CHAPTER X

PION AND KAON INTERACTIONS WITH
NUCLEI*

1. INTRODUCTION

Pion and kaon interactions with nuclei provide a novel set of circumstances
not covered in Chapters VII to IX. The pion-nucleon system shows (see Fig. 1.1)
a strong resonance called the A, of mass 1.232 GeV and width 115 MeV. This
is an excited state of the nucleon whose spin J is 2, and whose isospin T is 3.
We shall call it a particle despite its short lifetime, given by #/I' = 1.7fm/c =
0.59 x 10™23s. When a pion, whose energy is near the resonance energy, strikes
a nucleus, the formation of the A is highly likely, creating thereby a A—nucleon
hole state in the target nucleus. In this energy domain the A-hole state will act
as an isolated doorway state [Kisslinger and Wang (73, 76)] through which all
pion—nucleus reactions will proceed. We are familiar with such doorway
states. Some examples include the isobar analog resonance, the Gamow-Teller
resonance, and the electric dipole resonance, which can be described as collective
proton particle-neutron hole states and proton particle-proton hole states,
respectively. Although the A—h configuration is similar in character to these
nuclear examples, there is one very significant difference. In the present case,
the A is itself a resonance in the pion—nucleon system. Many of the pion—nucleon
data can be explained if it is assumed that the reaction under study proceeds
through the resonance A. Thus the theory of pion—nuclear reactions to be
developed in this chapter begins with an analysis of the pion—nucleon resonant
state. Introducing it into the nucleus permits us to study the impact of the
nuclear medium on its properties and thus on the properties of the A.

!Eisenberg and Koltun (80); Ericson and Weise (88); Moniz and Lenz (90).
803
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FIG. 1.1. Pion—nucleon total cross sections. [From Ericson and Weise (88).]

This pivotal role is played by the A within a restricted energy domain. It is
not dominant near threshold nor at high energies. Like other projectiles,
discussed in Chapter IX, the pion at high energies can induce inelastic and quasi-
elastic scattering. The reaction theory used in these cases is quite straightforward
and we shall discuss only inelastic scattering here. We shall, however, discuss
charge exchange reactions, which are a special feature of pion reactions. These
include the single charge exchange reaction (SCX)

LN DY BT AP (1.1)
n 4 AT+, A (12)

and the double charge exchange reaction (DCX)

7t+ + zA"’)T[_ +(Z+2)A

1.3)
T+ A=+ 5A (

The SCEX reaction has its analog in

pP+zA-n+,, A (1.4)
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which might be thought of as a reaction in which a n* is transferred to the
target nucleus. There is no well-studied corresponding nuclear reaction for the
DCEX reaction. The DCEX reaction is of special interest, because it is thought
to involve a two-step process involving in each step a change in charge (e.g.,
n~ —n®—>x"). Such a two-step process is sensitive to correlations in the target
nucleus since it involves successive interactions with two nucleons of the target.

The pion is a boson. As a consequence, it can be created or destroyed. The
elementary interaction is, for example,

p+p=nt+d (1.5)

It was by comparing these two reactions and using detailed balance that the
intrinsic spin of the pion was found to be zero. These elements, the absorption
and production of pions, must of course be taken into account in any theory
of pion—nuclear collision.

The strangeness exchange reaction by means of which hypernuclei are formed
will be a major focus of the section on kaon-nuclear interactions. In this
reaction

K™+ AZ,N)> ,A(Z,N—-1)+=n~ (1.6)

aneutron in the target nucleus is converted into A via the elementary reaction
K +n-A+7" (1.7

Hypernuclei have also been formed through the inverse reaction:

nt +A(Z,N)- ,AZ N-1)+K*
The formation of the ¥ hypernucleus through the reactions

K™+ A(Z,N)-»sA(Z,N—1)+n" (1.8)
and

K~ +A(Z N)->sA(Z -1, N)+ 71~

19
S A(Z—1),N)+n* 9

is more problematic. If it exists, one must understand why the strong inter-
action transition

Z4+p-A+n (1.10)
does not immediately convert it into a A hypernucleus if the A is captured by

the host nucleus or, as is likely, results in the A simply leaving the nucleus with
no hypernuclear formation.




806 PION AND KAON INTERACTIONS WITH NUCLE!

The A hypernucleus has received conmsiderable study, revealing several
important aspects of the A—nucleon interaction, such as charge symmetry
breaking, a weak spin-orbit force as compared to the nucleon—nucleon case,
and the need for a three-body (Ann) repulsive interaction. In addition, in the
A hypernucleus one can study the weak interaction

A+n-on+n (1.11)
The free-space decay of the A,
A-n+n (1.12)

is reduced, especially in the heavier nuclei, because of the Pauli principle. The
energy of the nucleon produced in the decay equation (1.12) is much less than
the Fermi energy; most of the kinetic energy is carried by the pion so that there
may not be an unoccupied level for the nucleon to occupy.

Investigations of hypernuclei have been hampered by the lack of adequate
facilities. This is not the case for pion physics, where the intense beams at Los
Alamos (LAMPF) at SIN near Ziirich and at TRIUMF at Vancouver have
been available since the late 1960s.

2. PION-NUCLEON SYSTEM

A. The Pion

The three pions n*, n° and n~ form an isospin triplet (T = 1). They have zero
spin and odd parity. The mass of the charged pions is 139.6 MeV. The mass of
the neutral pion is 135.0. The lifetime of the charged pions is 2.6 x 10~ 85, that
of the n° is 8.4 x 107175, The form factor for the charged pion has been
determined from the scattering of the high-energy pions by the electron in a
hydrogen atom. Its root mean-square charge radius is

{r2y12 = (0.66 + 0.01)fm @1

B. Isospin Symmetry

The pion—nucleon interaction is, except for the Coulomb and mass effects,
isospin invariant. This means that the combined system can have an isospin of
3 and . Any system composed of a pion and nucleon |zn} can be decomposed
into states of a definite isospin:

lany = 3 |T, Ta)(TTs| Lty 5t,) (22)

T,Ts
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Therefore,
)7[ P>—I2,2> AT*

1
|t n>——ﬁ[12,2>+\/§|%,%>]

I °p>—ﬁ[f|m |2,2>]=7[fA+—|m>]

7E[A+ +J|212

- -

1
o> =—[V213, - P +13 -] —[JA°+|2, !

/3 7

1
ln py=—[12 =4y - /214, 1 °_ /214, ~

%

/

mTn) =13, —3>=A"

where Q is the charge of each system.

One can invert these relations and thus express the T=

terms of the pion—nucleon system. We find that

ol
1l
Nl

Y=|ntp)

+ =%[|n+n) +212%>1 T,

N=

If

A° =%[ﬁln°n> +lm7pd] T,

=[n"n) T,

=

]
!

Nafw

Q=2
0=1
0=1
Q=0

D1 g=0
0=-1

(2.3)

3 state, the A, in

24

Any isospin invariant operator will be diagonal in isospin space:

{TT3|0|T', T}) = 070(T, T)(T3, T5)
The transition matrix 4 is such an operator. Therefore,
<“+P|9.|"+P>=g-3/2

s 2
*/3/2"'39'1/2

Il
e

{n"p|T |n"p>

(n°nl T |n"p) —i (T 32— T 1)

(2.5)

(2.6a)

(2.6b)

(2.6¢)
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The amplitudes 7 ,, and 7, are functions of the spin and energy and
momentum variables. By comparing the possible reaction cross sections, one
can obtain the two amplitudes. Because of the linear relation between the total
cross section and the imaginary part of 4, we have from (2.6)

a(n:+p) =03,

- 2.7
o(r"p)= %03/2 + %‘71/2
where the subscripts indicate the isospin channel. .
It may be convenient to parametrize the isospin dependence of 7 by
J =a+bt, T, (2.8)

where a and b are functions of spin, energy, and momentum variables. The
quantity a is referred to as the isoscalar component, b the isovector. The vector
t, is the isospin operator acting on the nucleon

t,=1T, t2=3 29
The vector T acts on the pion with the normalization

T2=2 (2.10)

since the pion has an isospin, T=1. Since T=T, +t, is conserved, one can
show that

Tet,=3(1?-2-3)
1 =3
=q 2 T=3 (2.11)
-1 T=1

Parenthetically, one can construct the projection operators on to the T =3 and
1 states, respectively. They are

Py, =31+T,t) 2.12)
P, ,=31(1-2T,t,) (2.13)
Using (2.9), one finds from (2.6) that

b
Typ=a+y Typ=a—b (2.14)
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The total cross sections for the two most readily available reactions are

0(7T+P) =0,

o(n”"p)=30,,+30,, (2.15)

Coulomb effects modify these results.

C. Pion—Nucleon Scattering

The most striking feature of pion—nucleon scattering is the A resonance. This
occurs when the momentum of the pion in the center-of-mass system is 230 MeV/c
(k= 1.15fm™"), corresponding to a mass of 1.232 GeV. The peak cross sections
show clearly that the resonant cross sections are for a T'=3 state. Assuming
that at the resonance peaks ¢,,, > g, ,,, one finds from (2.15) and (2.7) that

a(n” p)/o(n~p)/o(n’nen"p)=(1/3/3)

at resonance. This result is in agreement with experiment (see Fig. 1.1). Second,
one can also determine the spin at the resonance. The resonant cross section
for (n*p) scattering, assuming no inelasticity is given by 2z/k2 (2J+1)=
19fm? = 190mb for J =3, confirming that the A** is J =3 state, and the
inelasticity is small. The resonance must occur in the /=1, p-wave channel
yielding a unique angular distribution. The amplitude for the scattering of a
zero-spin particle by a particle of spin } is given for each isospin channel
according to (V.2.44) by

- k; x k,
= A + Beg-* = 2.16
f + Be'n n Ik, x k| (2.16)
where
A=£Z[(l+1)f§”+lf§")]P,(0059) (2.17)
1
and
B=i2[f‘,+’—f}"]P§“(cos 9) @.18)
PM(cos9)=sin9 d Py(cos 9)
y d(cos 9)

The quantities f{*’ and f{~’ are the partial wave amplitudes for the j=1+ 3
and j=1—1 states. In terms of phase shifts, f{*) is

f§+’ = %{(ezidf -1 (2.19)
S T
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with a similar expression for f{7)-3{*) will be complex if there is any inelasticity.
The differential cross section is

do

o kznA|2+|B| ] (220

The total integrated cross section is
4n (+)|2 (-))2
=k22[(l+1)|f1 | +l|f1 |]

The polarization parameters P and Q are

Re AB* 21m AB*
P=2—""""_n =" 2.20
4] +|B|? ¢ |42 +[B|? (2:20)

For the A* " resonance, | =1, J =3, so that

do

10 kzlf‘*’l (4cos®9 +sin’9) (2.21)

in agreement with experiment (see Fig. 2.1). At 0°, do/dQ = 30 mb at resonance.
It will be noted that as the pion energy deviates from resonance, the angular
distributions are no longer symmetric about 90°. This is because of the presence
of nonresonant amplitudes, for example coming from 7 ,. The low-energy
behavior of the phase shift is given by the limit

2L+1

g—0 (2.22)

) (L)
057,25 937,259

For S waves, a is referred to as the scattering length; for P waves a has the
dimensions of a volume and therefore could be called the scattering volume.
The numerical values for a are [Moniz and Lenz (91)]

a5, =(— 0092 +0.002)m_ '

a$ | =(0.170 4 0.004)m; * (223)

and
af | =(—0.043 + 0.004)m*
dh 4 =(0.214 +0.004)m
af = (— 0082 +0.006)m_ (.24

af ;=(—0.029 +0.005)m_ >
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FIG. 2.1. Angular distributions for n~ p scattering. [From Rowe, Solomon, and Landau

(78).]

We note that the nonresonant P-wave amplitudes are negative, corresponding
to a relatively weak repulsion. Moreover, the isoscalar quantity in (2.8) is very
small for S waves. Using

a,=3a | +-%af‘1
we obtain g, = —0.0046m_"'.

At higher energies, the empirical phase shifts as determined by Rowe,
Solomon, and Landau (78) are presented in Figs. 2.2 to 2.4. The curves are
labeled by L, ,5. The phase shift 6(P3;) rises rapidly from zero through 7/2, the
resonance value of 8. The phases d(P,;) and §(P,;) are increasingly negative.
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FIG. 2.2. Angular distributions for n* p scattering. [From Rowe, Solomon, and Landau

(78).]

The phase shift 6(P,,) (T =3s—3) turns about and crosses the real axis,
becoming positive and rising rapidly, indicating the effect of a resonance at a
mass of 1.440 GeV with a width of 200 + 80 MeV.

Rowe, Solomon, and Landau (78) have given a useful parametrizaion of the
phase shifts for pion energies less than 400 MeV. It is

k 2l+1 k 2 k 4 k 21+1 F
tand, = (—) [b + c(——) + d(—) + x(-) 0—\/;" (2.25)
m, m, m, ko So—S

where k and s are the nn center-of-mass momentum and (energy)?, respectively.
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FIG. 2.3. Empirical pion-nucleon p-wave phase shifts versus center-of-mass momentum
|q] Rowe, Solomon, and Landau (78). [From Ericson and Weise (88).]

p-WAVE nN PHASE SHIFTS
5[ degl "
/ — phase shift
8 I P 4
I’ analysis
/
L // P
e
0 -t - -+ S t
[} 13 J
-4 F [
. Pyl e T
(C) — ' - A . L
0 100 200 300

Il (Mevic]

FIG. 2.4. Empirical pion—nucleon p-wave phase shifts versus center-of-mass momentum
|g| [Rowe, Solomon, and Landau (78)]. [From Ericson and Weise (88).]

The resonance form is meaningful only for the P,, and P,, phases. The values
of the parameters are given in Table 2.1.

Principally because of the Coulomb interaction, isospin symmetry is broken.
The masses of the A’s are not all equal, nor are their widths equal. For
example, M(A®) - M(A**)=27+03MeVand 'A% - T(A**) = 6.6+ 1.0 MeV
[Pedroni, Gabathuler, et al. (78)].

Inelastic pion—nucleon reactions occur when pions are produced. The
threshold energy for the nn— nnn reaction is about 179 MeV in the laboratory
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TABLE 2.1 Parameters for (2.26)

Vo ko T, b c d

x  (GeV) (GeV/e) (GeV) (1072 (1077 (104
St 0.44 1.550 0477 0.105 16.8 +£0.75 —354+54 27+ 11
S3y 0.31 1.655 0.550 0.170 —11.2+4+0.20 -30.7+1.1 2142
Py, 0.61 1.435 0.393 0.230 —5714+0.54 254+21 -29+3
Py 0.23 1.815 0.656 0.255 —1.31+0.08 1.22+0.32 —-044+03
Py, 0.22 1.850 0.678 0.200 -291+0.08 345 +0.27 —1.5+0.2
P, 0.99 1.233 0.228 0.116 11.4+0.30 —154+21 7.2+21

Source: Rowe, Solomon, and Landau (78).

reference frame. It appears that many of the data for this reaction can be under-
stood under the assumption that the final state is a two-body state, of which
one body is an isobar. For example, the two-body state could be a m+ A, or a
27 isobar, such as the spin 1 p or the spin 0 ¢ plus a nucleon. Such a hypothesis
can be tested by calculating the ratios of the production of various possible
two-pion + nucleon final states, using the isospin properties of the isobars and
comparing with experiment. For example, suppose that the reaction is

ntnTp
1~ 4 p—< n%n (2.26)

n~np
Suppose that the reaction can be described as leading to A*n~, A°r° and
A~ n* states with the subsequent decay of the A*,A~, and A°. Using the isospin

Clebsch—Gordan coupling coefficients and for simplicity considering only the
T =} channel, one finds that

IT, T3 =% — =/ A n™ — /20%° + . /3A" ") 2.27)
Now using (2.4), which expressed the A*,A% A~ in terms of nucleon + pion
amplitudes, one can obtain the branching ratios for the three final states of
(2.26), namely,

am(n+n’n)/al/z(non"p)/al/z(nonon] =5/2/2 T=3

which can be compared with experiment.

Problem. Consider the T = channel. Show that |3, — 1> = /5[ ./8A*7n™ +

A°n® + . /6A~n*]. Calculate the cross section ratio for the three reactions of
(2.26).
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D. The Isobar Description of the A

We shall not enter into the dynamics underlying the properties of the A. Suffice
it to say that it is the simplest excitation of the three-quark system, whose
ground state is the nucleon. In this excitation the spin of a quark is flipped
while the isospin (d=u quarks) may also change. Our goal in this section is to
obtain a consistent description of the A, which will prove to be useful when we
consider n-nucleus scattering.

