
CHAPTER Х 

PION AND KAON INTERACTIONS WITH 
NUCLEI~ 

1. INTRODUCTION 

Pion and kaon interactions with nuclei provide а novel set of circumstances 
not covered in Chapters УН to IX. The pion-nucleon system shows (see Fig. 1.1) 
а strong resonance caHed the .1, of mass 1.232 GeV and width 115 МеУ. This 
is ап excited state of the nucleon whose spin J is ~, and whose isospin Т is ~. 
We shaH саН it а particle despite its short lifetime, given Ьу h/r = 1.7fm/c = 
0.59 х 10- 23 s. When а pion, whose energy is пеаг the resonance energy, strikes 
а nucleus, the fonnation of the .1 is highly likely, creating thereby а .1-nucleon 
hole state in the target nucleus. In this energy domain the .1-hole state will act 
as ап isolated doorway state [Kisslinger and Wang (73,76)] through which аН 

pion-nucleus reactions will proceed. We are familiar with such doorway 
states. Some examples include the isobar analog resonance, the Gamow-TeHer 
resonance, and the electric dipole resonance, which сап Ье described as coHective 
proton рапюге-пешгоп hole states and proton particle-proton hole states, 
respectively. Although the .1-h configuration is similar in character to these 
nuclear examples, there is опе very significant difТerence. In the present case, 
the.1 is itself а resonance in the pion-nucleon system. Мапу of the pion-nucleon 
data сап Ье explained if it is assumed that the reaction under study proceeds 
through the resonance .1. Thus the theory of рюп-пшйеаг reactions to Ье 

developed in this chapter begins with ап 1Э.па1уsis of the pion-nucleon resonant 
state. Introducing it into the nucleus permits us to study the impact of the 
nuclear medium оп its properties and thus оп the properties of the .1. 

tEisenberg and Koltun (80); Ericson and Weise (88); Moniz and Lenz (90). 
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FIG. 1.1. Pion-nucleon total cross sections. [From Ericson and Weise (88).] 

This pivotal role is played Ьу the ~ within а restricted energy domain. It is 
not dominant пеаг threshold пог at high energies. Like other projectiles, 
discussed in Chapter IX, the pion at high energies сап induce inelastic and quasi
elastic scattering. The reaction theory used in these cases is quite straightforward 
and we shall discuss only inelastic scattering here. We shall, however, discuss 
charge exchange reactions, which аге а special feature of pion reactions. These 
include the single charge exchange reaction (SCX) 

(1.1) 

(1.2) 

and the double charge exchange reaction (DCX) 

n+ + zA -э п" + (z+2)A 
(1.3) 

n- + zA ..... n+ + (z-2)A 

The SCEX reaction has its analog in 

р + zA-n + (z+l)A (1.4) 
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which might Ье thought of as а reaction in which а n + is transferred to the 
target nucleus. There is по well-studied сопеsропdiпg nuclear геаспоп for the 
DCEX reaction. ТЬе DCEX reaction is of special interest, because it is thought 
to involve а two-step process involving in еасЬ step а change in charge (e.g., 
п - ---.no --.. n "). Such а two-step process is sensitive to сопеlаtiопs in the target 
nucleus since it involves successiveinteractions with two nucleons ofthe target. 

ТЬе pion is а boson. As а consequence, it сап Ье created or destroyed. ТЬе 

elementary interaction is, for example, 

(1.5) 

It was Ьу comparing these two reactions and using detailed balance that the 
intrinsic spin of the pion was found to Ье zero. These elements, the absorption 
and production of pions, must of course Ье taken into account in апу theory 
of pion-nuclear collision. 
ТЬе strangeness exchange геаспоп Ьу means of which hypernuclei аге formed 

will Ье а major focus of the веспоп оп kaon-nuclear interactions. In this 
reaction 

к- + A(Z, N) --.. лА(Z, N - 1)+ «: (1.6) 

а пешгоп in the target nucleus is converted into Л via the elementary reaction 

(1.7) 

Hypernuclei Ьауе also been formed through the inverse reaction: 

n+ + A(Z,N)--.. лА(Z,N - 1)+ к: 

ТЬе formation of the 1: hypernucleus through the reactions 

(1.8) 

and 

к- + A(Z, N)--"1;A(Z - 1,N) + п" 
(1.9) 

--"1;A(Z - 1),N) + n+ 

is more problematic. If it exists, опе must understand why the strong inter
action transition 

1:+р--"Л+n (1.10) 

does not immediately convert it into а Л hypernucleus if the Л is captured Ьу 

the host nucleus ог, as is likely, results in the Л simply leaving the nucleus with 
по hypernuclear formation. 
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ТЬе Л hypernucleus has received considerable study, revealing several 
important aspects of the Л-пuсlеоп interaction, such as charge symmetry 
breaking, а weak spin-orbit force as compared to the nucleon-nucleon case, 
and the need for а three-body (Лnn) repulsive interaction. In addition, in the 
Л hypernucleus опе сап study the weak interaction 

Л+n-+n+n (1.11) 

ТЬе free-space decay of the Л, 

Л-+n+n (1.12) 

is reduced, especially in the heavier nuclei, because of the Pauli principle. ТЬе 

energy of the nucleon produced in the decay equation (1.12) is mисЬ less than 
the Fermi energy; most of the kinetic energy is сапiеd Ьу the pion so that there 
mау not Ье ап unoccupied level for the nucleon to оссиру. 

Investigations of hypernuclei have Ьееп hampered Ьу the lack of adequate 
facilities. This is not the case for pion physics, where the intense beams at Los 
Alamos (LAMPF) at SIN near Ziirich and at TRIUMF at Vancouver have 
Ьееп available since the late 1960s. 

2. PION-NUCLEON SVSTEM 

А. The Pion 

ТЬе three pions я ", пО, and n- form ап isospin triplet (Т= 1). ТЬеу have zero 
spin and odd parity. ТЬе mass of the charged pions is 139.6MeV. ТЬе mass of 
the neutral pion is 135.0. ТЬе lifetime of the charged pions is 2.6 х 10- 8 в, that 
of the по is 8.4 х 1О - 17 s. ТЬе form factor for the charged pion has Ьееп 

determined from the scattering of the high-energy pions Ьу the electron in а 

hydrogen atom. Its root mean-square charge radius is 

<r;) 1/2 = (0.66 ± 0.01)fm (2.1) 

В. Isospin Symmetry 

ТЬе pion-nucleon interaction is, except for the Coulomb and mass efТects, 

isospin invariant. This means that the combined system сап have ап isospin of 
i and 1. Апу system composed of а pion and nucleon Inn) сап Ье decomposed 
into states of а definite isospin: 

Inn)= L IТ,Тз)(ТТзI1t n ; 1 t n ) (2.2) 
Т,Тз 
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Therefore, 

In+p)=I!,!)=L\++ Q=2 

In+n>~ Jз[IЫ>+J2IЫ>J=Jз[А++J2IЫ>J Q= 1 

l"Op> =Jз[J2IЫ >-Ibl:>J=Jз[J2А +-Ibl>J Q=l 

Inon> =Jз[J2lt, -t> +It,-»J=Jз[J2А О +It,-i>] Q=O 

I,,-p> =Jз Ш, -t> -J2It.-t>J =;/АО -J2I!,-i>] Q=O 

'n-n) = '!, -!) = L\- Q= -1 
(2.3) 

where Q is the charge of еасЬ system. 
Опе сап invert these relations and thus express the Т = ~ state, the L\, in 

terms of the pion-nucleon system. We find that 

L\++=ln+p) 

1 
L\+ = j3[ln+n) + .j2l nOp ) J 

1
L\o =-[.j2lnОn) + In-р)] Тз = -t (2.4) 

j3 

L\-=In-n) Тз = -~ 

Апу isospin invariant operator will Ье diagonal in isospin space: 

<ТТзlОI Т', T~) = Отс5(Т, Т')с5(Тз, т;) (2.5) 

The transition matrix fI is such ап operator. Therefore, 

(2.6а) 

IdJl - )_ldJ lс;т (2.6Ь)<n -р 3 n р - з.::J 3/2 + з.':l 1/2 

(2.6с) 
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The amplitudes .r3/2 and .r 1/2 are functions of the spin and energy and 
momentum variables. Ву comparing the possible reaction cross sections, опе 

сап obtain the two amplitudes. Because ofthe linear relation betweenthe total 
cross section and the imaginary part of У, we have from (2.6) 

(2.7) 

where the subscripts indicate the isospin channel. 
It тау Ье convenient to parametrize the isospin dependence of §- Ьу 

§- = а + bt ·Т (2.8)
" 1f 

where а and Ь are functions of spin, energy, and momentum variables. The 
quantity а is referred to as the isoscalar component, Ь the isovector. The vector 
г, is the isospin operator acting оп the nucleon 

(2.9) 

The vector Т acts оп the pion with the normalization 

(2.10) 

since the pion has ап isospin, Т = 1. Since Т = Т2t + t" is conserved, опе сап 

show that 

T - l_ "2
1 

-2 (2.11)
{ -1 T=t 

Parenthetically, опе сап construct the projection operators оп to the Т = t and 
t states, respectively. ТЬеу are 

(2.12) 

(2.13) 

Using (2.9), опе finds from (2.6) that 

=- ь 
::J 3/2 = а + .r1/2 = а - Ь (2.14)

2 
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The total cross sections for the two most readily available reactions are 

(2.15)
 

Coulomb efТects modify these results. 

с. Pion-Nucleon Scalterlng 

The most striking feature of pion-nucleon scattering is the L1 resonance. This 
occurs when the momentum of the pion in the center-of-mass system is 230 МеV[с 

(k = 1.15fm-1), corresponding to а mass of 1.232 аеУ. ТЬе peak cross sections 
show clearly that the resonant cross sections are for а Т = i state. Assuming 
that at the resonance peaks а 3/2» и 1/2' опе finds from (2.15) and (2.7) that 

at resonance. This result is in agreement with experiment (see Fig. 1.1). Second, 
опе сап also determine the spin at the resonance. ТЬе resonant cross section 
for (л " р) scattering, assuming по inelasticity is given Ьу 2n/k;m(2J + 1)= 
19fm2 = 190тЬ for J=~, confirming that the L1++ is J=i state, and the 
inelasticity is smal1. ТЬе resonance must occur in the 1= 1, p-wave сЬаппеl 

yielding а unique angular distribution. ТЬе amplitude for the scattering of а 

zero-spin particle Ьу а particle of spin ~ is given for еасЬ isospin сЬаппеl 
according to (У.2.44) Ьу 

(2.16)J= А + вв-« 

where 

(2.17)
 

(2.18)
 

and 

Pjl'(COS 3) = sin 3 d P,(cos 3)
d(cos3) 

ТЬе quantities Л+) and л-' are the partial wave amplitudes for the j = 1+ ~ 

and j = 1- ~ states. In terms of phase shifts, Л +) is 

j <+) == _1_(e 2 i dl+ _ 1) (2.19) 
, 2ik 
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with а similar expression for Л-)'дj+) will Ье complex ifthere is апу inelasticity. 
ТЬе difТerential cross section is 

(2.20) 

ТЬе total integrated cross section is 

ТЬе polarization parameters Р and Q are 

ReAB* 2ImAB* 
Р= 2 n (2.20')

IAI 2 + IBI 2 Q= IAI 2 + IBI 2 

For the ~ + + resonance, 1= i, J =~, so that 

(2.21) 

in agreement with experiment (see Fig. 2.1). At 00, d(J/dQ= 30тЬ at resonance. 
It will Ье noted that as the pion energy deviates from resonance, the angular 
distributions are по longer symmetric about 900. This is because of the presence 
of nonresonant amplitudes, for example coming from ff 1/2' ТЬе low-energy 
behavior of the phase shift is given Ьу the limit 

д(L) _аЩ ч": 1 (2.22)
2т.и 2Т,2} 

For S waves, а is referred to as the scattering length; for Р waves а has the 
dimensions of а volume and therefore could Ье called the scattering volume. 
ТЬе numerical values for а are [Moniz and Lenz (91)] 

a~.l = ( - 0.092 ±0.002)m; 1 
(2.23)

a~.1 = (0.170±0.004) т; 1 

and 

a~.l = (- 0.043 ± 0,004)т; 3 

а~.з = (0,214 ±0.004) т; 3 

a~.l = (- 0.082 ±0.006)т; 3 (2.24) 

а~.з = ( - 0.029± 0.0О5)m; 3 
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FIG.2.1. Angular distributions for 1t-р scattering. [From Rowe, Solomon, and Landau 
(78).] 

We note that the nonresonant P-wave amplitudes аге negative, corresponding 
to а relatively weak repulsion. Moreover, the isoscalar quantity in (2.8) is very 
small for S waves. Using 

we obtain а, = - 0.0046т;; 1. 

At higher energies, the empirical phase shifts as determined Ьу Rowe, 
Solomon, and Landau (78) аге presented in Figs. 2.2 to 2.4. The curves аге 

labeled Ьу L 2 T •2S ' The phase shift д(Рз з) rises rapidly from zero through n/2, the 
resonance value of д. The phases д(Р 1 з ) and д(Рз 1 ) are increasingly negative. 
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FIG.2.2. Angular distributions for n+р scattering. [From Rowe, Solomon, and Landau 
(78).] 

ТЬе phase shift д(Р 11) (Т = t8 - t) turns about and crosses the real axis, 
becoming positive and rising rapidly, indicating the efТect of а resonance at а 

mass of l.440GeV with а width of 200 ± 80 МеУ. 

Rowe, Solomon, and Landau (78) Ьауе given а useful parametrizaion of the 
phase shifts for pion energies less than 400 МеУ. It is 

( k)21+1[ (k)2 (k )4] (k )21+1ro~tanb,=	 - Ь+с - +d - +х - -- (2.25) 
mn mn т; ko 50-8 

where k and 8 are the пп center-of-mass momentum and (епегяу)", respectively. 
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FIG.2.3. Empirical pion-nucleon p-wave phase shifts versus center-of-mass momentum 
Iql Rowe, Solomon, and Landau (78). [From Ericson and Weise (88).] 
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FIG. 2.4. Empirical pion-nucleon p-wavc phase shifts versus center-of-mass momentum 
'ч! [Rowe, Solomon, and Landau (78)]. [From Ericson and Weise (88).] 

ТЬе resonance form is meaningful only for the Р 33 and Р 11 phases. ТЬе values 
of the parameters аге given in ТаЫе 2.1. 

Principally because of the Coulomb interaction, isospin symmetry is broken. 
ТЬе masses of the L\'s are not аН equal, пог аге their widths equal. For 
example, М(АО)-М(А ++) = 2.7 ±О.3 MeVand Г(АО) - r(L\ ++) = 6.6± 1.0MeV 
[Pedroni, Gabathuler, et al. (78)]. 

Inelastic pion-nucleon reactions occur when pions аге produced. ТЬе 

threshold energy for the пп -э ппп reaction is about 179MeV in the laboratory 
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TABLE 2.1 Parameters for (2.26) 

Jso ko ГО Ь с d 
х (GeV) (GeVjc) (GeV) (10-2) (10- 3) (10-4) 

в.. 0.44 1.550 0.477 0.105 16.8± 0.75 -35.4 ± 5.4 27 ± 11 
в.. 0.31 1.655 0.550 0.170 -11.2 ± 0.20 -30.7 ± 1.1 21 ±2 
P Il 0.61 1.435 0.393 0.230 -5.71 ±0.54 25.4 ± 2.1 -29±3 
Р 13 0.23 1.815 0.656 0.255 -1.31 ± 0.08 1.22 ± 0.32 -0.4±0.3 
Р 31 0.22 1.850 0.678 0.200 -2.91 ±0.08 3.45 ±0.27 -1.5 ±0.2 
Р з з 0.99 1.233 0.228 0.116 11.4± 0.30 -15.4 ± 2.1 7.2± 2.1 

Source: Rowe, SoJomon, and Landau (78). 

reference frame. It appears that many of the data for this reaction сап ье under
stood under the assumption that the final state is а two-body state, of which 
one body is an isobar. For example, the two-body state could Ье а n + д, or а 

2n isobar, such as the spin 1 р or the spin О а plus а nucleon. Such а hypothesis 
сап Ье tested Ьу calculating the ratios of the production of various possible 
two-pion + nucleon final states, using the isospin properties of the isobars and 
comparing with experiment. For example, suppose that the reaction is 

(2.26)
 

Suppose that the reaction сап Ье described as leading to Д + n -, Д ОnО, and 
д -n + states with the subsequent decay of the д + ,д -, and дО. Using the isospin 
Clebsch-Gordan coupling coefficients and for simplicity considering only the 
т = i channel, опе finds that 

Now using (2.4), which expressed the д +, дО, Д - in terms of nucleon +pion 
amplitudes, one сап obtain the branching ratios for the three final states of 
(2.26), namely, 

T=i 

which сап Ье compared with experiment. 

ProbIem. Consider the Т = !channel. Show that It, - i> = Л[ - j8д +n- + 
ДОn О + vf6д -n +]. Calculate the cross section ratio for the three reactions of 
(2.26). 
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D. The Isobar Description о, the L\ 

We shall not enter into the dynamics underlying the properties of the L\. Suffice 
it to say that it is the simplest excitation of the three-quark system, whose 
ground state is the nucleon. In this excitation the spin of а quark is flipped 
while the isospin (d~u quarks) тау also change. Our goal in this section is to 
obtain а consistent description of the L\, which will prove to Ье useful when we 
consider n-nucleus scattering. 

