 1: 1 О 

1.04 О 0.24 43 (1)-4(2)4 4:2:1 9 16 
1.2 О 0.24 О (1)- 8(2)4(3)4 4:4:1 9 20 

2°Ne 0.40 О -0.10 О (2)4 2:2:1 О 

1.17 О 0.24 50 (1)-4(2)8 8:3:2 9 14 
1.25 О 0.24 О (1) - 8(2)4(3)4 5:5:1 13 21 

(4)4 
24Mg 0.45 О 0.08 20 (2)8 4:3:2 О 

1.0 0.3 0.20 О (2)4(3)4 (6) 12.5 
1.23 оЬ 0.24 60 (1)-4(2)12 3:1:1 8 14.5 
1.26 О 0.24 42 (1)- 4(2)8(3)4 5:2:1 10 14.5 
1.25 О 0.08 О (1)- 8(2)4(3)4 6:6: 1 20 25 

(4)4(5)4 
28Si 0.49 О -0.06 60 (2)12 2:1:1 О 

0.45 О 0.16 О (2)12 3:3:2 1 3.5 
1.0 0.3 0.20 О (2)4(3)4(4)4 13 15.5 
1.35 О 0.24 60 (1)-4(2)12(3)4 13 17.5 
1.32 О 0.24 35 (1)-4(2)8(3)4 6:3: 1 19 20 

(4)4 
32S 0.21 О 0.08 20 (2)- 8 5:4:3 О 

0.68 О 0.08 О (2)- 12(3)4 2:2:1 0.1 4.5 
1.42 О 0.24 54 (1)-4(2)-12(3)8 10:3:2 16 18 
1.0 0.3 0.20 О (2)8(3)4(4)4 16 17 
1.30 О 0.24 30 (1)- 4(2)8(3)8(4)4 21 23 

36Ar 0.29 О 0.16 60 (2)-4 3:2:2 О 

0.74 О 0.16 7 (2)- 12(3)8 9 11 
1.45 О 0.24 55 (1)-4(2)-12(3)12 27 27.5 
1.33 О 0.24 47 (1)-4(2)-12(3)8(4)4 27 27.5 

4ОСа 0.00 О 0.00 О 1: 1: 1 О 

0.45 О 0.16 50 (2)-4(3)4 7:5:4 9 10.5 
0.84 О 0.08 5 (2)- 12(3)8(4)4 17 18 
1.50 О 0.24 60 (1)-4(2)-12(3)16 34 36.5 

44Ti 0.18 О 0.00 О (3)4 3:3:2 О 

0.52 О 0.16 38 (2)-4(3)8 3 5.5 
0.86 О 0.16 О (2)-12(3)12(4)4 11 15 
1.50 О 0.24 60 (1)-4(2)-12(3)16(4)4 29 31.5 

"Тпе deformation parameters Е, Ез, Е4, У are defined in the legend to Fig. 5.18. ТЬе last 
two columns contain the energy and minimum barrier height relative to the ground-state 
minimum. 

= 0.05. 
Source: Leander and Larsson (75). 
Ь Е 3 3 
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Potential energy (MeV) 
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FIG. 5.18. Potential energy surface for 24Mg. The deformation parameters are defined 
Ьу the deformed nuclear potential: 

V = -ihшор2[1 + 2e1P l(COS 8/) - ~e cos уР 2(COS 8/) 

+ %е sin Y~(Y22(8/, ф/) + У2 - 2 (8/ , ф/)) 

+ 2езР з(СОS 8/)+ 2езз~(Узз(8/, ф/) - УЗ - з(8/, ф/)) 

+ 2е4Р4(COS 8/)+ 2esPs(cos 8/)] 

- кhшо[21/ ' s + J1(l; - <1;) ) ]. 

The potential energy in the (е, у) plane, including the macroscopic energy, was calculated 
for each value of (е, у) and then minimized with геврест to е4 • For the (е, е з) plane у = О. 
For definitions of р, 8/, and ф., see the original reference. [From Leander and Larsson 
(75).] 
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~ 0.10 

'ii:j'0.20 ~h 
О.ЗО~~~~~~~ 

FIG.5.19. Potential energy surface for 24Mg ( see Fig. 5.19) together with density 
contours for the stable cluster configurations. [From Rae and Marsh as described Ьу 

Rae (87).] 

while Cosman and Ledoux et al. would have spins of 14, 16, and 18, joining in 
with the lower-energy band. 

In апу event it is evidentthat deformation must Ье taken explicitly into 
account before the 12с + 12с resonances will Ье understood. However, at the 
present time а ca1culation of the reaction cross sections for the excitation of 
the resonances taking deformation into account has not Ьееп made. 

ТЬе various theoretical approaches to the problem of heavy-ion гевопапсев, 

particularly in the 12с + 12с and 12с + 160 cases, fit the rubric described 
earlier. ТЬе intermediate states that couple to the incident channel is taken 
to Ье 12C(g.S.) + 12С(2+) Ьу Imanishi (68,69). Konda, ЛЬе, and Matsuse (79) 
include the excitation of both 12C'S to the 2 + state. Similar studies have Ьееп 
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made Ьу Schied, Greiner, and Lemmer (70) and their colleagues [Greiner and 
Scheid (71)); Fink et al. (72); Park et al. (74)]. The a-particle model of Michaud 
and Vogt (69,72) сап Ье considered as equivalent to involving intermediate 
states in which the 12С nuclei are excited to the 7.67-МеУ 0+ level. The 
calculations made аге of the coupled-channel variety. А simplified version has 
Ьееn presented Ьу АЬе (78). However, these calculations do not take into account 
the deformation efТects alluded to аооуе. 

Other models have Ьееn proposed Ьу Cindro (78а), Cindro and Greiner (83), 
and Iachello (81). Cindro assumes thatthe resonance energies аге given Ьу the 
spectrum of the rotational and vibrational excitations of а quadrupole. Iachello 
assumes that the spectrum is that of а three-dimensional vibrator. His 
four-parameter expression for the resonances fits the observed spectrum quite 
clearly [Erb and Bromley, (81)J, but аn underlying microscopic justification is 
still lacking. The prolate spheroidal configuration (е) of the cluster model 
according to Rae and Marsh (85),would provide such а justification. Additional 
supporting evidence is provided Ьу time-dependent Hartree-Fock (TDHF) 
calculations [Strayer, Cusson, et al. (84); Umar, Strayer, et al. (85); Umar and 
Strayer (86)]. See also Satpathy et al. (86) and critical remarks Ьу Kato and 
АЬе (87). 

6. DIFFUSION ТНЕОАУ 

The remaining sections of this chapter аге devoted to theory, with emphasis 
оп the deep inelastic process. It is not possible to review here аll of the таnу 

theoretical models that have Ьееn proposed for the description of this process. 
In this regard not емеп the Bromley volumes аге complete. The semiclassical 
method is the subject of а book Ьу Broglia and Winther (1981). The master 
equation, which has Ьееn used, for example, Ьу Agassi, Ко, and Wiedenmuller 
(77, 79), is reviewed Ьу Dietrich (85). The hydrodynamic model, advanced Ьу 

W. Greiner and his colleagues, is discussed Ьу Maruhn (85) in the same set of 
lectures. А transport theory that takes into account the coupling between the 
collective and intrinsic degrees of freedom because of two-body collisions has 
Ьееn developed Ьу Norenberg (85) [see also Ayik and Norenberg (82) and 
Cassing and Norenberg (83)]. Не refers to this description as "dissipative 
adiabatic dynamics." Hofmann and Siemens (76, 77) have investigated а linear 
response theory. The internuclear cascade has Ьееn exploited Ьу Fraenkel and 
his colleagues [Chen et al. (68); Yariv and Fraenkel (79, 81)] and Ьу Cugnon (82). 
This procedure is briefly discussed in Chapter IX. There are таnу others, other 
names to Ье associated with the аЬоуе as well as other approaches. In this 
chapter we discuss the application of the classical transport equation of Uehling 
and Uhlenbeck, Ьу Aichelin and Bertsch [(85)J, Aichelin [(86)] as well as the 
time-dependent Hartree-Fock (TDHF) methods [Negele (82)J, but not the 
adiabatic time-dependent Hartree-Fock method of Villars (77) and Моуа de 
Guerra and Villars (77). This choice is idiosyncratic, based in part оп а prejudice 
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for theories that do not assume thermal equilibrium, based in part оп the 
availability of examples of quantitative applications. 