The expression for the J matrix for resonant scattering for an isolated
resonance has been derived in Chapter 111 [Eq. (I11.2.18)]. We recall that one
proceeds by dividing the Hilbert space in two through the use of the projection
operators P and Q = 1 — P, where the space subtended by P contains the incident
and exit channels. Then as seen from Chapter III, the 9 matrix is given by

1
f=?7,.+<t//‘f"HPQ—HQP1//‘f“> (2.28)
E— HQQ — Woe
where H PQ= PHQ, and so on, and
Woo=H ! H (2.29)
Q0 — QQE(H‘HPP PQ -

Jp is the nonresonant scattering in P space, that is, a consequence of the
Schrodinger equation

(E—Hpp)y=0 (2.30)

In the case of a single isolated resonance, one chooses Q to contain only one
state—the resonant state ®. Then

Y Hpp®) (PHppth( )
E—(OPH®) — {PHpp[1/(E* — Hpp)]Hpo®)
2.31)

g'=g-‘p+;a/-k=ca/-p+

In the application to pion—nucleon scattering, we shall limit the discussion to
the #* + p—>A** resonance. The results for other channels can be obtained
from isospin invariance. The state vector @ is A(u,), where yu, is the z component
of the A spin of 3. The operator Hy, couples the A to the pion—nucleon states
of P space. We take it to be given by

Hyp = gh(k®)k-S' (2.32)

where g is a coupling constant, h(k?) is a form factor, h(0) = 1,k is the center
of mass relative momentum of the pion-nucleon system, and S is referred to
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as the transition spin operator. The form given by (2.32) is determined by angular
momentum and parity invariance. One recalls that the pion is a pseudoscalar
spin-zero particle. Hence the interaction must itself transform like a pseudo-
scalar. The transition operator ST converts a nucleon of spin-4, z component
Uy into a A of spin-3, z component p,. It therefore has the matrix elements

GualSTiu) = Y (lutml3uae, (2.33)
u
where

1
e,, = F——(a,+4a,) (2.34)
V2
€ =43

Here 4; are three perpendicular unit vectors. From this result we have

St=e, [13><a+ /U Bl +e_ [V =1 <Ca+]—2><B]
+eo /2L Ca+ | —1<B] (2.35)

where |-) refers to the state vector [2u,>. We have tabulated only p,. The states
« and B are the +3, — 3 spin states of the nucleon, respectively. In component
form,

1 1

=—ﬁ[|§><a+féléxﬂ]+\/.2[\/§|—%><a+l—%><ﬂ]

S;=—L% + /38 b
ﬁ[|><a NODX 5

St =201 Ca+ | —1><h]

We now define the product S;S} by

S]

(VI =<a+1-35<pT  (236)

S:ST=Y.5:| tad (uaS] (237)
This operator acts only on the nucleon spinors. One may show using (2.36) that
S,-S} = %5” — %aiaj
and

From (2.38) we have the useful result

A-SSTB=2A-B—(c-A)(c'B)
=3;A'B—lio-(A x B) 2.39)
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Note that a similar development can be made in isospin space where the
T =} nucleon is transformed to a T = 3A.

We return to the numerator, N, of 9 in (2.31), which can be written using
(2.32) as follows:

N =g* Y h(k’®)(K'*S) | A(114)> (A(u,)| (kST h(k?)

ua

or

N= %Zh(kz)h(k’z)[k"k —ig- (k' x k)] (2.40)

To complete the calculation of the numerator N, one must take the matrix
element of N between appropriate initial and final nucleon spinors. The form
factor h(k?) measures the overlap of the incident and final pion—nucleon wave
function with the A wave function. The resonance denominator D in (2.31) is
given by (E = total energy)

dk h2(k2)xc?
2n)* E) —m —m, —k*2u

D(E)=E — i, — L EM=E+ic (241)

where m, = (A|H|A), pis the pion—nucleon reduced mass (units #=c = 1). The
real part of the integral will combine with the parameter m, to yield the A
mass, m,. The imaginary part of the integral equals twice the width of the A
resonance. The ratio N/D, given by (2.40) and (2.41), is the Breit—Wigner result,
describing the A.

The discussion above is nonrelativistic. The relativistic generalization
adopted by Hirata, Koch, Lenz, and Moniz (78,79) and by Horikawa, Thies,
and Lenz (80) replaced D(E) by a form obtained from the Blankenbecler—Sugar
reduction of the Bethe—Salpeter equation. According to Moniz and Lenz (91),
the D(E) of (2.41) should be replaced by

_ 2g2J dx m.m K2h?(xk?)
D(s)=s—m2 — = w,+E)—"—— 242
) A3 (27:)3( )wKEK s — (0, + E,)? 242)
where
ol=mi+x? El=m?+k?

and s is the square of the invariant energy. Both expressions for D, (2.41) and
(2.42), include only pion—nucleon scattering in the expression for the Wy, term.
Other inelastic processes, such as 1+ n—-n+n+n or 1+ n=y+n, can also
contribute to the A width but are not significant at or near the resonance energy.

Problem. Take the nonrelativistic limit of (2.42) and compared with (2.41)
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The width can be obtained from the singularity in (2.42):

ImD = Lg" de(w,( + EK)MK4h2(K2)5(S —(w+ E)?)
3n w,E

K™K

The argument of the & function is zero when «? equals x2, where

1
k= g [~ m—m)*][s —(m +m,)°] 2.43)
s
Therefore,
2 ap2(;.2 E
Im D = g_(wxg -+ EKO) m"m Kio (Ko)w"“ ";
3n Oy E o 2K0(0, + Ey,)
or
1
ImD = EE‘"Z " e 3hixc2) (2.44)

s

In the laboratory frame, the width and Im D are related by

= (l> ImD (2.45)

m

A good fit to the resonance phase shifts is obtained, according to Moniz and
Lenz (91), with

|
h(k*) = m (2.46)

when o = (0.56 fm 1), /i, = 1384 MeV, and g = 8.72/m,,.

3. PION-NUCLEUS SCATTERING

- The scattering of pions by nuclei involves a number of novel features, compared

to reactions induced by projectiles considered so far in this volume. At low
energies (E, <80MeV) the pion—nucleon interaction is weak and multiple
scattering theory is used to understand the results. The optical model potential
contains significant nonlocal contributions in addition to the customary central
and spin-orbit potentials. In the kinetic energy range 80 to 400 MeV, A resonance
formation is the dominant mode and an isobar-doorway state model is
appropriate. It is this last feature that is of interest to the theory of reactions,
for it provides an observable example of the impact of the nuclear medium on
the propagation of a short-lived system through that medium.
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A. Low Energy: E, < 80 MeV

Multiple scattering theory (see Chapter II) has been used to obtain the form of
the pion—nucieon optical potential in this energy range. Since multiple scattering
theory is a high-energy approximation, its validity for the scattering of
low-energy pions whose wavelength/2x is on the order or larger than the
internuclear distance in the nucleus must be justified. The first-order (and
higher-order) optical potential

yo A= 5 o0y @G.1)
“L ¢ o ;
i=1

depends directly on the pion—nucleon scattering. To fit the data the parameters
describing pion—nucleon scattering must be modified, replaced by effective
parameters. These modifications are ascribed to higher-order effects which are
said to describe the impact of the medium on the pion—nucleon interaction. It
is, however, not correct to employ the multiple scattering second-order potential
V@ to determine those effects. In the derivation, presented in Chapter 11, of
V® the approximation is made in which the nuclear Hamiltonian, Hy, in the
propagator is replaced by a constant. This is equivalent to the fixed scatterer
approximation (or m,/m —0), which is not valid at these energies. However, we
shall use V'? to indicate the form of the media modification, adjusting its
parameters as well as those of V! to obtain a fit for experiment. The results
are physically meaningful since these parameters vary slowly with respect to
nucleus and energy.

At low energy the scattering amplitude f; for pion—nucleon scattering in the
center-of-mass pion nucleon frame can be parametrized as follows:

SanKem ko) = bg + ' (Kemek(,) + id'o (ko X K,) 3.2
where b’ depends on isospin
b'=by+ b\ (T, 1)
and similarly for parameters ¢’ and d'. [ Note that t of (2.8) = 1/2.] The coefficients

b, ¢ d' depend on energy and momentum transfer q =(k — k’). At threshold
(E, = 0) the coefficients have the following values [Ericson and Weise (88)]:

b,=—00103)m>"  b,=-0.091m] "'
¢, =02083m>° ¢, =0.1752m> 3.3)
dy=—0.190Qm=2  d = —0.069Q2)m_>

li

The ¢’ term, the p-wave scattering amplitude, is clearly dominant, demonstrating

the importance of the A resonance even at very low energies. From the results
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(T, t)x*pd=1and (T, 1)|n*n) = — 1, we see that the =* + p scattering spin
averaged amplitude is ¢, + ¢, =0.38m 3, and the n* + p amplitude is given by
¢y — ¢y =0.03m_ 3. We therefore expect that n* nuclear scattering will be more
sensitive to the proton distribution, while the opposite will be the base for n~
scattering.

We shall need the transition matrix ¢; in the pion-nucleon center-of-mass
frame, in terms of f, in (3.2). This relation is given by (I1.7.16). It is

k 1+2E,/A Am)?
= 2 Ko T RWART /AN 34
kemEp (1 +m2/AmE,)(1 + E /Am)

where k; is the pion momentum in the laboratory frame, E; the corresponding
energy including its rest mass, and Am the mass of the target nucleus. In addition,
it is necessary to transform the momenta k., and k', to the pion—nucleon
frame momenta, k and k'.

We consider the transformation from the reference frame in which the incident
pion has a momentum of k and the target nucleon a momentum of —k/4 to
the frame in which the pion and nucleon have momenta of k_, and —k,
respectively. For all but the lightest nucleus, the pion energy in the first of these
frames equals the pion laboratory energy, E;. The boost in velocity v in units
of ¢ required to transform to the nucleon—pion center-of-mass frame is
determined by the Lorentz transformation:

k., =7k —vE)= y(; + mv) (3.5

This yields

v=(1—1) k (3.6
A/m+E;

For the maximum pion kinetic energy considered (80 MeV), v? = 0.0245. Hence
in (3.5), one may safely put y =1, so that

kcm=k[l—EL(l—l/A)}=km+E"/A:k m (3.7)

m+Ej m+E; m+E;
Similarly,
k(1 —1/A)E’
k, =k — ki~ 1/4E, (3.9
E, +m
We thus obtain
Ko x ki =— 7 (k x k) (39)

+E;
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Evaluating k "k’ takes more work but one finds that to O(k?/m?, k'*/m?),

2
Kk~ k.k,_ﬂ(l_l)
m+E; (m+ E,)? A

Note that

k+k
k2=;(k_k‘)2+k-k'+§(k—k')-( '; )

We drop the last term on the assumption that it will average to zero and/or
because it is zero on the energy shell. Inserting the approximate result into the
equation for k., k’_ and using the notation

k—k'=q

2
ko k. ( e )[k-k'—E—qu} (3.10)
m+E; 2m

Substituting (3.9) and (3.10) into (3.2) and (3.4) yields

one obtains

t,,,,=b+c[(k-k')—ﬂ<l—;) 2]+ido-(k x K) (3.11)
2m

where the coefficients b, ¢,d are proportional to ¥, ¢, and d’ of (3.2). They are
functions of the momentum transfer and the energy.
Inserting (3.11) into (3.1) yields

r)—f jdkf dk’ %" p(q)t, 4o (3.12)

Assuming that the coefficients b, c, and d vary slowly with g allows us to replace
them by their value at g =0, b®, ¢?, and d®. The integration in (3.12) can
then be performed easily. For example, consider the k-k’ term:

A
V,=c®

-1 - -
dk’ | dke™*"k-k'p(k —k')e T
m)®

A—1 . Kp
V'V Jdk Jdk’e"‘”p(k —Kk)e kT
T

= cO(A — 1)(V-V)8(r —r)p(r) (3.12)

— O
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Acting on y(r') yields
ij(r, )Y(r)dr = — 94 - )V-pVy (3.13)
Hence the first term in the multiple scattering series is
1 0 0 0 E, 2 (0) l@p
VW =(A—1)| b9 — OV-pV — D =(V?p) + d V0 1 -— (3.14)
2m ror

where in the last term p has been assumed to be spherical, a function of r only.
Potential V") is known as the Kisslinger potential.

It was pointed out in the preceding section that the form we have used in
developing V"), (3.2), should be modified as follows [see (2.32)]:

1
'S ch(h(k),  where h(kg)=———— =0.56fm~! (3.15
¢’ = ch(kh(K) b=y gt (3.15)

Using this form, it is possible, with some approximation, to carry through the
calculation leading to (3.12'). One obtains

+r\a? ,
V= - 1)wv-v | p " )—e‘“"_')
» ( ) (p< > Jan

so that
' , N 0) r+r (a’)a —a'|r—r|
Vp(r,r)ujz(r)dr=~c A=1V-|p 5 Sie TRV (3.16)
T
where
, m+E;

o =a

m

The quantity («'3/8n)e”*1"""! is a spread-out delta function becoming a delta
function as &' — co. To obtain some feeling as to when the introduction of the
form factor h(k) is important, replace ¥(r') by ¢’*™, p by a constant p,. The
integral in (3.16) then equals

k ikr Po 3'1
Uy 17

which is to be compared with ikp, obtained from (3.13). Using the value of
o' =069fm~! (3.16), one sees that the factor 1/[(1 4 k?/x’?)]> becomes
important at relatively low energies.



3. PION-NUCLEUS SCATTERING 823

The Lorentz—Lorenz Effect. The Kisslinger potential, (3.14), is the first-order
term in the multiple scattering series for the optical potential. We shall now
consider higher-order terms, or more physically the effects of correlations.
Foliowing Eisenberg and Koltun (80), the second-order term involving pair
correlations will be considered first. We have remarked earlier on the
approximations involved, but the result will provide us with a form that will
be useful in obtaining the semiempirical optical potential." We shall use (I1.4.43)
at zero energy. One further approximation will be made, namely V¥ and g, in
(I1.4.27) for the inverse of the propagator will dropped. With these modification
one obtains

dk” ~
5 E(k, k”)';_ [(k", k/)c(ku _ k, k' — k/r)
(2n) —(12p)k"? + ig

P2k, K) = (4 - 1)? _[
(3.18)

where p=E; m/(m+ E;). We consider only the effect of the P-wave term, so
that (3.18) becomes

- dk” ” " ’
P2k, k') = — 2pc*(A— 1) Lms (k") (k" k)

—_6 k" — k’kl — K"
W2 —in )

One can decompose the numerator into a “monopole” and a “quadrupole” term:
(k-k")(k"-k) = 1k-Kk'(k")? + [(k-k")(k" k') — 3 (k-K)(k")*] (3.19)

Dropping the quadrupole term [see Warszawski, Gal, and Eisenberg (78)], V®
becomes

”

7Ok, k)= — L2u)(A — 1)2c2(k-k')j Kk —kk—K)  (320)

2n?°

Introducing the Fourier transform of C yields
VK K) = — 3 2u)(4 — 1)*A(k-K) Jdrle""‘""""c(rl,rl)

= 12u(4 — 1PA(keK) Jpz(rl Jek =k g, (3.21)

*An optical analogy makes use of the fact that long-wavelength electromagnetic interactions with
matter are, as in the case of the k-k’ term of (3.11), dipole in nature. Therefore, there should be a
term in the optical potential that is similar to the Clausius—Massotti term in the index of refraction
for electromagnetic waves. This analogy has been exploited particularly by Madga and Torlief
Ericson (66). [See also the most recent discussions by Ericson and Weise (88).] For a more extensive
bibliography on the derivation of the Lorentz—Lorentz and other density-dependent effects, such
as that induced by p-meson excitation [Baym and Brown (75)], see Eisenberg and Koltun (80).
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Transforming to coordinate space and including the first-order P-wave
contribution, one obtains

Vo) = — (A~ D)coV-[p — 5(4 — 1)2pcop®TV (3.22)

Eisenberg and Koltun (80) calculate the next-order term, making it plausible that

p
V()= —(A— 1),V v 3.23
)= = (A= DeoV o A (3.23)

This should replace the ¢@ term in (3.14). One should bear in mind that the
form factors h(k) have not been inserted and that only a subset of the higher-order
terms has been summed. The cross-terms with the nonresonant components of
V™ have not been included, for example. Finally, (3.14) suitably modified by
(3.23) does not contain absorption effects. The constants b,c, and so on, are
nearly real in this energy range, indicating, as expected, that the inelastic and
quasi-elastic cross sections are small. The Pauli principle plays an important
role here.

The significant absorption reaction is the n(2n}— 2n. Of course, there is the
single-step process m + n—n, but this involves a large momentum mismatch;
that is, the energy of the final nucleon yields a larger momentum than that
provided by the incident pion and the Fermi motion of the target nucleon. A
more likely process is thought to be absorption of the pion by two nucleons
which would go off in opposite directions with equal momenta (or nearly equal
if the incident pion has some kinetic energy). The probability of this process is
proportional to the (density)?, since two nucleons are involved. These terms are
introduced phenomenologically, so that V™ reads

C(O)p + Ac(O)pz v
14 &Qu)(A4 - D[cp + AC©p?]