ТЬе expression for the !1 matrix for resonant scattering for ап isolated 
resonance has Ьееп derived in Chapter 111 [Eq. (111.2.18)]. We recall that опе 

proceeds Ьу dividing the Hilbert space in two through the use of the projection 
operators Р and Q = 1 - Р, where the space subtended Ьу Р contains the incident 
and exit channels. ТЬеп as seen from Chapter 111, the !1 matrix is given Ьу 

(2.28) 

where H p Q == PHQ, and so оп, and 

(2.29) 

!/р is the nonresonant scattering in Р space, that is, а consequence of the 
Schrodinger equation 

(E-Нрр)I/I=О (2.30) 

In the case of а single isolated resonance, опе chooses Q to contain only опе 

state-the resonant state Ф. ТЬеп 

!1 =!1р +!1R =!1р + (1/1/-) НрQФ) (ФНQрl/l:+» 
Е - (ФНФ) - (ФНQр[lj(Е+ - Нрр)] НрQФ) 

(2.31) 

In the application to pion-nucleon scattering, we shall limit the discussion to 
the n + + Р --+L\+ + resonance. ТЬе results for other channels сап Ье obtained 
from isospin invariance. ТЬе state vector Ф is L\(J.lA)' where J.lA is the z сотпропеш 

of the L\ spin of t. ТЬе operator НQP couples the L\ to the pion-nucleon states 
of Р space. We take it to Ье given Ьу 

(2.32) 

where g is а coupling constant, h(k2
) is а form factor, h(O) = 1,k is the center 

of mass relative momentum of the pion-nucleon system, and st is referred to 
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as the transition spin operator. ТЬе form given Ьу (2.32) is determined Ьу angular 
momentum and parity invariance. Опе recalls that the pion is а pseudoscalar 
spin-zero particle. Непсе the interaction must itself transform like а pseudo
scalar. ТЬе transition operator st converts а nucleon of врш-], z сотпропеш 

J1-" into а L\ of spin-t, z component J1-A' It therefore has the matrix elements 

<tJ1-Аlstl!J1-"> = L(1J1-!J1-nltJ1-А)е ll (2.33) 
JJ 

where 

(2.34) 

Неге Зi аге three perpendicular unit vectors. From this result we have 

st = e1 [It> <а + Лlt><13J + e_ 1 [ЛI- t> <а + 1- t> <13] 

+еоАП><а+ l-t><13J (2.35) 

where l'> refers to the state vector ItJ1-А>' We have tabulated only J1-/1' ТЬе states 
а and 13 аге the + t, - t spin states of the nucleon, respectively. In сотпропеш 

form, 

We now define the product SiSJ Ьу 

(2.37) 

This operator acts only оп the nucleon spinors. Опе тау show using (2.36) that 

and 
(2.38) 

From (2.38) we have the useful result 

А -sst -В = jA-В - j-(a"А)(а"В) 

=j-A"B-j-ia-(A х В) (2.39) 
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Note that а simi1ar development сап Ье made in isospin space where the 
т = t nucleon is transformed to а Т = 1.1. 

We return to the numerator, N, of !т R in (2.31), which сап Ье written using 
(2.32) as follows: 

N= g2Lh(k'2)(k/ S)1.1(p~) (.1(Jl~)1 (k·St)h(k2) 
IJ/; 

or 

(2.40) 

То complete the calculation of the numerator N, опе must take the matrix 
element of N between appropriate initial and final nucleon spinors. The form 
factor h(k2

) measures the overlap of the incident and final pion-nucleon wave 
function with the .1 wave function. The resonance denominator D in (2.31) is 
given Ьу (Е = total energy) 

where m~ = (.1IHI.1), Jl is the pion-nucleon reduced mass (units h = с = 1). The 
real рап of the integral will сотЫпе with the parameter m~ to yield the .1 
mass, m~. The imaginary part of the integral equals twice the width of the .1 
resonance. The ratio N /D, given Ьу (2.40) and (2.41), is the Вгеп- Wigner result, 
describing the .1. 

The discussion аооуе is nonrelativistic. The relativistic generalization 
adopted Ьу Hirata, Koch, Lenz, and Moniz (78,79) and Ьу Horikawa, Thies, 
and Lenz (80) replaced D(E) Ьу а form obtained from the Blankenbecler-Sugar 
reduction of the Bethe-Salpeter equation. According to Moniz and Lenz (91), 
the D(E) of (2.41) should Ье replaced Ьу 

(2.42) 

where 

and s is the square of the invariant energy. Both expressions for D, (2.41) and 
(2.42), include only pion-nucleon scattering in the expression for the WQQ term. 
Other inelastic processes, such as n + n -+ n + n + n or n + п = у + п, сап also 
contribute to the.1 width but аге not significant at or пеаг the resonance energy. 

ProbIem. Take the nonrelativistic limit of (2.42) and compared with (2.41) 
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The width сап Ье obtained from the singularity in (2.42): 

The argument of the д function is zero when ,,2 equals ,,~, where 

(2.43) 

Therefore, 

or 

(2.44) 

In the laboratory frame, the width and 1т D are related Ьу 

(2.45) 

А good fit to the resonance phase shifts is obtained, according to Moniz and 
Lenz (91), with 

(2.46) 

when ('J. = (0.56fm- 1), mл = 1384 МеV, and g = 8.72/m
1l 

, 

З. PION-NUCLEUS SCATTERING 

.The scattering of pions Ьу nuclei involves а number of novel features, compared 
to reactions induced Ьу projectiles considered so far in this volume. At low 
energies (Е, < 80 MeV) the pion-nucleon interaction is weak and multiple 
scattering theory is used to understand the results. The optical model potential 
contains significant nonlocal contributions in addition to the customary central 
and spin-orbit potentials. In the kinetic energy range 80 to 400 МеV, ~ resonance 
formation is the dominant mode and an isobar-doorway state model is 
appropriate. It is this last feature that is of interest to the theory of reactions, 
for it provides ап observable example of the impact of the nuclear medium оп 

the propagation of а short-lived system through that medium. 
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А. Low Energy: Еп < 80 МеУ 

Multiple scattering theory (see Chapter П) has Ьееп used to obtain the [опп of 
the pion-nucleon optical potential in this energy range. Since multiple scattering 
theory is а high-energy approximation, its vaJidity [ог the scattering of 
low-energy pions whose wavelength/2n is оп the order ог larger than the 
internuclear distance in the nucleus must Ье justified. ТЬе first-order (and 
higher-order) optical potential 

A-l А 
V(l)=~_ L (OltiIO) (3.1) 

А i=l 

depends directly оп the pion-nucleon scattering. То fit the data the parameters 
describing pion-nucleon scattering must Ье modified, replaced Ьу efТective 

parameters. These modifications аге ascribed to higher-order effects which аге 

said to describe the impact of the medium оп the pion-nucleon interaction. It 
is, however, not correct to employ the multiple scattering second-order potential 
V(2) to determine those efТects. In the derivation, presented in Chapter П, of 
V(2) the approximation is made in which the nuclear Hamiltonian, H N , in the 
propagator is replaced Ьу а constant. This is equivalent to the fixed scatterer 
approximation (ог m,,/m - О), which is not valid at these energies. However, we 
shall use V(2) to indicate the form of the media modification, adjusting its 
parameters as well as those о[ V(1) to obtain а fit [ог experiment. ТЬе results 
аге physically meaningful since these parameters уагу slowly with respect to 
nucleus and energy. 

At low energy the scattering amplitude fi [ог pion-nucleon scattering in the 
center-of-mass pion nucleon [гате сап ье parametrized as follows: 

(3.2) 

where Ь' depends оп isospin 

and similarly [ог parameters с' and d'. [Note that t of(2.8) = т/2.] ТЬе coefficients 
Ь', с' d' depend оп energy and momentum transfer q = (k - k'). At threshold 
(Е" = О) the coefficients Ьауе the following values [Ericson and Weise (88)]: 

b~ = - О.ОlО(З)m; 1 Ь', = - 0.091т; 1 

c~ = О.208(З)m; з С'l = O.175(2)m; з (3.3) 

d~ = - О.190(2)m; 3 d'l = - О.069(2)m; з 

ТЬе с' term, the p-wave scattering amplitude, is clearly dominant, demonstrating 
the importance of the д resonance еуеп at уегу low energies. From the results 
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(T = 1 and (T = -1, we see that the л " + р scattering spin 7t·t)ln+p) 7t·t)ln+n) 

averaged amplitude is c~ + C'l = О.38т; 3, and the n+ + р amplitude is given Ьу 

c~ - c~ = 0.03т; 3. We therefore expect that n;+ nuclear scattering will Ье more 
sensitive to the proton distribution, while the opposite will Ье the base for п" 

scattering. 
We shall need the transition matrix t j in the pion-nucleon center-of-mass 

frame, in terms of f7tn in (3.2). This relation is given Ьу (11.7.16). It is 

(3.4) 

where kL is the pion momentum in the laboratory frame, EL the corresponding 
energy including its rest mass, and Ат the mass ofthe target nucleus. In addition, 
it is necessary to transform the momenta kcm and k'ст to the pion-nucleon 
frame momenta, k and k'. 

We consider the transformation from the reference frame in which the incident 
pion has а momentum of k and the target nucleon а momentum of - k/A to 
the frame in which the pion and nucleon Ьаме momenta of kcm and - kcm ' 
respectively. For аН but the lightest nucleus, the pion energy in the first of these 
frames equals the pion laboratory energy, EL . ТЬе boost in velocity v in units 
of с required to transform to the nucleon-pion center-of-mass frame is 
determined Ьу the Lorentz transformation: 

(3.5) 

This yields 

V=(l_~)_k (3.6) 
А m+EL 

For the maximum pion kinetic energy considered (80 МеУ), v2 = 0.0245. Непсе 

in (3.5), опе mау safely put у = 1, so that 

Similarly, 

k' = k' _ k(l - I/A)E~ (3.8)
ст E +т

L 

We thus obtain 

х k~m = _т__ (k х k') (3.9)kcm 
m+EL 
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Note that 

k2 = t(k - k')2 + k·k' + t(k _ k,){k ~ k') 

We drop the last term оп the assumption that it will average to zero andjor 
because it is zero оп the energy shell. Inserting the approximate result into the 
equation for kcm'k~m and using the notation 

k-k'=q 

опе obtains 

k .k' = (~т)2[k'k' _ !"L q2] (3.10)
сm сm т + E 2т 

L 

Substituting (3.9) and (3.10) into (3.2) and (3.4) yields 

where the coefficients Ь, с, d are proportional to Ь', с', and d' of (3.2). They are 
functions of the momentum transfer and the energy. 

Inserting (3.11) into (3.1) yields 

V(r, г') = ~2~~ f dk f dk' e ik'rр( q)t7tAe - ik"r' (3.12) 

Assuming that the coefficients Ь, с, and d vary slowly with q allows us to replace 
them Ьу their value at q = о, Ь(О>, С(О>, and d(O). The integration in (3.12) сап 

then Ье performed easily. For example, consider the k·k' term: 

V = С(О) А - 1 fdk'fdkeik.rk' k' p(k _ k')e - ik"r' 
р (2п)6 

= С(О) А - 1V.V' fdk fdk'eik.rp(k _ k')e-ik"r' 
(2п)6 

= с(О)(А - I)(V' V')tS(r - r')p(r) (3.12') 
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Acting оп t/J(r') yields 

fVp(r,r')t/J(r')dr' = - с(О)(А - 1)V·pVt/J (3.13) 

Непсе the first term in the multiple scattering series is 

where in the last term р has Ьееп assumed to Ье spherical, а function of r only. 
Potential VЩ is known as the Kisslinger potential. 

It was pointed out in the preceding section that the form we have used in 
developing V(l), (3.2), should Ье modified as follows [see (2.32)]: 

с' - c'h(k)h(k'), а = 0.56fm - 1 (3.15) 

Using this form, it is possible, with some approximation, to сапу through the 
calculation leading to (3.12'). Опе obtains 

so that 

fV~(r, r')t/J(r')dr' = - с(О)(А -1)'1' fр( r: r'У~~З e-Сx'Ir-r'IV't/J(r')dr' (3.16) 

where 

, m+EL 
а =а'--

т 

ТЬе quantity (ri З /8n)e-(l'lr-r'l is а spread-out delta function becoming а delta 
function as а' - 00. То obtain some feeling as to when the introduction of the 

ik r', рform factor h(k) is important, replace t/J(r') Ьу e ' Ьу а constant ро. ТЬе 
integral in (3.16) then equals 

(3.17) 

which is to Ье compared with ikpo obtained from (3.13). Using the value of 
a'=0.69fm-1, (3.16), опе sees that the factor 1/[(l+k2/a'2)]2 becomes 
important at relatively low energies. 
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The Lorentz-Lorenz Effect. ТЬе Kisslinger potential, (3.14), is the first-order 
term in the multiple scattering series for the optical potential. We shaI1 now 
consider higher-order terms, ог more physical1y the effects of сопеlаtiоns. 

Fol1owing Eisenberg and Koltun (80), the second-order term involving pair 
сопеlаtiоns wi11 Ье considered first. We have remarked earlier оп the 
approximations involved, but the result wi11 provide us with а form that wi11 
Ье useful in obtaining the semiempirical optical potential. t We shall use (П.4.43) 
at zero energy. Опе further approximation wi11 Ье made, namely V(l) and 8, in 
(П.4.27) for the inverse of the propagator wi11 dropped. With these modification 
one obtains 

dkH 1 
y(2)(k k') = (А - 1)2 -l(k kH) t(kH k')C(kH- k k' - k")

ор! , f(2n)3 ' - (1/2/l)kH2+ ie' , 
(3.18) 

where /l = ELт/(m + EL). We consider only the effect of the P-wave term, so 
that (3.18) becomes 

- fdkH 1V(2)(k k') = - 2/lc2(A - 1)2 -(k·kН)(kН·k') C(kH- k k' - k") 
opt ' (2n)3 (kH2/2/l) - и: ' 

Опе сап decompose the numerator into а "monopole" and а "quadrupole" term: 

(k· kH)(k"·k') = t k ·k'(kH)2 + [(k ·kH)(kH. k') - t(k' k')(kH)2] (3.19) 

Dropping the quadrupole term [see Warszawski, Gal, and Eisenberg (78)J, V(2) 
becomes 

(3.20) 

Introducing the Fourier transform of С yields 

y(2)(k, k') = - t(2/l)(A - 1)2c2(k'k') fdr 1ei(k' - k)'r1C(r l' г 1) 

= t2/l(A - 1)2c2(k'k') fp2(r1)ei(k'-k)'r'dr 1 (3.21) 

~ Ап optical analogy makes use 01' the fact that long-wavelength electromagnetic interactions with 
matter are, as in the case of the k·k' term of (3.11), dipole in nature. Therefore, there should Ье а 

term in the optical potential that is similar to the Clausius-Massotti term in the index of refraction 
for electromagnetic waves. This analogy has Ьееп exploited particularly Ьу Madga and Torlief 
Ericson (66).[See also the most recent discussions Ьу Ericson and Weise (88).] For а more extensive 
bibliography оп the derivation of the Lorentz-Lorentz and other density-dependent effects, such 
as that induced Ьу p-meson excitation [Ваут and Brown (75)], see Eisenberg and Koltun (80). 
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Transforming to coordinate space and including the first-order P-wave 
contribution, опе obtains 

(3.22) 

Eisenberg and Koltun (80)calculate the next-order term, making it plausible that 

(3.23) 

This should replace the С(О) term in (3.14). Опе should bear in mind that the 
form factors h(k) Ьауе not Ьееп inserted and that only а subset ofthe higher-order 
terms has Ьееп summed. ТЬе cross-terms with the nonresonant components of 
V(l) Ьауе not Ьееп included, for example. Finally, (3.14) suitably modified Ьу 

(3.23) does not contain absorption efТects. ТЬе constants Ь, с, and so оп, аге 

nearly real in this energy range, indicating, as expected, that the inelastic and 
quasi-elastic cross sections are small. ТЬе Pauli principle plays ап important 
role here. 

ТЬе significant absorption reaction is the n(2n) --+-2n. Of course, there is the 
single-step process n + п --+-п, but this involves а large momentum mismatch; 
that is, the energy of the final nucleon yields а larger momentum than that 
provided Ьу the incident pion and the Fermi motion of the target nucleon. А 
more likely process is thought to Ье absorption of the pion Ьу two nucleons 
which would go ofТ in opposite directions with equal momenta (ог nearly equal 
if the incident pion has some kinetic energy). ТЬе probability of this process is 
proportional to the (density)2, since two nucleons аге involved. These terms аге 

introduced phenomenologically, so that V(l) reads 

where the spin-orbit terms Ьауе Ьееп omitted. ТЬе empirical parameter ~ 

replaces the factor of t in (3.23). В(О) and С(О) аге complex. Thus еуеп when 
Ь(О), с(о>, and d(O) аге taken from pion-nucleon scattering, we are left with five 
empirical parameters whose values are obtained Ьу fitting the experimental data. 