АН of these theories require extensive numerical ca1culations, making it 
difficult to establish ап intuitional understanding of the dynamics for а wide 
set of parameters. For that reason we first establish some qualitative features 
making use of the theory of multistep direct reactions described in Chapter УН, 

which is appropriate for the study of deep inelastic processes. Note that the 
application of that theory uses the cross section for the single-step process, 
which is obtained fromthe understanding of the quasi-elastic cross sections. 
ТЬе double differential cross section for the statistical multistep direct process 
is given Ьу (УII.5.29) and repeated below: 

(6.1) 

The cross section for а single-step process is to added. ТЬе sum is over c'l which 
indicates the number of steps that is foHowed Ьу transition to the final states 
designated Ьу c'l ± 1 and kf' The momenta hkC( are the relative momenta of the 
two interacting nuclei, while the subscript c'l includes the internal quantum 
numbers and energies of the states of the two nuclei. Note that the deep inelastic 
process is а two-body reaction, so that kf refers to the relative momentum of 
the two final nuclei. Uf is then the total excitation energy given Ьу 

h2 

U! = Е --k~ (6.2) 
2/1 

where /1 is the reduced mass. It is necessary to include the independent variables 
describing the exchange of charge and mass. FoHowing Greiner these аге taken 
to Ье 

(6.3) 

where the subscripts t and р refer to the target and projectile, respectively. ТЬе 

спе-втер transition probabilities are dependent оп the variables 11~A) and 11~Z) and 
11~A~ 2 and 11~Z~ 1 where the subscript c'l denotes the stage. ТЬе differential transition 
probability is given Ьу (УII.5.30) 

d
2 

wC( . C( - 1 (kС( , 11 С( ; kС( - 1 11С( - 1 ) = 2 2 (k) (U)I-(k'k )12
dU do. n Р С( Р С( v С(11 С(' С( - l' 11 С( - 1 

С( С( 

where the dependence оп 11~A) and 11~Z) is indicated Ьу 11С(. FinaHy, changes in 
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deformation of each of the nuclei in the transition from stage to stage тау 

occur so that deformation parameters should also Ье included as independent 
variables in (6.4). 

Equation (6.1) provides а framework for the calculation of the cross section. 
The physics has yet to Ье inserted, namely the nature of each of the intermediate 
stages. There are many possibilities for а heavy-ion reaction and а method for 
а rapid exploration has not been developed; presumably, some simulation using 
а Monte Carlo evaluation could Ье used. One therefore turns to an approximate 
method that will yield an expression whose form сап Ье compared with 
experiment, yielding some overall information оп the intermediate stages 
involved. 

For reasons of clarity we shall suppress, for the time being, the dependence 
оп 1J(A) and 1J(Z). Define the transfer function Y,ik a) as follows: 

The cross section is then given Ьу 

The transfer function Yv satisfies the equation 

(6.5) 

ТЬе assumption is now made that the change in momentum in the transition 
from stage v - 1 to stage v is small. One тау therefore expand Yv-1(kv- 1) in 
terms of Yv - 1(kv) as follows: 

Inserting this equation in (6.5) yields 

where 

(6.7а) 



636 HEAVY IONS 

(6.7Ь) 

and 

The subscripts а and Ь refer to Cartesian components. We simplify (6.6) Ьу 

introducing the quantity 

wo=Jy_ v ~ 1, fo = 1 (6.8) 
v ­f v 1 

and the new dependent variable Zv 

(6.9) 

Equation (6.6) becomes 

о _ _ 1 (1). 1 ~ 
Wv(Zv ZV-1)--f [Wv V(fv-1Zv-1)] +~!г: WаЬ~аVь(fv-1Zv-1) 

v- 1 v - 1 аЬ 

(6.10) 

We replace the discrete variable v Ьу continuous variables т such that L\T = 1jW~. 

Then the left-hand side of (6.10) is given Ьу L\ZjL\T, which is approximated Ьу 

BZjBT. Note that 

v 1
T=I­ (6.11) 

(%=1 W~ 

It is clearly а variable that measures the number of stages and сап Ье conveniently 
thought of as the interaction time. t It is а function of v and k v among other 
variables. Опе eliminates v оп the right side of (6.10) Ьу solving (6.11) for v in 
terms of т and k. The equation for Z becomes 

BZ 1 1 
- = ---[w1' V(f Z ) + zLwabVaVb(fZ)] (6.12) 
Вт f(T, k) 

чг W~ is independent of (1.,! = v/Wo. If as is гпоге rea1istic, W~ = e-<lУW, W! = (eY(v+ 1) - 1)/е У -1. 
Solving for v,v = l/у 1п [(1 - W!) е-У + W!], which approaches v = l/у 1п W! for 1arge у and W!-1 
for smal1 у. 
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where 

etc. (6.13) 

We have thus obtained а momentum Fokker-Planck diffusion equation for 
Z in а very general form. То make further progress, assume that 

W ab = babw 

and that f depends only оп Т. This is accomplished Ьу replacing k in f Ьу k,. 
See (6.15). Then (6.12) becomes 

(6.14) 

Further simplification is obtained Ьу assuming that w is independent of k. 
Equation (6.14) сап Ье solved in а closed form when W 1 is а constant vector 
ог proportional to а unit vector tangent to the unit sphere in k space. We shall 
follow ап approximate procedure that reproduces correctly the solutions for 
the above assumptions for W l' but is capable of dealing with а more general 
form for this vector. 

We assume that 

1 )3/2Z(k, Т) = --- e-(1/2,w)(k-k,)2 (6.15)( 2nwT 

where k, is а function of Т reducing to ko at Т = О. Note that Z(k, Т) ~ b(k - ko) 
as Т ~ О. Неге ko is taken to Ье k i the incident k for the collision of light nuclei. 
For heavy nuclei when the collision is Coulomb dominated, ko is taken to Ье 

equal in magnitude to ki but with the direction given Ьу the grazing Coulomb 
orbit at the point of grazing. То determine k, we calculate 

<k) == f kZ(k, !)dk (6.16) 

Equation (6.14) will then yield а differential equation for k,. 
We assume the following form for w1 linear in k 

(6.17) 

where Wc is а constant vector independent of k. Mu1tiplying (6.14) Ьу k 
and integrating yields 

(6.18) 
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These equations сап Ье integrated subject to the condition kt(O) = ko. Let the 
direction along ko to Ье designated Ьу the О subscript. Оnе obtains 

(6.19) 

and 

1 ~ ~ 
(kt)1.. = 2 2 {ko х (ko х WC) [wD(l - cos (()R1' е - WDt) + (()R sin (()R1' е - WDt] 

WD+WR 

+ (ko х w )[ wR( l - cos (()R1'e- WDt) - W D sin (()R1'e- WDt]} (6.19а) c 

Неге (kt)1.. is the component ofkt in the plane perpendicular to ko. The sinusoidal 
terms describe а damped rotation in the (kt ) 1.. plane with а radius given Ьу 

WC1../Jw~ + w~. For large т 

The сотпропеш of kt in the ko direction decreases because of the damping of 
the ko term. It is also affected Ьу the О component of Wo subtracting or adding 
according to whether wco is positive or negative; wD is а magnitude and therefore 
positive. Asymptotically 

(6.21) 

The value of k;, which is proportional to the average kinetic energy is given 
Ьу the sum (kt)i + (kt)~' where 

(6.22) 

Returning to (6.15) for Z(k, 1') we see that as т increases, Z broadens while 
its center moves from the direction ko to kt given Ьу (6.19). For the motion of 
kt оnе сап "predict" the solid center lines in Fig. 3.6 (if Wo W R and WD are 
known or fitted, if not) where Е would Ье obtained from (6.22) and the deviation 
from the original ko direction from the equation 

(6.23) 
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where Во is the direction of ko. Note that k
T 

and the energy approach constant 
asymptotic values, as indicated Ьу Fig. 3.6. Subsequently the energy [озв is 
dominated Ьу excitation of 10w-lying modes which аге described оп page 596 
as а process that involves 10ng interaction times and а smaller rate of energy 
[овв. This would require а difТerent set of values of W o W R, and W D as obtained 
for ехатрlе from (6.7). 

ТЬе function Y(k, Т) is now obtained from (6.9). Making the reasonable 
approximation that W~ is independent of а (we Ьауе already assumed that it 
is independent of k), fv is given Ьу. (Wo)v. Converting from v to t dependence, 
we parametrize [, Ьу 

fv=foe- YT (6.24) 

since t is proportional to v. With Y(k, Т) known, the cross section сап Ье obtained 
Ьу summing over v according to (6.4). ТЬе sum over v is replaced Ьу ап 

integration over Т: 

Непсе 

Jld2(J ] =4: WofYdt= Wof(Sv + 1 +SV_l)Y1(kf,t)d[ dD.f dU f msd h k i 

'" 2WosfY(kf • r)dr (6.25а) 

where we Ьауе assumed that 

(6.25Ь) 

То obtain these equations we Ьауе assumed that the angular distribution is 
sharply pointed in the direction of kv and that the energy is not substantially 
changed. Finally, it is assumed that в; varies slowly with v and сап Ье replaced 
Ьу ап average s. 

We now consider the integral. 

