
CHAPTERIX
 

HIGH-ENERGY NUCLEAR PHENOMENA
 

1. INTRODUCTION 

In this chapter we consider reactions induced Ьу projectiles whose energy per 
particle is in the GeV ог sub-GеV range. The projectiles аге, for the most рап, 

electrons and protons, although there will Ье some discussion of relativistic 
heavy-ion projectiles. The phenomena discussed includes elastic, inelastic, and 
quasi-elastic scattering and, in the case of relativistic heavy ions, fragmentation. 
The production of bosons with various values of hypercharge and their 
interaction with nuclei will Ье left to Chapter Х. These areas of physics, those 
in this and the next chapter, аге referred to as medium-energy nuclear physics. 

High energy translates into high momentum and short wavelength. Because 
of the short wavelength and relatively weak interaction of the electrons, high­
energy electron accelerators аге efТectively electron microscopes, studying the 
nucleus and, at sufficiently high energy, the structure of the individual nucleons. 
As we shall describe, through the use of electron scattering, we аге аЫе to obtain 
а detailed understanding of the spatial distribution of charge and current in 
the target nucleus. It should Ье emphasized that such results сап Ье obtained 
only because the properties of the probe, the electron, and its interaction with 
the electromagnetic field in this case generated Ьу the target nucleus as given 
Ьу quantum electrodynamics аге so very well known. 

In тпоге detail, the matrix elements of nuclear charge and current сап Ье 

directly related to the nuclear multipole moments. These аге of two types, the 
Coulomb and the transverse electric and magnetic. The latter also occur in the 
description of photon emission [see deShalit and Feshbach (74, р. 689)] with 
identical selection rules (deShalit and Feshbach (74, р. 670)]. The selection rules 
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associated with the Coulomb multipole moments are the same as those for the 
transverse electric multipoles. The information obtained from electron scattering 
is much richer than that which сап Ье extracted from photon-induced transitions. 
In the latter case, there is only опе independent variable, the energy transfer оз 

in units of п, whereas in electron scattering there are two, the energy transfer 
and the momentum transfer q in units of п. Of course, momentum transfer does 
occur in the case of photon reactions. But its magnitude is оз]«. In electron 
scattering the momentum transfer and the energy transfer are not coupled; q 
сап ditТer from ш/с Ьу several orders of magnitude. Electron scattering thus 
yields the q dependence ofboth the transverse and Coulomb multipole moments, 
and Ьу Fourier inversion their spatial dependence. Опе is thus able to тар the 
charge and current distribution experimentally and compare them with the 
predictions of theoretical models. 

In particular, the transverse moments that measure the nuclear current 
distribution аге, according to the shell model, sensitive to the wave functions 
of the valence neutrons and protons. This follows from the fact that the net 
current generated Ьу the core is zero. Оп the other hand, поте that the Coulomb 
moments are sensitive only to the proton distribution. Fortunately, Ьу choosing 
appropriate kinematic conditions it is possible to measure separately the trans­
verse and Coulomb moments. 

These results assume that the nuclear charge and current operators are 
one-body operators, given Ьу (VII.2.l)-(VII.2.4) in deShalit and Feshbach (74). 
1Ъis is ап approximation, as there аге two-body terms as well, such as those 
given Ьу exchange currents and exchange charge [see Section VIII.3 in deShalit 
and Feshbach (74)]. Before claiming the observation of exchange currents, опе 

must use sufficient1y accurate nuclear wave functions in the evaluation of the 
nuclear matrix elements. For example, the independent particle description must 
Ье supplemented Ьу configuration interactions [Chapter V in deShalit and 
Feshbach (74)] and Ьу correlations (Chapter 111 and УII of the same reference). 
In some cases, those in which the spin-isospin (0"1') transitions dominate, the 
excitation of the nucleons to L\'s тау Ье important. 

Because of the high energy, the electron сап excite states in the continuum, 
such as isobar analog states and the giant resonances. Because of the associated 
high momentum, опе сап study multipoles of high order and опе сап form 
stretched nuclear states. Because of their high energy the electrons сап eject 
опе or more nucleons from the target. The underlying process, quasi-elastic scat­
tering, is the col1ision between the electron and nucleon in the nucleus. Its 
cross section peaks at ап energy transfer ш for large enough q at q2/2m* + е, 

where т* is the nucleon's etТective mass and G is its binding energy. In а Fermi 
gas model the width of the quasi-elastic peak is kFq/m* (see 1.3.9). Removing 
а nucleon in ап (е, е' р) or (у, р) experiment тау permit а determination of the 
momentum distribution of а single-particle state and the lifetime of а deep 
one-hole state. At still higher energies the electron сап excite the individual 
nucleon, forming the nucleon isobar L\, which сап decay Ьу emitting а pion. 
Direct pion.production without the intermediary of а L\ will also occur. These 
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FIG. 1.1. Schematic electron energy [озз spectrum. Region 1, elastic scattering; 11, 
excitation of discrete levels; 111, excitation of giant resonances; IV, quasi-elastic scattering; 
У, pion production and .1 formation; VI, N* formation. 

various possibilities аге shown in Fig. 1.1, which schematically pictures the 
electron spectrum at а given q. 

When ап electron is scattered Ьу а nucleus, there is а high probability that 
it will also emit а photon. As а consequence of this energy [овв, the elastic and 
inelastic scattering cross sections willexhibit а tail оп the 10w-energyside, usually 
referred to as а radiative tail. The observed cross section will, in addition, depend 
оп the energy resolution, J1E, of the detector since it will count electrons that 
have radiated photons whose energy is less than J1E. These effects сап Ье calcu­
lated with great accuracy [Schwinger (49Ь)] and the experimental cross section 
unfolded to yield the radiation-free cross section. It is this corrected cross section 
that is usually quoted in the experimental papers. Figure 1.1 is qualitatively 
correct опlу in this sense. Otherwise, the gaps between levels as shown in 
Fig. 1.1 would Ье partially filled in. Ап experimental ехаmрlе is shown in 
Fig. 1.2. The radiative corrections are thorough1y described Ьу Oberall (71). 

As this is being written, electron scattering studies are entering а new era in 
which it is anticipated important advances in our understanding of nuclei will 
ье obtained. Up to recently, the electron accelerators had а 10w duty сусlе. As 
а consequence, some experiments were difficult. The new CW ('" 100% duty 
сусlе) accelerators, some already available and others under construction, will 
make greatly improved coincidence measurements possible as well as make 
available tagged and thereby monochromatic y-ray beams. In addition, there 
is the prospect of polarized electrons and polarized internal jet nuclear targets. 
With coincidence experiments опе сап reduce the radiative tail background 
enormously (see Fig. 1.3). 

With these new tools it becomes possible experimentally to measure the 
individual multipole moment amplitudes separately. With the 10w-duty-cycle 
accelel"ators, а complicated model-dependent analysis is necessary. It will also 



682 HIGH-ENERGY NUCLEAR PHENOMENA 

106..------------------------, 

Е о • 219 MeV, 8- 52.~· 

2+ 

1Q0.LIL ........ '-­ ..L.--_---' 

о soo tOOO 

ENERGY (keV) 

FIG. 1.2. Sample electron excitation spectrum for 154Gd. ТЬе incident electron energy 
is 219 MeV. ТЬе scattered electron is observed at 52.50. [From Bates Linear Accelerator 
proposal (84).] 

Ьесоте possible to observe the particle emission from giant resonances and 
make improved measurements оп deep one-hole and stretched states. 

ТЬе experimental studies undertaken with high-energy protons are very 
similar in character to those described above using electrons. Elastic and inelastic 
scattering, including excitation of discrete levels, of the giant resonances of 
one-hole and stretched states, L\ and pion production have Ьееп observed. 
Polarized beams have also Ьееп used. There is, of course, опе very great 
difference: namely, the interactions in the proton case are "strong" and not 
completely known. Опе must rely оп multipole scattering theory (Chapter 11), 
in which proton-nucleus interaction is approximated Ьу ап optical potential 
V. In its simplest first-order form, V in momentum space is given Ьу 

V(k, k') = (А - l)р( - ч)ЕЕ(ч) (1.1) 

where р is (Ье nucleon density operator and ЕЕ(ч) is (Ье transition matrix operator 
for nucleon-nucleon scattering. ТЬе vector q is the momentum transfer (k, initial 
momentum, k' final momentum). ТЬе function tE is evaluated at (Ье center-of­
mass energy of the nucleon-nucleus system with due regard for the transform­
ation from the nucleon-nucleon system (see 11.7). ТЬе discussion in this chapter 
will rely оп (1.1). 

Ву taking matrix elements of V, the appropriate potentials for various 
experimental situations сап Ье obtained. For elastic scattering 

Voo == <01 VIO) = (А - 1)<OjpfIO) (1.2) 
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FIG. 1.3. Single агт and coincident (е, е'n) spectra from 208рь. ТЬе coincidence 
condition removes the radiative tail, revealing the excitation of giant resonances. [From 
Frois and Papanicolas (87).] 

where 10) is the ground-state nuclear wave function. For inelastic scattering to 
а level If), the transition potential is 

Vf O = (А - 1)(ЛрiIО) (1.3) 

Since i depends оп the spin and isospin орегатогв, Voo and V/ o will depend оп 

various spin and isospin components of the elastic and transition density, 
respectively. These combinations difТer from the electron case, so that 
nucleon-nucleus scattering provides information which complements that 
obtained firom electron scattering. 

Equation (1.1) is а first approximation to V. Higher-order approximations 
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involving higher powers of t have Ьееп Qbtained. These depend оп correlation 
functions. 

2. ELECTRON SCATTERING 

Let us begin with some kinematics. The incident electron with four momentum 
k/l(k, Е) is scattered through ап angle 3. We shall work in units with h = с = 1. 
Its final momentum is k~(k', Е'). The three momentum transfer is q: 

q=k-k' 

while the energy transfer is ш: 

w = Е - Е' 

The magnitude of q is 

(2.1) 

Since the electron energy will Ье very much greater than its rest mass, k = Е 

and k' = Е'. In this limit 

(2.2а) 

and 
(2.2Ь) 

For elastic electron scattering, the target nucleus will recoil with а momentum 
q, so that 

(2.3) 

where М is the mass of the target (тА). Transposing М to the left-hand side 
of this equation and squaring yields 

(2.4) 

In (2.2Ь) replace Е' Ьу Е - со = Е - (l/2M)q;. Solving for q; yields 

(2.5) 

where 

2Е . 2 1
f,гес = 1+ - sш 2"3 (2.6) 

М 
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From (2.3) 

(2.7) 

and finally from (2.4) and (2.6), we obtain 

Е 
Е'=- (2.8) 

з.: 

In the foreward direction (3 = О), Е' equals Е. 

А. Elastic Scattering from Spin-Zero Nuclei 

The modern era in electron scattering was initiated Ьу R. Hofstader Ьу his studies 
of the elastic scattering of electrons Ьу spin-zero nuclei. This is perhaps the 
most highly studied process involving electrons. Very great accuracy has Ьееп 

acmeved. То start with , we assume that the nucleus is describable Ьу а static 
(time-independent) charge distribution p(r). The resulting electrostatic potential, 
ф, is the solution of the Poisson equation: 

(2.9) 

In momentum space 

(2.10) 

where 

iqр(ч) = fe ' 
r p(r)dr (2.11) 

We shall discuss the Вогп approximation to the scattering produced Ьу ф. It 
is of course necessary to employ the relativistic Dirac еспапоп.! 

(2.12) 

:In the rest ОС this chapter h and с will Ье placed equa\ to unity. ТЬе four-vector p~ has components 
(р,Е), where р is the momentum and Е is the energy. Similarly, А is the vector potentia\, А4 = iф. 

Final1y 

-i)
where Р2 = (О 

i О 
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The summation convention is used in this equation. For the situation under 
study, (2.1) becomes 

Multiplying Ьу (YIlPIl + im), we obtain 

or 
(2.12') 

so that the scattering amplitude operator, 1, is 

(2.13) 

Or integra ting Ьу parts, we have 

1= ~: (Yllk~ + im)Y4fe-ik"r фt/J~+) dr (2.13') 

where k~ = iE. In the Born approximation 

(2.14) 

so that 

In this last еоцапоп е аге the two-row/two-column Pauli spin matrices. ТЬе matrix У4 is 

ТЬе y's satisfy 

ТЬе trace of products of the y's are [see (IX.II.22) in deShalit and Feshbach (74)] 

trl = 4 

ТЬе trace of ап odd number of y's is zero. For пюге detajls, see the аррегкйх to Chapter IX and 
р. 825 et seq. in deShalit and Feshbach (74). 
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where Uj is а four-element columnar matrix given Ьу (5.8) and (5.9) of the 
Appendix to Chapter IX in deShalit and Feshbach (74). These аге positive energy 
solutions of the field-free Dirac equation with spin ир and spin down, respect­
ively. Introducing (2.14) into (2.13'), опе obtains 

(2.15) 

Employing (2.10) for ф(q), J becomes 

(2.16) 

The amplitude is thus linearly related to the Fourier transform of the charge 
density. The scattering amplitude to а given final state is 

То obtain the cross section, опе must square the magnitude of f Ji, sum over аН 

final spin states, and average over the initial ones: 

(2.17) 

Опе сап reduce the calculation of а to the evaluation of а trace Ьу using the 
projection operator Р оп the positive energy. This operator has been derived 
in deShalit and Feshbach (74, р. 825, et seq.). It is 

(2.18) 

so that (2.17) becomes 

(2.19) 

where the subscript i, for example, indicates 
~ 

that in (2.18), k 
~ 

equals the incident 
momentum and energy. Inserting f [гогп (2.16), (2.19) becomes 

:~ = - ;:~~212 tr[Y4(y~k~* - im)(y~k~ + im)Y4(y).k~ + im)Y4(Yrokro + im)Y4] 

(2.20) 

The Y4'S at the beginning and end of this expression cancel. The trace сап then 
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Ье readily evaluated using the results in the footnote оп page 686. Опе obtains 

where f3 = и/с. ТЬе charge density Ро of а zero-radius-point nucleus is 

po(r) = Zед(r) 

so that 

Po(q)= Ze 

ТЬе resulting cross section divided Ьу Z2 is referred to as the Мott cross section 
им: 

(2.22) 

(2.23) 

These results hold in the center-of-mass system or if the target mass М is infinite. 
In the laboratory frame, the recoil of the target must Ье taken into account. 
Repeating the calculation аЬоуе in the laboratory frame leads to (2.21), which, 
however, must Ье multiplied Ьу k'/k or е'/е in the zero-electron-mass limit. Then 
using (2.8), опе obtains 

ао 1 2 
- = -Uмlр(q)1 (2.24)
dQ з.: 

This Бош approximation result is valid at best for light nuclei. Ву а 

measurement of elastic electron scattering, опе сап in principle determine the 
charge density distribution. Бut there are several corrections. The most obvious 
is the efТect of the nuclear Coulomb field оп the electron wave functions. 
Therefore, the plane wave approximation for the electron wave functions used 
аооме is incorrect, especially for the large Z nuclei. Second, the calculation above 
is incomplete since it includes only the elastic scattering produced Ьу the nuclear 
charge distribution. Scattering produced Ьу the nuclear currents and magnetiza­
tion are not accounted for. Finally, there аге the efТects of virtual inelastic 
scattering оп the elastic scattering. These are referred to as dispersioncorrections. 

В. Coulomb Scattering 

The wave functions for ап electron moving in the Coulomb field of а point 
nucleus have Ьееп described in deShalit and Feshbach (74, рр. 915-916). As in 
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that review, let the Dirac wave function t/J Ье а two-element matrix, еасЬ element 
of which is а spinor 

(2.25) 

ТЬе wave functions и and v for the state with а given angular momentum, j, 
аге products of а radial function and а function giving the spin and angle 
dependence: 

( . 1) - G(r) @/ ( . 1)
и], --';Ут]' (2.26а) 

r 

v и, 1) = f(r) (- i(J'i)1Yти, 1) (2.26Ь) 
r 

where 

(2.27) 

ТЬе spin wave function is ХЦ2' while 1Ylm1 = i l Ylm , where Ylm is а врпепса) 
harmonic. 

ТЬе equations satisfied Ьу f and G [ог an arbitrary radial potential V(r) are 

df f 
(Е-m- V)G+--K-=O (2.28а) 

dr r 

dG G 
-(Е+m- V)f+-+K-=O (2.28Ь) 

dr r 

where 

-н, l=j+! {l
к = - [1 + а· L] = {и + or к = 

-и+!), l=j-! -(l+ 1) 

ТЬе exact solutions are given in deShalit and Feshbach (74, р. 916) in terms of 
the conf1uent hypergeometric function. We quote here опгу the behavior of G 
and f as r -+ О and r -+ 00. 

(2.29а) 

(2.29Ь) 

(2.30а) 
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f(r -+ 00) -+ - (е - 1)1/2 Sin[kr + t/log 2kr - ~(l + 1) + д~)] (2.30Ь) 

where 
Е 

Е;=-

т 

i(Ze
2)m/k

е 2 i ф • = _ к - N = _1r_(_s_+_I_+_I_'t/)_1 (2.31) 
s + it/ s Г(2s + 1)е-'1п/ 2 

2m/k 
Г(S + 1еШ~С) = _ к + iZe - it/)e1t / 2 i(/ + l-s) 

S - it/ г(s + 1 + it/) 

Using these resu1ts, Mott (29,32) expressed the cross section for the scattering 
of an electron Ьу а nucleus in terms of two conditionally convergent infinite 
series. То first order in Ze 2{3, these series сап Ье summed [McKinley and 
Feshbach (48)] to yield: 

То obtain the resu1ts for positron scattering, replace Z Ьу ( - Z). This result is 
useful for sufficiently light nuclei. For larger values of Z, numerical methods 
are required. Tables are given Ьу McKinley and Feshbach (48), Feshbach (52), 
and Curr (55). Yennie et al. (55) improve the convergence Ьу multiplying the 
Mott series Ьу (1 - cos 3)3 and employing the Legendre function recurrence 
relation to reorder the series. 

С. Effect of Finlte Slze of the Nucleus 

The results above are obtained Ьу using V = - Ze2/r in (2.28). Taking the charge 
structure of the nucleus into account requires replacing it Ьу the solution of 
the Poisson equation (2.10). For spin-zero nuclei the resulting V is а function 
of r only. For r> R (the nuclear radius) V will approach the point Coulomb 
value. The solutions of(2.28) are obtained in the usual fashion, that is, Ьу joining 
the solutions of (2.28) to the Coulomb wave functions for r > R. Asymptotically, 
this means replacing д~) in (2.30) Ьу дк, Note also that the singularity exhibited 
Ьу the Coulomb wave functions at r = О for j =! [see (2.29)] disappears when 
the finite size of the nucleus is taken into account. The wave function now 
approaches r l 

+ 
1

• The scattering amplitude is given Ьу Acheson (51): 

1= Л3) + ig(3)a'n (2.33) 

where 

n = k х k' 
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and 

i i Кд -/(9) = 2~k L к[е2 дк P,,(cos 9) + е2 Р" _ 1 (cos 9)] (2.34а) 
l ,,>0 

and 

(2.34Ь) 

where according to (2.28), к equals 1, and - к = - (l + 1). ТЬе functions 
P~l)(COS 9) аге the associated Legendre functions 

ТЬе elastic cross section for ап unpolarized incident electron Ьеаm averaged 
over the final spin is 

(2.35) 

ТЬе polarization produced Ьу the scattering of ап unpolarized Ьеаm is 

(2.36) 

so that the polarization of the electrons is perpendicular to the scattering plane. 
Simplifications do оссш in the limit of т/Е - О; that is, in the high-energy 

limit, (2.28) reduces to 

(Е - V)G + f' _ К/ =О 
r 

KG 
(Е - V)/ - G' - - = о 

r 

For к = -1, 

(Е - V)G, + /; + 1// = О 
r 

(Е - V)// - G;+ Ю/ = О 
r 

For к = 1, we have 

, 1/-1 О(E-V)G_ 1 +/ _ - - = 1 
r 
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Comparing the (G/, //) equations with those for (G-ь / -д, we see that these 
equations Ьесоmе identical if 

(2.37) 

From the asymptotic forms, (2.30), with д~) replaced Ьу д", it follows that 
[Feshbach (51)] 

д/ = д_(/+ 1) 

or 
т 

--о (2.38) 
Е 

This result holds for the Coulomb phase shift (2.31), fют which опе finds that 

(2.39) 

For the energies of interest (k »m), the еггог is indeed small. Equation (2.38) is 
obviously computationally useful. Inserting (2.38) into (2.34Ь) and using 

we obtain . 

so that 

(2.40) 

and 

(2.41) 

Therefore, the polarization produced Ьу the scattering tends to zero as the 
energy increases. 