ТЬе factors Ь(О) and С(О) parametrize the pion-nucleon t matrix. То obtain 
these in terms of the pion-nucleon scattering amplitude j~n, we make use of 
(3.4). Dropping the recoil terms, (3.4) becomes 

(3.25) 
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Басh ofthe quantities in (3.3) must therefore Ье multiplied Ьу - 2n/EL(1 + Edrn). 
However, the parameter В(О) should contain the factor (1 + EL/2m) since the 
interaction is with two nucleons. According to (3.10), the parameter с' of (3.2) 
should Ье multiplied Ьу (т/т + EL)2 uроп transforming to the laboratory 
reference frame. putting аН these factors together yields 

(3.26) 

The efТect of the form factors h(k2
) has not Ьееп included in (3.26). This potential 

is then inserted into the Klein-Gordon equation, 

where Vc is the Coulomb potential and terms proportional to (V)2 have Ьееп 

dropped. The results of Епсвоп and Weise (88) for the parameters b~, Ь'l' c~, 

с'l' and so оп, аге presented in ТаЫе 3.1. 
The quantity (b~)eff is Ьо - (1 - rn,Jm)[b~ + 2b~] <1/r), with <1/r) taken to 

Ье 0.91 тп • The term subtracted from ЬО is а second-order multiple scattering 
соттеспоп. These results should Ье compared with the values given in (3.3). The 
agreement with experiment is ilIustrated in Fig. 3.1.The predicted reaction cross 
sections are shown in Fig. 3.2. 

ТАВLЕЗ.l Low-Energy Optical Мodеl Parameters 

1t Atom T1I = 50MeV Units 

(b~)eff -0.03 - 0.04 + 0.004i т- 1 

'" 
Ь'1 

-0.09 -0.09 т- 1 

1t 

с' 
о 

0.23 0.25 + О.ОН т- з 

" 
с'

1 
0.15 0.16 + О.ООЯ т- з 

" 
~ 0.47 0.47 

В' 0.002 +0.05i -0.005 + О.О3; т- 4 

" 
АС' 0.04 + 0.12i 0.05 +О.О7; т-б 

11 
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FIG.3.1. Angular distributions for n+ elastic scattering оп various nuclei at Т" = 30 
and 50 МеУ [Сап, McManus, and Strick1er (82)]. [From Ericson and Weise (88).] 

В. Pion Energy 80-400 МеУ; The Resonance Region 

The dominant physical process in this energy range is the absorption of the 
incident pion Ьу опе of the nucleons in the target nucleus, forming а ,1. ТЬе ,1 

propagates through the nucleus, colliding with other nucleons. The ,1 eventually 
decays into а nucleon + pion, leaving the nucleus in the ground state (elastic 
scattering) ог excited (inelastic scattering). In an equivalent description the pion 
is absorbed Ьу the target nucleus, forming а Д-hоlе state, that is, а system 
consisting of А - 1 nucleons plus а ,1. This state acts as а doorway to тоге 

complex states, such as the ,1- п - 2 hole state, and generally to Д-hоlе plus 
multiparticle-hole states. 

These two descriptions аге equally valid. However, the first suggests а multiple 
scattering description, while the second suggests а doorway state description. 
In this volume we describe the latter, first proposed Ьу Kisslinger and Wang 
(73, 76) and further exploited Ьу Hirata, КосЬ, Lenz, and Moniz (78, 79) and 
Horikawa, Thies, and Lenz (80). А critical review of this агеа, including an 

http:L.-~----l__L-----'_-'-----.J
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PION ABSORPТlON CROSS SECТ10NS 
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FIG.3.2. Pion absorption cross sections for various nuclei as а function of energy [Сап, 

McManus, and Strickler (82)]. [From Ericson and Weise (88).] 

analysis of both approaches, is being prepared Ьу Lenz and Moniz (91). The 
reader is referred to this article for а discussion of the multiple scattering 
description together with ап extensive list of references. 

In the language of Chapter IП, Р space contains the states of А baryons, 
containing а maximum of опе 6. and at least опе but по тоге than опе pion. 
As usual, the other degrees of freedom аге contained in Q space. Perhaps the 
most important term in Q space is the two-pion + Ьагуоп system, which is 
generated Ьу the reaction (nn -+ ппп). The Hamitonian Нрр we shall use is 

н = НА + h~ + Н' (3.27) 

where 

НА = H~ + н; + VA(n) + VА(Д) + Н(nд -nn) + Н(nn - 6.) 

+ hermitian conjugates of the last two terms (3.28) 

The quantitiesh~, H~, and н; contain the mass and kinetic energy operators. 
The single-particle potentials VA(n) and ViM approximate in shell model fashion 
the potential in which а nucleon ог the д move. The term Н(nд - nn) + Н(nn -+ nд) 
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describes а ~-nucleon collision in which the ~ is deexcited to а nucleon, and 
vice versa, а process that in nucleon-nucleon scattering leads to the production 
of а ~. ТЬе last term Н(nn ~ А) describes the formation of а ~ Ьу absorption 
ofthe pion Ьу а nucleon, or vice versa, the decay ofthe А into а pion + nucleon. 

We define а set of mutually orthogonal projection operators Р rr;' РА, and РА' 

The first of these, Р rr;' projects.onto the space, consisting of the states of А 

nucleons and опе pion. Thus 

(3.29) 

where 

HA=L(Ti + Ид 
i 

(3.30) 

and 

(3.31) 

The operator РА projects onto а space containing only nucleons, so that 

(3.32) 

Finally, the operator РА projects onto а space containing опе ~ and (А -1) 
nucleons: 

РАНРА = дт + L(H1- 1 + Ть: + VA,J == НА (3.33) 
i 

where Ат = тА - т.; and the subscript i in the sum denotes the nucleon, which 
has Ьееп converted into a~. The sum L VA,i = VA(A). The nondiagonal terms аге 

Р д"НРп = Н(nn ~ А) = Lgi == Нд"rr; (3.34) 
i 

and 

Рд"НР А = H(~n~nn) = L ид"nи,л == НМ (3.35) 
i<j 

The operator Нд"rr; describes the absorption of а pion to form а delta. The 
operator gi is given Ьу (2.32): 

(3.36) 

Finally, Нм is H(n~ ~ nn). The corresponding wave functions 

(3.37) 
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satisfy the Schrodinger equations ('11 is the exact state vector) 

(Е - = (3.38а)H 1t)t/J1t H 1t.1.t/J .1. 

(Е - НА)Ф А = Н A.1.t/J .1. (3.38Ь) 

(Е - H.1.)t/J .1. = H.1.At/J А + H.1.1tt/J1t + H.1.Qt/J Q (3.38с) 

(Е - HQ)t/JQ = HQ.1.t/J.1. (3.38d) 

where Q'P == t/J Qcontains аН the channels, such as the L\-hole, тапу p-h states 
not subtended Ьу Р1t + РА + P.1. (i.e., Q= 1 - Рп - РА - Р .1.)' We have made the 
strong doorway state hypothesis, that only t/J .1. connects to Q space. Ву the 
process of elimination опе сап obtain the transition matrix of various reactions. 
First, let us obtain а description of t/J .1.' We "solve" (3.38а): 

where «: is the incident pion-nuclear wave function. Second, from (3.38Ь) we 
find that 

Непсе 

Н -Н 1 Н -Н 1 Н Н 1 Н)'"(Е - .1. .1.A Е + _ Н A.1. .1.1t Е + _ Н 1t.1. - .1.Q Е + Н Q.1. 'у .1. 
А 1t - Q 

(3.39) 

То simplify the арреатапсе of these equations, introduce the definitions 

(3.40а) 

(3.40Ь) 

and 

(3.40с) 

Equation (3.39) becomes 

(3.41) 
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where 

(3.42) 

Inserting (3.41) into (3.38) yields expressions for the 1jJ1I; and ljJ А' From 1jJ1I; one 
сап obtain the .СТ matrix for n-nucleus scattering 

cr- _ »:» / (-) 1 (+); (3.43):у -:У лл + \ Ф1t НnА Е(+) _ НА _ W НА 1I;Ф 1t'[1[ 

A 

where 'СТ=n is the amplitude for nonresonant reactions, One сап also obtain the 
amplitude for п absorption, assuming the absence of nonresonant terms: 

(3.44) 

where 1jJ~-) is an excited state of the target nucleus in the continuum, usually 
а 2p-2h state. 

ЕасЬ of the components of WA corresponds to а physical process. ТЬе 

operator W~A) describes а process in which the ~ is converted into а nucleon, 
thereby forming the target nucleus again. This is followed Ьу propagation and 
recovery of the~. We shall refer to it as absorption. ТЬе operator W~) describes 
the decay of the ~ into а n + nucleon, forming the target nucleus plus а pion. 
This is followed Ьу propagation and reabsorption of the pion to form the ~. 

То evaluate ff1l;n orffаЬ' it is necessary to determine the states of the operator 
НА + WA• Not аll the states, of course: rather, that state which is most strongly 
excited Ьу the incident pion. ТЬе principal component is presumed to Ье а 

~-hole state. We shall therefore look for that linear combination of ~-hole 

states which diagonalize (approximately, of course) НА + WA• This is the 
doorway state. Toward that end we shall examine and approximate WA• 

Consider first W~)', where the prime indicates that we Ьауе removed the 
incident channel; that is, the intermediate states will only Ье those in which the 
target nucleus is excited. If Ро is the projection operator for the nuclear ground 
state and Qo = 1 - Ро is its complement, then . 

(3.45) 

Inserting (3.34), we Ьауе 

(3.46) 

where i and j indicate the nucleon which is converted into а ~ (and vice versa). 
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We верагате the diagonal and nondiagonal contributions: 

(3.47) 

where 

(3.48) 

This тепп corresponds to the case where the system returns to а ~-hole 

configuration while WN D involves а final system consisting of а ~-p-2h 

configuration. The latter, WN D ' is referred to as the rescattering term. 
Similarly, W~A) сап Ье broken uр into а term in which the ~-h configuration 

is preserved and а term in which the final system involves the ~-p-2h 

configuration, so that 

(3.49) 

Непсе the denominator in (3.43) сап Ье rewritten 

Е(+)-Н,1 - W,1=E(+)-H,1 - W~- W(Q) (3.50) 

where 

(3.51 ) 

and 

W(Q) = W~Q) + W~b + W~J (3.52) 

The decomposition could have been introduced at an earlier stage [Eq. (3.38)] 
Ьу the addition of suitable projection operators or through use of the multistep 
theory of Chapter VII. Physically, опе should поте that the ~-p-2h state сап 

Ье generated either through the rescattering term or through W~AJ. Both 
mechanisms must Ье consideгed when the generation of а ~-p-2h configuration 
is important, as it is in the case of double charge exchange (л " -э я "). 

То make the Pauli-blocking efТect explicit, we replace Qo in (3.48) Ьу 1 - Ро, 

where Ро is the projection onto occupied levels. Thus 

W(1t) = "gAt_1_ gA.+ w(n) (3.53)
D г: I Е-Н I РВ 

1t 

where 

W(1t) = _ " A.~ А. (3.54)РВ - L....gl Е - Н gl 
1t 

Equation (3.50) is therefore 

(3.55)
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where 

1 
W = "gf ----- g. + W(A) (3.56)

.1 ~ I Е-Н I .1 
n 

and 

(3.57) 

But 

=Нn Тn+т1[+НА 

= Т1[+m n+ Ti+ Ui+H A  1 

~ Т,1 + U + HA - 1 + mn (3.58) 

In the last equation the pion-nucleon center-of-mass kinetic energy has been 
replaced Ьу the д kinetic energy Т,1 and U is now the average д-nuсlеus 

potential. Because the nuclear wavefunctions аге antisymmetrized, the sum in 
(3.56) сап Ье replaced Ьу а single term. This is identical with the similar term 
appearing in the denominator of (2.31) except that Нрр is now given Ьу Н; as 
approximated Ьу (3.58). Therefore, 

(3.59) 

where L is defined Ьу 

from (2.31). 
ТЬе denominator of (3.43) becomes 

Е(+)-Н - W -Е(+)-Н - W(A)
.1.1- .1 D 

- L(E - Т. - U - Н ) - W(1t) - W(Q) - w 
L> A-l РВ gs 

То make further progress, we linearize L Ьу expanding Е - L about its zero, 
Е - Ея + irj2. We obtain 

Е(+) - Н,1 - W,1 = Е - Ея(Е) + ir(E)
 
2
 

- у(Е - Т,1- o/i - H A - 1 ) - W~~ - W(Q) - w 
gs (3.60) 

where 

(dL) }'=1+ - (3.61)
дЕ E=E-Еп+iГ/2 
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and 

The expression 

ou = 
1 

и +-- W~) 
У 

(3.62)
 

is the L\-nucleus interaction. Medium modifications are given Ьу 'у and 
W~J + W(Q). In the потапоп of Feshbach (82), 

(3.63) 

and 
-wgs = ~ тW (3.64) 

where ЙТ~ is the spreading operator and йт Т the escape operator. 
Expression (3.66)is now in а form that makes а phenomenological approach 

possible. One adopts the optical model strategy Ьу replacing йт! with а spreading 
potential composed of септга] and spin-orbit terms: 

(3.65)
 

where ~~ is the spin-! operator for the L\. The matrix elements of other terms 
йт Т and W~~ сап Ье evaluated in the L\-hole basis. For details, see Hirata, 
Koch, Lenz, and Moniz (79). 

DoorwayStates. We now turn to the problem of obtaining the eigenstates of 

as given in (3.62). The potential OU is taken Ьу Hirata, Koch, Lenz, and Moniz 
(79) to Ье proportional to the nucleon density with а depth of 55 МеУ. The 
remaining parameters are WO, V~J, and /1. The method used Ьу these authors 
and Horikawa, Thies, and Lenz (80) was suggested Ьу the results they obtained 
when the eigenfunctions of JC were determined using harmonic oscillator 
wave functions. It was found that the contribution of опе particular eigen
function dominated the :у matrix for elastic scattering. Moreover, the overlap 
of this wave function, D, with the state developed Ьу the first interaction was 
large; tha t is,::: 

I<i5lgt/J~+» 12 
0.9 (3.67)

I<ф~+) Igtgt/J~+) >12 

Чп the notation of Chapter 111 this ratio is 

1 <Фd Нdрц,(+»1 2 
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Неге D is the adjoint to the D used because Jt' is complex and t/J( +) is the 
scattering solution of(3.38a). This result suggested the use ofthe Lanczos method 
[Morse and Feshbach (53, р. 1155); see also Whitehead, Watt, Cole, and 
Morrison (77)]. Let 

(3.68) 

ТЬеп D 1 is generated Ьу 

(3.69) 

Note the orthogonality: 

State D2 is obtained Ьу operating оп D1 and orthogonalizing with respect to 
Do and о ; 

(3.70) 

<DoD2 ) = <D 1 D2 ) = о (3.71) 

Опе continues this process obtaining the general expression for the nth iterate Dn: 

(3.72) 

Dn is not only orthogonal to Dn - 1 and Dn - 2 but to Dn - з , Dn - a as well. Опе 

сап show (this is left as ап exercise)that 

unless f3 = а, а ± 1 (3.73) 

ТЬе three-term recurrence formula (3.72) thus generates ап orthogonal set. То 

obtain the eigenvalue of Jt', опе expands the eigenfunction t/J.:1 in terms of the 
iterates Dn : 

(3.74) 

Operating with Jt' оп t/J, we find that 

n>О 

(3.75) 
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and 

n=о (3.76) 

The eigenvalue problem JtI/J = el/J yields 

n>О (3.77) 

То "solve," let 

Then (3.77) becomes 

(3.78) 

The solution of the equation for R 1 is the continued fraction: 

1 
х _ -----=-_-----

<D2JtD2)] <D 2JtD з) 1 
[ е 1 

- <i\D 2 ) - <DзDУ [е - <i5 зJtD з )/<i5 зD з) ] - .., 
(3.79) 

Опе сап also obtain ап expression for R 1 from (3.76): 

(3.80)
 

Equating (3.80) with (3.79) yields ап equation for е. There are тапу solutions 
for е, each corresponding to ап eigenstate of Jt. То obtain the wave function 
corresponding to each е, we need the expansion coefficients аn • These are given 
Ьу 

аn 
-==~.~- .... -
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Опе сап also obtain а continued fraction expression for the .'У matrix for 
elastic scattering. From (3.43) and (3.68) we have 

(3.81) 
where 

G=_I_ (3.82)
<ff - Jf 

The complex energy <ff = Е - Е R(E)+ ir(E)j2. Define the matrix element 

(3.83) 

so that Goo = g-nn. We сап therefore rewrite (3.82) as follows: 

Весацае of (3.73) this becomes 

[<ff - <DnJfDn)] Gno = <DnJfDn- 1 )Gn- 1•0 + <DnJfDn- 1 ) Gn+ 1.0 + д nо 
(3.84) 

The solution of this set of equations has Ьееп obtained earlier in this volume. 
Let 

Then 

(3.85) 

This is ап exact solution of the elastic scattering problem. 
It is also possible to obtain ап expression for а reaction. Let us consider as 

ап example the case ofinelastic scattering to а state Фn,а.' The g- matrix is then 

(3.86) 

Expanding GDo in terms of П; yields 

(3.87) 
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From (3.84) 

GnO = ------------------ (3.88) 
С-Уе _ Yf'n,n+ 1 Уе" + 1," 

пп С _ yf' _ Yf'n+1,n+2Yf'n+2,n+1 
n + 1," + 1 JP .,gJ 

(!J - л n+ 2 ," + 2 - ". 

This expression сап Ье inserted into (3.87) to obtain the inelastic transition 
amplitude. As опе сап see from (3.87), g-inel wШ Ье especially large if gФrr!% has 
а strong overlap with the incident doorway sate. 