1= Ydt=foГ dt e- YT- ( 1/ 2 Tw)( k - k t )2 (6.26)
о (2nWt)З/2f 

As ап ехатрlе of the results which follow from this analysis we taken wR = о. 

ТЬеп 

(6.27) 



640 HEAVY IONS 

Furthermore, assume that WDT < 1. The conditions under which this inequality 
will hold will Ье determined in what follows. Then 

kt ~ ko + k 1 Т (6.28) 

k 1 = - (WC + kOwD ) 

With this approximation, the integral сап Ье done exactly. However, to identify 
the important value of т and so Ье able to assess the range of validity of the 
result, we shall use the method of steepest descents. Toward that end опе places 
the derivative ofthe exponent in (6.26) equal to zero. Solving for т, опе finds that 

2 (ko - k)2 
Т =--- (6.29) 

ki + 2yw 

We thus see that WDT will Ье small if Iko - kl is sufficiently small. For small Wc 
the condition is 

(6.30) 

This condition restricts the region of applicability to the forward quadrant but 
does not strongly restrict the difference between ko and k. 

The steepest descent result for the integral, (6.26) yields 

where Ki == ki + 2yw. The cross section is from (6.25) 

(6.32) 

The peak of the angular distribution will occur at the minimum of the 
bracketed expression in (6.31). Let 9 Ье the angle between ko and k and let the 
minimum occur at 9. Assuming 9 to Ье small, опе finds that 

(6.33) 

where t/J is the angle between ko and the сотпропеш of k 1 in the (k, ko) plane. 
For 9 near 9 the angular distribution is Gaussian. 

The energy spectrum at each angle сап also Ье determined from (6.31). 
Generally, опе finds that as the angle increases the rate of exponential decrease 
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ofthe cross section increases. [Опе сап always obtain ап exponential decay with 
Е for апу function е- ЛЕ) for smal1 Ео - Е as long as f'(E o) is positive as it is 
in this case.] This is identical to the exponential decrease obtained in the 
statistical theory [see (1.4.5) to (1.4.7)]. Опе thus finds the statement in the 
experimentalliteraturethat the "temperature" decreases with increasing angle. 
However, as we see from the calculation опе саппот conclude that the system 
has approached а thermal equilibrium. For that conclusion to Ье correct the 
angular distribution must Ье spherical corresponding to ап angle-independent 
temperature. 

There are other variables, besides the momentum k, such as mass and charge 
asymmetry [see (6.3)], and deformation parameters, which сап change with 
еасЬ stage of the multistep process. ТЬе discussion given аоосе presumes а 

known path in reaction space or ап averaging over the various possibilities. 
However, this is not adequate when, for example, we wish to ca1culate the 
charge and mass distributions of the final fragment. Тп the analysis to Ье 

presented below, we develop а Fokker-Planck equation which explicitly 
contains the efТects ofthe mass asymmetry 17(А). Analogous equations сап readily 
Ье obtained for variations in charge asymmetry or other parameters. 

Опе must first make explicit the dependence of d 2w/dП dU оп 17 as fol1ows: 

(6.34) 

glvшg the probability that the system will undergo а папыпоп from а 

momentum between ka- 1 and ka- 1 + dk a- 1 and а mass parameter between 
17~A~ 1 and 17~A~ 1 + d17~A~ 1 to ka and 17~A), respectively. Equation (6.1) is replaced 
Ьу 

Опе now introduces the function Ya(ka,17~A») [see (6.4)]: 

d
З

У (k (А») _ jdk1d171 jdka- 1d Wа,а_1 
а а,17а - (2n)З'" (2n)З 17а -1 dПа dU а d17~A) 

d
З
W2 , 1 dЗW 1 i (6.36)

ги, dU 2 d17iA) dП 1 dU 1 d17<t) 
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ТЬе differential cross section in terms of Уа is 

(6.37) 

ТЬе function Yv satisfies the equation 

ТЬе assumption is made that the change in momentum and t7(A) in the transition 
from stage v-l to stage v is small. Опе тау therefore expand YV-1(kv-1,t7~Аl1) 

in terms of Yv -1 (kv ' t7~A») as follows: 

Inserting this equation into (6.38) yields 

+ ~ " W(20)V V У (k и(А»)2 ~ аЬ а Ь v- 1 v' " v 
а,Ь 

(6.39) 

where the coefficients W are generalizations of (6.7), Reducing this equation 
follows the procedure described after (6.7). ТЬе function Zv is introduced as 
before Ьу 

v 

fv = П W~OO)(ka' t7~A») 
1 

Finally, the interaction time variable ! Ьу 

v 1 
т = L w(OO) 

1 а 
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Оnе finally obtains 

We again make the assumption that f is independent of k and п: so that (6.40) 
becomes 

(6.41) 

Оnе сап now follow the procedure described after (6.13). We shall leave the 
discussion to-the reader, the coupling between the k and l1(А) dependence being 
the new feature of interest. 

We shall content ourselves with integrating both sides of (6.41) with respect 
to k. Assuming that all the coefficients аге independent of k [compare with 
(6.17)],let 

(6.42) 

Then 

(6.43) 

This equation сап Ье integrated. Let 

Then 

or 
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The solution has the one-dimensional form [see (6.15)] 

1 ) 1/2r( (А) ) = -[1/2,w(О2)][II(А)+w(ОI),-II(А)(0)]2 (6.44)~ 17 , т ( (02) е
2nw т 

where 17(А)(о) is the initial value of 17(А). The mass asymmetry is in this 
approximation а Gaussian whose септет changes linearly with т and whose 
width changes like "["1/2. 

Returning to (6.37) for the cross section, and опсе again utilizing (6.24) and 
(6.25а), опе obtains 

The integral сап Ье performed, yielding 

fdk dЗа(k J' 17J' k i17J = 4finJlfo sW(OO)
 

h2k
J do.JdUJ~17jA) 1 117-1701 

Х e-l/w(О2)[v'~2у-w~(О=2)-+--'---(w---'---(О'"""I)----)2111jА) - II(А)(О)I + W(OI)(IIjA) -II(А)(о)] 

(6.45) 

The distribution is по longer symmetric about 17jA) = 17~A), falling off less rapidly 
for 17jA) < 17(А)(о) when W(OI) is positive, and vice versa when it is negative. 

7. ТНЕ LO~ENTZ, BOLTZMANN, UHLENBECK, AND UEHLING (LBUU) 
METHOO~ 

This method for treating heavy-ion collisions is based оп а classical 
(nonquantum) method, describing the motion of А particles, employed in kinetic 
theory [Huang (87)]. The Hamiltonian determining the many-body motion is 
taken to Ье 

(7.1) 

The potential V is the теап potential and v is the residual two-body potential. 
Опе asks for the distribution function f(r l' г 2" .. ,rА; р., Р2 ••• РА' t), the 

number density for finding particle 1 at г 1 with а momentum р., particle 2 at 
r 2 with momentum Р2' and so оп, at а time t. The one-particle distribution 
fl (г 1; Рl) defined as the number density at а time t for finding а particle at r1 

tИuапg (87). 
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with momentum Рl is given Ьу 

1,(r,; р, t) = fdr 2dp2 dr, dp,··· f(r" r2, r" ... , гА; р" Р2, р" ... , РА; t) (7.2) 

ТЬе number density at а time for finding s particles at r 1 , r2 , .•. , г, with momenta 
Pl,P2,""Ps is 

ТЬе normalization of f is given Ьу 

fdr, .. ·drAdp, ···dPAf(r, «-гА;Р, ... РА; t) = fdr, dp,f, (r,; р,; t) = А (7.4) 

ТЬе probability density р is obtained fromthe number density Ьу division Ьу А: 

(7.5) 

ТЬе space defined Ьу the vectors г 1 ... гА;Рl ... РА is referred to as phase space. 
Its dimension is 6А. We will denote а vector with components г 1 ... РА Ьу ~, so 
that (7.4) reads 

Since р is а probability density, the average value of апу function O(~) in phase 
space is given Ьу 

<O(~» = fd~p(~)O(~) 

Because the number of particles is conserved as а function of time, the density 
must satisfy the equation of continuity: 

др + div (pv~) = О (7.6)at 

where V~ is the velocity in phase space with components r,r 2 , ... ,pA- ТЬе 

divergence is taken in the 6A-dimensional space. Using this equation and 
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Hamilton's equation, Liouville's theorem, 

dp =0 (7.7)
dt 

сап Ье obtained. The proof follows. First note that 

dp др 
-=-+Vp·v
dt at ~ 

From (7.6) we have 

др V d· --= p·v~+p lVV~ (7.8)ot 
where 

div v~ = I [(Vr)(rj + (Vp)(pJ 
j 

But 

so that 

divv~ = О (7.9) 

The f10w in phase space is like that of аn incompressible f1uid. Inserting this 
equation into (7.8) and the result in the equation for dp/dt yields (7.7). 

