CHAPTER IX

HIGH-ENERGY NUCLEAR PHENOMENA

1. INTRODUCTION

In this chapter we consider reactions induced by projectiles whose energy per
particle is in the GeV or sub-GeV range. The projectiles are, for the most part,
electrons and protons, although there will be some discussion of relativistic
heavy-ion projectiles. The phenomena discussed includes elastic, inelastic, and
quasi-elastic scattering and, in the case of relativistic heavy ions, fragmentation.
The production of bosons with various values of hypercharge and their
interaction with nuclei will be left to Chapter X. These areas of physics, those
in this and the next chapter, are referred to as medium-energy nuclear physics.

High energy translates into high momentum and short wavelength. Because
of the short wavelength and relatively weak interaction of the electrons, high-
energy electron accelerators are effectively electron microscopes, studying the
nucleus and, at sufficiently high energy, the structure of the individual nucleons.
As we shall describe, through the use of electron scattering, we are able to obtain
a detailed understanding of the spatial distribution of charge and current in
the target nucleus. It should be emphasized that such results can be obtained
only because the properties of the probe, the electron, and its interaction with
the electromagnetic field in this case generated by the target nucleus as given
by quantum electrodynamics are so very well known.

In more detail, the matrix elements of nuclear charge and current can be
directly related to the nuclear multipole moments. These are of two types, the
Coulomb and the transverse electric and magnetic. The latter also occur in the
description of photon emission [see deShalit and Feshbach (74, p. 689)] with
identical selection rules (deShalit and Feshbach (74, p. 670)]. The selection rules
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associated with the Coulomb multipole moments are the same as those for the
transverse electric multipoles. The information obtained from electron scattering
is much richer than that which can be extracted from photon-induced transitions.
In the latter case, there is only one independent variable, the energy transfer @
in units of 4, whereas in electron scattering there are two, the energy transfer
and the momentum transfer q in units of #. Of course, momentum transfer does
occur in the case of photon reactions. But its magnitude is w/c. In electron
scattering the momentum transfer and the energy transfer are not coupled; g
can differ from w/c by several orders of magnitude. Electron scattering thus
yields the g dependence of both the transverse and Coulomb multipole moments,
and by Fourier inversion their spatial dependence. One is thus able to map the
charge and current distribution experimentally and compare them with the
predictions of theoretical models.

In particular, the transverse moments that measure the nuclear current
distribution are, according to the shell model, sensitive to the wave functions
of the valence neutrons and protons. This follows from the fact that the net
current generated by the core is zero. On the other hand, note that the Coulomb
moments are sensitive only to the proton distribution. Fortunately, by choosing
appropriate kinematic conditions it is possible to measure separately the trans-
verse and Coulomb moments.

These results assume that the nuclear charge and current operators are
one-body operators, given by (VII.2.1)—(VI1.2.4) in deShalit and Feshbach (74).
Fhis is an approximation, as there are two-body terms as well, such as those
given by exchange currents and exchange charge [see Section VIIL3 in deShalit
and Feshbach (74)]. Before claiming the observation of exchange currents, one
must use sufficiently accurate nuclear wave functions in the evaluation of the
nuclear matrix elements. For example, the independent particle description must
be supplemented by configuration interactions [Chapter V in deShalit and
Feshbach (74)] and by correlations (Chapter III and VII of the same reference).
In some cases, those in which the spin—isospin (o7) transitions dominate, the
excitation of the nucleons to A’s may be important.

Because of the high energy, the electron can excite states in the continuum,
such as isobar analog states and the giant resonances. Because of the associated
high momentum, one can study multipoles of high order and one can form
stretched nuclear states. Because of their high energy the electrons can eject
one or more nucleons from the target. The underlying process, quasi-elastic scat-
tering, is the collision between the electron and nucleon in the nucleus. Its
cross section peaks at an energy transfer w for large enough g at q2/2m* +¢,
where m* is the nucleon’s effective mass and ¢ is its binding energy. In a Fermi
gas model the width of the quasi-elastic peak is kpg/m* (see 1.3.9). Removing
a nucleon in an (e, e'p) or (y, p) experiment may permit a determination of the
momentum distribution of a single-particle state and the lifetime of a deep
one-hole state. At still higher energies the electron can excite the individual
nucleon, forming the nucleon isobar A, which can decay by emitting a pion.
Direct pionsproduction without the intermediary of a A will also occur. These
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FIG. 1.1. Schematic electron energy loss spectrum. Region I, elastic scattering; II,
excitation of discrete levels; I11, excitation of giant resonances; [V, quasi-elastic scattering;
V, pion production and A formation; VI, N* formation.

various possibilities are shown in Fig. 1.1, which schematically pictures the
electron spectrum at a given q.

When an electron is scattered by a nucleus, there is a high probability that
it will also emit a photon. As a consequence of this energy loss, the elastic and
inelastic scattering cross sections will exhibit a tail on the low-energy side, usually
referred to as a radiative tail. The observed cross section will, in addition, depend
on the energy resolution, AE, of the detector since it will count electrons that
have radiated photons whose energy is less than AE. These eflects can be calcu-
lated with great accuracy [Schwinger (49b)] and the experimental cross section
unfolded to yield the radiation-free cross section. It is this corrected cross section
that is usually quoted in the experimental papers. Figure 1.1 is qualitatively
correct only in this sense. Otherwise, the gaps between levels as shown in
Fig. 1.1 would be partially filled in. An experimental example is shown in
Fig. 1.2. The radiative corrections are thoroughly described by Uberall (71).

As this is being written, electron scattering studies are entering a new era in
which it is anticipated important advances in our understanding of nuclei will
be obtained. Up to recently, the electron accelerators had a low duty cycle. As
a consequence, some experiments were difficult. The new CW (~ 1009 duty
cycle) accelerators, some already available and others under construction, will
make greatly improved coincidence measurements possible as well as make
available tagged and thereby monochromatic y-ray beams. In addition, there
is the prospect of polarized electrons and polarized internal jet nuclear targets.
With coincidence experiments one can reduce the radiative tail background
enormously (see Fig. 1.3). -

With these new tools it becomes possible experimentally to measure the
individual multipole moment amplitudes separately. With the low-duty-cycle
accelegators, a complicated model-dependent analysis is necessary. It will also
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FIG. 1.2. Sample electron excitation spectrum for '**Gd. The incident electron energy
is 219 MeV. The scattered electron is observed at 52.5°. [From Bates Linear Accelerator
proposal (84).]

become possible to observe the particle emission from giant resonances and
make improved measurements on deep one-hole and stretched states.

The experimental studies undertaken with high-energy protons are very
similar in character to those described above using electrons. Elastic and inelastic
scattering, including excitation of discrete levels, of the giant resonances of
one-hole and stretched states, A and pion production have been observed.
Polarized beams have also been used. There is, of course, one very great
difference: namely, the interactions in the proton case are “strong” and not
completely known. One must rely on multipole scattering theory (Chapter II),
in which proton—nucleus interaction is approximated by an optical potential
V. In its simplest first-order form, V in momentum space is given by

Vik, K') = (4 - DH(— q)ixlg) (1.1

where p is the nucleon density operator and /(q) is the transition matrix operator
for nucleon—nucleon scattering. The vector q is the momentum transfer (k, initial
momentum, k’ final momentum). The function ¢ is evaluated at the center-of-
mass energy of the nucleon—nucleus system with due regard for the transform-
ation from the nucleon—nucleon system (see I1.7). The discussion in this chapter
will rely on (1.1).

By taking matrix elements of V, the appropriate potentials for various
experimental situations can be obtained. For elastic scattering

Voo =<01V10> = (4 — 1)<0|p£[0> (12
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FIG. 1.3. Single arm and coincident (e,e'n) spectra from 2°®Pb. The coincidence
condition removes the radiative tail, revealing the excitation of giant resonances. [From
Frois and Papanicolas (87).]

where |0) is the ground-state nuclear wave function. For inelastic scattering to
alevel | />, the transition potential is

Vio =(4—1)<f1p510> (1.3)

Since  depends on the spin and isospin operators, Vo and V. will depend on
various spin and isospin components of the elastic and transition density,
respectively. These combinations differ from the electron case, so that
nucleon—nucleus scattering provides information which complements that
obtained from electron scattering.

Equation (1.1) is a first approximation to V. Higher-order approximations
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involving higher powers of / have been obtained. These depend on correlation
functions.

2. ELECTRON SCATTERING
Let us begin with some kinematics. The incident electron with four momentum

k,(k, E) is scattered through an angle 3. We shall work in units with A=c=1.
Its final momentum is k,(k’, E'). The three momentum transfer is q:

qg=k—-k
while the energy transfer is w:
w=E~-F
The magnitude of q is
q* = (k* —2kk' cos § + k'?) —g=> 4k*sin? 19 2.1

Since the electron energy will be very much greater than its rest mass, k=E
and k' = E’. In this limit

g* =w?+4EE'sin*19 (2.20)
and
gl =q* —w*=4EFE'sin’$9>0 (2.2h)

For elastic electron scattering, the target nucleus will recoil with a momentum
q, so that
w=(q*+M})"-M 23)

where M is the mass of the target (m4). Transposing M to the left-hand side
of this equation and squaring yields

L g 24

w=——
om I

In (2.2b) replace E' by E—w =E — (1/2M)q‘f. Solving for qﬁ yields

1
g2 = —(4E”sin* }9) 2.9

rec

where

2E
free=1+ ¥ sin® 19 (2.6)



2. ELECTRON SCATTERING 685

From (2.3)

and ﬁnally from (2.4) and (26), we obtain

E== 28)
I (

In the foreward direction (3 =0), E’ equals E.

A. Elastic Scattering from Spin-Zero Nuclei

The modern era in electron scattering was initiated by R. Hofstader by his studies
of the elastic scattering of electrons by spin-zero nuclei. This is perhaps the
most highly studied process involving electrons. Very great accuracy has been
achieved. To start with , we assume that the nucleus is describable by a static
(time-independent) charge distribution p(r). The resulting electrostatic potential,
¢, is the solution of the Poisson equation:

Vip=—4np (2.9)
In momentum space
4n
6= —pz("—) (2.10)
q
where
pl@) = Jei“"p(r) dr 2.11)

We shall discuss the Born approximation to the scattering produced by ¢. It
is of course necessary to employ the relativistic Dirac equation:?*

[v.p,—eAd)—im]y =0 (2.12)

*In the rest of this chapter # and ¢ will be placed equal to unity. The four-vector p, has components
(p, E), where p is the momentum and E is the energy. Similarly, A is the vector potential, 4, = i¢.
Finally
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The summation convention is used in this equation. For the situation under
study, (2.1) becomes

(Yup, — iMY = iey, Y

Multiplying by (y,p, + im), we obtain

(p* — E* + m¥)y =ie(y,p, + im)y, ¥
or
(V2 + kMW = —ie(y,p, + im)y, ¥ (2.12)

so that the scattering amplitude operator, f, is

~ e Koy .
f= 47:_[8"‘ P+ im)yadyiH dr (2.13)

Or integrating by parts, we have
7 ie ; —ik’r ’
f= a(yuk; + im)y, Je Kyt dr (2.13)
where k), = iE. In the Born approximation

Y — ey 2.14)

so that
0 —ie 0 @
1= a=
ic 0 ¢ O

In this last equation ¢ are the two-row/two-column Pauli spin matrices. The matrix y, is

10
’y=
*\o -1

Vu¥y + PV =28,

The y’s satisfy

The trace of products of the y’s are [see (1X.11.22) in deShalit and Feshbach (74)]

trl =4
try,y, =49,
"(Vuvv)'sz) = 4[6‘”451lm - 5“‘5"” +4 6 ]

pe' VA

The trace of an odd number of y’s is zero. For more details, see the appendix to Chapter IX and
p- 825 etseq. in deShalit and Feshbach (74).
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where u; is a four-element columnar matrix given by (5.8) and (5.9) of the
Appendix to Chapter IX in deShalit and Feshbach (74). These are positive energy
solutions of the field-free Dirac equation with spin up and spin down, respect-
ively. Introducing (2.14) into (2.13'), one obtains

-~

7= f (3, + im)y b (@) (2.15)
YA

Employing (2.10) for ¢(q), / becomes

-~

ie
/= ;(}’J‘L + im)y,u:p(q) (2.16)

The amplitude is thus linearly related to the Fourier transform of the charge
density. The scattering amplitude to a given final state is

= e;’(“)@,mk' im)yausd

To obtain the cross section, one must square the magnitude of f;, sum over all
final spin states, and average over the initial ones:

Uz%;lffilz (2.17)

One can reduce the calculation of ¢ to the evaluation of a trace by using the
projection operator P on the positive energy. This operator has been derived
in deShalit and Feshbach (74, p. 825, et seq.). It is

1
2 E(yu " + lm)]"4 (2.18)

so that (2.17) becomes

1 =2V ftP.fP) (2.19)

where the subscript i, for example, indicates that in (2.18), k, equals the incident
momentum and energy. Inserting f from (2.16), (2.19) becomes

2 p()?
8E?

do
dQ

e
T a

e[y, (v, k¥ — im)(y k,, + im)y o (y:K, + im)ya(y .k, + im)y,]
(2.20)

The y,’s at the beginning and end of this expression cancel. The trace can then
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be readily evaluated using the results in the footnote on page 686. One obtains

d 22 2 1_2'21
4o 26100 o 4 B2 ) = fep(g2 2o 20

SIS g
aQ q* (2B*Esin? £ 9)?

where f =v/c. The charge density p, of a zero-radius-point nucleus is

polt) = Zed(r)
so that

polq)=Ze

The resulting cross section divided by Z? is referred to as the Mott cross section

. (Ze*)?
Z%0, =(1 — p?sin219) 7T 2.22)
M 27 (2B2Esin? 19y
2)2 21
(Ze*) cos* ;9 2.23)

s-1 (2Esin?19)?

These results hold in the center-of-mass system or if the target mass M is infinite.
In the laboratory frame, the recoil of thé target must be taken into account.
Repeating the calculation above in the laboratory frame leads to (2.21), which,
however, must be multiplied by k'/k or ¢'/¢ in the zero-electron-mass limit. Then
using (2.8), one obtains

do

_ ! 2
@ —fm oumlp(q)| (2.24)

This Born approximation result is valid at best for light nuclei. By a
measurement of elastic electron scattering, one can in principle determine the
charge density distribution. But there are several corrections. The most obvious
is the effect of the nuclear Coulomb field on the electron wave functions.
Therefore, the plane wave approximation for the electron wave functions used
above is incorrect, especially for the large Z nuclei. Second, the calculation above
is incomplete since it includes only the elastic scattering produced by the nuclear
charge distribution. Scattering produced by the nuclear currents and magnetiza-
tion are not accounted for. Finally, there are the effects of virtual inelastic
scattering on the elastic scattering. These are referred to as dispersion corrections.

B. Coulomb Scattering

The wave functions for an electron moving in the Coulomb field of a point
nucleus have been described in deShalit and Feshbach (74, pp. 915-916). As in
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that review, let the Dirac wave function y» be a two-element matrix, each element

of which is a spinor
W= (“) (2.25)
v

The wave functions u and v for the state with a given angular momentum, j,
are products of a radial function and a function giving the spin and angle
dependence:

u( )=, (.1 (2.260)
r
v, ) =1 ia-t)@,,() (2.26b)
r
where
Y, (j,1)= Z(%ms! lmlljm)Xl/2(ms)@lml (227

The spin wave function is y,,, while %, =i'Y,, where Y, is a spherical
harmonic.
The equations satisfied by f and G for an arbitrary radial potential V(r)are

i f_

(E—-m—-V)G+——xk=—=0 (2.28qa)
dr r
dG G
~(E+m-V)f+ —+k—=0 (2.28b)
dr r
where
gL — i+l
1‘C=—[l+()"L:|={(j+_2)’1 ! ]+f or ={l
—(+9 I=j-}% —(+1)

The exact solutions are given in deShalit and Feshbach (74, p. 916) in terms of
the confluent hypergeometric function. We quote here only the behavior of G
and f as r—0 and r - 0.

G(r—0)— (e + 1)Y2N cos ¢ (2kr)* (2.29a)

f(r—0)— (e — 1)V2N,sin ¢, (2kry (2.29b)

G(r— o0) = (g + 1)¥/2 cos [kr +nlog 2kr — g(z +D)+ a‘;)] (2.30a)
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f(r—0)— —(—1? sin[kr + nlog2kr — g(! +1)+ (S?] (2.30b)

where
E E
s=/(j+3)?—(Ze* n=2zZe*—-  g=—
k m
Kk — i(Ze*)m/k N.— [T(s + 1 +in)|
s+in ' T(2s 4+ 1)e 2

_k+ iZe’m/kT(s+1— i")en/zmn—s)
s—in  T(s+1+in)

et = (2.31)

i5©
ez;a“ —

Using these results, Mott (29,32) expressed the cross section for the scattering
of an electron by a nucleus in terms of two conditionally convergent infinite
series. To first order in Ze?p, these series can be summed [McKinley and
Feshbach (48)] to yield:

2 2
o=(Zkf——>l}——ﬁ%m2§+n2fﬂﬂn9(]—ﬁng)] 2.32)
2B?Esini9 2 2 2

To obtain the results for positron scattering, replace Z by ( — Z). This result is
useful for sufficiently light nuclei. For larger values of Z, numerical methods
are required. Tables are given by McKinley and Feshbach (48), Feshbach (52),
and Curr (55). Yennie et al. (55) improve the convergence by multiplying the
Mott series by (1 —cos 9)* and employing the Legendre function recurrence
relation to reorder the series.

C. Effect of Finite Size of the Nucleus

The results above are obtained by using V = — Ze?/r in (2.28). Taking the charge
structure of the nucleus into account requires replacing it by the solution of
the Poisson equation (2.10). For spin-zero nuclei the resulting V is a function
of r only. For r > R (the nuclear radius) V will approach the point Coulomb
value. The solutions of (2.28) are obtained in the usual fashion, that is, by joining
the solutions of (2.28) to the Coulomb wave functions for r > R. Asymptotically,
this means replacing 5% in (2.30) by 4,. Note also that the singularity exhibited
by the Coulomb wave functions at r =0 for j = [see (2.29)] disappears when
the finite size of the nucleus is taken into account. The wave function now
approaches r'*!, The scattering amplitude is given by Acheson (51):

f =19 +ig(%e-n (2.33)
where

n=kxk
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and
f(9)= Lk Y. k[e*®P (cos 9)+e* P, _ (cos 9)] (2.34a)

21 x>0
and

1
H= - 2id, p(1) —-2i6_« p(1)
g(3) Tk 2 [e¥*PW(cos 9) — e PY (cos 9)] (2.34b)

x>0

where according to (2.28), k equals I, and —k= —(I+1). The functions
PM(cos 9) are the associated Legendre functions

PO(x) = (1~ xz)miPx(X)
dx

The elastic cross section for an unpolarized incident electron beam averaged
over the final spin is

o=|f%+lgl? (235)
The polarization produced by the scattering of an unpolarized beam is

i(f*g—g/*)

2.36
ISP +lgP 239

p=lir(tery =
a

so that the polarization of the electrons is perpendicular to the scattering plane.
Simplifications do occur in the limit of m/E — 0; that is, in the high-energy
limit, (2.28) reduces to

(E - VG+f——f =0

E-nf—c-"C_0
r

For k = —1,
I
E-1)G,+ f+ 120
,
(E—V)f,— G+ Gi_q
r
For k =1, we have
!
E-1G_+f,—T1=0
r
IG_
(E-V)fo—G ,———=0

-
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Comparing the (G, f;) equations with those for (G_,, f_,), we see that these
equations become identical if

G—zzfz
fa=-G (2.37)

From the asymptotic forms, (2.30), with 6% replaced by 4,, it follows that
[Feshbach (51)]

51 = 5—(z+ 1)
or

So=6_. .0 (2.38)
E

This result holds for the Coulomb phase shift (2.31), from which one finds that

2169, 6y _ Ze*m
¢ ~1- 28 (2.39)

For the energies of interest (k > m), the error is indeed small. Equation (2.38) is
obviously computationally useful. Inserting (2.38) into (2.34b) and using

P.—P _, =«k(P,+ P, ,)tan39

x—1
we obtain -
g9(8)=(tan 78)1(9)
so that
o=sec’ 39| f(9I? (2.40)
and
P-0 (2.41)

Therefore, the polarization produced by the scattering tends to zero as the
energy increases.

In the high-energy limit it is useful to obtain an eikonal approximation for
the wave function. We return to (2.12') to the Schrddinger equation from

(V2 + i)y =Uy
where

U= —ie(y,p, +im)y,d 242

The eikonal solution to the Schrodinger equation has been given in Chapter II
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[Eq. (IL5.7)]:

e exp{i[kz + J‘z dz' (Jk*—U— k)]}u

. L= .
~ {exp-l[kz % J_ ) Udz :I}u (2.43)

In this equation u is a spinor. Consistent with the eikonal approximation, we
drop the m term in (2.42) and replace the operator p, by k,. This introduces a
new condition for the validity of the results to be obtained below:

or

Vo 1 (2.44)

ko

This condition is very well satisfied for an extended nuclear charge density. Note
that this last approximation need not be made. The analysis that follows can
be carried through with y,k,¢ replaced by y,k,¢ +(1/i)y-V¢. With these
approximations, ¥ becomes

Y~ {exp[i(kz + ;Ek(yuk”))'4 J ® dz)j'}u (2.45)

Rewriting (y,k,)y, = i(E + a-k), one needs to evaluate

ei(a‘k)A
where A does not involve spinor operators. One finds that

ei(a‘l)A =coskA + iax i; sin kA

This is to operate in u. We assume that because the electron energy is high, u
satisfies

aku=u (2.46)

so that

Finally, then

v

1

{exp[i(kz — %ITE iw e dz’):'}u
~ {expi(kz — Jz ed dz')}u (2.47)
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One can now insert this result into the exact equation (2.13) to obtain the
scattering amplitude. The discussion from here on follows that of Ch. II [see
after (VI1.5.7)] and need not be repeated here.