The convergence of the continued fractions has Ьееп studied Ьу Lenz, Moniz, 
and Yazaki (80). They consider а number of model scattering problems. The 
convergence to the exact partial wave amplitude and the forward scattering 
amplitude is determined Ьу the parameter J..l = (k - K)R, where k - к is the 
momentum djfTerence outside and inside the interaction region and R is the 
radius of that region. Iterations uр to а number equal to 1J..l1 leads to high 
accuracy. This number is ~ 5 for pion-nucleon scattering in both the high- and 
low-energy limits. For light nuclei 1J..l1 '" 1, which is а great simplification. The 
convergence of the nonforward amplitude involves а second parameter ~ = qR, 
where q is the momentum transfer. If ~ ~ 1J..l 1, then 1J..l1 determines the number 
of iterations. If ~ > IJ..l 1, more iterations are needed. Опе word of caution: These 
criteria аге generalizations obtained from the study of specificmodels, the square 
well,and the Woods-Saxon potential and тау not Ье valid for other situations. 

Ап illustrative example is provided Ьу the potential suggested Ьу 

pion-nucleus scattering in the resonance region: 

V(r) = 471Ро Г/2 f(r) 
R Е-Ея + ir/2 

where f(r) is either а square well of radius R or а Woods-Saxon well: 

1 
f(r) = 1 (,- R)ja

+е 

Lenz, Moniz, and Yazaki (80) take R = 1.12Аl/ З , Ро = О.l7fт-з, Г = 110МеУ, 

Ея = 190 МеУ, А = 16, k the pion-nucleus relative momentum in units of h, 
1.5fm -1, and а = 0.53 fm. Table 3.2 shows the rate of convergence for these two 
types of wells for the L = О wave. N is the iterate number. 

The wave function also converges rapidly, as is demonstrated Ьу Fig. 3.3. 
Another example is given Ьу Hirata, Koch, Lenz, and Moniz (79) for Еп + = 
163МеУ, n- 160 scattering. йt~ is given Ьу the first term in (3.65). ТЬе теап 
potential, 011, is taken to Ье proportional to p(r) with а depth of 55 МеУ. The 
results are shown in Table 3.3.ТЬе exact result was obtained Ьу а straightforward 
diagonalization of yf' using harmonic оsсШаtоr wave functions. We see that 
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TABLE 3.2 :!т L=O 

N Square WelJ Woods-Saxon 

о - 0.0031 + О.546li 0.0322 + 0.4961; 
1 - 0.0441 + 0.4172; 0.0120 + 0.4256; 
2 -0.0410 + 0.4172; 0.0144 + 0.4298; 
3 -0.0410 + 0.4172; 0.0144 + 0.4298; 

TABLE 3.3 

N ffL=o Е; ff L=4 Е; 

О 

1 
2 
"Exact" 

0.155 + 0.490; 
0.159 + 0.372; 
0.154 + О.38li 

0.154 + 0.381; 

- 53.1 
-68.7 
-68.7 
-68.7 

154.5; 
138.5; 
138.0; 
138.Oi 

0.060 + 0.280; 
0.062 + 0.246; 
0.059 + 0.251; 
0.059 + 0.250; 

13.9 - 14.4; 
-2.7 -17.7; 
-3.4  22.7; 
-3.5  23.1; 

convergence for f7L is мегу good in both cases. Ассшаге values of е аге obtained 
for L = О after two iterates. Three iterates аге needed for е when L = 4, as the 
value with опе iterate is nowhere пеаг the exact answer. 

The contribution of the various components of 1т е аге shown in Fig. З.4. 

(The qualitative results аге not changed Ьу the inclusion of the spin-orbit term 
in Eq. (З.65) [see Horikawa, Thies, and Lenz (80).] We see that the escape width, 
1т W t, also referred to as the rescattering term, dominates. The Pauli blocking 
term does reduce the width substantially, but this is тоге than made ир Ьу 

Im(W t + W!). 
This theory has Ьееп applied to а питЬег of reactions for which the д 

resonance is important. Background terms that do not involve the d must ье 

added. The elastic scattering of п" Ьу 160 at 114 and 240 MeV is shown in 
Fig. 3.5. The agreement is good and the need for the spin-orbit term is quite 
clearly demonstrated. The agreement is not quite as good for 12с, where 
substantial deviations at back angles аге recorded. Comparison has also Ьееп 

made with 4Не data [Horikawa, Thies, and Lenz (80)] and with РЬ data 
[Karaoglu and Moniz (86)]. The empirical values of the parameters of the 
spreading potential Wo, V~o;, and 11, (3.65), аге given in Fig. 3.6 and ТаЫе 3.4. 

тABLE 3.4 Parameters v~l and J1 for the Spin-Orbit 
Potential 

п " + 4Не 0.25 -4.6-1.8; 
п" + 12с 0.35 -10-4; 
«: + 160 0.3 -10 - 4; 
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FIG.3.3. S-wave scattering wave function for а Woods-Saxon potential with strength 
appropriate to intermediate energy pion-nucleus scattering. ТЬе (а) imaginary and (Ь) 

real parts of the wave function аге shown for different numbers of doorway states. The 
dotted line in (а) shows the shape of the Woods-Saxon potential. [From Lenz, Moniz, 
and Yazaki (80).] 
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FIG. 3.4. Decomposition of the imaginary рап of the doorway expectation value of the 
isobar-hole Hamiltonian. ТЬе eigenvalue of the leading eigenstate is denoted Ьу {, and 
Г is the free-space isobar width. 

ТЬе isobar-doorway model has Ьееп applied to inelastic scattering [Lenz, 
Thies, and Horikawa (82); Takaki (86)] and to nuclear photoabsorption and 
Compton scattering [КосЬ, Moniz, and Ohtsuka (84)]. Inelastic scattering and 
charge exchange scattering are discussed in the fol1owingsections. These provide 
tests of the isobar-doorway model which difТer fюm those made Ьу elastic 
scattering. ТЬе model has Ьееп successful, although some puzzles do remain, 
particularly at back angles. ТЬе overal1 result is that medium efТects аге very 
important. As а consequence, the DWA method is not successful in describing 
reactions in this energy range. 

Reviews ofthe isobar-doorway model Ьауе Ьееп published Ьу Moniz (78а, Ь). 

А review is now being prepared Ьу Lenz and Moniz (91) which will contain а 

critical analysis of the various methods that Ьаме Ьееп used. Another approach 
to the isobar-doorway model is given Ьу Oset with Weise (79).Other procedures 
are used Ьу Wilkin (79), Lee and Ohta (82), Lee and Kurath (80), Johnson (86), 
and Liu and Shakin (77, 79). 

Inelastic Scattering [Lenz, Thies, and Horikawa (82); Hirata, Lenz, and Тhies 

(83); Takaki (86)]. ТЬе excitation of а nucleus Ьу а pion whose energy is in the 

http:OL...-;L-__.....J
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[From Horikawa, Thies, and Lenz (80).] 
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FIG.3.7. Pion particle-hole excitation. 

resonance region is the subject of tms section. We consider only those contri
butions made when the intermediate state involves the L\. As mentioned earlier, 
there тау Ье contributions from the nonresonant components of the n-N 
reaction. The obvious first-order contribution involves the formation of the 
L\~hole state. The L\ decays back into а pion plus nucleon so that the residual 
nucleus has а p-hole (р = particle) excitation. 'Ппв is illustrated Ьу Fig. 3.7. ТЬе 

amplitude for tms process is 

от (.II(-)H 1 Н .11(+») (3.89)::J fi = 'f' rr:f A~ Е _ Jf~ ~A 'f' rr:i 

The DWIA approximation [Lenz, 'Ппез, and Horikawa (82)] consists in using 
the L\-hole Hamiltonian for Jf~ and the elastic scattering wave functions 
as modified Ьу the L\ resonance described in the preceding section. ТЬе 

quantity НМ is defined Ьу (3.36) and Jf~ is defined Ьу (3.62). The amplitude 
equation (3.89) in the DWIA approximation has been studied thoroughly Ьу 

Lenz, Thies, and Horikawa (82). We are аЫе here to point out а few salient 
features of their analysis of inelastic n scattering. Incidentally, most о/ these 
remarks apply equally well to elastic scattering. 
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We first note that for p-h excitations, 

Нм,Нм = g2h(k{i~j Sj"kS;"k' ]h(k') 

=g2h(k{~S(kS7"kl]h(k') (3.90) 

In this expression, k is the center-of-mass гпошепштп/й for the system consisting 
of а pion and а target nucleon. In the laboratory frame, k in (3.90) must Ье 

replaced Ьу 

(3.91) 

and similarly for k'. The vector К is the momentum of the nucleon/h, while сх 

is Е/mс2 , where Е is the total energy of the pion in the laboratory frame and 
т is the nucleon mass. The term proportional to а is referred to as the "гесой" 

term. ТЬе "static" limit is obtained Ьу placing сх = О. Equation (3.90) becomes 
approximately 

Нм,Нм = g2h(k)h(k') LSi"(k - cxK)S7"(k' - схК') (3.92) 
i 

Using (2.39), that is, 

one obtains 

НА&Нм = tg2h(k)h(k') L {(k - cxK)'(k' - схК') - i<Ji"[(k - схК) х (k' - схК')]} 
i 

(3.92') 

The initial wave function сап Ье factored as fol1ows: 

(3.93) 

where 'P i is the wave describing the target nucleus depending only оп the 
internal coordinates. The function x~ +) is the pion-nucleon elastic scattering 
wave function. Similarly, 

Therefore, 

(3.94) 
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where 

(3.95) 

and Е* = Е - Е, + iГ/2. 
Neglecting for the moment the nonlocality indicated Ьу the propagator, we 

see from (3.92) that tл will involve the longitudinal density matrix, 

and the spin density, 

(3.97) 

ТЬе factor (1 + t!J gives the 3: 1 га tio between the Т = ~ isospin total cross 
sections for (я " р) and (n+n). In (3.96) Pji and Pfi are the proton and пешгоп 

density matrices. 
Introducing the nonlocality Ьу а first-order expansion of the orbital 

particle-hole wave functions introduces another set of nuclear operators. These 
include the convection current 

and а dyadic 

Uл (r) = _ \'I'fl f (1 +t!Ak))[p(K)CJ(k)J(r-r,J+ b(r-rк)р(к)CJ(К)]}1 
2т K=l 

(3.99) 

~ 

These quantities Р fi. SЛ, jfi and и fi are probed Ьу inelastic pion scattering. 
Combined with electron scattering, they will yield the пешгоп particle density,

+-+ 
spin density, and current density matrices as well as the spin Лих tensor U. 
Note that the vectors k(K) are momentum operators acting оп the nucleon wave 
functions. 

ТЬе modifications because of nonlocality and recoil (whose neglect through 
closure for the propagator and putting (J. = о leads to the "static" solution) are 
substantial. ТЬе calculations involve (1) distorted wave functions for the 
pions as obtained Ьу the methods discussed earlier, and (2) nucleon and hole 
orbital wave functions. ТЬеу аге required to yield the transition and spin density 
matrices as determined from electron scattering. In Fig. 3.8а we show the cross 
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sections for excitation of the 2+ state (4.44MeV) in 12с Ьу Рл (longitudinal 
excitation) under various approximations. We see the large differences between 
the closure and fuB ~-h calculations. In Fig. 3.8Ь а similar comparison is made 
for the 3- state at 9.64 MeV. ТЬе match of the fuB calculation (the longitudinal 
excitation dominates) is not quantitatively satisfactory, although qualitative 
aspects аге reproduced. We show just the case of the 2+ excitation in Fig. 3.8е. 

In the resonance region the calculations do agree reasonably weB ир to the 
region of the second maximum. Large discrepancies аге found for large 
momentum transfers. This is possibly not surprising since а similar difficulty 
exists for elastic scattering. Lenz, Thies, and Horikawa (82) believe that the 
cause of the discrepancy lies in the ~-nucleus interaction as described Ьу the 
spreading potential. 

Hirata, Lenz, and Thies (83) point out that the mеап field description of the 
~-h spreading potential mау Ье ап oversimp]ification. ТЬеу propose а гпоёе! 

in which the ~ interacts with the nuclear nucleons via а two-body interaction. 
This interaction сап excite опе of the nucleons, so that а possible intermediate 
state consists of а д'-h plus а p-h state. This is iВustrated in Fig. 3.9. Of course, 
higher-order multistep intermediate states д'-h, v(p - h), where v is ап integer 
аге possible. 

ТЬе amplitudes corresponding to Figs. 3.7 and 3.9 add ир to give the ff 
matrix: 

(3.100) 

where ll1N is the сотпропеш of the д'-N interaction, which results in further 
пцстеаг excitation. The quantity (1/Е* - if11) is the propagator for the д'-h, p-h 
system, and Е* = Е - ER + ir/2. 

Equation (3.100) is ап example of the атпрйпше for the multistep direct 
process described in Chapter VI. The higher-order multistep components аге 

not included. Ап estimate of their importance using the statistical approach of 
Chapter VI has not Ьееп made. 

ТЬе Hamiltonian in (8.39) is given Ьу [see (3.53) and (2.60)] 

(3.101) 

Hirata, Lenz, and Thies (83) and Takaki (86) replace the spreading potential 
W(Q) + уOZl Ьу а sum of two-body potentials instead of using the mеап fie]d as 
given in (3.65); that is, 

(3.102) 
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FIG. 3.9. Pion two-particlejtwo-hole excitation. 

The potential t i1N contains the diagonal rescattering term [see (3.48)], which 
does not contribute to the production of the more complex nuclear states. The 
remainder ti1Nis the interaction that appears in (3.100). Takaki (86)parametrizes 
ti1N as follows: 

ti1N= L C(Si1' Ti1)8(r i1 - rJP(Si1)P(Ti1) (3.103) 
i,S~,T~ 

where Si1 and Ti1 are the spin and isospin of the interacting ~~p pair, while 
P(Si1) and P(Ti1) are the corresponding projection operators. Since the ~ spin 
is t and the nucleon spin is i, Si1 сап Ье either 2 or 1. The same hOlds for 
Ti1 , so that (3.103) contains four complex parameters, С(II), С(12), С(21), 

and С(22). Опе relation exists among them: namely, that the mеап field that 
fоПоws from (3.102) agrees with the empirical mеап field, W~ [Eq. (3.65)]. The 
comparison is obtained Ьу taking the diagonal value of t i1N in the single
doorway-state approximation. This result, together with fit of the inelastic data 
for the (п ", 12С) reaction, permits the determination of the values of C(Si1' Ti1). 
Finally, Takaki approximates .iti1 Ьу yt i1' Results for the excitation of the 1+, 

Т = О (12.72 МеУ) and the 1+, Т = 1 (15.11 МеУ) levels in 12с are shown in 
Fig. 3.10 and for the 2 +, Т = О (4.4МеУ) level and the 3-, Т = О (9.6МеУ) 

levels in Fig. 3.11. The values of C(Si1' Ti1) obtained from fitting 1+ excitations 
аге used in the calculation of the 2 + and 3- excitations. Qualitative agreement 
is good, еsресiаПу at smаП angles, but there are strong difТerences from 
experiment at the back angles at 162 and 266 МеУ. At 100MeV, the [иН 

calculations are in good agreement with experiment. Опе also sees that Ьу 

taking into account the more complex excitation, ~-h, p-h, it becomes possible 
to fit the ratio а(Т = О)/а(Т = 1) as а function of the energy. ТЬе disagreement 
with the data is significant since this model correctly predicts the elastic and 
total cross sections. We speculate that fuП agreement with the data will not Ье 

attained until more complex excitations are included in the calculation. 

Sing/e (SCX) and ОоuЫе (DСХ) Charge Exchange Scanering. Ап example 
of ап SCX reaction is 

(3.104) 
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excitations. Solid and dashed lines correspond to the fuH calculations for Т = О and 
т = 1, respectively. [From Takaki (86).] 

It is closely related to the (р, n) reaction as the residual nucleus is identical for 
both. In the latter case, а most salient feature is the formation of the isobar 
analog of the target nucleus. We тау expect that the reaction (3.104) will also 
excite the isobar analog states. This is illustrated Ьу Fig. 3.12. With DCX, other 
giant resonances, such as the electric dipole and double isobar analog states, сап 

also Ье excited (see Fig. 3.13). Thus once the dynamics of SCX reaction is 
understood, опе should Ье able to gain further understanding of these 
resonances. Similarly, the (л ", по) reaction is the image of the (n,р) reaction and 
would Ье useful in the study of the nucleus (Z - 1, N + 1). 

ТЬе isobar analog resonance сап Ье discussed pehnomenologically Ьу using 
the Lane equation (Chapter V). А similar procedure сап Ье followed here where 
following the papers of М. Johnson, Е. R. Siciliano, and their colleagues 
[Siciliano, Соорег, Johnson, and Leitch (86), for example], one writes for the 
potential 

(3.105)
 

where Vo, V1, and V2 аге referred to as the scalar, vector, and tensor potentials. 
Т, and ТА аге the isospin operators for the pions and nucleus, respectively. 
Equation (3.105) is the extension, to charge exchange reactions, of the pion 
optical potential described earlier [see (3.26)]. This potential was used to 
describe the elastic and total cross sections and involves terms quadratic in р 

(the density) which аге а consequence of medium etТects. Once one distinguishes 
between the neutron and proton components of р, these quadratic terms lead 
directly to а tensor contribution to V. It should also Ье noted that (3.105) 
contains the most complicated dependence оп T!t' То confirm this, we need 
only to recall t that 
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(9.6МеУ) excitations for various pion energies. Solid lines correspond to the DWIA 
calculation, and dasht<d lines to the fuH calculation. [From Takaki (86).] 

where T7ti is the ith сотпропеш of Т. We emphasize that the tensor term is 
present as а consequence of the efТect of the medium оп pion-nucleon 
interaction. Ап analysis of the origin of this term will show that it depends оп 

nuclear structure, оп Pauli and оп both short-range and long-range pair and 
higher-order сопеlаtiопs. 