The Liouville theorem is the fundamental equation of kinetic theory. We 
shall return to it later. For the present we shall consider directly the equation 
satisfied Ьу 11. Recallthat 11 (г, р) dr dp is the number of particles in dr dp at r 
and р. The function 11 changes with time because (1) as а consequence of their 
velocity, particles leave the volume dr; (2) the particles are acted оп Ьу the mean 
field forces ( - VVJ changing their шотпепга; and (3) particles collide with еасЬ 

other as induced Ьу ~(vlrj - rjl). 
If there are по collisions, the points in а volume element dp dr will simply 

move into another volume element located at г + vdt and р - (Vr V) dt. The 
change in 11 in а time dt will Ье written (a/1/at)colI. Therefore, 

11 (г + vdt, Р - (Vr V) dt, t + dt) = 11 (г, р, t) + (a/ 1) dt 
д: coll 

or 

(7.10) 
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We assume that only binary collisions are important. ТЬе effects of а collision 
will depend оп the number of pairs in а volume element dr with momenta Р: 

and Р2 in the volume dpl dP2' Let this Ье F(r, Р» Р2' t)dr dpl dP2' ТЬе number 
of particles leaving dr dpl per unit time because of collisions is 

(7.11) 

Неге dw is the probability per unit time that а pair of particles with momenta 
Рl and Р2 will, uроп collision, acquire momenta Р'l and p~. Since we are interested 
only in the total number of particles leaving dr dPl' we integrate over Р2 and p~. 

ТЬе value of Р'l is given Ьу energy and momentum conservation. ТЬе value of 
dw is 

where j i is the magnitude of the incident current density, Iv1 - V2\ and ff is 
the transition matrix. Inserting (7.12) into (7.11) yields 

Similarly, the number entering volume element dr dpl because of collisions is 

(7.13Ь) 

Using detailed balance gives 

Опе тау rewrite (7.13Ь) as follows: 

(7.14) 

Combining (7.13а) and (7.13Ь) yields 

То obtain the Lorentz-Boltzmann equation, опе further approximation is made. 
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It is assumed that the probability of particle 1 being at г with momentum р 

does not depend оп the position or momentum of particle 2. Непсе 

F(r, Рl, Р2, t) ~ 11 (г, Рl, t)ll (г, Р2, t) (7.15') 

Introducing this assumption into (7.15), one сап now complete (7.10). One finds 
that 

(7.16) 

where I~ is 11(r, p~, t), and so оп. The values of Рl and p~ оп the right side of 
this equation are given Ьу conservation of energy and momentum applied to 
the binary collision. Equation (7.16) is referred to as the Lorentz-Boltzmann 
equation. Because of assumption (7.15'), one expects it to Ье most useful for 
dilute systems. То improve upon (7.16) it is necessary to consider correlations, 
and therefore 12 of (7.3), s = 2 for correlations, and more generally, Is for 
higher-order correlations. As we shall show, Is coupled only to Is+ 1, that is, 
11 to 12,12 to Iз. This is а consequence of the assumption that the particle 
interaction potentials [see (7.1)] are two-body. This system of equations is called 
the вваку (Bogoliubov, Вогп, Green, Kirkwood, Yvon) hierarchy. We shall 
follow Huang (87) in developing these equations. 

Опе begins with the Liouville theorem, (7.7): 

др
-+v·V =0 (7.7)
д: ~ р 

In component form, 

V(Vp = L[ti'Vr;p+p(VpiPJ 
i 

= L [(VpiH)'Vr; - (Vr;H)'VpJp 
i 

Introducing Н as given Ьу (7.1), one obtains 

(7.17) 

where 

hA = L[~'Vri + {Fi - L Vr;v(lri - rjl)}'VPi] 
i т i*j 

~ 1 ~ 
== LSi + - L Ри (7.18) 

i 2 i * j 
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Here 

(7.19) 

and 
(7.20) 

The distribution function fs then satisfies 

ч.. А! fd aP--~fd h (7.21)д: - (А - s)! 's+ 1 д: - (А _ s)! 's+ 1 АР 
where 

We now break ир hA into terms that depend оп '1 to 's and those that depend 
оп 's+ 1 to 'А: 

This сап Ье rewritten as 

hA = hs + hA - s + I 
s 

I 
А 

Ри (7.22)
i==1 j==s+1 

Note that 

(7.23) 

since h involves momentum-dependent gradient operators linearly while K ij 
depends only оп spatial coordinates. Equation (7.22) would not Ье correct if 
the two-body potential were velocity dependent. 

Inserting (7.22) into (7.21) yields 

Substituting for Pi,s+ 1 from (7.20), оnе finally obtains the BBGKY hierarchy: 

afs+hsfs= - ffdrs+ 1dPs+1(.I Ki.S+1·VPifs+1) (7.25)
д: 1== 1 
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For example, 

(7.26а) 

(7.26Ь) 

То obtain the Lorentz-Boltzmann equation (7.16), one truncates (7.25) Ьу 

placing 1з and al2/at = о. Finally, one assumes that 12(r1Plr2P2) сап Ье written 
as /1 (r 1,Pl)/2(r2, Р2) thereby dropping two-body correlations. 

ТЬе solutions of the Lorentz-Boltzmann satisfy conditions that follow from 
conservation laws such as conservation ofmass, momentum, and energy satisfied 
in the two-body collision. Following Huang, let x(r, р) Ье such а conserved 
quantity, that is, 

(7.27) 

We сап now show that 

J= J(a11 
) x(r,p)dp=O (7.28) 

дс coll 

We use expression (7.11), bearing in mind the symmetries satisfied Ьу F and 
dw. 

Equation (7.28), including now explicitly the conservation of energy and 
momentum, is 

J ~ Jdpj dp, dp'j dp~J(Ej + Е, - Е'; - E~)д(p! + р, - р'! - p~) 

х W(P'I' p~, Рl' P2)[F(r, Р'I' p~, t) - F(r, Рl' Р2' t)Jx(r, Рl) 

Now we note that J is unchanged if under the integral spin we exchange Рl 

and Р2 or Р: and Р'I together with the exchange of Р2 and p~ or if one exchanges 
Рl and p~ together with Р2 and Р'I. This result is а consequence of the symmetry 
of both w and F. Performing the exchanges and adding the results yields 

J ~ Jdpj dp, dp'j dp~J(Ej + Е, - Е'; - E~)д(p! + р, - р'! - p~) 

х W(P'I' p~, Рl' P2)[F(r, Р'I' p~, t) - F(r, Рl' Р2' t)J 

Х [x(r, Рl) + x(r, Р2) - x(r, р'l) - x(r, p~)] 

Непсе because of conservation condition (7.27), J = О, proving (7.28). 
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As а consequence ofthis equation, опе obtains from the Lorentz-Boltzmann 
equation the equation 

(7.29) 

where 

We now rewrite this equation so that по derivatives act оп f1 under the integral 
sign. Thus 

Integrating the fourth term оп the right yields zero. We introduce the definitions 

(А) == JdpAf1 = ~fdPAf1
Jdpf1 п 

1 
у=-р 

т 

Note that п, the number of particle density, is а function of r and t. Equation 
(7.30) becomes 

The functions п and F сап Ье removed from inside the brackets since they do 
not depend оп р. 

For conservation ofmass, Х = т, (7.31)becomes the equation of continuity: 

(7.32) 

where 
u = (у) (7.33) 

For conservation of momentum, Х = ту, 

д 1 
0= -(nу) + V,.n(vv) - -nF (7.34)at т 
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where the dot product in the second terт is with the v that iттediatelyfollows the 
dot. We now replace <vv) as follows: 

<vv) = «v - u)(v - о) + оо 

Substituting in (7.26) and using (7.24), опе obtains 

n[до + (u.v)u] = ~nF + V'n«v - u)(v - о) (7.35)at т 

ТЬе pressure tensor P i j is defined Ьу 

P i j == тn«v i - uJ(v j - uj » (7.36) 

so that 

[ до ] 1 1 +-+ 
n	 - + (О' V)u = - nF + - V· Р (7.37) 

д: т т 

where 

ProbIem. Prove that this quantity is conserved in а two-body collision. 

Finally, we exploit the conservation of energy Ьу letting Х = ilv - u1 2• ТЬе 
analysis is straightforward. ТЬе result is 

дТ 2 2 +-+ +-+ 

n-+nu'V T+-V 'ч= --Р'Л (7.38)
д: r 3 r 3 

where 

р·л = LРijЛi j (7.39) 
ij 

and 

(7.40) 

т is the temperature in energy units: 

ТЬе vector q measures the heat Пuх: 

(7.41) 
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The exploitation of (7.32), (7.37), and (7.38) requires evaluation of the average 
values indicated Ьу the bracket and therefore knowledge of li' Н, for example, 
оnе assumes local thermal equilibrium, so that f1 is given locally Ьу the Maxwell 
distribution, 

n 211 ~ e-(m/2T)(v-u) 

(2тсmт)3/2 

one obtains the equations describing nonviscous hydrodynamics. Н 11 is 
improved Ьу а first-order term, one obtains the Navier-Stokes equation for 
viscous flow [see Huang (87]. Therefore, the equations of hydrodynamics are 
аn approximation to the Lorentz-Boltzmann equation obtained Ьу averaging 
that equation over an assumed distribution function. 