In the high-energy limit it is useful to obtain ап eikonal approximation for 
the wave function. We return to (2.12') to the Schrodinger equation from 

where 

(2.42) 

ТЬе eikonal solution to the Schr6dinger equation has Ьееп given in Chapter 11 
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[Eq. (П.5.7)]: 

or 

(2.43) 

In this equation и is а spinor. Consistent with the eikonal approximation, we 
drop the т term in (2.42) and replace the operator Р« Ьу ku' This introduces а 

new condition for the validity of the results to Ье obtained below: 

vф
-«1 (2.44) 
kф 

This condition is very wel1 satisfied for an extended nuclear charge density. Note 
that this last approximation need пот Ье made. The analysis that follows сап 

Ье сапiеd through with У/lk/lФ replaced Ьу У/lk/lФ + (1ji)'УОVф. With these 
approximations, ljJ becomes 

(2.45) 

Rewriting (Y/lkj1)Y4 = i(E + (Jok), one needs to evaluate 

where А does not involve spinor operators. One finds that 

ei(l2.k )A = cos kA + i(J'ksin kA 

This is to operate in и. We assume that because the electron energy is high, и 

5atisfies 

(2.46) 

50 that 

Final1y, then 

ljJ ~ {ехр [{kz - k;kЕ f~oo еф dZ') ]}и 

~ {ехр { kz - f~oo еф dZ')}U (2.47) 
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Опе сап now insert this result into the ехаст equation (2.13) {о obtain the 
scattering amplitude. The discussion from here оп follows that of Ch. II [see 
after (УII.5.7)] and need по! Ье repeated here. 
А further approximation {о (2.47) is often made. 1t recognizes the fact that 

because of the Coulomb attraction, the electron momentum increases as it 
approaches the nucleus. То estimate this, expand the integral in (2.47)as follows: 

f~oo ф аг'>: f~oo фdz'+zф(z=О,р)+··· 

Непсе, for а given impact parameter р, the effective value of k is 

k ()=k(l_ еф (о, р ) ) (2.48)еН Р k 

In тапу applications of this result, а still cruder approximation is used: 

k' "-k(l- еф(о,о)) (2.47')
eff k 

For the case of а homogeneous charge distribution of radius R, 

this becomes 

k' "- k(1 + зzе
2 

) 
eff 2kR 

We turn next to efТects of the structure of the nucleons. The protons have 
а finite size [see deShalit and Feshbach (74, р. 110)]. As а consequence, we 
must replace (VIII.2.l) of that reference Ьу the charge density: 

pch(r) = 2:Лr - г.) (2.49) 
i 

where the function f replaces the point charge b(r - г.). The sum is over the 
protons only. The charge density then becomes 

(2.50) 

where 
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The form factor Pch(q) is 

(2.51) 

Thus to obtain the nuclear form factor PN' опе must divide the form factor 
determined from experiment Pch(q) Ьу F(q), the form factor of the ргогоп: 

iqF(q) = fe '
r f(r) dr 

А second effect originates in the interaction of the moving апогпаюцв 

magnetic moment of а nucleon with ап electrostatic field. That such ап 

interaction exists сап immediately Ье understood Ьу transforming to the rest 
frame ofthe nucleon. Under such а transformation the electron-nucleon electro­
static field acquires а magnetic field сотпропеш that will interact with nucleon 
magnetic moment. Ап interaction with the electrostatic field сап, in this case, 
Ье interpreted in terms of ап effective charge possessed Ьу the nucleon. This 
effect was explored Ьу Schwinger (49а) in his discussion of the polarization 
resulting from the interaction of а пешгоп with а nucleus. We now discuss its 
application to electron scattering. 

We being with the matrix e]ement of the current operator for а nucleon 
[Bjorken and DreH (64)]: 

<р' ХI JIl(O)\pA) = Й;"(Р')( F 1 У Il + 2~ F 20"Il Л V )и;.(р) (2.52) 

where F 1 and F 2 are form factors that аге functions of Qll' к is the anomalous 
magnetic moment, and А gives the helicity. The spinors и;.(р) аге four-element 
matrices whose helicity is indicated Ьу А. The derivation of (2.52) foBows the 
procedures етпрюуес in deSha]it and Feshbach (74, р. 846 et seq). The spinors 
аге given in the Appendix to Chapter IX of that reference, Eqs. (5.8)-(5.10). 
They сап Ье represented Ьу 

Е + M)li 2 
( 1 

И;.= -- П'Р (2.53)( 2Е --­
Е+М 

where Х;. is (~) ог (~} according to the уа]ие of А. Неге М is the nucleon 

UtY4'mass. Inserting (2.53) into (2.51) and remembering that й = опе obtains 
for the charge operator (J1 = 4), 

(2.54) 
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where Е(р) has Ьееп replaced Ьу М + p2j2M and terms of order ир to 1jM2 

have Ьееп retained. ТЬе 1jM and 1jM2 terms аге called the Darwin-Foldy and 
spin-orbit terms, respectively, and contribute to the charge density. 

Following Friar and Negele (75), we replace F 1 and F 2 Ьу the Sachs form 
factors GE and GM [see (IX.3.8) et seq. in deShalit and Feshbach (74)]: 

Kq
2 F 2 

- - ­ (2.55)GE=F 1 
М 

GM = F1 + «к, (2.56) 

Therefore, 

where terms of order higher than 1jM2 have Ьееп dropped. 
The empirical value of the parameters GE and GM obtained [тот е - р and 

е - d scattering [от protons and neutrons ате given оп page 678 of deShalit and 
Feshbach (74) [Feld (69)]. ТЬеу ате 

where the superscripts р and п refer to protons and neutrons, respectively. ТЬе 

"dipole" [оггп given Ьу the q dependence corresponds to ап exponential charge 
distribution, 

(2.58) 

with ап rms radius of 0.82 [т. ТЬе units of the constant in the exponential аге 

GeVjhc. 
Equation (2.57) gives the nucleon charge density. For а nucleus we have 

where (again to order q2jM2) 

ё, = 1 (G(P) 1 + Lз(i) + G(n) 1 - Lз(i)) (2.60) 
)1 +q2j4M2 Е 2 Е 2 

(tj = _1 (G~) 1 + Lз(i) + G(n) 1 - Lз(i)) (2.61)
fi +q2j4M2 2 М 2 
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0.1 

0.05 

FIG. 2.1. Neutron form factor assuming ап exponential пешгоп charge distribution 
compared with experimental data extracted with the use of Hamada-lohnston and 
boundary conditions model deuteron wave functions. Solid, dashed, and dashed-dotted 
curves correspond to average пешгоп radii equal to 0.80, 0.63, and 1.07fm, respectively. 
[From Bertozzi, Friar, et al. (72).] 

As Bertozzi et al. (72) have shown, the пешгоп charge distribution сап have а 

considerable effect оп the electron scattering. The experimental results for G~) 

are shown in Fig. 2.1. The consequences for elastic scattering Ьу 4ОСа and 208рь 

are shown in Fig.2.2. The effects аге substantial and especially large at the 
cross section minima and large momentum transfers. 

Two other effects have been subjects of several investigations. The first of 
these is referred to as а dispersion correction, which arise as the result of the 
virtual excitation of the target nucleus Ьу the incident electron. The electron 
excites the target nucleus, and then in а second interaction the nucleus deexcites, 
returning to its ground state if we are discussing elastic scattering. As we have 
seen in Chapter 11, where the identical process is discussed in а multiple 
scattering approximation, the cross section for this process depends оп the 
pair сопеlаtiоп function C(r l' г 2)' However, calculations indicate that the 
dispersion efТects are small [see Bethe and Molinari (71) and Friar and Rosen 
(74)] and little information оп C(r l' r2 ) сап Ье obtained from these experiments. 

We finally mention dynamical nuclear recoil corrections. These have Ьееп 

treated using the Breit (29) two-body interaction Ьу Grotch and Yennie (69). 
These corrections also turn out to Ье small [see Sick and McCarthy (70)]. 

D. Model Independence 

At а comparatively low energy (but still such that k» т) (т = electron mass) 
the product kR сап Ье much less than 1. Under those circumstances only the 
1= О phase shift, до is affected Ьу the finite nuclear size. Moreover, as we shal1 
show, that phase shift depends only оп the rms nuclear radius and does not 
depend оп other nuclear parameters. 
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FIG.2.2. Fractional change in electron scattering cross sections caused Ьу including the 
charge density arising [гот the finite spatial charge distribution of the пешгоп for 4ОСа 

and 208рь. The dashed and solid curves denote the efТect obtained using the maximal 
and minimal пешгоп [опп factors, respectively. [From Bertozzi, Friar, et al. (72).] 

Let us сотпраге the results obtained with two difТering potentials V1 and V2. 

The Dirac wave functions satisfy (2.27): 

We now form 

Integrating both sides from zero to infinity yields 
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Using the asymptotic forms for f and G, the left-hand side equals 

Note that the difТerence (V1 - V2 ) does not contain the long-range part of the 
Coulomb potential. Let 

Ze 2 _ 

Vj=--+Vj (2.63) 
r 

ТЬеп 

(2.64) 

We see that two descriptions of the finite nuclear size will yield the same phase 
shift if 

In the long-wavelength limit (kR « 1), 

kR« 1 (2.65) 

Elastic electron scattering experiments satisfying kR« 1 therefore determine 
опе parameter, 

(2.66) 

This result was obtained Ьу Feshbach (51) employing а variational method 
[see also Elton (53) and Bodmer (53)]. Using the Poisson equation, V сап Ье 

expressed in terms of the charge density РсЬ' Опе сап then express 1 in terms 
of РсЬ' with the result that when kR « 1, elastic electron scattering experiments 
determine the rms radius of the charge in the nucleus: 

(2.67) 

At higher energies, when kR ~ 1the approximation given Ьу (2.65)is по longer 
valid. ТЬе methods for extracting РсЬ from the elastic scattering data then 
employed is referred to as а тodel-independent analysis. It is, in fact, а method 
designed to obtain ап estimate of the uncertainty in РсЬ so obtained. There are 
two sources of error. Опе is, of сошве, the experimental error. А second has 
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its origin in the fact that а given experiment determines the elastic scattering 
ир to а maximum momentum transfer, qmax' However, to obtain p(r) from p(q) 
from the inverse Fourier transform, 

1 f.oo sin qr
= -22 p(q)--q dq 

n о r 

requires а knowledge of q beyond qmax' 

There are а number of procedures that have Ьееп developed. These аге 

reviewed Ьу Friar and Negele (75), who described the work of Friedrich and 
Lenz (72), Borysowicz and Hetherington (73,74), Friar and Negele (73,75), Sick 
(74), and others. Brief1y, опе writes the density as follows: 

м 

р = po(r) + LCJi(r) (2.68) 
1 

The quantity Ро is а zeroth-order approximation obtained from, for example, 
а density-dependent Hartree-Fock calculation or тпоге phenomenologically 
from а fit using the "Fermi" charge density distribution, which in its most 
elaborate form is 

(2.69) 

where Ро, W, с, and ао are parameters that are chosen to give а best fit to 
experiment. Modern calculations generally use the Hartree-Fock for Ро because 
among other things these give good descriptions of the surface properties of 
nuclei. The functions fi are а complete set, for example [Meyer-Berkhout, 
К. W. Ford, et al. (59)], 

1 . inr ­
fi ""; sш RE>(r - R) (2.70) 

where R is chosen to Ье in the region where р vanishes. The parameter М is 
given Ьу 

R 
M=-qmax (2.71) 

n 

since experiment does not provide data beyond qmax' The spatial resolution 
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obtained from the analysis of experiment is 

Оп the other hand, the resolution in momentum space is 

n 
,1.q-­

r max 

where rmax is the largest value of r for which Р is determined. Or the largest 
value of r, rптахэ for which Р сап Ье accurately known is 

n 
(2.72)r max -­,1.q 

where ,1.q is now the experimental momentum resolution. As а consequence of 
this result, опе сап expect that the large r dependence of Р will not Ье well 
determined Ьу experiment. It is for this reason that the density-dependent 
Hartree-Fock results have Ьееп used for po(r) in (2.68). 

In the procedure used Ьу Friar and Negele, опе first obtains the coefficients 
С; from experiment using perturbation theory, which gives а linear relation 
between the cross sections and the density, to obtain а first approximation to 
the coefficients С; ТЬе resulting Р is inserted into the Dirac equation to obtain 
а more ассшаге calculation of the cross section. ТЬе C;'s are modified Ьу 

perturbation theory to take саге of the differences from the experimental 
cross sections and the entire process is repeated. For 208рь, Friar and Negele 
found that with 11 terms in the series, three iterations were needed. ТЬе quantity 
М сап also Ье varied. It is found that опсе М exceeds (Rjn)qmax [Eq. (2.71)J, the 
х2 increases significantly. Over the last decade this method, and others surveyed 
Ьу Friar and Negele (75), have Ьееп fine tuned, and with the great increase in 
experimental accuracy and extension to larger values of qmax' exceHent 
descriptions of the charge density of spin-zero nuclei has Ьееп achieved. ТЬе 

example in Fig. 2.3 shows the percent of deviation from experiment using the 
analysis just described for both the Mainz data [Rothaas (78)] and the earlier 
1970 Stanford and 1972 Amsterdam data. 
Опе should bear in mind that additional important data are provided Ьу J.L 

mesonic atoms and must Ье included in the analysis. We shall not discuss this 
aspect here. [See the discussions in Friar and Negele (75) and Barrett and 
Jackson (77).] 

Some of the results for РсЬ obtained with this or related analyses are shown 
in Figs. 2.4 and 2.5. ТЬе thickness of the line indicates the uncertainty in the 
experimental determination of PCh' ТЬе dashed line gives the density-dependent 
Hartree-Fock results and the dotted lines show the effect of going beyond the 
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FIG.2.3. Deviation from model-independent analysis. Solid line, Stanford data, 1970; 
dashed line, Amsterdam data, 1972; points, Mainz data, 1982. [From Bertozzi (82).] 

теап field Ьу using the RPA. We поте а significant difference between 
experiment and theory for the small '. In аll cases, even ироп including the 
RPA, the theory predicts too large а density. ТЬе RPA сопеlаtiопs do damp 
the fluctuations in the interior nuclear region. [See Negele and Vautherin (72,75), 
Gogny (79), Decharge and Gogny (68), and Decharge and Sips (83)]. We аге 

left with the general remark that further сопеlаtiопs апс/ог two-body 
components of the сопеlаtiоп need то Ье included, although it is not clear 
whether short- or long-range сопеlаtiопs аге needed. 

Ап important insight is obtained Ьу comparing the electron scattering Ьу 

206рь and 205ТI [Euteneuer, Friedrich, and Voegler (78); Cavedon et al. (82)]. 
These two nuclei difТer in their single-particle structure Ьу а 3s proton. The 
impact of this difТerence is shown in Fig. 2.6, where the ratio of а e05TI) to 
ае О 6рь) is compared with the гпеап field prediction. We see а strong 
characteristic peak at q = 2 in both theory and experiment. However, agreement 
with the peak strength is obtained only if the single particle occupation рго­
bability is reduced Ьу 30%. This is demonstrated опсе again in Fig. 2.7, where 
опе sees the reduction in the charge density from that predicted Ьу теап field 
theory [Frois et al. (83)]. It is this reduction that we see in Fig. 2.5 for 208рь. 

As Zamick, Klemt, and Speth (75) point out, 205ТI is not obtained only Ьу 

creating а proton hole in the ground state of 206рь. There аге also components 
coming from а proton-hole in the excited states of 206рь, such as а dЗ/2 hole 
and d5/ 2 hole in the 2 + excited state. The data demonstrating this are provided 
Ьу the reaction 206рь еНе, d). The correlations in this case are long range. 

We conclude this section оп charge scattering from spherical nuclei with 
Table 2.1, which lists rms radii obtained from experiment and theory [DeJager 
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о 05 

FIG.2.4. Cross sections for elastic electron scattering from 208рь at 502 MeV compared 
with ОМЕ mean-field theory prediction (solid Нпе), [From Negele (82).] 
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TABLE 2.1 

Theory Experiment 

160 

4ОСа 

48Са 

56Nj 

190Zr 

116Sn 
2ООрь 

2.79 
3.50 
3.50 
3.80 
4.29 
4.63 
5.49 

2.71 ± 0.1)1 
3.48 
3.47 
4.78 
4.28 ± 0.02 
4.62 ± 0.01 
5.50 
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DeVries, and DeVries (74)]. See also the more extensive table, Table 6.2, in 
Barrett and Jackson (77). 

Е. Deformed Nuclei t 

Elastic and inelastic scattering of electrons Ьу deformed nuclei demonstrate the 
electron's power as а probe of nucleon structure. As discussed in Chapter УI 

of deShalit and Feshbach (74), the rotational wave function is given in terms 
of ап intrinsic wave function Хк and а factor depending оп the Euler angles, 
which transforms the wave function for а body fixed to а space-fixed coordinate 
system. The wave function is [see (VI.4.9) in deShalit and Feshbach (74)] 

К>О 

(2.7За) 

while for К = О, 

(2.7ЗЬ) 

As pointed out in that chapter, the ratio of the electromagnetic тгапвшоп 

probabilities within а rotational band for а particular multipole [see (VI.6.21) 
and (VI.6.22) in deShalit and Feshbach (74)] do not depend оп the intrinsic 
wave function, but only оп the quantum numbers 1f' I i, and К. This is а 

consequence of the fact that the wave function for each member of а rotational 
band contains the same intrinsic wave function Хк' The electromagnetic 
transitions tests this property of the rotational wave functions at q = О. ТЬе 

electron scattering experiments extends that test to finite q, thus checking that 
XK(r) is the same for еасЬ member of the rotational band as а function of r. 

Inelastic scattering will play ап important role since we shall compare 
cross sections for the excitation of difТerent members of usually the ground-state 
band. ТЬе electron-nuclear interaction responsible for the transition сап Ье 

treated perturbatively, but the plane wave approximation is not valid for the 
heavier target nuclei. ТЬе appropriate formalism is the DWA (see Chapter VI 
for its use in dealing with inelastic processes) in which in this case the Coulomb 
interaction is treated exactly, while the transition Hamiltonian is taken into 
account using perturbation theory. 

We shall only outline the DWA for this case. The details are similar to those 
given in Chapter VI, with some special details because of the required Dirac 
algebra. ТЬе details сап Ье found in Uberall's (71) second volume. ТЬе 
Hamiltonian of the system is given Ьу 

(2.74) 

~ Моуа de Guerra (86). 
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where НN is the Hamiltonian of the nucleus and НD is the Dirac Hamiltonian, 

H D = (е-р) + рт (2.75) 

and for charge scattering 

H in t = еф (2.76) 

where Ф depends оп the charge distribution in the nucleus. Опе then defines 
the diagonal and transfer рап of Ф with respect to the wave functions of the 
nucleus as fol1ows: 

ФD = I)<1IФII><I (2.77) 

Фtr = L1><1Iфl1'><1' + Ь.С. 1#1' 
г 

Ву taking the matrix element of the Schrodinger-Dirac equation, 

Н'Р = Е'Р 

one obtains а set of coupled equations for the spinor electron wave function Ф[: 

ТЬе DW А result for the transition 1-1' is obtained Ьу solving the approximate 
equations 

[HD + еФDJФ[ = О (2.78а) 

[HD+ еФDJФг = - <1'IФtrI I>ф[ (2.78Ь) 

ТЬе solution of(2.78a) gives the elastic scattering from the nucleus, while (2.78Ь) 

yields the inelastic scattering. ТЬе solution of (2.78а) for Ф[ сап Ье obtained in 
а partial wave series as in the preceding section. That series, substituted in 
(2.78Ь), leads tothe desired wave function Ф г, also expressed in а partial wave 
series. 
То obtain an insight into what сап Ье learned from this analysis, we return 

to the Вогп approximation for the inelastic reaction in which discrete nuclear 
levels аге excited. ТЬе cross веспоп in the center-of-mass system is 

(2.79) 

where ам is the Mott cross section. But p(q) сап Ье expanded in а partial wave 
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series, 

iqp(q) = f e '
f p(r)dr 

=	 L4nе fjA qr)YJM(r) YjM(q)p(r) dr 
JM 

so that 

(]f!v!fl p(r)IJiM;) = 4n L ;J YjM(q)(JfM fl M~1(q)IJiMi> (2.80)
JM 

In this equation 

(2.81) 

so that (2.80) is the multipole expansion of р and M~1 transforms like а tensor 
operator of order J. Using the Wigner-Eckart theorem, опе has 

Performing the indicated sums, using the sum rules of Appendix А of deShalit 
and Feshbach (74), опе obtains 

da _ а 1 "I(J 11 M(C)(q) 11 J )12 (2.83)
dQ - м 2] i + 17 f J i 

For deformed nuclei, the matrix element of M~lt has been derived [(VI.6.9) in 
deShalit and Feshbach (74), where J i is replaced Ьу /' and J f Ьу 1]. Опе obtains 

(IK 11 M~)(q) 11 /'К') = )(21 + 1)(2/' + 1) 

1 J /')
х ~ {( -К и К' (KIM~/L(q)IK'> 

+ (_ )1'( 1 J. /' )<KIM(c)(q)l-К'>} (2.84)
-К Jl -К' J/L 

This result holds for К and К' -=/= О. When К' is zero, 

(I, К 11 M~) 11 /', К' = О) = )(21 + 1)(2/' + 1)( 1 J ~)-К К 

К -=/=0х (К IМУ;(чJ IК' ~O> {(2 
К=О 

(2.85) 
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In these equations M~)(q) аге calculated in the body-fixed coordinate system. 
ТЬе matrix elements <KIM~)(q)IK') involve only the intinsic wave functions 
Хк and are independent of 1 and Т as long as 1 and l' are members of the 
corresponding rotational bands. Thus the electron-induced transitions between 
members ofthe two bands (which сап Ье identically) will еасЬ involve the matrix 
elements of M~. These will, of course, vary with J so that differing aspects of 
ХК will Ье probed Ьу the inelastic scattering. Analysis of the data should then 
yield the q dependence of the matrix elements. In the case of even-even nuclei 
transitions from the ground state (1' = О = К') to excited states of the same band 
(1, К = О), only опе matrix element <К = OIM~(q)IK' = О) enters for еасЬ J and 1. 

When the spin of the ground state is not zero, several matrix elements аге 

involved in а given transition. Nevertheless, опе сап determine еасЬ of these 
as the following example illustrates [Bertozzi (82)]. Suppose that the energy 
spectrum of а nucleus is given Ьу Fig. 2.8. ТЬе multipole matrix elements 
involved in а given transition аге shown. ТЬе matrix elements of the multipole 
operators with respect to the intrinsic wave functions [see (2.8)] аге identical 
for еасЬ of the transitions indicated. There are five transitions and four matrix 
elements, МО, М2, М4, and М6. Опе сап, for example, determine the matrix 
elements using four of the transitions and predict the fifth, thereby testing the 
correctness of the wave function (2.72). Bertozzi (82) gives ап example of such 
а test. ТЬе nucleus is 17 5Lu with а ground state of spin of 7/2 ". ТЬе 7/2, 9/2, 
13/2, 15/2 cross sections аге used to predict the 11/2 cross section. ТЬе results 
are shown in Fig. 2.9. ТЬе agreement is good, demonstrating the validity of the 
rotational model. 

ТЬе cross section given Ьу (2.83) applies as well to inelastic scattering from 
spherical nuclei in the Воrn approximation. It is traditiona] to use the concept 
of transition charge density PLr in these cases. It is defined as follows: 

(2.86)
 

М6,М4 

М6,М4 

М4, 

t 
М2 

М4,М2 

Е) 
МО,М2 

FIG. 2.8. Possible multipole excitations. 
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FIG. 2.9. Test of single intrinsic state assumption of the rotationa! mode!. The nuc!eus 
is 175Lu. R is the ratio of the measured lf + cross section to the уа!ие predicted 
from the measured ~, ~, ?, and ·lf cross sections. [From Bertozzi (82).] 

Inserting (2.82) yields 

Plr(r) = fdQ YJM(i) 

х [(2J + t) L (_ )JГМf( Jf ~ ~J <JfMflp(r)IJiM) ]
м.м, -М! 