ТЬе solution of the Klein-Gordon equation with the V of (3.105)is relatively 
straightforward. Опе сап determine the uncoupled equations for еасЬ of the 
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FIG.3.12. Charge exchange reactions. 
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-Q (MeV) et al. (89).] 

three possible isospins of the system Т = ТА ± 1 and Т = ТА' Since 

one сап immediately obtain the values of TA·TjE that арреаг in (3.105). One 
obtains 

(3.106) 

Recall that Т; = 1 and ТА = t(N - Z). From the solutions Ф(ТА + 1), Ф(ТА), and 
Ф(ТА - 1),one сап obtain the amplitudes for SCX and DCX. ТЬе wave function 
for the n+ nucleus system, Ф + (Тп , T1tz ; ТА' TA z ) , is given in terms of the three 
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solutions "'(ТА + 1), "'(ТА)' and "'(ТА - 1) Ьу 

"'+(1,1; ТА' - ТА) = (1; 1; ТА' - TAI ТА + 1,1- ТА) "'(ТА + 1) 

+ (1,1; ТА' - TAI ТА' 1 - ТА)",(ТА) 

+ (1,1; ТА' - TAI ТА - 1, 1 - ТА) "'(ТА - 1) 

or 

The states "'(ТА + 1), and so оп, must Ье chosen so that '" + asymptotically 
consists оС an incident plus outgoing wave. ТЬе outgoing wave will contain я", 

пО, and х: components corresponding to elastic (ог inelastic) SCX and DCX 
scattering. То obtain the DCX, опе needs the wave Cunction [ог по plus the 
residual nucleus with isospin TR, z component Tz• This wave Cunction is 

"'0(1,0; TR, Tz) = { I ,O; TR, TzlTA + 1, Tz)",(TA + 1)+(1,0; TR, TzITA , Tz)",(TA ) 

+ (1,О; TR, TZI ТА - 1, TR)"'(TA - 1) (3.108) 

In the case оС "elastic" scattering, 

Experimentally, elastic scattering to the nucleus (ТА' 1 - ТА) does not occur 
because оС the ртевепсе оС the isobar symmetry breaking Coulomb interaction. 
ТЬе residual nucleus in state "'О is the isobar analog state оС the target nucleus. 
ТЬе double isobar analog state is generated Ьу the (n +, п -) reaction. It is the 
residual nucleus in state '" _: 
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Returning to (3.108), the asymptotic boundary condition for Фо is that it 
contains only ап outgoing wave. The same boundary condition applies to the 
п" + residual nucleus wave function, Ф _, generated Ьу the DCX reaction. These 
boundary conditions together with the boundary conditions for Ф + determine 
the amplitudes of Ф(ТА + 1),Ф(ТА ), and Ф(Та - 1) and thus the reaction 
amplitudes. 

In the absence of the Coulomb interaction, the transition matrix !!т сап also 
Ье written in the same form given in (3.105), 

(3.111) 

For "elastic" scattering this equation yields the relationships [KoItun and 
Singham (89)] 

!!т ll = to - TAt1 + ТА(ТА + 1)t2 

!!т 01 = A(t1 - TAt2 ) (3.112) 

!!т -11 = JTA(2TA -1)t2 

Equation (3.110) implies а совпеспоп between n+ - and п" - or nO-iпduсеd 

reactions. For example, 

(3.113) 

These relations will Ье valid for high energies and light nuclei, where the isospin 
symmetry-breaking Coulomb interaction is least important. They should fail 
substantially for low-energy incident pions and heavy target nuclei. 

In the high-energy limit, опе сап establish the relation between Vo, V1, and 
V2 of (3.105) and to, t 1 , and t 2 of (3.110) Ьу using the eikonal approximation. 
From (11.5.11) we have 

2nih 2k Joo .
!!Те! = -- bdbJo(2kbsint&)(e'X -1) (3.114) 

J.! о 

where 

(3.115) 

and 

These nonrelativistic results сап Ье modified to satisfy relativistic kinematics 
Ьу using the Klein-Gordon equation [see (11.7.2)]. Опе сап evaluate eix through 
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use of the recurrence relations [Siciliano, Соорег, Johnson, and Leitch (86)] 

(3.116) 

and 

Note that Т; = Тn(Тn + 1)= 2 and T~ = ТА(ТА + 1). One finds that 

(3.118) 

where 

Т оТ 
С - А n_ [Т -т - Т ] (3.119а) 

- ТА (2ТА + 1) А" А 

(3.119Ь) 

and 
(Т от)2 

А=1-В-С=1- А n (3.119с) 
ТА(ТА + 1) 

For the и2 term one obtains 

(3.120) 

where 

(3.l20a) 

ь = (1 + ТА ОТ")(ТАОТn + ТА + 1) 
(3.120Ь) 

(2ТА + 1)(ТА + 1)
 

а = 1- (2ТА + 1)(тn о ТА ) 2 + 3(Т,,'Т А)
 (3.l20c) 
ТА (2ТА + 1)(ТА + 1)
 

ТЬе quantity eix is
 

We note that the second factor contains both absorptive and regenerative 
terms. It is necessary, to conserve unitarity, that the net Ье absorptive, which 
condition limits the values of и 1 and therefore of V1• We shall not continue 
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8с .т. (deg) 

FIG. 3.14. Comparison of theoretical n + and n - elastic scattering cross sections to data 
at Т" = 164 МеУ for 160, 28Si, 4ОСа, and 12с. [From Greene, Harvey, et al. (84).] 
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FIG.3.15. Comparison of theoretical sing1e charge exchange d(J/dO(OO) to data at 
Т" = 165 МеУ. ТЬе х represent data and the • represent theoretical result. [From 
Greene, Harvey, et al. (84).] 
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FIG.3.16. Comparison of theoretical doubJe charge exchange da/dQ(5°) to data at 
Т; = 164 МеУ. ТЬе х represent data and the • represent theoretical results. [From 
Greene, Harvey, et al. (84).] 

with development, as exploration of these results has not been made. ТЬеу do 
demonstrate the possible importance ofthe vector and tensor components of V. 

ТЬе phenomenological theory using potential equation (3.105) has been used 
Ьу Greene, Harvey, et al. (84) to analyze pion"single and double charge exchange 
scattering to isobaric analog states, and elastic scattering in the resonance iegion 
(Е, = 164 МеУ). Suffice it to say that agreement with experiment is obtamed as 
illustrated Ьу Fig. 3.14 for elastic scattering, Figs. 3.15 and 3.16 for SCX and 
DCX. ТЬе DCX angular distribution obtained for 180 and 26Mg and when 

о 20 40 60 
8ст. (deg) 

FIG.3.17. Comparison of theoretical double charge 
exchange angular distributions to data at Т_ = 164 Ме У. 

ТЬе dashed curves аге the lowest-order result. [From 
Greene, Harvey, et al. (84).] 
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FIG.3.18. Comparison of theoretical п " (а) and n- (Ь) elastic scattering cross section 
from 14С to data at Т" = 164 МеУ. ТЬе solid and dashed curves аге, respectively, results 
with and without the isоsрiп-dерепdепt terms in и». [From Greene, Harvey, et al. (84).] 

the target nucleus is 14с is shown in Figs. 3.17 and 3.18. This illustrates the 
importance of the tensor term, V2 , in (3.105). Опе technical result of importance 
is the finding of Siciliano, Соорег, Johnson, and Leitch (86) that the plane wave 
approximation for the pion wave functions is inadequate. 

ТЬе DCX reaction proceeds along two possible paths. In опе а n +, for 
example, scatters from а nucleon becoming а по. ТЬе по then scatters а second 
time, becoming а n -. This process is referred to as sequential. In the ~-N 
interaction, the n+ is absorbed Ьу а target nucleon, forming а ~ ". ТЬе ~ + 

interacts with the nucleus via t AН [see (3.102)], becoming а ~O, which then 
decays into а n - and а proton. Calculations of the DCX reaction at low pion 
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FIG.3.19. 18О(n+, 7t-) 18 Ne(g.s.) differential cross section: full sequential (solid curve), 
sequential, but keeping only the J = О intermediate nuclear state (dotted-long-dashed 
curve), with l1-N interaction of strength ди = 0.5 - 1.0i, 0.2 - 2.8i, 1.0 + O.4i[m2 (dashed, 
dotted, and dotted-dashed curves, respectively). [From Karapiperis (89).] 
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FIG.3.21. 18О(n+, n-) 18Ne(g.s.) difТerential cross section: sequential (solid curve) and 
with f:t.-N interaction of strength би = 2.0 - 0.4ifm 2 (dashed curve). [From Karapiperis 
(89).] 

energies where the sequential process dominates ("" 50 МеУ) have been 
successful. But calculations in the resonance region in the isobar hole model 
are not. For an analysis, see Karapiperis and Kobayashi (87) and Karapiperis 
(89). For an analysis from another point of view, see Siciliano, Johnson, and 
Sarafian (90). ТЬе isobar-hole model uses the analysis described earlier for 

18О(n+, n-)18Ne(g.s.) elastic and inelastic scattering. ТЬе results for 50-МеУ 

are satisfactory. See Fig. 3.19. We see that the Д-N process is relatively 
unimportant. Distortion effects аге very important. At the higher energies good 
agreement is obtained for the 160(n+, n-) 16Ne(g.s.). See Fig.3.20. However, 
there is strong disagreement with the angular distribution in the reaction 
18О(n+, n-)18N e (Fig. 3.21), which is as yet unresolved. Disagreement with the 
14C(n+,n-)14О(g.S.) is also present. Reasons for these disagreements include 
possibly inadequate nuclear wave functions and the oversimplified form of tЛ,N' 

(3.105). ТЬе importance of nuclear structure has been emphasized Ьу Auerbach, 
Gibbs, and Piasetsky (87)and Auerbach, Gibbs, Ginocckio, and Kaufmann (88). 

4. KAON-NUCLEUS INTERACTION 

Тhe kaon is а pseudoscalar (odd parity, spin zero) boson. There are four varieties, 
the К+, КО, К-, and Ко' ТЬе antiparticle of the К+ is К-, and of the к», кО. 
This differs from the photon and пО, which аге identical with their antiparticles. 
ТЬе mass ofthe К+ and КО аге, respectively, 493.71 MeVand 497.70МеУ. ТЬе 
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КО and к: (and the К-, КО) form ап isospin-~ system. The kaon is а "strange" 
particle in that it has ап additional internal quantum number of strangeness S. 
We shall use hypercharge У rather than S, where 

Y=B+S (4.1) 

and В is the baryon number. This permits а symmetrical classification of the 
bosons and fermions as illustrated Ьу Fig. 4.1. The axes аге the value of the z 
сотпропеш of the isospin, Тз, and У Опе observes that the fermion analog of 
the (кО, к+) isodoublet is the nucleon isodoublet; that of the pion isospin опе 

system is the L isospin опе system. The L: ± mass is 1189.37 МеУ and the L:0 

mass is 1192.47 МеУ. FinaIly, the (К>, КО) doublet is mirrored Ьу the 8 doubIet, 
with the mass of the 8- equaI to 1321.29 МеУ and the mass of the 8° 
1314.9 МеУ. The masses of the isosinglet ЛО and t1 0 аге 1115.60 and 548.8 МеУ, 

respectively. The spin of each of the particles in Fig. 4.1а is zero, while the spin 
of the particles in Fig. 4.1Ь is ~. The particles in Fig. 4.1а are said to form the 
pseudoscalar octet, while those in Fig. 4.1Ь form the baryon spin-~ octet. This 
classification based оп SU(3) symmetry is а generalization of the SU(2) isospin 
symmetry of the nucleon system. If SU (2) symmetry were ехасг, the пешгоп 

and proton would have the same mass and each wouId Ье an example of the 
nucleon. If SU (3) symmetry were ехаст, the masses of аll the particles in Fig. 4.1а 

would Ье identicaI and опе would refer to them as states of опе particle, the 
pseudoscalar boson. Similarly, Fig. 4.1Ь represents а зрш-] baryon. As the 
masses аге not the same, SU(3) symmetry is broken. 

It will Ье usefuI for us {о give the quark description of these particles. We 
shall need only the u (ир), d (down), and s (strange) quarks and their antiparticles. 
These quarks are spin-~ fermions. The properties of these quarks are given in 
Table 4.1. In ТаЫе 4.2 we Iist the combinations for the various particles shown 
in Fig. 4.1. Note that the antiparticles of а quark q is written ij. 

(о) (Ь) 

FIG.4.1. 
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TABLE4.1 Properties of the и, d, and s Quarks 

Baryon 
Flavor Charge Strangeness Тз Number, В У 

u ~e О 
1 
"2 

1 
3 

1 
3 

d -~e О 
1

-"2 
1 
3 

1 
3 

s -~e -1 О 1 
3 

2
-3 

u -1 е о 1
-"2 

1
-3 

1
-3 

г ~e О 
1 
"2 

1
-3 

1
-3 

s ~e 1 О 
1

-3 
2 
3 

TABLE 4.2 Quark Composition of Hadrons 

Baryons Вовопв" 

р (uud) К+ (us) 
n (udd) КО (dS) 
I:Л (uds), (uus), (dds) n,r, (ud)(uu)(dd)(ud) 

КО «([s) 
~ (uss), (dss) К- (us) 

aThis list omits the (.5s) combination, leading to the existence of another particle, the Т( In fact, 

both the 1/and 1/' contain the ss combinations: п = l/J6(uu + dd- 2sS) and ТJ' = l/j3(uu + dd+ sS). 
Within the SU(З) framework we аге using, the 1/is included in Fig. 4.1а octet, while the 1/' is regarded 
as а singlet. 

This quark description must Ье used with some саге. ТЬе constituent quarks, 
as they аге sometimes called, аге quasi-particles, as their environment is rich 
with quark-antiquark pairs as well as gluons. Moreover, we Ьауе пот assigned 
spin and still another internal degree of freedom, called color. Аll this is 
presumably а consequence of Quantum Chromodynamics (QCD). We shall not 
describe that theory here, as we shall Ье concerned only with qualitative 
considerations. ТЬе interested reader will find the details in а number of 
references [Gottfried and Weisskopf (84, 86); Close (79); Gasiorowicz (66), Lee 
(81)]. ТЬе reader should confirm that the isospin of the baryons and bosons 
сап Ье deduced frош the isospin of the constituent quarks. 

ТЬе conservation of isospin in the strong interactions is expanded Ьу the 
additional requirement of the conservation of strangeness. ТЬе latter condition 
is illustrated Ьу the fact (for example) that п" +р-+К+ +I;- is aJlowed but 
n - + р -+ К - + .r. + is forbidden. More compactly, the strong interactions are 
SU(З) symmetric [i.e., the strong interactions commute with the generators of 
the SU(З) group]. From the quark point of view, for sufficiently low-energy 
рЬепоmепа опе need consider only the и, d, and s quarks. ТЬе other known 
quarks, the с (charm) and Ь (bottom), are muсЬ more massive than the и, d, 
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and s. ТЬе с mass is 1.5GeV and the Ь mass 5 GeV greater than the mass of 
the и and d. 

SU(З) symmetry is broken. ТЬе masses of the members of the врш-] octet 
and of the pseudoscalar boson octet difТer substantially. In terms of the 
consti tuent quarks, the mass of the strange quark, s, is about 150 МеV greaer 
than the mass of the uр and down quarks, whose masses аге equal. This heavier 
mass for the strange quark provides muсЬ of the observed mass difТerences. In 
addition, the spin- and color-dependent forces between quarks generated Ьу 

the exchange of colored gluons provide additions to the mass of the composites. 
This interaction also breaks symmetry since these exchange forces аге mass 
dependent. These, together with the larger mass of the s quark, sufficeto explain 
the mass spectrum of both the spin-t baryons and the pseudoscalar bosons. 
[See Close (78) for the details.] 

At large distances the baryon-baryon interaction is generated Ьу the 
exchange of bosons [the singlet У(', the pseudoscalar, and the vector (р, оз, etc.)]. 
Because of the difТerence in the boson masses, there will Ье strong symmetry 
bleaking. For example, the one-boson exchange ЛN nucleon interaction, 
because of isospin conservation, involves the exchange of а kaon, while the pion 
mediates '.EN interaction (see Fig. 4.2). Since the mass of the kaon is larger than 
that of the pion, the ЛN interaction will Ьауе а range muсЬ shorter than that 
of the '.EN interaction. At small interparticle distances, the six-quark system 
must Ье considered. One would speculate that symmetry breaking would ье 

weaker in this case. It has also been speculated that the '.EN -+ ЛN transition 
matrix element breaks SU(З) symmetry weakly [Dover and Feshbach (87,90)]. 