А. Quantum Transport~ 

The discussion аэоме is classical so that the question of quantum effects naturally 
surfaces. Of course, the exact evaluation of the quantum effects requires the 
solution ofthe quantum-mechanical many-body problem. What would Ье useful 
would Ье а statement of the quantum problem, which is similar in form to the 
Lorentz-Boltzmann equation. The analog to the one-particle distribution 
function is given Ьу one-particle Wigner function (30) defined Ьу 

(7.42) 

or 

r. ( k ) (1)3 fd -ik'ro (1 1)Jw r, ,t = 2тс roe р r- 2ro,r+ 2ro, t (7.43) 

Integrating Iw with respect to k yields 

fIw(r, k, t) dk = p(r,г) (7.44) 

Taking moments, one finds that 

tCarruthers and Zachariasen (83); Zachariasen (85). 
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1
= (2n)3 fdk fdroe-ik.ro[ - ~( vФ*(r - r;, t)Ф(r + r;, t)) 

+ ~ Ф*( г - ~ ,t)VФ( г + r;, t)] 
or 

(7.45) 

Finally, 

f р2 
fw(r, k, t) 2т dk = K(r, t) (7.46) 

where K(r, t) is the kinetic energy density. [ТЬе reader should verify (7.46).] 
These results, (7.44), (7.45), and (7.46), аге identical to those that сап Ье obtained 
using the classical distribution function. But the Wigner distribution is not а 

probability distribution, as is the case for the classical distribution. This follows 
because fw is not positive definite. Because of the close similarity tothe 
Boltzmann distribution function, it is not surprising that fw satisfies а 

Lorentz-Boltzmann type of equation. То demopstrate this, evaluate д fw/iJt 
using the Schr6dinger equation: 

and 

assuming Н to Ье Hermitian. Опе obtains 

Replace Н Ьу - (11 2/2m)V2 + V, where V2 operates оп the dependence оп the 
spatial coordinates г - iro and г + ~ro. ТЬе result, after some simple algebra, is 

In the limit where V is assumed to Ье smooth, so that 

ro) roV ( r+ 2 ~ V(r)+2·VV 

(7.47) becomes 

afw р 
-д +-·VrfW-VV·VрfW=О (7.48)

t m 
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identical with the Lorentz-Boltzmann equation (7.15) when the col1ision term 
(д f /at)coll is zero. Equation (7.48) is known as the Vlasov equation. 

This treatment сап Ье generalized to the many-body problem, employing an 
A-particle Wigner distribution function [see Zachariasen (85)] 

f«;)(k l' г l' k2' г 2' , kА' гА' t) 

~ (;,,)'А fdr', fdr'A ехр( - i~kir;)Ч'·(r, - !г, •... , rA - !r~. () 

(7.49) 

One сап, in analogy with the procedure used to derive the BBGKY hierarchy, 
define reduced distribution functions fW Ьу 

(7.50) 

Applying the Schr6dinger equation to (7.49), one 'finds а set of equations in 
which fW is coupled to f~+ 1), the quantum analog of the BBGKY hierarchy. 
We shall not pursue this discussion further since as far asthis author knows, 
по application of these quantum equations to heavy-ion reactions has been 
made. 

В. Applications 

Before it is possible to apply the Lorentz-Boltzmann equation to heavy-ion 
reactions it is necessary to take the Pauli principle into account. The necessary 
modification has been derived Ьу Ueh1ing and Uh1enbeck (33). Instead of (7.16), 
one obtains 

= fdp,dQ'I', - ',1:~, {J',!;(1 - J,)(1 - J,)- JJ,(1 - 1',)(1 - J;) ) 

(7.51) 

The additional factors are intuitively obvious. Scattering out of Р'l and p~ in 
Рl and Р2 is not possible if the states Рl and Р2 are occupied. Equation (7.51) 
is referred to as the Boltzmann-Ueh1ing-Uh1enbeck equation (BUU). 

Aichelen and Bertsch (85); Aichelin (86) [see also Kruse et al. (85) and 
Stocker et al. (81)] have applied (7.51) to the study ofheavy-ion reactions. [For 
additional references, see Aichelin (86).] Since the equation is classical, its use 
is limited to sufficiently high energies. At very high energies the intranuclear 
cascade model, discussed in Chapter IX, and to which (7.51) reduces, is 
appropriate. At low energies, where the Pauli blocking reduces the impact of 
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the collision term, опе mау use the time-dependent Hartree-Fock (TDHF) 
method, discussed in Section 8. Equation (7.51) applies when the collision term 
andjor the mеап potential, V (which сап Ье neglected at high energies), are 
significant. In their studies, Bertsch and Aichelin have investigated 12с + 160 

at 25 MeVjA, 12с + 12с at 84 MeVjA, 160 + 197Аu at 25 and 250 MeVjA, and 
12с + 197Аu at 84 MeVjA. The collisions with 197Аu are most important since 
опе сап study the progress toward equilibration, the possible ртевепсе of hot 
spots, and other local properties, such as density and local thermal equilibrium. 
Опе сап also study the validity of the spectator model in which it is assumed 
that the reaction occurs only in the region where the projectile and target nuclei 
overlap. 

Predictions сап Ье made only for single-particle spectra and angular 
distribution. For the light nuclei, Coulomb effects аге neglected, while for the 
heavy nuclear targets, Coulomb effects are neglected after the first nucleon­
nucleon collision. 

These authors find that the course ofthe reaction is determined Ьу the relative 
importance of the mеап field, the collision term, and the Pauli principle. At the 
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FIG. 7.1. Angular distribution and average kinetic of emitted protons as а function оС 

time. Positive angles correspond to positive values of the х component of the momentum 
of the emitted particles. [From Aichelin (86).] 
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lower end of the energies considered, the теаn field and the Pauli principle 
dominate. The nucleons of the incident projectile are гпоге readily trapped Ьу 

the теаn field but have а longer теаn free path. Fusion is the endpoint of the 
reaction. The single-particle spectrum is exponential but with а slope parameter 
increasing as а function of angle in agreement with the discussion in Section 6, 
which relies оп а Fokker-Planck equation in the momentum space. At higher 
energies, 84 МеV/А, the muJtistep direct reaction as well the multistep 
compound reaction Ьесоте significant. The reaction thus shows а substantial 
preequilibrium сотпропеш which develops during the early stages of the 
reaction. The теаn field does trap some particles, so thatthe final stages of 
the multistep compound leads to а final remnant compound nucleus which 
oscillates radially. The angular distribution consists ofroughly two components. 
The preequilibrium reaction gives rise to а forward peaked anisotropic 
distribution, while the remnant compound nucleus will emit isotropically in the 
center ofmass. At the highest energy considered, 250 MeV/A, the collision term 
dominates in the overlap region. However, these authors state that even at this 
energy а clear-cut separation between participant and spectator nucleons is not 
possible. The multistep direct reaction with its forward peaked angular 

о о 
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84А MeV С + Au 
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FIG.7.2. Proton spectrum produced Ьу the reaction 12с + 197Аи at 84 MeVjA 
compared with the results of lakobsson et al. (82). [from Aichelin (86).] 
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distribution is dominant, and even in the overlap region complete equilibrium 
is not achieved. 

The predicted single-particle spectrum is compared with experiment 
(84 MeVjA) in Fig. 7.1. Substantial agreement (note that this is а semilog plot) 
is obtained. However, the slope parameter for the high-energy tails increases 
with angle, in agreement with the momentum space Fokker-Plank equation 
[see (6.31) et seq.] Correspondingly, the angular distribution is strongly 
anisotropic, indicating the dominant presence of multistep direct processes (see 
Fig. 7.2). А similar result prevails at 250 МеУ jА. Equilibrium, which requires 
ап isotropic distribution, is not attained. The author concludes that the 
hydrodynamic approach is not valid at 84 МеVjА, and this writer would 
add-probably not at 250 МеУ jА. 