(2.87) 

Since (Jf 11 M~) 11 Jд is independent of М, we сап choose М. А convenient choice 
is М = О. For емеп-емеп nuclei, J j = О and Ptr equals 

(2.87') 

where we Ьауе used 

Obtaining Ptr involves determining (Jf 11 M~)(q) 11Jд fют experirnent and then 
inverting (2.86) with the attendant difficulties discussed earlier in this chapter. 
А model-independent resolution is available in this case as well. 
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These levels сап also Ье excited Ьу the interaction of the electron with the 
nuclear currents. However, it is possible, as we shall see, using suitable kinematics 
and analysis to extract the charge- and current-induced cross section separately. 

ТЬе transition densities obtained from inelastic scattering Ьу several magic 
nuclei to the highly collective 3- state and Ьу 90Zr to the 2 +,4 +, 6 +, 8+ states are 
sbown in Figs. 2.10 and 2.11. 

ТЬе transition density for both of these cases peaks strongly at the surface. 
ТЬе dashed line in Fig. 2.10 gives the theoretical resu1ts obtajned usjng ал RPA 
description of the states involved. ТЬе general structure of the prediction does 
follow experiment. But there аге deviations. ТЬе peak transition density сап 

differ substantially from experiment, while for the interior the theoretical results 
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FIG.2.IO. Transition charge densities for the first collective octupole vibrations of 
doubly closed shell nuclei. Experimental uncertainty is given Ьу the thickness of the 
solid line. ТЬе theoretical predictions are obtained in а self-consistent RPA calculation. 
[From Frois and Papanicolas (87).] 
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multiplet in 90Zr. [From Heisenberg (87).] 

osci1late тоте violently than the data. Figure 2.11 contains а comparison 
between the experimental and calculated transition charge density. In the 
single-particle picture, these transitions ате to states in which two protons in 
the filled 199/2 orbitals ате recoupled to spin 2 +, 4 +, 6+, and 8 ". In the ground 
state they couple to zero. As Fig. 2.11 shows, the calculations based оп this 
simple assumption fail substantially for the 2+ and 4 + but ате satisfactory for 
the 6 + and 8 + states. ТЬе solid line includes the efТect оС соте polarization (i.e., 
the inclusion of states in which the соте is excited). As we see from the figure, 
соте polarization does пауе some effect in the 2 + and 4 + cases, but that effect 
is nearly not large enough to reduce the small r Пuсtuаtiопs in the 2+ саве, 

although it does great1y improve the agreement in the main peak. 
Comparing the experimental transfer chaTge density with theory reveals the 

same diseases that were seen with spherical nuclei namely the predictions in 
the interior deviate [готп experiment. This is i1Iustrated in Fig. 2.12. In Fig. 2.12а 

the theory predicts too large а charge density in the interior. In Fig. 2.12Ь 

the theoretical Ptr Пuсtuаtеs тоте strongly than its experimental values in the 
interior, although theory and experiment ате in good agreement in the surface 
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FIG.2.12. (а) Charge density for ground state of 152Sm; (Ь) transition charge density 
for excitation of the 2 + level in 152Sm. [From Bertozzi (82).] 

region. This substantially good agreement for the 0+ -+ 2+ transition deteriorates 
somewhat for the 0-+ 4 +. This is а general pattern for the гаге earth nuclei and 
for 238U according to Bertozzi. 

F. А Remark оп the Charge Density 

ТЬе two-body density matrix p(r 1, r 2) has Ьееn discussed in СЬ. 111 (where it 
was called К). ТЬеге it was shown [1112.88 Feshbach (62)] that it could Ье 

written as 

5 7 9 

where 

and 

(2.88) 

(2.89) 

(2.90) 

The density is 

(2.91) 

In the case of а Slater determinant, Ка = 1. But the many-body wave functions аге 

generally not single Slater determinants, so that generaHy Ка i= 1 but will lie 
between О and 1. Оnе сап interpret Ка as giving the occupation probability of 
the orbital, Ша' In fact, the interior deviations observed in nearly аН of the 



714 HIGH-ENERGY NUCLEAR PHENOMENA 

0.8 

~ 0.6 
с::: 

0.4 

0.2 

0.0 L_L--l!~-----l~~=-:::::=!:::===±::=:::1 

-40 -30 -20 -10 О 10 20 30 40 

е- е F (MeV) 

FIG.2.13. Calculated occupation probabiJities in 208рь. [From Heisenberg (87).] 

nuclei, including both the spherical and deformed nuclei сап Ье explained if the 
occupation probabilities of the single-particle orbitals have Ьееп chosen 
appropriately. Their deviation from unity is ап expression of the existence of 
residual interactions and the consequent correlations. Pandharipande, 
Papanicolas, and Wambach (84) have calculated the occupation probabilities 
for 208рь. The гевппв аге shown in Fig. 2.13, where HF refers to Hartree-Fock, 
and NM to nuclear matter calculations. The overall reduction in n, the 
occupation number, is qualitatively in accordance with the experimental 
situation. But experimental uncertainties in the 3S 1/ 2 occupation probability аге, 

according to Heisenberg (87), too large for а definitive comparison of experiment 
and theory. (See Heisenberg for а discussion of the Е5 transitions in 89у, 90Zr, 
and 92Мо.) 

G. Current-Induced Scattering 

We continue with the Вогп approximation. We return to Dirac equation (2.12). 
The vector potential A I1 is а solution of the inhomogeneous wave equation 

(2.92) 

where simple haromonic time dependence has Ьееп assumed. Then in 
momentum space 

(2.93)
 

(2.94) 
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Equation (2.12') is replaced Ьу 

where k' is the electron momentum with the nucleus excited, t/J the corresponding 
wave function, and t/Ji the elastic scattering (nucleus in the ground state) wave 
function. In the DWA approximation, 

Оп introducing (2.93)and making the Вогп approximation [see (2.14)] we obtain 

(2.95) 

where 

(2.96) 

То obtain the cross section for а nuclear transition Г, -+]/ and electron spins 
from Щ and т/, we must calculate 

The sum over the electron spin is obtained Ьу using the technique fol1owing 
(2.17). The result is 

where the summation convention is used. Fol1owing DeForest and Walecka 
(66), опе introduces the coordinates 

(2.99) 

Replacing then klJ and k~ Ьу Qp. and qp. and bearing in mind that Q; = - ~q;, 
опе obtains 
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where 

(2.100) 

Further development of this result requires ап analysis of jv' Toward this 
end we introduce the unit vectors Па [see (VII.4Af), deShalit and Feshbach 
(74)J, whose z axis is taken along the direction of q: 

1 
оо= -q (2.101) 

q 

Then setting ир а Cartesian coordinate system with unit vectors "х and ПУ' опе 

сап define 

(2.102) 

(2.103) 

The three-vector j(q) сап then Ье written: 

The continuity equation for j(r), 

· • ар одIVJ+-= 
at 

becomes in momentum space 

or 

Therefore, 

(2.104) 

The three-current j is composed of two components orthogonal to q (the 
transverse components) and опе along q (the longitudinal component). ТЬе 

magnitude of the last is proportionl to p(q), which must Ье combined with the 
}'414 contribution discussed earlier in this section, giving rise to а change in the 
kinematic factors only. We therefore focus оп the contributions coming from 
the transverse components. These have Ьееп discussed in Chapter VIII of 
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deShalit and Feshbach (74). Неге we shall follow the methods that have Ьесоmе 

traditional in electron-nuclear physics. Опе needs the expansion 

А = ± 1 

(2.105) 

In this equation jJ is the spherical BesseJ function, and t 

Y}lf) = L (lm1m'IJM) У/то т, (2.106) 
тт' 

From (2.104) we have 

j;.(q) = О;. oj(q) = fj(r)о u;.e;q·r dr 

= - L [2n(2] + 1)]1/2ец т}п;а g ) + T~l;.) (2.107) 
J ~ 1 

where 

(2.108) 

and 

(2.109) 

These quantities transform Jike tensors of rank J. AppJying the Wigner-Eckart 
theorem yieJds 

з , J J.)<].м I1 Тjп;аg)IJiМ;) = (- )JгМ / ( _ М1 А ~i (]1 11 T~ag) 11 JJ 

It is now possibJe using (2.107) to compute 

= ~[" I(J 11 T(ma
g) 11 J.'I1 2 + I(J 11 T(el) 11 ).)1 2 J (2.110)2] i + 1 7 1 J /1 1 J 1 

One сап now complete the evaJuation of (2.97) [ог the cross section in the 

;ТЬе derivation of (2.105) is straightforward when опе realizes that Yj1 and (l/q)curl blqr)Yj"J 
[опп mutually orthogonal and поппайяес sets of vector wave functions оп the unit sphere. Thus 
the coefficient of Y~) in expansion (2.105) is given Ьу SdQYj"/·uJ.eiQ". The coefficient оГ the 
second term is l/q SdQ Yj1 f ·curl(uJ.eiQ"). 
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center-of-mass frame. After some algebra it сап Ье cast into the following form: 

(2.111) 

where (JM is the Mott cross section evaluated at the incident energy and 

4n ~ 
F 2 =-- " I() 11 M(CO)(q) 11 )·)12 (2.112)L 2) j + 1 /:-0 f 1 I 

and 

(2.113) 

Note that experimentally it is possible separately to determine Fi and F~ as 
functions of q Ьу suitably choosing the experimental parameters. For example, 
if 3 '" n, the cross section is dominated Ьу IFT1 2 • Varying the incident energy 
wilI then yield IFT (q)12• The matrix elements in (2.112) and (2.113) reduce to 
those obtained from photon excitation if q = оз [see Chapter VПI in deShalit 
and Feshbach (74)]. Inelastic electron scattering gives а much гпоге complete 
picture Ьу providing the q dependence for q > со and, Ьу Fourier inversion, the 
spatial dependence of the current as well as the charge distribution. The selection 
rules аге identical with those of the photon case, namely 

with parity changes of ( - )1 for т(е') and м(СО) and ( - )1+ 1 for T(mag). 

The current density j, to Ье inserted into (2.108) and (2.109) to obtain T<eJ) 
and T(mag) have been discussed in Chapter VIII of deShalit and Feshbach (74). 
The point-charge current as given Ьу (VIП.2.3) and (VIII.2.4) in that reference 
is broken ир into two components, а convection spin-independent current je. 
and а spin-dependent magnetization current, jm: 

i = е L -}(l + тз(i))i[Vjд(r - rд + b(r - rдVJ (VПI.2.3) 
j 

The velocity "; is defined Ьу 

i дН 
"; = ;;[Н, rJ = др; (VIII.2.5) 

where Н is the [иН Hamiltonian, including the electromagnetic terms. 



2. ELECTRON SСАПЕRING 719 

However, nucleons Ьауе а finite nonzero size and Ьауе а structure. This has 
two consequences. First the delta functions in (VIII.2.3) and (VIII.2.4) must Ье 

replaced Ьу form factors [see (VIII.3.8), deShalit and Feshbach (74)]. 
Second, the one-body operators ofthe equations аооме must Ье supplemented 

Ьу two-body and higher-order operators whose physical origin lies in the meson 
exchange currents (МЕС), which were mentioned briefly in Chapter УIII of 
deShalit and Feshbach (74). Currents аге present whenever the nucleons in the 
nucleus exchange pions and other mesons such as the Р and оз in the course 
of generating the nuclear force between the exchanging nucleons. ТЬе currents, 
known as exchange currents, will interact with ап external electromagnetic field. 
ТЬе various contributions to that interaction аге illustrated Ьу Fig.2.14. In 
Fig. 2.14а the electromagnetic wave is absorbed Ьу а pion, indicated Ьу а dashed 
line as the pion is exchanged. In Fig. 2.14Ь, the electromagnetic wave is absorbed 
Ьу the nucleon, which mау remain а nucleon. Or the y-ray mау make а N, R 
pair, the latter interacting with опе of the nucleons to make а pion which is 
then picked ир Ьу the other nucleon. Or the y-ray mау simply excite опе of 
the nucleons, creating а nucleon isobar which then exchanges а pion with the 
other nucleon, reverting to the nucleon in its ground state. ТЬе final two 
diagrams, Fig. 2.14d and е, involve the Ьеауу mesons designated Ьу М and М/. 

ТЬе results, appropriate for transitions in complex nuclei, аге summarized in 
the review article Ьу Donnelly and Sick (84), to which the reader is referred for 
details and references. ТЬе short-range contributions described Ьу Fig. 2.14d 
and с are not included. ТЬе diagram involving the nucleon intermediate state 
(Fig. 2.14Ь) is dropped since this term is automatically included in the convection 
current term. Опе is therefore left with contributions from Fig. 2.14с, the 
antinucleon intermediate state in Fig. 2.14Ь, and the excited nucleon 
intermediate state (Fig. 2.14с). ТЬе last will include both the L\ and Roper 
nucleon resonances. Importantly, to order (l/M) (М = nucleon mass), РехсЬ is 
zero. In addition, the leading term is ап isovector. Gauge invariance is 
guaranteed to the extent that wave functions used arise from nucleon-nucleon 
interactions involving the same diagrams (Fig.2.14) used in calculating the 
exchange currents. If the wave functions and exchange currents are not 
consistent, there сап Ье considerable епоr since the operators involved are not 
positive definite and therefore are sensitive to the properties of the wave· 
functions. 

м м м' 

N*N.N-г-

(о) (ь) (с) (d) (е) 

FIG.2.14. Exchange currents. 
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Н. Magnetlc Elastic Electron Scattering 

We turn now to the study of elastie magnetie eleetron scattering Ьу nuclei 
[Donnelly and Sick (84)J, from which IFTI 

2 of (2.111) and (2.113) тау Ье 

determined as а function of the momentum transfer q and eompared to nuelear 
model predictions. Тп eontrast to the charge scattering, the magnetie scattering 
is sensitive to the properties of the valenee nucleons since the net contribution 
of the соге nucleons is zero in the spherieal shell model description. ТЬе 

information оп single-particle states obtained from nuelear transfer reactions 
is eomplementary since the responsible nuclear interaction ditТers from the 
electron interaetion. Тп addition, magnetic elastic scattering is sensitive to 
пешгоп and proton distribution, as the equation for jт [Eq. (УIIТ.2.4)in deShalit 
and Feshbach (74)] demonstrates. 

Of course, the independent particle shell model is not correct. ТЬе deviations 
in the case of spherical nuelei are expressed in terms of eonfiguration mixing, 
in whieh excited states of the соге generated Ьу the interaction with the valence 
nueleons are components of the total wave funetion. These interaetions draw 
strength from the single-particle сотпропепт, so that generally the magnetic 
elastie seattering crosssection is less than predieted Ьу the extreme valence 
nucleon model. This fragmentation of the strength is clearly visibIe for deformed 
nuclei, where the Nilsson orbitals (which in the limit of zero deformation 
сотЫпе to yield а spherical orbital) play the dominant role. The magnetic 
elastie scattering Ьу odd-A nuclei is sensitive to eoupling of the valence particle 
with the deformed eore. As expected, there is а reduction from the values 
predieted in the absence of this coupling. МисЬ of the strength availabIe in the 
spherieal limit now goes into the inelastic scattering of the excited states built 
оп the deformed ground state. Finally, in spherical cases for which the convection 
current jc, etТeets are dominant, the exehange eurrent etТects тау Ье observabJe. 
We shall now illustrate these points with examples drawn from Donnelly's and 
Sick's (84) review. As we shall see, detailed information оп the single-particle 
wave funetions that these experiments yield is quite remarkabIe. 

We first consider elastic magnetic seattering Ьу а target nucleus with а spin 
J о. It is assumed that the seattering caused Ьу а single unpaired valence nucleon 
whose angular momentum is also J о; the net angular momentum of the 
remaining nueleus equals zero. Moreover, we seleet those nuclei for which 
J о = 1+ t (l = orbital angular momentum), that is, а stretched eonfiguration. 
ТЬе largest multipole order is then 2] о' For this case the contribution of the 
eonvection eurrent vanishes since it will Ье proportional to the square of the 
redueed matrix element (t1J о 11 УНО 11 t lJ о), From (А.2.49) and (А.2.81) of deShalit 
and Feshbach (74) we have 

The 6 - j symbol vanishes since J o -! + J o -! #-2J o. As а consequence, only 



2. ELECTRON SCAHERING 721 

the magnetization current, jm, contributes to IF T1 2 , it is, moreover, easy to show 
that 

(2.114) 

where R is the radial function for the single-par6cle valence wave function. 
Inversion to obtain R 2 with the Нгппапопв discussed earlier with respect to the 
determination of the charge density is possible ш рппстрге! 

The discussion аооуе assumes the validity of the single orbital description 
of the nuclear ground state. There wШ, of course, Ье configuration mixing. 
However, the addi60ns to the single-particle соптгйяшоп that сап contribute 
to the 210 multipole moment transition must involve ап orbital with j ~ 10' 
Such ап orbital with the correct parity will Ье available first, two shells аооуе 

involving ап excitation of 211ш. Опе therefore expects а very small amplitude 
for such а component in the ground state. Thus the form factor F т will stШ Ье 

given Ьу (2.114). The only effect оп this transition of configuration mixing wШ 

Ье а reduction in the magnitude of Fт which сап Ье related to the spectroscopic 
factor associated with that state as determined from nucleon inelastic scattering 
or from а transfer геаспоп. 

For multipole moments of order less than 210' configuration mixing сап 

have а large effect. This is particularly true when the configuration added is 
опе that would readily Ье excited in ап inelastic collision. Under those 
circumstances there wШ Ье interference between the strong single-particle term 
and the added configuration. The result wШ Ье to reduce the value of F т, since 
some of the single-particle strength wШ Ье lost to inelastic channels. Obviously, 
states of the соге that сап Ье strongly excited play ап important role. 

Finally, experimentally the contribution ofthe very largest possible multipole 
moment wШ Ье very visible in the large q domain. The contribution of the 
moments of lower order will decrease rapidly for large enough momentum 
transfer q. However,this domination Ьу the large multipole moment does not 
persist for а sufficiently large range of q at the low-q side, so that the inversion 
indicated Ьу (2.114) is not feasible. 
Мапу of these conclusions are exemplified Ьу magnetic elastic scattering 

fюm 170. Because of the close agreement of the magnetic moment of 170 with 
the single-particle Schmidt value, it has Ьееп thought that this was а good 
example of а valence nucleon (in this case а neutron in а dS/ 2 state) moving in 
the field of ап 160 core. As illustrated in Fig. 2.15, we see that the single-particle 

:Note: Use the result 

and (А.2.49) and (А.2.81). 
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FIG.2.15. ТЬе 170 data of Hynes, Miska, et al. (79) аге compared to prediction of the 
extreme single-particle model ca1culated using а harmonic osci1lator wave function (solid 
сцгуе). ТЬе dashed curve is ca1culated using а .Woods-Saxon radial wave function. 
[From Hynes, Miska, et аl. (79).] 

model great1y overestimates IF TI 2for values of q between about 0.9 and 1.8fm- 1 

and underestimates 1FT 12 for greater values of q. When configuration mixing 
is introduced phenomenologically [Burzynski, Baumgartner, et al. (83)], опе 

obtains Fig. 2.16. ТЬе contribution of the МЕС is estimated theoretically. The 
М5 and М 1 components are very close to the predictions of the single-particle 
model. This is expected for М5 and the low-q values of Мl. However, the М3 

сотпропеш is strongly reduced, indicating the effect of configuration mixing 
with core excited states. It was pointed out Ьу Zamick (78) and examined in 
detaiJ Ьу ВоЬаппоп, Zamick, and Моуа de Guerra (80) that the admixtures 
induced Ьу ап Е2 Мl excitation of the nucleus will have а strong омепар 

through the М3 multipole with the single-particle orbital. This reduced the М3 

moment Ьу а factor of 2 [see also Arima, Horikawa, et al. (78)]. This excitation 
will not affect the Мl or М5 multipole. 

Configuration mixing in terms of spherical nuclear wave function is very 
large for defonned nuclei. The effects described above аге present, for example, 
for magnetic elastic scattering Ьу 25Mg.In Fig. 2.17, the results using а spherical 
single-particle wave function for the valence пешгоп are compared with the 
results obtained using а Nilsson orbital wave function, and with experiment. 
We observe а general reduction from the spherical case. ТЬе shape of the М5 

form factor is not muсЬ changed, but the М3 form factor is greatly reduced. 
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FIG.2.16. ТЬе 170 data of Hynes, Miska, et al. (79) corrected for the contribution of 
МЕС, аге compared to the fit of Burzynski, Baumgartner et al. (83) calculated using а 

Woods-Saxon radial wave function. [From Donnelly and Sick (84).] 

"­

" , ,, 
\ 

\ 

\ 
\ 

\ 
\ 

\ 

\ , 
\ ,, 

\ 
\ 

-4 
10 

10-6 '--_..L..-_.......... ...L­ ---'-_~ 

О 

FIG.2.17. ТЬе 25Mg magnetic form factor is shown for the ESPM (dashed curve) and 
the Nilsson model (solid and dotted curves), аН calculated using harmonic oscillator 
radial wave functions (Ь = 1.63fm). [From Donnelly and Sick (84).] 
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ТЬе major lesson to Ье learned from these examples is that configuration 
mixing must Ье taken into account before а quantitative agreement between 
theory and experiment is possible. ТЬе wave functions are rarely describable 
Ьу the naive independent-particle model. Опсе configuration mixing is taken 
into account and occasionally, the effect of exchange сuпепts included. (with а 

considerable еггог '"'" 50%), agreement with experiment is obtained. (Note that 
the comparisons with experiment are made оп semilog plots.) 

Parenthetically, the data оп the М 1 transition as well as the isoscalar and 
isovector magnetic moment and the Gamow-Teller matrix element as obtained 
from f3 decay and (р, n) reactions have Ьееп analyzed for nuclei in the s-d shell 
Ьу Brown and Wildenthal and their colleagues [Brown (86)]. ТЬе wave functions 
are obtained Ьу treating the two-body residual interaction matrix elements as 
empirical parameters which are determined Ьу the ground and excited states 
in the s-d shell. [see Brown (86) for а review.] ТЬе resultant wave functions сап 

then Ье used in the evaluation of the transition matrix elements. Very brief1y, 
it is found possible to fit the data mentioned above Ьу assuming ап Мl operator 
that varies smoothly with А. ТЬе free nucleon Мl operator is [see Chapter 
VIII] is deShalit and Feshbach (74)] 

То this operator опе adds а "сопесtiоп" 

where дs , д/, and др are parameters. ТЬе third term includes configuration mixing 
of the туре suggested Ьу Zamick (78). 