A further approximation to (2.47) is often made. It recognizes the fact that
because of the Coulomb attraction, the electron momentum increases as it
approaches the nucleus. To estimate this, expand the integral in (2.47) as follows:

z 0
J ¢dz’~j ¢dz’ +zp(z=0,p) + -

Hence, for a given impact parameter p, the effective value of k is

e¢(0,
keﬁ(p)=k(1 —Q) 248)
In many applications of this result, a still cruder approximation is used:
, e(0,0) ,
cfka(l Tk ) (247)

For the case of a homogeneous charge distribution of radius R,

this becomes

We turn next to effects of the structure of the nucleons. The protons have
a finite size [see deShalit and Feshbach (74, p. 110)]. As a consequence, we
must replace (VIIL.2.1) of that reference by the charge density:

puslt) = Y. —1) (249

where the function f replaces the point charge 6(r —r;). The sum is over the
protons only. The charge density then becomes

pen(r) = Y 1p(0Y) =Z J‘-p:v(ro]f (r —ro)dro (2.50)

where

oalto) = jwro, S R Y
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The form factor p,,(q) is
Peu(@) = Zpn(9)F(q) 251

Thus to obtain the nuclear form factor py, one must divide the form factor
determined from experiment p.,(q) by F(q), the form factor of the proton:

F@ = |e"" f(r)dr

A second effect originates in the interaction of the moving anomalous
magnetic moment of a nucleon with an electrostatic field. That such an
interaction exists can immediately be understood by transforming to the rest
frame of the nucleon. Under such a transformation the electron-nucleon electro-
static field acquires a magnetic field component that will interact with nucleon
magnetic moment. An interaction with the electrostatic field can, in this case,
be interpreted in terms of an effective charge possessed by the nucleon. This
effect was explored by Schwinger (49a) in his discussion of the polarization
resulting from the interaction of a neutron with a nucleus. We now discuss its
application to electron scattering.

We being with the matrix element of the current operator for a nucleon
[Bjorken and Drell (64)]:

~ _ ., K .
<P AN O0Npi)> =i1,(p )(Fl Yut Z‘M} z%qv)u;(p) (2.52)

where F| and F, are form factors that are functions of g, x is the anomalous
magnetic moment, and 4 gives the helicity. The spinors u,(p) are four-element
matrices whose helicity is indicated by A. The derivation of (2.52) follows the
procedures employed in deShalit and Feshbach (74, p. 846 et seq). The spinors
are given in the Appendix to Chapter IX of that reference, Egs. (5.8)—(5.10).
They can be represented by

E+ M\'2
u1=< ) op |n (2.53)
E+M }

where y, is (g) or (ﬁ), according to the value of 1. Here M is the nucleon

mass. Inserting (2.53) into (2.51) and remembering that & = u'y,, one obtains
for the charge operator (1 =4),

a4 aoxp
8M 4M?

<P A1pO)|pA> ~ — ixI'I:Fl —< )(F1 + ZKlejlx}. (2.54)
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where E(p) has been replaced by M + p?/2M and terms of order up to 1/M?
have been retained. The 1/M and 1/M? terms are called the Darwin—Foldy and
spin-orbit terms, respectively, and contribute to the charge density.
Following Friar and Negele (75), we replace F, and F, by the Sachs form
factors G and G, [see (IX.3.8) etseq. in deShalit and Feshbach (74)]:

2
kq“F
Gg=F, — —M—2 (2.59)
Gy=F, +«F, (2.56)

Therefore,

A . q’ ;40 X P )
<P A1pO0)pA> = —lx}[(l - S—MZ)G Mz (26, — GE)i|,{i. (2.57)
where terms of order higher than 1/M? have been dropped.
The empirical value of the parameters G and G,, obtained from ¢ — p and
e — d scattering for protons and neutrons are given on page 678 of deShalit and
Feshbach (74) [Feld (69)]. They are

G(P) G(n) 4M2 2 G[n) l:l e qZ ]2

G(p) S
[T TR 0.71(GeV/c)?

where the superscripts p and n refer to protons and neutrons, respectively. The
“dipole” form given by the q dependence corresponds to an exponential charge
distribution,

p,~ e B4 2.59)

with an rms radius of 0.82 fm. The units of the constant in the exponential are
GeV/hc.
Equation (2.57) gives the nucleon charge density. For a nucleus we have

g — ig- 2 M %1 (o0 x pO) e"‘"}\0> (2.59)

p(@) = Z<0

i

where (again to order g*/M?)

1 1 i 1—1,(
b= ( Gy 1+ 150) + G i(‘)) (2.60)
1+ ¢ /aM? 2 2

pe— (@l TO opl=rsl) — %00 2.61)
S+ am\ " 2 2
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FIG. 2.1. Neutron form factor assuming an exponential neutron charge distribution
compared with experimental data extracted with the use of Hamada-Johnston and
boundary conditions model deuteron wave functions. Solid, dashed, and dashed—dotted
curves correspond to average neutron radii equal to 0.80, 0.63, and 1.07 fm, respectively.
[From Bertozzi, Friar, et al. (72).]

As Bertozzi et al. (72) have shown, the neutron charge distribution can have a
considerable effect on the electron scattering. The experimental results for GY
are shown in Fig. 2.1. The consequences for elastic scattering by *°Ca and 2°%Pb
are shown in Fig. 2.2. The effects are substantial and especially large at the
cross section minima and large momentum transfers.

Two other effects have been subjects of several investigations. The first of
these is referred to as a dispersion correction, which arise as the result of the
virtual excitation of the target nucleus by the incident electron. The electron
excites the target nucleus, and then in a second interaction the nucleus deexcites,
returning to its ground state if we are discussing elastic scattering. As we have
seen in Chapter II, where the identical process is discussed in a multiple
scattering approximation, the cross section for this process depends on the
pair correlation function C(ry,r;). However, calculations indicate that the
dispersion effects are small [see Bethe and Molinari (71) and Friar and Rosen
(74)] and little information on C(r,, r,) can be obtained from these experiments.

We finally mention dynamical nuclear recoil corrections. These have been
treated using the Breit (29) two-body interaction by Grotch and Yennie (69).
These corrections also turn out to be small [see Sick and McCarthy (70)].

D. Model Independence

At a comparatively low energy (but still such that k » m) (m = electron mass)
the product kR can be much less than 1. Under those circumstances only the
=0 phase shift, J, is affected by the finite nuclear size. Moreover, as we shall
show, that phase shift depends only on the rms nuclear radius and does not
depend on other nuclear parameters.
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FIG. 2.2. Fractional change in electron scattering cross sections caused by including the
charge density arising from the finite spatial charge distribution of the neutron for *°Ca
and 2°8Pb. The dashed and solid curves denote the effect obtained using the maximal
and minimal neutron form factors, respectively. [From Bertozzi, Friar, et al. (72).]

Let us compare the results obtained with two differing potentials V| and V.
The Dirac wave functions satisfy (2.27):

E—m-v)G,+ 1 _*_y
dr r
dG, G
—E+m—-V)f+ 0+
dr r
We now form
df1 dG, df2 d d
—_— -G, —==—(f,G,)——(f,G
g 6, 2,6~ £ (16

= (V1 - Vz)(G162 + f1f2)

Integrating both sides from zero to infinity yields

flGZ—fZGl

" F(VI V(6,6 + fof) dr

0
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Using the asymptotic forms for f and G, the left-hand side equals

@O

(-1 sin(§; — d,)= — J (Vi = VGG, + f1fr)dr (2.62)

0

Note that the difference (V| — V,) does not contain the long-range part of the
Coulomb potential. Let

Ze? _

vi=-2"47, (2.63)
r

Then
V,—V,= 171 - 172 2.64)

We see that two descriptions of the finite nuclear size will yield the same phase
shift if

j V1(G1Gz+f1fz)dr=J Va(G,G, + f, fr)dr

0 0

In the long-wavelength limit (kR « 1),
GG+ fif,~r? kR « 1 (2.65)

Elastic electron scattering experiments satisfying kR « 1 therefore determine
one parameter,

I= J Vrtdr (2.66)

0o

This result was obtained by Feshbach (51) employing a variational method
[see also Elton (53) and Bodmer (53)]. Using the Poisson equation, ¥ can be
expressed in terms of the charge density p.,. One can then express I in terms
of p.y, with the result that when kR « 1, elastic electron scattering experiments
determine the rms radius of the charge in the nucleus:

rz _ _‘.rzpch dl’

2 = 2.67)
_‘.pch dl’

At higher energies, when kR < 1 the approximation given by (2.65) is no longer
valid. The methods for extracting p., from the elastic scattering data then
employed is referred to as a model-independent analysis. 1t is, in fact, a method
designed to obtain an estimate of the uncertainty in p., so obtained. There are
two sources of error. One is, of course, the experimental error. A second has
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its origin in the fact that a given experiment determines the elastic scattering
up to a maximum momentum transfer, q,,,,. However, to obtain p(r) from p(q)
from the inverse Fourier transform,

pr)= (21) [p(q)e T dq
¥

1 (= sin gr
= d
zano p(q) —a4q

requires a knowledge of g beyond q,,,,.

There are a number of procedures that have been developed. These are
reviewed by Friar and Negele (75), who described the work of Friedrich and
Lenz (72), Borysowicz and Hetherington (73, 74), Friar and Negele (73, 75), Sick
(74), and others. Briefly, one writes the density as follows:

M
p = polr)+ leci 1) (2.68)

The quantity g, is a zeroth-order approximation obtained from, for example,
a density-dependent Hartree—-Fock calculation or more phenomenologically
from a fit using the “Fermi” charge density distribution, which in its most
elaborate form is

_ po(l+wr?/c?)

= o 1 1 (2.69)

where po, w,c, and a, are parameters that are chosen to give a best fit to
experiment. Modern calculations generally use the Hartree—Fock for p, because
among other things these give good descriptions of the surface properties of
nuclei. The functions f; are a complete set, for example [Meyer—Berkhout,
K. W. Ford, et al. (59)],

1. i _
fi=—sin"" @@ - R) 2.70)
r R

where R is chosen to be in the region where p vanishes. The parameter M is
given by

R
M=—-q,.. 27
T

since experiment does not provide data beyond gq,,,,. The spatial resolution
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obtained from the analysis of experiment is

T
Ar~ —

qmax

On the other hand, the resolution in momentum space is

Ag~ T

rmax

where r__ is the largest value of r for which p is determined. Or the largest

max

value of r, r,,, for which p can be accurately known is

T

T max ™~ A_q

(2.72)

where Ag is now the experimental momentum resolution. As a consequence of
this result, one can expect that the large r dependence of p will not be well
determined by experiment. It is for this reason that the density-dependent
Hartree—Fock results have been used for p,(r) in (2.68).

In the procedure used by Friar and Negele, one first obtains the coefficients
C; from experiment using perturbation theory, which gives a linear relation
between the cross sections and the density, to obtain a first approximation to
the coefficients C;. The resulting p is inserted into the Dirac equation to obtain
a more accurate calculation of the cross section. The C;s are modified by
perturbation theory to take care of the differences from the experimental
cross sections and the entire process is repeated. For 2°®Pb, Friar and Negele
found that with 11 terms in the series, three iterations were needed. The quantity
M can also be varied. It is found that once M exceeds (R/m)qm. [Eq. (2.71)], the
x* increases significantly. Over the last decade this method, and others surveyed
by Friar and Negele (75), have been fine tuned, and with the great increase in
experimental accuracy and extension to larger values of ¢, excellent
descriptions of the charge density of spin-zero nuclei has been achieved. The
example in Fig. 2.3 shows the percent of deviation from experiment using the
analysis just described for both the Mainz data [Rothaas (78)] and the earlier
1970 Stanford and 1972 Amsterdam data.

One should bear in mind that additional important data are provided by u
mesonic atoms and must be included in the analysis. We shall not discuss this
aspect here. [See the discussions in Friar and Negele (75) and Barrett and
Jackson (77).]

Some of the results for p., obtained with this or related analyses are shown
in Figs. 2.4 and 2.5. The thickness of the line indicates the uncertainty in the
experimental determination of g.,. The dashed line gives the density-dependent
Hartree—Fock results and the dotted lines show the effect of going beyond the
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FIG. 2.3. Deviation from model-independent analysis. Solid line, Stanford data, 1970;
dashed line, Amsterdam data, 1972; points, Mainz data, 1982. [From Bertozzi (82).]

mean field by using the RPA. We note a significant difference between
experiment and theory for the small r. In all cases, even upon including the
RPA, the theory predicts too large a density. The RPA correlations do damp
the fluctuations in the interior nuclear region. [See Negele and Vautherin (72, 75),
Gogny (79), Dechargé and Gogny (68), and Dechargé and Sips (83)]. We are
left with the general remark that further correlations and/or two-body
components of the correlation need to be included, although it is not clear
whether short- or long-range correlations are needed.

An important insight is obtained by comparing the electron scattering by
206pp and 2°5TI [Euteneuer, Friedrich, and Voegler (78); Cavedon et al. (82)].
These two nuclei differ in their single-particle structure by a 3s proton. The
impact of this difference is shown in Fig. 2.6, where the ratio of ¢ (2°°T]) to
o(*°°Pb) is compared with the mean field prediction. We see a strong
characteristic peak at g = 2 in both theory and experiment. However, agreement
with the peak strength is obtained only if the single particle occupation pro-
bability is reduced by 30%,. This is demonstrated once again in Fig. 2.7, where
one sees the reduction in the charge density from that predicted by mean field
theory [Frois et al. (83)]. It is this reduction that we see in Fig. 2.5 for 2°3Pb.
As Zamick, Klemt, and Speth (75) point out, 2°5Tl is not obtained only by
creating a proton hole in the ground state of 2°6Pb. There are also components
coming from a proton-hole in the excited states of 2°°Pb, such as a d,, hole
and d;, hole in the 2% excited state. The data demonstrating this are provided
by the reaction 2°°Pb (*He, d). The correlations in this case are long range.

We conclude this section on charge scattering from spherical nuclei with
Table 2.1, which lists rms radii obtained from experiment and theory [DeJager
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FIG. 2.4. Cross sections for elastic electron scattering from 2°*Pb at 502 MeV compared
with DME mean-field theory prediction (solid line). [From Negele (82).]
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FIG. 2.5. Comparison of DME mean-field theory charge distributions in spherical nuclei
(dashed lines) with empirical charge densities. The solid curves and shaded regions
represent the error envelope of densities consistent with the measured cross sections and
their experimental uncertainties. [From Negele (82).]
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FIG. 2.6. Ratio of elastic cross sections from ?°*Tl and 2°°Pb. The peak at g=2fm™!
is the signature of the 3s orbit. The curves are mean-field predictions due to X. Campi.
[From Frois and Papanicolas (87).]
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FIG. 2.7. Charge density difference of 2°°Pb and 2°°Tl. [From Frois and Papanicolas
(87).]

TABLE 2.1
42 (fm)
Theory Experiment
160 2.79 271 +0.01
4°Ca 3.50 348
“8Ca 3.50 347
56Ni 3.80 478
1907y 4.29 4.28 +0.02
1i6gn 4.63 4.62 +0.01

200pp 5.49 5.50
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DeVries, and DeVries (74)]. See also the more extensive table, Table 6.2, in
Barrett and Jackson (77).

E. Deformed Nucleit

Elastic and inelastic scattering of electrons by deformed nuclei demonstrate the
electron’s power as a probe of nucleon structure. As discussed in Chapter VI
of deShalit and Feshbach (74), the rotational wave function is given in terms
of an intrinsic wave function yx and a factor depending on the Euler angles,
which transforms the wave function for a body fixed to a space-fixed coordinate
system. The wave function is [see (VL1.4.9) in deShalit and Feshbach (74)]

21 +1 .l ,
YUKM) =+ W[DZK(GK)XK(TE) +(2)TIDE 0 ()] K>0
(2.73a)
while for K =0,
1
Y(I,K =0,M)=——Y,,(0x) 1k =0(r) (2.73b)

NG

As pointed out in that chapter, the ratio of the electromagnetic transition
probabilities within a rotational band for a particular multipole [see (VI.6.21)
and (VIL.6.22) in deShalit and Feshbach (74)] do not depend on the intrinsic
wave function, but only on the quantum numbers I, I;, and K. This is a
consequence of the fact that the wave function for each member of a rotational
band contains the same intrinsic wave function yg. The electromagnetic
transitions tests this property of the rotational wave functions at g =0. The
electron scattering experiments extends that test to finite g, thus checking that
xx(r) is the same for each member of the rotational band as a function of r.

Inelastic scattering will play an important role since we shall compare
cross sections for the excitation of different members of usually the ground-state
band. The electron—nuclear interaction responsible for the transition can be
treated perturbatively, but the plane wave approximation is not valid for the
heavier target nuclei. The appropriate formalism is the DWA (see Chapter VI
for its use in dealing with inelastic processes) in which in this case the Coulomb
interaction is treated exactly, while the transition Hamiltonian is taken into
account using perturbation theory.

We shall only outline the DWA for this case. The details are similar to those
given in Chapter VI, with some special details because of the required Dirac
algebra. The details can be found in Uberall’s (71) second volume. The
Hamiltonian of the system is given by

H=HN+HD+Hint (2.74)

*Moya de Guerra (86).



2. ELECTRON SCATTERING 707
where H is the Hamiltonian of the nucleus and H , is the Dirac Hamiltonian,
Hp=(ap)+ fim (2.75)
and for charge scattering

H_=e¢ (2.76)

int

where ¢ depends on the charge distribution in the nucleus. One then defines
the diagonal and transfer part of ¢ with respect to the wave functions of the
nucleus as follows:

ép=1>PIIT .77)
b= DG +he.  T#T
<

By taking the matrix element of the Schrédinger—Dirac equation,
HY =EY
one obtains a set of coupled equations for the spinor electron wave function ¥/,:

[Hp+edply=— Y 1| I DY,

The DWA result for the transition I — I’ is obtained by solving the approximate
equations

[Hp+edply,; =0 (2.78a)
[Hp+edplyy = — <1 1Dy, (2.78b)

The solution of (2.78a) gives the elastic scattering from the nucleus, while (2.78b)
yields the inelastic scattering. The solution of (2.78a) for i, can be obtained in
a partial wave series as in the preceding section. That series, substituted in
(2.78b), leads to the desired wave function ¥, also expressed in a partial wave
series.

To obtain an insight into what can be learned from this analysis, we return
to the Born approximation for the inelastic reaction in which discrete nuclear
levels are excited. The cross section in the center-of-mass system is

do 1
— = E JM JMD|? 2.79
19 aMZJ; leMf|< ! f|P(Q)] M ( )

where a,, is the Mott cross section. But p(q) can be expanded in a partial wave
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series,

plg) = Je"'"p(r] dr

= JZM 4ni’ fjj(qr) Y (F) Y¥,,(@)p(r) dr
so that
I Ml p@IIM)y = 4a Y P Y4 @< MM (@MY (2.80)
JM

In this equation

M), (q) = Jjj(qr) Y, u(®)p(r) dr (2.81)

so that (2.80) is the multipole expansion of p and M t, transforms like a tensor
operator of order J. Using the Wigner—Eckart theorem, one has

JooJ U

J M9 J) (282
M, M Mi)( IMP@I) @82

I M MO (@M, = (—)’f‘“f(

Performing the indicated sums, using the sum rules of Appendix A of deShalit
and Feshbach (74), one obtains

do 1 -
=y —SNJ | MO@) | )] 2.83
0 GM2J,+1;I( rIMP @75 (2.83)

For deformed nuclei, the matrix element of M), has been derived [(VL.6.9) in
deShalit and Feshbach (74), where J, is replaced by I’ and J ; by I']. One obtains

UK | MO I'K) = /(21 + )T + 1)

I Jr - ;'
X@{(_K p K,><1<|M,u(q|)|1<>
. I J r ~
+(—)’(_K . _K,)<K|M‘;:,(ql|—1<'>} (284)

This result holds for K and K’ #£0. When K’ is zero,

1 J r
LKIM9\I'K=0=/Q2I+1 21’+1( )
(I, K[ M )=VRIFDEI+D(

><<K|M‘;;(q)|1<'=0>{;/2 Lo e
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In these equations M'(q) are calculated in the body-fixed coordinate system.
The matrix elements <K |J\7I‘J"(q)|K’) involve only the intinsic wave functions
yx and are independent of I and I’ as long as I and I’ are members of the
corresponding rotational bands. Thus the electron-induced transitions between
members of the two bands (which can be identically) will each involve the matrix
elements of M‘J. These will, of course, vary with J so that differing aspects of
xx will be probed by the inelastic scattering. Analysis of the data should then
yield the q dependence of the matrix elements. In the case of even—even nuclei
transitions from the ground state (I’ = 0 = K') to excited states of the same band
(I, K = 0), only one matrix element { K = O\Mj(q)lK’ = 0)entersforeach Jand L.