8. TIME-DEPENDENT HARTREE-FOCK METHODi 

The Lorentz-Boltzmann approach of Section 7 is not valid in the low-energy 
domain (energies ~ 10 MeVjA). The Pauli principle and quantum effects must 
Ье treated carefuHy. Because of the Pauli blocking, the effect of collisions of а 

low-energy nucleon with the nucleons of the nucleus is strongly reduced, 
increasing the теап free path so that at 10 МеУ it is оп the order ofthe diameter 
of the nucleus. As тапу fewer nuclear states are involved, quantum effects 
Ьесоте significant. However, it is just under this regime that the теап field 
approximation becomes valid. The nucleon is acted оп Ьу ап average field 
generated Ьу аН the nucleons in the nucleus whose coordinates essentially 
disappear from the problem to Ье replaced Ьу the parameters describing the 
теап field (e.g., the nuclear radius). The zeroth approximation to the mean field 
is the Hartree-Fock approximation. То improve uроп it, опе сап use the 
time-dependent Hartree-Fock (TDHF), described in Section 111.3 of deShalit 
and Feshbach (74). As shown there, for smaH deviations from the Hartree­
Fock approximation, опе obtains the RPA approximation [Thouless (61); 
Kerman and Koonin (76)]. However, in the case of heavy-ion collisions, we are 
concerned with relatively large deviations. The method to Ье used was first 
proposed Ьу Dirac (30), and applied to large-amplitude dynamics and heavy-ion 
collisions Ьу Kerman and Koonin (76) and Bonche, Koonin, and Negele (76) 
to а one-dimensional case. 

We begin with а variation principle for the time-dependent many-body 
Schr6dinger equation: 

<58=0 (8.1) 

~Kerman and Koonin (76); Negele (82); Davies, Devi, Koonin, and Strayer (84); Раl (85). 
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where 

s = fdt fdr [ . ··dr.dr'·· .dr; "'*(r1 •. -г.. t) 

'[ih~-H(r1 ... г .г' ... r')J'P(r' ·.. г' t) (8.2)
д: "' 1 п 1 n' 

Varying 'Р* yields the time-dependent Schrodinger equation for 'Р. ТЬе trial 
function to Ье used in TDHF is а time-dependent Slater determinant: 

1/11(rn, t ) 

1/12(rn, t) 
(8.3) 

where the trial single-particle wave functions are orthonormal: 

(8.4) 

Inserting 'Р SD for 'Р in (8.2) and varying with respect to 1/1: yields the one-body 
eque.tion for 1/1,,: 

== (Т+ V)I/I" (8.5) 

In this equation, Т is the kinetic energy operator. We Ьауе assumed that the 
potential v in Н is two-body operator: 

v(г 1... г n' r'1 ... r~) = v(г j, гj; r~, rj)b(г 1- r'1) ... д( г j - 1- r~ _1)д( г j + 1- r~ + 1)... 

b(rj _ 1- rj_1)b(r j+ 1 - rj+ 1)'" b(rn - r~). 

The quantity i5 in (8.5) is then 

(8.6) 

Equation (8.5) yields а set of coupled nonlinear equations whose solutions give 
the time and spatial dependence of the single-particle wave function 1/1 ,,(r, t). 
The time-independent Hartree-Fock equations аге obtained Ьу assuming that 
еасЬ particle wave function has ап exponential dependence оп time. Note that 
when v satisfies translational invariance, that is, 
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then 

Equation (8.5) becomes 

ТЬе first term in brackets is the direct or Hartree тепп, the second term is the 
exchange or Fock term. ТЬе direct term is [оса], while the exchange term is 
nonlocal. 

ТЬе trial function, 'Р ы» will not provide а complete description of the nuclear 
state по matter how accurately (8.5) is solved, as only the correlations induced 
Ьу the Pauli exclusion principle аге present. ТЬе correlations induced Ьу the 
potential v аге not. As а consequence, опе сап expect that the matrix elements 
of only single-body operators will Ье given accurately using 'Р зо- It would not 
Ье correct to use 'PSD to evaluate matrix elements of two- (or more) body 
operators. 

ТЬе TDHF equations (8.5) imply а number of conservation laws. Опе asserts 
that the orthonormal condition (8.4)holds at аН times t. То provethis, consider 

Substituting from (8.5), опе obtains 

ТЬе expectation value of апу one-body operator that commutes with Н is 
conserved [Koonin (79)]. То prove this, we ca1culate 

~ (t/!SDOt/!SD) = I fdrdr' [at/!_:(_r,_t) O(r,r')t/! v(r',t) + t/!:(r, t)O(r,r,)_at/!_v(_r',_t)] 
dt v д: д: 

Replacing the time derivatives Ьу the right-hand side of (8.5) yields 

d .... I ........
-('PSD0'PSD) = -i '" drdr'[t/!*(r, t)(OYf - YfO)t/!v(r', t)J 
dt h~ v 

where 

yf == Т+ V 
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The proof is completed Ьу replacing V Ьу its definition in (8.5). Quantities that 
аге conserved include the expectation value of Yf, the TDHF energy, the 
expectation value of the total momentum, and the total angular momentum. 

The time-dependent Hartree-Fock equations сап Ье reexpressed in а 

representation-independent form using the density matrix p(r, г', t), where 

p(r j г'; t) = п f 'P*(r, r" ... , t)'P(r',r;, ... , t) dr, ... (8.8) 

The expectation of а one-body operator LiO(ri, rд is 

<'Р*О'Р) = f O(r',r)p(r, г', t) drdr') = tr Ор (8.9) 

where the trace is taken with respect to the spatial coordinates. We note another 
property of р using determinantal wave functions, (8.3), for 'Р. In that case 

p(r, г'; t) = L I/J~(r, t)I/J:(r', t) (8.10) 
~ 

and 

f p(r,г'; t)p(r', г"; t)dr' = p(r, г", t) (8.11) 

Or in operator language, 

(8.12) 

In terms of р, (8.7) becomes 

. al/Jv	 f111- = TI/Jv + dr2P(r2,r 2 ; t)v(r1 - r 2)l/Jir 1, t)at 

- fdr,p(rj, r,; t)v(rj -r,)"',(r,) (8.13) 

which we abbreviate as follows: 

(8.14) 

It is now possible to derive the equation of motion for р using the representation 
(8.10).	 Опе obtains 

il1 др = fdr2[h(r, r2 , t)p(r2,г', t) - p(r, r 2 , t)h(r2,r', t)] (8.15)at 
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Equation (8.15) сап Ье written 

др 
ih-= [h,p] (8.16)ot 

ТЬе one-body Hamiltonian, h, depends оп р, so that (8.15) is nonlinear, as is 
the equation for t/J v. 

Equations (8.12)and (8.16)are the starting points for Baranger and Vereroni's 
(78)formulation ofthe adiabatic limit to TDHF. These authors point out that 

(8.17) 

satisfies (8.12), where Ро is time even and satisfies p~ = Ро' When Х is sufficiently 
small, р mау Ье expanded in а power series in terms of the odd and even 
components of р. ТЬе equations relatingthem is obtained from (8.16). Ву 

constraining Ро to Ье time even, the odd-time dependence is given Ьу Х. 

We return to the TDHF single-particle equation (8.5). То complete the 
description of this equation, оnе needs to specify the interaction potential, в, 

and the initial conditions. Integration of these equations is а very large task, 
so that оnе seeks to minimize the labor involved subject to the condition that 
по essential physics Ье lost. In this case, оnе selects а iJ that leads to local mean 
field, V, in (8.15). Toward this end оnе starts with the Skyrme potential [see 
Eq. (VII.18.24) in deShalit and Feshbach (74)] which leads to (VII.18.29) in the 
same reference for the single-particle Hamiltonian H(r). Most of the calculations 
do not keep the spin-orbit terms, whilethe terms in the gradient of the density 
are replaced Ьу а Yukawa-type interaction. ТЬе exchange properties of the last 
аге chosen so that the resulting potential is local. Finally, опе notes that 
(VII.28.29) of deShalit and Feshbach (74) is correct only for а stationary system 
such as the ground state. For moving system, (VII.18.29) of the same reference 
is written in а Galilean invariant form. This means that terms like рТ, where 
т is the kinetic energy density I:IVt/JvI 2 

, are replaced Ьу рТ _)2 where, 

(8.18) 

ТЬе resulting single-particle Hamiltonian is 

н = fН(r)d(r) = fd(r){;: (Т. + Тр) + tto[(2 + Хо)Р.Рр +t(l- хо)(р; + р;)] 

+ j:(tl + t 2)[(pn+ Рр)(Тn + Тр) - (Jn + J p)2] 

+!(t2 - t,)[P. Т. - J; + РрТр - J;] + ;}tз(р.р; + РРР;)} 

+ !vL[Eip", Рn) + Eipp, Рр)] + vuEy(p", Рр) + С(рр, Рр) (8.19) 
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тABLE 8.1 Parameters of the Effective Hamiltonian 
Density [Eq. (8.19)] 

SK 11 SK 111 Local 

to(MeV 'fm З ) -104.49 - 333.47 -497.726 
хо 4.01 1.743 О 

t 1(MeV'fm 
5 

) 585.6 395.6 О 

t2(MeV 'fm 5 
) -27.1 -95.0 О 

tз(МеV-пп") 9331.0 14,000.0 17,270.0 
vL(MeV) -444.85 -355.79 -363.044 
vu(MeV) -868.63 -619.60 -363.044 
~(fm -1) 2.175 2.175 2.175 
m*jm 0.58 0.76 1 

Source: Negele (82). 