V=(A- 1){b(°’p + B9p2 —V.

E E
—%Vz[icm’p +-* AC(O’pZ:” (3.24)
m 2m

where the spin-orbit terms have been omitted. The empirical parameter ¢
replaces the factor of 1 in (3.23). B® and C® are complex. Thus even when
b, ¢ and d© are taken from pion-nucleon scattering, we are left with five
empirical parameters whose values are obtained by fitting the experimental data.

The factors ' and ¢® parametrize the pion-nucleon ¢ matrix. To obtain
these in terms of the pion—nucleon scattering amplitude f,,, we make use of
(3.4). Dropping the recoil terms, (3.4) becomes

k 2n E
ln — = 2 L ;:n l L) ;m 325
4 nk ELf EL( m / (3:25)

cm
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Each of the quantities in (3.3) must therefore be multiplied by — 2n/E; (1 + E,/m).
However, the parameter B‘® should contain the factor (1 + E,/2m) since the
interaction is with two nucleons. According to (3.10), the parameter ¢’ of (3.2)
should be multiplied by (m/m+ E;)*> upon transforming to the laboratory
reference frame. putting all these factors together yields

V= —2—7E{<1 +ﬂ)b’p+(1 -+-&)B’p2
E, m 2m

1 A

/ ’

c +
1+E;/m 1+E;/2m

1+4n§(A—1)[ ¢, Ac¢ }
1+Egm  1+E/2M

—-V-

! 1 A ’
—IELVZ( ¢ +~—C)} (3.26)
2 m I1+E/m 21+4+E;/2m

The effect of the form factors h(k?) has not been included in (3.26). This potential
is then inserted into the Klein—Gordon equation,

[V2 4 (E,— V)2 = 2E,V —m?]3=0

where V. is the Coulomb potential and terms proportional to (V)* have been
dropped. The results of Ericson and Weise (88) for the parameters by, b}, cg,
¢}, and so on, are presented in Table 3.1.

The quantity (b)) is by — (1 — m,/m)[b2 + 26371 1/r), with (1/r) taken to
be 0.91 m,. The term subtracted from b, is a second-order multiple scattering
correction. These results should be compared with the values given in (3.3). The
agreement with experiment is illustrated in Fig. 3.1. The predicted reaction cross
sections are shown in Fig. 3.2.

TABLE 3.1 Low-Energy Optical Model Parameters

n Atom T, =50MeV Units
(b))t —0.03 —0.04 + 0.004i m-!
b, —0.09 —0.09 m-?
, 0.23 0.25 4+ 0.01i m>?
¢ 0.15 0.16 + 0.005i m_>
¢ 0.47 047
B 0.002 + 0.05: —0.005 + 0.03i m-*

n

AC 0.04 +0.12i 0.05 +0.07i m>¢

n
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FIG. 3.1. Angular distributions for n* elastic scattering on various nuclei at T, = 30
and 50 MeV [Carr, McManus, and Strickler (82)]. [From Ericson and Weise (88).]

B. Pion Energy 80—-400 MeV; The Resonance Region

The dominant physical process in this energy range is the absorption of the
incident pion by one of the nucleons in the target nucleus, forming a A. The A
propagates through the nucleus, colliding with other nucleons. The A eventually
decays into a nucleon + pion, leaving the nucleus in the ground state (elastic
scattering) or excited (inelastic scattering). In an equivalent description the pion
is absorbed by the target nucleus, forming a A-hole state, that is, a system
consisting of A — 1 nucleons plus a A. This state acts as a doorway to more
complex states, such as the A —n — 2 hole state, and generally to A—hole plus
multiparticle—hole states.

These two descriptions are equally valid. However, the first suggests a multiple
scattering description, while the second suggests a doorway state description.
In this volume we describe the latter, first proposed by Kisslinger and Wang
(73, 76) and further exploited by Hirata, Koch, Lenz, and Moniz (78, 79) and
Horikawa, Thies, and Lenz (80). A critical review of this area, including an


http:L.-~----l__L-----'_-'-----.J

3. PION-NUCLEUS SCATTERING 827

[ PION ABSORPTION CROSS SECTIONS |

1000 C T T T [ T ™ T
- . o
x atoms
[ [ /)}::?:g-
- J
= - x
100 - r b
| al | [ Tl
DG T L f L T T
1000 ﬂ - 4
B [ -
- F X § §
_ 3 3
1L ]
L n* n*
100 F Br1il 4 f eyl
0 20 L0 & 0 20 &0 &0
Tr [MeV]

FIG. 3.2. Pion absorption cross sections for various nuclei as a function of energy [Carr,
McManus, and Strickler (82)]. [From Ericson and Weise (88).]

analysis of both approaches, is being prepared by Lenz and Moniz (91). The
reader is referred to this article for a discussion of the multiple scattering
description together with an extensive list of references.

In the language of Chapter 111, P space contains the states of 4 baryons,
containing a maximum of one A and at least one but no more than one pion.
As usual, the other degrees of freedom are contained in Q space. Perhaps the
most important term in Q space is the two-pion + baryon system, which is
generated by the reaction (nn — nnn). The Hamitonian Hp, we shall use is

H=H,+h°+H (3.27)
where
H,=H?+ HS+ V, (n)+ V,(A) + HnA - nn) + H(nn - A)
+ hermitian conjugates of the last two terms (3.28)
The quantities h2, H?, and H{ contain the mass and kinetic energy operators.

The single-particle potentials V ,(n) and V (A) approximate in shell model fashion
the potential in which a nucleon or the A move. The term H(nA — nn) + H(nn — nA)

-
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describes a A-nucleon collision in which the A is deexcited to a nucleon, and
vice versa, a process that in nucleon—nucleon scattering leads to the production
of a A. The last term H(nn— A) describes the formation of a A by absorption
of the pion by a nucleon, or vice versa, the decay of the A into a pion + nucleon.

We define a set of mutually orthogonal projection operators P, P,, and P,.
The first of these, P,, projects_onto the space, consisting of the states of A4
nucleons and one pion. Thus

P,HP,=h°+H,=H, (3.29)
where
H, = Z(Ti +U) 2U;=V,(n (3.30)
and
hg =T, +m, (3.31)

The operator P, projects onto a space containing only nucleons, so that
PHP,=H, (3.32)

Finally, the operator P, projects onto a space containing one A and (4 — 1)
nucleons:

PyHP =Am+ Y (HA '+ T, + V,,)=H, (3.33)

where Am =m, — m,, and the subscript i in the sum denotes the nucleon, which
has been converted into a A. The sum ) ¥, ; = V,(A). The nondiagonal terms are

P,HP,=Hman—-+A) =Y g, = H,, (3.34)
and
P,HP,=H(An—nn) =Y va,(i.j) = Hy, (3.35)
i<j

The operator H,, describes the absorption of a pion to form a deita. The
operator §; is given by (2.32):

g; = gh(k*)k-S] (3.36)

Finally, H,, is H(nA— nn). The corresponding wave functions

PY= l//n PY =y, P\ =y, (3.37)
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satisfy the Schrodinger equations (¥ is the exact state vector)

(E—H)Y.=Hs (3.38q)
(E—H W =H s (3.38b)
(E—HWa=Hps+ Hal + Hpg¥g (3.38¢)
(E—HolWo=Hgs¥a (3.384)

where Q¥ =/, contains all the channels, such as the A-hole, many p-h states
not subtended by P, + P, + P,(ie,Q=1—P_ — P,— P,). We have made the
strong doorway state hypothesis, that only y, connects to Q space. By the
process of elimination one can obtain the transition matrix of various reactions.
First, let us obtain a description of ¥,. We “solve” (3.38a):

*H"
H. a¥a

N 1
V= 64—

where ¢! "’ is the incident pion—nuclear wave function. Second, from (3.38b) we
find that

Ya= 17— I NN

Hence

1 1 1
E-H,—Hy,,————H,y—Hy,—— H,,—Hyp———H
( A AAE+_HA AA A pe g ima AQE+_HQ QA)‘//A

=H,¢'" (3.39)

To simplify the appearance of these equations, introduce the definitions

Hyy E_—ITA Hy= W (3.40q)

HA,,E%H"H"AE we (3.400)
and

HAQE%HQ Hor=W@ (3.40¢)

Equation (3.39) becomes

(E—HA_ WAWA: HAnd’i,ﬂ (3-41)
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where

Wy=WQ+ WP+ w@ (3.42)

Inserting (3.41) into (3.38) yields expressions for the ¢, and ¥ ,. From ¢, one
can obtain the 7 matrix for n-nucleus scattering

1
T = (H S Hy, ‘+>> 343
nn <¢ nAE(+) HA~ WA A ¢n ( )

where 7 _is the amplitude for nonresonant reactions, One can also obtain the
amplltude for = absorption, assuming the absence of nonresonant terms:

) 1
f/'ab=< ‘A‘HAAW A An¢‘+’> (3.44)

where y” is an excited state of the target nucleus in the continuum, usually
a 2p-2h state.

Each of the components of W, corresponds to a physical process. The
operator W describes a process in which the A is converted into a nucleon,
thereby forming the target nucleus again. This is followed by propagation and
recovery of the A. We shall refer to it as absorption. The operator W' describes
the decay of the A into a 7 + nucleon, forming the target nucleus plus a pion.
This is followed by propagation and reabsorption of the pion to form the A.

To evaluate I ., or 7 ,,, it is necessary to determine the states of the operator
H, + W,. Not all the states, of course: rather, that state which is most strongly
excited by the incident pion. The principal component is presumed to be a
A-hole state. We shall therefore look for that linear combination of A-hole
states which diagonalize (approximately, of course) H, + W,. This is the
doorway state. Toward that end we shall examine and approximate W,

Consider first W', where the prime indicates that we have removed the
incident channel; that is, the intermediate states will only be those in which the
target nucleus is excited. If P, is the projection operator for the nuclear ground
state and Q, =1 — P, is its complement, then '

. 1
W(Aﬂ = H Qo ﬁ H., (3.45)

n

Inserting (3.34), we have

1
W =% 5t ) 3.46
A gg:QOE H gj ( )

n

where i and j indicate the nucleon which is converted into a A (and vice versa).
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We separate the diagonal and nondiagonal contributions:

W‘A"" = W‘l;" + ng,'l’, (3.47)
where
1

w3 5t j; 3.48
D Zg'QOE—Hﬂg ( )

This term corresponds to the case where the system returns to a A-hole
configuration while W, involves a final system consisting of a A—p-2h
configuration. The latter, Wy, is referred to as the rescattering term.

Similarly, W can be broken up into a term in which the A—h configuration
is preserved and a term in which the final system involves the A-p-2h
configuration, so that

W@ = W 4w (3.49)

Hence the denominator in (3.43) can be rewritten

EY—H,—W,=E® —H,— W, - W®@ (3.50)
where
w,=wp+w (3.51)
and
W@ = Wf?‘ + W+ W (3.52)

The decomposition could have been introduced at an earlier stage [Eq. (3.38)]
by the addition of suitable projection operators or through use of the multistep
theory of Chapter VII. Physically, one should note that the A—p—2h state can
be generated either through the rescattering term or through W{J. Both
mechanisms must be considered when the generation of a A—p-2h configuration
is important, as it is in the case of double charge exchange (- - n*).

To make the Pauli-blocking effect explicit, we replace Q, in (3.48) by 1 — P,
where P, is the projection onto occupied levels. Thus

weo =Ygt E_H, g+ Wil (3.53)
where
() — s Po
Wip=— ZgiE " H gi (3.54)

n

Equation (3.50) is therefore

E® —Hy—~Wy=E® —Hy—wy— Wiy — w, — W@ (3.55)
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where
Wy = Zgl — g, + W‘A’ (3.56)
and
1
=HaxPo 7 Hua (3.57)
E-H,
But

H, =T, +m,+H,
=T+m+T,+U;+H,,
~T,+U+H,_,+m, (3.58)

In the last equation the pion—nucleon center-of-mass kinetic energy has been
replaced by the A kinetic energy T, and U is now the average A—nucleus
potential. Because the nuclear wavefunctions are antisymmetrized, the sum in
(3.56) can be replaced by a single term. This is identical with the similar term
appearing in the denominator of (2.31) except that Hyp is now given by H, as
approximated by (3.58). Therefore,

YO 0 =Z(E-Ts—U—H, ,—m),) (3.59)

where X is defined by
Z(E)=H or g

from (2.31).
The denominator of (3.43) becomes

E®—Hy,—W,=E" —H,— W
_Z(E— TA_ U_HA—I)_ Wg’nl);_ W(Q)_Wgs
To make further progress, we linearize £ by expanding E — X about its zero,
E — Ez+il'/2. We obtain

E® —H,— Wy=E— Eq(E)+ &)

~WE—-Ty—%—H, ,)—Wg— W(Q)—wys (3.60)

where

(az
y=1+{—

(3.61)
6E>E=E-En+il‘/2
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and
1
A=U+-wy
Y
The expression

H =yTa+U+Hy_ )+ W+ weo (3.62)

is the A-nucleus interaction. Medium modifications are given by y and
WS + W@, In the notation of Feshbach (82),

i
>

we = wi (3.63)

and

i
>

w (3.64)

gs

where W+ is the spreading operator and W' the escape operator.
Expression (3.66) is now in a form that makes a phenomenological approach

possible. One adopts the optical model strategy by replacing W with a spreading

potential composed of central and spin-orbit terms:

W' = Wop(r) + 2Ly Z, V Qurie #* (3.65)

where I, is the spin-3 operator for the A. The matrix elements of other terms
W' and W can be evaluated in the A-hole basis. For details, sece Hirata,
Koch, Lenz and Moniz (79).

Doorway States. We now turn to the problem of obtaining the eigenstates of
H=H+ Wy=y(Ta+U+H,_ )+ W+ W (3.66)

as given in (3.62). The potential % is taken by Hirata, Koch, Lenz, and Moniz
(79) to be proportional to the nucleon density with a depth of 55MeV. The
remaining parameters are W,, V', and u. The method used by these authors
and Horikawa, Thies, and Lenz (80) was suggested by the results they obtained
when the eigenfunctions of # were determined using harmonic oscillator
wave functions. It was found that the contribution of one particular eigen-
function dominated the 7 matrix for elastic scattering. Moreover, the overlap
of this wave function, D, with the state developed by the first interaction was
large; that is,*

[<DIgyH1
[ Ig TGP

(3.67)

*In the notation of Chapter III this ratio is
[{DHy ¥ 1
KW H gyl 52
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Here D is the adjoint to the D used because # is complex and y*) is the
scattering solution of (3.38a). This result suggested the use of the Lanczos method
[Morse and Feshbach (53, p. 1155); see also Whitehead, Watt, Cole, and
Morrison (77)]. Let

Dy=gy"> (3.68)
Then D, is generated by
Do#D
D,=#D,— <2‘f’21)0 (3.69)
{DoDy>
Note the orthogonality:
<50D1 >=0

State D, is obtained by operating on D; and orthogonalizing with respect to
Dy and Dy:

D, #D Do #'D
D2=WD1—<—‘~ 1>1)1—< o*Dy ),
(DD {D¢Do>

o (3.70)
(DoD;>={D;D;>=0 (3.71)
One continues this process obtaining the general expression for the nth iterate D,:

Dy HDys> o (Daa#D,o i)

i ue " D,., (372
<Dn*1Dn-1> ' <Dn*2Dn~2>

n

D,=#D,_, —

D, is not only orthogonal to D,_, and D,_, but to D,_5, D,_, as well. One
can show (this is left as an exercise) that

(Dy#D,>=0  unless f=0, ax+]1 - (3.73)

The three-term recurrence formula (3.72) thus generates an orthogonal set. To
obtain the eigenvalue of #, one expands the eigenfunction ¥, in terms of the
iterates D,,:

Yy=Xa,D, (3.74)

Operating with & on ¢, we find that

n>0
(3.75)

(D,AHDyy , (DyHDyir) ]m

—a ~ — n
" «bpy

‘}i”tp:EaanD,,:[a,,‘l +—=
{D,D,>
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and

0

o [ Do,

(DyDy> (DoDo»

The eigenvalue problem #'y = ¢y yields

n+1

[<5n%1),,> ] (D, H#D,1r>
n—1 ——————— — ¢& an+f —
<DnDn> <DIIDn>

To “solve,” let

Then (3.77) becomes

(D,D,>

The solution of the equation for R, is the continued fraction:

(D #Dy (DH#D,)

R, =¢ = =
(DD  (DD;>

1

=0

- [o Perp] By 1
<DnDn> Rﬂ+1

Do#D
+<M1>a1:|DO n=0

n>0

835

(3.76)

(3.77)

(3.78)

X ~ =
[5 _<sz@] _{D#D3)
' (D,D,)

One can also obtain an expression for R, from (3.76).