When the spin of the ground state is not zero, several matrix elements are
involved in a given transition. Nevertheless, one can determine each of these
as the following example illustrates [Bertozzi (82)]. Suppose that the energy
spectrum of a nucleus is given by Fig. 2.8. The multipole matrix elements
involved in a given transition are shown. The matrix elements of the multipole
operators with respect to the intrinsic wave functions [see (2.8)] are identical
for each of the transitions indicated. There are five transitions and four matrix
elements, M0, M2, M4, and M6. One can, for example, determine the matrix
elements using four of the transitions and predict the fifth, thereby testing the
correctness of the wave function (2.72). Bertozzi (82) gives an example of such
a test. The nucleus is '7°Lu with a ground state of spin of 7/2*. The 7/2, 9/2,
13/2, 15/2 cross sections are used to predict the 11/2 cross section. The results
are shown in Fig. 2.9. The agreement is good, demonstrating the validity of the
rotational model.

The cross section given by (2.83) applies as well to inelastic scattering from
spherical nuclei in the Born approximation. It is traditional to use the concept
of transition charge density p,, in these cases. It is defined as follows:

1M @9) = f:j,(qr)p.,(r)rz dr (236)
1s2% [ Ve, M4
ss2* 1M6, M3
et TM4,M2
s/2t j T~ M4, M2
3/2% Q
MO, M2

FIG. 2.8. Possible multipole excitations.
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FIG. 2.9. Test of single intrinsic state assumption of the rotational model. The nucleus

is '""Lu. R is the ratio of the measured L!* cross section to the value predicted

from the measured , %, ', and %} cross sections. [From Bertozzi (82).]

Inserting (2.82) yields
pulr)= JdQ Y m(F)

M, J, J J,—) " ]
xI:(2J+l)MbZMf( ) (—M, R R TPCIATS

(2.87)

Since (J || M| J)) is independent of M, we can choose M. A convenient choice
is M = 0. For even—even nuclei, J; =0 and p,, equals

pulr)=(2J + l)l/ZJdQ Y;(F)<JO|p(r)| 00 (2.87)
where we have used

0 0 0/ _/25+1

Obtaining p,, involves determining (J || M‘j’(q) [ J,) from experiment and then
inverting (2.86) with the attendant difficulties discussed earlier in this chapter.
A model-independent resolution is available in this case as well.

(J, J 0) ()65,
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These levels can also be excited by the interaction of the electron with the
nuclear currents. However, it is possible, as we shall see, using suitable kinematics
and analysis to extract the charge- and current-induced cross section separately.

The transition densities obtained from inelastic scattering by several magic
nuclei to the highly collective 3~ state and by *°Zr to the 2*,4*,6*, 8* states are
shown in Figs. 2.10 and 2.11.

The transition density for both of these cases peaks strongly at the surface.
The dashed line in Fig. 2.10 gives the theoretical results obtained using an RPA
description of the states involved. The general structure of the prediction does
follow experiment. But there are deviations. The peak transition density can
differ substantially from experiment, while for the interior the theoretical results

¥ (fm)

FIG. 2.10. Transition charge densities for the first collective octupole vibrations of
doubly closed shell nuclei. Experimental uncertainty is given by the thickness of the
- solid line. The theoretical predictions are obtained in a self-consistent RPA calculation.
[From Frois and Papanicolas (87).]
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FIG. 2.11. Experimental and calculated transition densities for the 2, 47,6, and 8*
multiplet in °Zr. [From Heisenberg (87).]

oscillate more violently than the data. Figure 2.11 contains a comparison
between the experimental and calculated transition charge density. In the
single-particle picture, these transitions are to states in which two protons in
the filled 1g,,, orbitals are recoupled to spin 2%, 4%, 6", and 8. In the ground
state they couple to zero. As Fig. 2.11 shows, the calculations based on this
simple assumption fail substantially for the 2* and 4" but are satisfactory for
the 6 and 8* states. The solid line includes the effect of core polarization (ie.,
the inclusion of states in which the core is excited). As we see from the figure,
core polarization does have some effect in the 2* and 4% cases, but that effect
is nearly not large enough to reduce the small r fluctuations in the 2* case,
although it does greatly improve the agreement in the main peak.
Comparing the experimental transfer charge density with theory reveals the
same diseases that were seen with spherical nuclei namely the predictions in
the interior deviate from experiment. This is illustrated in Fig. 2.12. In Fig. 2.12a
the theory predicts too large a charge density in the interior. In Fig. 2.12b
the theoretical p,, fluctuates more strongly than its experimental values in the
interior, although theory and experiment are in good agreement in the surface
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FIG. 2.12. (a) Charge density for ground state of '*?Sm; (b) transition charge density
for excitation of the 2* level in !32Sm. [From Bertozzi (82).]

region. This substantially good agreement for the 0* — 2* transition deteriorates
somewhat for the 0 »4*. This is a general pattern for the rare earth nuclei and
for 238U according to Bertozzi.

F. A Remark on the Charge Density

The two-body density matrix p(r,,r,) has been discussed in Ch. III (where it
was called K). There it was shown [1112.88 Feshbach (62)] that it could be
written as

p(ry, 1) =Y K,w, () w¥(r;) (2.88)
where
@ (r)wg(ry)y = 5aﬂ (2.89)
and
J'p(rh rZ)wa(rZ) dl'2 = Kuwa(rl) (290)
The density is
p(r) = p(r, ) =Y i Jwr)’ (291

In the case of a Slater determinant, x, = 1. But the many-body wave functions are
generally not single Slater determinants, so that generally x,# 1 but will lie
between 0 and 1. One can interpret x, as giving the occupation probability of
the orbital, w, In fact, the interior deviations observed in nearly all of the
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FIG. 2.13. Calculated occupation probabilities in 2°®Pb. [From Heisenberg (87).]

nuclei, including both the spherical and deformed nuclei can be explained if the
occupation probabilities of the single-particle orbitals have been chosen
appropriately. Their deviation from unity is an expression of the existence of
residual interactions and the consequent correlations. Pandharipande,
Papanicolas, and Wambach (84) have calculated the occupation probabilities
for 298Pb. The results are shown in Fig. 2.13, where HF refers to Hartree—Fock,
and NM to nuclear matter calculations. The overall reduction in n, the
occupation number, is qualitatively in accordance with the experimental
situation. But experimental uncertainties in the 3s,,, occupation probability are,
according to Heisenberg (87), too large for a definitive comparison of experiment
and theory. (See Heisenberg for a discussion of the ES transitions in 8°Y, °°Zr,
and °2Mo.)

G. Current-Induced Scattering

We continue with the Born approximation. We return to Dirac equation (2.12).
The vector potential 4, is a solution of the inhomogeneous wave equation

VA, +w*A = —4nj, (2.92)
where simple haromonic time dependence has been assumed. Then in

momentum space

4mj 4nj
A _i=iik (2'93)
q

u=
q* — o*

q;=q*—o? (2.94)
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Equation (2.12) is replaced by
(V2 + K2y = —e(y,p, + im)(y,4,)¥;
where k' is the electron momentum with the nucleus excited, ¥ the corresponding

wave function, and y; the elastic scattering (nucleus in the ground state) wave
function. In the DWA approximation,

YA P .
f= —J‘e"‘ (yvps + im) (u A YL
4n
On introducing (2.93) and making the Born approximation [see (2.14) ] we obtain

fri= —q%<u,(yvk; +im) (7,7, (@) u;> (2.95)

u

where
Q= Je“""ju(r) dr (2.96)

To obtain the cross section for a nuclear transition J;—J, and electron spins
from m; and m,, we must calculate

de 1 1
== JMem ST MmD |2 297
dQ 22Ji+1M?M!|< Mpmgl £l N 2.9

mimy

The sum over the electron spin is obtained by using the technique following
(2.17). The result is

1 e? k’ C
i Z |<JfMj‘;mf|ffi|JiMi;mi>|2 [k k., — 6vakxk, + kak’v]]a(Q)]t(‘I)
(2.98)

where the summation convention is used. Following DeForest and Walecka
(66), one introduces the coordinates

Q,=35k,+k) (2.99)

Replacing then k, and k;, by Q, and g, and bearing in mind that Q2 = -4,
one obtains

e L I IARE YN
MiM;

etk
T gt k2
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where
Jo= I M flj 1M (2.100)
Further development of this result requires an analysis of j,. Toward this

end we introduce the unit vectors u, [see (VIL4.4f), deShalit and Feshbach
(74)1, whose z axis is taken along the direction of q:

U, =-q (2.101)
q

Then setting up a Cartesian coordinate system with unit vectors u, and u,, one
can define

1
u=—— (u +iu) 2.102)
2

u_ = ——(u,—iu) (2.103)

The three-vector j(q) can then be written:
i =jo“I) '*‘].1“11L +Jj- 1“11

The continuity equation for j(r),

., 0
divj+ % _ 0
ot
becomes in momentum space
4, =0

or

¢i=pqgo=4jo
Therefore,

.. . q
j=jul+j_,ul + ;"p(q)uz, (2.104)

The three-current j is composed of two components orthogonal to q (the
transverse components) and one along q (the longitudinal component). The
magnitude of the last is proportionl to p(q), which must be combined with the
Y4ja4 contribution discussed earlier in this section, giving rise to a change in the
kinematic factors only. We therefore focus on the contributions coming from
the transverse components. These have been discussed in Chapter VIII of

-
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deShalit and Feshbach (74). Here we shall follow the methods that have become
traditional in electron-nuclear physics. One needs the expansion

. X A |
wet = — ¥ [2n(2J + 1)]12 i’[lj,(qr)Y‘,"} + —curl( j,(qr)Yu):] A=+l
J=1 q

(2.105)
In this equation j, is the spherical Bessel function, and?
Y50 = X (mim'|IM)Y,,u,, (2.106)
From (2.104) we have
o) =0y = 0w
=— ¥ [2QJ + DI ATY® + T5Y) (2.107)
J>1
where
TS = fi(r)'jj(qr)Y‘f} dr (2.108)
and
1
TG =~ Ji(r)-curl JanY§) dr (2.109)
q

These quantities transform like tensors of rank J. Applying the Wigner—Eckart
theorem yields

J,oJ

JeM | TS M > = —Jf—Mf(
M| TG0 M,y =(~) VA

)(J, I T§e ) J )

It is now possible using (2.107) to compute

1 . :
é}?ugg I Mg jalJiM D (T Myl o 1 T Mp*
i i

2 N
=57 Z 1[ZI(J, (W PATEE S A |u,.)|2] (2.110)
i J

One can now complete the evaluation of (2.97) for the cross section in the

iThe derivation of (2.105) is straightforward when one realizes that Y{ and (1/g)curl j,(gr)Y'})
form mutually orthogonal and normalized sets of vector wave functions on the unit sphere. Thus
the coefficient of Y in expansion (2.105) is given by [dQY')"-ue'". The coeflicient of the
second term is 1/ [dQ Y -curl(u,e/”).
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center-of-mass frame. After some algebra it can be cast into the following form:

do__|4p lq, AT
dQ_JM[q (q)+< + tan? 2)FT(q):I (2.111)

where o, is the Mott cross section evaluated at the incident energy and

4r
2
L0 15 I 2.112)
and
7= i (e 2 7(mag) 312
=371 B AT @IE+ Ty @Ia0P) e

Note that experimentally it is possible separately to determine F? and F2 as
functions of q by suitably choosing the experimental parameters. For example,
if 3 ~ 7, the cross section is dominated by |F;|2. Varying the incident energy
will then yield |F4(q)|?. The matrix elements in (2.112) and (2.113) reduce to
those obtained from photon excitation if ¢ = w [see Chapter VIII in deShalit
and Feshbach (74)]. Inelastic electron scattering gives a much more complete
picture by providing the g dependence for ¢ > w and, by Fourier inversion, the
spatial dependence of the current as well as the charge distribution. The selection
rules are identical with those of the photon case, namely

h P

with parity changes of (— )’ for T¢? and M€ and (—)’*! for T™®), R

The current density j, to be inserted into (2.108) and (2.109) to obtain T
and T™® have been discussed in Chapter VIII of deShalit and Feshbach (74).
The point-charge current as given by (VII1.2.3) and (VIII.2.4) in that reference
is broken up into two components, a convection spin-independent current j,,
and a spin-dependent magnetization current, j,,:

=t im

i.= ez (1 + 73 3[vid(r— 1)+ o(r —r)v] (VIIL.2.3)

h
i = f); Y300+ 9,) + 1) (g, — gn ] curl[6:8(r —r)] (VIIL24)

The velocity v; is defined by

‘ oH
L[Hr]=2" (VIIL2.5)

Vl. =
h aop;

where H is the full Hamiltonian, including the electromagnetic terms.
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However, nucleons have a finite nonzero size and have a structure. This has
two consequences. First the delta functions in (VIIL.2.3) and (VII1.2.4) must be
replaced by form factors [see (VII1.3.8), deShalit and Feshbach (74)].

Second, the one-body operators of the equations above must be supplemented
by two-body and higher-order operators whose physical origin lies in the meson
exchange currents (MEC), which were mentioned briefly in Chapter VIII of
deShalit and Feshbach (74). Currents are present whenever the nucleons in the
nucleus exchange pions and other mesons such as the p and w in the course
of generating the nuclear force between the exchanging nucleons. The currents,
known as exchange currents, will interact with an external electromagnetic field.
The various contributions to that interaction are illustrated by Fig. 2.14. In
Fig. 2.14a the electromagnetic wave is absorbed by a pion, indicated by a dashed
line as the pion is exchanged. In Fig. 2.14b, the electromagnetic wave is absorbed
by the nucleon, which may remain a nucleon. Or the y-ray may make a N, N
pair, the latter interacting with one of the nucleons to make a pion which is
then picked up by the other nucleon. Or the y-ray may simply excite one of
the nucleons, creating a nucleon isobar which then exchanges a pion with the
other nucleon, reverting to the nucleon in its ground state. The final two
diagrams, Fig. 2.14d and e, involve the heavy mesons designated by M and M".
The results, appropriate for transitions in complex nuclei, are summarized in
the review article by Donnelly and Sick (84), to which the reader is referred for
details and references. The short-range contributions described by Fig. 2.14d
and ¢ are not included. The diagram involving the nucleon intermediate state
(Fig. 2.14b) is dropped since this term is automatically included in the convection
current term. One is therefore left with contributions from Fig. 2.14¢, the
antinucleon intermediate state in Fig. 2.14b, and the excited nucleon
intermediate state (Fig. 2.14¢). The last will include both the A and Roper
nucleon resonances. Importantly, to order (1/M) (M = nucleon mass), g, is
zero. In addition, the leading term is an isovector. Gauge invariance is
guaranteed to the extent that wave functions used arise from nucleon—nucleon
interactions involving the same diagrams (Fig. 2.14) used in calculating the
exchange currents. If the wave functions and exchange currents are not
consistent, there can be considerable error since the operators involved are not
positive definite and therefore are sensitive to the properties of the wave
functions.

HEAEaNnEE

(a) (b) {c) (d) (e)
FIG. 2.14. Exchange currents.
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H. Magnetic Elastic Electron Scattering

We turn now to the study of elastic magnetic electron scattering by nuclei
[Donnelly and Sick (84)], from which |F;|?> of (2.111) and (2.113) may be
determined as a function of the momentum transfer q and compared to nuclear
model predictions. In contrast to the charge scattering, the magnetic scattering
is sensitive to the properties of the valence nucleons since the net contribution
of the core nucleons is zero in the spherical shell model description. The
information on single-particle states obtained from nuclear transfer reactions
is complementary since the responsible nuclear interaction differs from the
electron interaction. In addition, magnetic elastic scattering is sensitive to
neutron and proton distribution, as the equation for j,, [Eq. (VIIL.2.4) in deShalit
and Feshbach (74)] demonstrates.

Of course, the independent particle shell model is not correct. The deviations
in the case of spherical nuclei are expressed in terms of configuration mixing,
in which excited states of the core generated by the interaction with the valence
nucleons are components of the total wave function. These interactions draw
strength from the single-particle component, so that generally the magnetic
elastic scattering crosssection is less than predicted by the extreme valence
nucleon model. This fragmentation of the strength is clearly visible for deformed
nuclei, where the Nilsson orbitals (which in the limit of zero deformation
combine to yield a spherical orbital) play the dominant role. The magnetic
elastic scattering by odd-A4 nuclei is sensitive to coupling of the valence particle
with the deformed core. As expected, there is a reduction from the values
predicted in the absence of this coupling. Much of the strength available in the
spherical limit now goes into the inelastic scattering of the excited states built
on the deformed ground state. Finally, in spherical cases for which the convection
current j,, effects are dominant, the exchange current effects may be observable.
We shall now illustrate these points with examples drawn from Donnelly’s and
Sick’s (84) review. As we shall see, detailed information on the single-particle
- wave functions that these experiments yield is quite remarkable.

We first consider elastic magnetic scattering by a target nucleus with a spin
Jo. It is assumed that the scattering caused by a single unpaired valence nucleon
whose angular momentum is also J,; the net angular momentum of the
remaining nucleus equals zero. Moreover, we select those nuclei for which
Jo=1+1% (I=orbital angular momentum), that is, a stretched configuration.
The largest multipole order is then 2J,. For this case the contribution of the
convection current vanishes since it will be proportional to the square of the
reduced matrix element (31J, | Y, | 31J,). From (A.2.49) and (A.2.81) of deShalit
and Feshbach (74) we have

Jo Jo 2 (Jo—% Jo—1 2J,
elJouY2,u||%uo)~{ 0 N

1 —_—
Jo—3 Jo—3 3

The 6 — j symbol vanishes since J, — 3+ J, — 3 # 2J,. As a consequence, only
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the magnetization current, j,,, contributes to |F |2, it is, moreover, easy to show
that

Fp~ JRZ(r)j(ZJO_l)(qr}rz dr (2.114)

where R is the radial function for the single-particle valence wave function.
Inversion to obtain R? with the limitations discussed earlier with respect to the
determination of the charge density is possible in principle?*

The discussion above assumes the validity of the single orbital description
of the nuclear ground state. There will, of course, be configuration mixing.
However, the additions to the single-particle contribution that can contribute
to the 2J, muitipole moment transition must involve an orbital with j= J,.
Such an orbital with the correct parity will be available first, two shells above
mvolving an excitation of 2hw. One therefore expects a very small amplitude
for such a component in the ground state. Thus the form factor F; will still be
given by (2.114). The only effect on this transition of configuration mixing will
be a reduction in the magnitude of F; which can be related to the spectroscopic
factor associated with that state as determined from nucleon inelastic scattering
or from a transfer reaction.

For multipole moments of order less than 2J,, configuration mixing can
have a large effect. This is particularly true when the configuration added is
one that would readily be excited in an inelastic collision. Under those
circumstances there will be interference between the strong single-particle term
and the added configuration. The result will be to reduce the value of F, since
some of the single-particle strength will be lost to inelastic channels. Obviously,
states of the core that can be strongly excited play an important role.

Finally, experimentally the contribution of the very largest possible multipole
moment will be very visible in the large g domain. The contribution of the
moments of lower order will decrease rapidly for large enough momentum
transfer g. However, this domination by the large multipole moment does not
persist for a sufficiently large range of g at the low-g side, so that the inversion
indicated by (2.114) is not feasible.

Many of these conclusions are exemplified by magnetic elastic scattering
from 17Q. Because of the close agreement of the magnetic moment of 'O with
the single-particle Schmidt value, it has been thought that this was a good
example of a valence nucleon (in this case a neutron in a ds,, state) moving in
the field of an *®O core. As illustrated in Fig. 2.15, we see that the single-particle

Note: Use the result

J o\ S\
cmlUlYUJ:‘i(mI) j-’*’1Y1J+l+i(m) Jyos Y-,

and (A.2.49) and (A.2.81).
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Fi(a)

H
HE
| |

q{fm™)

FIG. 2.15. The 7O data of Hynes, Miska, et al. (79) are compared to prediction of the
extreme single-particle model calculated using a harmonic oscillator wave function (solid
curve). The dashed curve is calculated using a .Woods—Saxon radial wave function.
[From Hynes, Miska, et al. (79).]

model greatly overestimates | F|? for values of g between about 0.9 and 1.8 fm ™!

and underestimates |F|? for greater values of . When configuration mixing
is introduced phenomenologically [Burzynski, Baumgartner, et al. (83)], one
obtains Fig. 2.16. The contribution of the MEC is estimated theoretically. The
MS$S and M1 components are very close to the predictions of the single-particle
model. This is expected for M5 and the low-q values of M1. However, the M3
component is strongly reduced, indicating the effect of configuration mixing
with core excited states. It was pointed out by Zamick (78) and examined in
detail by Bohannon, Zamick, and Moya de Guerra (80) that the admixtures
induced by an E2 M1 excitation of the nucleus will have a strong overlap
through the M3 multipole with the single-particle orbital. This reduced the M3
moment by a factor of 2 [see also Arima, Horikawa, et al. (78)]. This excitation
will not affect the M1 or M5 multipole.

Configuration mixing in terms of spherical nuclear wave function is very
large for deformed nuclei. The effects described above are present, for example,
for magnetic elastic scattering by 2*Mg, In Fig. 2.17, the results using a spherical
single-particle wave function for the valence neutron are compared with the
results obtained using a Nilsson orbital wave function, and with experiment.
We observe a general reduction from the spherical case. The shape of the M5
form factor is not much changed, but the M3 form factor is greatly reduced.
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I7O

10-5
g (fm™)
FIG. 2.16. The "0 data of Hynes, Miska, et al. (79) corrected for the contribution of

MEQC, are compared to the fit of Burzynski, Baumgartner et al. (83) calculated using a
Woods—Saxon radial wave function. [From Donnelly and Sick (84).]