ТЬе parameters аге found empirically to vary smoothly with А. 

1. Quasi-Elastic Scatterlng 

In this section the processes in which опе or more nucleons are ejected from 
the nucleus Ьу the incident electron аге discussed. ТЬе term quasi-elastic 
scattering is used because it is thought that because of the high electron energy, 
nucleon knockout is the consequence of the elastic col1ision of the electron, 
with а nucleon in the nucleus having а momentum hk. As а consequence, it 
should .Ье possible to determine the nucleon momentum distribution Ьу 

observing the angular and energy distribution of the final electron. This Ьоре 

is encouraged Ьу the success of the analogous experiment determining the 
momentum distribution of the electrons in ап atom. However, as we shall see, 
there are important limitations. It is convenient to mention опе of these now. 
In ап inclusive experiment, (е, е' Х), in which only the scattered electron is 
observed, it is possible that more than опе nucleon is ejected from the nucleus. 
Moreover, generally the final nucleus тау Ье left in а highly excited state. In 
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the multiple scattering picture of Chapter П, the nucleon initially struck Ьу the 
electron will Ье scattered Ьу the other nucleons in the nucleus, thereby exciting 
the residual nucleus and possible ejecting а second nucleon. 

ТЬе kinematics implied Ьу the simple single-nucleon knockout has Ьееп 

discussed in Chapter 1 [see (1.3.9)]. А brief review is in order. Ап incident 
electron with momentum hk 1 is scattered Ьу а nuclear пuсlеоп of momentum 
hk, thus acquiring а momentum hk2 (see Fig. 2.18). ТЬе momentum and energy 
transfer to the nucleon is hq = h(k 1 - k2 ) and hw, respectively. ТЬе emerging 
nucleon has а momentum h(k + q). Nonrelativistic conservation of energy 
requires 

(2.115)
 

where Еь is the minimum energy needed to remove the nucleon from the nucleus 
and т* is the effective mass assumed to Ье the same for the target and the 
ejected nucleon. [See, however, the discussion of the effective mass in Chapter 
У, where we find that the effective mass is а function ofmomentum and energy).] 
Solving the equation аооуе for hw, we obtain 

(2.116) 

Непсе hw is bounded: 

ТЬе quasi-elastic peak will thus Ьасе а width given approximately Ьу (h 2/т*)kF q . 

ТЬе spreading is а consequence of the Fermi motion of the target пuсlеоп. The 
effects of the nucleon interactions аге crudely taken into account through the 
use of the effective mass. Examples of the quasi-e]astic peak for three target 
nuclei are given in Fig. 2.19. ТЬе reader сап check that the width is given 
approximately Ьу (h 2/т) kFq . 

electron 

nucleus 

FIG.2.18. Diagram for the (е, е'р) process. 
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ТЬе inclusive difТerential cross section for the (е, е'х) reaction сап Ье obtained 
directly from (2.111). It is 

(2.117) 

where 

(2.118а) 

and 

(2.118Ь) 

In these equations the sum is taken оуег аН final states designated Ьу / and 
averaged оуег the initial states designated Ьу i. ТЬе delta function indicates 
that only those final states that conserve energy аге to Ье included in the sum. 

ТЬе sum includes ап integral омег the continuum in the case of particle 
emission. For example, for the case of proton emission, (е, е'р), 

R L = fL: I</Nlp(q)1 i) 1 2 д ( hW - ~ к2 
- (EN - ЕА ) - Ен) - dK3 (2.119) 

2т	 (2тс) 

where hK is the momentum of the emitted proton and Ен is the recoil energy. 
ТЬе sum is now over residual nuclear states, which in the case of closed-shell 
nuclei, аге one-hole states. EN - ЕА is the excitation energy of those states. То 

obtain the exclusive cross section, one drops the integral, and dividing (2.117) 
Ьу dK one obtains ап expression for dlJ/(dQ2dE2)(dQKdE,J 

Employing the model illustrated in Fig. 2.18, (2.119) becomes 

(2.12О) 

Note the shift [гогп dK to dk which is possible in the model because к and k 
аге linearly related. But k refers to the initial nucleon momenta, so that RL 

depends оп the nucleon momentum distribution. А first overview of the quasi­
elastic process is obtained Ьу using the Fermi-gas model. Then 

ЗZ f.k! (h2k2 (k+ q)2) RL =	 --3 dkB(kF - k)д --+ поз - съ - h2 
--- (2.121) 

4тckF О 2т* 2т* 

where 8(х) is the unit function, 8(х) = 1, х > О, В(х) = О, х < О. ТЬе integration 
сап Ье readily сапiеd out. ТЬе results аге given Ьу deForest and Walecka (66) 
ог DonneHy and Walecka (75). Неге we note only that for large q( > 2kF ), RL 

is proportional to l/q{ 1 - [(hw - cb)m*/kFq+ q/2k F]2}, а parabolic function of 
(hw - св). 
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Calculations Ьу Moniz, Sick, е! al. (71) using the Fermi-gas тodel with Еь 
and kp empirical paraтeters have Ьееп compared with the experimental results 
(the target nucleus is 12С) shown in Fig. 2.19. The agreeтent is ехсеНеп! and 
the empirical values of Ев and kp reasonable (see Fig. 1.3.4). However, when the 
longitudina] and transverse cross sections are separately compared with 
experiment, this nice agreement disappears. That comparison [Ciofi degli Atti 
and Salme (84)] is shown in Figs. 2.20 and 2.21. Опе sees (the dotted-dashed 
curve) that the Fermi gas model overestimates the longitudinal cross section 
Ьу а large factor; agreeтent with the transverse cross section is good. When а 

гпоге геайвпс nuclear model is employed (i.e., the Hartree-Fock model) and 
final state interactions of the emerging nucleon аге included (the solid line), 
excellent agreement with the longitudinal cross section is obtained. 

The expression (2.121) exhibits the ргорепу of scaling [see West (75); Sick, 
Day, and McCarthy (80); Sick (87)]. The д-function factor сап Ье rewritten as 
follows: 

2k2 2(k 2 2 
. (h h + q)) ( h q2 h )

(j --+ hw-f:b - - - - =15 hw-f:b-----k·q 
2т* 2т* 2т* т* 

m* (т* q)= -2-15 ·2 (hw - Еь ) - - ­ k ll h q h q 2 

(2.122) 

where k ll is the сотпропеш of k parallel to q and 

m* (hw - Еь ) - q2/2 
(2.123)

У == h2 q 

m* [J2(hw - Еь ) - q] [fih~~ + qJ 
2h2 q 

m* -­
~ -2 [J2(hW - Еь ) - q] (2.124) 

(О .... 00 2h 

Inserting (2.122) into (2.121) for R L , we observe that qR L is а function of у only. 
Thus аН experiments performed at identica] values of у Ьу choosing the 
appropriate w and q should, according to the Fermi model, have identical values 
of qR L . 

Although the results above are instructive, it is necessary to go beyond the 
Fermi gas model and employ а more ассшаге description ofthe nucleus. Toward 
that 'end we rewrite RL as follows: 

RL = L (ilpt(qlf) (f1p(q)1 i)b(Ei - Еf) 

= L (ilp(q)д(Ei - H)lf) <Лр(q)li) (2.125) 
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FIG. 2.19. Cross sections for quasi-elastic electron scattering. The electron's energy is 
500 МеУ. The scattered electron is observed at 600. The solid lines аге the results оС 

Fermi-gas calculations with parameters indicated оп the figure. [From Moniz, Sick, 
et al. (71).] 
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FIG. 2.20. Experimental and theoretical 
longitudinal response functions. Dotted 
curve, Hartree-Fock results without final­
state interaction; dashed спгуе, Hartree­
Fock results with final-state interaction, 
optical model potential real, solid curve, 
Hartree-Fock results with final-state inter­
action, optical model potential complex; 
Dashed-dotted curve, Fermi-gas result. 
[From Ciofi degli Atti and Salme (84).] 

FIG. 2.21. Same as Fig. 2.20 for the trans­
verse response function. [From Ciofi degli 
Atti and Salme (84).] 

The Hamiltonian сап Ье decomposed into the Hamiltonian НN for the residual 
nucleus plus the Hamiltonian Но for the emerging nucleon, including its 
interaction with the residual nucleus: 

where 

Но = Т+ V 
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At tms point it is convenient to make approximations that are valid in the 
mgh-energy regime. А similar set of approximations аге described in Chapter 
II оп multiple scattering. First we replace V, which is in fact а many-body 
орегатог, Ьу ап effective optical potential of the nucleon moving in the field of 
the residual nucleus. Second, НN is replaced Ьу ап average energy 6, the excitation 
energy of the residual nucleus. Finally, the initial energy Е; is taken to Ье the 
ground-state energy of the target nucleus, taken to Ье zero, plus the energy 
transferred Ьу the incident electrons to the nuclear system псо. With these 
assumptions, R L becomes 

R L = L <ilp t(q)b(hw - 6 - Ho)lf) <flp(q)li) 
f 

Performing the sum over the final states yields 

(2.126) 

Using the identity 

1 1 
1т _ . = - - b(hw - 6 - Но) (2.127) 

поз - 6 - НО + l6 n 

опе has 

В«> -~Im/ilpt(q) _ 1 . p(Q)li\ (2.128) 
n \ поз - s - Но + 16 / 

We now approximate the Green's function in this expression Ьу its eikonallimit 
[see Gurvitz and Rinat (87)]: 

/rl _1 .Irl
\ = _ i; eiK(Z-z')Ь(Ь _ b')O(z _ z')e(1/2iK)J~,V(~.b)d~ 

\ поз - 6 - НО + 16 / h К 
(2.129) 

where 

2 2т 2т 
К =-(hw-i) and U=-V 

h2 h2 

Note. То derive tms result, поте that 

/ rt _1 .Ir'\ = G(r,r')
\ пса - 6 - НО + 16 / 
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satisfies 

( 11ш - ё + ;~ V2 
- V)G = b(r - г') = b(z - z')b(b - Ь). 

Let 

ТЬеп approximately (neglecting V 2 g compared to 2К ag/az) 

ag 2т
2iK -- Ug = -·b(z - z')b(b - Ь) 

дг 112 

Equation (2.129) is obtained Ьу integrating this first-order equation. 
Inserting (2.129) and 

'; 

into (2.128) for R u опе finds that 

я, = ~:~ Refdr fdr' p(r, r')еiq'(Г·-Г)еiК(Z-Z')Ь(Ь - b')6(z - z')e(1/2iK)S;.d(V((,b) 

where p(r, г'] is the density matrix: 

[see (2.88) et seq.]. 
Carrying out the integrations over Ь and choosing the z direction to Ье along 

ц, we Ьаее 

RI,=~:~Re[f:(J.) dbdz f:oo dz'p(z,b;z'b)ei(K-Q)(z-z')О(z-z')е Ij!2K)J~Ud'] 
(2.130) 

Scaling по longer prevails since the final factor that reflects the final-state 
interaction is not а function of К - q. ТЬе exponent сап Ье expanded in а series 
in (К - q)/q, so that scaling is approached when (К - q)!q «1. ТЬе simple 
Fermi-gas model leading to (2.121) requires further approximation. Моге 

accurately, the quasi-elastic inclusive electron scattering probes the density 
rnatrix p(z, Ь; z'b). 
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Problem. Using expansion, (2.88) shows that ш the absence of final-state 
interaction efТects 

RL = Re fdb f~ro dz f~oc dz'p(z,b;z'b)ei(K-q)(z-z'>О(z-z') 

1 f fro dt=LK;.Re-. db --.lw;.(t+К-q),Ь)!2 
2т -CJJ t + и; 

= -1LK;.fdblw;.(K - q, b)1 2 

= - ~LK;.fdSIQ;.(K - Q,s)1 2 

8n 

where 

and 

In addition, scaling is по longer possible when relativistic efТects are taken into 
account [see Alberico et al (88)]. Nevertheless, it is clearly exhibited experi­
mentally, as опе сап see from Fig. 2.22. Scaling is observed for у < о but is not 
obtained for у> О. Similar results Ьаме Ьееп obtained for 4Не, 12с, 27Mg, and 
197Аи [Day et al. (88)]. ТЬе lack of scaling for у > о 1S presumably because the 
reaction mechanism for large energy transfers is по longer primarily the ejection 
of а single nucleon. 

Note. ТЬе potential и in (2.130) is obtained Ьу fitting the elastic scattering 
data. It is а possjbly useful property of the eikonal approximation that опе сап 

express the exponential involving и in terms of the nuclear scattering amplitude 
of а nucleon moving in the q direction. We recall [гогп Chapter 11 [Eq. (11.5.8)] 
that the elastic scattering amplitude is, in the eikonal approximation, given Ьу 

(2.131) 

Using the Fourier integral theorem, опе сап invert the equation to obtain 

U(r)e-(i/2K)S~ .,U(~,b>d~ = - ~ fdQЛQ)е-iQ.r 
(2n)З 
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FIG.2.22. See (2.123) et seq. [From Sick (81).] 

То remove the prefactor U(r), integrate both sides of the equation from zero 
to z. Опе obtains 

so that 

1	 -iQ,z 1f
е-(i/2К)Г: mU(~·b)d~ = e-(i/2K)J~ ooU(~·b)d~ _	 __ dQf(Q)e -iQ'Ь ~__---=­

(2n)2К Q/ 

where Q/ is the component оС Q in the q direction. ТЬе desired quantity 
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From this equation опе obtains 

1 -iQIZ' - 1f
e-(i/2к)S~аоU(,.Ь)dС _ -_ lim dQf(Q)_e__ - = 1 

(2n)2К "" .... 00 Q, 

or 

(2.133) 

where QT is the сотпропеш of Q perpendicular to q. Substituting in (2.132) 
yields the desired expression: 

е - (i/2K) S:u(c, b)dC 

t - (i/4nK)J dQT f(QT' O)e- iQ ' Ь - (1/4n2 кН dQf(Q)e-iQ'Ь[(е-iQlz - l)/Q,J 

1 - Щ4nК)! dQTf(QT, O)e- i Q'Ь + (1/4n2 k)JdQf(Q)e-iQ'Ь[(е-iQIZ' - l)/QtJ 

(2.134) 

Another procedure valid at high energy begins with the relation 

where G-1=E+it:-H and G~l=Е+it:-НN' H=HN+V, and У is the 
transition matrix for the scattering of а proton Ьу the (А - 1) nucleus. If in the 
second term опе approximates Go Ьу its energy оп the energy-shell component, 
у will involve reaction amplitudes whose corresponding cross sections сап Ье 

obtained from experiment. 

J. The Reaction (е, е' N)t 

ТЬе reaction discussed in the preceding section is referred to as ап inclusive 
reaction since only the emerging electron is observed. Effectively, therefore, аН 

possible final states contribute to the cross section. In this section the reaction 
(е, е' N), where N is а nucleon, is considered. This is ап exclusive reaction 
since only опе final system is observed. Such measurements аге coincidence 
experiments; that is, both the final electron and ejected nucleon momenta and 
energy аге measured. The experimental arrangement is illustrated schematicaHy 
in Fig. 2.23. The shaded plane is the scattering plane containing the incident ki 

and final momenta kf of the electron. ТЬе unshaded plane contains the 
momentum transfer q and the emergent proton whose momentum makes ап 

angle ер with respect to q. ТЬе angle between the two planes is Фр ' ln а typical 
experiment the energies of the emerging electron and proton аге measured. 

~Dieperink and DeForest (75); DeForest (67); Со' et al. (87). 
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FIG.2.23. Diagram for the (е,е'р) reaction. 

Their sum will not equal the incident electron energy since some of the energy 
has gone into the excitation of the residual nucleus. ТЬе difference 

(2.135) 

is referred to as the missing energy ог the removal energy. Неге ER is the recoil 
energy of the residual nucleus, while ЕЧ~ 1 - ЕА is the excitation energy for the 
excitation of а final state ЕJ of the А - 1 nucleus. If the cross section is plotted 
as а function of the missing energy, опе will see relatively sharp peaks which 
сап Ье identified with single hole state. Ап example is presented in Fig. 2.24. 

In addition, опе сап also determine the cross section as а function of the 
missing momentum. In the Вогп approximation in which the emerging proton 
wave function is taken as а plane wave with momentum р, the longitudinal 
response function, the important factor in these experiments becomes 

RL = L IфJ(Рр - q)1 2 b(hw - Ер - (ЕЧ~ 1 - ЕА ) - ER ) (2.136) 
J 

where Ф f(Pp - q) is the wave function of the hole state of the final nucleus in 
momentum space. This result suggests that determining the cross section in the 
energy domain where the delta function condition is satisfied will yield the 
momentum distribution of the hole state. Note that Рр - q is the recoil 
momentum of the target nucleus. It is also referred to as the missing momentum 
Рт' This is illustrated in Fig. 2.25. We see the characteristic shapes of а Р and 
ап s single-particle nucleon wave function emerges. Note the difТering ranges 
of Ет , the missing energy for the two cases. ТЬе dotted-dashed curve follows 
from (2.136) using the Elton-Swift (67) wave function. А better approximation 
to R L uses the DWА. ТЬе matrix element <fI р Ii> is then given Ьу 

(2.137) 
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FIG.2.24. Missing energy (Е т) spectrum ofthe reaction 12С(е, е'р)11 В showing ап energy 
resolution оС 225 keУ. Excited states in the residual nucleus 11 В аге indicated. [From 
de Vries (84).] 

where х(->* is the appropriate distorted wave for the emerging proton with а 

final momentum of Рр. ТЬе factor <Фfl'P i ) , in which integrations over аН 

variables but ri аге сапiеd out, also appears in the DWА expression for the 
pickup (р, d) or (d,3He) process [see (УII.3.4)]. However (2.137) differs from 
that expression in that the perturbing potential for the pickup process is а 

short-ranged nucleon-nucleon two-body potential VOi in the notation of 
rChapter УН, which is to Ье compared with eiq

' " Therefore, substantial1y different 
properties of the overlap <Фf I'Р i ) аге probed in the two reactions. In the pickup 
reaction it is mostly the surface region of the nucleus that is involved, while in 
the (е, е'р) case the interior plays ап important role. For а detailed study of this 
comparison, see deWitt-НuЬеrts (87). 

There аге two noteworthy results. Опе is that the shapes of the overlap 
<Ф f/'P i ) wave function as determined from the (е, е'р) and (d,3He) reactions 
аге in good agreement. Second, the predicted cross sections in both cases require 

Em [MeV]­
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FIG.2.25. Momentum distributions [ог the (е, е'р) reaction оп 12с in two different 
regions о[ гепюуа! energy, Ет, corresponding to knock-out [гот the Ор and Os shells. 
ТЬе calculated results using DWIA (PWIA) аге given Ьу the solid (dotted-dashed) curves 
and have Ьееп normalized to the experimental data. [From Dieperink and DeForest (75).] 

spectroscopic factors (the probabiIity that the overlap сап Ье described Ьу а 

single-particle wave function) considerably less than unity. 
The сопесtiоп resulting from the use of а distorted wave function is small. 

We recall from Chapter V that distorting efТects of the optical potential аге 

minimal when the proton energy is in the range 150 to 300 МеУ. 

Note. Assuming а valence model for the target nucleus, one сап show that the 
exchange terms produced Ьу the Pauli exclusion principle are zero. Let 
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ТЬе wave function I/Jf is the antisymmetrized wave function for the Z - 1 system. 
ТЬе function и carries the normalization. ТЬе final state 

Antisymmetrization has not Ьееп included in (2.137) since it is automatically 
guaranteed Ьу the symmetry of Lieiq'ri and the antisymmetry of 'l'i' ТЬе proof 
ofthe result that we willleave to the reader is а consequence ofthe condition 

where the integration is carried out over г г-

ТЬе hole state that is formed Ьу the proton removal is not ап eigenstate of 
the nuclear Hamiltonian. As revealed Ьу а high-resolution experiment, it 
fragments into several верагате states. ТЬе hole state acts as а doorway state to 
these. It therefore becomes possible to apply the doorway state formalism 
developed in Chapter 111. From (111.4.16) we have the doorway state:r matrix 

(2.138) 

where we have assumed that the entire width ГJ is the result of fragmentation 
of the one-hole state. Опе must now take the absolute square of <:rJi >and 
sum over final residual nuclear states within the width ГJ. Ап energy average 
over narrow resonances I/J~ +) is implied [see the discussion leading to (УII.5.22)]. 

ТЬе result is 

where 

(2.139) 

according to (2.137).Thus in the response function опе should replace the energy 
delta function Ьу 

1 ГJ 
(2.140)

2п (Е - Ed)2 + iГ; 

in order to obtain the results obtained when averaging over the states into 
which the hole state fragments. Note that Г, is а [цпспоп of the energy. [See 
Orland and SchaefТer (78) for more details.] А comparison with experiment is 
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FIG.2.26. Rescattering efТects in the 12С(е,е'р) reaction. In the верагапоп energy region 
corresponding to the ls shel1, the contribution of lр protons is estimated. [From Mougey 
(80).] 

shown in Fig. 2.26. For а review of the experimental situation, see Mougey (80) 
and deWitt-НuЬегts (87). 

This is where we will end the discussion of electron-induced reactions. МисЬ 

гпоге in the way of exclusive experiments will Ье done as CW electrons 
accelerators Ьесоmе operational. For example, referring to Fig. 2.23, measure­
ment of the dependence оп the angle Фр willlead to further information оп the 
nuclear matrix elements of various components of the currents. [See, e.g., (3.13) 
in the рарег Ьу Со' et al. (87).] and therefore to new types of response functions 
beyond RL and RT . ТЬе use of polarized electrons will yield relative phases of 
the nuclear matrix elements [see Donnelly (88)]. Importantly, measurement of 
the parity violating transitions will permit stringent tests of the "standard" 
theory of the electro-weak interactions. We shall not discuss the ЕМС effect 
[see Jaffe (88)and Close (88)], which appears to indicate а change in the structure 
of the nucleons in the nuclear environment. At least that is опе interpretation. 
But this рЬепотепоп is, at this moment of writing, not clearly understood 
experimentally and theoretically. Finally, 1 should mention the clear evidence 
for exchange currents obtained Ьу electron scattering from ЗН and ЗНе, which 
Ьауе not Ьееп discussed because the nuclear two- and three-body systems аге 

not included in this volume. Nevertheless, we include two figures showing the 
effect of exchange currents and nucleon excitation to the д оп the electric and 
magnetic form factors for 3Н and ЗНе (Figs. 2.27 and 2.28). 
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FIG.2.27. Charge form factor of 3Не. ТЬе dashed curve gives the impulse approximation 
results. ТЬе solid curve includes the effects of meson exchange contributions. [From 
Hodjuk, Sauer, and Strueve (83).] 