ТЬе antiparticle ofthe кО, кО is not identical with кО, difТering in this respect 
from the по or the photon у for which the particle-antiparticle equality does 
prevail. This unique property of the КО system has important consequences. It 
surfaces in the pionic decays of the kaons. These violate conservation of 
strangeness and are therefore governed Ьу the weak interactions. These (as wеП 

as the strong interactions) conserve СР, although neither С nor Р is separately 
conserved. We recall the С is the operator that converts а particle into ап 

antiparticle, while Р is the parity operator that gives the efТect of reflecting аН 

the spatial coordinates (r -+ - r) in а state. Since с2 = р2 = 1, 

СРКО=еiФкО 

N А N
I.A 

К 7т 

А N NI 

(о) (ь) 

FIG.4.2. 
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and 

We use the customary convention, Ф = О, so that 

СРК =КО 

(4.2)
СРКО = КО 

Photons are odd under С. Since по decays into two photons 

so that the по is ап eigenstate of С. But the по is а pseudoscalar, so that 

We now consider the weak decay of the kaons into nn and ппп. Since the 
spin of the kaon is zero, the two pions are in ап 1= О orbital state. The intrinsic 
parity of the two pions is + 1 and the orbital state is even under parity. Thus 
the parity of the two-pion final state is even. If the two pions are nO's, the 
operator С will not affect them. If they аге а n+ and п>, С will interchange 
them. However, they are in а relative 1= О orbit and their state is thus unchanged 
Ьу С. Непсе the two pion state formed Ьу the decay ofthe kaon has even СР. 

Consider next the three-pion system nОnОn О. Our conclusion will Ье valid 
for kaon decays involving charged pions. Since they аге bosons and their total 
spin is zero, they are in а spatial1y symmetric state (i.e., the exchange of апу 

two will not affect the three-pion wave function. Under these circumstances the 
spatial parity of the three-pion system is even but the intrinsic parity of еасЬ 

is odd, so that finally the parity is odd. Since С = 1 for еасЬ of the pions, СР 

for the three-pion decay is odd. 
Since the weak interaction is СР invariant, КО and кО are not eigenstates 

of Н, the total Hamiltonian, Hstrong + H weak ' The eigenstates of Н are 

(4.3) 
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The state K 1 is even under СР, while К2 is odd. The K 1 will therefore decay 
into two pions and the К 2 will decay into three pions. Thus if КО is produced 
in а reaction, its composition will change with time. If 

(4.4) 

then 

(4.5) 

Note that (4.4) holds only in the rest frame of K 1 and К2 • ТЬе short lifetime 
п/Г 1 is 0.89 х 10- 1 О s, while the long lifetime п/Г 2 is 0.52 х 10- 7 s. We see fюm 

(4.5) that the mixture of S = 1 and S = - 1 changes with time. EventuaHy, 
К О-К 2 with equal amplitudes for Ко and Ко. Moreover, the amplitudes of 
the К 1 and К2 components сап Ье obtained Ьу measuring the ratio of 2n to 
3n decays. From this result, using (4.5), the mass difference between К 1 and К2 
сап Ье determined. It equals 3.52 х 10- б еV. 

Suppose that а Ьеат of neutral kaons are incident оп а nucleus. These kaons 
will аН Ье in the К 2 state if а sufficient time has elapsed from the time of 
production. But the КО and Ко components of К2 will scatter differently with 
amplitudes f and 1. respectively. ТЬе kaon wave function will then Ьесоmе 

(4.6) 

As а consequence of the scattering, some К 1 has Ьееп poduced. This 
рЬепоmепоп is referred to as regeneration [Pais and Piccioni (55)]. ТЬе incident 
Ьеаm particles could only decay into three pions. After the scattering, two-pion 
decay сап also occur because of the presence of К 1 in (4.6). Ву measuring the 
two- and three-pion decays, опе сап determine the amplitudes f and 1 

ТЬе discussion above is not entirely correct, for it is found that the long-lived 
kaon, which is referred to as K L , decays into both Зл and 2n final states 
(Christenson, Cronin, Fitch, and Turlay (64)]. Thus СР сапог Ье conserved. 
K L must Ье а linear combination of К1 and К2 : 

(4.7) 
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ТЬе particle K s, which has а short lifetime, is given Ьу 

(4.8) 

ТЬе measured value of е is (1.6)(1 + i) х 10-3. Up to this time, по other system 
has exhibited С? violation. Since е is small, for most of the рЬепотепа to ье 

discussed we сап disregard the diПеrепсеs between КL and К 2 and K s and К 1: 

А. Kaon-Nucleon Scattering t 

ТЬе study of kaon-nucleon reactions is far from achieving the completeness 
that we Ьауе seen to exist in the pion case. ТЬе associated phenomenology is 
therefore less secure. But there are some broad features that аге understood 
qualitatively and in some cases quantitatively, which аге of importance for ап 

understanding of kaon-induced nuclear reactions. Маnу о/ the numerical values 
given in the discussion must Ье regarded as tentative. 

ТЬе reactions induces Ьу К - beams incident оп the nucleon аге qualitatively 
difТerent from those induced Ьу К + Ьеат. This сап Ье seen in Figs. 4.3 and 
4.4. Опе observes the complex structure of the К - total cross section. These 
are а consequence of а number of resonances that are tabulated in Tables 4.3 and 
4.4 for the energy range considered in Fig. 4.3. 

In these tables the column labeled L T ,2J gives the possible spatial configuration 
for еасЬ of these composite particles. ТЬе column labeled "dominant channel" 
indicates the most probable decay modes and therefore the most likely 

ТАВLЕ4.З 

Dominant 
т=о ч; r(MeV) Спаппе] Mass (MeV) 

Л (1405 MeV) 801 40±1 KN 1405±5 
Л (1520) Dо з 15.6± 1 KN,~n 1519.5±1.0 
л (1600) е.; 50 - 250 ~n, KN 1560 - 1700 
Л (1670) 801 25 - 50 ~n 1660 - 1680 
Л (1690) Dо з 50-70 ~n,KN 1685 - 1695 
Л (1800) 801 200-400 KN 1720- 1850 
Л (1810) Р0 1 50- 250 ~n 1750-1850 
Л (1820) Fos 70-90 K*(892)N 1815 - 1825 
Л (1830) Dos 60 -110 ~n 1810- 1830 

Source: "Review ofParticle Ргорегпеа,' Particle Data Group, Phys. Lett. В 204(1988). 

tDover and Walker (82); Amdt and Roper (85); Dalitz, McGinlay, Веlуса, and Anthony (82). 
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FIG.4.3. Total к- -nucleon cross sections for isospin Т = О and Т = 1. [From Саггой. 

Т=О 

Chiang, et al. (76).] 

TABLE4.4 

Т=1 

I:* (1385) 
I:0 (1385) 
I: - (1385) 
I: (1660) 
I: (1670) 
I: (1750) 
I: (1775) 

Dominant 
Г(МеУ) Channelч; 

Р 13 36± 1 Лn 

Р ll 40- 200 KN 
D 1 З 40-80 I:n 
Sll 60 -160 к н, I:'1 
D lS 105 -135 кн.ь:« 

Mass (МеУ) 

1382.8±0.4 
1383.7± 1.0 
1387.2±0.6 

1630 - 1690 
1665 - 1685 
1730 - 1800 
1770 - 1780 

Source: "Review ofParticle Properties," Particle Data Group, Phys. Lett В 204(1988). 
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FIG.4.4. Total ((1т), inelastic ((1,), and elastic ((1е) к: Р cross sections. [From Arndt and 
Roper (85).] 

production reactions. ТЬе К*(892) is а spin-l particle with the same strangeness 
as the к. It is а member of the spin-l octet that includes the р as а member. 
Опе сап conclude from the rich spectrum seen in these tables that the KN 
system is strongly interactive. 

ТЬе picture for the К +N system is strikingly different, as we сап see from 
Fig. 4.4. ТЬе total cross section for к: + N is relatively constant ир to а kaon 
laboratory kinetic energy of about O.4GeV (PL = 0.745 МеУ/с, Ест = 1.674GeV), 
after which there is а relatively steep rise ир to about 0.8 GeV in the laboratory, 
after which it is relatively constant. Below 0.4 GeУ, ат'" 1.2mЬ, while for 
energies greater than 0.8 GeV, ат '" 1.7mЬ. ТЬе last is the sum of а decreasing 
elastic cross section, ае, and а rising reaction cross section, а; Three resonances 
are reported Ьу Arndt and Roper (85), who find the evidence for Z*(l780) as 
strong; there are two other resonances listed as "highly probable" (see Table 4.5). 
In the "Review о! Particle Properties," these resonances аге considered to Ье 

uncertain. ТЬе difference between the N К and К N systems сап Ье qualitatively 
understood Ьу considering the quark structure in еасЬ case. ТЬе kaon, К, is 
made ир of йя, while the nucleon, say the proton, contains two u's and опе d. 
ТЬе й in the kaon and the и in the proton сап annihilate, going off, for example, 

TABLE4.5 

Г 

Т=1 ч; (МеУ) 

Z* (1780) Р 13 280 
Z* (1725) P ll 180 
Z* (2161) D 1 5 320 
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as а pion leaving behind usd, а Л or :Е О • When the incident kaon is К +, which 
is а us system, по such annihilation сап occur and we are left with а five-quark 
system иииаз. This system (uuu = ~ + +, ds = КО) suggests the existence of ап 

inelastic сЬаппеl ~K. Its threshold (for к: ~ +) is 1725.67MeV near to опе of 
the Z* resonances. Опе expects that the probability of forming а five-quark 
resonance in the low-energy domain is muсЬ less probable than that of forming 
а three-quark resonance. 

В. The KN Systemt 

ТЬе reactions that are relevant аге: 

K+N---+K+N 

Elastic к: + «-;«: + р 

K~ + p---+K~ + Р 

K+N---+К+N+n 

Inelastic K+N---+~+K 

К + N ---+К* + N 

0.з05GеVJс 

Threshold (Рсm) 0.466 

0.552 

In these equations N сап Ье either а пешгоп or а proton and К, К+, or КО, 

Let fi1) Ье the amplitude in the Т = 1 сЬаппеl and fiO) Ье the amplitude in the 
т = о сЬаппеl for У = 2. ТЬеп from isospin conservation, опе obtains 

ЛК +Р ---+ К +Р) ~ fi1) 
(4.9а) 

ЛК+n---+К+n) = i(fi1) + f~O») (4.9Ь) 

ЛК +n---+ КОр) = i(f~l) - f~O») (4.9с) 

If f~l) and f~O) are the amplitudes for У = О, then 

(4.10) 

Similarly, 

(4.11) 

~Corden, Сои, et al. (82); Arndt and Roper (85). 
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In this reaction 

к: + р--.,1. + + + КО 

--.,1.+ +к+ 

and 

к + + п --. ,1. + + КО 

--.,1.0+К+ 

From (4.11) we conclude that ,1. production Ьу К + in nuc]ei will Ье sensitive 
to the proton distribution. In the regeneration reaction amplitude, (4.10), f~l) 

is obtained from К - р elastic scattering data, while f~l) is given Ьу elastic К +Р 

scattering. Thus from the measurement of f(Kfp --.K~p) together with К - р 

and К + Р elastic scattering data, опе сап obtain the Т = О, У = 2 amplitude. 
МuсЬ of the same information сап Ье obtained from elastic scattering of К + 

Ьу neutrons [Eq. (4.9Ь)] and from charge exchange scattering [Eq. (4.9с)]. 

Since we аге deaJing with the scattering of а spin-zero particle (к) Ьу а spin-t 
particle (N), the partial wave analysis of the scattering and polarization is 
identical with that described earlier in this chapter from ап analysis of 
pion-nucleon scattering. ТЬе scattering amplitude is (see 2.16) 

J= f + i(J'пg (4.12) 

where f and 9 аге functions of the center-of-mass energy and the spherical 
angles Э. and qJ, while п is а unit vector perpendicular to the scattering plane. 
ТЬе expressions for the scattering cross section, the polarization, and the spin 
готапоп parameter in terms of f and 9 аге given Ьу 2.20 and 2.20'. We recall 
that two phase shifts are associated with еасЬ value of the angular momentum, 
<>,+1/2 and <>'-1/2' ТЬе relations given Ьу (4.9) аге satisfied Ьу both f and 9 of 
(4.12). 

ТЬе Т = 1 total and inelastic cross section is given in Fig. 4.4. This is 
supplemented in Fig. 4.5 Ьу the Т = О total and inelastic cross sections, in Fig. 
4.6 Ьу the Kfp--.K~p cross section, in Fig. 4.7 Ьу the К+n_КОр cross section, 
and Ьу Fig. 4.8 giving the angular distribution for К +р (Т = 1)elastic scattering 
for а range in К + momentum. 
ТЬе elastic cross section is isotropic uр to К + laboratory momentum of 

800 Ме V[с, corresponding to the dominance of the partial wave L T ,2J = 511' 

Above 800 MeV/с higher values of L must Ье added as the angular distribution 
becomes anisotropic. Coulomb interference at small angles indicate that the 
511 amplitude is repulsive. We observe that the charge exchange scattering 
К+n_КОр is important only in the neighborhood of к+ momentum equal to 
800 MeV/c. Note that К+n scattering and charge exchange scattering must Ье 

deduced from К + collisions with deuterons. 
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ТЬе data at low energies сап Ье summarized in terms of scattering length а, 

and efТective range r, for S-wave scattering and scattering уоlиmе for the P·wave 
amplitudes. ТЬе efТective range expansion is 

1
k2 l+ 1 cot д = - + ! rk2	 (4.13)

а 2 

For isospin Т = 1 and S waуе, 

aL(T, 2J) = as(1, 1) ~ - 0.309 ±0.OO2fm 
(4.14) 

rL(T, 2J) = rs(1, 1)~ 0.32 ± 0.02fm 
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where we use the data of Сашегоп et al. (74). For the P-wave amplitudes 

ар(l, 1) = - 0.021fm 

ap(l, 3) = 0.013 fm (4.15) 

For г-.о, 

as(O, 1)'" - 0.035 fm 

ар(О, 1)'" 0.086fm (4.16) 

ар (О, 3) '" - 0.019 fm 

where we have used the data of Martin (75). А summary of the data is given 
Ьу Dover and Walker (82). From their summary we see that there is agreement 
among various experiments оп the signs and magnitude of а (two significant 
figures) and r (one significant figure) for Т = 1. For Т = О there is по agreement 
оп sign. As regards magnitude, there is agreement that the Т = О scattering 
lengths and volumes are small and are considerably smaller than the comparabIe 
т = 1 quantities. 

At higher energies а phase-shift analysis for Т = 1 has been made Ьу Arndt 
and Roper (85). Their analysis led to claims of the three resonances listed in 
Table 4.5. Their match with the data is shown in Figs. 4.4 and 4.9. Of special 
interest are the Р 13 amplitudes shown in tig. 4.1О and the corresponding Argand 
diagram Fig. 4.11. We see that the Р 13 resonance is strong1y inelastic, as it 
difТers sharply from the bounding circle valid for elastic scattering. 

Note оп the Argand Diagram. We write the 5 matrix 

2 "lJ Е - Е, - iГ/2 2'lJ Е - Е, - ir/2 + ifJ./2
5=е ' =e l 

Е - Е, + ir/2 Е - Е, + ir/2 

where д is the potential scattering phase shift, Е, the resonance energy, Г the 
width, and fJ. = Г - Г. When the scattering is elastic, Г = Г and 11 = О. The 
transition amplitude is taken to ье 

от (5-1)
::1 =~

2; 

г 
tапф=--

2(Е - Er) 



CD...	 Wc.m.(GeV)Wc.m~GeV).. 
2.40 

1.92 
~ 

<, '" .Q 1.44 
Е 

bl~ 0.96 
~~ 

0.48 

о 

1.7 1.9 2.1 2.3 2.5
1.5 

(40:t1)· 

(о) 

2.0 2.4 

Т , о Ь (GeV) 
00 0.4 0.8 1.2 1.6 

Wc.m.'GeV) 

1.7 1.9 21 2.3 2.5
1.70 1.5 

( 120:t1)·1.36 
~ 

'" <, 1.02.Q 

.~
 
bl~ 0.68
 
-о -о 

0.34
 

) (с) i
 .I 

0.0	 0.4 0.6 1.2 1.6 2.0 2.4 

(GeV)T10b 

1.5 1.7 19	 2.1 2.3 2.5
1.60 

(80:t1)·1.2811 
ь, 

<,'" 
.CI 
Е 

blC;
"С "С 

0.32 

O~ 
0.0	 0.4 0.8 12 1.6 2.0 2.4 

T\ob(GeV) 

Wc,m(GeV) 

1.5 1.7 1.9	 2.1 2.3 2.5 
I i I	 I1.30 [' i
 

,,... ... ~ (160:t1)·
 

.Q" '" 

blC; 052 ~ -о

Е 

"Q 

0.0 0.4 1.8 1.2 1.6 2.0 2.4 

T,ab(GeV) 

FIG. 4.9. Representative differential cross section data together with Arndt and Roper's рге
dictions for К+р scattering. [From Amdt and Roper (85).] 



4. KAON-NUCLEUS INTERACTION 875 

FIG. 4.10. Р 13 scattering amplitude. 
[From Arndt and Roper (85).] 
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FIG.4.11. Argand diagram for Р13 

0.2.	 0.3 ampJitude. [From Arndt and Roper 
(85).] 