10

2
q(fm™

FIG. 2.17. The Mg magnetic form factor is shown for the ESPM (dashed curve) and
the Nilsson model (solid and dotted curves), all calculated using harmonic oscillator
radial wave functions (b = 1.63 fm). [From Donnelly and Sick (84).]
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The major lesson to be learned from these examples is that configuration
mixing must be taken into account before a quantitative agreement between
theory and experiment is possible. The wave functions are rarely describable
by the naive independent-particle model. Once configuration mixing is taken
into account and occasionally, the effect of exchange currents included (with a
considerable error ~ 50%), agreement with experiment is obtained. (Note that
the comparisons with experiment are made on semilog plots.)

Parenthetically, the data on the M1 transition as well as the isoscalar and
isovector magnetic moment and the Gamow-Teller matrix element as obtained
from f decay and (p, n) reactions have been analyzed for nuclei in the s—d shell
by Brown and Wildenthal and their colleagues [ Brown (86)]. The wave functions
are obtained by treating the two-body residual interaction matrix elements as
empirical parameters which are determined by the ground and excited states
in the s—d shell. [see Brown (86) for a review.] The resultant wave functions can
then be used in the evaluation of the transition matrix elements. Very briefly,
it is found possible to fit the data mentioned above by assuming an M1 operator
that varies smoothly with 4. The free nucleon M1 operator is [see Chapter
VIII] is deShalit and Feshbach (74)]

Ml=gs+gl

To this operator one adds a “correction”
gs[0,s + 31 +0,(/8n[Y, x s]V)]

where d,, 3;, and J, are parameters. The third term includes configuration mixing
of the type suggested by Zamick (78).
The parameters are found empirically to vary smoothly with A.

I. Quasi-Elastic Scattering

In this section the processes in which one or more nucleons are ejected from
the nucleus by the incident electron are discussed. The term quasi-elastic
scattering is used because it is thought that because of the high electron energy,
nucleon knockout is the consequence of the elastic collision of the electron,
with a nucleon in the nucleus having a momentum #k. As a consequence, it
should be possible to determine the nucleon momentum distribution by
observing the angular and energy distribution of the final electron. This hope
is encouraged by the success of the analogous experiment determining the
momentum distribution of the electrons in an atom. However, as we shall see,
there are important limitations. It is convenient to mention one of these now.
In an inclusive experiment, (e,e¢'X), in which only the scattered electron is
observed, it is possible that more than one nucleon is ejected from the nucleus.
Moreover, generally the final nucleus may be left in a highly excited state. In
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the multiple scattering picture of Chapter II, the nucleon initially struck by the
electron will be scattered by the other nucleons in the nucleus, thereby exciting
the residual nucleus and possible ejecting a second nucleon.

The kinematics implied by the simple single-nucleon knockout has been
discussed in Chapter I [see (1.3.9)]. A brief review is in order. An incident
electron with momentum Ak, is scattered by a nuclear nucleon of momentum
ik, thus acquiring a momentum #k, (see Fig. 2.18). The momentum and energy
transfer to the nucleon is Aq = Ai(k, — k,) and hw, respectively. The emerging
nucleon has a momentum #A(k + q). Nonrelativistic conservation of energy
requires

2 22

2k
2m*(k+q)2=%—+hw—sb (2.115)

where ¢, is the minimum energy needed to remove the nucleon from the nucleus
and m* is the effective mass assumed to be the same for the target and the
ejected nucleon. [See, however, the discussion of the effective mass in Chapter
V, where we find that the effective mass is a function of momentum and energy).]
Solving the equation above for Aw, we obtain

2
heo =6y + ' — (2k-q + ¢2) 2.116)
2m*

Hence hw is bounded:

hz hz
ey + —(—2kpq + q*) < how < &, + —— (2kpq + q?)
2m* 2m*

The quasi-elastic peak will thus have a width given approximately by (h*/m*)krq.
The spreading is a consequence of the Fermi motion of the target nucleon. The
effects of the nucleon interactions are crudely taken into account through the
use of the effective mass. Examples of the quasi-elastic peak for three target
nuclei are given in Fig. 2.19. The reader can check that the width is given
approximately by (h%/m)kgq.

electron

nucleus

FIG. 2.18. Diagram for the (e, ¢'p) process.
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The inclusive differential cross section for the (e, ¢'x) reaction can be obtained
directly from (2.111). It is

deZEZ = O'MI:Z—ERL + (;Zé + tanzg)RT:I (2.117)
where
R =Y I<flp@Ii>*d(E; — Ey) (2.118a)
and
Ry =Y [IKSlilid P+ 1< fli- s lid1P10(E; — Ef) (2.118b)

In these equations the sum is taken over all final states designated by f and
averaged over the initial states designated by i. The delta function indicates
that only those final states that conserve energy are to be included in the sum.

The sum includes an integral over the continuum in the case of particle
emission. For example, for the case of proton emission, (e, e'p),

i\ |2 hz 2 dx
Ry = | ZICAp@IiD PO ho— - w? = (Ex—EQ = Eg ) 5 (2119)
m (2m)

where ik is the momentum of the emitted proton and Ej is the recoil energy.
The sum is now over residual nuclear states, which in the case of closed-shell
nuclei, are one-hole states. Ey — E , is the excitation energy of those states. To
obtain the exclusive cross section, one drops the integral, and dividing (2.117)
by dk one obtains an expression for do/(dQ,dE,)(dQ,dE,).

Employing the model illustrated in Fig. 2.18, (2.119) becomes

L M) k5120

h
= id2e —— —g, —
R, JZI(f;vIP(MIlN 0(2 +ho — g, PEE

m* 2m*

Note the shift from dk to dk which is possible in the model because k and k
are linearly related. But k refers to the initial nucleon momenta, so that R,
depends on the nucleon momentum distribution. A first overview of the quasi-
elastic process is obtained by using the Fermi-gas model. Then

37 [ B2k? (k +q)?
R, = dkO(lce — K)O[ o+ heo — &y — b 121
- 4nk2£ (er )(2m* e e ) @

where 6(x) is the unit function, 8(x) =1, x > 0, 8(x) =0, x < 0. The integration
can be readily carried out. The results are given by deForest and Walecka (66)
or Donnelly and Walecka (75). Here we note only that for large q(> 2k;), R,,
is proportional to 1/g{1 — [(hw — &,)m*/kpq + q/2kg]?}, a parabolic function of
(how — ep).
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Calculations by Moniz, Sick, et al. (71) using the Fermi-gas model with g,
and k, empirical parameters have been compared with the experimental results
(the target nucleus is '?C) shown in Fig. 2.19. The agreement is excellent and
the empirical values of ¢g and kp reasonable (see Fig. 1.3.4). However, when the
longitudinal and transverse cross sections are separately compared with
experiment, this nice agreement disappears. That comparison [Ciofi degli Atti
and Salmé (84)] is shown in Figs. 2.20 and 2.21. One sees (the dotted—dashed
curve) that the Fermi gas model overestimates the longitudinal cross section
by a large factor; agreement with the transverse cross section is good. When a
more realistic nuclear model is employed (i.e., the Hartree—Fock model) and
final state interactions of the emerging nucleon are included (the solid line),
excellent agreement with the longitudinal cross section is obtained.

The expression (2.121) exhibits the property of scaling [see West (75); Sick,
Day, and McCarthy (80); Sick (87)]. The é-function factor can be rewritten as
follows:

27,2 2 hZ 2 2
6(ﬂ+hw—eb—w+q) =5(hco—£b—*q~—h—k~q)
* 2 2m

2m m* * ok
* *
- "’—5('" (hw—sb)—ﬂ—k,)
n2q° \h%q 2
m*
= 1, 00—k 2.122)

where k| is the component of k parallel to q and

¥ (ho — &) — /2

= . (2.123)
_m* [/2(h0 — &) — 410/ 2(hw — &,) + ]
2h? q
, m* S
1o 53 [V 2(how — &) — 41 (2.129)

Inserting (2.122) into (2.121) for R, we observe that gR, is a function of y only.
Thus all experiments performed at identical values of y by choosing the
appropriate w and g should, according to the Fermi model, have identical values
of gR;.

Although the results above are instructive, it is necessary to go beyond the
Fermi gas model and employ a more accurate description of the nucleus. Toward
that ‘end we rewrite R, as follows:

R, =Y Cilp'qlf > {flo@)iydE, — E,)
=Y <ilp(@d(E;— H)| £ Y< flp@]i) (2.125)
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FIG. 2.19. Cross sections for quasi-elastic electron scattering, The electron’s energy is
500 MeV. The scattered electron is observed at 60°. The solid lines are the results of
Fermi-gas calculations with parameters indicated on the figure. [From Moniz, Sick,
etal. (71).]
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FIG. 2.20. Experimental and theoretical
longitudinal response functions. Dotted
curve, Hartree-Fock results without final-
state interaction; dashed curve, Hartree—
Fock results with final-state interaction,
optical model potential real, solid curve,
Hartree-Fock results with final-state inter-
action, optical model potential complex;
Dashed—dotted curve, Fermi-gas result.
[From Ciofi degli Atti and Salmé (84).]

FIG. 2.21. Same as Fig. 2.20 for the trans-
verse response function. [From Ciofi degli
Atti and Salme (84).]

The Hamiltonian can be decomposed into the Hamiltonian H, for the residual
nucleus plus the Hamiltonian H, for the emerging nucleon, including its

interaction with the residual nucleus:

H=Hy+Hy

where

H0=T+V
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At this point it is convenient to make approximations that are valid in the
high-energy regime. A similar set of approximations are described in Chapter
IT on multiple scattering. First we replace V, which is in fact a many-body
operator, by an effective optical potential of the nucleon moving in the field of
the residual nucleus. Second, H  is replaced by an average energy ¢, the excitation
energy of the residual nucleus. Finally, the initial energy E,; is taken to be the
ground-state energy of the target nucleus, taken to be zero, plus the energy
transferred by the incident electrons to the nuclear system hw. With these
assumptions, R, becomes

R, =Y <ilp'@dtho — & — Ho)l /> f|p(@]i>
I

Performing the sum over the final states yields

Ry =<ilp'(@é(ho — & — Ho)p(@)li) (2.126)
Using the identity
1 1 _
Im—— = ——4S(hw—&—Hy) (2.127)
howo—&—Hgy+ic T
one has
R, = lIm<i (q) ! ( )i> (2.128)
t T P qhw—é—H0+iapq '

We now approximate the Green'’s function in this expression by its eikonal limit
[see Gurvitz and Rinat (87)]:

<r 1 r’> - ileil((z—z‘)é(b —b)0(z — z;)eu/zix)j;ug, bydg
hw—&—Hy+ie h’K
(2.129)

where

2m 2m

Kzzﬁ(hw—a“) and U=FV
Note. To derive this result, note that
1
<r| — r’>=G(r,r‘)
ho—&— Hy+ie
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satisfies

(hw~£+- V2 — )G=5(r—r’)=5(z—z’)é(b—b).

Let
G — eiK(z f-z’)g

Then approximately (neglecting V2g compared to 2K dg/dz)
2m
21K——-U h o(z—2")6(b—b)

Equation (2.129) is obtained by integrating this first-order equation.
Inserting (2.129) and

plg)=>) V"= Ze"

into (2.128) for R;, one finds that

zZ? N . , oz
R, = M Re Jdr Jdr’p(r, )it DK (b )f(z — z')e! /2K AUE b

nh?K

where p(r,r') is the density matrix:

o(rr)= Jw*(r, ry,.. (' r,,.. . )dr,--

[see (2.88) et seq.].
Carrying out the integrations over b and choosing the z direction to be along
q, we have

2 © © .
Rr,“mZRe[-[ dbdzj dz' p(z,b; 2’b)e ¥ ~9==200(z — 2')e “”ZKU;’W“]

nh*K
(2.130)

- @ - ®

Scaling no longer prevails since the final factor that reflects the final-state
interaction is not a function of K — gq. The exponent can be expanded in a series
in (K — q)/g, so that scaling is approached when (K —g)/q « 1. The simple
Fermi-gas model leading to (2.121) requires further approximation. More
accurately, the quasi-elastic inclusive electron scattering probes the density
matrix p(z, b; z’b).
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Problem. Using expansion, (2.88) shows that in the absence of final-state
interaction effects

R, =R Jdbj dzj dz' p(z,b; z’b)e" K~ 9E=21g(z — 71

sukey [an[ A

*%medblffu(K —q,b)?

Jt+K—q),b)?

1
= - WZMJdS\QA(K —q,9)2
where

@;(K —g,b) = J dz &K~ D2¢)(z b)

e o)
and

)

Q- J e~ bei K=, (7 b) dr

In addition, scaling is no longer possible when relativistic effects are taken into
account [see Alberico et al (88)]. Nevertheless, it is clearly exhibited experi-
mentally, as one can see from Fig. 2.22. Scaling is observed for y <0 but is not
obtained for y > 0. Similar results have been obtained for “He, !2C, 2’Mg, and
197Au [Day et al. (88)]. The lack of scaling for y > 0 is presumably because the
reaction mechanism for large energy transfers is no longer primarily the ejection
of a single nucleon.

Note. The potential U in (2.130) is obtained by fitting the elastic scattering
data. It is a possibly useful property of the eikonal approximation that one can
express the exponential involving U in terms of the nuclear scattering amplitude
of a nucleon moving in the q direction. We recall from Chapter 11 [Eq. (11.5.8)]
that the elastic scattering amplitude is, in the eikonal approximation, given by

1 . otz
Q)= —dere‘q"U(r)e""“‘”m”@’ b (2.131)
¥
Using the Fourier integral theorem, one can invert the equation to obtain

Ure 0208 U@ bar — jd -iQr
(r)e 21 Q/(Q)e
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FIG. 2.22. See (2.123) et seq. [From Sick (81).]

To remove the prefactor Ul(r), integrate both sides of the equation from zero
to z. One obtains

: - iQ;z —
2iK[e —(i/2K) % UG, x)d] _ e—(i/zx)j‘l mU(c,b)dc] - _ 4_7”3 Jde(Q)e— iQb ;
(2n) 0,
so that
—iQuz __
e~ W2Kf% UG b _ —(/26[% UG by _ 1 fde(Q)e —iQb e,,; 1
(2m)’K 0

where Q, is the component of Q in the q direction. The desired quantity

o~ 12K [ZUC, b _ e~ W _ [1/(2n)2K]_[de(Q)e' b= — 1)/,

e~ W20V _[1/(2m)’K][dQS(Q)e (e 2% — 1)/Q,
(2.132)
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From this equation one obtains

™ |

(/2K (% JUC.bdg _ li d =1
e @K lim J Q/(Q 0,
or
o~ @2B[% UCbl _ | _’,J dQf(Qy,0)e Qb (2.133)
47K

where Qg is the component of Q perpendicular to q. Substituting in (2.132)
yields the desired expression:

e 2K U by
_ 1= (@/4nK) §dQrf(Q7,00e A" — (1/4n°K) [dQ f(Q)e *¥P[(e~"2* — 1)/Q,]
1 —(i/4nK)[dQ/(Qy,0)e ' ¥® + (1/4n%K)[dQ f(Q)e "2*[(e ¢ — 1)/Q,]
(2.134)

Another procedure valid at high energy begins with the relation
G=Go+G,7G,

where G '=E+ic—H and Gy'=E+ie—Hy, H=Hy+V, and 7 is the
transition matrix for the scattering of a proton by the (4 — 1) nucleus. If in the
second term one approximates G, by its energy on the energy-shell component,
g will involve reaction amplitudes whose corresponding cross sections can be
obtained from experiment.

J. The Reaction (e, &N)}

The reaction discussed in the preceding section is referred to as an inclusive
reaction since only the emerging electron is observed. Effectively, therefore, all
possible final states contribute to the cross section. In this section the reaction
(e,e'N), where N is a nucleon, is considered. This is an exclusive reaction
since only one final system is observed. Such measurements are coincidence
experiments; that is, both the final electron and ejected nucleon momenta and
energy are measured. The experimental arrangement is illustrated schematically
in Fig. 2.23. The shaded plane is the scattering plane containing the incident k;
and final momenta k, of the electron. The unshaded plane contains the
momentum transfer q and the emergent proton whose momentum makes an
angle 6, with respect to q. The angle between the two planes is ¢,. In a typical
experiment the energies of the emerging electron and proton are measured.

‘Dieperink and DeForest (75); DeForest (67); Co’ et al. (87).
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FIG. 2.23. Diagram for the (e, ¢'p) reaction.

Their sum will not equal the incident electron energy since some of the energy
has gone into the excitation of the residual nucleus. The difference

E,=hw—E,—(E{) —E,)—Eg (2.135)

is referred to as the missing energy or the removal energy. Here E is the recoil
energy of the residual nucleus, while EY/) | — E, is the excitation energy for the
excitation of a final state E, of the 4 — 1 nucleus. If the cross section is plotted
as a function of the missing energy, one will see relatively sharp peaks which
can be identified with single hole state. An example is presented in Fig. 2.24.
In addition, one can also determine the cross section as a function of the
missing momentum. In the Born approximation in which the emerging proton
wave function is taken as a plane wave with momentum p, the longitudinal
response function, the important factor in these experiments becomes

R, =Y 1o/, — Q?(hw — E, —(EY | — E ) — Eg) (2.136)
J

where ¢ ;(p, —q) is the wave function of the hole state of the final nucleus in
momentum space. This result suggests that determining the cross section in the
energy domain where the delta function condition is satisfied will yield the
momentum distribution of the hole state. Note that p,—q is the recoil
momentum of the target nucleus. It is also referred to as the missing momentum
P This is illustrated in Fig. 2.25. We see the characteristic shapes of a p and
an s single-particle nucleon wave function emerges. Note the differing ranges
of E,,, the missing energy for the two cases. The dotted—dashed curve follows
from (2.136) using the Elton-Swift (67) wave function. A better approximation
to R, uses the DWA. The matrix element { f|p|i) is then given by

<f|P|i>=Zj(l//;l%)ei""‘x“’*(fp)dfp (2.137)
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FIG. 2.24. Missing energy (E,,) spectrum of the reaction '2C(e, ¢'p)! ! B showing an energy
resolution of 225 keV. Excited states in the residual nucleus !'B are indicated. [From
de Vries (84).]

where x!7'* is the appropriate distorted wave for the emerging proton with a
final momentum of p,. The factor (¥ |'¥;>, in which integrations over all
variables but r; are carried out, also appears in the DWA expression for the
pickup (p,d) or (d,>He) process [see (VIL.3.4)]. However (2.137) differs from
that expression in that the perturbing potential for the pickup process is a
short-ranged nucleon-nucleon two-body potential v, in the notation of
Chapter VII, which is to be compared with ¢‘?™, Therefore, substantially different
properties of the overlap (i ;|'¥;) are probed in the two reactions. In the pickup
reaction it is mostly the surface region of the nucleus that is involved, while in
the (e, 'p) case the interior plays an important role. For a detailed study of this
comparison, see deWitt—Huberts (87).

There are two noteworthy results. One is that the shapes of the overlap
(¥ /|¥;> wave function as determined from the (e,e'p) and (d, *He) reactions
are in good agreement. Second, the predicted cross sections in both cases require
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FIG. 2.25. Momentum distributions for the (e,e’p) reaction on '2C in two different
regions of removal energy, E,, corresponding to knock-out from the Op and Os shells.
The calculated results using DWIA (PWIA) are given by the solid (dotted—dashed) curves
and have been normalized to the experimental data. [From Dieperink and DeForest (75).]

spectroscopic factors (the probability that the overlap can be described by a
single-particle wave function) considerably less than unity.

The correction resulting from the use of a distorted wave function is small.
We recall from Chapter V that distorting effects of the optical potential are
minimal when the proton energy is in the range 150 to 300 MeV.

Note. Assuming a valence model for the target nucleus, one can show that the
exchange terms produced by the Pauli exclusion principle are zero. Let

Yir,r,r,,..)= du(rp)dr,(rl, r,...)
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The wave function ¥, is the antisymmetrized wave function for the Z — 1 system.
The function u carries the normalization. The final state

\P_f = Ldx(_)(l-p)!pf(rl':rz’'")

Antisymmetrization has not been included in (2.137) since it is automatically
guaranteed by the symmetry of 3’9" and the antisymmetry of W;. The proof
of the result that we will leave to the reader is a consequence of the condition

Cue )Y (ry,r,...)> =0
where the integration is carried out over r,.

The hole state that is formed by the proton removal is not an eigenstate of
the nuclear Hamiltonian. As revealed by a high-resolution experiment, it
fragments into several separate states. The hole state acts as a doorway state to
these. It therefore becomes possible to apply the doorway state formalism
developed in Chapter II1. From (I11.4.16) we have the doorway state 4 matrix

:<¢f|HPD‘//d><‘//d.|HDPWi> (2.138)
E—E,+ 4T}

(T i

>doorway

where we have assumed that the entire width I“j is the result of fragmentation
of the one-hole state. One must now take the absolute square of (. ;> and
sum over final residual nuclear states within the width I'j. An energy average
over narrow resonances Y is implied [see the discussion leading to (VI1.5.22)].

The result is

_ 1 Tl Hppth
2n(E—E)? +(Th4

IKT s> 1?

where
YaxPkyT* (2.139)

according to (2.137). Thus in the response function one should replace the energy
delta function by

1 r!
— E) (2.140)
2n(E—E,)*+412

in order to obtain the results obtained when averaging over the states into
which the hole state fragments. Note that I'; is a function of the energy. [See
Orland and Schaeffer (78) for more details.] A comparison with experiment is
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FIG. 2.26. Rescattering effects in the *?C(e, ¢'p) reaction. In the separation energy region
corresponding to the 1s shell, the contribution of 1p protons is estimated. [From Mougey
(30).]

shown in Fig. 2.26. For a review of the experimental situation, see Mougey (80)
and deWitt—Huberts (87).