_ {DoA#D, »/<DoDo>
&~ (Do Do /< DoDo»

1

1

(D3D,> [6—(Dy#Dyy/{DyDy>] -

(3.79)

(3.80)

Equating (3.80) with (3.79) yields an equation for &. There are many solutions
for ¢, each corresponding to an eigenstate of #. To obtain the wave function
corresponding to each ¢, we need the expansion coefficients a,. These are given

by
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One can also obtain a continued fraction expression for the .7 matrix for
elastic scattering. From (3.43) and (3.68) we have

T e =<DoGDy> (3.81)
where
1

E—H

G:

(3.82)

The complex energy & = E — Egx(E) + il (E)/2. Define the matrix element
Goo=<D,GDy) (3.83)
so that Gy = 7 ,,. We can therefore rewrite (3.82) as follows:
8Gpo—E(D,HD,)Gro =0y
Because of (3.73) this becomes

[ée_ <§n'”Dn>]Gn0 = <5n'#Dn—1>Gn—l,0 + <[jn=nyn-1>Gn+l,0 +6n0
(3.84)

The solution of this set of equations has been obtained earlier in this volume.
Let

H,,={D,HD,>

Then
1
Goog=— 3.85
00 .y K H# 1y (3.85)
R H 2 H o
11
H 3 H
e
7.

This is an exact solution of the elastic scattering problem.
It is also possible to obtain an expression for a reaction. Let us consider as
an example the case of inelastic scattering to a state ¢, ,. The 7 matrix is then
FTinel = (¢ g1GD, > (3.86)

Expanding GD, in terms of D, yields

( ) t
7=y i, a8
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From (3.84)

1
G,o= (3.88)

ép_% %n,n+l‘#n+l.n

"

& H r%ﬂn+1.n+2‘}fn+2.n+1
- n+1,n+1—(g,
—‘#n+2,n+2 -

This expression can be inserted into (3.87) to obtain the inelastic transition
amplitude. As one can see from (3.87), 7 '*¢! will be especially large if §¢,, has
a strong overlap with the incident doorway sate.

The convergence of the continued fractions has been studied by Lenz, Moniz,
and Yazaki (80). They consider a number of model scattering problems. The
convergence to the exact partial wave amplitude and the forward scattering
amplitude is determined by the parameter u=(k — k)R, where k — k is the
momentum difference outside and inside the interaction region and R is the
radius of that region. Iterations up to a number equal to |u| leads to high
accuracy. This number is < 5 for pion—nucleon scattering in both the high- and
low-energy limits. For light nuclei |u| ~ 1, which is a great simplification. The
convergence of the nonforward amplitude involves a second parameter ¢ = ¢R,
where g is the momentum transfer. If £ < |u|, then |u| determines the number
of iterations. If & > |u|, more iterations are needed. One word of caution: These
criteria are generalizations obtained from the study of specific models, the square
well, and the Woods—Saxon potential and may not be valid for other situations.

An illustrative example is provided by the potential suggested by
pion—nucleus scattering in the resonance region:

_dnp,  TP2

R E—E +ir2’?

V(r)

where f(r) is either a square well of radius R or a Woods—Saxon well:

1
1+ gt~ Ra

=
Lenz, Moniz, and Yazaki (80) take R = 1.124'3 py=0.17fm 3, = 110 MeV,
Egx=190MeV, A =16, k the pion—nucleus relative momentum in units of 4,
1.5fm ™1, and a = 0.53 fm. Table 3.2 shows the rate of convergence for these two
types of wells for the L =0 wave. N is the iterate number.

The wave function also converges rapidly, as is demonstrated by Fig. 3.3.
Another example is given by Hirata, Koch, Lenz, and Moniz (79) for E_, =
163 MeV, 1~ 160 scattering. W is given by the first term in (3.65). The mean
potential, %, is taken to be proportional to p(r) with a depth of 55MeV. The
results are shown in Table 3.3. The exact result was obtained by a straightforward
diagonalization of # using harmonic oscillator wave functions. We see that



838 PION AND KAON INTERACTIONS WITH NUCLEI

TABLE32 7 ,_,

N Square Well Woods—Saxon

0 —0.0031 + 0.5461i 0.0322 + 0.4961i

1 —0.0441 +0.4172i 0.0120 + 0.4256i

2 —0.0410 + 0.4172i 0.0144 + 0.4298i

3 —0.0410 + 04172 0.0144 + 0.4298i
TABLE 3.3
N T =0 & T L=a €
0 0.155 + 0.490i —53.1—154.5i  0.060 + 0.280i 13.9 - 144i
1 0.159 + 0.372i —68.7—138.5i  0.062 + 0.246i —27-177i
2 0.154 + 0.381i —68.7—1380i  0.059 +0.251i —34-227i
“Exact” 0.154 + 0.381i —68.7—138.0i  0.059 + 0.250i —3.5-23.1i

convergence for 7, is very good in both cases. Accurate values of ¢ are obtained
for L =0 after two iterates. Three iterates are needed for ¢ when L =4, as the
value with one iterate is nowhere near the exact answer.

The contribution of the various components of Ime are shown in Fig. 3.4.
(The qualitative results are not changed by the inclusion of the spin-orbit term
in Eq. (3.65) [see Horikawa, Thies, and Lenz (80).] We see that the escape width,
Im W1, also referred to as the rescattering term, dominates. The Pauli blocking
term does reduce the width substantially, but this is more than made up by
Im(WT 4+ W)

This theory has been applied to a number of reactions for which the A
resonance is important. Background terms that do not involve the A must be
added. The elastic scattering of =~ by '®O at 114 and 240 MeV is shown in
Fig. 3.5. The agreement is good and the need for the spin-orbit term is quite
clearly demonstrated. The agreement is not quite as good for '2C, where
substantial deviations at back angles are recorded. Comparison has also been
made with *He data [Horikawa, Thies, and Lenz (80)] and with Pb data
[Karaoglu and Moniz (86)]. The empirical values of the parameters of the
spreading potential W, V%, and y, (3.65), are given in Fig. 3.6 and Table 3.4.

TABLE 3.4 Parameters V(") and p for the Spin-Orbit

Potential

p(fm~3) V% (MeV)
nt +*He 0.25 —4.6—-1.8i
n” +1*C 0.35 —-10—4i

n” +1%0 0.3 —-10—4i
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(a)
) B Im [ kryl

(b)

o

-6 =

FIG. 3.3. S-wave scattering wave function for a Woods—Saxon potential with strength
appropriate to intermediate energy pion—nucleus scattering. The (a) imaginary and (b)
real parts of the wave function are shown for different numbers of doorway states. The
dotted line in (@) shows the shape of the Woods—Saxon potential. [From Lenz, Moniz,
and Yazaki (80).]
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FIG. 3.4. Decomposition of the imaginary part of the doorway expectation value of the
isobar-hole Hamiltonian. The eigenvalue of the leading eigenstate is denoted by &, and
I' is the free-space isobar width.

The isobar-doorway model has been applied to inelastic scattering [Lenz,
Thies, and Horikawa (82); Takaki (86)] and to nuclear photoabsorption and
Compton scattering [Koch, Moniz, and Ohtsuka (84)]. Inelastic scattering and
charge exchange scattering are discussed in the following sections. These provide
tests of the isobar-doorway model which differ from those made by elastic
scattering. The model has been successful, although some puzzles do remain,
particularly at back angles. The overall result is that medium effects are very
important. As a consequence, the DWA method is not successful in describing
reactions in this energy range.

Reviews of the isobar-doorway model have been published by Moniz (78a, b).
A review is now being prepared by Lenz and Moniz (91) which will contain a
critical analysis of the various methods that have been used. Another approach
to the isobar-doorway model is given by Oset with Weise (79). Other procedures
are used by Wilkin (79), Lee and Ohta (82), Lee and Kurath (80), Johnson (86),
and Liu and Shakin (77, 79).

Inelastic Scattering [Lenz, Thies, and Horikawa (82); Hirata, Lenz, and Thies
(83); Takaki (86)]. The excitation of a nucleus by a pion whose energy is in the
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FIG. 3.5. n-'°0 scattering at 114 and 240 MeV, solid lines, spin-orbit term included (see
Fig. 3.6 and Table 3.4 for the strength of central and spin-orbit term); dashed line, without
spin-orbit potential (W, =2 — i55at 114 MeV and W, = — 12 — i35 at 240 MeV, V, 5 = 0).
[From Hortkawa, Thies, and Lenz (80).]
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FIG. 3.6. Strength of central part of the spreading potential n—*He (triangles), n—'2C
(circles) and n—1%0 (crosses). [From Horikawa, Thies, and Lenz (80).]

FIG. 3.7. Pion particle—hole excitation.

resonance region is the subject of this section. We consider only those contri-
butions made when the intermediate state involves the A. As mentioned earlier,
there may be contributions from the nonresonant components of the n—-N
reaction. The obvious first-order contribution involves the formation of the
A-hole state. The A decays back into a pion plus nucleon so that the residual
nucleus has a p—hole (p = particle) excitation. This is illustrated by Fig. 3.7. The
amplitude for this process is

_ 1
yfi=<'1’$zf)HAAE % Hy, 5:)> (3.89)
—Jta

The DWIA approximation [Lenz, Thies, and Horikawa (82)] consists in using
the A-hole Hamiltonian for 5, and the elastic scattering wave functions
as modified by the A resonance described in the preceding section. The
quantity H,, is defined by (3.36) and 4, is defined by (3.62). The amplitude
equation (3.89) in the DWIA approximation has been studied thoroughly by
Lenz, Thies, and Horikawa (82). We are able here to point out a few salient
features of their analysis of inelastic = scattering. Incidentally, most of these
remarks apply equally well to elastic scattering.
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We first note that for p—h excitations,

HysHpy= gzh(k)[ Y S,-‘kS;f'k':Ih(k')

i<j
= gZh(k)[z s,.-ks,.*-k']h(k') (3.90)
In this expression, k is the center-of-mass momentum/# for the system consisting

of a pion and a target nucleon. In the laboratory frame, k in (3.90) must be
replaced by

k—ok— oK (3.91)

and similarly for k. The vector K is the momentum of the nucleon/A, while «
is E/mc?, where E is the total energy of the pion in the laboratory frame and
m is the nucleon mass. The term proportional to « is referred to as the “recoil”
term. The “static” limit is obtained by placing a = 0. Equation (3.90) becomes
approximately

H yaH g = g*h(0h(K) Y S,-(k — aK)S]-(K' — oK) (3.92)

Using (2.39), that is,
A-SS"-B=1A-B—lic-(A x B)
one obtains

H 4sHy g = 3g*h(h(K) Y {(k — aK)- (K — aK') — ic;* [ (k — aK) x (k' —aK')]}
(3.92)

The initial wave function can be factored as follows:
Y =Y, (3.93)

where P, is the wave describing the target nucleus depending only on the
internal coordinates. The function x{*) is the pion—nucleon elastic scattering
wave function. Similarly,

V=AY,
Therefore,

T =Xt (394)
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where

t,,=<‘l’,H,,A %M‘Pi> (3.95)
and E*=E —E +il'/2.

Neglecting for the moment the nonlocality indicated by the propagator, we
see from (3.92) that ¢ ; will involve the longitudinal density matrix,

Pf::<‘Pf
k=1

A
Y, o —r (1 +37,(x))
< lPi> (3.97)

The factor (1 + }7.) gives the 3:1 ratio between the T =3 isospin total cross
sections for (" p) and (z*n). In (3.96) p¥, and pf, are the proton and neutron
density matrices.

Introducing the nonlocality by a first-order expansion of the orbital
particle-hole wave functions introduces another set of nuclear operators. These
include the convection current

E*'—WA

lPi> = %Pj"i + %P}i (3.96)

and the spin density,

3 8= o)1 +47,00)

A
Zl (1 + 37.()[p(x)S(r —r,) + 5(r — FK)P(K))J> (3.98)

1
Jfl(r) m<le

and a dyadic

> 1
fl.(r) 2m <

These quantities p;, Sy, j,; and Ufi are probed by inelastic pion scattering.
Combined with electron scattering, they will yield the neutron particle densig,
spin density, and current density matrices as well as the spin flux tensor U.
Note that the vectors k(x) are momentum operators acting on the nucleon wave
functions.

The modifications because of nonlocality and recoil (whose neglect through
closure for the propagator and putting a = 0 leads to the “static” solution) are
substantial. The calculations involve (1) distorted wave functions for the
pions as obtained by the methods discussed earlier, and (2) nucleon and hole
orbital wave functions. They are required to yield the transition and spin density
matrices as determined from electron scattering. In Fig. 3.8a we show the cross

3+ x))[p(x)o(x)é(r—rx)+5<r—r,)p(x>c(n)1>
(3.99)
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sections for excitation of the 2* state (4.44 MeV) in '*C by p; (longitudinal
excitation) under various approximations. We see the large differences between
the closure and full A-h calculations. In Fig. 3.8b a similar comparison is made
for the 3~ state at 9.64 MeV. The match of the full calculation (the longitudinal
excitation dominates) is not quantitatively satisfactory, although qualitative
aspects are reproduced. We show just the case of the 2% excitation in Fig. 3.8¢.
In the resonance region the calculations do agree reasonably well up to the
region of the second maximum. Large discrepancies are found for large
momentum transfers. This is possibly not surprising since a similar difficulty
exists for elastic scattering. Lenz, Thies, and Horikawa (82) believe that the
cause of the discrepancy lies in the A—nucleus interaction as described by the
spreading potential.

Hirata, Lenz, and Thies (83) point out that the mean field description of the
A-h spreading potential may be an oversimplification. They propose a model
in which the A interacts with the nuclear nucleons via a two-body interaction.
This interaction can excite one of the nucleons, so that a possible intermediate
state consists of a A—h plus a p—h state. This is illustrated in Fig. 3.9. Of course,
higher-order multistep intermediate states A—h, v(p — h), where v is an integer
are possible.

The amplitudes corresponding to Figs. 3.7 and 3.9 add up to give the J

matrix:
— (- (+)
T = < nf) lpm’ >

+< (}) 1 7 1

HAAE* — e}?AlANE — ‘#AHAA
where f,y is the component of the A-N interaction, which results in further
nuclear excitation. The quantity (1/E* — 5# ) is the propagator for the A—h, p-h
system, and E* =E — Eg +il'/2.

Equation (3.100) is an example of the amplitude for the multistep direct
process described in Chapter V1. The higher-order multistep components are
not included. An estimate of their importance using the statistical approach of
Chapter VI has not been made.

The Hamiltonian in (8.39) is given by [see (3.53) and (2.60)]

1
H,u——H
AAE*__MA AA

)y e

Hy=y(Ty+%+H, ) +W5+wo (3.101)
Hirata, Lenz, and Thies (83) and Takaki (86) replace the spreading potential
W@ + 9% by a sum of two-body potentials instead of using the mean field as .
given in (3.65); that is,

W@ 4y =3 t(Ai)=tyy =By + W (3.102)
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FIG. 3.8. (a) Comparison of various approximations to the A Green’s function in the
transition operator for excitation of the 2* (4.44 MeV) T = 0 state by 226 MeV n* (pure
longitudinal parameterization). Dotted curve; closure approximation; solid curve, free
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A (kinetic energy only); dashed curve, including central A-nucleus potential,
dashed—-dotted curve, full A—h calculation, including Pauli terms and spin-orbit
potential. The distorted z wave functions always correspond to the full A-h calculation.
(b) Like (a), but 3~ (9.64 MeV) T = 0 state, pure longitudinal parameterization, 116-MeV
n*. (c) Differential cross sections for the 2% (4.44 MeV) T = 0 excitation for various pion
energies. Solid curves: A-h calculations, dashed curves: closure approximation. [From
Lenz, Thies, and Horikawa (82).]
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FIG. 3.9. Pion two-particle/two-hole excitation.

The potential 7,y contains the diagonal rescattering term [see (3.48)], which
does not contribute to the production of the more complex nuclear states. The
remainder f,y is the interaction that appears in (3.100). Takaki (86) parametrizes
i,y as follows:

fan= Z C(S4, To)o(ry —1;)P(S,)P(Ty) (3.103)

i,54,Ta

where S, and T, are the spin and isospin of the interacting A—p pair, while
P(S,) and P(T,) are the corresponding projection operators. Since the A spin
is 3 and the nucleon spin is 4, S, can be either 2 or 1. The same hoids for
T,, so that (3.103) contains four complex parameters, C(11), C(12), C(21),
and C(22). One relation exists among them: namely, that the mean field that
follows from (3.102) agrees with the empirical mean field, W' [Eq. (3.65)]. The
comparison is obtained by taking the diagonal value of t,y in the single-
doorway-state approximation. This result, together with fit of the inelastic data
for the (n*, '2C) reaction, permits the determination of the values of C(S,, T,).
Finally, Takaki approximates 3, by 3#,. Results for the excitation of the 17,
T=0(12.72MeV) and the 1*, T=1 (15.11 MeV) levels in '2C are shown in
Fig. 3.10 and for the 2%, T=0 (4.4 MeV) level and the 37, T=0 (9.6 MeV)
levels in Fig, 3.11. The values of C(S,, T,) obtained from fitting 1* excitations
are used in the calculation of the 2% and 3~ excitations. Qualitative agreement
is good, especially at small angles, but there are strong differences from
experiment at the back angles at 162 and 266 MeV. At 100 MeV, the full
calculations are in good agreement with experiment. One also sees that by
taking into account the more complex excitation, A—h, p—h, it becomes possible
to fit the ratio (T = 0)/o(T = 1) as a function of the energy. The disagreement
with the data is significant since this model correctly predicts the elastic and
total cross sections. We speculate that full agreement with the data will not be
attained until more complex excitations are included in the calculation.