з. MEDIUM-ENERGY PROTON-NUCLEUS SCATTERING 

The application of the theory of multiple scattering to the scattering of protons 
Ьу nuclei was discussed brief1y in Section П.8. We summarize the pertinent 
formulas using the КМТ [оппайэш.! The effective potential V~~t(q), q = k - k' 
is given Ьу (11.4.30) 

(3.1) 

~Tbe eikonal method is often used. However, comparison with the КМТ results [от 800-МеУ protons 
(see Fig. 3.1) shows that in the lowest order the eikonal method overshoots the difТraction maxima 
and minima at the larger angles, especially for the polarization observabIes. А more careful treatment 
of thc eikonal method bcyond the first order is required. ТЬе eikonal approximation is aJso found 
to Ье in епог in inelastic scattering [see Ray and НоfТтапп (84)]. However, great improvement 
in the eikonal results сап Ье obtaincd if higher-order сопесtiопs аге made [Wallace (73а, 73Ь); 

Rosen and Yennie (64); WaIlace and Friar (84)]. 
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FIG. 2.28. Magnetic form factor of 3Не. (See сарпоп for Fig. 2.27.) 

The quantity t i is the nucleon-nucleon transition amplitude, 10> is the ground 
state of the target, while А is the number of nucleons. In general, V~~t is а nonlocal 
operator V~~{(r, г'). However, assuming locality [see (II.4.38)] for the transition 
operator t j , V~~~ becomes local [Eq. (11.4.39)]. The local optical potential v~~~ 
is then [Eq. (11.4.40)], 

(3.2) 

while 

(3.3) 

The optical potential is to Ье used in а nonrelativistic Schrodinger equation. 
The resultant scattering amplitude is multiplied Ьу (А/А - 1) [see (П.4.10)] to 
obtain the predicted amplitude. The superscript оп v~~~ indicates that it is the 
first term in an expansion. The second term is given Ьу (11.4.44). It depends 
explicitly оп сопеlаtiопs. For most studies and except for the lightest nuclei, 
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(с) spin rotation. [From Ray (83).] 
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this second term does not significantly affect the predicted angular distributions. 
However, the polarization observables are more sensitive to the correlations. 
ТЬе nucleon-nucleon transition matrix t i is given in the nucleon-nucleus 
center-of-mass frame Ьу (11.8.4) 

ti(k, k') = A i + Bi(Jo"(Ji + Ci((Jo + <rJ'(q х Q) + Di(<rO"Q)(<ri"Q) + Ei(<rO"q)(<ri"q) 
(3.4) 

where q = k - k' and Q = i(k + k'). ТЬе subscript i refers to the struck nucleon 
in the target nucleus and the subscript О refers to the incident nucleon. ТЬе 

coefficients A i , B i , and so оп, are functions of q2 and the energy of the incident 
nucleon. These coefficients also depend оп the isospin, for example, 

(3.5) 

ТЬе connection between the coefficients A i , and the coefficients А;, and so оп, 

appropriate to the nucleon-nucleon сешег-ог-тпавв reference system is given 
Ьу (11.8.5). We shall not repeat them here. One often parametrizes the coefficients 
А; as follows: 

А' = A(0)e- aq 2 (3.6) 

where (Х and А аге complex functions of the energy. А table of these coefficients 
is given in Chapter 11 (ТаЫе 11.8.1) for а nucleon kinetic energy L1ab of 1GeV. 
Coefficients appropriate at other energies are given Wallace (81).t Note that 
the transformation from the nucleon-nucleon to the nucleon-nucleus reference 
frame is valid only at small angles. Moreover, there is an ambiguity described 
in the problem following (11.7.2). Finally, we remark that using the form given 
Ьу (3.6) involves values of А, and so оп, which for large values of q аге not 
observable in nucleon-nucleon scattering. (See the discussion in Section 11.7.) 
Extrapolation fюm nucleon-nuclear scattering to these off-the-energy-shell 
valuesis obtained Ьу fitting the energy dependence of the coefficients А(О) and 
!Х and then continuing that dependence to the required values of the energy. 
Another procedure, using the Breit frame, leads to (11.7.20), in which l(k, k') is 
replaced Ьу 

1(Q(1 + 1/А) + q Q(1 + 1/А) - q) 

2 ' 2 J 
evaluated at the energy T~:~) = (1/2rn)(Q2(1 + 1/А)2 + q2). In most of the results 
to Ье reported below, only the А and С coefficients enter into и~~, since the 
spin of the target nuclei selected is zero. ТЬе bilinear terms in spin (В, D, Е, F) 
docontribute to the second-order terms. However, they are generally neglected 
in the calculation of second-order effects. 

1Note 1ha1Wallace's D is proportional 10 our Е and his Е 10 our D. 
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Despite тапу caveats referred to аооуе, the agreement of the first-order 
multiple scattering theory with elastic scattering of protons Ьу spin-zero nuclei 
at sufficiently high energy is excellent, as опе сап see from Fig. 11.8.2. This is 
because the nucleon-nucleus amplitude is not sensitive to the details of the 
transition matrix for nucleon-nucleon scattering for relatively small values of 
q. ТЬе first-order potential is а product ofthe nucleon-nucleon l and the nuclear 
р. Since Е is generated Ьу а short-range force, it will change slowly with q. Оп 

the other hand, p(q) will Ье sharply peaked at q = О, with the consequence that 
only values of l near q = о will Ье important. ТЬе cross веспоп near q = о will 
then Ье а difТraction pattern given Ьу p(q) whose minima and maxima reflect 
the value of the nuclear radius. Their positions аге stable against the inclusion 
of various efТects, such as those generated Ьу the second-order potential. Мапу 

efТects аге present for larger-angle scattering. In addition to correlations, there 
are the corrections arising from the various approximations used to obtain the 
simple formula (3.1)and of course the uncertainties in jJ(q)and l(q). А systematic 
treatment of the correlations, including those originating in the Pauli exclusion 
principle, in the center-of-mass correlation and in the spin and space correlations 
in the target nucleus has Ьееп given Ьу L. Ray and G. W. HofТтann and their 
associates. [See, for example, Ray (79);see also СЬаитеаих, Layly, and SchaefТer 

(78)] Ray (79) improves ироп the treatment of the РаиН correlations Ьу Boridy 
and Feshbach (77) Ьу letting kF , the Гепш energy, Ье а function of r reflecting 
the spatial dependence of the density, which in а local density approximation 
is directly related to kF • ТЬе major efТect of these correlations is to increase the 
cross section at the difТraction maxima Ьу ап amount that increases with q and 
decreases with А (see ТаЫе 3.1). 

ТЬе relative importance of the various correlations at the maxima is shown 
in ТаЫе 3.2. We see from the table that the most important correlation efТect 

is produced Ьу the Pauli exclusion principle. Finally, HofТтann et al. (81) have 
pointed out the importance of the spin-orbit coupling that arises from the 
interaction of the magnetic moment of the incident proton and the Coulomb 
field of the target nucleus. Approximately the interaction is given Ьу 

н = _ дф J-lohc (aol) (3.7)
m.d. дr 2Е 

тABLE 3.1 Percent Increase in Cross Section at 
Diffraction Maxima 

Мах. 4ОСа 116Sn 208рь 

1 
2 
3 
4 
5 

13 
.18 
20 

8 
13 
17 
21 

6 
10 
14 
18 
23 

Source: Ray (79). 
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тABLE 3.2 Relative Importance оС the Various 
Correlation Соггесйопа" 

Соттеспоп (%) 

Nucleus РаиН SRD PSR-l сm Pauli-S.O. 

4ОСа 85 10 -2.1 11.0 -3.9 
116Sn 91.3 11.6 -2.4 5.2 -5.7 
208рь 92.2 11.7 -2.8 3.4 -4.5 

а(1) Pau/i, because of the exc/usion principle; (2) SRD, 
short-range correlation; (3) PSR-I, interference between Pauli 
and short-range; (4) сгп, сопесtiопs for transformation from 
nuclear септет of mass to proton-nucleus center of mass; 
(5) Pauli-S.O., Pauli spin-orbit interference. Values аге the 
percentages of the tota/ increase in the height of the maxima in 
the angular distribution. 

where Ф is the nuclear electrostatic potential and /10 is the proton magnetic 
moment. t ТЬе comparison with experiment of the calculated angular 
distribution, including only А and С terms of (З.4), second-order terms, and 
magnetic moment efТects, are shown in Fig. З.2. ТЬе incident protons have ап 

energy of 800 МеУ; the target nuclei аге 160, 4ОСа, and 208рь. ТЬе proton 
density is taken from electron scattering while the пешгоп density is calculated 
according to the following recipe: 

(З.8) 

where the densities within brackets is taken from Hartree-Fock-Bogoliubov 
calculations [Decharge et al. (81)]. Agreement is good except that as is especially 
noticeable in the lead case, the predicted difТraction oscillations аге out of phase 
with experiment at the larger scattering angles. 
Опе need not use (З.8) but rather determine the пешгоп density from 

experiment. А check оп the method used is obtained Ьу comparing the proton 
density difТerence obtained using polarized elastic scattering with that obtained 
using electron elastic scattering from 48Са and 54Fe. In first approximation the 
пешгоп densities аге the same, so that the difТerences in the proton densities 
сап Ье obtained. ТЬе results аге shown in Fig. З.З. Agreement is quite good, 
especially in the region of large r when both experiments Ьаve smaller uncertain­
ties. At smaller r the uncertainties are тисЬ larger, so that the agreement is less 
significant. Examples of the neutron densities determined Ьу proton scattering 
in comparison with that obtained from Negele's density matrix expansion 
(DME) are shown in Fig. З.4. ReasonabIe agreement is obtained. 

IИоlТтапп et а/. (81) use а more accurate expression which is valid relativistically and takes the 
nucleon form factors into account. 
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We consider next the two independent polarization observables, Q, the spin 
rotation, and Ау, the analyzing power, which Ьу time reversal equals Р in 
(У.2.52). These provide а more subtle test of our understanding of the elastic 
scattering of protons Ьу nuclei. In particular, they аге more sensitive in the 
angular regions covered Ьу the minima in the angular distributions. In Fig. 3.5 
we present first-order КМТ calculations of the analyzing power, the 
second-order КМТ (i.e., including correlations), and finally, calculations that 
include the magnetic moment efТect [Eq. (3.7)] designated Ьу ММ. ТЬе data 
points аге obtained with polarized 800-МеУ proton beams available at LAMPF. 
ТЬе target nuclei are 160, 4ОСа, and 208рь. We see that the correlation efТects 
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аге quite large and for the case of 160 аге sufficient to bring the calculation 
and experiment into substantial agreement. For 4ОСа and especially for 208рь, 

the magnetic moment efТect plays ап important role. Generally, the first-order 
КМТ does not give sufficient structure; terms "proportional" to р2 and the 
magnetic moment modification of the spin-orbit term аге necessary. Both of 
these act to break the сопеlаtiоп between the numerator in the expression for 
the polarization and the angular distribution that is in the denominator. А 

similar story prevails for the spin-rotation parameter Q, as iIlustrated Ьу Fig. 3.6. 
In these cases сопеlаtiоп efТects are not significant; the improvement оп КМТ 

is largely сапiеd Ьу the magnetic moment interaction. The agreement with the 
data is quite good, although there аге substantial deviations in the Q for the 
4ОСа target. 

These polarization tests of the КМТ theory аге incomplete, since the effects 
of the spin-spin terms in the t matrix тау Ье appreciable [Feshbach (90)]. 
However, detailed calculations that would show how these efТects afТect the 
polarization observables аге not available [except for а calculation of Q for 
4Не Ьу Parmentola and Feshbach (82)]. 

Another approach to nucleon-nucleus scattering is геfепеd to as the relativ­
иаи: ипршяе approximation. We shal1 only sketch this procedure. For more 
details and references, we refer the reader to а review Ьу Wallace (87). Very 
briefly, а relativistic transition operator for the nucleon-nucleon interaction is 
taken to Ье 

t <Т. +!y(l)y(2)+ ta(l)a(2)+!.y(l)y(l)y(2)y(2)+! y(l)y(2) (3.9)
D s V /l /l J I и» /lV а 5 /l 5 /l ps 5 5 

The equivalent Schrodinger form, ts ' is obtained from the equation 

й l (k'l' 8'I)Й2(k~, 8~)tDЙl(k l , 81 )u2(k 2, 82) 

= 1.. i(k'l' 8'1 )1..~(k~, 8~ )ts(k l' 51)1.. 1 (k l , 81 )1..2(k2, 82) (3.10) 

where u(k, 8) is the foи,r-component plane wave solution of the Dirac equation 
and 1..(k,8) is а two-component Pauli plane wave spinor. The process described 
Ьу (3.10) is опе in which particle 1 makes the transition from momentum k 1, 

spin 8, to momentum k 1 , spin 8'1 with а similarly indicated change for particle 
2. For а detailed discussion ofthis transformation, see McNeil, Ray, and Wallace 
(83) and Ray and Hoffmann (85). The resulting amplitude must Ье folded into 
the appropriate nuclear density functions. These must Ье relativistic in origin 
and are obtained from relativistic theories of the nucleus such as those proposed 
Ьу Walecka [Serot and Walecka (86) or Celenza and Shakin (86)]. The first of 
these is а а(sсаlаг)-ш (vector) model treated Ьу а теап field approximation. 
The second is а relativistic Breuckner-Hartree-Fock approximation starting 
with а relativistic nucleon-nucleon force taken from а meson exchange model. 
The resulting one-body Dirac equation describing nucleon-nucleus scattering 
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is, according to Ray and НоtТтапп (85), 

{с(Х.р + fЗ(mс 2 + Us(r)] + [ИУИ + UCOU1(r)] 

- ifЗ(Х · r [ 2UтИ + ~~ Uсоu\(r)]}ф = Еф. (3.11) 
Ъп д» 

In this equation Uя- Uу, and Uт аге the scalar, vector, and tensor potentials, 
Кр is the proton anomalous magnetic moment, and Е is the total relativistic 
energy of the proton in the proton-target nucleus center-of-mass frame. It is 
found that U т has а small etТect оп the scattering so that it is omitted in the 
calculations reported below. Equation (3.11) is remarkably similar to the 
relativistic model discussed in Chapter У. ТЬе results obtained with the RIA 
agree with the empirical results of that model as demonstrated in Fig. 3.7. With 
these assumptions опе obtains the angular distributions of Fig. 3.2, labeled 
RIAw/AMM. ТЬе agreement with experiment is better than КМТ for the 
target nuclei 4ОСа and 208рь but not as good as КМТ for target nucleus 160. 

In Fig. 3.8 we сотпраге the predictions of the analyzing power, and Fig.3.9, 
the spin гогапоп. is given for the relativistic theory. From Fig. 3.8 we see that 
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RIA and КМТ differ from experiment in differing ways, but it would Ье difficult 
оп this basis to choose опе аооуе the other. In Fig. зз the RIAW/AMM result 
difIers considerably from the 1-о experiment, with which second-order 
КМТ/ММ is in substantial agreement (see Fig. 3.6). Agreement with 4ОСа and 
208рь data is good. Overall the sharp difference in the ability of the КМТ 

and RIA models to match the data, especially that ofthe rotation spin рагагпегег, 

is not repeated at 800 МеУ. 

The second-order corrections to RIA аге severe. This is because опе сап add 
тапу terms to tD [Eq. (3.9)] that will not contribute to the positive energy 
projection, (3.10). As а consequence, t s is ambiguous [Adams and Bleszynski 
(84)] since these additional terms сап contribute to the second-order potential. 
No information оп their strength is available from the nucleon-nucleon 
amplitude. According to Тjфп and Wallace (85,87), tD сап contain 56 terms for 
each isospin. Tjon and Wallace reduce the number of independent terms Ьу 

invoking relations obtained from а relativistic theory of the nucleon-nucleon 
interaction. They thus obtain а fit to nuclear forces as well as to medium-energy 
nucleon-nucleon scattering. 

4. PROTON 4Не ELASTIC SCATTERING AND ТНЕ EFFECT 
OF ISOBAR EXCITAпон' 

The angular distribution of l-GeV protons scattered Ьу 4Не is shown in 
Fig. 1.15.2 in deShalit and Feshbach (74). The experimental points shown аге 

not соггест, as shown Ьу subsequent experiments [Geaga et al. (77); Courant 
et al. (79)]. The strong diffraction minimum is filled in so that the angular 
distribution is Пат in the neighborhood of 200 and then drops ofI quite rapidly. 
It is not possible to explain these results using only the first-order КМТ 

potential. This is primarily because to that order the angular distribution is 
given Ьу the Fourier transform of the density р(ч) for 4Не. But р(ч) is quite 
accurately determined Ьу electron scattering. It is thus essential to consider the 
second-order term: 

dk 
<k f~k'" {<Oll (k-k/l)l (k"'-k')IО)/l

IV(2)lk')=(A-l)2f
(2п)3 (2п)2 1 2 

- (Olll(k - k")\O) <Oll2(k'" - k')IO)} 

х (k"l 1 Ik"') (4.1) 
Е-ё- V(1)-K 

Here ll(k - k") is the t matrix for the scattering of the proton Ьу the nuclear 
nucleon labeled Ьу the subscript. Matrix elements are taken with respect to the 

!Wallace (80); Parmentola and Feshbach (82). 
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ground state, 10). In the propagator, Е is the energy, е ап average excitation 
energy, V(l) the first-order potential, and К the kinetic energy operator for the 
incident proton in the nucleon-nucleus center-of-mass system. When the effect 
of V(2) is evaluated (as, indeed, опе must because of the center-of-mass 
correlations), including dynamical and Pauli correlations and including the 
entire expression for the nucleon-nucleon matrix, (3.4), using the Wallace­
Alexander parametrization (ТаЫе 11.8.1) there are substantial changes but the 
diffraction minimum remains. 
А possible remedy suggested Ьу Ikeda (72) and exploited Ьу Alexander and 

Wallace (72) is isobar excitation, which сап also contribute to V(2). In this 
process the incident proton in scattering Ьу а nucleon is transformed into а А 

and in its second scattering deexcited to а proton. Note that the second scattering 
must involve а second and different nucleon to avoid double counting. De­
excitations Ьу the nucleon that produced the excitation have already Ьееп 

included in .the nucleon-nucleon transition. Thus in (4.1), {1{2 should Ье 

rewritten 

ТЬе second term is new. ТЬе amplitude /(NN 1 -J1.N 1 ) corresponding to 
{(N N 1- J1.N 1) in the nucleon-nucleon reference frame is parametrized Ьу 

(4.3) 

where S and Т are i spin and isospin operators (S2 = ~). In principle, f should 
Ье chosen so as to yield the observed cross section for J1. production in 
nucleon-nucleon scattering. At 1GeV the isobar production cross section is 
substantial ('" 22 mЬ). А fit to the data in the form given Ьу (4.3) has Ьееп 

obtained Ьу Chadwick et а], (62). Parmentola takes 

/(0) = 7Ш~р(0) 

J1. ~ дрр 
with 

В'_ = D'_ = Е'_ = О 

that is, assuming that В', D' and Е' do not depend оп isospin yields (Fig. 4.1). 
Two points should Ье noted. Опе is that а corollary of the isobar excitation 

is the existence of three-body forces in nuclei. ТЬе impact оп our understanding 
of the binding energy of nuclei, especially the three-body systems, has not Ьееп 

calculated. Second, since the expectation value of (4.3) with respect to spin is 
zero for zero-spin nuclei, опе will find that the isobar addition to V(2) for 
zero-spin nuclei will decrease like 1/А with increasing А. It thus will not Ье of 
importance for the angular distributions for proton-nucleus scattering for the 
heavier nuclei. 
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FIG.4.1. Elastic ditТerential р-4Не, Е(р) = 1.03GeV cross section compared to the 
predictions of multipJe scattering theory iпсludiпg the etТects of the isobar А. [From 
Parmentola and Feshbach (82).] 