This is where we will end the discussion of electron-induced reactions. Much
more in the way of exclusive experiments will be done as CW electrons
accelerators become operational. For example, referring to Fig. 2.23, measure-
ment of the dependence on the angle ¢, will lead to further information on the
nuclear matrix elements of various components of the currents. [See, e.g., (3.13)
in the paper by Co’ et al. (87).] and therefore to new types of response functions
beyond R; and R;. The use of polarized electrons will yield relative phases of
the nuclear matrix elements [see Donnelly (88)]. Importantly, measurement of
the parity violating transitions will permit stringent tests of the “standard”
theory of the electro-weak interactions. We shall not discuss the EMC effect
[see Jaffe (88) and Close (88) 1, which appears to indicate a change in the structure
of the nucleons in the nuclear environment. At least that is one interpretation.
But this phenomenon is, at this moment of writing, not clearly understood
experimentally and theoretically. Finally, I should mention the clear evidence
for exchange currents obtained by electron scattering from *H and *He, which
have not been discussed because the nuclear two- and three-body systems are
not included in this volume. Nevertheless, we include two figures showing the
effect of exchange currents and nucleon excitation to the A on the electric and
magnetic form factors for *H and *He (Figs. 2.27 and 2.28).
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FIG. 2.27. Charge form factor of *He. The dashed curve gives the impulse approximation
results. The solid curve includes the effects of meson exchange contributions. [From
Hodjuk, Sauer, and Strueve (83).]

3. MEDIUM-ENERGY PROTON-NUCLEUS SCATTERING

The application of the theory of multiple scattering to the scattering of protons
by nuclei was discussed briefly in Section I[.8. We summarize the pertinent
formulas using the KMT formalism.* The effective potential Vie.q=k-k
is given by (I1.4.30)

A—-1
Vf)}){—T<O‘Zi:t,-

0>=(A—1)(0I£1|0> @1

*The eikonal method is often used. However, comparison with the KMT results for 800-MeV protons
(see Fig. 3.1) shows that in the lowest order the eikonal method overshoots the diffraction maxima
and minima at the larger angles, especially for the polarization observables. A more careful treatment
of the eikonal method beyond the first order is required. The eikonal approximation is also found
to be in error in inelastic scattering [see Ray and Hoffmann (84)]. However, great improvement
in the eikonal results can be obtained if higher-order corrections are made [Wallace (73a,73b);
Rosen and Yennie (64); Wallace and Friar (84)].
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FIG. 2.28. Magnetic form factor of *He. (See caption for Fig. 2.27.)

The quantity ¢; is the nucleon—nucleon transition amplitude, |0 is the ground
state of the target, while A4 is the number of nucleons. In general, Vf,; is a nonlocal
operator V{)(r,r'). However, assuming locality [see (I1.4.38)] for the transition

t
operator ¢;, V(1) becomes local [Eq. (11.4.39)]. The local optical potential v{\)

opt

is then [Eq. (IL4.40)],

vin(r) = (4 — 1)<0]e(r —r)|0) 3.2

opt

while
J ¢ p D dr = 1) (q) = (4 — 1)<0]e™ 7(q)|0) (3.3)

The optical potential is to be used in a nonrelativistic Schrodinger equation.
The resultant scattering amplitude is multiplied by (4/4 — 1) [see (11.4.10)] to
obtain the predicted amplitude. The superscript on v{\} indicates that it is the
first term in an expansion. The second term is given by (I1.4.44). It depends

explicitly on correlations. For most studies and except for the lightest nuclei,
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this second term does not significantly affect the predicted angular distributions.
However, the polarization observables are more sensitive to the correlations.
The nucleon-—nucleon transition matrix ¢; is given in the nucleon—nucleus
center-of-mass frame by (11.8.4)

tik, k') = A; + Bioy 0; + Ci(0, + 0,)(q x Q) + D;(6,°Q)(6,:Q) + E;(64°q)(5;°q)
(3.4

where ¢ =k —k’ and Q = 1(k + k’). The subscript i refers to the struck nucleon
in the target nucleus and the subscript O refers to the incident nucleon. The
coefficients A;, B;, and so on, are functions of g2 and the energy of the incident
nucleon. These coefficients also depend on the isospin, for example,

A=A, +A_ty1 (3.5

The connection between the coefficients A;, and the coefficients A4;, and so on,
appropriate to the nucleon—nucleon center-or-mass reference system is given
by (11.8.5). We shall not repeat them here. One often parametrizes the coefficients
A] as follows:

A = A(0)e™" (3.6)

where o and A are complex functions of the energy. A table of these coefficients
is given in Chapter II (Table I1.8.1) for a nucleon kinetic energy L,,, of 1 GeV.
Coefficients appropriate at other energies are given Wallace (81).¥ Note that
the transformation from the nucleon—nucleon to the nucleon—nucleus reference
frame is valid only at small angles. Moreover, there is an ambiguity described
in the problem following (I1.7.2). Finally, we remark that using the form given
by (3.6) involves values of A, and so on, which for large values of q are not
observable in nucleon—nucleon scattering. (See the discussion in Section I1.7.)
Extrapolation from nucleon-nuclear scattering to these off-the-energy-shell
values is obtained by fitting the energy dependence of the coeflicients A(0) and
a and then continuing that dependence to the required values of the energy.
Another procedure, using the Breit frame, leads to (I1.7.20), in which #(k,k’) is
replaced by

;(Q(l +1/4)+q Q1 + 1/A);q)
2 ’ 2

evaluated at the energy TEP = (1/2m)(Q*(1 + 1/A4)* + ¢?). In most of the results
to be reported below, only the A and C coefficients enter into o), since the
spin of the target nuclei selected is zero. The bilinear terms in spin (B, D, E, F)
do contribute to the second-order terms. However, they are generally neglected

in the calculation of second-order effects.

*Note that Wallace’s D is proportional to our E and his E to our D.



744 HIGH-ENERGY NUCLEAR PHENOMENA

Despite many caveats referred to above, the agreement of the first-order
multiple scattering theory with elastic scattering of protons by spin-zero nuclei
at sufficiently high energy is excellent, as one can see from Fig. I1.8.2. This is
because the nucleon—nucleus amplitude is not sensitive to the details of the
transition matrix for nucleon-nucleon scattering for relatively small values of
q. The first-order potential is a product of the nucleon—-nucleon 7 and the nuclear
p. Since f is generated by a short-range force, it will change slowly with g. On
the other hand, 5(q) will be sharply peaked at ¢ =0, with the consequence that
only values of f near g =0 will be important. The cross section near g =0 will
then be a diffraction pattern given by j(q) whose minima and maxima reflect
the value of the nuclear radius. Their positions are stable against the inclusion
of various effects, such as those generated by the second-order potential. Many
effects are present for larger-angle scattering. In addition to correlations, there
are the corrections arising from the various approximations used to obtain the
simple formula (3.1) and of course the uncertainties in 5(q) and #(q). A systematic
treatment of the correlations, including those originating in the Pauli exclusion
principle, in the center-of-mass correlation and in the spin and space correlations
in the target nucleus has been given by L. Ray and G. W. Hoffmann and their
associates. [ See, for example, Ray (79); see also Chaumeaux, Layly, and Schaeffer
(78)] Ray (79) improves upon the treatment of the Pauli correlations by Boridy
and Feshbach (77) by letting k., the Fermi energy, be a function of r reflecting
the spatial dependence of the density, which in a local density approximation
is directly related to k. The major effect of these correlations is to increase the
cross section at the diffraction maxima by an amount that increases with g and
decreases with A (see Table 3.1).

The relative importance of the various correlations at the maxima is shown
in Table 3.2. We see from the table that the most important correlation effect
is produced by the Pauli exclusion principle. Finally, Hoffmann et al. (81) have
pointed out the importance of the spin-orbit coupling that arises from the
interaction of the magnetic moment of the incident proton and the Coulomb
field of the target nucleus. Approximately the interaction is given by

_ 0¢ pohc
4T o 2E

(61 3.7

TABLE 3.1 Percent Increase in Cross Section at
Diffraction Maxima

Max, 40Ca 116Qn 208pp
1 13 8 6
2 .18 13 10
3 20 17 14
4 21 18
5 23

Source: Ray (79).
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TABLE 3.2 Relative Importance of the Various
Correlation Corrections”

Correction (%)

Nucleus Pauli SRD PSR- c¢m Pauli-S.O.

40Ca 85 10 —-21 110 -39
1169n 913 116 24 52 —5.7
208pp 922 11.7 = —-28 34 —4.5

%(1) Pauli, because of the exclusion principle; (2) SRD,
short-range correlation; (3) PSR-I, interference between Pauli
and short-range; (4) cm, corrections for transformation from
nuclear center of mass to proton-nucleus center of mass;
(5) Pauli-S.0., Pauli spin-orbit interference. Values are the
percentages of the total increase in the height of the maxima in
the angular distribution.

where ¢ is the nuclear electrostatic potential and g, is the proton magnetic
moment.} The comparison with experiment of the calculated angular
distribution, including only 4 and C terms of (3.4), second-order terms, and
magnetic moment effects, are shown in Fig. 3.2. The incident protons have an
energy of 800 MeV; the target nuclei are *°O, “°Ca, and 2°®Pb. The proton
density is taken from electron scattering while the neutron density is calculated
according to the following recipe:

Pa(r) = pp(r) + L) — pp(r) Jurn (3.8)

where the densities within brackets is taken from Hartree—Fock-Bogoliubov
calculations [ Dechargé et al. (81)]. Agreement is good except that as is especially
noticeable in the lead case, the predicted diffraction oscillations are out of phase
with experiment at the larger scattering angles.

One need not use (3.8) but rather determine the neutron density from
experiment. A check on the method used is obtained by comparing the proton
density difference obtained using polarized elastic scattering with that obtained
using electron elastic scattering from “Ca and **Fe. In first approximation the
neutron densities are the same, so that the differences in the proton densities
can be obtained. The results are shown in Fig. 3.3. Agreement is quite good,
especially in the region of large r when both experiments have smaller uncertain-
ties. At smaller r the uncertainties are much larger, so that the agreement is less
significant. Examples of the neutron densities determined by proton scattering
in comparison with that obtained from Negele’s density matrix expansion
(DME) are shown in Fig. 3.4. Reasonable agreement is obtained.

'Hoffmann et al. (81) use a more accurate expression which is valid relativistically and takes the
nucleon form factors into account.
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F1G. 3.3. Comparison of the proton density differences between Fe and Ca obtain by
analysis of 800-MeV proton elastic scattering (outer band) with that obtained by
electromagnetic measurements (inner shaded band). [From Ray and Hoffmann (83).]

We consider next the two independent polarization observables, Q, the spin
rotation, and A, the analyzing power, which by time reversal equals P in
(V.2.52). These provide a more subtle test of our understanding of the elastic
scattering of protons by nuclei. In particular, they are more sensitive in the
angular regions covered by the minima in the angular distributions. In Fig. 3.5
we present first-order KMT calculations of the analyzing power, the
second-order KMT (i.e., including correlations), and finally, calculations that
include the magnetic moment effect [Eq. (3.7)] designated by MM. The data
points are obtained with polarized 800-MeV proton beams available at LAMPF.
The target nuclei are 60, 4°Ca, and 2°®Pb. We see that the correlation effects
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are quite large and for the case of '°O are sufficient to bring the calculation
and experiment into substantial agreement. For “°Ca and especially for 2°Pb,
the magnetic moment effect plays an important role. Generally, the first-order
KMT does not give sufficient structure; terms “proportional” to p? and the
magnetic moment modification of the spin-orbit term are necessary. Both of
these act to break the correlation between the numerator in the expression for
the polarization and the angular distribution that is in the denominator. A
similar story prevails for the spin-rotation parameter Q, as illustrated by Fig. 3.6.
In these cases correlation effects are not significant; the improvement on KMT
is largely carried by the magnetic moment interaction. The agreement with the
data is quite good, although there are substantial deviations in the Q for the
40Ca target.

These polarization tests of the KMT theory are incomplete, since the effects
of the spin—spin terms in the t matrix may be appreciable [Feshbach (90)].
However, detailed calculations that would show how these effects affect the
polarization observables are not available [except for a calculation of Q for
“He by Parmentola and Feshbach (82)].

Another approach to nucleon—nucleus scattering is referred to as the relativ-
istic impulse approximation. We shall only sketch this procedure. For more
details and references, we refer the reader to a review by Wallace (87). Very
briefly, a relativistic transition operator for the nucleon—nucleon interaction is
taken to be

tp=fo+ fVDVE + [0 )00 + LSOV + frey Sy (39
The equivalent Schréodinger form, ¢, is obtained from the equation

121(l‘lp Sll)az(klz’ Slz)tnal(kl, sy)uy(k,,s;)

= XI(k'psrl)X;(k’ vslz)ts(kla s xiky,sy)xa(ks,s5) (3.10)

where u(k, s) is the four-component plane wave solution of the Dirac equation
and y(k, s) is a two-component Pauli plane wave spinor. The process described
by (3.10) is one in which particle 1 makes the transition from momentum ki,
spin s, to momentum k,, spin s} with a similarly indicated change for particle
2. For a detailed discussion of this transformation, see McNeil, Ray, and Wallace
(83) and Ray and Hoffmann (85). The resulting amplitude must be folded into
the appropriate nuclear density functions. These must be relativistic in origin
and are obtained from relativistic theories of the nucleus such as those proposed
by Walecka [Serot and Walecka (86) or Celenza and Shakin (86)]. The first of
these is a o(scalar)-w (vector) model treated by a mean field approximation.
The second is a relativistic Breuckner—Hartree—~Fock approximation starting
with a relativistic nucleon-nucleon force taken from a meson exchange model.
The resulting one-body Dirac equation describing nucleon—nucleus scattering
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is, according to Ray and Hoffmann (85),
{ca'p + Bmc* + Ur)]+ [Uy(r) + Ugy,i(n)]
o K, 0
—zBa~r|:2UT(r)+—pT UCoul(r):|}¢=E¢>. (3.11)
2m or

In this equation Ug, U,, and Uy are the scalar, vector, and tensor potentials,
K, is the proton anomalous magnetic moment, and E is the total relativistic
energy of the proton in the proton—target nucleus center-of-mass frame. It is
found that U, has a small effect on the scattering so that it is omitted in the
calculations reported below. Equation (3.11) is remarkably similar to the
relativistic model discussed in Chapter V. The results obtained with the RIA
agree with the empirical results of that model as demonstrated in Fig. 3.7. With
these assumptions one obtains the angular distributions of Fig. 3.2, labeled
RIAw/AMM. The agreement with experiment is better than KMT for the
target nuclei °Ca and 2°®Pb but not as good as KMT for target nucleus '°O.
In Fig. 3.8 we compare the predictions of the analyzing power, and Fig. 3.9,
the spin rotation, is given for the relativistic theory. From Fig. 3.8 we see that
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FIG. 3.7. Isospin averaged scalar vector (V) potential at nuclear matter density as a
function of the proton kinetic energy. Solid and dashed lines are the predictions of the
relativistic impulse approximation. Filled and open circles are the phenomenological
values for the real and imaginary potentials found by fitting proton scattering data using
the Dirac equation. [From Wallace (87).]
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RIA and KMT differ from experiment in differing ways, but it would be difficult
on this basis to choose one above the other. In Fig. 3.9 the RIAW/AMM result
differs considerably from the 'O experiment, with which second-order
KMT/MM is in substantial agreement (see Fig. 3.6). Agreement with °Ca and
208pp data is good. Overall the sharp difference in the ability of the KMT
and RIA models to match the data, especially that of the rotation spin parameter,
is not repeated at 800 MeV.

The second-order corrections to RIA are severe. This is because one can add
many terms to t, [Eq. (3.9)] that will not contribute to the positive energy
projection, (3.10). As a consequence, t, is ambiguous [Adams and Bleszynski
(84)] since these additional terms can contribute to the second-order potential.
No information on their strength is available from the nucleon-nucleon
amplitude. According to Tj¢n and Wallace (85,87), ¢, can contain 56 terms for
each isospin. Tjon and Wallace reduce the number of independent terms by
invoking relations obtained from a relativistic theory of the nucleon-nucleon
interaction. They thus obtain a fit to nuclear forces as well as to medium-energy
nucleon—nucleon scattering,

4. PROTON “He ELASTIC SCATTERING AND THE EFFECT
OF ISOBAR EXCITATION!?

The angular distribution of 1-GeV protons scattered by “He is shown in
Fig. I.15.2 in deShalit and Feshbach (74). The experimental points shown are
not correct, as shown by subsequent experiments [Geaga et al. (77); Courant
etal. (79)]. The strong diffraction minimum is filled in so that the angular
distribution is flat in the neighborhood of 20° and then drops off quite rapidly.
It 1s not possible to explain these results using only the first-order KMT
potential. This is primarily because to that order the angular distribution is
given by the Fourier transform of the density p(q) for *“He. But p(q) is quite
accurately determined by electron scattering. It is thus essential to consider the
second-order term:

Ak’ dk”
@n)* J 2ny*
—<01F,(k —K")[0> 0|, (k" ~ k)] 0>}

kYLK =(4— 1)2J {<0JZ;(k — k"), (k" — k)0

1
Kl K 4.1
(K| K (4.1)

Here #,(k — k") is the ¢ matrix for the scattering of the proton by the nuclear
nucleon labeled by the subscript. Matrix elements are taken with respect to the

*Wallace (80); Parmentola and Feshbach (82).
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ground state, |0). In the propagator, E is the energy, & an average excitation
energy, V" the first-order potential, and K the kinetic energy operator for the
incident proton in the nucleon—nucleus center-of-mass system. When the effect
of V@ is evaluated (as, indeed, one must because of the center-of-mass
correlations), including dynamical and Pauli correlations and including the
entire expression for the nucleon—nucleon matrix, (3.4), using the Wallace-
Alexander parametrization (Table I1.8.1) there are substantial changes but the
diffraction minimum remains.

A possible remedy suggested by Ikeda (72) and exploited by Alexander and
Wallace (72) is isobar excitation, which can also contribute to V®. In this
process the incident proton in scattering by a nucleon is transformed into a A
and in its second scattering deexcited to a proton. Note that the second scattering
must involve a second and different nucleon to avoid double counting. De-
excitations by the nucleon that produced the excitation have already been
included in the nucleon-nucleon transition. Thus in (4.1), £;Z, should be
rewritten

f1f,=f(NN; > NN ){,(NN,>NN,)+1,(NN,>AN)[,(AN,—>NN,) (42)

The second term is new. The amplitude f(NN,— AN,) corresponding to
(NN, - AN,) in the nucleon-nucleon reference frame is parametrized by

f(NN,—>AN,)= f(0)e 296, -St," T 4.3)

where S and T are  spin and isospin operators (S? = £2). In principle, f should
be chosen so as to yield the observed cross section for A production in
nucleon—nucleon scattering. At 1 GeV the isobar production cross section is
substantial (~22mb). A fit to the data in the form given by (4.3) has been
obtained by Chadwick et al. (62). Parmentola takes

f(0)=7iD,(0)
A~ 5“,
with
B_=D_=E =0

that is, assuming that B', D" and E’' do not depend on isospin yields (Fig. 4.1).

Two points should be noted. One is that a corollary of the isobar excitation
is the existence of three-body forces in nuclei. The impact on our understanding
of the binding energy of nuclei, especially the three-body systems, has not been
calculated. Second, since the expectation value of (4.3) with respect to spin is
zero for zero-spin nuclei, one will find that the isobar addition to V® for
zero-spin nuclei will decrease like 1/4 with increasing A. It thus will not be of
importance for the angular distributions for proton—nucleus scattering for the
heavier nuclei.
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FIG. 4.1. Elastic differential p-*He, E(p)=1.03GeV cross section compared to the
predictions of multiple scattering theory including the effects of the isobar A. [From
Parmentola and Feshbach (82).]

5. REACTIONS INDUCED BY MEDIUM-ENERGY PROTONS

Reactions, such as inelastic scattering, quasi-elastic scattering, and particle
transfer, have all been treated theoretically using the DWA of Chapter V and
VI. The matrix element between the initial |a) and |b) nuclear states is given

by [see (3.1)]

A—1
V=" (b1} tilay (5.1)

To obtain the 4 matrix for the reaction one calculates the matrix element ¥,
between the initial state of the projectile and the final state of the emerging
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system. The reader is referred back to Chapters V and VI for the details. There
is one simplification: namely, for forward scattering and production one can
neglect the Pauli principle between the projectile and target.