Single (SCX) and Double (DCX) Charge Exchange Scaftering. An example
of an SCX reaction is

nt 4 Ao, A+1° (3.104)
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FIG. 3.10. Excitation functions for the 1* T =0 (1271 MeV) and T =1 (15.11 MeV)
excitations. Solid and dashed lines correspond to the full calculations for 7=0 and
T =1, respectively. [From Takaki (86).]

It is closely related to the (p, n) reaction as the residual nucleus is identical for
both. In the latter case, a most salient feature is the formation of the isobar
analog of the target nucleus. We may expect that the reaction (3.104) will also
excite the isobar analog states. This is illustrated by Fig. 3.12. With DCX, other
giant resonances, such as the electric dipole and double isobar analog states, can
also be excited (see Fig. 3.13). Thus once the dynamics of SCX reaction is
understood, one should be able to gain further understanding of these
resonances. Similarly, the (==, 7°) reaction is the image of the (n, p) reaction and
would be useful in the study of the nucleus (Z — 1, N + 1).

The isobar analog resonance can be discussed pehnomenologically by using
the Lane equation (Chapter V). A similar procedure can be followed here where
following the papers of M. Johnson, E. R. Siciliano, and their colleagues
[Siciliano, Cooper, Johnson, and Leitch (86), for example], one writes for the
potential

V=V, + V(T T+ V(T T, (3.105)

where V,, V,, and V, are referred to as the scalar, vector, and tensor potentials.
T, and T, are the isospin operators for the pions and nucleus, respectively.
Equation (3.105) is the extension, to charge exchange reactions, of the pion
optical potential described earlier [see (3.26)]. This potential was used to
describe the elastic and total cross sections and involves terms quadratic in p
(the density) which are a consequence of medium effects. Once one distinguishes
between the neutron and proton components of p, these quadratic terms lead
directly to a tensor contribution to V. It should also be noted that (3.105)
contains the most complicated dependence on T,. To confirm this, we need
only to recall* that

(Tm')3 =Ty

*More completely, [T, T, 1= iTy; i, j.k cyclical and T, T, Ty + T Toj T = 8y T + 04 T
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(9.6 MeV) excitations for various pion energies. Solid lines correspond to the DWIA
calculation, and dashed lines to the full calculation. [From Takaki (86).]

where T,; is the ith component of T. We emphasize that the tensor term is
present as a consequence of the effect of the medium on pion-nucleon
interaction. An analysis of the origin of this term will show that it depends on
nuclear structure, on Pauli and on both short-range and long-range pair and

higher-order correlations.

The solution of the Klein—-Gordon equation with the V of (3.105) is relatively
straightforward. One can determine the uncoupled equations for each of the
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FIG. 3.12. Charge exchange reactions.
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FIG. 3.13. Double-differential cross section spectrum for
(n*, ") reaction on a *>Nb target at T, = 292 MeV: (a)
0., =5% (b) 0,,,=10°. The arrows indicate the fitted
location of the DIAS and the giant resonance (GR). Short
vertical lines represent statistical uncertainty of the data.
The dashed line is the fitted background. DIAS, double
isobar analog resonance. [From Mordechai, Auerbach,
et al. (89).]

three possible isospins of the system T=T,+ 1 and T = T,. Since

T=T,+T,

one can immediately obtain the values of T T, that appear in (3.105). One

obtains

T T =3[T(T+ 1) = T(T,+ 1) = T4(Ty4,)] (3.106)

Recall that T, = 1 and T, = (N — Z). From the solutions (T, + 1), ¥(T,), and
(T, — 1), one can obtain the amplitudes for SCX and DCX. The wave function
for the n* nucleus system, ¢ (T, T,,; T4, T4;), is given in terms of the three
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solutions y(T,+ 1), ¥(T,), and Yy(T,— 1) by

YL T, —T)=(1;1;T,, — Ty Ty+1,1— THY(T,+1)
+(L1L Ty — Ty Ty 1 = THY(T)
+ (L1 Ty =Tyl Ty— 1,1 =THY(T,— 1)

or

1
ll/+(1, 1’ TA’ - TA)= \/(2TA+ 1)(TA + l)l//(TA + 1)

[ 1 2T, -1, .
+ TA+1|//(T,,)+ ——2TA+1l/I(TA 1)  (3.107)

The states (T, + 1), and so on, must be chosen so that , asymptotically
consists of an incident plus outgoing wave. The outgoing wave will contain n*,
n° and n~ components corresponding to elastic (or inelastic) SCX and DCX
scattering. To obtain the DCX, one needs the wave function for n° plus the
residual nucleus with isospin T, z component T,. This wave function is

'/l()(]-a 0, TR’ Tz) = (1’0’ TR’ TzITA + 1, Tz)w(TA + 1) + (1’0; TR’ Tzl TA’ Tz)w(TA)
+(1,0; Te, T,| T, — 1, TY(T, — 1) (3.108)

In the case of “elastic” scattering,

T,
'//0(1,0’ TA’]- - TA)= 2\/(2TA + 1)(TA + l)l//(TA
T,—1 2T, —1
b AT Ty — AT (T, -1
ﬁ;,(TA+1)¢( 2 T, (2T, + l)w a=D
(3.109)

Experimentally, elastic scattering to the nucleus (T,, 1 — T,) does not occur
because of the presence of the isobar symmetry breaking Coulomb interaction.
The residual nucleus in state y, is the isobar analog state of the target nucleus.
The double isobar analog state is generated by the (n*,n ™) reaction. It is the
residual nucleus in state y _:

TA2T,— 1)
T+ 1DQ2T,+1)

2T, — 1
T.T,+ 'l/( T+ ,TA(2T,, — ll’( a—1)

(3.110)

4/-(1,—1;TA,2—T,4)=\/ Y(T,+1)
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Returning to (3.108), the asymptotic boundary condition for ¥, is that it
contains only an outgoing wave. The same boundary condition applies to the
n~ + residual nucleus wave function, y _, generated by the DCX reaction. These
boundary conditions together with the boundary conditions for ¢, determine
the amplitudes of ¢ (T,+ 1), ¥(T,), and ¢(T,—1) and thus the reaction
amplitudes.

In the absence of the Coulomb interaction, the transition matrix 4 can also
be written in the same form given in (3.105),

T =to+t,(TT )+ (T, T )? (3.111)

For “elastic” scattering this equation yields the relationships [Koltun and
Singham (89)]

9—11=t0_TAt1+TA(TA+1)t2 ntont
T o1 =/ Talty = Tyt3) nt—n° (3.112)

T _11=JT42T,— )ty nton”

Equation (3.110) implies a connection between n*- and n~- or n°-induced
reactions. For example,

Ty oy=to+Tyt; +Tit,  n—>n” (3.113)

These relations will be valid for high energies and light nuclei, where the isospin
symmetry-breaking Coulomb interaction is least important. They should fail
substantially for low-energy incident pions and heavy target nuclei.

In the high-energy limit, one can establish the relation between V,, V,, and
V, of (3.105) and t,, t;, and ¢, of (3.110) by using the eikonal approximation.
From (I1.5.11) we have

.12 0
g = 2k J bdbJo(2kb sin 8)(e™ — 1) (3.114)
u

el
0

where
% =00+ 0; (T T )+ 0,(T, T, (3.115)

and

# a0

vi(b) = — — Vib, z)dz

(b) TS j_m (b, 2)

These nonrelativistic results can be modified to satisfy relativistic kjnematics
by using the Klein—Gordon equation [see (I1.7.2)]. One can evaluate ¢'* through
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use of the recurrence relations [Siciliano, Cooper, Johnson, and Leitch (86)]
(T T = — 2(T,+T)* + (T,-T)(T; — ) + 3 T2T; (3.116)
and
(T T = (T TOATE + 3) + T T2+ TAGT2 - 2)] - T2T3  (.117)

Note that T2 = T,(T, + 1) =2 and T2 = T,(T + 1). One finds that

et TeTa) = go—ivi 4 BointTa | Co~ivt(Ta+l) (3.118)
where
-T
- T4 * [Ty T,—T,] (3.119q)
T,_T,+1)
T, T
B 4" 1, [T T T+ 1)] (3.119b)
(T,+ 12T+ 1)
and
T, T,)?
de1-B-c=1- TaT) (3.1190)
T T +1)
For the v, term one obtains
02T Ta) = goivz 4 peivaTh | (piva(Ta+1)? (3.120)
where
1 . . —
c=( + T, T, T, —T,) (3.120a)
QT,+1)T,
p U+ T T, T+ Ty + 1) (3.120b)

QCT,+1)(T,+1)

gt CTa+ DT’ +3(T, Ty (3.1200)
T4QT,+ 1)(T,+ 1)

The quantity e'* is
eix — eivo,eivl('l'n''I',4)_eiuz('l',,-T,¢)2
We note that the second factor contains both absorptive and regenerative

terms. It is necessary, to conserve unitarity, that the net be absorptive, which
condition limits the values of v, and therefore of V,. We shall not continue
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do/d ﬂcm‘( mb/sr)

FIG. 3.14. Comparison of theoretical #* and =~ elastic scattering cross sections to data
at T, = 164 MeV for 160, 28Si, *°Ca, and '2C. [From Greene, Harvey, et al. (84).]
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FIG. 3.15. Comparison of theoretical single charge exchange do/dQ(0°) to data at
T,=165MeV. The x represent data and the W represent theoretical result. [From
Greene, Harvey, et al. (84).]
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FIG. 3.16. Comparison of theoretical double charge exchange dg/dQ(5°) to data at
T,=164MeV. The x represent data and the B represent theoretical results. [From
Greene, Harvey, et al. (84).]

with development, as exploration of these results has not been made. They do
demonstrate the possible importance of the vector and tensor components of V.
The phenomenological theory using potential equation (3.105) has been used
by Greene, Harvey, et al. (84) to analyze pion'single and double charge exchange
scattering to isobaric analog states, and elastic scattering in the resonance region
(E, = 164 MeV). Suffice it to say that agreement with experiment is obtamed as
illustrated by Fig. 3.14 for elastic scattering, Figs. 3.15 and 3.16 for SCX and
DCX. The DCX angular distribution obtained for 80 and 2°Mg and when

AT R BN T

)

g !
= o ;
3
> k-
26\ f, 3

< L

01 \ E

E

001 g

FIG. 3.17. Comparison of theoretical double charge
exchange angular distributions to data at T_ = 164 MeV.
The dashed curves are the lowest-order result. [From 0 20

Greene, Harvey, et al. (84).] Oern. (deg)




3. PION-NUCLEUS SCATTERING 857

do/dfl (mb/sr)

-3 ! ! ] ! 1

20 30 40 50 60 70 80 90
6 (deq)

FIG. 3.18. Comparison of theoretical n* (a) and n~ (b) elastic scattering cross section
from *C to data at T, = 164 MeV. The solid and dashed curves are, respectively, results
with and without the isospin-dependent terms in U'®. [From Greene, Harvey, et al.(84).]

the target nucleus is '#C is shown in Figs. 3.17 and 3.18. This illustrates the
importance of the tensor term, V,, in (3.105). One technical result of importance
is the finding of Siciliano, Cooper, Johnson, and Leitch (86) that the plane wave
approximation for the pion wave functions is inadequate.

The DCX reaction proceeds along two possible paths. In one a n*, for
example, scatters from a nucleon becoming a n°. The n° then scatters a second
time, becoming a n~. This process is referred to as sequential. In the A-N
interaction, the n* is absorbed by a target nucleon, forming a A*. The A*
interacts with the nucleus via t,y [see (3.102)], becoming a A° which then
decays into a 7~ and a proton. Calculations of the DCX reaction at low pion
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FIG. 3.19. 80(n*, n~)'®Ne(g.s.) differential cross section: full sequential (solid curve),
sequential, but keeping only the J =0 intermediate nuclear state (dotted-long-dashed

curve), with A-N interaction of strength év = 0.5 — 1.0, 0.2 — 2.8i, 1.0 + 0.4i fm? (dashed,
dotted, and dotted—dashed curves, respectively). [From Karapiperis (89).]
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FIG. 3.20. Same as in Fig. 3.19 but for the reaction '°O(n*,n )!°Ne(gs.). [From

Karapiperis (89).]
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FIG. 3.21. '30(n*,n7)'®Ne(gs.) differential cross section: sequential (solid curve) and
with A—N interaction of strength év = 2.0 — 0.4i fm? (dashed curve). [From Karapiperis
(89)1

energies where the sequential process dominates (~ 50 MeV) have been
successful. But calculations in the resonance region in the isobar hole model
are not. For an analysis, see Karapiperis and Kobayashi (87) and Karapiperis
(89). For an analysis from another point of view, see Siciliano, Johnson, and
Sarafian (90). The isobar—hole model uses the analysis described earlier for
elastic and inelastic scattering. The results for 50-MeV '80(n*, n7)!®Ne(g.s.)
are satisfactory. See Fig. 3.19. We see that the A-N process is relatively
unimportant. Distortion effects are very important. At the higher energies good
agreement is obtained for the !0O(n*,n~)'5Ne(gs.). See Fig. 3.20. However,
there is strong disagreement with the angular distribution in the reaction
180(n*,n7)!8Ne (Fig. 3.21), which is as yet unresolved. Disagreement with the
14C(r*,n7)1*O(gs.) is also present. Reasons for these disagreements include
possibly inadequate nuclear wave functions and the oversimplified form of ¢, ,,
(3.105). The importance of nuclear structure has been emphasized by Auerbach,
Gibbs, and Piasetsky (87) and Auerbach, Gibbs, Ginocckio, and Kaufmann (88).

4. KAON-NUCLEUS INTERACTION

The kaon is a pseudoscalar (odd parity, spin zero) boson. There are four varieties,
the K*, K% K, and K,. The antiparticle of the K* is K™, and of the K° K°.
This differs from the photon and n°, which are identical with their antiparticles.
The mass of the K* and K° are, respectively, 493.71 MeV and 497.70 MeV. The
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K° and K* (and the K ~, K°) form an isospin- system. The kaon is a “strange”
particle in that it has an additional internal quantum number of strangeness S.
We shall use hypercharge Y rather than S, where

Y=B+S 4.1)

and B is the baryon number. This permits a symmetrical classification of the
bosons and fermions as illustrated by Fig. 4.1. The axes are the value of the z
component of the isospin, T3, and Y. One observes that the fermion analog of
the (K% K ™) isodoublet is the nucleon isodoublet; that of the pion isospin one
system is the 3 isospin one system. The ' * mass is 1189.37 MeV and the 3°
mass is 1192.47 MeV. Finally, the (K ~, K°) doublet is mirrored by the = doublet,
with the mass of the 2~ equal to 1321.29MeV and the mass of the Z°
1314.9 MeV. The masses of the isosinglet A° and n° are 1115.60 and 548.8 MeV,
respectively. The spin of each of the particles in Fig. 4.1a is zero, while the spin
of the particles in Fig. 4.1b is §. The particles in Fig. 4.1a are said to form the
pseudoscalar octet, while those in Fig. 4.1b form the baryon spin-1 octet. This
classification based on SU(3) symmetry is a generalization of the SU(2) isospin
symmetry of the nucleon system. If SU(2) symmetry were exact, the neutron
and proton would have the same mass and each would be an example of the
nucleon. If SU(3) symmetry were exact, the masses of all the particles in Fig. 4.1a
would be identical and one would refer to them as states of one particle, the
pseudoscalar boson. Similarly, Fig. 4.1b represents a spin-; baryon. As the
masses are not the same, SU(3) symmetry is broken.

It will be useful for us to give the quark description of these particles. We
shall need only the u(up), d (down), and s (strange) quarks and their antiparticles.
These quarks are spin-3 fermions. The properties of these quarks are given in
Table 4.1. In Table 4.2 we list the combinations for the various particles shown
in Fig. 4.1. Note that the antiparticles of a quark g is written 4.

§ -1/2 0 1/2 1 Ty~

-2 -

(a) (b)
FIG. 4.1.