5. REACTIONS INDUCED ВУ MEDIUM-ENERGY PROTONS 

Reactions, such as inelastic scattering, quasi-elastic scattering, and particle 
transfer, have аН been treated theoretically using the DWA of Chapter V and 
VI. The matrix element between the initial Iа >and Iь >nuclear states is given 
Ьу [see (3.1)] 

А -1 
"fI Ьа = -- <bl Ltila) (5.1) 

А i 

То obtain the :!т matrix for the reaction one calculates the matrix element "fI Ьа 

between the initial state of the projectile and the final state of the emerging 
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system. The reader is referred back to Chapters V and VI for the details. There 
is опе simplification: namely, for forward scattering and production опе сап 

neglect the Pauli principle between the projectile and target. 
The DWA has Ьееп applied successfully to inelastic scattering leading to 

excitation of collective levels [see, for example, Chaumeaux, Layly, and SchaefТer 

(78) and Вlanpied, Ritchie, et al. (88)]. The potential "У"ьа тау Ье expressed in 
terms of the transition density: 

f А-l 
"У"ьа= dr 1 • .. drAt/J:(r1 · .. rA ) А Lti(ri,rO)t/Ja(rl···rA) 

=(А -1) fdr 1 Pba(r1)t1(r1,rO) (5.1') 

where 

(5.2) 

If we employ only the сотпропеш of t 1 independent of the proton spin, the 
angular momentum transfer in the reaction will Ье orbital. If the angular 
momentum transfer is 1, the only component of the РЬа that will Ье efТective is 
proportional to Y1m(r 1)' leading to the definition 

(5.3) 

The quantities Pba(r1) and Pba,l(r1) are referred to as transition densities. ТЬе 

proton transition density сап Ье determined from inelastic electron scattering. 
High-energy proton scattering will permit the additional study of the пешгоп 

transition density. Ray and НоfТтапп (83) use two forms for the transition 
density 

РЬа;1 = ~If'(r) (5.4) 

where ~I is а parameter and f is given Ьу the forms 

1 
two parameters (5.5)f(r) = 1 + e(r-c)/z 

or 

three parameters (5.6) 

The parameters now include с, z, and w. The constants in each of these forms 
are chosen as to give а best fit to the data. The consequent fab,1 сап then Ье 
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20B pb{p,pl) (2.61 MeV 3-)100 
0.8 GeV 
--8EST КМТ FIT 

5 20 

FIG.5.1. Experimental data and best КМТ fit for 800-МеУ (р,р') to the 2.61-МеУ 3­
state in 208рь. [From Ray and НоfТmапп (83).] 

compared with the results of а microscopic calculation. ТЬе best fit using the 
two-parameter form for the reaction 208рь(р, р') exciting the 2.6-Ме У, 3- level 
in lead is shown in Fig. 5.1. ТЬе fit is excellent. А similar fit is obtained with 
the three-parameter form. However, these do not give identical пешгоп 

transition densities, as опе сап see from Fig. 5.2. As опе сап anticipate, the two 
transition densities are identical in the surface region but ditтer substantially in 
the interior, indicating the insensitivity of the experimental data to the interior 
va]ues. This insensitivity is а consequence of the absorption of the incident 
proton wave. 
Опе сап go beyond the DWА and use, for example, the method of coupled 

channels described in Chapter УН. Such а treatment is useful and practical 
when the excited ]evels аге collective. It has Ьееп applied to such excitations 
in а series of papers Ьу Blanpied et аl. with moderate success. References to 
these articles are given in Вlanpied (88). Опе noteworthy feature uncovered Ьу 

these investigations is the need to increase the number of channels in the 
calculation as the angular range increases. Other methods make use of the 
Glauber representation and group properties of the exponential ехр( - JV dx). 
Bassichis,Feshbach, and Reading (11)treat the vibrational case, while Ginocchio 



760 HIGH-ENERGY NUCLEAR PHENOMENA 

Pn,tr(г) 
15 208 р ь . 2.61 MeV 3­

r<) 

о 2pF 
х 
~ 10 ------ 3pGr<) 

Е 
'+­
<, 
(f) 

с
 
о
 
~ 

+- 5 
~ 
Q) 

z 

о -__ /
 
---------~,.,
 

FIG.5.2. Deduced пешгоп transition density for the 2.61 МеУ 3- state in 208рь. ТЬе 

two-parameter Fermi (2pF) and three-parameter (3pG) forms аге shown. [From Rayand 
Hoffmann (83).] 

et а! [see the review Ьу Ginocchio and Wenes (86)] generalize to deformed 
nuclei using the Hamiltonian of the interacting boson model. 

It is expected that there is а close relation between the elastic and inelastic 
cross sections in high-energy reactions when the excited states are low-lying 
collective models. Опе should recall that connection established Ьу Austern 
and Blair (65) at lower energies (see Chapter V). At the higher energies under 
consideration in this chapter it is again possible to express the inelastic scattering 
cross section for excitation of а collective state in terms of the elastic scattering 
cross section. Use is made of the eikonal approximation to the initial and final 
state projectile wave functions and of the Tassie (56) parametrization of the 
matrix element, which is appropriate for collective state excitation. That approxi­
mation yields [see (П.5.7) 

(5.7) 

where 

х = __i foo U(b,z')dz' (5.8) 
2К -00 

But from (11.4.30.) 

U = - 4n(А - l)р(f(О)) 
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where 1(0) is the scattering amplitude evaluated at 00.From the optical theorem 

471: о 
О" т = - 1т 1(0 )

k 
(5.9) 

so that 
k 

1(0) = - O"T(r + i)
4n 

(5.10) 

where r is the ratio of Re f to lm f. ТЬеп 

ч> - O"T(1-ir)(А-1)f 
ОО 

p(z,b)dz= -g(b)= -yt(b) 
2 - 00 

t(b) = f:ooP(Z,b)dZ (5.11) 

ТЬе amplitude for inelastic scattering exciting а level with spin L, z projection 
М, and parity n is . 

Following the discussion of Amado, Lenz, McNeil, and Sparrow (80), опе notes 
that because of the transformation properties of 1/'', М) and IО", о), it follows 
that 

where P1M аге the associated Legendre polynomials. In addition, Amado, Lenz, 
McNeil, and Sparrow (80) use the Tassie parametrization (56), where 

(5.14) 

ТЬе parameter )'1 сап Ье related to the transition probabilities (BEI) obtained 
from ап analysis of inelastic electron scattering using the Tassie form [see, e.g., 
Heisenberg, McCarthy, and Sick (71)]. Substituting (5.13) and (5.14) in (5.12), 
replacing approximately q-r Ьу q-b, and integrating over ер yields 
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Note that Р 1М is а polynomial in z"b1-"/rI 
; n is odd if (1 + М) is odd, еуеп if 

(1 + М) is еуеп. Multiplying Ьу r1
- 1 dp/dr yie1ds z"b1-"[(l/r)(dp/dr)]. The 

integrand in the z integral of (5.15) is thus odd if n is odd and thus will vanish 
for odd (1 + М). This result was obtained earlier in (У.4.20). We shall now 
restrict the discussion to the 1 = 1 case for iIIustrative purposes. The details for 
the general values of 1 аге given in Amado, Lenz, McNeil, and Sparrow (80) 
and the review article Ьу Amado (85). We аге then concerned with only 
jin(O+ ,0-1-, ±1). For М = 1, we need Р ll = - (3/8n)1/ 2b/r, so that 

The z integral сап Ье reduced Ьу noting that (l/r)(dp/dr) = (l/z dp/dz) and 

а fOC! ~ fOC) 1 dp
- dz p(J?+ Ь2 ) = Ь dz-­
аь -ОС) - сс r dr 

Therefore, 

Integrating Ьу parts yields 

But the elastic scattering amplitude is 

so that 

Finally, adding in the М = - 1 саве, we оэташ! 

(5.16) 

~This equation and (5.17) difТer from the Amado et al. result because of differing normalizations. 
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Amado, Lenz, McNei], and Sparrow (80) have derived the relationship between 
the егавпс and inelastic cross section for arbitrary L. It is 

(5.17) 

where R + ina = Вое iф and Ф[ = (I - l)ф + 1], where 1] = о for odd L and n/2 [ог 
еэеп L, where р is given Ьу ро[1 + exp((r - R)/a)]-l. Comparison of(5.17) with 
experiment is iНustrated in Fig. 5.3. ExceHent agreement is obtained. [See a]so 
Feshbach and Boridy (74) for the КМТ resu1t.] The success ofTassie expression 
(5.14) indicates that the interactions responsible for the inelastic scattering occur 
in the surface. This is not surprising since the септга! ротеппа! is so strong]y 
absorptive (see Fig. 11.8.1). 

Amado (85) a]so discusses the properties of the polarization parameters for 
ешвпс scattering. These turn out to Ье sensitive to the гаша] dependence of the 
spin-orbit terms. А ditТerence in the radial dependence given Ьу the писгеаг 

density results in вцовтаппа! ditТerences in the polarization. We have already 
observed this phenomena earlier in this chapter (see Section 3). There one found 
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208рь - 3­ from 

-- ­ 5- from 
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10 20 30 
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FIG.5.3. Inelastic cross sections obtained from elastic scattering data (solid lines) 
compared with experiment. [From Amado (85).] 
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that adding in the interaction between the proton magnetic moment and the 
Coulomb field of the nucleus introduced oscillations into the asymmetry, for 
example, which brought the predictions in line with experiment. The reason for 
this sensitivity lies in the fact that the polarization parameters аге ratios of 
various measured quantities to the differential cross section. For given 
interaction there сап Ье сопеlаtiопs between the angular dependence of the 
numerator and that of the denominator. For example, at low energies there is 
the result obtained Ьу Hiifner and de Shalit (65) that the polarization is 
proportional to the angular derivative of the angular distribution. At the higher 
energies, the nonoscillating behavior of the asymmetry (ог Q) at the smaller 
angle must Ье а consequence of such а correlation. Adding in the magnetic 
moment Coulomb interaction or modifying the radial dependence in Amado's 
discussion destroyed the сопеlаtiоп since the angular distribution is not 
substantially modified Ьу these changes. The oscillations of the numerator and 
the denominator аге по longer in phase, so that new oscillations арреаг, 

6. ТНЕ (р,2р) REACTION+ 

The objectives of the studies of this process are similar to those of the study of 
the (е, е' р) reaction-namely, to obtain information with regard to the hole state 
formed ироп ejection of а target proton. In addition, опе сап hope to form 
some insight into the effect of the nuclear medium оп the proton-proton 
interaction. There are substantial differences from the electron-induced reaction. 
Most important is the strong absorptive proton-nucleus interaction, which is 
to Ье compared with that of the relatively weak electron-nucleus interaction. 
In addition, the electron-proton interaction differs in character from that 
governing the proton-proton system. 

The development to Ье presented here is suggested Ьу the procedure used 
to discuss the (е, е'р) reaction discussed earlier in this chapter. This is not the 
traditional procedure. 1 refer the reader to the reviews Ьу Вапеtt and Jackson 
(77) and Kitching, McDonald, Maris, and Vasconcellos (85) for а description 
of that procedure. The model to Ье used is shown in Fig. 6.1 (compare with 

proton -.......;...-----4(
 

nucleus 

FIG. 6.1. ТЬе (р, 2р) reaction. 

t Barrett and Jackson (77); Kitching, McDonald, Maris, Vasconcellos (85). 
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Fig. 2.17). ТЬе incident proton with momentum k 1 interacts with а target proton 
with momentum k whose momentum and energy are increased Ьу q and поз, 

respectively. ТЬе scattered incident proton has the momentum k2 = k1 - Ч. ТЬе 

residual nucleus will Ьауе а momentum оС - k but mау Ье excited to ап energy 
е. ТЬе model assumes that we are dealing with а single-step direct reaction. 
Conservation оС energy requires that 

(6.1) 

and 

(6.2) 

Ву measuring k2 and (k + ч), опе сап obtain е. Figure 6.2 shows а plot оС the 
cross section versus е [ог the reaction 160(р, 2р)1 SN, [ог incident proton energy 
оС 460 МеУ. ТЬе hole states s;/~, p;/~, and P3/~ are clearly visible. А summary 
оС the results obtained using а variety оС targets is shown in Fig. 6.3. 

t
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FIG.6.2. Energy spectrum and angular correlations for the reaction 160(р, 2p)1 5N. The 
dashed lines are calculated results multiplied Ьу the indicated factor. [From Kitching, 
McDonald, Maris, and Vasconcellos (85).] 
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FIG.6.3. Momentum distributions for the reaction 9Ве(е, e'p)8Li. ТЬе р and s states are 
at Е ~ 15 and 25 MeV, respectively. [From Kitching, McDonald, Maris, and 
Vasconcel1os (85).] 

ТЬе cross section for the inclusive (р,2р) process is 

r 50-100 

:
 
60 

х 2:1 <xj- >(k 2) ф( - >(к) '1'J I(A - l)P(q)t(q) 1х: + >(k 1)'I'i) 12 
J 

(6.3)
 

where tff is the energy of the incident proton E<t,> plus the proton rest mass тс2 , 

Е, - ЕJ = E<t,> - (h2/2m)k~ - (h2 /2m)K2 
- в, neglecting the recoil kinetic energy 

of the residual nucleus. ТЬе initial and final пцс'еаг wave functions аге 'I'i and 
'1'Т» respectively. If we drop the spin-dependent terms in t(q) and assurne that 
t(q) varies so slowly that it сап Ье removed from the matrix element in (6.3), 
we have 

ТЬе first two factors сап Ье combined to give ап efТective рр cross section, 
d(J~fr>/dE2 d0 2 • It is not identical to the free proton-proton cross section since 
Xi and Х! are distorted waves as а consequence of their interaction with the 
target and гевкша! nuclei, respectively. ТЬе factor that remains is just RL, the 
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longitudinal response function of (2.118а). Therefore, 

(6.4) 

relating the inclusive (е, е' Р) and (р,2р) cross sections. If опе includes the 
spin-dependent terms, опе will obtain other response functions which аге also 
present in the expression for (е, е' р) polarization parameters. 

7. RELATIVISTIC HEAVY IONS 

In this section we consider the coJlision of Ьеаеу ions with nuclei with energies 
of the order of 1GeV/A. These experiments Ьауе Ьееп for the most part 
performed at the Bevalac, the heavy-ion accelerator at the Lawrence Berkeley 
Laboratory, which produces beams of Ьеауу ions with а maximum energy of 
2.1Ge V/А. In Section 8 we briefly discuss colJisions of protons and Ьеауу ions 
with energies in the hundreds of Ge V/А range. These аге referred to as ultra­
relativistic heavy ions. 

Experimentally, two types of collisions could Ье differentiated, the peripheral 
and the central. In the first of these, the fragments гпоуе with nearly the same 

velocity as the incident projectile, and nearly in the forward direction in the 
laboratory reference frame. These fragments were ejected from the incident 
projectile Ьу its interaction with the target nucJeus. The impact parameter for 
these coJlisions are relatively large; the momentum transfer relativeJy small. ТЬе 

centraJ collision is characterized Ьу а high multiplicity, as опе would intuitively 
expect. This is illustrated Ьу Fig. 7.1, obtained Ьу the internucJear cascade 
method. We see that high multiplicity is present for relatively smaJl impact 
parameters, the nuclei "exploding" ироп collision. This multiparticle final state 
invoJving тапу particles is а new feature that makes its арреагапсе at relativistic 
energies (and at uJtrarelativistic energies for even nucleon-nucleon collisions). 

А. Peripheral Collisions 

Peripheral collisions will Ье discussed first. As we shaJl see, this is essentially а 

low-energy рЬепотепоп that сап Ье understood rather directly in terms of 
smaJl energy and momentum transfers to the projectile nucleus. Let us 
summarize the experimental facts obtained Ьу experiments performed at the 
Bevalac facility. Experiments were performed with а Ьеаm of energetic projectiles 
(e.g., 160) at energies of 1.05GeV/А and 2.1GeV/А. Inclusive cross sections, that 
is, cross sections for the production of а particular nuclear fragment without а 

determination of the correlated production of other fragments, were measured. 
The results obtained are most simply expressed with respect to the projectile 
frame of reference defined as that frame in which the incident projectiJe is at 
rest and the target nucJei effectively form the incident Ьеаm. 
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I 

[_. 

FIG.7.1. Ratio оГ the multiplicity-selected proton inclusive cross section to the total 
proton inclusive cross section as а runction of impact parameter. The solid line represents 
the а т;' 20/(Jtot ratio for 2°Ne + 2З8u at Е/А = 400 МеУ and the dashed line represents 
the ratio а т";; г«: [ог the same reaction. The dashed-dotted line represents the ratio 
а т;' 20/(Jtot for 40Аг + 4ОСа at Е/А = 1050МеУ and the dotted line represents the ratio 
а т";; SIа (о! for the same reaction. [From Yariv and Fraenkel (81).] 

1. In the projectile frame, the	 momentum of а fragment is relatively small. 
For example, if the target nucleus is РЬ, its momentum in the projectile 
frame is 208 х 2.9 '" 601 GeV/c when the projectile has ап energy of 
2.1 GeV/A. The longitudinal-momentum, Рu distribution of lОВе 

fragments produced Ьу fragmentation of the projectile, 12с, in the 
projectile frame is shown in Fig.7.2. We see that the lОВе average 
longitudinal momentum is only about 50 MeV/c, while the dispersion of 
the PL distribution is about 100 MeV[с, which should Ье compared with the 
601,000 MeV/c carried Ьу the РЬ nucleus. Thus а very small fraction 
(l0- 4) of the momentum of the lead nucleus is transferred to the projectile. 

2.	 The distribution, Ш(РL' Рт), in the longitudinal, Р:» and transverse, Рт­

components of the momentum is Gaussian in each. Empirically, опе finds 
that 

where as mentioned аэоме, Pl" is generally several tens of MeV/c. 
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FIG. 7.2. Longitudinal-momentum distribution in the projectile frame of reference of 
the lОВе fragments produced Ьу the fragmentation of а 12с projectile with ап energy 
of 2.1 GeV;nucleon. [From Greiner, Lindstrom, et al. (75).] 

3. The angular distribution is approximately isotropic, that is, 

(7.2) 

However, because of the much greater experimental difficulty in the 
determination of the transverse momenta, (7.2) must Ье considered as 
approximate. 

4. The dispersion,	 G'L' is empirically independent of А т (the target mass 
number), depending only оп AF (the fragment mass пumЬег) and Ар (the 
projectile mass number). This is а first example of independence of the 
projectile fragmentation of Ат• 

5.	 А second is given Ьу the fact that the branching ratio for the relative 
probability for the production of а fragment type is independent of the 
target nucleus. ТЬе cross section for the production of а fragment F, ироп 

the collision of а target Twith а projectile Р, is found to Ье 

where LylJI = Ур (7.3) 
F 
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The ratio multiplying (JPT is the branching ratio for the production of 
fragment F. 

6. The	 inclusive cross section (Jinc) is proportional to the radius of the 
interaction. Еm pirically, 

(7.4) 

7. Cross sections and (JL at 1.05 and 2.1 GeV/A аге approximately the same, 
indicating within this energy range, independence with respect to the 
energy (see Fig. 7.3). 

8. The momentum distribution of the emerging protons is not Gaussian. It 
is better described Ьу ап exponential, ехр( - Р/Ро), where Ро '" 65 МеУ/с. 

We shal1 now discuss the momentum distribution of the fragments. 
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Momentum Distribution о, Projectlle Fragments. ТЬе model we use was 
suggested Ьу Feshbach and Huang (73). ТЬе derivation employed below foHows 
essentially that of Goldhaber (74Ь). ТЬе model assumes that the fragment of 
mass number AF is formed f{"om the projectile of mass Ар Ьу removing the 
binding of а group of A F nucleons. ТЬе net momentum PF of the fragment is 
then obtained Ьу adding uр the momentum of еасЬ of these nucleons. ТЬе 

value of Р; will vary according to which group of A F nucleons is selected from 
the projectile giving rise to а distribution in PF • If the mean-square momentum 
of а nucleon in the projectile is <р2 ) , the mean-square value of РF is, according 
to а simple statistical consideration,+ given"by AF<p

2 
) . ТЬе distribution in PF, 

following again from statistical considerations, is Оацвыап! at least in the 
neighborhood of the maximum of the distribution. This occurs near PF = О, 

since the average momentum of the fragments is so close to zero. Note that 
this model automatically assumes that the projectile fragment distribution does 
not depend оп the nature of the target. 

A 
Suppose then that the projectiles breaks uр into fragments of mass number 

j , so that 

(7.5) 

Let the momentum of еасЬ fragment ье Р, Assume that the distribution of 
momenta for the ith fragment depends only оп Р, and is Gaussian. ТЬеп the 
momentum distribution, ro, for а given set of A j , is 

~p2 ]
ш(Р1,Р2 , · · · ) '" Пехр -~ (7.6)[

i Aj<p) 

То obtain the observed inclusive momentum distribution, we must integrate 
over аН momenta except that of the observed fragment, say А 1 , subject to the 
condition 

(7.7) 

As shown Ьу experiment, the average momentum of а projectile fragment in 
the projectile frame of reference is very smaH, justifying (7.7) to some extent. 

tAssume that Р" = LP/" where Р/' are the momenta of the nucleons making ир the fragment. Then 
Р; = LP;+ Lp ... Р" . Р.· А veraging over the momentum distribution оГ the projectile nucleons, we find 
that <Lp ...P/,·P.) =0. Непсе 

*Тhis result follows simply from the assumption that the momentum distribution is symmetric 
about the maximum. 
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Непсе the single-fragment distribution, со(Р 1)' is given Ьу 

(7.8) 

This integral mау Ье easily performed to yield 

(7.9) 

where 

(7.10) 

If we adopt the Fermi-gas model as а description of the projectile nucleus, 

(7.11) 

where PF is the Fermi momentum. 
The experimental results аге shown in Fig. 7.4. As сап Ье seen from the 

figure, the dependence of б2 оп Ар and AF , given Ьу (7.10), is verified Ьу 

experimental data. However, those data yield а value for PF [according to (7.10)] 
equal to 190 Mev/c, whereas the value of PF determined from quasi-elastic 
electron scattering is, for 160, given Ьу 225 MeV/c. As suggested Ьу Hiifner, 
this discrepancy тау оссur because fragmentation occurs only after the emission 
of а пиmЬег of nucleons. The fragmenting nucleus is not 160 but а lighter 
nucleus with а correspondingly lower value of PF' 

The distribution given Ьу (7.6) сап also Ье used to calculate the angular 
correlation between two fragments, А 1 and А 2, which exists in virtue of (7.7). 
Опе obtains 

This implies а greater probability for the two fragments to go оП in opposite 
directions. Determination of this angular correlation would provide а test of 
the independence hypothesis as formalized Ьу (7.6). It арреагв, however, to ье 

very difficult to carry out this experiment. 

The Нuс/еаг We/szacker-Williams Method [Feshbach and Zabek (77)]. The 
Weiszacker-Williams method relates the reaction cross section induced Ьу а 

c'harged particle to that induced Ьу а distribution of photons. The electro­
magnetic field of а rapidly moving charged particle сап Ье shown to Ье 
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FIG.7.4. Target averaged values of the dispersion а of the longitudinal-momentum 
distribution in the projectile frame. ТЬе plotted numeral gives the charge ofthe fragment. 
ТЬе projectile is 160 with ап energy of2.1 GeVjnucleon. ТЬе solid line is а best fit using 
(7.10). [From Greiner, Lindstrorn, et al. (75).] 

approximately equivalent to а Ьеат ofphotons with the frequency distribution 

2 dw
n(w)dw = _(ZC()2- (7.12) 

11: W 

where Z is the charge of the particle and С( is the fine-structure constant. The 
cross section for the reaction induced Ьу а charged particle is then given in terms 
of the cross section а iw) for the photon-induced reaction Ьу 

(7.13)
 

In this section а theory of the fragmentation of а relativistic heavy-ion 
projectile wil1 Ье developed. The expression for the cross section which will Ье 

obtained will have а structure similar to that of (7.13), so that the theory will 
Ье referred to as the nuclear Weisziicker- Williams method. 