(4.17а)ReS- = - siп(ф - д)СОS(ф - д) +~СОS(ф - 2д) 
4Н 

Тгп S- = siп2 (ф - д) - ~siп(Ф - 2<5)	 (4.17Ь) 
4Н 

1.r12= siп2 (ф - д) - ~siп(ф - b}cos<5 + 1:12 2 (4.l7c) 
2Н	 16Н 

where 

Consider first the simplest case (д = О, 1:1 = О), so that 

Re .r -+ - sin Ф cos Ф = - i sin 2ф 

Тгп f7 = sin2 Ф = 1(1- COS 2ф) 

Therefore, 
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Im !7 

FIG.4.12. Argand diagram. Re:J

А plot in which the horizontal axis is Reff and the vertical axis is lт:?Т will 
Ье а circle of radius t with the center оп the vertical axis at t (Fig. 4.12). For 
Е negatively infinite, Ф = О, and Reff = О and lт:?Т = О. As Е increases, опе 

travels counterclockwise, reaching the top of the circle at the resonance energy, 
Е = Er, where Ф = n/2, so that Re.'1 = О and Iт.'1 = 1. 

The second case is the most соттоп, д = О, [\ finite; 

. [\
Reff = - sш Ф cos Ф + -- cos Ф 

4Н 

1т .'1 = sin2 Ф - ~. sin Ф 
4Н 

от/ 2 . 2 Ф [\. Ф [\21.0/ = sш - - sш +--
2Н 16н2 

At resonance Ф = n/2, 

(4.18)
 

so that the locus of Reff, lт:?Т, will Ье in the interior of the circle. Moreover, 
at resonance 

Reff = о (4.19) 

From Fig. 4.11 опе sees that the amplitude for the Р 13 partial wave does 
approach the Im.'1 axis. The extrapolated value of 1т :?т at Reff = О is about 
0.25 or [\/Г = 1. The partial wave reaction cross section is 

а, = ~2 (l -ISI 2 )(2J + 1)
k 
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Inserting the expression for IS1, one finds that 

relating .1/Г to the inelasticity seen in (4.18). 

с. The КН Reactlon t 

Because of the existence of the Ло at 1405МеУ and the ~ at 1385МеУ, this 
reaction is much more complex than the KN reaction. Note that the mass of 
the Кр system is 1431.9МеУ, so that а conversion of the Кр system to n~ ог 
а по Л О is energetically possible. Therefore, in addition to elastic scattering, 

we also have the open channels 

K-+р~nОЛО+180МеV, Т=1 

K-+p~n~+l00MeY, Т=l,О 

as well as the charge exchange scattering channel, 

Isospin invariance connects the cross sections for these reactions: 

u(K-n~n-Л) = 2u(K-р~nОЛ) (4.20) 

and 

«к :« ~n-~O) = ык р ~n+~ -) + «к: р ~n-~ +) - 2а(К-р ~ nO~O) 

(4.21) . 

The analysis of this experimental data was pioneered Ьу Dalitz and Tuan (60), 
who made use of the yt matrix (see Chapter 111, р. 169, and Appendix А). The 

~Note that К сап refer to either к- or К. 
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% matrix is related to the !у and S matrices are follows: 

% =!У + in%b(Ei - Еf)!Y =!У + in!Yb(Ei - Еf)K (4.21а) 

S = 1 - 2nib(Ei - Ef)!Y (4.21Ь) 

S = 1- inb(E i ~Ef)% 
(4.21с) 

1+ inb(E i - Ef)% 

From (4.21с) we note that the unitarity of the S matrix implies that % is 
Непnitiап. Second, because of time reversaI invariance, % is reaI. 

Equation (4.21а) is simplified greatly if it is restricted to а given partial wave. 
Then % and !у Ьесоmе matrices involving the various channeIs. For Т = о, 

т=о (4.22) 

where 

and 

(4.23) 

It is necessary to insert the diagonal matrix elements of b(Ei - Еf) for the two 
channeIs. Those matrix elements wilI depend оп the normalization convention 
for the states involves. For 1= о, а spatial wave, the diagonal matrix for 
b(E i - Еf) is taken to Ье! 

(4.24) 

Equation (4.21а) [and similarly for (4.21Ь) and (4.21с)] becomes 

% =!У + in%pff 

or 

Моге generally for 1> о, ki оп the right-hand side of (4.23) is replaced Ьу kf' 

tThe minus sign in (4.24) is chosen so as to соте into agreement with the Dalitz-Тиап choice for 
ох'" and !!7, which are the negatives of the Ж and !!7 used in this volume. 
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Ьу Arndt, Roper, and Steinberg (78). For the S partial wave the cross section is 

(4.25) 

For the Т = 1 case, the Х matrix involves three channels, so that 

K NN KNr. 

х= Kr.N Kr.r. (4.26) 
( 
КЛN Клr. 

and 

(4.27) 

Dalitz, McGinley, Belyca, and Anthony (82) parameterize Х - 1 Ьу ап effective 
range expansion [Ross and Shaw (60, 61)]: 

(4.28) 

where k is the center-of-mass momentum in the К - р channel. ТЬе results 
obtained Ьу Dalitz, McGinley, Belyca, and Anthony (82) using the column 
labeled new data in their Table 1 are in units of fermis: 

т = О: K NN = - 1.863, KNr. = - 0.955, КП = - 0.382 

т = 1: K NN = 0.26, (4.29) 

КNЛ =0.29, Кr.л = 0.44, Клл = -0.55 

From the results for Х, опе сап obtain .r and in the low-energy 
approximation the scattering length [see (4.13)] 

1
kcotJo -+ - 

а+ ib 

ТЬе values of а for isospin 1, а 1 , and for isospin О, ао, and similarly for Ь are 
[Dalitz, McGinley, Belyca, and Anthony (82)] 

ао = -1.57fm а 1 = 0.1075 fm 
(4.30) 

Ьо = 0.70fm Ь 1 =0.57fm 

Note that in contrast to the KN scattering length, the scattering length for the 
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кн is complex because absorption into other channels (~n and Лn) is possible 
еуеп at threshold. 

Note. For systems with bound states such as the кн, the sign of the scattering 
length does not necessarily indicate the attractive or repulsive nature of the 
interaction. For а potential model, the dependence of the scattering length оп 

the strength of the potential Vo is illustrated in Fig. 4.13. From this figure we 
see that а positive S-wave scattering length does correspond to attraction. 
However, а negative scattering length сап correspond to either ап attractive or 
repulsive potential. For а weak interaction as is the case for the KN system, а 

negative ао does correspond to а repulsion. For the KN system, since there is 
а т = 0(1405) bound state, ао must take оп а value in the attractive half-plane. 

ТЬе Т = 1 scattering length is relatively small and positive. ТЬе interaction 
is therefore relatively weakly attractive. For both the Т = О and Т = 1 cases the 
absorption is strong. 

ТЬе % -matrix method сап Ье carried out for еасЬ partial wave. This analysis 
was used Ьу Arndt and Roper (85) in their analysis of К + reactions. Gopal 
et al. (77) employ а multichannel analysis. ТЬе total and elastic scattering К - Р 

cross section are shown in Figs. 4.14 and 4.15. ТЬе charge and strangeness 
exchange cross sections are given in Figs. 4.16 to 4.18. ТЬе analysis of Gopal 
et al. (77) is used in constructing some of these cross sections. Included in these 
figure are the cross sections averaged over а Fermi-gas nucleon distribution. 
These аге defined as follows. Let p(k) Ье the Fermi-gas distribution normalized 
Ьу 

Let 
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Ье the difТerential cross section for the scattering into the incident direction. 
This is а function of the kaon momentum Pk' the nucleon momentum k, and 
х the cosine of the angle between Pk and k. Тhen 

/(~),) =f.co dkklp(k)fl dX(~(Pk,k,x)) , (4.31)
\ dnL о av О - 1 dnL о 

and 

(4.32) 

where fL is the reaction amplitude. А veraging smooths the strong 
fluctuations with energy of the free-space cross section and amplitude. ТЬе later 
is а consequence of the resonances in the кн system. 

http:i--....I.-_---'__---L-_---L__...I
http:�--......------,---..,----,---�
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FIG.4.18. f'ermi-averaged К - р -+ l[ +L - laboratory cross section [Gopal et al. (77)]. 
[From Ооуег and Walker (82).] 

Dover and Walker (82) use 

(k) - Ро
Р - 1 + e(k-ko)/A(k) 

(4.33) 
ko = 100 МеУ/с д(k) = 50 МеУ[с 

as suggested Ьу Allardyce et al. (73). 

D. к+ -Nucleus Scattering~ 

The К + -nucleus scattering is of considerable interest because of the relative 
weak KN interaction. As а consequence, the К+ сап репепате much farther 
into the nucleus than, for example, а nucleon. We have earlier commented оп 

tCoker, Lumpe, апё Ray (85); Siegel, Kaufmann, and Gibbs (84, 85). 
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the fact that because of the strong nucleon-nucleon interaction, high-energy 
nucleon-nucleus scattering reveals mostly surface properties of the density 
distribution of nucleons in the nucleus. К + -nuclear scattering could Ье exploited 
to detennine the properties of these distribution in the nuclear interior. 
Combined with the proton distributions obtained from elastic electron-nucleus 
scattering, опе would have а complete picture of both nucleon distributions. 

There аге additional simpJifications. Because of the weak KN interaction, 
the first order, pt, in the multiple scattering series should Ье sufficient. Second, 
because the К has а zero spin, the analysis of experiment should prove to Ье 

more easily performed. 
Elastic scattering к: -nucleus scattering have Ьееп performed with the 12С 

and 4ОСа nuclei [Marlow, Barnes, et al. (82)]. ТЬе momentum of the к: Ьеат 

is 800 MeVjc. ТЬе results are shown in Fig. 4.19. ТЬе solid lines are first-order 
optical model pt calculations [Rosenthal and Tabakin (80); Marlow, Barnes, 
et al. (82)] based оп the KN phase shifts given Ьу Martin (75). It is, of course, 
necessary to transform these from the kaon-nucleon reference frame to the 
К-nucleus опе. ТЬе agreement in the 4ОСа case is good. In the 12С case the 
theoretical curve lies below the experimental опе. ТЬе total cross sections 
reflects this difТerence. (see Fig. 4.20) ТЬе de\'iation from theory тау Ье because 
of experimental artifacts (such as nonnalization of the cross section, errors in 
the measurement of angles, energy spread in the incident Ьеат, etc.). There is 
after аН just опе experiment. These are analyzed Ьу Siegel, Kaufmann, and 
Gibbs (84) with the conclusion that agreement with theory is possible. In 
addition, there тау ье errors in the KN phase shifts used, although the 
agreement with the К + 4ОСа results indicate these are not major. Ву comparing 
the К + 12Са results with the К + deuterium scattering, the efТects of such errors 
are reduced. ТЬе suggestion has Ьееп made Ьу Siegel, Kaufmann, and Gibbs 
(85) that within the nucleus there is ап increase of the S11 KN phase shift from 
that given Ьу Martin. Two explanations have Ьееп ofТered. Siegel, Kaufmann, 
and Gibbs (85) suggest that the efТect arises from ап increase of nucleon size 
because of ап increase in the confinement radius of the nucleon inside the 
nucleus. This is suggested Ьу the ЕМС effect [Aubert et al. (83); Bodek et al. 
(83); see Close (88а) for а review of this efТect.] Brown, Dover, Siegel, and Weise 
(88)ascribe this increase to the change in the mass of the р and w which mediate 
the К + reaction in the nuclear medium. This leads to ап optical potential that 
depends nonlinearly оп the nucleon density giving rise to ап increased repulsion 
(over the first-order pt) and а decreased efТective nuclear radius. ТЬе agreement 
with experiment is shown in Fig. 4.21. ТЬе parameter л describes the change 
in mass of the р and w in the nuclear medium, 

m~(p) _ 1 лр 

m~(O) - - ро 

In this equation V сап Ье either р or W, and Ро is the equilibrium nucleon 
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density. According to these authors there is little effectofthis density dependence 
оп the К + + 4ОСа elastic cross section. 

Assuming that the pt first-order term suffices for the heavier nuclei, опе сап 

ask for the sensitivity of the К + nucleus scattering to the nucleon density 
distribution [Coker, Lumpe, and Ray (85)]. These authors use the Martin phase 
shifts. This is illustrated Ьу Figs. 4.22 and 4.23 for elastic scattering Ьу РЬ. ТЬе 

solid Iines give the percentage change from а standard nucleon distribution 
induced Ьу а Gaussian addition to the exterior surface or tail region of the 
пешгоп density. ТЬе dotted-dashed line gives the cross section for proton elastic 
scattering. We see that as predicted the к: projectile provides more information 
since the proton does not successfully репепате into the nuclear interior. 

Simi1ar results are obtained for inelastic scattering using the DWIA. 
According to Dover and Walker (82), the dominant amplitude for а closed shell 
J = О, Т = О nucleus involves по spin, fJ.S = О, or isospin fJ. Т = О, change. 
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Coker, Lumpe, and Ray (85) use the DWIA formalism to compute the 
excitation of the collective 3- level in РЬ using the transition potential 

и = f3 [R ~ и + (V + iW)e- 1f - <fО) /QОJ2 ] (4.34)trans ~ d орт Н 
V 2L+ 1 т 

where f3 is the deformation parameter, иорт is given Ьу pt, and the last term is 
ап interior perturbation. ТЬе results аге shown in Fig. 4.24, where again the 
solid line аге К + induced and the dotted-dashed ones the proton induced. 
Again we see that the К + inelastic reaction is much more sensitive than the 
proton-induced reaction. Моге experiments аге needed! 

Е. К - -Nuclear Scattering 

As in the case of К + scattering, the pt first-order optical potential yields cross 
sections in substantial agreement with experiment when the kaon wavelength is 
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sufficiently small. This is seen in Fig. 4.25, where Р! = 800 МеУ[с and А. = 1/4 fm. 
ТЬе К - N phase shifts used for t аге those of Gopal et al. (77). Evidence for an 
anomaly in the К - + 12с scattering is not as strong as in the analogous 
к: + 12с case. 

At low energies, the tp optical potential fails badly. If one were to use the 
т = =0 к-N scattering length [Eq. (4.30)J, the tp potential would Ье repulsive, 
whereas we know from the existence of bound кн states listed in ТаЫе 4.3 
that the К - + N interaction, and therefore the К - + nucleus interaction, is 
attractive. А тисЬ гпоге sophisticated approach similar to that of МаЬаих and 
his collaborators, who use а Bruckner-Hartree-Fock approach (see Chapter 
IV), is required. 

Theoretical studies of the inelastic К - scattering Ьу nuclei are described Ьу 

Dover and Walker (82). ТЬе results are similar to those obtained for К + inelastic 
scattering. Again the cross section is dominated Ьу the 11.8 = 11. Т = О transition 
interaction. Непсе one expects that the normal-parity, nonisospin Шр states 
will Ье preferentially excited. Good agreement is obtained for the excitations 
of the 4.4- and 9.6-МеV levels оп 12с using nuclear density as determined Ьу 

electron scattering. ТЬе agreement with а collective model [see (4.83)] is poor 
(see Fig. 4.26). 

Dover and Walker (82) point to usefulness of the (к -, КО) reaction, since in 
that case we have I1.T = 1. [Compare with (Р, n) геаспоп] This reaction converts 
а proton into а пешгоп. For Т = О nuclei only Т = 1 states will Ье excited. For 
а T":f:. О nucleus, the Т> states would Ье easily identified. 



N=

oo1; iסס1 J J J J J i i J 

10000
 

~ 100000
 

j 
~ 

12ССК-IК-) 

1000 GOPAL 
~ 

f"'\ ~ 
с! 1000
u') 

" 100
 
ш 
~ 
v
 

100
 
z 
о 10
 
Н 
~ 
U 10
 
ш 
111
 

(J) 1
 
(J) 
О 1
 
с! 
U 

.1
 
.1
 

40с а (к -, к-} 

.01 О .01 О
10 20 эо 40 10 20 эо 40
 

СМ ЛNGLЕ CDEGREES) СМ ЛNGLЕ CDEGREES)
 

FIG. 4.25. Elastic scattering of К - Ьу 12с ad 4ОСа. Curves аге first-order optical model
 
calculations using Gopal (77) free-space к-N amplitudes. [From Dover and Walker (82).]
 



4. KAON-NUCLEUS INTERACTION 893 

10 .. .... ... 
Е 

с: 1.0 
.2 
u.. 
'" .. 0.1.. 
~ 
u 

е 
u 0.01 

36 48О 12 

FIG.4.26. Inelastic к- scattering at 800 MeVjc to first 2+ level in 12с. [From Dover 
and Walker (82).] 

z 
CHART DF Л-НУРЕRNUСLIDЕS


i (1988 )
 

,, ~ " 

8 fUJ ~ 

9 

I 

7 

6 

~.ШJ5 
, 

4 

3 

2 

(г 
11 

FIG.4.27. Chart of observed Л hypernuclei as of 1988. [From Bando (89).] 

F. The Strangeness Exchange Reactlon and Hypernuclei 

Ву using the (к-, л ") or (я ", к+) reaction а nucleon in the nucleus is converted 
into а hyperon. Under appropriate conditions the hyperon is bound to the 
residual nucleus to form а hypernucleus. А (К>, к+) reaction could lead to the 
formation of а doubly strange (8 = - 2) hypernuclei. ТЬе Л hypernuclei which 
have Ьееп observed аге shown in Fig.4.27. ТЬе existence of ~ hypernuclei 
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[Bertini et al. (84,85); Walcher (88)] is controversial. These аге very interesting 
systems since the Л has approximately the same mass (Л mass = 1115.6 МеУ) 

as the nucleon, has the same spin, but has а zero isospin. ТЬе simplest assumption 
is that the Pauli exclusion principle does not limit the Л, so that it сап осецру 

orbits in the host nucleus which аге forbidden to а пцсюоп.! As а consequence, 
new low-lying states that would not Ье present in the target nucleus will make 
their арреагапсе. 