The DWA has been applied successfully to inelastic scattering leading to
excitation of collective levels [see, for example, Chaumeaux, Layly, and Schaeffer
(78) and Blanpied, Ritchie, et al. (88)]. The potential ¥”,, may be expressed in
terms of the transition density:

A—1
Y e = .[drl cedr Y F(ryory) "A""Zfi("i,ro)‘//a(rl T 4)

=(4- I)J‘dlﬁ Pralr1)t;(ry, 1) (5.1
where

Pra(ry) = Jlﬁi‘(rl o E YTy T )y (5:2)

If we employ only the component of ¢, independent of the proton spin, the
angular momentum transfer in the reaction will be orbital. If the angular
momentum transfer is /, the only component of the p,, that will be effective is
proportional to Y,,(r,), leading to the definition

Prat(r1) = JY;(T1)Pba(r1)df1 (5.3)

The quantities p,,(r,) and p,, ,(r,) are referred to as transition densities. The
proton transition density can be determined from inelastic electron scattering.
High-energy proton scattering will permit the additional study of the neutron
transition density. Ray and Hoffmann (83) use two forms for the transition
density

Paa=E1f'(r) (5.4
where ¢, is a parameter and f is given by the forms

1
1 + ez

)=

two parameters (5.5)

or

1+ wr?/c?
| 4 et =D

fry=

three parameters (5.6)

The parameters now include ¢, z, and w. The constants in each of these forms
are chosen as to give a best fit to the data. The consequent f,,, can then be
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FIG. 5.1. Experimental data and best KMT fit for 800-MeV (p, p) to the 2.61-MeV 3~
state in 2°®Pb. [From Ray and Hoffmann (83).]

compared with the results of a microscopic calculation. The best fit using the
two-parameter form for the reaction 2°8Pb(p, p') exciting the 2.6-MeV, 3~ level
in lead is shown in Fig. 5.1. The fit is excellent. A similar fit is obtained with
the three-parameter form. However, these do not give identical neutron
transition densities, as one can see from Fig. 5.2. As one can anticipate, the two
transition densities are identical in the surface region but differ substantially in
the interior, indicating the insensitivity of the experimental data to the interior
values. This insensitivity is a consequence of the absorption of the incident
proton wave.

One can go beyond the DWA and use, for example, the method of coupled
channels described in Chapter VII. Such a treatment is useful and practical
when the excited levels are collective. It has been applied to such excitations
in a series of papers by Blanpied et al. with moderate success. References to
these articles are given in Blanpied (88). One noteworthy feature uncovered by
these investigations is the need to increase the number of channels in the
calculation as the angular range increases. Other methods make use of the
Glauber representation and group properties of the exponential exp(— | V dx).
Bassichis, Feshbach, and Reading (11) treat the vibrational case, while Ginocchio
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FIG. 5.2. Deduced neutron transition density for the 2.61 MeV 3~ state in 2°5Pb. The
two-parameter Fermi (2pF) and three-parameter (3pG) forms are shown. [From Ray and
Hoffmann (83).]

et al [see the review by Ginocchio and Wenes (86)] generalize to deformed
nuclei using the Hamiltonian of the interacting boson model.

It is expected that there is a close relation between the elastic and inelastic
cross sections in high-energy reactions when the excited states are low-lying
collective models. One should recall that connection established by Austern
and Blair (65) at lower energies (see Chapter V). At the higher energies under
consideration in this chapter it is again possible to express the inelastic scattering
cross section for excitation of a collective state in terms of the elastic scattering
cross section. Use is made of the eikonal approximation to the initial and final
state projectile wave functions and of the Tassie (56) parametrization of the

matrix element, which is appropriate for collective state excitation. That approxi-
mation yields [see (I1.5.7)

Yy, = e'tTel (5.7)
where

1= — i 3 U(b,z')dz’ (5.8)

But from (11.4.30.)

U= —d4n(4—1)p(f(0))
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where f(0)is the scattering amplitude evaluated at 0°. From the optical theorem

4
- f Im f(0°) (5.9)
so that

f(0)= k or(r+1i) (5.10)
47
where r is the ratio of Re f to Im f. Then
iy =T =i - 1)fm p(z.b)dz = — g(b) = — y1(b)
t(b)zjg0 p(z,b)dz (5.11)

— o0

The amplitude for inelastic scattering exciting a level with spin L, z projection
M, and parity 7 is

1 E+mc?
4n  h3c?

eI ITM| V070 dr  (5.12)

Jin(0%,0 17, M)

Following the discussion of Amado, Lenz, McNeil, and Sparrow (80), one notes
that because of the transformation properties of |I*, M) and |07,0), it follows
that

A™Mt(r,r)]070) = I™M|V]070) = f1(r)P p(8)e™? (5.13)

where P, are the associated Legendre polynomials. In addition, Amado, Lenz,
McNeil, and Sparrow (80) use the Tassie parametrization (56), where

dp
R B St
I 17 dr

(5.14)

The parameter 4, can be related to the transition probabilities (BEI) obtained
from an analysis of inelastic electron scattering using the Tassie form [see, e.g.,
Heisenberg, McCarthy, and Sick (71)]. Substituting (5.13) and (5.14) in (5.12),
replacing approximately q-r by g-b, and integrating over ¢ yields

1 E ©
S0, 051 M)= — 1, —h*;";;‘:r“‘f Jylgb)b db e o®

2
J ( -1dp )P,M(S) (5.15)
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Note that P,,, is a polynomial in z"b' ~"/r'; n is odd if (I + M) is odd, even if
(I+ M) is even. Multiplying by r'~'dp/dr yields z"b'"[(1/r)(dp/dr)]. The
integrand in the z integral of (5.15) is thus odd if n is odd and thus will vanish
for odd (I + M). This result was obtained earlier in (V.4.20). We shall now
restrict the discussion to the I = 1 case for illustrative purposes. The details for
the general values of I are given in Amado, Lenz, McNeil, and Sparrow (80)
and the review article by Amado (85). We are then concerned with only
fin(0",0>17, +1). For M =1, we need P, = — (3/8n)"/2b/r, so that

1. E+mc?( 3\V2 [ © 1dp
(0T, 01" M)=— A, ————| =— J(gb)e 9 ®b% db dz——
fm( - ) 21 1 thz (87[) J‘O l(q )e J zrdr

—

The z integral can be reduced by noting that (1/r)(dp/dr) =(1/zdp/dz) and

é [~ — *® 1ldp
— dzp(\ /22 +b*)=b dz——
obJ_, 2pJZ 467 J zrdr

Therefore,

2 1/21 o©
fi“(w’o_’l_’”:%i‘“—mc(i) _.[ del(qb)e‘g“”bZ_Z
!

2.2 )
hc 8n 0

1, E+mc?/3 ””J“"’ d .
L (0Y,001" ,)=—4, ———| — - bdbJ (gh)—(1 — e~ 9"
fln( - ) 2’ 1 hZCZ (87[) '}' 0 1(q )db( )
Integrating by parts yiclds
i E+4+mc?(3 ”ij‘”
07,017, )==-A,——— | — = bdbJy(gh)(1 —e 9®
Sl ) S (87:) v ) o(gb)( )

But the clastic scattering amplitude is

[ =ik '[w Jolgh)(1 — e ¥™b db

0

so that

1 3\'?E+mc*q
in 0+’0 l—,l :—A () I A C )
f1a(07,0517,1) 31 &2 Wet ok

Finally, adding in the M = — 1 case, we obtain?

_ 3 ¢* (A, E+mc*\?
0in(0" — 1 )=16—HF<7W Oo (5.16)

{This equation and (5.17) differ from the Amado et al. result because of differing normalizations.
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Amado, Lenz, McNeil, and Sparrow (80) have derived the relationship between
the elastic and inelastic cross section for arbitrary L. It is

6 (0% - %) = (,1,)2 21 + 13(2)”_1) g)z(ﬁ mc? 262na01/R6e1(6+ &)
y 4n k h?c? kR

.17

where R + ina = Bye*® and @, = (I — 1)¢ + 5, where =0 for odd L and 7/2 for
even L, where p is given by po[1 + exp((r — R)/a)]~ *. Comparison of (5.17) with
experiment is illustrated in Fig. 5.3. Excellent agreement is obtained. [See also
Feshbach and Boridy (74) for the KMT result.] The success of Tassie expression
(5.14) indicates that the interactions responsible for the inelastic scattering occur
in the surface. This is not surprising since the central potential is so strongly
absorptive (see Fig. I1.8.1).

Amado (85) also discusses the properties of the polarization parameters for
elastic scattering. These turn out to be sensitive to the radial dependence of the
spin-orbit terms. A difference in the radial dependence given by the nuclear
density results in substantial differences in the polarization. We have already
observed this phenomena earlier in this chapter (see Section 3). There one found
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FIG. 5.3. Inelastic cross sections obtained from elastic scattering data (solid lines)
compared with experiment. [From Amado (85).]
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that adding in the interaction between the proton magnetic moment and the
Coulomb field of the nucleus introduced oscillations into the asymmetry, for
example, which brought the predictions in line with experiment. The reason for
this sensitivity lies in the fact that the polarization parameters are ratios of
various measured quantities to the differential cross section. For given
interaction there can be correlations between the angular dependence of the
numerator and that of the denominator. For example, at low energies there is
the result obtained by Hiifner and de Shalit (65) that the polarization is
proportional to the angular derivative of the angular distribution. At the higher
energies, the nonoscillating behavior of the asymmetry (or Q) at the smaller
angle must be a consequence of such a correlation. Adding in the magnetic
moment Coulomb interaction or modifying the radial dependence in Amado’s
discussion destroyed the correlation since the angular distribution is not
substantially modified by these changes. The oscillations of the numerator and
the denominator are no longer in phase, so that new oscillations appear.

6. THE (p,2p) REACTION!

The objectives of the studies of this process are similar to those of the study of
the (e, e’'p) reaction—namely, to obtain information with regard to the hole state
formed upon ejection of a target proton. In addition, one can hope to form
some insight into the effect of the nuclear medium on the proton—proton
interaction. There are substantial differences from the electron-induced reaction.
Most important is the strong absorptive proton—nucleus interaction, which is
to be compared with that of the relatively weak electron—nucleus interaction.
In addition, the electron—proton interaction differs in character from that
governing the proton—proton system.

The development to be presented here is suggested by the procedure used
to discuss the (e, €'p) reaction discussed earlier in this chapter. This is not the
traditional procedure. I refer the reader to the reviews by Barrett and Jackson
(77) and Kitching, McDonald, Maris, and Vasconcellos (85) for a description
of that procedure. The model to be used is shown in Fig. 6.1 (compare with

proton
Kp=K,-d
oroton ke : proton
& M‘a <
nucleus — Residual nucleus

-k
FIG. 6.1. The (p,2p) reaction.

*Barrett and Jackson (77); Kitching, McDonald, Maris, Vasconcellos (85).
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Fig. 2.17). The incident proton with momentum k, interacts with a target proton
with momentum k whose momentum and energy are increased by q and hw,
respectively. The scattered incident proton has the momentum k, =k, —q. The
residual nucleus will have a momentum of — k but may be excited to an energy
¢. The model assumes that we are dealing with a single-step direct reaction.
Conservation of energy requires that

h? h? h? h*
hw:—kf——(kl—-q)zz—(kl-q)——qz (6.1)
2m 2m m 2m
and
2 2k2
ho=¢+ —h—(k+q)2— Wk (6.2)
2m 2m

By measuring k, and (k + q), one can obtain &. Figure 6.2 shows a plot of the
cross section versus ¢ for the reaction °O(p, 2p)' °N, for incident proton energy
of 460 MeV. The hole states s;,3, p; /3, and py; are clearly visible. A summary
of the results obtained using a variety of targets is shown in Fig. 6.3.
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FIG. 6.2. Energy spectrum and angular correlations for the reaction '*O(p, 2p)!*N. The
dashed lines are calculated results multiplied by the indicated factor. [From Kitching,
McDonald, Maris, and Vasconcellos (85).]
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FIG. 6.3. Momentum distributions for the reaction Be(e, ¢'p)8Li. The p and s states are
at E~15 and 25MeV, respectively. [From Kitching, McDonald, Maris, and
Vasconcellos (85).]

The cross section for the inclusive (p, 2p) process is

d*c &2 —m3c* P
dE,dQ, [2nh2c2Ew>]

XZI(X T(ko)¢ VW)Y (A — Da@@)] X k)12

x 8(E,— E,) (6.3)

where & is the energy of the incident proton E{” plus the proton rest mass mc?,
E,— E;=EP — (h*/2m)k% — (h*/2m)k? — ¢, neglecting the recoil kinetic energy
of the residual nucleus. The initial and final nuclear wave functions are ¥; and
¥, respectively. If we drop the spin-dependent terms in ¢(q) and assume that
t(q) varies so slowly that it can be removed from the matrix element in (6.3),
we have

d?c & —mct P
dE,dQ, [mz@:l I H@r ) 124 — 1)
L

x 21K )Y 1p¥ > PH(E, ~ E/)

The first two factors can be combined to give an effective pp cross section,
do'P/dE, dQ,. It is not identical to the free proton—proton cross section since
x: and x, are distorted waves as a consequence of their interaction with the
target and residual nuclei, respectively. The factor that remains is just R;, the
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longitudinal response function of (2.118a). Therefore,

2 24(p.p)
d’¢  d'ol;

- = A—1)°R 6.4
dQ, dE, dQZdEZ( Ry (64)

relating the inclusive (e,e’P) and (p,2p) cross sections. If one includes the
spin-dependent terms, one will obtain other response functions which are also
present in the expression for (e, € p) polarization parameters.

7. RELATIVISTIC HEAVY IONS

In this section we consider the collision of heavy ions with nuclei with energies
of the order of 1GeV/A. These experiments have been for the most part
performed at the Bevalac, the heavy-ion accelerator at the Lawrence Berkeley
Laboratory, which produces beams of heavy ions with a maximum energy of
2.1GeV/A. In Section 8 we briefly discuss collisions of protons and heavy ions
with energies in the hundreds of GeV/A range. These are referred to as ultra-
relativistic heavy ions.

Experimentally, two types of collisions could be differentiated, the peripheral
and the central. In the first of these, the fragments move with nearly the same
velocity as the incident projectile, and nearly in the forward direction in the
laboratory reference frame. These fragments were ejected from the incident
projectile by its interaction with the target nucleus. The impact parameter for
these collisions are relatively large; the momentum transfer relatively small. The
central collision is characterized by a high multiplicity, as one would intuitively
expect. This is illustrated by Fig. 7.1, obtained by the internuclear cascade
method. We see that high multiplicity is present for relatively small impact
parameters, the nuclei “exploding” upon collision. This multiparticle final state
involving many particles is a new feature that makes its appearance at relativistic
energies (and at ultrarelativistic energies for even nucleon—nucleon collisions).

A. Peripheral Collisions

Peripheral collisions will be discussed first. As we shall see, this is essentially a
low-energy phenomenon that can be understood rather directly in terms of
small energy and momentum transfers to the projectile nucleus. Let us
summarize the experimental facts obtained by experiments performed at the
Bevalac facility. Experiments were performed with a beam of energetic projectiles
(e.g, 1°0) at energies of 1.05GeV/4 and 2.1 GeV/A. Inclusive cross sections, that
is, cross sections for the production of a particular nuclear fragment without a
determination of the correlated production of other fragments, were measured.
The results obtained are most simply expressed with respect to the projectile
frame of reference defined as that frame in which the incident projectile is at
rest and the target nuclei effectively form the incident beam.
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|
2 4 3 8
Impact parameter[fm]

FIG. 7.1. Ratio of the multiplicity-selected proton inclusive cross section to the total
proton inclusive cross section as a function of impact parameter. The solid line represents
the o, ,,/0,,, ratio for *°Ne + 2*®U at E/A = 400 MeV and the dashed line represents
the ratio o, /o, for the same reaction. The dashed-dotted line represents the ratio

G s 20/, fOT ‘“’Ar + “°Ca at E/A = 1050 MeV and the dotted line represents the ratio

Crhes/Oy for the same reaction. [From Yariv and Fraenkel (81).]

1. In the projectile frame, the momentum of a fragment is relatively small.
For example, if the target nucleus is Pb, its momentum in the projectile
frame is 208 x 2.9 ~ 601 GeV/c when the projectile has an energy of
2.1GeV/A. The longitudinal-momentum, p,, distribution of '°Be
fragments produced by fragmentation of the projectile, '2C, in the
projectile frame is shown in Fig. 7.2. We see that the '°Be average
longitudinal momentum is only about 50 MeV/c, while the dispersion of
the p, distribution is about 100 MeV/c, which should be compared with the
601,000 MeV/c carried by the Pb nucleus. Thus a very small fraction
(10™*) of the momentum of the lead nucleus is transferred to the projectile.

2. The distribution, w(p,, py), in the longitudinal, p,, and transverse, py,
components of the momentum is Gaussian in each. Empirically, one finds
that

1 _ 1
o(pL, Pr) ~exp{—|:5<7—2(pL_pL)2 +2?Pi:|} (7.1)
L T

where as mentioned above, p, is generally several tens of MeV/c.
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FIG. 7.2. Longitudinal-momentum distribution in the projectile frame of reference of
the '°Be fragments produced by the fragmentation of a '2C projectile with an energy
of 2.1 GeV/nucleon. [From Greiner, Lindstrom, et al. (75).]

3. The angular distribution is approximately isotropic, that is,
gL~07 (7.2)

However, because of the much greater experimental difficulty in the
determination of the transverse momenta, (7.2) must be considered as
approximate.

4. The dispersion, ¢, is empirically independent of A; (the target mass
number), depending only on A, (the fragment mass number) and A, (the
projectile mass number). This is a first example of independence of the
projectile fragmentation of Ay.

5. A second is given by the fact that the branching ratio for the relative
probability for the production of a fragment type is independent of the
target nucleus. The cross section for the production of a fragment F, upon
the collision of a target T with a projectile P, is found to be

0 :
o\l =agpr'®  where Y }\P =1y, (7.3)
F

P
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The ratio multiplying o,y is the branching ratio for the production of
fragment F.

6. The inclusive cross section g, , is proportional to the radius of the
interaction. Empirically,

G~ AY3 + AY3 038 (7.4)

7. Cross sections and ¢, at 1.05 and 2.1 GeV/A are approximately the same,
indicating within this energy range, independence with respect to the
energy (see Fig. 7.3).

8. The momentum distribution of the emerging protons is not Gaussian. It
is better described by an exponential, exp( — p/p,), where p, ~ 65 MeV/c.

We shall now discuss the momentum distribution of the fragments.
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FIG. 7.3. Lorentz invariant cross section for an « beam of indicated energies fragmenting
to protons versus the proton momentum in the projectile rest frame. [From Schroeder

(76).]
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Momentum Distribution of Projectile Fragments. The model we use was
suggested by Feshbach and Huang (73). The derivation employed below follows
essentially that of Goldhaber (74b). The model assumes that the fragment of
mass number Ay is formed from the projectile of mass Ap by removing the
binding of a group of Ay nucleons. The net momentum Py of the fragment is
then obtained by adding up the momentum of each of these nucleons. The
value of P will vary according to which group of A nucleons is selected from
the projectile giving rise to a distribution in Pp. If the mean-square momentum
of a nucleon in the projectile is {p?», the mean-square value of P, is, according
to a simple statistical consideration,? given by Az{p?>. The distribution in P,
following again from statistical considerations, is Gaussian® at least in the
neighborhood of the maximum of the distribution. This occurs near Pp =0,
since the average momentum of the fragments is so close to zero. Note that
this model automatically assumes that the projectile fragment distribution does
not depend on the nature of the target.

Suppose then that the projectiles breaks up into fragments of mass number
A;, so that

YAi=Ap (7.5)
Let the momentum of each fragment be P, Assume that the distribution of

momenta for the ith fragment depends only on P, and is Gaussian. Then the
momentum distribution, w, for a given set of A4, is

ip?
wP,,P,,..)~ HCXP[_A.J@‘Z):[ (7.6)

To obtain the observed inclusive momentum distribution, we must integrate
over all momenta except that of the observed fragment, say A4,, subject to the
condition

Y P, =0 (7.7

As shown by experiment, the average momentum of a projectile fragment in
the projectile frame of reference is very small, justifying (7.7) to some extent.

*Assume that Pp = 3°p,, where p, are the momenta of the nucleons making up the fragment. Then
P: =3 pj + X, #+Pu" Py Averaging over the momentum distribution of the projectile nucleons, we find
that 3, «,p,p,> =0. Hence

P2y — <zp§> — A

$This result follows simply from the assumption that the momentum distribution is symmetric
about the maximum.
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Hence the single-fragment distribution, w(P,), is given by
P, = Jw(Pl,PZ,...)é(ZPi) dp,--- (7.8)

This integral may be easily performed to yield

P
o(Py) ~exp ( — %3) (7.9)
where
o =3y 4, 1.10)
A,

If we adopt the Fermi-gas model as a description of the projectile nucleus,

PPy =13p} (7.11)

(M
=

where py is the Fermi momentum.

The experimental results are shown in Fig. 7.4. As can be seen from the
figure, the dependence of ¢ on A, and Ay, given by (7.10), is verified by
experimental data. However, those data yield a value for py [according to (7.10)]
equal to 190 Mev/c, whereas the value of pr determined from quasi-elastic
electron scattering is, for '°0, given by 225 MeV/c. As suggested by Hiifner,
this discrepancy may occur because fragmentation occurs only after the emission
of a number of nucleons. The fragmenting nucleus is not !°O but a lighter
nucleus with a correspondingly lower value of py.

The distribution given by (7.6) can also be used to calculate the angular
correlation between two fragments, 4, and A4,, which exists in virtue of (7.7).
One obtains

2 1 Ap—A Ap— A
o(P,,P,)~exp| — proE 2 p2TF T oP-P,
3p*) Ap— A, — A, A, A,

This implies a greater probability for the two fragments to go off in opposite
directions. Determination of this angular correlation would provide a test of
the independence hypothesis as formalized by (7.6). It appears, however, to be
very difficult to carry out this experiment.