The projectile reference frame will Ье used. In that frame it will Ье assumed 
that the target nucleus travels without deviation and without internal excitation 
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in а straight line. This assumption is indicated Ьу experimental result (1), which 
demonstrates that the momentum transferred to the projectile nucleus Ьу the 
target nucleus is smal1. Н is identical with the assumptions made in developing 
the electromagnetic Weiszacker-Williams result. However, after the target nuclei 
Ьауе penetrated into the projectile а distance А approximately equal to а nucleon 
теап free path, а strong collision with large momentum transfer will occur. 
This col1ision will not contribute to the process being considered, since the 
reaction products will [аН outside the small forward сопе where the fragments 
were detected. This competitive process is taken into account Ьу assuming that 
the probability of finding the target nucleus intact attentuates during the 
collision with а scale measured Ьу the теап free path А. 

Н is assumed that the collision is peripheral. This result is implied very 
directly Ьу experimental result 6, as given Ьу (7.4). ТЬе теап free path А used 
is the value valid оп the surface region of the interacting nuclei. 
А qualitative description of the consequences of these assumptions сап ье 

given. ТЬе projectile nucleon feel а pulse of force as the target nucleus passes 
Ьу. ТЬе duration of the pulse, '!, is given Ьу the scale, А, Lorentz contracted to 
А/У, divided Ьу the velocity of the projectile, и, which is very close to с, the 
velocity of light. Thus 

А 
'!"'- (7.14) 

уи 

where 

У=(1_ и2 ) - 1 !2 ..»: 
с
2 

тАт 

where v is the velocity of the target and Е its energy. From the du'l"ation of the 
pulse опе сап calculate the тпахцпшп! energy transfer поз, that сап occur: 

(7.15) 

For а target energy of 2.1 аеУ/А and л = 1.75 [т, the maximum energy transfer 
is found from this equation to Ье 365 МеУ. We see immediately that we are in 
fact dealing with а comparatively low-energy рЬепотепоп. There will Ье other 
effects to Ье discussed below, which will reduce the maximum energy transfer 
to еуеп considerably lower values. 

Following ап argument of Guet, Soyeur, Bowlein, and Brown (89), опе сап 

establish а relation between the energy transfer hw and the longitudinal 
momentum transfer hQL' Let Е; and Р; Ье the initial four-momentum of the 

+Ву "maximum" У/е shall теап the value of hш at which the cross section is l/e of its value for 
very small values of hш. 
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target and Е! and Р! its corresponding final fош momentum, so that 

hш=Еj - Е! 
and 

q = Pj-Pj 

ТЬеп опе сап immediately obtain 

~Pj'~ _ hш = _-_(_hш_)2_+ q_2_+_(М--,,-;_-_М--"---~) 
н, е, 

For sufficiently large Е, and small momentum and energy transfer, опе сап 

neglect the terms оп the right-hand side of this equation so that 

or 

(7.16) 

ТЬе еггог in approximation leading to (7.16) is оп the order of hшjЕ j and 
therefore small. 

ТЬе maximum value of transverse-momentum transfer, hqT' is determined 
Ьу the transverse scale of the target density, namely а, the parameter measuring 
the thickness of the nuclear sшfасе. ТЬе maximum transverse-momentum 
transfer is thus 

For а"" 0.6 fm, hqT.c is about 333 Ме V[с. 

In addition to these cutoffs in qT and qL> which соте from the shape of the 
interacting nuclei, additional cutoffs that have а dynamic origin must Ье taken 
into account. ТЬе most obvious of these is the momentum transfer, which the 
nucleon-nucleon potential will allow before а substantial reduction in the 
amplitude will оссш. From the empirical expression for the пuсlеоп-пuсJеоп 

amplitude, we find that the nucleon-nucleon potential produces а momentum 
cutoff, for both the transverse and longitudinal components, of 370МеУ[с. 

ТЬе two factors so far described, the geometric factor and the potential factor, 
when combined, yield а momentum cutoff for both components of about 
260MeVjc. 

Finally, it is necessary to consider the ability of the projectile nucleus to 
absorb the energy поз and the momentum hq. If the energy is absorbed Ьу а 

singlenucleon, it wi1l Ье very far off the energy shell. If it absorbs the full energy 
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hw, it will Ьауе а momentum J2тhw. This, however, is very mисЬ larger than 
the momentum trапsfепеd, which, as we Ьвме seen, is оп the order ofhw/c, that is, 

~ поз 
y2тhw»-

.:
с 

or 

--2« 1 (7.17) 
2тс 

This inequality is satisfied Ьу the hw of interest, that is, поз < 260 МеУ. ТЬе 

absorbing nucleon must therefore interact with а second nucleon in the 
projectile. This absorption Ьу two nucleons сап proceed because it is then 
possible to conserve both momentum and energy. ТЬе momenta of the two 
nucleons will Ье opposite and nearly equal, so that the total momentum is 
small, but the total energy will Ье а sum of the energies of еасЬ nucleon. 

ТЬе probability for two-nucleon absorption will therefore depend critically 
оп the сопеlаtiоп length 'с' the mean distance between the first nucleon and 
the second. From the uncertainty principle, the lifetime of the nucleon absorbing 
the momentum and energy is оп the order of 1/ш. This nucleon moves with а 

velocity equal to J(2/т)hw and thus covers in the time l/w the distance 
j2h7~dJ. This distance must Ье of the order of or greater than 'с : 

( -
2h )1/2 

>rc 
тш 

or 

(7.18) 

If we take rc as 1/2(h/тf[c), one-half of the pion Compton wavelength, this 
inequality becomes 

поз < 165 МеУ (7.19) 

Combining this result with the geometric and interaction potential gives а 

longitudinal-momentum cutofТ of 139 МеУ/с, of the same order as the 
experimental value. It also implies а maximum value of the energy that сап ье 

trапsfепеd to the projectile equal to 139 МеУ. This energy is split between the 
two absorbing nucleons, so that the cutofТ energy for one of these nucleons is 
approximately 70Ме V and the cutofТ momentum оп the order of 70МеV/с. t 

~It has Ьееn suggested Ьу Goldhaber that in addition to the two-nucleon mechanism, there is the 
possibility оС nucleon excitation to form а ~. However, the momentum change would then ье оп 

the order оС 300 МеУ/с. This combined with the other factors would yield а cutofТ оС 190MeVjc, 
which would Ье too large to explain the fragmentation data. However, as Guet, Soyeur, Bowlein, 
and Brown (89) have shown, it is аn important mechanism for pion production. 
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ТЬе low value of the momentum transferred ( ""hw/c) indicates that the 
angular distribution of the nucleons wil1 Ье roughly isotropic in the projectile 
frame. In the collision of the two nucleons as discussed аооее, their finallinear 
momentum is hw/c, so that their angular momentum lh is оп the order of 
(hw/c)r,. Непсе 

hwr,
1~-- (7.20)

hc 

Inserting а maximum value for hw of 139 MeV and r, = 0.7 [т yields 

1~0.5 (7.21) 

demonstrating that for nearly аН values of поз the angular distribution of the 
nucleon pair will Ье isotropic.§ 

These qualitative considerations provide а simple explanation ofthe projectile 
fragmentation as а conseq uепсе of the action of the "fringing field" of the target 
nucleus as it moves past the projectile. Our principal conclusion is that the 
process is essentiaHy а low-energy рЬепотепоп. ТЬе energy of the nucleon 
pairs produced is predicted to Ьауе the observed order of magnitude. These 
nucleons wil1 deposit energy within the projectile nucleus and Ьу that means 
fragmenting it. ТЬе net maximum momentum that сап Ье transferred is 
ca1culated to Ье of the experimental order of magnitude. А rough isotropy is 
also predicted. Energy dependence in the GeV/А range is weak, since the energy 
occurs only in the geometric cutoff given Ьу (7.15). As observed, the cutoff 
energy is changed Ьу only а few percent when the heavy-ion energy is changed 
from 2.1 GeV/ А to 1.05GeV/А, since the dynamical conditions, (7.18), and the 
limits imposed Ьу the nucleon-nucleon potential are energy independent in this 
range of energy. FinaHy, it should Ье observed that попе of the cutoff conditions 
depend оп the target nucleus. This does indicate that the width ofthe momentum 
distribution of the fragments is independent of the target. It is obviously а 

necessary condition for showing that the branching ratios are target nucleus 
independent. ТЬе quantitative calculation we report below shows that indeed 
the nucleon spectrum, and therefore the projectile fragmentation, are target 
independent. 

We turn now to the nuclear Weiszacker-Williams method. ТЬе projectile 
frame of reference wil1 Ье used so that the incident system is the target nucleus. 
As in the Coulomb case, the target nucleus is assumed to continue to тоуе in 
а straight line along the incident direction. It is also assumed that the interaction 
provided Ьу the long-range component of the nuclear field, the jringing jield, 
is weak. We тау therefore use first-order perturbation theory. 

:Actua! calcu!ation shows, in fact, that this estimate is overgenerous and that the maximum va!ue 
of I is considerabIy smaller than that given Ьу (7.21). 
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Let the coordinates of the target nucleus relative to its септет of mass Ье 

given Ьу ~T and its internal wave functions Ьу X(~T)' Similarly, the coordinates 
of the projectile nucleus relative to its center of mass аге given Ьу ~p and its 
internal wave functions Ьу I/J(~Р). ТЬе vector between the center of mass of еасЬ 

of the nuclei, г, has components z and Ь, where z is in the direction of motion 
of the target nucleus and Ь is transverse to that direction. 

ТЬе wave function of the system has the following form: 

(7.22) 

where Ха is the ground-state target wave function, and I/J а describes the internal 
states ofthe projectile and Е; their energies. ТЬе function Фа is the wave function 
for the relative motion of the target and projectile. Inserting (7.22) into the 
time-dependent Schrodinger equation yields ап equation for ФР : 

(7.23) 

We now insert the assumption that the z component ofthe velocity ofthe target 
nucleus is unchanged during the course of the collision: 

ФfI = u(z, t)ФfI(Ь' t) (7.24) 

with 

lul2 = д(z - vt) (7.25) 

Inserting (7.24) into (7.23) yields 

(7.26) 

where 

(7.27) 

We use first-order perturbation theory to solve (7.26), that in, we assume that 
Фа оп the right-hand side of (7.26) has its initial value 

(7.28) 

ТЬе probability PPi that the projectile makes а transition from its initial state 
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I/Ji to а final state I/J р is 

(7.29) 

where hШРi is the energy transfer and 

(7.30) 

The function U is 

where 

The factor у in (7.31) takes into account the relativistic contraction of length. 
Inserting (7.25) for Iи 12 and integrating over time yields 

Taking V to Ье а central potential acting between а nucleon in the target and 
а nucleon in the projectile summed over аН pairs, V has the general form 

(7.33) 
Let 

(=Z+ZT-Zp 

Р = Ь + ЬТ - Ьр 

Then 

demonstrating that the longitudinal momentum transferred to а projectile 
nucleon is hш/v. Finally, from (7.30) it is necessary то evaluate <фр/UIФ;). 

Taking ф, from (7.28) and 
(7.35) 

where k is the transverse momentum transfer, опе obtains 

<Ф IUIФ;) =~еi(WZIV-k'ЬР)Рт(k,- ш) У( - k,~) (7.36)
р 2nv yv v 



780 HIGHENERGY NUCLEAR PHENOMENA 

where the tilde indicates the Fourier transform, so that 

(7.37) 

As а consequence ofthese results the matrix element F pi factorizes into а product 
of two terms, one of which depends only оп the properties of the projectile, the 
other оп those of the target. 

where 

(Т) (w) 1 _ ( w) -( w)F k, ~ == - РТ k, - V - k,- (7.38) 
V 2nv }'V V 

(7.39)q= ( -k,;) 
The projectile factor involves а sum over the projectile nucleon coordinates 
and thus equals the projectiles transition density. F(T) is independent of the 
transition induced in the projectile. From the point of the projectile, the target 
acts as а source of "phonons" with momentum q and energy пса. The total 
cross section is obtained Ьу integrating the probability that а transition [гогп 

t/Ji to t/Jp is induced Ьу а phonon of momentum q over the number density of 
such phonons. Thus 

where Рр is the density offinal states. We have therefore referred to this procedure 
as the nuclear Weiszacker-Williams method. 

We shall not develop this procedure further, as аН that is required is the 
calculation of F(T) and F(P). For details the reader is referred to the original 
articles [Feshbach and Zabek (77); Feshbach (81)]. It is found that the anisotropy 
of the angular distribution is governed Ьу а small parameter: 

1 (тc~) (hwrc )4 
4 hc hc 

which equals 0.068 for rc = 0.7 [гп and псо = 140 МеУ. The cross section is 
proportional to AV3 

• It is sensitive to the value of the correlation length, 'с' 
Reasonable values аге obtained for rc '" 0.7. 



7. RELATIVISТlC HEAVY IONS 781 

То obtain the partial cross sections, the two particles ejected Ьу the рЬопоп 

аге followed using cascade theory. Final1y, опе must add the efТect of а single 
particle ejection for the total branching гапо. Good agreement with experment 
is obtained [Feshbach (81)]. This process has also Ьееп treated as ап 

"abrasion-ablation" process Ьу Ншпег (75) and collaborators. ТЬе method 
described Ьеге has Ьееп generalized Ьу Guet, Soyeur, Bowlein, and Brown (89) 
and used to discuss subthreshold pion production in 12с_12с coНisions at а 

projectile energy of 95 Ме V/А. 

В. Central Collisionst 

А питЬег of difТerent theoretical descriptions of the central, high-multiplicity 
collisions have Ьееп proposed. Some of these such as the fiгеЬаН-fiгеstгеаk 

thermal models [Westfall, Gosset, et al. (76); Myers (78)] and the hydrodynamic 
models [Amsden, Harlow, and Niu (77); Amsden, Goldhaber, Harlow, and Niu 
(78); Stocker and Greiner (86)] presume the existence of thermal equilibrium. 
Others, such as Koonin (77), have shown that а significant fraction of the 
observed cross section is а consequence of direct knockout of а preequilibrium 
nature. Classical ог semiclassical procedures аге employed Ьу the models of 
Hйfneг and КпоВ (77), Wilets et al. (77), Bodmer and Panos (77), and finally 
the internucleon cascade mode of Yariv and Fraenkel (79,81) and Cugnon 
(80,81). We shalllimit the discussion below to а description of the internuclear 
cascade model, ап important technique that permits detailed calculation of 
тапу ofthe observed рЬепотепа. None ofthe models аге completely successful, 
but the internucleon cascade does quite well for тапу situations. Perhaps its 
most significant faiJure is the prediction of the directed flow momenta, which 
it underestimates Ьу а factor of 2 while the hydrodynamic model errs Ьу its 
overestimate ofthe flow Ьу а factor of2 [Stocker and Greiner (86);Cugnon (82)]. 

ТЬе internuclear cascade (INC) fol1ows the passage of а nucleon (ог group 
of nucleons) through а target nucleus assuming two-body collisions. In опе 

method [СЬеп et al. (68); Yariv and Fraenkel (79,81)] the target nucleus is 
represented Ьу а continuous fluid whose density is obtained, [ог example, from 
electron scattering. ТЬе probability that а target nucleon has а momentum р 

at а point r is given Ьу the Fermi-gas distribution corresponding to the density 
p(r). Attention is focused оп the projectile motion during the time it could travel 
а distance 1/n, where 1 is ап estimated теап free path and n is оп the order 
of 20. ТЬе first step is randomly to select а nucleon from the Fermi gas, which 
is to interact with the projectile nucleon. ТЬе next step is to determine whether 
an interaction occurs within the distance 1/n. Toward that end the probability 
of such а coНision P(l/n) is calculated and compared to а random питЬег (. 
If ( is less than Р, ап interaction is assumed to have occurred. If (> Р, по 

interaction is said to have occurred and the projectile is advanced Ьу а distance 
"l/n and the process is repeated. If there has Ьееп ап interaction, it will have 

1Cugnon (82). 
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taken place at а distance from the beginning of the interval given Ьу (/1. At 
this point the direction of travel of the particle is determined from the known 
nucleon-nucleon angular distribution Ьу а technique similar to that described 
above for deciding if ап interaction has taken place, that is, the probability for 
scattering through а given angle randomly selected is compared with а random 
number. ТЬе final energies of the coIliding nucleons сап then Ье calculated. If 
the energy of either of the particles is below the Fermi energy, the interaction 
is forbidden so that the тотепит of the projectile is unchanged. Опе now 
repeats the process with another Fermi-sea nucleon to see if ап interaction takes 
place in the remainder of the interval. If the energies of both particles are above 
the Fermi energy, the collision is allowed. Their momenta аге determined from 
the selected scattering angle. ТЬе process is then repeated for еасЬ nucleon. As 
the cascade develops, the density in the Fermi seas is reduced. Yariv and Fraenkel 
(79)consider two possible consequent rearrangements. In the fast rearrangement, 
the density of the target is instantaneously reduced. In the slow arrangement а 

"hole" of volume l/р is punched around the position of the collision. No пюге 

interactions аге allowed within this volume. Empirically, slow arrangement 
yields results that аге лт better agreement with experiment. ТЬе entire procedure 
is repeated until statistical significance is obtained. 

Several features аге sometimes included in the calculation. Pion production 
and absorption proceeding through the ~ baryon resonance is опе. In another, 
the nucleons аге assumed to ье traveling in а potential well so that the nucleon 
paths between collisions are по longer straight lines. Collisions among the 
cascade particles, as well as formation of composite systems, тау (or тау not) 
Ье included. 

In the calculations Ьу Cugnon (81), Stevenson (78), Bondorf et al. (76), and 
Halbert (81), the continuum distribution for the target is dropped. ЕасЬ of the 
nucleons оп the target and projectiles is positioned randomly within spheres, 
representing the target and projectile nuclei. Thejr momenta аге chosen 
randomly using the Fermi gas model. ТЬе ргоjесtПе is given the Ьеат velocity. 
ТЬе projected nucleons аге assumed to move in straight lines between collisions. 
When the minimum relative distance is smaller than J(Ilo/n' the nucleons are 
assumed to scatter. Here (Ilot is the total nucleon-nucleon cross section at their 
center-of-mass energy. It is evident that in both of these procedures the nucleon 
correlations in both the target and projectile аге neglected. 

ТЬе motion of the nucleons in the INC simulation is classical. А necessary 
condition for its validity is that the cascade and projectile nucleon wavelengths 
are тисЬ smaller than the internucleon distance r 12 . 

h 
-«r1 2 
P1a b 

This condition will not ье met Ьу the low-energy cascade nucleons generated 
Ьу the incident projectile. ТЬе calculation of the low-energy part of the spectrum 
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will thus Ье unreliable. А second condition requires that the mean free path 
must Ье large compared to the interaction range rc: 

Неге rc is defined Ьу б = 11:r;. Since )~ = 1/Рб , this condition becomes tоt tоt 

This condition is well satisfied for normal nucleon densities. Finally, nucleon 
сопеlаtiопs are ref1ected in nucleon momenta which exceed the limits of the 
Fermi gas. As а consequence, one mау expect ап inability to match the data 
at the high-energy end of the energy spectrum. А similar remark mау Ье made 
with respect to the angular distribution. 

The invariant nucleon cross section is related to the calculated one-body 
distribution function, 11' Ьу 

3 a x f. bD fЕ d-3б = lim • 211:Ь db dr Е11 (г, р, Ь, t) (7.41 )
dp О1-00 

Ап example of а comparison with experiment is shown in Fig. 7.5.The agreement 
is very good except for the low-energy part of the spectrum, where INC 
underestimates the cross section for Е < 80 МеУ. Evaporation of the residual 
nuclei has not been included in the calculation. The effect of including the 
interaction between cascade particles is small. 

Another example is provided Ьу Cugnon and Vandermulen (85) as shown 
in Fig.7.6. We see that at 800 МеУ/А the angular distribution is far from 
isotropic. This is because а considerable fraction of the proton distribution is 
а consequence of а single collision. As the number of collisions increase, the 
angular distribution will Ьесоmе more isotropic. For the Са + Са case at 
800МеV/А, isotropy is achieved for n ~ 6. The probability distribution for the 
number п of collisions is shown in Fig. 7.7 for the Са + Са collision. The mean 
value is 3.24. Of course, the probability for а large n is very small for peripheral 
collisions. 
А second observable is the correlation between two protons, as given Ьу 

(7.42) 

where 12 is the two-body distribution function. In the Nagamiya et al. (79) 
experiment, the сопеlаtiоп between а proton emitted at а "telescope" angle 
and an second particle in the angular range ЗSO < () < 450 is studied. The ratio 
С is defined to Ье the ratio of such in the scattering plane сопеlаtiопs for the 
azimuthal angle Ф = 1800 ± Аф(Аф = 100), to the out-of-plane сопеlаtiопs 
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FIG. 7.5. Inclusive doubte-ditТегепtiаl cross section for the emission of nucleon charges 
in the геаспоп 40Аг + 4ОСа at а bombarding energy of Е/А = 1050 МеУ. The histograms 
show the calculated results, includeing the etТects of interaction between the cascade 
particles. [From Yariv and Fraenkel (81).] 
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FIG. 7.6. Invariant inclusive proton cross 
section as а function of the center-of-mass 
angle for the 40Аг + 40Ar system at 
800 МеV/nucleon. [From Cugnon and 
Vandermuelen (85).] 
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Left, zero impact parameter; center, large 
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U 

11 

"out-of-plane" (дф = ± 900) tow-particle сог­
relations as а function of the polar (telescope 

1.4 angle). ТЬе second particle is detected at а polar 
angle of 10 ± SO, дф is the difТerence in the 
azimuthal angle of the two particles. ТЬе 

histograms аге calculated. ТЬе solid-line ones 
include the efТects of interaction betweeen the 

20 40 60 cascade particles, the dashed-line ones do not. 
Те lescope angle(deg) [From Yariv and Fraenkel (81).] 

(ф = ±900+ t1ф). The results of the INC calculation and а comparison with 
experiment аге shown in Fig. 7.8. The calculated results when the interaction 
between cascade particles is included are in good agreement with experiment. 
ТЬе ratio С is close to unity (except for the 12с + 12с collision), indicating а 

degree of thermalization. 
Other observables include the momentum tensor Q/lV and the related quantity 
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the thrust, Т. For an event, QIlV is given Ьу 

QIlV = Lу(рдрf Р7 (7.43) 
i 

where i runs over the fragments and и, v designate the Cartesian coordinates. 
ТЬе weights y(Pi) are to Ье chosen. When У(Рд is taken to Ье 1/Ai, where Ai is 
the mass number of the fragment, the resultant QIlV is independent of the degree 
of clusterization. 