4. KAON-NUCLEUS INTERACTION 861

TABLE 4.1 Properties of the », d, and s Quarks

Baryon

Flavor Charge Strangeness T, Number, B Y
“ T o 153
d —3e 0 -3 1 1
s —1ie -1 0 1 -2
; ~ze B
d e 0 L -1 -1
S %e 1 0 - % %
TABLE 4.2 Quark Composition of Hadrons

Baryons Bosons®
P (uud) K* ()
n (udd) K° (a9 o
EA  (uds), (uus), (dds) N (ud) (iau)(dd) (ud)

K® (ds)

= (uss), (dss) K™ (as)

“This list omits the (5s) combination, leading to the existence of another particle, the #'. In fact,
both the n and n’ contain the 5s combinations: # = 1/\/3(u12 +dd—2s5)and nf = l/ﬁ(uﬁ +dd + s3).
Within the SU(3) framework we are using, the # is included in Fig. 4.1a octet, while the n’ is regarded
as a singlet.

This quark description must be used with some care. The constituent quarks,
as they are sometimes called, are quasi-particles, as their environment is rich
with quark—antiquark pairs as well as gluons. Moreover, we have not assigned
spin and still another internal degree of freedom, called color. All this is
presumably a consequence of Quantum Chromodynamics (QCD). We shall not
describe that theory here, as we shall be concerned only with qualitative
considerations. The interested reader will find the details in a number of
references [Gottfried and Weisskopf (84, 86); Close (79); Gasiorowicz (66), Lee
(81)]. The reader should confirm that the isospin of the baryons and bosons
can be deduced from the isospin of the constituent quarks.

The conservation of isospin in the strong interactions is expanded by the
additional requirement of the conservation of strangeness. The latter condition
is illustrated by the fact (for example) that n~ +p—K* + X~ is allowed but
n~ +p— K~ +Z"* is forbidden. More compactly, the strong interactions are
SU(3) symmetric [i.e., the strong interactions commute with the generators of
the SU(3) group]. From the quark point of view, for sufficiently low-energy
phenomena one need consider only the u, d, and s quarks. The other known
quarks, the ¢ (charm) and b (bottom), are much more massive than the u, d,
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and s. The ¢ mass is 1.5 GeV and the b mass 5GeV greater than the mass of
the u and d.

SU(3) symmetry is broken. The masses of the members of the spin-} octet
and of the pseudoscalar boson octet differ substantially. In terms of the
constituent quarks, the mass of the strange quark, s, is about 150 MeV greaer
than the mass of the up and down quarks, whose masses are equal. This heavier
mass for the strange quark provides much of the observed mass differences. In
addition, the spin- and color-dependent forces between quarks generated by
the exchange of colored gluons provide additions to the mass of the composites.
This interaction also breaks symmetry since these exchange forces are mass
dependent. These, together with the larger mass of the s quark, suffice to explain
the mass spectrum of both the spin- baryons and the pseudoscalar bosons.
[See Close (78) for the details.]

At large distances the baryon—baryon interaction is generated by the
exchange of bosons [the singlet #', the pseudoscalar, and the vector (p, w, etc.)].
Because of the difference in the boson masses, there will be strong symmetry
breaking. For example, the one-boson exchange AN nucleon interaction,
because of isospin conservation, involves the exchange of a kaon, while the pion
mediates LN interaction (see Fig. 4.2). Since the mass of the kaon is larger than
that of the pion, the AN interaction will have a range much shorter than that
of the IN interaction. At small interparticle distances, the six-quark system
must be considered. One would speculate that symmetry breaking would be
weaker in this case. It has also been speculated that the ZN — AN transition
matrix element breaks SU(3) symmetry weakly [Dover and Feshbach (87, 90)].

The antiparticle of the K°, K° is not identical with K°, differing in this respect
from the n° or the photon y for which the particle-antiparticle equality does
prevail. This unique property of the K° system has important consequences. It
surfaces in the pionic decays of the kaons. These violate conservation of
strangeness and are therefore governed by the weak interactions. These (as well
as the strong interactions) conserve CP, although neither C nor P is separately
conserved. We recail the C is the operator that converts a particle into an
antiparticle, while P is the parity operator that gives the effect of reflecting all
the spatial coordinates (r - —r) in a state. Since C?> = P? =1,

CPK® =¢?K°
N A N
A A ZA
K | T
AL AN rs N

(a) (b)
FIG. 4.2
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and
CPK°® =¢ ¢K°
We use the customary convention, ¢ =0, so that

CPK =K°

_ 4.2
CPK°=K° 62

Photons are odd under C. Since n° decays into two photons
Cn® =n°
so that the n° is an eigenstate of C. But the n° is a pseudoscalar, so that
CPrn®= —n°

We now consider the weak decay of the kaons into nn and nnn. Since the
spin of the kaon is zero, the two pions are in an / = 0 orbital state. The intrinsic
parity of the two pions is + 1 and the orbital state is even under parity. Thus
the parity of the two-pion final state is even. If the two pions are n%s, the
operator C will not affect them. If they are a #* and n~, C will interchange
them. However, they are in a relative [ = 0 orbit and their state is thus unchanged
by C. Hence the two pion state formed by the decay of the kaon has even CP.

Consider next the three-pion system n°n°z° Our conclusion will be valid
for kaon decays involving charged pions. Since they are bosons and their total
spin is zero, they are in a spatially symmetric state (i.e., the exchange of any
two will not affect the three-pion wave function. Under these circumstances the
spatial parity of the three-pion system is even but the intrinsic parity of each
is odd, so that finally the parity is odd. Since C =1 for each of the pions, CP
for the three-pion decay is odd.

Since the weak interaction is CP invariant, K° and K° are not eigenstates
of H, the total Hamiltonian, H +H The eigenstates of H are

strong weak”

1 _
K,=—(K°+K9%
2
1 _
K,=—(K°—-K9
e
4.3)
o 1
K°=—(K,;+K,)
2
=0 1
K"=—(K; —K,)

S
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The state K, is even under CP, while K, is odd. The K; will therefore decay
into two pions and the K, will decay into three pions. Thus if K° is produced
in a reaction, its composition will change with time. If

(4.4)

then

1 . .
KO(I) — _(e—¢m1t—l‘n/2K1 + eﬂmzt—l'ztlz Kz) (45)

NG

Note that (4.4) holds only in the rest frame of K, and K,. The short lifetime
h/T", is 0.89 x 10795, while the long lifetime #/T", is 0.52 x 1077 s. We see from
(4.5) that the mixture of S=1 and S= — 1 changes with time. Eventually,
K,— K, with equal amplitudes for K, and K,. Moreover, the amplitudes of
the K, and K, components can be obtained by measuring the ratio of 2z to
3n decays. From this result, using (4.5), the mass difference between K, and K,
can be determined. It equals 3.52 x 10 %eV,

Suppose that a beam of neutral kaons are incident on a nucleus. These kaons
will all be in the K, state if a sufficient time has elapsed from the time of
production. But the K, and K, components of K, will scatter differently with
amplitudes f and f, respectively. The kaon wave function will then become

1 __
K,—»—(fK°— JK°
ﬁ(f /K®)

=3[/ — DK, +(f + NK,] (4.6)

As a consequence of the scattering, some K, has been poduced. This
phenomenon is referred to as regeneration [ Pais and Piccioni (55)]. The incident
beam particles could only decay into three pions. After the scattering, two-pion
decay can also occur because of the presence of K, in (4.6). By measuring the
two- and three-pion decays, one can determine the amplitudes f and f.

The discussion above is not entirely correct, for it is found that the long-lived
kaon, which is referred to as K, decays into both 3n and 2rn final states
(Christenson, Cronin, Fitch, and Turlay (64)]. Thus CP canot be conserved.
K, must be a linear combination of K, and K,:

1

Ji+7

K, = (K, +eK,) 4.7
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The particle Kg, which has a short lifetime, is given by

1
KS = _—(Kl + SKz) (4.8)
J1+¢&

The measured value of ¢ is (1.6)(1 + i) x 1073, Up to this time, no other system
has exhibited CP violation. Since ¢ is small, for most of the phenomena to be
discussed we can disregard the differences between K, and K, and Kgand K:

K; ~K, Ks~K,

A. Kaon-Nucleon Scattering*

The study of kaon—nucleon reactions is far from achieving the completeness
that we have seen to exist in the pion case. The associated phenomenology is
therefore less secure. But there are some broad features that are understood
qualitatively and in some cases quantitatively, which are of importance for an
understanding of kaon-induced nuclear reactions. Many of the numerical values
given in the discussion must be regarded as tentative.

The reactions induces by K~ beams incident on the nucleon are qualitatively
different from those induced by K* beam. This can be seen in Figs. 4.3 and
4.4. One observes the complex structure of the K~ total cross section. These
are a consequence of a number of resonances that are tabulated in Tables 4.3 and
4.4 for the energy range considered in Fig. 4.3.

In these tables the column labeled L ,; gives the possible spatial configuration
for each of these composite particles. The column labeled “dominant channel”
indicates the most probable decay modes and therefore the most likely

TABLE 4.3
Dominant

T=0 Ly,, I'(MeV) Channel Mass (MeV)
A (1405 MeV) So1 4041 KN 140545

A (1520) Dy, 15.6+1 KN, Zn 1519.5+1.0
A (1600) Py, 50 - 250 =n, KN 1560 - 1700
A (1670) Sot 25-50 In 1660 — 1680
A (1690) Dy 50170 Zn, KN 1685 — 1695
A (1800) Sot 200 — 400 KN 1720 - 1850
A (1810) Py, 50 - 250 I 1750 - 1850
A (1820) Fos 70 - 90 K*(892)N 1815 - 1825
A (1830) Dys 60-110 n 1810 - 1830

Source: “Review of Particle Properties,” Particle Data Group, Phys. Lett. B 204 (1988).

!Dover and Walker (82); Arndt and Roper (85); Dalitz, McGinlay, Belyca, and Anthony (82).
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FIG. 4.3. Total K~ —nucleon cross sections for isospin T =0 and T = 1. [From Carroll,
Chiang, et al. (76).]

TABLE 44
Dominant

T=1 Ly I'(MeV) Channel Mass (MeV)
X*(1385) P; 36+1 Amn 1382.8+04
0 (1385) 1383.7+1.0
7 (13895) 1387.24+0.6
X (1660) Py, 40 - 200 KN 1630 - 1690
X (1670) D, 40-80 In 1665 — 1685
= (1750) Su, 60— 160 KN, Xy 1730 - 1800
Z(1775) D, 105-135 KN, An 1770 - 1780

Source: “Review of Particle Properties,” Particle Data Group, Phys. Lett B 204(1988).
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530 960 1490 2020 2650
Tiap{MeV)

FIG. 44. Total (ay), inelastic (6,), and elastic (o,) K*p cross sections. [From Arndt and
Roper (85).]

production reactions. The K*(892) is a spin-1 particle with the same strangeness
as the K. It is a member of the spin-1 octet that includes the p as a member.
One can conclude from the rich spectrum seen in these tables that the KN
system is strongly interactive.

The picture for the K* N system is strikingly different, as we can see from
Fig. 4.4. The total cross section for K* + N is relatively constant up to a kaon
laboratory kinetic energy of about 0.4 GeV (p, =0.745MeV/c, E_, = 1.674 GeV),
after which there is a relatively steep rise up to about 0.8 GeV in the laboratory,
after which it is relatively constant. Below 0.4 GeV, a;~ 1.2mb, while for
energies greater than 0.8 GeV, 6 ~ 1.7mb. The last is the sum of a decreasing
elastic cross section, g,, and a rising reaction cross section, g,. Three resonances
are reported by Arndt and Roper (85), who find the evidence for Z*(1780) as
strong; there are two other resonances listed as “highly probable” (see Table 4.5).
In the “Review of Particle Properties,” these resonances are considered to be
uncertain. The difference between the NK and KN systems can be qualitatively
understood by considering the quark structure in each case. The kaon, K, is
made up of s, while the nucleon, say the proton, contains two u’s and one d.
The i in the kaon and the u in the proton can annihilate, going off, for example,

TABLE 4.5

r
T=1 L”J (MeV)
Z* (1780) P, 280
Z*(1725) Py, 180

Z* (2161) D,s 320
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as a pion leaving behind usd, a A or £°. When the incident kaon is K*, which
is a u§ system, no such annihilation can occur and we are left with a five-quark
system uuuds. This system (uuu=A*"*, d§ = K°) suggests the existence of an
inelastic channel AK. Its threshold (for K*A*) is 1725.67 MeV near to one of
the Z* resonances. One expects that the probability of forming a five-quark
resonance in the low-energy domain is much less probable than that of forming
a three-quark resonance.

B. The KN System?

The reactions that are relevant are:

K+N->-K+N
Elastic K*+n->K*+p

K +p—>KJ+p

K+N->K+N+n
Inelastic K+N->A+K

K+N->K*+N

0.305GeV/c

Threshold (p,,) 0.466
0.552

In these equations N can be either a neutron or a proton and K,K*, or K°.
Let £ be the amplitude in the T = 1 channel and [ be the amplitude in the
T =0 channel for Y = 2. Then from isospin conservation, one obtains

f(K+p_’K+p)_;f(21) (4.9(1)
f(K*n—»K*n)=%(f‘2“+f(z°)) (4.9b)
f(K*n—»Kop)=%(f(2“ _f(20)) . (4.9¢)

If fiV and [ are the amplitudes for Y =0, then

fKp—Kp)=5(/P+ -2 4.10)
Similarly,
o(K*+n->A+K)=16(K"+p—>A+K) 4.11)

iCorden, Cou, et al. (82); Arndt and Roper (85).



4. KAON-NUCLEUS INTERACTION 869
In this reaction

K" +p->A** +K°
A" +K"*

and

Kt+n-oA" +K°
SA°+ K

From (4.11) we conclude that A production by K* in nuclei will be sensitive
to the proton distribution. In the regeneration reaction amplitude, (4.10), /("
is obtained from K~ p elastic scattering data, while f{" is given by elastic K*p
scattering. Thus from the measurement of f(K?p— K2p) together with K p
and K*p elastic scattering data, one can obtain the T =0, Y =2 amplitude.
Much of the same information can be obtained from elastic scattering of K*
by neutrons [Eq. (4.95)] and from charge exchange scattering [Eq. (4.9¢)].

Since we are dealing with the scattering of a spin-zero particle (K) by a spin-3
particle (N), the partial wave analysis of the scattering and polarization is
identical with that described earlier in this chapter from an analysis of
pion-nucleon scattering. The scattering amplitude is (see 2.16)

f=f+icng (4.12)

where f and g are functions of the center-of-mass energy and the spherical
angles 3 and ¢, while n is a unit vector perpendicular to the scattering plane.
The expressions for the scattering cross section, the polarization, and the spin
rotation parameter in terms of f and g are given by 2.20 and 2.20". We recall
that two phase shifts are associated with each value of the angular momentum,
0141, and 9;_,,,. The relations given by (4.9) are satisfied by both f and g of
4.12).

The T =1 total and inelastic cross section is given in Fig. 4.4. This is
supplemented in Fig. 4.5 by the T =0 total and inelastic cross sections, in Fig.
4.6 by the K9p — K Jp cross section, in Fig. 4.7 by the K "n— K°p cross section,
and by Fig. 4.8 giving the angular distribution for K *p (T = 1) elastic scattering
for a range in K™ momentum.

The elastic cross section is isotropic up to K* laboratory momentum of
800 MeV/c, corresponding to the dominance of the partial wave Ly ,;=S,;.
Above 800 MeV/c higher values of L must be added as the angular distribution
becomes anisotropic. Coulomb interference at small angles indicate that the
S,, amplitude is repulsive. We observe that the charge exchange scattering
K*n— K®p is important only in the neighborhood of K* momentum equal to
800 MeV/c. Note that K *n scattering and charge exchange scattering must be
deduced from K * collisions with deuterons.
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FIG. 4.6. Cross section for K? — Kp. The preferred fit is given by the solid line. [From
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FIG. 4.8. Differential cross sections for K * p elastic scattering. Below 700 MeV/c angular
distribution is nearly isotropic. S, ,,, T=1 channel dominates. [From Charles, Cowan,
et al. (77); Charles, Cowan (72).]

The data at low energies can be summarized in terms of scattering length a,
and effective range r, for S-wave scattering and scattering volume for the P-wave
amplitudes. The effective range expansion is

k2’“cot5=1+-21-rk2 4.13)
a

For isospin T =1 and S wave,

ay(T,2J) = ag(1, 1) ~ — 0.309 + 0.002fm

(4.14)
r(T,20) =rg(1,1) ~0.32 + 0.02fm
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where we use the data of Cameron et al. (74). For the P-wave amplitudes

ap(1,1) = — 0.021 fm
ap(1,3) =0.013 fm (4.15)

For T =0,

a5(0,1) ~ — 0.035fm
ap(0, 1) ~ 0.086 fm (4.16)
ap(0,3)~ —0.019 fm

where we have used the data of Martin (75). A summary of the data is given
by Dover and Walker (82). From their summary we see that there is agreement
among various experiments on the signs and magnitude of a (two significant
figures) and r (one significant figure) for T = 1. For T = 0 there is no agreement
on sign. As regards magnitude, there is agreement that the T =0 scattering
lengths and volumes are small and are considerably smaller than the comparable
T = 1 quantities.