The Nuclear Welszédcker—Williams Method [Feshbach and Zabek (77)]. The
Weiszicker—Williams method relates the reaction cross section induced by a
charged particle to that induced by a distribution of photons. The electro-
magnetic field of a rapidly moving charged particle can be shown to be
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FIG. 7.4. Target averaged values of the dispersion ¢ of the longitudinal-momentum
distribution in the projectile frame. The plotted numeral gives the charge of the fragment.
The projectile is 180 with an energy of 2.1 GeV/nucleon. The solid line is a best fit using
(7.10). [From Greiner, Lindstrom, et al. (75).]

approximately equivalent to a beam of photons with the frequency distribution
2 d
n(w)do = 2 (20?22 (7.12)
n )

where Z is the charge of the particle and « is the fine-structure constant. The
cross section for the reaction induced by a charged particle is then given in terms
of the cross section ¢ (w) for the photon-induced reaction by

o= -[n(w)ay(w) do = g(Zoc)2 JM dw (7.13)
n w

In this section a theory of the fragmentation of a relativistic heavy-ion
projectile will be developed. The expression for the cross section which will be
obtained will have a structure similar to that of (7.13), so that the theory will
be referred to as the nuclear Weiszicker—Williams method.

The projectile reference frame will be used. In that frame it will be assumed
that the target nucleus travels without deviation and without internal excitation
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in a straight line. This assumption is indicated by experimental result (1), which
demonstrates that the momentum transferred to the projectile nucleus by the
target nucleus is small. It is identical with the assumptions made in developing
the electromagnetic Weiszacker—Williams result. However, after the target nuclei
have penetrated into the projectile a distance 4 approximately equal to a nucleon
mean free path, a strong collision with large momentum transfer will occur.
This collision will not contribute to the process being considered, since the
reaction products will fall outside the small forward cone where the fragments
were detected. This competitive process is taken into account by assuming that
the probability of finding the target nucleus intact attentuates during the
collision with a scale measured by the mean free path 4.

It i1s assumed that the collision is peripheral. This result is implied very
directly by experimental result 6, as given by (7.4). The mean free path A used
is the value valid on the surface region of the interacting nuclei.

A qualitative description of the consequences of these assumptions can be
given. The projectile nucleon feel a pulse of force as the target nucleus passes
by. The duration of the pulse, 7, is given by the scale, 4, Lorentz contracted to
A/, divided by the velocity of the projectile, v, which is very close to c, the
velocity of light. Thus

i~ (7.14)

_(1 Uz>-1/2_ E
’= c? 7mAT

where v is the velocity of the target and E its energy. From the duration of the
pulse one can calculate the maximum? energy transfer A, that can occur:

where

yhv

feo, ~ - = (7.15)

T

For a target energy of 2.1 GeV/A4 and A = 1.75 fm, the maximum energy transfer
is found from this equation to be 365 MeV. We see immediately that we are in
fact dealing with a comparatively low-energy phenomenon. There will be other
effects to be discussed below, which will reduce the maximum energy transfer
to even considerably lower values.

Following an argument of Guet, Soyeur, Bowlein, and Brown (89), one can
establish a relation between the energy transfer Aw and the longitudinal
momentum transfer Ag;. Let E; and p; be the initial four-momentum of the

*By “maximum” we shall mean the value of hw at which the cross section is 1/e of its value for
very small values of hw.
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target and E, and p; its corresponding final four momentum, so that

ho=E;—E,
and
q=p;—Ps

Then one can immediately obtain

P — (hw)* + ¢* + (M7 — M?})

E; E,

For sufficiently large E; and small momentum and energy transfer, one can
neglect the terms on the right-hand side of this equation so that

or

q.~— (7.16)

The error in approximation leading to (7.16) is on the order of hw/E; and
therefore small.

The maximum value of transverse-momentum transfer, hgy, is determined
by the transverse scale of the target density, namely a, the parameter measuring
the thickness of the nuclear surface. The maximum transverse-momentum
transfer is thus

h
th,c ~ =
a

For a ~ 0.6 fm, Agy . is about 333 MeV/c.

In addition to these cutoffs in g, and g, which come from the shape of the
interacting nuclei, additional cutoffs that have a dynamic origin must be taken
into account. The most obvious of these is the momentum transfer, which the
nucleon—nucleon potential will allow before a substantial reduction in the
amplitude will occur. From the empirical expression for the nucleon~nucleon
amplitude, we find that the nucleon—nucleon potential produces a momentum
cutoff, for both the transverse and longitudinal components, of 370 MeV/c.

The two factors so far described, the geometric factor and the potential factor,
when combined, yield a momentum cutoff for both components of about
260MeV/c.

Finally, it is necessary to consider the ability of the projectile nucleus to
absorb the energy Aw and the momentum #q. If the energy is absorbed by a
single nucleon, it will be very far off the energy shell. If it absorbs the full energy
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haw, it will have a momentum . /2mhw. This, however, is very much larger than
the momentum transferred, which, as we have seen, is on the order of Aw/c, that is,

./2mhw>>fﬂ
C

or
how

2me

«1 717

2

This inequality is satisfied by the hw of interest, that is, hw < 260 MeV. The
absorbing nucleon must therefore interact with a second nucleon in the
projectile. This absorption by two nucleons can proceed because it is then
possible to conserve both momentum and energy. The momenta of the two
nucleons will be opposite and nearly equal, so that the total momentum is
small, but the total energy will be a sum of the energies of each nucleon.

The probability for two-nucleon absorption will therefore depend critically
on the correlation length r, the mean distance between the first nucleon and
the second. From the uncertainty principle, the lifetime of the nucleon absorbing
the momentum and energy is on the order of 1/w. This nucleon moves with a

velocityrequal to /(2/m)hw and thus covers in the time 1/w the distance
\/ 2h/mw. This distance must be of the order of or greater than r.:

2h 1/2
(¥) >r,
mw

2h?

mr,

or

If we take r. as 1/2(h/m,c), one-half of the pion Compton wavelength, this
inequality becomes

ho < 165 MeV (7.19

Combining this result with the geometric and interaction potential gives a
longitudinal-momentum cutoff of 139MeV/c, of the same order as the
experimental value. It also implies a maximum value of the energy that can be
transferred to the projectile equal to 139 MeV. This energy is split between the
two absorbing nucleons, so that the cutoff energy for one of these nucleons is
approximately 70 MeV and the cutoff momentum on the order of 70 MeV/c.}

*It has been suggested by Goldhaber that in addition to the two-nucleon mechanism, there is the
possibility of nucleon excitation to form a A. However, the momentum change would then be on
the order of 300 MeV/c. This combined with the other factors would yield a cutoff of 190 MeV/c,
which would be too large to explain the fragmentation data. However, as Guet, Soyeur, Bowlein,
and Brown (89) have shown, it is an important mechanism for pion production.
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The low value of the momentum transferred ( ~ Aw/c) indicates that the
angular distribution of the nucleons will be roughly isotropic in the projectile
frame. In the collision of the two nucleons as discussed above, their final linear
momentum is Aw/c, so that their angular momentum /4 is on the order of
(hw/c)r,. Hence '

h
1< e (7.20)
hc
Inserting a maximum value for #w of 139 MeV and r.=0.7fm yields
I<0.5 (7.21)

demonstrating that for nearly all values of Aw the angular distribution of the
nucleon pair will be isotropic.?

These qualitative considerations provide a simple explanation of the projectile
fragmentation as a consequence of the action of the “fringing field” of the target
nucleus as it moves past the projectile. Our principal conclusion is that the
process is essentially a low-energy phenomenon. The energy of the nucleon
pairs produced is predicted to have the observed order of magnitude. These
nucleons will deposit energy within the projectile nucleus and by that means
fragmenting it. The net maximum momentum that can be transferred is
calculated to be of the experimental order of magnitude. A rough isotropy is
also predicted. Energy dependence in the GeV/A range is weak, since the energy
occurs only in the geometric cutoff given by (7.15). As observed, the cutoff
energy is changed by only a few percent when the heavy-ion energy is changed
from 2.1 GeV/A to 1.05GeV/ A, since the dynamical conditions, (7.18), and the
limits imposed by the nucleon—nucleon potential are energy independent in this
range of energy. Finally, it should be observed that none of the cutoff conditions
depend on the target nucleus. This does indicate that the width of the momentum
distribution of the fragments is independent of the target. It is obviously a
necessary condition for showing that the branching ratios are target nucleus
independent. The quantitative calculation we report below shows that indeed
the nucleon spectrum, and therefore the projectile fragmentation, are target
independent.

We turn now to the nuclear Weiszicker—Williams method. The projectile
frame of reference will be used so that the incident system is the target nucleus.
As in the Coulomb case, the target nucleus is assumed to continue to move in
a straight line along the incident direction. It is also assumed that the interaction
provided by the long-range component of the nuclear field, the fringing field,
is weak. We may therefore use first-order perturbation theory.

*Actual calculation shows, in fact, that this estimate is overgenerous and that the maximum value
of I is considerably smalier than that given by (7.21).
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Let the coordinates of the target nucleus relative to its center of mass be
given by &, and its internal wave functions by y(&). Similarly, the coordinates
of the projectile nucleus relative to its center of mass are given by &, and its
internal wave functions by y/(§p). The vector between the center of mass of each
of the nuclei, r, has components z and b, where z is in the direction of motion
of the target nucleus and b is transverse to that direction.

The wave function of the system has the following form:

¥ = 10(&1) L Wa(Ep)Dy(r, t)e ™45 (7.22)

where y, is the ground-state target wave function, and ¢, describes the internal
states of the projectile and E, their energies. The function @, is the wave function
for the relative motion of the target and projectile. Inserting (7.22) into the
time-dependent Schrodinger equation yields an equation for @

ihd® )
—at—ﬂ = Z<X0¢ﬁ| VIexo) D
waﬂ = Ep b E(z (7‘23)

We now insert the assumption that the z component of the velocity of the target
nucleus is unchanged during the course of the collision:

®, = u(z, t)dy(b, t) (7.24)
with

|u® = d(z — vt) Jlulz dz=1 (7.25)

Inserting (7.24) into (7.23) yields

iho )
"’Tf’? = S | (Vor ul > bulb, e (726
where
(Vprlul?) = _[lezlulzaér dz 1.2

We use first-order perturbation theory to solve (7.26), that in, we assume that
¢, on the right-hand side of (7.26) has its initial value

@.= b4 (7.28)

The probability Py, that the projectile makes a transition from its initial state
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¥; to a final state y; is
2r
e G (7.29)

where hawy; is the energy transfer and

Fp(w)=<PaglUldy> (7.30)
The function U is
Ub,&,, )= ;Jdtefw J.dz JdE,TpT(bT, vz U2V (1.31)
where
1
| A l———
1—v?%/c?

The factor y in (7.31) takes into account the relativistic contraction of length.
Inserting (7.25) for |u|* and integrating over time yields

Ub,&p, ) = ZY;U fdze“”’/” Jdgrpr(br, vzr)V (7.32)

Taking V to be a central potential acting between a nucleon in the target and
a nucleon in the projectile summed over all pairs, V has the general form

V=V{E+&—&) (7.33)
Let
{=z+z7—2p
B=b+b,—b;
Then

Ulb,&p, @) = ﬁe“"“” ’ de Idﬁrei“’“_””"w(br, rz)VE B (7.34)

demonstrating that the longitudinal momentum transferred to a projectile
nucleon is fw/v. Finally, from (7.30) it is necessary to evaluate {¢4|U|o,>.
Taking ¢; from (7.28) and

Py =e™? (7.35)

where k is the transverse momentum transfer, one obtains

1 . -
(DU s> = e"“”’”-"""”ﬁr(k’— 2) V(‘kﬂ) (7.36)
2nv yv v
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where the tilde indicates the Fourier transform, so that
% wl —ikB+inl/v
VI —k,— |= | V(P,{e dap d; (7.37)
v

As a consequence of these results the matrix element F ; factorizes into a product
of two terms, one of which depends only on the properties of the projectile, the
other on those of the target.

Fp= F;,‘?( - k,9>F‘T>(k,9)
v v

1 _
F‘T)(k,‘ﬁ)z—ﬁr(k,— w)V<~k,9) (7.38)
v 2nv YU v

FPQ) =Yyl ) q= (— k%) (7.39)

where

The projectile factor involves a sum over the projectile nucleon coordinates
and thus equals the projectiles transition density. F™ is independent of the
transition induced in the projectile. From the point of the projectile, the target
acts as a source of “phonons” with momentum q and energy hw. The total
cross section is obtained by integrating the probability that a transition from
Y, to Y, is induced by a phonon of momentum q over the number density of

such phonons. Thus
Fj;;’( - k,g) F(T’(k,9>
v v

where p, is the density of final states. We have therefore referred to this procedure
as the nuclear Weiszidcker—Williams method.

We shall not develop this procedure further, as all that is required is the
calculation of F'T) and F'¥. For details the reader is referred to the original
articles [ Feshbach and Zabek (77); Feshbach (81)]. It is found that the anisotropy
of the angular distribution is governed by a small parameter:

1{mc*\ [hor \*
4\ he he
which equals 0.068 for r.=0.7fm and hw =140 MeV. The cross section is

proportional to A3/3. It is sensitive to the value of the correlation length, r,.
Reasonable values are obtained for r,~0.7.

2
O(w —wg) (740

2

1
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To obtain the partial cross sections, the two particles ejected by the phonon
are followed using cascade theory. Finally, one must add the effect of a single
particle ejection for the total branching ratio. Good agreement with experment
is obtained [Feshbach (81)]. This process has also been treated as an
“abrasion—ablation” process by Hiifner (75) and collaborators. The method
described here has been generalized by Guet, Soyeur, Bowlein, and Brown (89)
and used to discuss subthreshold pion production in 2C-!2C collisions at a
projectile energy of 95 MeV/A.

B. Central Collisions!

A number of different theoretical descriptions of the central, high-multiplicity
collisions have been proposed. Some of these such as the fireball-firestreak
thermal models [ Westfall, Gosset, et al. (76); Myers (78)] and the hydrodynamic
models [Amsden, Harlow, and Niu (77); Amsden, Goldhaber, Harlow, and Niu
(78); Stocker and Greiner (86)] presume the existence of thermal equilibrium.
Others, such as Koonin (77), have shown that a significant fraction of the
observed cross section is a consequence of direct knockout of a preequilibrium
nature. Classical or semiclassical procedures are employed by the models of
Hiifner and Knoll (77), Wilets et al. (77), Bodmer and Panos (77), and finally
the internucleon cascade mode of Yariv and Fraenkel (79,81) and Cugnon
(80, 81). We shall limit the discussion below to a description of the internuclear
cascade model, an important technique that permits detailed calculation of
many of the observed phenomena. None of the models are completely successful,
but the internucleon cascade does quite well for many situations. Perhaps its
most significant failure is the prediction of the directed flow momenta, which
it underestimates by a factor of 2 while the hydrodynamic model errs by its
overestimate of the flow by a factor of 2 [ Stocker and Greiner (86); Cugnon (82)].
The internuclear cascade (INC) follows the passage of a nucleon (or group
of nucleons) through a target nucleus assuming two-body collisions. In one
method [Chen et al. (68); Yariv and Fraenkel (79,81)] the target nucleus is
represented by a continuous fluid whose density is obtained, for example, from
electron scattering. The probability that a target nucleon has a momentum p
at a point r is given by the Fermi-gas distribution corresponding to the density
p(r). Attention is focused on the projectile motion during the time it could travel
a distance A/n, where 1 is an estimated mean free path and n is on the order
of 20. The first step is randomly to select a nucleon from the Fermi gas, which
is to interact with the projectile nucleon. The next step is to determine whether
an interaction occurs within the distance 4/n. Toward that end the probability
of such a collision P(/n) is calculated and compared to a random number {.
If { is less than P, an interaction is assumed to have occurred. If { > P, no
interaction is said to have occurred and the projectile is advanced by a distance
/n and the process is repeated. If there has been an interaction, it will have

*Cugnon (82).
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taken place at a distance from the beginning of the interval given by (/. At
this point the direction of travel of the particle is determined from the known
nucleon—-nucleon angular distribution by a technique similar to that described
above for deciding if an interaction has taken place, that is, the probability for
scattering through a given angle randomly selected is compared with a random
number. The final energies of the colliding nucleons can then be calculated. If
the energy of either of the particles is below the Fermi energy, the interaction
is forbidden so that the momenum of the projectile is unchanged. One now
repeats the process with another Fermi-sea nucleon to see if an interaction takes
place in the remainder of the interval. If the energies of both particles are above
the Fermi energy, the collision is allowed. Their momenta are determined from
the selected scattering angle. The process is then repeated for each nucleon. As
the cascade develops, the density in the Fermi seas is reduced. Yariv and Fraenkel
(79) consider two possible consequent rearrangements. In the fast rearrangement,
the density of the target 1s instantaneously reduced. In the slow arrangement a
“hole” of volume 1/p is punched around the position of the collision. No more
interactions are allowed within this volume. Empirically, slow arrangement
yields results that are in better agreement with experiment. The entire procedure
is repeated until statistical significance is obtained.

Several features are sometimes included in the calculation. Pion production
and absorption proceeding through the A baryon resonance is one. In another,
the nucleons are assumed to be traveling in a potential well so that the nucleon
paths between collisions are no longer straight lines. Collisions among the
cascade particles, as well as formation of composite systems, may (or may not)
be included.

In the calculations by Cugnon (81), Stevenson (78), Bondorf et al. (76), and
Halbert (81), the continuum distribution for the target is dropped. Each of the
nucleons on the target and projectiles is positioned randomly within spheres,
representing the target and projectile nuclei. Their momenta are chosen
randomly using the Fermi gas model. The projectile is given the beam velocity.
The projected nucleons are assumed to move in straight lines between collisions.
When the minimum relative distance is smaller than /¢, /7, the nucleons are
assumed to scatter. Here o, is the total nucleon—nucleon cross section at their
center-of-mass energy. It is evident that in both of these procedures the nucleon
correlations in both the target and projectile are neglected.

The motion of the nucleons in the INC simulation is classical. A necessary
condition for its validity is that the cascade and projectile nucleon wavelengths
are much smaller than the internucleon distance r,,.

— KTy,
plab

This condition will not be met by the low-energy cascade nucleons generated
by the incident projectile. The calculation of the low-energy part of the spectrum
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will thus be unreliable. A second condition requires that the mean free path
must be large compared to the interaction range r.

A>r,

Here r, is defined by o, = nr2. Since 4 = 1/pa,,, this condition becomes

tot>
3
wrip«1

This condition is well satisfied for normal nucleon densities. Finally, nucleon
correlations are reflected in nucleon momenta which exceed the limits of the
Fermi gas. As a consequence, one may expect an inability to match the data
at the high-energy end of the energy spectrum. A similar remark may be made
with respect to the angular distribution.

The invariant nucleon cross section is related to the calculated one-body
distribution function, f,, by

d3c Bmax
E— =lim 2nbdb [drEf, (r,p,b,t) (7.41)
p’ - Jv 0 .[

Anexample of a comparison with experiment is shown in Fig. 7.5. The agreement
is very good except for the low-energy part of the spectrum, where INC
underestimates the cross section for E < 80 MeV. Evaporation of the residual
nuclei has not been included in the calculation. The effect of including the
interaction between cascade particles is small.

Another example is provided by Cugnon and Vandermulen (85) as shown
in Fig. 7.6. We see that at 800 MeV/A the angular distribution is far from
isotropic. This is because a considerable fraction of the proton distribution is
a consequence of a single collision. As the number of collisions increase, the
angular distribution will become more isotropic. For the Ca + Ca case at
800 MeV/A, isotropy is achieved for n < 6. The probability distribution for the
number n of collisions is shown in Fig. 7.7 for the Ca + Ca collision. The mean
value is 3.24. Of course, the probability for a large n is very small for peripheral
collisions.

A second observable is the correlation between two protons, as given by

Cpy,p,) = lim.[znbdb”dh dr, f(ry, P13, P2: b,0)
1»¥2) —

(7.42)
t= .[2”[7 db_[drldplfl(rlvpl;b, f)

where f, is the two-body distribution function. In the Nagamiya et al. (79)
experiment, the correlation between a proton emitted at a “telescope” angle
and an second particle in the angular range 35° < 6 < 45° is studied. The ratio
C is defined to be the ratio of such in the scattering plane correlations for the
azimuthal angle ¢ = 180° + A¢(A¢p = 10°), to the out-of-plane correlations
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show the calculated results, includeing the effects of interaction between the cascade
particles. [From Yariv and Fraenkel (81).]

FIG. 7.6. Invariant inclusive proton cross
section as a function of the center-of-mass
angle for the *°Ar+ “CAr system at
800 MeV/nucleon. [From Cugnon and
Vandermuelen (85).]
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(¢ = +90° + A¢). The results of the INC calculation and a comparison with
experiment are shown in Fig. 7.8. The calculated results when the interaction
between cascade particles is included are in good agreement with experiment.
The ratio C is close to unity (except for the !2C + '2C collision), indicating a
degree of thermalization.

Other observables include the momentum tensor Q , and the related quantity
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the thrust, T. For an event, Q,, is given by

Q.= X(p)pip; (7.43)

where i runs over the fragments and p,v designate the Cartesian coordinates.
The weights y(p;) are to be chosen. When y(p;) is taken to be 1/A;, where A; is
the mass number of the fragment, the resultant Q,, is independent of the degree
of clusterization.