The quantities Е; and С are defined as follows: 

(8.20)
 

The parameters of this Hamiltonian аге to tо,tl,t2,tз,VиVu, and и. The 
parameters [see discussion in deShalit and Feshbach (74, р.626)] are fixed Ьу 

the volume, surface, symmetry energies, and the value of the efТective mass, т*. 

The value of the parameters are listed in ТаЫе 8.1 for these variants of the 
Skyrme potential. 

The Hamiltonian governing the evolution of the single-particle wave function 
will have the form [see (VII.18.33) in deShalit and Feshbach (74)] 

h2 1 
- \7'-\7 + U(r) + -(V·I + I·V) 

2т* 2i 

where т*, и, and 1 depend оп the densities and currents present in (8.19). А 

list ofthe calculations done with each ofthe forces аооме is given Ьу Negele (82). 
We turn next to the initial conditions obtained when the ions аге far apart. 

Басh ion is described Ьу а Slater determinant. The single-particle wave functions 
are given Ьу solutions of the Hartree-Fock equations boosted to the initial 
velocity of the ion. If the solutions of the Hartree-Fock equations are ф~(r) 
with energy е., the boosted initial wave function is 

(8.21) 
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where Е is the kinetic energy of the ion and hK is its momentum. The density 
matrix and potential energy transform as foBows: 

(8.22а) 

and 

V(i)(r, r't) = eiK/A.(r-r')v(О)(r - vt, r' - vt) (8.22Ь) 

The Slater determinant formed using ф~) саппот Ье factorized into а wave 
function, depending only оп the center-of-mass coordinate and а wave function, 
depending only оп coordinates relative to the center of mass, R. The latter wave 
function will also depend оп R. However, it vanishes when R is outside the ion. 
Therefore, one is dealing with а center-of-mass wave packet 2R in diameter, 
where R is the nuclear radius. The corresponding spread in the center-of-mass 
momentum is 

А .:».
Рст - 2R 

and the spread in energy is 

АЕ h 
Е R(2mAE)1/2 

For an oxygen Ьеаm whose energy is 2 MeV/A, АЕ/Е = 0.07, suggesting that 
the results ofthe TDHF approximation for light projectiles has а limited validity. 

А. Collision 01 Semi-inlinite Slabs 

The collision of two semi-infinite slabs of finite thickness permits great 
calculational simplifications. In addition, slab collisions permit а clear-cut study 
of the behavior of the longitudiilal degrees of freedom. This is especially 
instructive because in the fuBy three-dimensional collisions the coupling between 
longitudinal and transverse motion proves to Ье weak. 

The single-particle wave functions аге of the form f(х,у)фn(z, t)Xru' where Х 

is a-spin-isospin wave function. When f(x, у) is а plane wave, exp(ik1- -г), where 
hk 1- is the transverse momentum, the function, фiz, t) satisfies, as indicated, а 

one-dimensional time-dependent Schr6dinger equation. The interaction 
potential v(r, r') is given Ьу 

-Jl/r- г'] 

v(r, r') = tob(r - г') + itзд(r - r')p(r) + Voе (~~ + 1
4sp х) (8.23)

Jllr - г' I 

where Рх is the space-exchange operator. The combination (~~ +~14spх) is chosen J 
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so that the resulting mеап field, V(z, t), is local and has по spin or isospin 
dependence. Substituting in (8.4) yields 

V(z, t) = ~top(z, t) + lЗ6tзр2(z, t) + 2n V~ foo dz' p(z', t)е-JФ-z'l (8.24) 
J1 -00 

and 

(8.25) 

Initially (t = О, not boosted), ф; is the self-consistent Hartree-Fock solution of 

h2 d2 
в ф(о) = ф(о) + v(z)ф(о) (8.26)

n n 2т dZ 2 n n 

То complete (8.25) and (8.26) ап expression for p(z, t) in terms of ф; is needed. 

-15 -12 -9 -6 -3 О 3 6 9 12 15 
Z(Fm) 

FIG. 8.1. Density distributions for Е/А = 0.5 МеV [From Negele (78).] 
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We begin with (8.10). Initially [not boosted; see (8.22)J, 

ТЬе integration оп k.l covers the range from 8 to 8F, the Fermi energy, with 
the result 

n 

p(O)(z) = L АnIФ~О)(z)12 (8.27) 
n 

where 

(8.28)
 

Since there is по coupling between the transverse and longitudinal modes, p(z, t), 

0.20 
_--__ Е/А· 3.5 Mev_--_ 

N 

·15 -12 -9 - 6 -3 О 3 6 9 /2 15 
Z (f т) 

FIG.8.2. Density profiles p(z, t) at sequential times t, specified in units of 10-21 s, [ог а 

сm energy Е/А = 3.5 МеУ. [From Negele (82).] 
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as needed for the calculation of V(z, г), (8.24), is 

(8.29) 

The initial conditions аге obtained Ьу boosting the wave functions appropriately 
[see (8.21)et seq.]. The solutions are obtained Ьу numerical integration of(8.25) 
using (8.29). In the calculations to Ье reported below, the constants used аге 

taken from the "lосаl" column in ТаЫе 8.1. These yield а nuclear matter density 
of 15.77 MeV рег particle at kF = 1.29fm -1. 

Figures 8.1, 8.2, and 8.З give the density profiles as а function of time for 
the incident energies 0.5, З.5 and 25 МеV/А. In the first (Fig. 8.1), fusion is 
indicated. In Fig. 8.2 the two slab pass through each other, but the final states 
ofboth systems are highly excited. Inthe high-energy case, fragmentation occurs. 
А detailed examination of these examples reveals two phenomena: (1) because 
the collision modifies the relative phases, the original coherence of the 
single-particle wave functions is destroyed; and (2) strong dissipation occurs. 
The second is related to the first since the destruction of the coherence 
characteristic of the ground state leads inevitably to excitation, so that some 
of the initial kinetic energy is converted into excitation energy. The large [озв 

of kinetic energy is shown in Fig. 8.4. There are some energies, for ехатрlе, 

near Е/А = 2 MeV, for which the energy 10ss is reduced. The [озв of coherence 
occurs because the changing mean field affects each single-particle wave function 
differently, as сап Ье seen from Fig. 8.5.. Importantly, one sees that although 
two-body collisions are not included, the variety of phenomena, especially 
the large dissipation observed in heavy-ion collisions, is reproduced Ьу 

the TDHF. 

В. Collision of Realistic Systems 

The integration of the time-dependent single-particle equations obtained from 
(8.19) Ьу varying Ф: is а formidable task. One must keep track of (А 1 + А 2 ) 

сотрlех numbers in а (З + 1)-dimensional space. Simplifications in addition to 
those already described are essential for а programmatic study of many cases. 
As we shall see, these involve restricting the functional dependence of the 
single-particle wave functions, effectively decreasing the number of degrees of 
freedom of the system. Such constraints will reduce the dissipation and increase 
the time required to establish equilibrium. With this caveat in mind we shall 
now proceed to describe two simplifications commonly used. [See Davies, Devi, 
Koonin, and Strayer (84) and Negele (82) for а more complete discussion of 
these and other methods.] 

One procedure reduces the dimensionality to 2 + 1 dimensions Ьу assuming 
axial symmetry. In the "clutching" model [Koonin, Davies, et аl. (77)], the 
single-particle wave functions are taken to Ье 

(8.30) 
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-30 -20 -10 О 10 Ю 30 
Z (Fm) 

FIG.8.3. Density profiles as а function of time for center-of-mass energy Е/А = 25МеУ. 

[From Negele (78).] 
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FIG. 8.4. Density profiles and velocity distributions for separating slabs showing particle 
emission. Only the left-hand plane is shown for this symmetric collision. ТЬе velocity 
is specified Ьу f3 = »[с. [From Negele (82).] 

In this equation cylindrical coordinates are used, the symmetry axis is along z, 
and hm/l is the angular momentum around the symmetry axis. The single-particle 
time-dependent equation for t/J /l now reduces to аn equation for X/l. The wave 
functions t/J /l are regarded as intrinsic wave functions of а гогатог as in the 
Bohr-Mottelson-Nilsson mode. Оnе must add to the Hamiltonian of (8.1) the 
rotational energy in the form L 2/2~(p), where L is the initial anguJar momentum, 
а constant of the motion, and ~(p) is the moment of inertia. The rotation is 
аоош, аn axis perpendicular to the reaction plane. The moment of inertia is 
taken to Ье that of two point masses а distance R apart whenthe colliding 
nuclei are not overlapping: 

When the nuclei overlap (taken to Ье when the overlap density is one-half the 
saturation density), the rigid moment of inertia is used, that is, 
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FIG. 8.5. Contributions of individual single-particle wave functions for the collision 
shown in Fig. 8.2. In the upper graphs, the теап field is denoted Ьу the long-dashed 
line, with the scale shown to the right. The contributions to the density of the lowest 
orbital and third orbital originating in the left slab аге indicated Ьу the solid and 
short-dashed lines, respectively. The bottom graph displays the contributions of the 
second and fourth orbitals at the final time. [From Negele (82).] 