At higher energies a phase-shift analysis for T =1 has been made by Arndt
and Roper (85). Their analysis led to claims of the three resonances listed in
Table 4.5. Their match with the data is shown in Figs. 4.4 and 4.9. Of special
interest are the P, ; amplitudes shown in Fig. 4.10 and the corresponding Argand
diagram Fig. 4.11. We see that the P,; resonance is strongly inelastic, as it
differs sharply from the bounding circle valid for elastic scattering.

Note on the Argand Diagram. We write the S matrix

E—E,—il')2_ ,,E—E,—il/2+i/2

S = e2i6 =
E—E, +il/2 E—E,+il)2

where § is the potential scattering phase shift, E, the resonance energy, I' the
width, and A =T —TI"". When the scattering is elastic, ' =T and A=0. The
transition amplitude is taken to be

751
2i

If § =e??, F =sinde®. Letting

r

e E-E)




vie

W, o GeV)
1. 2.1 23 25
2.40 |15 Ii7 19 T T T
(40x))°
I~
]
N
F-]
E
bld
h-lh-]
o 1 1 1 1 i 1
00 04 08 1.2 1.6 20 24
Tiab (GeV)
Wem(GeV)
15 17 19 2. 23 2.5
1.70 L T T T
1.36 (120 ¢)°
-
@
3 o2
£
Q.68
NE

%‘O 04 06 12 16 20 24

Tip (GeV)

W, n(GeV)
15 17 19 21 23 25
1.60 7 T T T T T
128 {80%))
©
L
a 096 .
E
g% 064 B
0.32 .
o I} L L 1
00 04 08 12 16 20 24
Tmb (GeV)
Wem(GeV)
15 17 19 2.4 23 25
'30 T T T L T T
104 (160 £1)*
%
> ors} .
E
b|C:' 052 E
A-lh-)
0.26 } 4
(d) 5
0 f— i 1 1 i
00 04 18 12 16 20 24

Tiab (GeV)

FIG. 49. Representative differential cross section data together with Arndt and Roper’s pre-
dictions for K* p scattering. [From Arndt and Roper (85).]



4. KAON-NUCLEUS INTERACTION 875

0.30 ———r————

e
o—
—
i .
P
—
—
-
3
=
A 1 ‘14 —

A WP

ReT
0.00; e T e FIG.410. P,; scattering amplitude.
E 1ob (MeV) [From Arndt and Roper (85).]
ImT
0.3 T
o2l
P
0.1+
Z,\a\ . FIG.41L Argand diagram for P,,
-0.3 -0.2 -0.| 0 01 02 03 amplitude. [From Arndt and Roper
ReT (85).]
one finds that
. A
ReJ = —sin(¢p — d)cos(¢p — ) + 4—-Hcos(¢ —29) (4.17a)
., A .
Im 7 =sin’*(¢ — ) — iH sin(¢p — 29) (4.17b)

2

16H?

|.7'|2=sin2(¢—5)—%sin(¢—6)cosé+ 4.17¢)

where
272
H= [(E— E)? +7:|

Consider first the simplest case (6 =0, A =0), so that
ReJ — —singcos ¢ = —1sin2¢

Im 7 =sin? ¢ = 1(1 — cos 2¢)

Therefore,

(Re TP +(Im7T —42 =1

-_ o
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FIG. 4.12. Argand diagram. Re

A plot in which the horizontal axis is Re. 7 and the vertical axis is Im.7 will
be a circle of radius § with the center on the vertical axis at 1 (Fig. 4.12). For
E negatively infinite, ¢ =0, and Re. =0 and Im 7 = 0. As E increases, one
travels counterclockwise, reaching the top of the circle at the resonance energy,
E=E,, where ¢ = /2, so that Re.7 =0 and Im 7 = 1.

The second case is the most common, § =0, A finite;

A
Re7 = —sin¢cos ¢ +—cos
¢pcos ¢ il ¢

A
ImZ =sin®¢ — — sin
¢ e ¢

A A?
g— 2=S' 2 ™ S
17| in® ¢ 2Hsm¢> Tz

At resonance ¢ = 1/2,

2 2
17]z=(1~ A> =(1_Aﬁ) (4.18)
4H or

so that the locus of Re 7, Im 7, will be in the interior of the circle. Moreover,
at resonance

Re7 =0 4.19)
From Fig. 4.11 one sees that the amplitude for the P,; partial wave does

approach the Im 4 axis. The extrapolated value of Im 7 at Re J =0 is about
0.25 or A/T = 1. The partial wave reaction cross section is

3
a,=;2(l ~(S1HRI+1)
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Inserting the expression for |S|, one finds that

1_|s|2=M
(E-E)*+TI?%4

AtE=E,

AT+ A (A
s T8 =2+()

rl
relating A/T to the inelasticity seen in (4.18).

C. The KN Reaction?
Because of the existence of the A® at 1405MeV and the T at 1385 MeV, this

reaction is much more complex than the KN reaction. Note that the mass of
the Kp system is 1431.9 MeV, so that a conversion of the Kp system to nX or
a n°A° is energetically possible. Therefore, in addition to elastic scattering,

K +p->K +p

we also have the open channels

K~ +p-n°A° + 180 MeV, T=1
K- +ponZ+100MeV, T=1,0

as well as the charge exchange scattering channel,
K +p->K°+n
Isospin invariance connects the cross sections for these reactions:
oK n>n"A)=20(K p-nA) (4.20)
and

6K no>n" 2% =0(K p->n*L )+ oK pon Z*)—20(K p—n°Z9
@21,

The analysis of this experimental data was pioneered by Dalitz and Tuan (60),
who made use of the ¥ matrix (see Chapter III, p. 169, and Appendix A). The

!Note that K can refer to either K~ or K.
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X matrix is related to the 4 and S matrices are follows:

H =T +inh NE,—E)T =T +inT E,— E)K (4.21a)
S=1-2mis(E;— E;)T (4.21b)
g L= ind(E — EQX

= ; 4.21¢)
I +ind(E;— E))X

From (4.21¢) we note that the unitarity of the S matrix implies that X is
Hermitian. Second, because of time reversal invariance, J¢ is real.

Equation (4.21a} is simplified greatly if it is restricted to a given partial wave.
Then A" and 4 become matrices involving the various channels. For T =0,

A= (K”N "”‘) T=0 4.22)
Kys Ksgs
where
kyy = {NK|X'|NK)>
and

kyg = (Zn| A |NKD (4.23)

It is necessary to insert the diagonal matrix elements of 4(E; — E ) for the two
channels. Those matrix elements will depend on the normalization convention
for the states involves. For I=0, a spatial wave, the diagonal matrix for

3(E;— E,) is taken to be!
1 0
1 <"~ (4.24)
n\ 0 kg

Equation (4.21a) [and similarly for (4.21b) and (4.21¢)] becomes

i

)

H =T +ink pT
or

T ="t inp

More generally for [> 0, k; on the right-hand side of (4.23) is replaced by k'

The minus sign in (4.24) is chosen so as to come into agreement with the Dalitz—Tuan choice for
X and 7, which are the negatives of the % and J used in this volume.
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by Arndt, Roper, and Steinberg (78). For the S partial wave the cross section is

o~ ;ﬁli 4.25)
For the T =1 case, the ¥ matrix involves three channels, so that

KNy  Knz Kna

X =| Kgy  Kgz Ksa (4.26)
KAN Kz Kaa

and
ky 0 O

p= -—% 0 kg O 4.27)

0 0 k,

Dalitz, McGinley, Belyca, and Anthony (82) parameterize ¢ ~! by an effective
range expansion [Ross and Shaw (60, 61)]:

A7 =My+ Rk (4.28)

where k is the center-of-mass momentum in the K~ p channel. The results
obtained by Dalitz, McGinley, Belyca, and Anthony (82) using the column
labeled new data in their Table 1 are in units of fermis:
T=0: kyy=—1863, Kyg=—0.955 x;=—0.382
T=1: kyy=0.26, Kyyg= —0.99, K;z=081 (4.29)
Kya = 0.29, Ky = 0.44, Kap = —0.55

From the results for ), one can obtain 4 and in the low-energy
approximation the scattering length [see (4.13)]

kcotd,—
a+ib

The values of a for isospin 1, a,, and for isospin 0, a4, and similarly for b are
[Dalitz, McGinley, Belyca, and Anthony (82)]

ao=—1.57fm a, =0.1075fm

(4.30)
bo = 0.70 fm b, =0.57 fm

Note that in contrast to the KN scattering length, the scattering length for the
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KN is complex because absorption into other channels (n and An) is possible
even at threshold.

Note. For systems with bound states such as the KN, the sign of the scattering
length does not necessarily indicate the attractive or repulsive nature of the
interaction. For a potential model, the dependence of the scattering length on
the strength of the potential Vj is illustrated in Fig. 4.13. From this figure we
see that a positive S-wave scattering length does correspond to attraction.
However, a negative scattering length can correspond to either an attractive or
repulsive potential. For a weak interaction as is the case for the KN system, a
negative a, does correspond to a repulsion. For the KN system, since there is
a T =0(1405) bound state, a, must take on a value in the attractive half-plane.

The T =1 scattering length is relatively small and positive. The interaction
is therefore relatively weakly attractive. For both the T=0 and T = 1 cases the
absorption is strong.

The A -matrix method can be carried out for each partial wave. This analysis
was used by Arndt and Roper (85) in their analysis of K™ reactions. Gopal
et al. (77) employ a multichannel analysis. The total and elastic scattering K ~p
cross section are shown in Figs. 4.14 and 4.15. The charge and strangeness
exchange cross sections are given in Figs. 4.16 to 4.18. The analysis of Gopal
et al. (77) is used in constructing some of these cross sections. Included in these
figure are the cross sections averaged over a Fermi-gas nucleon distribution.
These are defined as follows. Let p(k) be the Fermi-gas distribution normalized
by

2 Jw dick2p(k) = 1

0
Let

do
429 (p k.0
(dQL (P )o
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FIG. 4.16. Total cross sections for the reactions K~ p—n°Z% n°A and z*Z~. [From
Dover and Walker (82).]

be the differential cross section for the scattering into the incident direction.
This is a function of the kaon momentum p,, the nucleon momentum k, and
x the cosine of the angle between p, and k. Then

do L 1 do
<(d§2L)0‘>av B JO dkk p(k) J— 1 dx(M(pk’ k, X))()( (431]

and

<fL(O)>av=J dkkzﬂ(k)-[ dx f1(0) (4.32)

0 -1

where f; is the reaction amplitude. Averaging smooths the strong
fluctuations with energy of the free-space cross section and amplitude. The later
is a consequence of the resonances in the KN system.
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Dover and Walker (82) use

_ Po
P = 1 e roram

(4.33)
ko=100MeV/c  A(k)=50MeV/c

as suggested by Allardyce et al. (73).

D. K*-Nucleus Scattering?

The K*-nucleus scattering is of considerable interest because of the relative
weak KN interaction. As a consequence, the K* can penetrate much farther
into the nucleus than, for example, a nucleon. We have earlier commented on

*Coker, Lumpe, and Ray (85); Siegel, Kaufmann, and Gibbs (84, 85).
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the fact that because of the strong nucleon—nucleon interaction, high-energy
nucleon—nucleus scattering reveals mostly surface properties of the density
distribution of nucleons in the nucleus. K * —nuclear scattering could be exploited
to determine the properties of these distribution in the nuclear interior.
Combined with the proton distributions obtained from elastic electron—nucleus
scattering, one would have a complete picture of both nucleon distributions.

There are additional simplifications. Because of the weak KN interaction,
the first order, pt, in the multiple scattering series should be sufficient. Second,
because the K has a zero spin, the analysis of experiment should prove to be
more easily performed.

Elastic scattering K * —nucleus scattering have been performed with the '2C
and *°Ca nuclei [Marlow, Barnes, et al. (82)]. The momentum of the K* beam
is 800 MeV/c. The results are shown in Fig. 4.19. The solid lines are first-order
optical model pt calculations [Rosenthal and Tabakin (80); Marlow, Barnes,
et al. (82)] based on the KN phase shifts given by Martin (75). It is, of course,
necessary to transform these from the kaon—nucleon reference frame to the
K-nucleus one. The agreement in the 4°Ca case is good. In the !2C case the
theoretical curve lies below the experimental one. The total cross sections
reflects this difference. (see Fig. 4.20) The deviation from theory may be because
of experimental artifacts (such as normalization of the cross section, errors in
the measurement of angles, energy spread in the incident beam, etc.). There is
after all just one experiment. These are analyzed by Siegel, Kaufmann, and
Gibbs (84) with the conclusion that agreement with theory is possible. In
addition, there may be errors in the KN phase shifts used, although the
agreement with the K* #°Ca results indicate these are not major. By comparing
the K* '2Ca results with the K* deuterium scattering, the effects of such errors
are reduced. The suggestion has been made by Siegel, Kaufmann, and Gibbs
(85) that within the nucleus there is an increase of the S§,; KN phase shift from
that given by Martin. Two explanations have been offered. Siegel, Kaufmann,
and Gibbs (85) suggest that the effect arises from an increase of nucleon size
because of an increase in the confinement radius of the nucleon inside the
nucleus. This is suggested by the EMC effect [Aubert et al. (83); Bodek et al.
(83); see Close (88a) for a review of this effect.] Brown, Dover, Siegel, and Weise
(88) ascribe this increase to the change in the mass of the p and w which mediate
the K* reaction in the nuclear medium. This leads to an optical potential that
depends nonlinearly on the nucleon density giving rise to an increased repulsion
(over the first-order pt) and a decreased effective nuclear radius. The agreement
with experiment is shown in Fig. 4.21. The parameter A describes the change
in mass of the p and w in the nuclear medium,

myp)_,
mf,(O) Po

In this equation V can be either p or w, and p, is the equilibrium nucleon
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density. According to these authors there is little effect of this density dependence
on the K* + #°Ca elastic cross section.

Assuming that the pt first-order term suffices for the heavier nuclei, one can
ask for the sensitivity of the K* nucleus scattering to the nucleon density
distribution [Coker, Lumpe, and Ray (85)]. These authors use the Martin phase
shifts. This is illustrated by Figs. 4.22 and 4.23 for elastic scattering by Pb. The
solid lines give the percentage change from a standard nucleon distribution
induced by a Gaussian addition to the exterior surface or tail region of the
neutron density. The dotted—dashed line gives the cross section for proton elastic
scattering. We see that as predicted the K* projectile provides more information
since the proton does not successfully penetrate into the nuclear interior.

Similar results are obtained for inelastic scattering using the DWIA.
According to Dover and Walker (82), the dominant amplitude for a closed shell
J =0, T =0 nucleus involves no spin, AS =0, or isospin AT =0, change.
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Coker, Lumpe, and Ray (85) use the DWIA formalism to compute the
excitation of the collective 3~ level in Pb using the transition potential

B [ d N e z]
Upans=————| R— U, + (Vg + iW)e~Ir~(roliacl 4.34
trans T de (Vg +iW)e ( )

where B is the deformation parameter, U, is given by pt, and the last term is
an interior perturbation. The results are shown in Fig. 4.24, where again the
solid line are K* induced and the dotted—dashed ones the proton induced.
Again we see that the K™ inelastic reaction is much more sensitive than the
proton-induced reaction. More experiments are needed!

E. K™ -Nuclear Scattering

As in the case of K™ scattering, the pt first-order optical potential yields cross
sections in substantial agreement with experiment when the kaon wavelength is
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sufficiently small. This is seen in Fig. 4.25, where p, =800 MeV/c and A = 1/4 fm.
The K~ N phase shifts used for t are those of Gopal et al. (77). Evidence for an
anomaly in the K~ 4 !2C scattering is not as strong as in the analogous
K* +'2C case.

At low energies, the tp optical potential fails badly. If one were to use the
T = =0 K™ N scattering length [Eq. (4.30)], the tp potential would be repulsive,
whereas we know from the existence of bound KN states listed in Table 4.3
that the K~ + N interaction, and therefore the K~ + nucleus interaction, is
attractive. A much more sophisticated approach similar to that of Mahaux and
his collaborators, who use a Bruckner—Hartree—Fock approach (see Chapter
IV), is required.

Theoretical studies of the inelastic K~ scattering by nuclei are described by
Dover and Walker (82). The results are similar to those obtained for K * inelastic
scattering. Again the cross section is dominated by the AS = AT = 0 transition
interaction. Hence one expects that the normal-parity, nonisospin flip states
will be preferentially excited. Good agreement is obtained for the excitations
of the 4.4- and 9.6-MeV levels on 2C using nuclear density as determined by
electron scattering. The agreement with a collective model [see (4.83)] is poor
(see Fig. 4.26).