The thrust, T, is given by

T = min= " (7.44)
n 2Pl

where the unit vector n is chosen to as to minimize this ratio. The direction of
the thrust is given by n. The values for the thrust angle (the calculated thrust lies
in the reaction plane for collisions between equal nuclei) are given in Fig. 7.9
as calculated by INC [Bertsch and Cugnon (81)] and using hydrodynamics
[Kapusta and Strottman (81) ]. As expected, the INC calculation predicts a flow
that is much more in the forward direction. Experimental indications of collective
flow is given in the paper by Gustafson, Gutbrod, et al. (84). In Fig. 7.10 the
frequency distribution dN/d cosf as a function of flow angle @ is plotted for
various multiplicities for reactions involving heavy ions at 400 MeV/A. The flow
angle is defined as the angle between the beam direction and the major axis of
the ellipsoid given by @, of (7.43), with weights y(p;) = 1/24,, where 4; is the
mass of the fragment. We observe that as the multiplicity increases (impact
parameter decreases), the frequency distribution has a maximum at a finite
angle, while the INC calculations have their maxima at 0°. The parallel
component of the projectile momentum is reduced during the collision, and the
momentum acquires a small perpendicular momentum on the order of
50MeV/c. The origin of this discrepancy is not yet clear. Is it because of the
approximation (e.g., the Fermi-gas description of the colliding nuclei) of the
INC procedure, or is it because of the omission of collective modes of motion
by the INC? For a recent discussion, see Aichelin, Cugnon, et al. (89).

90° . ; ,
600l Hydro 1
P
30°h -
INC
FIG. 79. Thrust angle as given by a hydro- SR BN O
dynamic calculation (full line) and by the 056 o8 08 o

inter nuclear cascade (dots). [From Cugnon (82).] b/bmax
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FIG. 7.10. Frequency distributions of the flow angle 8 for two sets of data and a cascade
calculation for different multiplicity bins. For the case of Ca the multiplicities are half
the indicated values. [From Gustafsson, Gutbrod, et al. (84).]

8. COLLISIONS AT ULTRARELATIVISTIC ENERGIES

In this section the collision of ultrarelativistic projectiles, with energies greater
than several GeV/nucleon, with nucleon is briefly considered. Experiments in
which the projectile has an energy of up to several hundred GeV have been
reported. This field is in its infancy. There are many results that are still not
understood and much more experimentation and theoretical studies are needed.

A. Lorentz Transformation

In the relativistic regime, the Lorentz transformation is especially important.
The Lorentz transformation to a frame moving with a velocity v (we shall use

units in which the velocity of light, ¢, is unity) in the position z direction is [Morse
and Feshbach (53 p. 94)]

z'=zcosh¢ +tsinh ¢
t'=zsinh &+ tcosh ¢ 8.1
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where

coshé = —1— sinhé=———— E=—In . 8.2)

J1=10? 1—0? 2 1-v

Under a second boost with velocity v/,

z"=z'cosh & + t'sinh &
t"=z'sinh & + t' cosh &
Substituting from (8.1) for 2’ and t', one finds, for example,
2" =zcosh(£ + &)+ tsinh(E+ &)
Thus the effect of two sequential boosts of v and v’ can be obtained by addition
of the corresponding & parameters.
This result is even more apparent if one introduces the light cone variables,
Z,=x+t Z_=Xx—1 (8.3)
Under a Lorentz transformation,
7, =ez, Z_=e %z_ (8.4
Finally, the trajectory of a free particle
z—ut=0

can be written in terms of the light cone variables as

1—
_=— uz+=—e'2“z+ 8.5
14+u
where
_1m1+u
=M

If we consider the motion in a moving frame of velocity v, (8.5) becomes

o= —e 29y, (8.6)

B. Rapidity

Suppose that we have a particle of mass M, and total energy (including rest
mass) E; incident on a target of mass M at rest. In the zero-momentum frame,



8. COLLISIONS AT ULTRARELATIVISTIC ENERGIES 789

inaccurately referred to as the center-of-mass frame, the total energy \/E, that
is, the energy of the projectile and the target, is given by
s=2E,M;+ M2+ M} (8.7)

If E, is sufficiently large,

s~ J2E My (83)

The result that the energy in the center-of-mass frame increases as the square
root of the energy in the laboratory frame has led to the development of
accelerators in which beams of opposite momenta collide.
The kinematics of the collisions can be treated most expeditiously through
use of the rapidity variable, y, defined by [compare with (8.3)]
E+p=pe’ E—py=pe”’
E=pcoshy py=usinhy (8.9)
The quantity p; is the component of the momentum in the z direction. To

obtain g, note that (E + p|)(E — py) = > = E* — pf = m? + p7, where p? is the
transverse momentum

p> =p*—p;
Therefore,
p=/m*+p’ (8.10)

and y is referred to as the transverse mass. From (8.9) one finds that

1

2 E-p Iz
Under a Lorentz transformation in the z direction

p'=pycoshé + Esinh ¢
E' =p;sinh ¢ + Ecosh¢
or
E +p| = e*(E + p) = pe™»
E—py=e"YE—p)=pe *”

Therefore, the rapidity in the new frame, y’, is

y=%&+y (8.12)
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As a consequence, rapidity difference are invariant with respect to boosts in
the z direction:
Vo= V1= + =i+ 8=y~ (8.13)
As an example, let us use these results to describe the transformation to the
center of mass when a proton of energy E; and momentum p, is incident on

a proton at rest. The center-of-mass system is defined as one in which the
protons have equal but opposite momenta. We therefore require that

Doy =msinh(y — &) =msinh &

Therefore,
E= ; (8.14)
The total energy is then given by
\/§=E=2mcosh§ (8.19)
and
s =4m? coshzg =2m?(1 + cosh y) =2m(m + E;) (8.16)

which agrees with (8.7) for M = M, =m.
The Lorentz invariant phase space volume dp/E has a simple form when
expressed in terms of y:

dp dp ucoshydy
—:d —:d — -
E PL 3 Py
=dp dy (8.17)

The Lorentz invariant cross section is is thus

Eda_ do

—= (8.18)
dp dp,dy

In the laboratory frame the projectile will initially have a momentum p = p,,
p1 =0, while the target’s initial momentum is zero. The corresponding rapidities
in the limit in which the masses are very much smaller than the corresponding
energies are
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In the center-of-mass frame,

I 2p, 1. 2Mqp,
=——-In—= =—In——
Yr 2 M, Yp 2 Mlzp

In the frame in which the projectile is at rest and the target is in motion

2p
yr=—In>=% yp=0

P

It is often the case that measurements yield only the angle with respect to the
incident direction, 8, along which a secondary particle is traveling. The relation
of that angle with y will now be obtained. Consider the quantity

E—py_pe’
pPL PL

The left-hand side of this equation can be written
1 1 1 m?
- (\/P2+m2—l’n)=(P—P|r+*>
PL PL 2p

The right-hand side to the same order is

Collecting terms and using p,/p =cos 9 and p, /p =sin 8 yields

9 2
y:—lntan——#m—cosS (8.19)
2 p

The pseudo-rapidity n is defined to be
9
n= —Intan 3 (8.20)

The quantity n approximates y if m?/p? is sufficiently small. The error is large
for soft collisions when the secondary particles is a proton.
The rapidity, y, depends only upon the longitudinal velocity:

1 l-l-U”
y=-In
2 1——U"

(8.21)
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where

D
ol “E

A change in y by 1 unit corresponds to a change in v, for v ~ 1, of
6UH = 6.4(1 — U“] (822)

In a reaction, the peripheral collision will result in the fragmentation of the
projectile (even if it is a proton!). The fragments will be traveling with
approximately the same velocity as the projectile; that is, they will acquire
relatively little transverse momentum. Experimentally, {p, > <350 MeV/c (see
the later discussion). The target will also fragment, contributing to the particle
distribution for y close to the target rapidity. The region in y to which the
proton fragmentation makes a contribution is experimentally on the order of
2 units, as ascertained from p—p ISR experiments at CERN. The corresponding
Ay for nuclear fragmentation is on the order of 3 units. A clear separation of
the fragments occurs only at sufficiently high energy. If, for example, the
projectile is a 15-GeV proton, the value of y for the projectile is only 3.47. In
this case the two contributions from target and projectile will overlap. When
the energy is 200 GeV, the projectile y is 6.06, so that a central region which is
a consequence of a more central collision will be visible.

C. Proton-Nucleus Collisions!

A complete understanding of the interaction of multi-GeV protons with nuclei
is very far from being achieved. The experimental attack on the problem is for
the most part just beginning. Similarly, the theoretical concepts required still
remain to be identified. However, a few features have emerged. These will be
the subject of this subsection.

Before proceeding to this task, it would be useful to note two characteristics
of the proton—proton collisions. The first is the multiplicity plotted in Fig. 8.1.
We note that the multiplicity rises slowly with beam momentum, rising from
about 3 at 20GeV/c to about 10 at 10°> GeV/c. Most of the particles observed
are charged pions of both signs. To get the total multiplicity, including the
neutral pions, one must multiply the charged pion multiplicity by 3.

The second point of interest is the transverse momentum of the protons and
pions produced in a p—p collision. The average value {p; > of pions is shown
in Fig. 8.2 as a function of rapidity. The p + p— n + X channel is the principal
inelastic channel. The maximum transverse momentum of the pions produced
in the reaction is about 350 MeV/c. More than one pion is produced, as one
can see from Fig. 8.1. At p=100GeV/c, the number of charged particles is

‘Busza and R. Ledoux (88); McCubbin (88); J. Hiifner and Klar (84); Klar and Hiifner (85).
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6.37 + 0.05, v > 0.7. These are thought to be mostly charged pions. To include
7%, we multiply the charged particle multiplicity by 3 to obtain 9.6. Taking the
mass of each pion to be 137 MeV with a momentum of 350 MeV/c (see Fig. 8.2),
assuming that the angular distribution is roughly isotropic in the center-of-mass
reference frame yields an average energy per pion of 376 MeV. The total
excitation energy of the radiating projectile proton in the proton—proton center
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of mass is 0.376 x (9.6) or 3.6 GeV at p, = 100GeV/c (or E , = 3./5 = 6.9 GeV).
More than one-half of the available kinetic energy is converted into nucleon
excitation. The excited nucleon has total energy of 4.5GeV.

For the most part, p + p collisions are “soft.” “Hard” collisions involve pion
momenta much beyond 400 MeV/c. For these cases involving a close collision,
one may expect hadron jets to be produced. However, the probability for such
close collisions is relatively low, as one can see from Fig. 8.3.

What happens when a proton strikes a nucleus? Naively (and incorrectly),
one might believe that the proton strikes several nucleons, producing about 10
relatively energetic pions in the target frame of reference per collision. These
pions would also generate secondaries, and so on. On this basis one would
expect a very large number of emerging charged particles per incident proton.
Table 8.1 and Fig. 8.4, where the multiplicity of charged particles with v > 0.7
is tabulated, demonstrate that this is very far from the truth. Multiplicities are
small, rising to a factor of about 2.5 for U relative to the multiplicity for a p—p
collision. Note that the same result holds when the incident hadron is a kaon
or a pion. Parenthetically, the variable v is defined as the average thickness of
a nucleus in units of the mean free path (Fig. 8.4) for absorption of the incident
proton:

Ao, (p + nucleon) 8.23)

‘7 =
0,;q1(p + nucleus)

Empirically, v=0.74°3! for protons and 0.744°23 for pions. The variable ¥
is a rough measure of the number of collisions made by the indicated hadron
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FIG. 8.3. The n~ transverse momentum distributions from p + p and p + Xe collisions.
[From Busza and Ledoux (88).]



8. COLLISIONS AT ULTRARELATIVISTIC ENERGIES 795

TABLE 8.1 Average Multiplicities of Relative Charged
Particles Produced in 100-GeV/¢ Hadron—Nucleon

Collisions
Average

Target Projectile Multiplicity
C at 7.86 +0.15
K* 6.924+0.33
p 7.72+0.16
Cu n* 10.29 +0.26
K* 8.89+1.10
p 11.00 +0.32
Pb n* 13.21 +0.30
K* 1292 +0.79
P 14.75+ 0.38
U n* 14.57 +0.39
K* 12.93 +1.33
p 15.94 +0.50
Hydrogen nt 6.62 +0.07
(bubble K* 6.65+0.31
chamber) P ) 6.37 +0.06

Source: Elias, Busza, et al. (78).

in passing through the nucleus. As one can see from Fig. 8.4 for small laboratory
angles, the ratio to hydrogen is unity for all elements. If one extends the
laboratory angle to 100°, the ratio rises to values of less than 2. In Fig. 8.5 we
show the ratio of the multiplicity in pA collisions to that in p—p collisions for
100-GeV/c protons. The ratio is a linear function v:

M) 4 03(—1) (8.24)
n,»

14

The absence of cascading can be understood as a relativistic effect [Goldhaber
(74a)]. The incident proton on striking a nucleon of the target nucleus will form
an excited system. Because of the relativistic time dilation its lifetime will be
very much longer than its rest-frame lifetime, which is of the order of 1fm/c.
In fact, as we shall see, the mean distance it would travel before decaying is
very much larger than the nuclear radius. It therefore will not decay before its
collision with a second nucleon. This collision will change its excitation energy
somewhat. This process continues until the proton leaves the nucleus and then
decays. Cascading induced by the decay of the excited nucleon thus does not
occur.
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FIG. 84. Angular dependence of the ratio of the multiplicity for the indicated target
nuclei with the multiplicity for a hydrogen target: x 0° <4, <3.5°, O0° <0, <26°,
A0° <0, <110° O026° <8, < 110°% MIT n—A data. [From Elias, Busza, et al. (78);
Elias et al. (80).]

1 i 1 1 ] ] 1
CERN
__30f opCul .o /m/, m
w 50 GeV ©pPb No b0
c apA <V>, o
>~ o
- 9
.h. o~ ?
u
— 20+ a® -
- ;!?o/ 140.30 (V- 1)
{= Cu o’
y vl
c ¢
a””
1.0 | | ] | | |
{ 2 3 a4 5 6 7 v

FIG. 8.5. Ratio of the multiplicity of produced particles in pA4 collisions divided by the
multiplicity in pp collisions as a function of v and #(n,). [From Ledoux, Bloomer, and
Huang (86).]
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Let us look at this process in more detail. We make use of three experimental
facts. The first is that in a proton—proton collision the incident proton in the
rest frame loses 2 units of rapidity [Busza and Ledoux (88)]. The rapidity of
a 100-GeV proton is 5.362, so that after the collision y—2 =3.362, corresponding
to an energy loss of 86%,. Second, as we have seen (Table 8.1), the numbers of
charged pions emitted is 6.37. This is to be multiplied by 1.5 to take the neutral
pion production into account, yielding 9.56 as the number of pions. Moreover,
the secondaries produced by the proton fragmentation are mostly pions, as
demonstrated by Fig. 8.6. The energy loss of the proton consists of the energies
of these pions and the recoil energy transmitted to the target nucleon plus the
pions emitted by it. We shall assume that the recoil energy is about 3.5 (this
can be checked later and a correction calculated). Hence the energy per pion
is 7.64 GeV, where the target nucleon pions have been assigned an energy of
1GeV per pion. Finally, we recall that the average transverse pion momentum
is 350 MeV/c, so that its transverse mass is 0.377 GeV.

Let a pion in the center-of-mass system have a rapidity ¢. Note that proton
and target nucleon have a rapidity of y/2 and — y/2, respectively, where
y=15.362. Then the pion energy, including the proton pion and a target nucleon
pion energy in the laboratory frame, is

8.64 = ul:cosh(a + X) + cosh (a — X)]
2 2
= 2ucosh o cosh Jé (8.25)

In this equation u is the pion transverse mass. From (8.25) we find that

o= 1016 (8.26)
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The projectile pion rapidity in the laboratory frame is y/2 + ¢ = 3.7, close to
rapidity of the final proton, 3.362. Its energy is 7.61 GeV. The target pion
rapidity is y/2 —o = 1.66, with an energy of 1.03 GeV. The corresponding
longitudinal momenta are 7.60 GeV/c and 0.96 GeV. Since the transverse
momentum is 0.350 GeV/c, the target nucleon pions are emitted at an average
angle of 20°. They will thus not make a very significant contribution to the
forward angle pion multiplicity but will affect the larger angle contributions.
Finally, we calculate the difference in the velocities of the projectile pions and
the nucleon assigning a rapidity of 3.362 to the proton and 3.7 to the pion.

v, — Uy =6v>2e V(1 —e 20T =12 x 1073

In traveling the distance of a nuclear radius R, the separation of the projectile
nucleon and the projectile pions will be dv x R, which for a nucleus of radius
of 6 fm is 7.2 x 10~ !¢ fm. In order words, the pions will be “inside” the proton
projectile. Thus the pions will not separate from projectile proton until the
system is far outside the nucleus. The effect of only the first collision has been
considered, but it is clear that subsequent collisions will not affect this resuit.

We have assumed that the system is on the energy shell after the collision
and before the second collision. This is not at all obvious. If it is not, one must
treat the collision with all the nucleons in the path of the projectile. A simple
nonrelativistic calculation [ Feshbach (83)] shows that this effect will not change
the results above (i.e., the decay outside the nucleus), but there can be substantial
quantitative differences. A more sophisticated theory has been published by
Gottfried (74b), which yields (8.19) with the 1 factor.

Empirically, the loss of rapidity of the projectile in colliding with a nucleus
is of the order of 3 units [Busza and Ledoux (88)], so that a 1200-GeV proton
has a final energy of 5 GeV. Most of that loss of energy is in pions emitted outside
the nucleus. Most of the very energetic pions are generated by the first collision.

Another outstanding feature of the proton-nucleus interaction is the
energy independence of the rapidity distributions in the target and projectile
fragmentation regions. This is illustrated in Figs. 8.7 and 8.8. There are emulsion
data, so that the target nuclei are Ag and Br. “Shower particles” correspond
to single charged relativistic secondaries (f > 0.7). The incident protons have
energies of 200, 400, and 800 GeV. The explanation is straightforward. As we
have just described, most of these secondaries are generated in the first proton-
nucleon collision (see Table 8.1). Combine this with the experimental result that
such energy independence is observed in proton—proton collisions and we have
the result of energy independence for proton—nucleus collisions. This behavior
is referred to as limiting fragmentation. It is interesting to note that the projectile
fragmentation in nucleus—nucleus collisions at a few GeV/A discussed in Section
7 is also energy independent.

One final comment is suggested by the rapidity distributions for different
targets as shown in Fig. 8.9. We see a strong target dependence. Let dn/dn ~
A%(n). From the data one finds a(y) > 0.3 for n < 1.5 [Elias et al. (80)]. Second,
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FIG. 8.7. Inclusive pseudorapidity distribution of shower particles in the laboratory
frame at 200, 400, and 800GeV. [From Abduzhamilov et al. (87).]
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FIG. 8.8. Inclusive pseudorapidity distribution of shower particles in the projectile rest
frame at 200, 400, and 800 GeV. [From Abduzhamilov et al. (87).]

we note that

dn | dag (8.27)
dﬂ Tinel d” .

where o is the cross section for producing n secondaries. Since g, ~ 4°7,
fiq — A0.7 +a
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FIG. 8.9. dn/dn versus n at 200 GeV on four different targets. [From McCubbin (89).]

The exponent is greater than unity, which indicates the presence of multiple
scattering with associated cascading. The effect of such multiple scattering is
larger for the larger nuclei.

D. Nucleus-Nucleus Collision*

Interest in the collision of ultrarelativistic particles (protons and nuclei) has
been motivated by the prediction of QCD (quantum chromodynamics) lattice
gauge calculations that a quark-gluon plasma will be formed when the
temperature of nuclear matter exceeds roughly 200 MeV. Above that temperature
nuclear matter “melts” into quarks and gluons. More accurately, there is a
combination of density and temperature at which such a transition occurs, as
illustrated in Fig. 8.10. It is hoped that such densities and temperatures can be
obtained through the collision of very energetic nuclei. Experiments are now
being conducted at BNL (~ 15 GeV/A4) and at CERN ( ~ 200 GeV/A4) with fixed
targets and beams as heavy as Si. BNL will soon be able to provide Au beams
and CERN is planning a Pb injector. For the more distant future, a collider,
RHIC (relativistic heavy ion collider), providing 100-GeV/A4 beams, has been
proposed by BNL. The study of a new form of matter, the quark—gluon plasma,
would not only test QCD but it would be of great importance for cosmology
as well. Soon after the “big bang,” before hadronization, the matter in the

*Satz (88).
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FIG. 8.10. Phase diagram of nuclear matter in the baryon density, temperature plane
showing regions of hadronic and deconfined matter. Normal nuclear matter density p,,,
is 0.16fm 3. [From Baym (87).]
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FIG. 8.11. Collision of two nuclei with relativistic energies. [From Matsui (88).]

universe would form a quark-gluon plasma, which as the universe cools would
condense into nucleons and nuclei.

The collision of two nuclei is pictured as follows. In the center-of-mass system,
because of the Lorentz contraction, the nuclei will be disks approaching each
other at a velocity close to the velocity of light. As they pass through each
other, energy will be deposited in each of the nuclei as a consequence of nucleon—
nucleon collisions. In addition, the volume between the nuclei will contain
mostly pions and will be for the most part baryon free (see Fig. 8.11). Each of

. these domains, the baryon-rich nuclear volumes or the baryon-free one, is a
candidate for the formation of the quark—gluon plasma. The questions, whose
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answer is uncertain, include: Are the density and the temperature big enough,
and will that condition last for a long enough time? Will enough energy be
deposited in either domain to raise the temperature to a large enough value?

The formulations of a reaction theory that describes the collision and
development of the quark—gluon plasma and its equilibration is a major
challenge to the theorists. One badly needs accurate evaluations of the
phenomena which would signal the formation of the plasma. Several such
phenomena have been proposed, such as the anomalous K/z ratio relative to
its value in p—p collisions and the suppression of the formation of J/i particles.
For an introductory review of the present situation, see Matsui (88).
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