In а second procedure referred to asthe "2D frozen approximation" [Devi and 
Strayer (78), Koonin, Flanders, et аl. (78)], it is assumedthat I/JIlсап Ье written 

I/JIl(r, t) = ЧJIl(Х, у, t)XIl(Z) (8.3 1) 

This approximation is based оп the presumption that most of the dynamical ~ 

effects occur in the reaction рlапе, that is, that there is 1ittle change in the z ~] 
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dependence of ljJ Jl with time. This ansatz is borne out Ьу the few 
three-dimensional calculations that have Ьееn performed. ТЬе function X

Jl 
is 

chosen at t = О to Ье а harmonic oscillator wave function whose scale is chosen 
so as to minimize the Hartree-Fock energy for the separated nuclei. This model 
has аn important advantage over the clutching model in that it permits the 
excitation of nonaxially symmetric modes, thereby permitting more possibilities 
for energy dissipation and а more rapid approach to fusion and equilibration. 
А further approximation, the "filling approximation", is made with respect 

to open-shell nuclei whose Hartree-Fock states would show а high degeneracy. 
For these cases the expression for р (at t = О) given Ьу (8.10) is replaced Ьу 

р(О) = I nJlIjJ v(r, O)IjJ:(r',О) (8.32) 
Jl 

where nJl аге the fractional occupation probabilities. This quantity is adjusted 
so that the resulant теаn field is spherically symmetric; that is, nJl = 1 for filled 
shells and equal to m/2(21 + 1) for а shell of orbital angular momentum 1 
containing т particles. Moreover, these probabilities аге assumed to Ье time 
dependent. 

ТЬе TDHF theory provides а microscopic understanding of the macroscopic 
parameters described in Sections 1 to 5. Good qualitative understanding or 
agreement is obtained for the most рап, There аге discrepancies. For example, 
the experimental values of the widths of the charge and mass distributions аге 

very тuсЬ larger than the TDHF values. Cross sections саппот Ье obtained, 
as that would involve calculating the matrix elements of а many-body operator. 
ТЬе TDHF method is accurate for the matrix elements of one-body operators. 
In view of the approximation made, more precise methods for evaluating their 
validity and in estimating the theoretical error оп the TDHF calculations are 
needed. At the present time, tests are made Ьу comparing the results obtained 
using, for example, the models described above with еасЬ other and/or with 
three-dimensional calculations for various cases, colliding nuclei, energy, and 
angular momentum. 

We consider fusion first. А good example is shown in Fig. 8.6. More generally, 
а fusion event is defined as "оnе in which the coalesced one-body density survives 
through at least оnе rotation or several oscillations of its rms radius" [Davies, 
Devi, Koonin, and Strayer (84)]. ТЬе fusion cross section is defined bythe 
equation 

(8.33) 

Note that this equation difТers from (2.5) in that it leaves ореn the possibility 
that the orbital angular momenta from 1= О to 1= 1т - 1 do not contribute to 
the fusion cross section. For а given reaction, the values of 1м and 1т are 
determined Ьу interpolating TDHF calculations for various values of 1. 
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FIG. 8.6. Contour p!ots ат sequentia! times of the density in the center-of-mass integrated 
over the погта! to the reaction р!апе for 1ба + 4ОСа collision at а !aboratory energy of 
315 МеУ. The initial angular momentum is 60 h. [From Nege!e (82).] 
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FIG.8.7. Fusion excitation functions for (а) 12с + 160 and (Ь) 12с + 180 collisions are 
compared with the experimentaI data. [From Krieger and Davies (79).] 

TABLE 8.2 

иМ)тах 

System TDHF Liquid Drop 

160 + 160 31 32 
160 + 27АI 45 43 
160 + 24Mg 42 42 
160 + 4ОСа 62 58 
28Si+ 28Si 50 58 
4ОСа + 4ОСа ~60 67 
160 + 9ЗNЬ ~77 86 
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FIG.8.8. Angular momentum limits to fusion for 160 + 160 collisions. Also shown in 
the upper angular momentum limit extracted from the optical model total reaction cross 
section and the "experimental" lower limit. [From Bonche et al. (78).] 
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FIG.8.9. Fusion regions, indicated Ьу shaded areas, specifying the ranges of initial 
angular momentum 1in units of h and center-of-mass energy, Ест' in MeV for whichthe 
TDHF initial value problem leads to а final state interpreted as а fused compound 
system. [From Negele (82).] 
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FIG.8.10. Time evolution of the proton and пешгоп Hartree-Fock potentials along 
the symmetry axis for 136Хе + 209Bi at E1a b = 1130 МеУ and 1= 100. [From Dhar, 
Nelson, Davies, and Koonin (81).] . 
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Ап example of the agreement of experiment with theory is illustrated in 
Fig.8.7. Опе notes the linear dependence оп l/Е in agreement with (2.7), 
permitting а determination of the macroscopic parameters RB and VB of that 
equation. This is shown in more detail in Fig. 8.8, where the value of 1м using 
(2.6) is plotted against the TDHF results. In Table 8.2 we compare the maximum 
vaue of 1м as а function of energy beyond which fusion does not оссur (as 
discussed in Section 2, the compound nucleus саппот sustain higher values of 
1м) with the values obtained from the liquid-drop model [СоЬеп, Plasil and 
Swiatecki (74)]. 

Опе of the surprising results obtained in TDHF calculations is the existence 
of а minimum value of 1, 1т of (8.33) which is greater than zero. This is referred 
to as the angular momentum window. This is illustrated in Fig. 8.9. 

We turn next to deep inelastic collisions. We restrict the discussion to heavy 
nuclei, for in those cases the collision is dominated Ьу the deep inelastic process, 
as fusion is highly improbable. Consider the collision of 136Хе with 209Bi at а 

laboratory energy of 1130 МеУ (аоош 8.3 МеУ/А). ТЬе time evolution of the 
TDHF proton and пешгоп potentials along the symmetry axis for 1= 100 is 
shown in Fig. 8.10. We see the merging of the two potential wells to form а 

8cm(deg.) 

FIG.8.11. Comparison of calculated points with the experimental Wilczynski plot for 
136Хе + 209Bi at Е1аЬ = 1130 МеУ. The calculated points for various initial orbital 
angular momenta are connected Ьу а fullline. [From Dhar, Nelson, Davies, and Koonin 
(81).] 
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FIG.8.12. Equidensity contours at various times during а 86Kr + 139La collision at 
E1ab = 710МеУ and 1= 100. The symmetry axis lies along the line joining the mass 
centers of the projectile and target. АН times аге in units of 10 - 21 s. [From Davies, 
Sandhya Devi, and Strayer (79).] 
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соттоn well and then the reformation of the original two wells plus аn 

additional well. Моге about this later. А popular way of summarizing the 
experimental data is the Wilczynski plot, in which the cross section contours 
аге plotted in the total kinetic energy, and ест plane. Such а plot is shown in 
Fig. 8.11. The TDHF calculations аге given Ьу the connected points, which plot 
the total kinetic energy versus the scattering angle. Басh impact parameter 
(indicated Ьу 1) in а TDHF calculation yields а point onthis line. It is presumed 
that the line will follow the ridge of the cross section contours. We see the 
characteristic very rapid drop оп kinetic energy followed Ьу а slower rate of 
decrease. We also observe that the TDHF energy [оэв at "small" l is not as 
large as the experimental results require. This is а соттоn failure of the TDHF 
calculation (and the charge and mass distribution mentioned аооме). However, 
apart from this problem, the TDHF results аге in semiqualitative agreement 
with experiment. Оnе feature should Ье noted-namely, that there is а large 
interchange of target and projectile nucleons. One тау also use the calculations 
to compare with the macroscopic phenomenology of Nix and Sierk discussed 
in Section 2. These authors introduce the coordinates R, measuring the 
separation of the ions, and а, the elongation. 

The TDHF calculation predicts the early emission of neutrons in the process. 
This occurs because the projectile nисlеоn energy in the common well (see 
Fig. 8.10) exceeds the Fermi plus binding energy. А more unexpected 
phenomenon is the production of ап ~-particle at scission. This is illustrated 
in Fig. 8.12. Returning to Fig. 8.10, we note the formation of three wells at 
2.4 х 10- 21 s. The well in the center governs the evolution of the ~-particle. 

The TDHF method thus provides good insight into the dynamics of the 
10w-energy heavy-ions collisions. Its major failure is that it does not provide а 

method for the calculation of cross sections. 
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