Lambda hypernuclei were first observed in nuclear emulsions [Davis and 
Sacton (67)]. ТЬеу Ьауе also Ьееп observed in the capture of К- particles in 
Coulomb orbits about the carbon nucleus [с. Vandervelde-Wiquet, J. Sacton 
and J. Н. Wickens (77)], forming а kaonic atom. Experimental opportunities 
were expanded substantially when it was shown that а small momentum transfer 
(К -, n -) reaction leading to the formation of а hypernucleus was possible. А 

review of the experiments using this reaction has Ьееп made Ьу Роуп (76, 78). 
Most recently, experiments at BNL Ьауе employed the (n+,К+) геаспоп, 

permitting the excitation of states in the large А hypernucleus, not as accessible 
with the (К-,n-) reaction. 

ТЬе underlying physical processes using kaon beams of interest in the 
production of bypernuclei аге 

К- +n-Л+n

_~O+n

К- + p-~+ + «: (4.35) 

-~- + n+ 

where we Ьауе limited the reactions to ones in which the final pion is charged. 
Another possible reaction is radiative capture: 

(4.36) 

Using п " beams, the pertinent reactions аге 

n+ +n-Л+К+ 

_~O+K+ 

_~+ +КО (4.37) 

n+ + p-~+ + К+ 

tThis is not completely true since the и and d quarks in the Л and the и and d quarks in the 
nucleon do satisfy the Pauli principle. Опе of the investigations that is of fundamental importance 
wi11 ье to determine the efТect of the Pauli principle satisfied Ьу the quarks оп the spectra of 
hypernuclei. In particu1ar. this would depend оп the degree of deconfinement of the quark. 
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ТЬе small momentum strangeness exchange reaction n(K-, n-)Л is possible 
because the mass of the К - plus nucleon is about 178 МеV greater than that 
of the mass of the n + Л. Consider the case when а К - strikes а пешгоп at 
rest. Then there is а "magic momentum" for which th Л is at rest and п - moves 
in the forward (00) direction. ТЬе equation determining this momentum is 

or 

(4.38) 

For values of the kaon momentum that differ from the value obtained from 
(4.38), about 531 МеУ/с, the momentum transfer to the Л when the pion is 
observed at 00 сап Ье small. This is illustrated in Fig. 4.28, where we see that 
the momentum transfer, q(O), is less than the Fermi momentum over the entire 
range in the momentum Р« of the incident kaon. МисЬ the same сап Ье said 
for the К - + п -+ I;0 + n - reaction, for which the magic momentum is about 
284 МеУ/с: 

or 

Thus when the К - with the momenta shown in Fig. 4.28 strikes а nucleus and 
one studies the case where the pion goes off in the forward direction, it is very 
likely that the Л will "stick" to the residual nucleus so that а hypernucleus is 
formed. In the simplest example of this reaction, а пешгоп in the nucleus is 
replaced Ьу the Л and the wave function of the system is not changed. For this 
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FIG.4.28. Kinematics of the (К-, п "] reaction. 



reason the reaction is referred to as а "substitutional" reaction. The angular 
momentum change is Al = О. When the emitted п" is observed at angles greater 
than zero, Al = 1 and Al = 2 transitions Ьесоmе possible. Examples of the 
production of hypernuclei states Ьу the (К - , п -) аге shown in Fig. 4.29. The 
sharp peaks in the pion spectrum correspond to states in the hypernucleus. 

The (К - , n ") reaction is not as useful for excitation of the low-lying Л 

hypernuclear states for the heavier nuclei principally because the single-particle 
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Briickner, Granz, et al. (76).J; (Ь) Production ofhypernuclei l~C, 2~AI, 5~V, 2°~Bi. [From 
Bertini, Bing, et al. (81).] 
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пешгоп orbits Ьаме а large angular momentum, therefore requiring а large 
momentum change to generate а low-angular-momentum Л orbit. This 
momentum change could, in principle, Ье obtained Ьу examining the pion 
spectrum at large angles. But then the cross section is very тисЬ reduced. 

ТЬе (К-, я "] has а number ofinnate difficulties. First, the incident К- Ьеат 

is accompanied Ьу тапу more negative pions. Second, К - decays and this 
compresses аН the experimental dimensions. Moreover, the К- decays into 
negative pions. ТЬе net resolution for the BNL experiments is а few МеУ. 

Interpretation of the results is not easy since the К- and п" аге strongly 
interacting. However, as we shaH see, this difficulty is overcome Ьу а careful 
DWА calculation. 

Some of these restrictions аге lifted in the (n +, К +) reaction. ТЬе momentum 
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transfer is large. For Рк = 1050MeV[с, q ~ 250 MeV[с. ТЬе cross sections for 
the formation of а hypernucleus аге, of course, reduced, but this is compensated 
Ьу the large pion intensity available in the incident Ьеат. Interpretation is 
somewhat simpler since the К + -nucleon interaction is relatively weak. Finally, 
the fact that the К + decays does not affect the experimental background. In 
fact, the decay is used to identify the К +. ТЬе two reactions are complementary, 
as сап Ье seen from Fig. 4.30, so that both experiments are needed to obtain 
а complete spectrum. 
Ап example of the production of Л hypernuclear states Ьу the (я ", К+) 

reaction is shown in Fig. 4.31. In both examples, Figs. 4.29 and 4.31, the peaks 
are correlated with states in the hypernucleus. These аге doorway states, which 
would fragment if experiments with sufficient resolution could Ье performed. 
То determine the indicated configurations requires а calculation since there 

is muсЬ overlap in the experimental cross section. ТЬе DW А is used. That 
approximation has Ьееп discussed in Chapter V. Since по new principles are 
involved, we shall not discuss the details of the calculation in this chapter. ТЬе 

reader is referred to Auerbach, Baltz, et al. (83) and Hi.ifner, Lee, and 
Weidenmiiller (74а, 74Ь, 79) for the detailed discussion. 

ТЬе input into the DWA calculation for the (К -, п ") reaction requires (1) а 

wave function for the К- nucleus system, (2) а wave function for the п" nucleus 
system, (3) а wave function for the target neutron, (4) the Л-hоst nucleus wave 
function, and (5) the transition matrix element converting К - + пешгоп into 

80 

60 
:> 
<IJ 

-N 
~ 

'~ <, 
(f) 

~40 
ш 
:> 

<:ш 

'" 

20 

• .! ... 
-30 -20	 -10 О 10 

-ВЛ (MeV) 

FIG.4.31. Production of Л hypernuclear states in s~V using the (n+, к+) reaction. 
[From Chrien (88).] 



900 PION AND KAON INTERACTIONS WITH NUCLEI 

TABLE 4.6 Potentials for Я-, к- Elastic Scattering at рк = 800MeV[с 

rms 
Reaction Уо(МеУ) Wo(MeV) ro(fm) ao(fm) radius (fm) 

к: - 12с 24.4 41.4 1.075 0.375 2.36 
п" + 12с 0.9 50.9 0.926 0.44 2.32 
к- + 4ОСа 23.57 18.69 1.182 0.49 3.63 

n- + л. ТЬе first two of these is obtained Ьу first adjusting the parameters in 
а simple Woods-Saxon potential so as to give the к- -nucleus and n- -nucleus 
elastic scattering. (ТЬе last should Ье the п" -hypernucleus scattering.) ТЬе wave 
function is obtained from а solution of the Klein-Gordon equation assuming 
that potential to ье the fourth сотпропеш of а four-vector potential, neglecting 
the square of the potential in the Klein-Gordon equation. (See Chapter 11 for 
а discussion.) ТЬе resulting parameters аге given in ТаЫе 4.6. ТЬе Woods
Saxon form is 

U(r) = - (Vo + iWo)/f(r) 

r - r Аl/3) 
f(r) = 1 + ехр ( а

О

о 
These potentials were used throughout the p-shell. ТЬе пешгоп and А wave 
functions were obtained Ьу again using the Woods-Saxon form but adjusting 
so as to obtain the correct binding energy for the orbit in question. ТЬе рага

meters, ro and ао were taken to Ье 1.15[т and 0.63, respectively. Parenthetically, 
we note that according to Auerbach, Baltz, et al. (83), the eikonal approximation 
for these wave functions does not suffice quantitatively, especially for dl = О 

reactions. 
ТЬе transition matrix element for the reaction К - + п ---+ n - + А is taken to Ье 

where VT depends оп isospin. ТЬе vectors R nл and RK n give the positions of 
the септет of mass of the пА and Кп, respectively. ТЬе first д function in (4.39) 
assures conservation of momentum in the Кn ---+ пА reaction. ТЬе second term 
assumes that the interaction is local, while the last д function is the zero-range 
approximation often used in the DWA. ТЬе strength VT is given Ьу the t matrix 
for KN ---+ пА at 00. This must Ье transformed to the laboratory and averaged 
over а Fermi gas [see (4.31) and (4.32)]. ТЬе wave functions for the р shell 
core and the p-shell initial state were taken [rom Cohen and Kurath (65) using 
the РОТ interaction [see Fig. IXA.1 in deShalit and Feshbach (74)]. Тhe basis 
wave functions used to describe the hypernucleus is simply the core wave 
function 'Ре times the А orbital I/J л combined to yield the total angular 
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momentum J and isospin Т. The wave function 'Ре сап refer to the ground state 
or excited states of the core. This representation for the hypernucleus wave 
function is called the weak coupling approximation. То obtain agreement with 
experiment it is necessary to introduce some residual Л-N interaction [see 
Millener, Gal, Dover, and Dalitz (85)]. 

Qualitatively [and this is shown in the detailed analysis of Auerbach, Baltz, 
et al. (83)], опе expects that the cross section will Ье proportional to the cross 
section for the pickup process [e.g., (p,d)], in which the picked-up particle is 
the пешгоп that is to Ье replaced Ьу а Л to produce а пешгоп hole. This is 
very useful since in some cases this pickup cross section has Ьееп measured. 

We illustrate with the calculations for 13C(K-,n-)1~c. The energy-level 
diagram for the соге nucleus, 12с, and the resultant spectrum for l~C are 
indicated Ьу the dashed line shown in Fig. 4.32. If we сотпоше the 0+ ground 
state of 12с with ап 1= 1Л orbital, we obtain in the weak coupling basis а t, 
~ hypernuclear state that сап Ье split Ьу а spin-orbit coupling. Similarly, the 2 + 

state of 12с when combined with the Л yields the upper three levels, which сап 

Ье further split into six levels. The brackets [441], [54] give the number of 

[1NJ 12сщr) llC(Jt) [1] L 

3/21/2*,3/2 
[441]I 1-< 

I 1/2 
I 

I 5/2
/ 5/2*,7/2

/ [54] 3-< 
2+ // 7/2

(44] 
\ 

3/2\ \ 3/2,5/2 
(54] 2 -< 

5/2 

4.44 MeV 

1/2 
0+ 1/2*, 3/2* 1 ~ 

(44] ~_- - - [54] ~ 

3/2 

HG.4.32. 12С(О+, 2+)0рл spectrum. States that dominate in the 10- and 16-МеУ 

peaks аге marked with ап asterisk. 2' = Г, + /л, where Г; is the соге spin and lл is the Л 

angular momentum. [From Auerbach, Baltz, et al. (83).] 
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particles in еасЬ orbit. In 12с we Ьауе four neutrons and four protons in РЗ/2 

orbits. Thus the spatial symmetry [54] is forbidden for nucleons Ьу the Pauli 
principle. ТЬе substitutional reaction сап thus lead only to the [441] states. 

ТЬе DWA results for the various possible transitions Р" -+sл, Al = 0,2, Р" -+ Рл, 

Al = 1, and so оп, аге shown in Fig.4.33 and in ТаЫе 4.7. As is clear from 
Fig. 4.33, it should Ье relatively easy to pick out the Al = О Р" -+РЛ transition. 
However, before the Р" -+ sлА1 = 1 transition сап Ье extracted, it is necessary 
to unfold the Al = О cross section. ТЬе Al = 2 transition requires unfolding both 
the Al = О and Al = 1 cross sections before it will Ье visible quantitatively. 

ТЬе experimental results for 13С(К - , п-) l~C are compared to theory in 
Fig.4.34. Theory and experiment agree quite well. As expected, the Al = О 

and Al = 1 transitions dominate at small angles (Э 1а Ь = 40). At high excitation 
energies the Al = 1 transitions to (sd) Л orbitals Ьесоте visible. ТЬе Al = 2 
transition is appreciable only at Э = 150.ТЬе dominant transition is the Al = 1,1а Ь 
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FIG. 4.33. Laboratory cross section for the (К -, 1t -) reaction оп а 13с target. In (а) 

Р,,""'Рл and Р,,""'Sл. In (Ь) S,,""'Sл and Р,,""'Sл and dл- ТЬе К- momentum is 800 МеУ/с. 

[From Auerbach, Baltz, et аl. (83).] 

TABLE 4.7 Differential Cross Sections in p-b/st, 
Pk = 530 МеУ/с, 13С(К-, 1r-)I~C 

Р,,""'Рл Ы=О 708 375 109 
Р,,""'Рл dl=2 9.1 12.6 32.8 
Р,,""'Sл dl = 1 19.8 78.8 113 
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FIG.4.34. Comparison of experiment and theory for the reaction 13С(К-, п-)1~c. 

[From Auerbach, Baltz, et al. (88); Мау et al. (81).] 
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FIG. 4.35. Л single-particle states. ТЬе solid Jines are theoretical. [From Mi11ener, Dover 
and Gal (88).] 

Р« -7 Sл' Coupling the sл to the 12с соге (ground and excited states) yields the 
states populating the peaks at О, 5, and 12 to 16 MeV. Coupling the Рл to the 
12с соге yields the starred states shown in Fig. 4.32. These states will occur at 
excitation energies about 10 MeV (the energy difference between sл and Рл) 

greater than the values for sл hypernuclei. 
А similar analysis has Ьееп performed for other target nuclei Ьу Auerbach, 

Baltz, et al. (83) and for the states seen in the (л ", К +) reaction (Fig. 4.31) Ьу 

Millener, Dover, and Gal (80). The conclusions that сап Ье drawn include: (1) 
the ЛN spin-orbit potential is small; and (2) the efТective mеап field potential 
is nonlocal and density dependent. The single-particle states that have Ьееп 

determined аге shown in Fig. 4.35. Весаиве the Л interacts relatively weakly 
with the host nucleus, опе obtains а very clearly observed set of single-particle 
states. They are doorway states, which would fragment if the energy resolution 
were to Ье improved. These Л shell-model states provide а direct justification 
of the mean-field concept. 

G. I: Hypernuclei t 

Candidates for L hypernuclear states have Ьееп seen for А = 4 [Науапо et al. 
(89)], А = 6 [Piekarz et al. (82); Kneis (83)], А = 7 [Bertini (79)], А = 9 [Bertini 

:МilIепег, Dover, and Gal (89). 
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(80); Mayer (80)], and А = 12 [Yamazaki et al. (85); Bertini et al. (84); Peng 
(82)]. Оп the other hand, contradictory experiments have seen по evidence for 
narrow ~ peaks in А = 7 [Hungerford (86); Tang et al. (88)], А = 12 [Iwasaki 
(87)], and А = 16 [piekarz et al. (82)]. 

The existence of long-lived ~ hypernuclei with widths of the order of 5 to 
10 МеУ was not expected because of the strong ~N-ЛN conversion. Dover 
and Gal (80), using the optical model with 1т V = - (v(J)avp(r)/2, obtain the 
following values for the width of single-particle ~ states: 

Гls~2ЗМеV, Гlp~13MeY 

rls~28MeV, Гlр~2ЗМеV, Гы~18MeY 

The width decreases with increasing orbital angular momentum because of the 
angular momentum barrier, which reduces the overlap ofthe ~ with the nucleons 
of the core. Several mechanisms have Ьееп proposed. Stepien-Rudzka and 
Wycech (81), 10hnstone and Thomas (83), and Dabrowski and Rosynek (81, 
82, 85, 86) have studied the efТects of Pauli blocking and nuclear binding. 
Auerbach (87) has considered many-body efТects Gal and Dover (82) point out 
that the transition ~N -+ ЛN is dominated at low energies Ьу Т =!' 381 -+ 3D 1 

transitions. If опе neglects the 180 contribution, the transition operator for the 
~ + nucleus -+ Л + nucleus transition is 

fТ = L v(ri - r}:) (~+ ;}CJi"CJ1;Ht - tt}:"t;) 
i 

where t}: is the isospin operator for the ~ where ti = 2. This does lead to а 

reduction in width for some levels for light nuclei. 
Finally, we mention the mechanism proposed Ьу Dover and Feshbach (87, 90), 

who suggest that SU(З) symmetry breaking of the Ьагуоп-Ьагуоп interaction 
occurs only in the diagonal components. For the nondiagonal components 
responsible for the ~ -+ л transition, SU(З) symmetry is conserved. In analogy 
with the SU(2) isobar analog states, where the Coulomb symmetry-breaking 
interaction has small поп diagonal components and relatively large diagonal 
matrix elements, these authors propose that the ~ hypernuclear states are SU(З) 

analog states. 
There are several other suggestions, which are discussed Ьу Millener, Dover, 

and Gal (89) in their review article, to which the reader is referred. Needless to 
say, more experiments are needed! 
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