Dover and Walker (82) point to usefulness of the (K ~, K°) reaction, since in
that case we have AT = 1. [Compare with (p, n) reaction] This reaction converts
a proton into a neutron, For T =0 nuclei only T = 1 states will be excited. For
a T #0 nucleus, the T, states would be easily identified.
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F. The Strangeness Exchange Reaction and Hypernuclei

By using the (K ~,z7) or (¥, K *) reaction a nucleon in the nucleus is converted
into a hyperon. Under appropriate conditions the hyperon is bound to the
residual nucleus to form a hypernucleus. A (K, K *) reaction could lead to the
formation of a doubly strange (S = — 2) hypernuclei. The A hypernuclei which
have been observed are shown in Fig. 4.27. The existence of £ hypernuclei
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[Bertini et al. (84, 85); Walcher (88)] is controversial. These are very interesting
systems since the A has approximately the same mass (A mass = 1115.6 MeV)
as the nucleon, has the same spin, but has a zero isospin. The simplest assumption
is that the Pauli exclusion principle does not limit the A, so that it can occupy
orbits in the host nucleus which are forbidden to a nucleon.* As a consequence,
new low-lying states that would not be present in the target nucleus will make
their appearance.

Lambda hypernuclei were first observed in nuclear emulsions [Davis and
Sacton (67)]. They have also been observed in the capture of K~ particles in
Coulomb orbits about the carbon nucleus [C. Vandervelde-Wiquet, J. Sacton
and J. H. Wickens (77)], forming a kaonic atom. Experimental opportunities
were expanded substantially when it was shown that a small momentum transfer
(K™, n ") reaction leading to the formation of a hypernucleus was possible. A
review of the experiments using this reaction has been made by Povh (76, 78).
Most recently, experiments at BNL have employed the (z*,K*) reaction,
permitting the excitation of states in the large 4 hypernucleus, not as accessible
with the (K™, n7) reaction.

The underlying physical processes using kaon beams of interest in the
production of bypernuclei are

K +n-A+n"
PAEY

K +p-X*t+n~ (4.35)
X +=n*

where we have limited the reactions to ones in which the final pion is charged.
Another possible reaction is radiative capture:

K +p-oA+y (4.36)
Using n* beams, the pertinent reactions are

at+n->A+K*

-X0+ K"

-t +K° 4.37)
tt+p->Z*+K*

*This is not completely true since the u and d quarks in the A and the u and d quarks in the
nucleon do satisfy the Pauli principle. One of the investigations that is of fundamental importance
will be to determine the effect of the Pauli principle satisfied by the quarks on the spectra of
hypernuclei. In particular, this would depend on the degree of deconfinement of the quark.
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The small momentum strangeness exchange reaction n(K ~,7 " )A is possible
because the mass of the K~ plus nucleon is about 178 MeV greater than that
of the mass of the n + A. Consider the case when a K~ strikes a neutron at
rest. Then there is a “magic momentum” for which th A is at rest and #~ moves
in the forward (0°) direction. The equation determining this momentum is

m, + /mi + p*=my +./m? +p*

or

2 2 2
— + —m,
Ey=/mi+p?="k""a ¥ (ma—m) 438)

2(mp —m,)

For values of the kaon momentum that differ from the value obtained from
(4.38), about 531 MeV/c, the momentum transfer to the A when the pion is
observed at 0° can be small. This is illustrated in Fig. 4.28, where we see that
the momentum transfer, ¢(0), is less than the Fermi momentum over the entire
range in the momentum p, of the incident kaon. Much the same can be said
for the K~ + n—X° + n~ reaction, for which the magic momentum is about
284 MeV/c:

m,+ /mg+p* =my+ /m? +n*

or

2 2 2
—m-+(mg—m
Ex=/mi+p*=-% = (mx = m,)

2(mg —m,)

Thus when the K~ with the momenta shown in Fig. 4.28 strikes a nucleus and
one studies the case where the pion goes off in the forward direction, it is very
likely that the A will “stick” to the residual nucleus so that a hypernucleus is
formed. In the simplest example of this reaction, a neutron in the nucleus is
replaced by the A and the wave function of the system is not changed. For this

2001 K +n—7r"+3° |
150

100

q(0°) (MeV/c)

S0

0.2 0.4 O‘.6 08 1.0
P~ (GeV/e)

FIG. 4.28. Kinematics of the (K™, ) reaction.
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reason the reaction is referred to as a “substitutional” reaction. The angular
momentum change is Al = 0. When the emitted 7~ is observed at angles greater
than zero, Al=1 and Al=2 transitions become possible. Examples of the
production of hypernuclei states by the (K, n~) are shown in Fig. 4.29. The
sharp peaks in the pion spectrum correspond to states in the hypernucleus.
The (K~,n7) reaction is not as useful for excitation of the low-lying A
hypernuclear states for the heavier nuclei principally because the single-particle
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FIG. 4.29. (@) Production of hypernuclei '*C, '®O by the K™,z reaction. [From
Briickner, Granz, et al. (76).]; (b) Production of hypernuclei '2C, >7Al, *\V, *°7Bi. [From
Bertini, Bing, et al. (81).]
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neutron orbits have a large angular momentum, therefore requiring a large
momentum change to generate a low-angular-momentum A orbit. This
momentum change could, in principle, be obtained by examining the pion
spectrum at large angles. But then the cross section is very much reduced.

The (K, n7) has a number of innate difficulties. First, the incident K~ beam
is accompanied by many more negative pions. Second, K~ decays and this
compresses all the experimental dimensions. Moreover, the K~ decays into
negative pions. The net resolution for the BNL experiments is a few MeV.
Interpretation of the results is not easy since the K~ and n~ are strongly
interacting. However, as we shall see, this difficulty is overcome by a careful
DWA calculation.

Some of these restrictions are lifted in the (n*, K*) reaction. The momentum
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FIG. 4.30. Theoretical comparison of the production of ;Be hypernucleus using (K, 7~)

and (n*, K*) reactions. [From Yamada, Tkeda, et al. (88).]
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transfer is large. For py = 1050 MeV/c, q > 250 MeV/c. The cross sections for
the formation of a hypernucleus are, of course, reduced, but this is compensated
by the large pion intensity available in the incident beam. Interpretation is
somewhat simpler since the K *—nucleon interaction is relatively weak. Finally,
the fact that the K™ decays does not affect the experimental background. In
fact, the decay is used to identify the K*. The two reactions are complementary,
as can be seen from Fig. 4.30, so that both experiments are needed to obtain
a complete spectrum.

An example of the production of A hypernuclear states by the (n*,K*)
reaction is shown in Fig. 4.31. In both examples, Figs. 4.29 and 4.31, the peaks
are correlated with states in the hypernucleus. These are doorway states, which
would fragment if experiments with sufficient resolution could be performed.

To determine the indicated configurations requires a calculation since there
is much overlap in the experimental cross section. The DWA is used. That
approximation has been discussed in Chapter V. Since no new principles are
involved, we shall not discuss the details of the calculation in this chapter. The
reader is referred to Auerbach, Baltz, etal. (83) and Hiifner, Lee, and
Weidenmiiller (74a, 74b, 79) for the detailed discussion.

The input into the DWA calculation for the (K ~, n7) reaction requires (1) a
wave function for the K~ nucleus system, (2) a wave function for the 7~ nucleus
system, (3) a wave function for the target neutron, (4) the A-host nucleus wave
function, and (5) the transition matrix element converting K~ + neutron into
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FIG. 4.31. Production of A hypernuclear states in °.V using the (z*, K*) reaction.
[From Chrien (88).]
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TABLE 4.6 Potentials for 7=, K~ Elastic Scattering at px = 800 MeV/c

rms
Reaction Vo(MeV) Wy(MeV) ro(fm) ay(fm) radius (fm)
K* -12C 244 41.4 1.075 0.375 2.36
n~ +12C 09 50.9 0.926 0.44 2.32
K~ +4°Ca 23.57 18.69 1.182 0.49 3.63

n~ + A. The first two of these is obtained by first adjusting the parameters in
a simple Woods—Saxon potential so as to give the K~ —nucleus and 7~ —nucleus
elastic scattering. (The last should be the n ~—hypernucleus scattering.) The wave
function is obtained from a solution of the Klein-Gordon equation assuming
that potential to be the fourth component of a four-vector potential, neglecting
the square of the potential in the Klein—-Gordon equation. (See Chapter II for
a discussion.) The resulting parameters are given in Table 4.6. The Woods—
Saxon form is

Ur)= — (Vo +iWo)/f(r)
r—rOA”3)

fn=1+ exp(
a9

These potentials were used throughout the p-shell. The neutron and A wave
functions were obtained by again using the Woods—Saxon form but adjusting
so as to obtain the correct binding energy for the orbit in question. The para-
meters, 1 and a, were taken to be 1.15fm and 0.63, respectively. Parenthetically,
we note that according to Auerbach, Baltz, et al. (83), the eikonal approximation
for these wave functions does not suffice quantitatively, especially for Al=0
reactions.

The transition matrix element for the reaction K~ + n—n~ + Aistakento be

<l'", l'A|u|rk’ rn> = VT(S(RNA - RKn)(s(rnA - rKn)é(rKn) (439)

where V; depends on isospin. The vectors R,, and Ry, give the positions of
the center of mass of the nA and Kn, respectively. The first é function in (4.39)
assures conservation of momentum in the Kn— nA reaction. The second term
assumes that the interaction is local, while the last é function is the zero-range
approximation often used in the DWA. The strength V7 is given by the ¢ matrix
for KN — A at 0°. This must be transformed to the laboratory and averaged
over a Fermi gas [see (4.31) and (4.32)]. The wave functions for the p shell
core and the p-shell initial state were taken from Cohen and Kurath (65) using
the POT interaction [see Fig. IX.4.1 in deShalit and Feshbach (74)]. The basis
wave functions used to describe the hypernucleus is simply the core wave
function ¥, times the A orbital ¥, combined to yield the total angular
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momentum J and isospin T. The wave function ¥, can refer to the ground state
or excited states of the core. This representation for the hypernucleus wave
function is called the weak coupling approximation. To obtain agreement with
experiment it is necessary to introduce some residual A—-N interaction [see
Millener, Gal, Dover, and Dalitz (85)].

Qualitatively [and this is shown in the detailed analysis of Auerbach, Baltz,
et al. (83)], one expects that the cross section will be proportional to the cross
section for the pickup process [e.g., (p,d)], in which the picked-up particle is
the neutron that is to be replaced by a A to produce a neutron hole. This is
very useful since in some cases this pickup cross section has been measured.

We illustrate with the calculations for '*C(K ~,n7)'2C. The energy-level
diagram for the core nucleus, '2C, and the resultant spectrum for ';C are
indicated by the dashed line shown in Fig. 4.32. If we combine the 0* ground
state of '2C with an I =1A orbital, we obtain in the weak coupling basis a 3,
3 hypernuclear state that can be split by a spin-orbit coupling. Similarly, the 2*
state of 12C when combined with the A yields the upper three levels, which can
be further split into six levels. The brackets [441], [54] give the number of

N 12CUE ewp w1
1/2*, 32 32
— 441] 1 —C
I' 1/2
/’ 5/2
5/2%, 712
,r ——— 54 3 —
2t '/ 712
[44] TH
\
\ 32,52 312
NY— [54) 2 <
5/2
4.44 | MeV
1/2
0t y2*, 32*
[44] - N (-7 R
32

FIG. 4.32. '2C(O", 2*)® p, spectrum. States that dominate in the 10- and 16-MeV
peaks are marked with an asterisk. & = J, 4+ [,, where J_is the core spin and I, is the A
angular momentum. [From Auerbach, Baltz, et al. (83).]
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particles in each orbit. In **C we have four neutrons and four protons in p,,
orbits. Thus the spatial symmetry [54] is forbidden for nucleons by the Pauli
principle. The substitutional reaction can thus lead only to the [441] states.
The DWA results for the various possible transitions p, — s,, Al = 0,2, p, — p,,
Al=1, and so on, are shown in Fig. 4.33 and in Table 4.7. As is clear from
Fig. 4.33, it should be relatively easy to pick out the Al=0 p,— p, transition.
However, before the p,—s,Al=1 transition can be extracted, it is necessary
to unfold the Al = 0 cross section. The Al = 2 transition requires unfolding both
the Al =0 and Al =1 cross sections before it will be visible quantitatively.
The experimental results for '*C(K~,n7)'3C are compared to theory in
Fig. 4.34. Theory and experiment agree quite well. As expected, the Al=0
and Al =1 transitions dominate at small angles (3,,, =4°). At high excitation
energies the Al =1 transitions to (sd) A orbitals become visible. The Al =2
transition is appreciable only at §,,, = 15°. The dominant transition is the Al =1,
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FIG. 4.33. Laboratory cross section for the (K ~,n~) reaction on a '3C target. In (a)
P,—Pa and p, > s,. In (b) s, — 54 and p, > s, and d,. The K~ momentum is 800 MeV/c.
[From Auerbach, Baltz, et al. (83).]

TABLE 4.7 Differential Cross Sections in pub/st,
Px=530MeV/c, PC(K~, z7)'iC

Ocrn 4° 10° 15°
DPn—DPa Al=0 708 375 109
Pn—Da Al=2 9.1 12.6 328

Pn— Sa Al=1 19.8 788 113
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FIG. 4.35. A single-particle states. The solid lines are theoretical. [From Millener, Dover
and Gal (88).]

pn.— s,. Coupling the s, to the '*C core (ground and excited states) yields the
states populating the peaks at 0, 5, and 12 to 16 MeV. Coupling the p, to the
12C core yields the starred states shown in Fig. 4.32. These states will occur at
excitation energies about 10 MeV (the energy difference between s, and p,)
greater than the values for s, hypernuclei.

A similar analysis has been performed for other target nuclei by Auerbach,
Baltz, et al. (83) and for the states seen in the (z*, K*) reaction (Fig. 4.31) by
Millener, Dover, and Gal (80). The conclusions that can be drawn include: (1)
the AN spin-orbit potential is small; and (2) the effective mean field potential
is nonlocal and density dependent. The single-particle states that have been
determined are shown in Fig. 4.35. Because the A interacts relatively weakly
with the host nucleus, one obtains a very clearly observed set of single-particle
states. They are doorway states, which would fragment if the energy resolution
were to be improved. These A shell-model states provide a direct justification
of the mean-field concept.

G. I Hypernucleit

Candidates for £ hypernuclear states have been seen for A =4 [Hayano et al.
(89)]1, A =6 [Piekarz et al. (82); Kneis (83)], A = 7 [Bertini (79)], A =9 [Bertini

*Millener, Dover, and Gal (89).
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(80); Mayer (80)], and A4 =12 [Yamazaki et al. (85); Bertini et al. (84); Peng
(82)]. On the other hand, contradictory experiments have seen no evidence for
narrow X peaks in A =7 [Hungerford (86); Tang et al. (88)], A =12 [Iwasaki
(87)], and A = 16 [Piekarz et al. (82)].

The existence of long-lived £ hypernuclei with widths of the order of 5 to
10 MeV was not expected because of the strong ZN-AN conversion. Dover
and Gal (80), using the optical model with ImV = — {vo),, p(r)/2, obtain the
following values for the width of single-particle X states:

BC: Ty,~23MeV, TI'j,~13MeV
4iCa: I';,x28MeV, T,,x~23MeV, I,,~18MeV

The width decreases with increasing orbital angular momentum because of the
angular momentum barrier, which reduces the overlap of the X with the nucleons
of the core. Several mechanisms have been proposed. Stepien-Rudzka and
Wycech (81), Johnstone and Thomas (83), and Dabrowski and Rosynek (81,
82, 85, 86) have studied the effects of Pauli blocking and nuclear binding.
Auerbach (87) has considered many-body effects Gal and Dover (82) point out
that the transition N — AN is dominated at low energies by T=1, 3S, - 3D,
transitions. If one neglects the 'S, contribution, the transition operator for the
¥ + nucleus — A + nucleus transition is

T = Zu(fi —Try) (% + %Gi'cz)(% - %tz'fi)

L

where ty is the isospin operator for the £ where tZ=2. This does lead to a
reduction in width for some levels for light nuclei.

Finally, we mention the mechanism proposed by Dover and Feshbach (87, 90),
who suggest that SU(3) symmetry breaking of the baryon—baryon interaction
occurs only in the diagonal components. For the nondiagonal components
responsible for the £ — A transition, SU(3) symmetry is conserved. In analogy
with the SU(2) isobar analog states, where the Coulomb symmetry-breaking
interaction has small non diagonal components and relatively large diagonal
matrix elements, these authors propose that the X hypernuclear states are SU(3)
analog states.

There are several other suggestions, which are discussed by Millener, Dover,
and Gal (89) in their review article, to which the reader is referred. Needless to
say, more experiments are needed!



	Pion_and_Kaon_interections_with_nuclei_0
	Pion_and_Kaon_interections_with_nuclei_1
	Pion_and_Kaon_interections_with_nuclei_2
	Pion_and_Kaon_interections_with_nuclei_3