ТЬе thrust, Т, is given Ьу 

(7.44) 

where the unit vector n is chosen to as to minimize this ratio. ТЬе direction of 
the thrust is given Ьу п. ТЬе values for the thrust angle (the calculated thrust lies 
in the reaction plane for collisions between equal nucJei) are given in Fig. 7.9 
as calculated Ьу 1NC [Bertsch and Cugnon (81)] and using hydrodynamics 
[Kapusta and Strottman (81)]. As expected, the 1NC calculation predicts а f10w 
that is тuсЬ more in the forward direction. Experimental indications of collective 
f10w is given in the рарег Ьу Gustafson, Gutbrod, et al. (84). 1n Fig. 7.10 the 
frequency distribution dN/d cos f) as а function of f10w angJe f) is plotted for 
various multiplicities for reactions involving heavy ions at 400 МеУ/А. ТЬе f10w 
angle is defined as the angle between the Ьеат direction and the major axis оС 

the ellipsoid given Ьу QIlV of (7.43), with weights У(Рд = 1/2A i, where A i is the 
mass of the fragment. We observe that as the multiplicity increases (impact 
parameter decreases), the frequency distribution has а maximum at а finite 
angle, while the INC calculations have their maxima at 00. ТЬе paralleJ 
сотпропеш of the projectile momentum is reduced during the collision, and the 
momentum acquires а small perpendicular momentum оп the order of 
50МеУ/с. ТЬе origin of this discrepancy is not yet clear. Is it because of the 
approximation (e.g., the Fermi-gas description of the colliding nuclei) of the 
INC procedure, or is it because of the omission of collective modes of motion 
Ьу the INC? For а recent discussion, see Akhelin, Cugnon, et al. (89). 

900 

БО О 

~ 

300 

INC 
'.FIG. 7.9. Thrust angle as given Ьу а hydro­

dynamic calculation (fuH line) and Ьу the 00 
О 0.2 О, О.б 1.0 

inter nuclear cascade (dots). [From Cugnon (82).] Ь/Ьтох 
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FIG.7.10. Frequency distributions of the flow angle ()for two sets of data and а cascade 
calculation for different multiplicity bins. For the case of Са the multiplicities аге haJf 
the indicated values. [From Gustafsson, Gutbrod, et al. (84).] 

8. COLLISIONS АТ ULTRARELATIVISTIC ENERGIES 

In this веспоп the collision of ultrarelativistic projectiles, with energies greater 
than several GeV/nucleon, with nucleon is briefly considered. Experiments in 
which the projectile has ап energy of uр to several hundred GeV have Ьееп 

reported. This field is in its infancy. There аге тапу results that аге still not 
understood and much тпоге experimentation and theoretical studies аге needed. 

А. Lоrепtz Тrапsfоrmаtiоп 

In the relativistic regime, the Lorentz transformation is especially important. 
The Lorentz transformation to а frame moving with а velocity v (we shall use 
units in which the velocity о! light, с, is unиу) in the position z direction is [Morse 
and Feshbach (53 р. 94)] 

г' = z cosh ~ + t sinh ~ 

t' = z sinh ~ + t cosh ~ (8.1) 
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where 

1 
cosh~=--- sinh ~ = v (8.2)

j1=7 j1=7 

Under а second boost with velocity v', 

z" = г' cosh ~' + t' sinh ~' 

t" = г' sinh ~' + t' cosh ~' 

Substituting from (8.1) for г' and t', опе finds, for example, 

z" = z cosh(~ + ~') + t sinh (~ + ~') 

Thus the effect of two sequential boosts of v and v' сап Ье obtained Ьу addition 
of the corresponding ~ parameters. 

This result is even more apparent if опе introduces the light сапе variables, 

(8.3) 

Under а Lorentz transformation, 

(8.4) 

Finally, the trajectory of а free particle 

z - ut = О 

сап Ье written in terms of the light сопе variables as 

(8.5) 

where 

If we consider the motion in а moving frame of velocity v, (8.5) becomes 

(8.6) 

В. Rapidity 

Suppose that we have а particle of mass Мр and total energy (including rest 
mass) E L incident оп а target of mass Мт at rest. In the zero-momentum frame, 
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inaccurately referred to as the center-of-mass frame, the total energy -JS, that 
is, the energy of the projectile and the target, is given Ьу 

(8.7) 

If ЕL is sufficiently large, 

(8.8) 

ТЬе result that the energy in the center-of-mass frame increases as the square 
root of the energy in the laboratory frame has led to the development of 
accelerators in which beams of opposite momenta collide. 

ТЬе kinematics of the collisions сап Ье treated most expeditiously through 
use of the rapidity variable, у, defined Ьу [compare with (8.3)] 

Е+ PII =j1.eY Е - PII = ие"? 

Е = j1.coshy PII = j1.sinhy (8.9) 

ТЬе quantity PII is the component of the momentum in the z direction. То 

obtain и; поте that (Е + PII)(E - PII) = j1.2 = Е2 - P~ = m2 + pi, where pi is the 
transverse momentum 

2 2 2 
Р.1.. =Р -PII 

Therefore, 

(8.10) 

and j1. is referred to as the transverse mass. From (8.9) опе finds that 

у = ! lп Е +11= lп Е + Р 11 (8.11) 
2 E-PII j1. 

Under а Lorentz transformation in the z direction 

р' = PII cosh ~ + Esinh ~ 

Е' = Р 11 sinh ~ + Е cosh ~ 

or 

Е' + PII = e~(E + Р) = j1.e(~+Y) 

Е' - P'II = e-~(E - Р) = j1.e-(~+Y) 

Therefore, the rapidity in the new frame, у', is 

(8.12) 



790 HIGH-ENERGY NUCLEAR PHENOMENA 

As а consequence, rapidity difference аге invariant with respect to boosts in 
the z direction: 

(8.13) 

As ап example, let us use these results to describe the transformation to the 
center of mass when а proton of energy EL and momentum PL is incident оп 

а proton at rest. The center-of-mass system is defined as опе in which the 
protons have equal but opposite momenta. We therefore require that 

P~т = msinh(y -~) = msinh ~ 

Therefore, 

(8.14) 

The total energy is then given Ьу 

h Y..JгS = Е = 2т cos - (8.15)
2 

and 

s = 4т2 cosh 2 ~ = 2m2 (l + cosh у) = 2т(т + EL ) (8.16)
2 

which agrees with (8.7) for Мт = МL = т. 

The Lorentz invariant phase space volume dp/Е has а simple form when 
expressed in terms of у: 

dp =dp1- dP11 =dp1- ttcosh! dy 
Е Е Е 

= dp1- dy (8.17) 

The Lorentz invariant cross section is is thus 

Е аа d(J 
(8.18)

dp dp1- dy 

In the laboratory frame the projectile will initially have а momentum Р = PII' 

Р 1- = о, while the target's initial momentum is zero. The corresponding rapidities 
in the limit in which the masses are very much smaller than the corresponding 
energies are 

Ут=О 
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In the center-of-mass frame, 

-~In 2M TPL 
ур- 2 М2 

Р 

In the frame in which the projcctile is at rest and the target is in motion 

2PL 
Ут= -In­ Ур=О 

Мр 

It is often the case that measurements yield only the angle with respect to the 
incident direction, 9-, along which а secondary particle is traveling. The relation 
of that angle with у will now Ье obtained. Consider the quantity 

The left-hand side of this equation сап Ье written 

The right-hand side to the same order is 

ColIecting terms and using PIl/P = cos 9- and Р .1/Р = sin 9- yields 

т2 

у ~ - In tan - + - cos 9- (8.19) 
9­

2 pi 

The pseudo-rapidity 1J is defined to Ье 

9­
1J == -In tan­ (8.20)

2 

The quantity '7 approximates у if т 2/p i is sufficientIy smalI. The error is large 
for soft collisions when the secondary particles is а proton. 

ТЬе rapidity, у, depends only uроп the longitudinal velocity: 

(8.21) 
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where 

PII
vll=­

Е 

А change in у Ьу 1 unit corresponds to а change in vll' for vll "" 1, of 

(8.22) 

In а геаспоп, the peripheral collision will result in the fragmentation of the 
projectile (еуеп if it is а proton!). The fragments will Ье traveling with 
approximately the same velocity as the projectile; that is, they will acquire 
relatively little transverse momentum. Experimentally, (P.L >~ 350 МеV[с (see 
the later discussion). The target will also fragment, contributing to the particle 
distribution for у close to the target rapidity. The region in у to which the 
proton fragmentation makes а contribution is experimentally оп the order of 
2 units, as ascertained from р-р ISR experiments at CERN. The corresponding 
L\y for nuclear fragmentation is оп the order of 3 units. А clear separation of 
the fragments occurs only at sufficiently high energy. If, for example, the 
projectile is а 15-GеV proton, the value of у for the projectile is only 3.47. In 
this case the two contributions from target and projectile will overlap. When 
the energy is 200 GeУ, the projectile у is 6.06, so that а central region which is 
а consequence of а more central collision will Ье visible. 

С. Proton-Nucleus Collisions t 

А complete understanding of the interaction of multi-GеV protons with nuclei 
is very far from being achieved. The experimental attack оп the problem is for 
the most part just beginning. Similarly, the theoretical concepts required still 
remain to Ье identified. However, а few features have emerged. These will ье 

the subject of this subsection. 
Before proceeding to this task, it would Ье useful to поте two characteristics 

of the proton-proton collisions. The first is the multiplicity plotted in Fig. 8.1. 
We note that the multiplicity rises slowly with Ьеат momentum, rising from 
about 3 at 20 GeV/c to about 10 at 103GeV/c. Most of the particles observed 
are charged pions of both signs. То get the total multiplicity, including the 
neutral pions, опе must multiply the charged pion multiplicity Ьу 1. 

The second point of interest is the transverse momentum of the protons and 
pions produced in а р-р collision. The average value (Рт> of pions is shown 
in Fig. 8.2 as а function of rapidity. The р + р -+ n + Х channel is the principal 
inelastic channel. The maximum transverse momentum of the pions produced 
in the reaction is about 350 МеУ/с. More than опе pion is produced, as опе 

сап see from Fig. 8.1. At р = 100 GeV/с, the number of charged particles is 

tBusza and R. Ledoux (88); МсСиЬЫn (88); J. Hiifner and Кlar (84); Кlar and Hiifner (85). 
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6.37 ± 0.05, v > 0.7. These are thought to Ье mostly charged pions. То include 
1[0, we multiply the charged particle multiplicity Ьу t to obtain 9.6. Taking the 
mass of each pion to Ье 137 MeV with а momentum of 350 MeV[с (see Fig. 8.2), 
assuming that the angular distribution is roughly isotropic in the center-of-mass 
reference frame yields ап average energy рег pion of 376 MeV. The total 
excitation energy of the radiating projectile proton in the proton-proton center 

о 
<, 
> 
QJ 
О 
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ofmass is 0.376 х (9.6) or 3.6GeV at Рь = 100 GeV/c (ог Ест = 1~ = 6.9 GeV). 
More than one-half of the available kinetic energy is converted into nucleon 
excitation. ТЬе excited nucleon has total energy of 4.5 GeУ. 

For the most рап, Р + Р collisions are "soft." "Hard" collisions involve pion 
momenta тисЬ beyond 400 МеУ/с. For these cases involving а close collision, 
опе тау expect hadron jets to Ье produced. However, the probability for such 
close collisions is relatively low, as опе сап see from Fig. 8.3. 

What happens when а proton strikes а nucleus? Naively (and incorrectly), 
опе might believe that the proton strikes several nucleons, producing about 10 
relatively energetic pions in the target frame of reference per collision. These 
pions would also generate secondaries, and so оп. Оп this basis опе would 
expect а very large number of emerging charged particles рег incident proton. 
Table 8.1 and Fig. 8.4, where the multiplicity of charged particles with v > 0.7 
is tabulated, demonstrate that this is very far from the truth. Мultiplicities аге 

small, rising to а factor of about 2.5 for и relative to the multiplicity for а р-р 

collision. Note that the same result holds when the incident hadron is а kaon 
ог а pion. Parenthetically, the variable vis defined as the average thickness of 
а nucleus in units of the теап free path (Fig. 8.4) for absorption of the incident 
proton: 

_ АО" inel(P + nucleon)
V = -----'-"-''-'------- (8.23) 

O"inel(P + nucleus) 

Empirically, v= 0.7А 0.31 for protons and 0.74Ао . 2 5 for pions. ТЬе variable v 
is а rough measure of the number of collisions made Ьу the indicated hadron 
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TABLE 8.1 Average Multiplicities оС Relative Charged 
Particles Produced in l00-GеV [с Hadron-Nucleon 
Collisions 

Average 
Target ProjectiJe MuJtiplicity 

С 7.86 ±0.1571:+ 

к+ 6.92 ±0.33 
р 7.72 ±0.16 

Си 10.29 ±0.2671:+ 

к+ 8.89 ± 1.10 
р 11.00 ±0.32 

РЬ 13.21 ±0.3071:+ 

к+ 12.92 ±0.79 
р 

u 
14.75 ±0.38 

71:+ 14.57 ± 0.39 
к+ 12.93 ± 1.33 
р 15.94 ± 0.50 

Hydrogen 71:+ 6.62 ±0.07 
(bubbIe к+ 6.65 ± 0.31 
chamber) 6.37 ±0.06р 

Source: Elias, Busza, et al. (78). 

in passing through the nucleus. As опе сап see from Fig. 8.4 for smaH Iaboratory 
angles, the ratio to hydrogen is unity for аН elements. If опе extends the 
laboratory angle to 100°, the ratio rises to values of Iess than 2. In Fig. 8.5 we 
show the ratio of the multiplicity in рА coIIisions to that in р-р coIIisions for 
l00-GеV/с protons. ТЬе ratio is а Iinear function v: 

(Па> = 1 + 0.3(v - 1) (8.24) 
(Пр> 

The absence of cascading сап Ье understood as а relativistic effect [GoIdhaber 
(74а)]. The incident proton оп striking а nucleon of the target nucleus wiIIform 
ап excited system. Весаиве of the relativistic time dilation its Iifetime wiII Ье 

very much Ionger than its rest-frame Iifetime, which is of the order of 1[т/с. 

In fact, as we shaH see, the теап distance it would traveI before decaying is 
very тисЬ Iarger than the nuclear radius. It therefore wiII not decay before its 
coIIision with а second nucleon. This coIIision wiII change its excitation energy 
somewhat. This process continues untiI the proton Ieaves the nucleus and then 
decays. Cascading induced Ьу the decay of the excited nucleon thus does not 
occur. 
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Let us look at this process in more detail. We make use ofthree experimental 
facts. ТЬе first is that in а рготоп-рготоп collision the incident proton in the 
rest frame loses 2 units of rapidity [Busza and Ledoux (88)]. ТЬе rapidity of 
а 1OO-GeV proton is 5.362,so that after the collision у - 2 = 3.362,corresponding 
to ап energy loss of 86%. Second, as we have seen (Table 8.1), the numbers of 
charged pions emitted is 6.37. This is to Ье multiplied Ьу 1.5 to take the neutral 
pion production into account, yielding 9.56 as the number of pions. Moreover, 
the secondaries produced Ьу the proton fragmentation are mostly pions, as 
demonstrated Ьу Fig. 8.6. ТЬе energy [озв of the proton consists of the energies 
of these pions and the recoil energy transmitted to the target пuсlеоп plus the 
pions emitted Ьу it. We shall assume that the recoil energy is about 3.5% (this 
сап Ье checked later and а correction calculated). Непсе the energy per pion 
is 7.64 GeV, where the target пuсlеоп pions have Ьееп assigned ап energy of 
1GeV per pion. Finally, we recall that the average transverse pion momentum 
is 350 МеУ/с, so that its transverse mass is 0.377 GeV. 

Let а pion in the center-of-mass system have а rapidity б. Note that proton 
and target nucleon have а rapidity of у/2 and - у/2, respectively, where 
у = 5.362. ТЬеп the pion energy, including the proton pion and а target nucleon 
pion energy in the laboratory frame, is 

8.64 = ~[COSh( (J' +~) +COSh((J' -~) ] 

= 2~ cosh (J' cosh ~ (8.25)
2 

In this equation ~ is the pion transverse mass. From (8.25) we find that 

(J' = 1.016	 (8.26) 
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The projectile pion rapidity in the laboratory frame is yj2 + а = 3.7, close to 
rapidity of the final proton, 3.362. Its energy is 7.61 GeV. The target pion 
rapidity is yj2 - а = 1.66, with an energy of 1.03GeV. The corresponding 
longitudinal momenta аге 7.60 GeVjc and 0.96 GeV. Since the transverse 
momentum is 0.350 GeVjc, the target nucleon pions are emitted at an average 
angle of 200. They will thus not make а very significant contribution to the 
forward angle pion multiplicity but will affect the larger angle contributions. 
FinaHy, we calculate the difference in the velocities of the projectile pions and 
the nucleon assigning а rapidity of 3.362 to the proton and 3.7 to the pion. 

In traveling the distance of а nuclear radius R, the верагапоп of the projectile 
nucleon and the рготесше pions will Ье дV х R, which for а nucleus of radius 
of 6 [т is 7.2 х 10- 16 [т. In order words, the pions will Ье "inside" the proton 
projectile. Thus the pions will not верагате from projectile proton until the 
system is far outside the nucleus. The effect of only the first coHision has Ьееп 

considered, but it is clear that subsequent collisions will not affect this result. 
We have assumed that the system is оп the energy sheH after the collision 

and before the second collision. This is not at аН obvious. If it is пот, опе must . 
treat the collision with аН the nucleons in the path of the projectile. А simple 
nonrelativistic calculation [Feshbach (83)] shows that this efТect will not change 
the results above (i.e., the decay outside the nucleus), but there сап Ье substantial 
quantitative differences. А гпоге sophisticated theory has been published Ьу 

Gottfried (74Ь), which yields (8.19) with the ~ factor. 
Empirical1y, the loss of rapidity of the projectile in colliding with а nucleus 

is of the order of 3 units [Husza and Ledoux (88)], so that а 1200-GеV proton 
has а final energy of 5 GeV. Most ofthat loss of energy is in pions emitted outside 
the nucleus. Most ofthe very energetic pions are generated Ьу the first collision. 

Another outstanding feature of the proton-nucleus interaction is the 
energy independence of the rapidity distributions in the target and projectile 
fragmentation regions. This is illustrated in Figs. 8.7 and 8.8. There are emulsion 
data, so that the target nuclei are Ag and Hr. "Shower particles" correspond 
to single charged relativistic secondaries ({3 > 0.7). The incident protons have 
energies of 200, 400, and 800 GeV. The explanation is straightforward. As we 
have just described, most of these secondaries are generated in the first proton­
nucleon collision (see Table 8.1). Combine this with the experimental result that 
such energy independence is observed in proton-proton collisions and we have 
the result of energy independence for proton-nucleus collisions. This behavior 
is referred to as limitingfragmentation. It is interesting to note that the projectile 
fragmentation in nucleus-nucleus collisions at а few GeVjA discussed in Section 
7 is also energy independent. 

One final comment is suggested Ьу the rapidity distributions for different 
targets as shown in Fig. 8.9. We see а strong target dependence. Let dnjdf/­
AIZ(f/). From the data one finds CL(f/) > 0.3 for f/ ~ 1.5 [Elias et al. (80)]. Second, 
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we note that 

dn d(J 
(8.27) 

ап а inel dr, 

where а is the cross section for producing п secondaries. Since а ineJ ....., А о. 7, 
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The exponent is greater than unity, which indicates the ртевепсе of multiple 
scattering with associated cascading. The effect оГ such multiple scattering is 
larger for the larger nuclei. 

О. Nucleus-Nucleus Collision~ 

Interest in the coIlision of ultrarelativistic particles (protons and nuclei) has 
Ьееп motivated Ьу the prediction of QCD (quantum chromodynamics) lattice 
gauge calculations that а quark-gluon plasma will Ье formed when the 
temperature of nuclear matter exceeds roughly 200 МеУ. АЬоуе that temperature 
nuclear matter "melts" into quarks and gluons. Моге accurately, there is а 

combination of density and temperature at which such а transition occurs, as 
illustrated in l'ig. 8.10. It is hoped that such densities and temperatures сап Ье 

obtained through the collision of very energetic nuclei. Experiments are now 
being conducted at BNL ('" 15GeV/A) and at CERN ('" 200 GeV/A) with fixed 
targets and beams as heavy as Si. BNL will soon Ье аЫе to provide Аи beams 
and CERN is planning а РЬ injector. For the more distant future, а collider, 
RHIC (relativistic heavy ion coIlider), providing 100-GеV/А beams, has Ьееп 

proposed Ьу BNL. The study of а new form of matter, the quark-gluon plasma, 
would not only test QCD but it would Ье of great importance for cosmology 
as well. Soon after the "big bang," before hadronization, the matter in the 

:Satz (88). 
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FIG.8.10. Phase diagram of nuclear matter in the baryon density, temperature plane 
showing regions of hadronic and deconfined matter. Normal nuclear matter density Р"m 

is О.16fm- З . [From Ваут (87).] 
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FIG.8.11. Collision of two nuclei with relativistic energies. [From Matsui (88).] 

universe would form а quark-gluon plasma, which as the universe cools would 
condense into nucleons and nuclei. 

The collision oftwo nuclei is pictured as follows. In the center-of-mass system, 
because of the Lorentz contraction, the nuclei will Ье disks approaching each 
other at а velocity close to the velocity of light. As they pass through each 
other,energy will Ье deposited in each ofthe nuclei as а consequence ofnucleon­
nuc]eon collisions. In addition, the уогшпе between the пцсте! will contain 
пювпу pions and will Ье for the most рап baryon free (see Fig. 8.11). Each of 
these domains, the baryon-rich пцстеаг vo]umes or the baryon-free опе, is а 

candidate for the formation of the quark-g]uon ртавша. The questions, whose 
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answer is uncertain, include: Аге the density and the temperature big enough, 
and will that соткйпоп last for а long enough time? Will enough energy ье 

deposited in either domain to raise the temperature to а large enough value? 
ТЬе formulations of а reaction theory that describes the col1ision and 

development of the quark-gluon plasma and its equilibration is а major 
challenge to the theorists. Опе badly needs ассшаге evaluations of the 
phenomena which would signal the formation of the plasma. Several such 
phenomena паме been proposed, such as the anomalous Kfn ratio relative to 
its value in р-р col1isions and the suppression of the formation of Jft/! particles. 
For an introductory review of the present situation, see Матзц] (88). 
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