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PREFACE TO THE SECOND EDITION

SinoE publication of the first edition, a number of books have
appeared that treat various aspects of the quantum theory of
angular momentum. One, by Yutsis, Levinson, and Vanagas
(Israel Programme for Scientific Translations, Jerusalem, 1962),
develops the graphical methods introduced by Levinson. We
have added a new chapter which gives a brief introduction to
graphical techniques. We might also mention Quantum Theory
of angular momentum, edited by C. L. Biedenharn and H. Van
Dam (Academic Press, New York, 1965) which reprints a
number of important papers in the field and includes an
extensive bibliography of basic theory and applications up to
1965. In particular, detailed applications to the shell theory of
nuclear structure have been given by A. de Shalit and I. Talmi,
Nuclear shell theory (Academic Press, New York, 1963), while
B. R. Judd has described Operator techniques in atomic spectro-
scopy (McGraw-Hill, New York, 1963). Additional tables of
numerical values for the various coefficients have now appeared;
we might mention the Tables of Racah coefficients by A. F.
Nikiforov, V. B. Uvarov, and Yu. L. Levitan (Macmillan, New
York, 1965), and A4 table of Clebsch-Gordan coefficients by B. E.
Chi (Report prepared by Rensselaer Polytechnic Institute,
Troy, New York, 1962).

Errors and misprints found in the first edition have been
corrected. There are only two changes of notation: The Fano
X-coefficient has been replaced by the Wigner 9-j symbol and
the definition of certain quantities in section 6.1.2 has been
changed to correct and clarify equation (6.21). The Wigner 6-j
symbol has come to be used more frequently and formulae in-
volving this function have been collected in Appendixes II and
VI. A few other useful formulae have been added to the appen-
dixes.

We would like to thank many people who have brought
various errors and misprints to our attention. We are especially
indebted to Dr. K. T. R. Davies, Dr, H. J. Rose, Dr. O. Hiusser,
and Dr. J. Lopes for checking the text and many of the formulae.

D.M.B.
March 1967 G.R.S.




PREFACE TO THE FIRST EDITION

Durixe recent years important technical advances have been
made in the quantum theory of angular momentum and its
application to physical problems, both in nuclear and atomic
physics. Our intention is to present these new techniques and
to explain their physical significance without undue reference
to their highly formal group-theoretic origins. Since this book
was started other texts have been published by Rose [54],
Edmonds [22] and Messiah [46]. Some overlap with their work
isinevitable, but we feel our approach is sufficiently different to
make a useful contribution. We have, in particular, attempted
to emphasize the physical applications and to provide a source
of formulae for workers in this field. Much of the underlying
formal theory was developed by Wigner as early as 1937 [77],
and is discussed in the book by Fano and Racah [31] and the
well-known text of Wigner recently translated into English,
[78].

References made to the literature on the physieal applica-
tions of this theory are necessarily selected somewhat arbi-
trarily. We can hope to do no more than provide a starting
point for wider reading. Where possible reference has been
made to review articles rather than individual papers. We
beg the indulgence of any authors whose work does not seem
to be given proper recognition.

Since there is a bewildering variety of notations and phase
conventions it may be a help to the reader to have an indica-
tion of some of those adopted in this book. Others can be
found in the relevant sections.

We use J and L to denote angular momentum vectors.
Generally L refers to orbital angular momentum, but there is
no fixed rule. In order to simplify formulae angular momentum
is measured for the most part in natural units corresponding
to & = 1. For spherical harmonics Y,, we adopt the usual
phase convention of Condon and Shortley [17] and make
frequent use of the ‘renormalized’ spherical harmonics



viii PREFACE TO THE FIRST EDITION

Cre = [(2k + 1)/47]"1Y,, which help avoid unnecessary fac-
tors of 47 in many formulae. There are many notations for
Clebsch—Gordan coefficients (¢f. Appendix I) but fortunately
most definitions agree. We often use the more symmetric
Wigner 3-j symbol. There are two main definitions for
rotation matrices and ours is explained in sections 1.4 and
2.4 and in Appendix V.

D.M.B.
November 1961 G.R.S.
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CHAPTER I

SYMMETRY IN PHYSICAL LAWS

1.1. Introduction

A THEORETICAL investigation of a physical problem may come
upon difficulties of two kinds. The exact physical laws govern-
ing the behaviour of a system may not be known, making it
impossible to arrive at a complete theoretical description of the
gystem. Problems of fundamental particle structure and
reactions present this first difficulty in an acute form. More
often the situation is analogous to that encountered in prob-
lems of atomic and molecular structure, where the inter-
actions (Coulomb forces) are well-known, but where the struc-
ture in a particular problem may be so complicated that no
exact solution can be found.

Fortunately the basic interactions in most physical problems
have symmetry properties which affect the structure of a
composite system in a way independent of the details of the
interactions. Symmetries of physical laws may lead to con-
servation laws, and the laws of conservation of energy,
momentum, angular momentum and isotopic spin arise in this
way. Again, in the theory of molecular structure the sym-
metry of the configuration of nuclei in a molecule produces a
symmetry in the electronic structure. An understanding of
the effects of symmetry often enables one to distinguish
between properties of a physical system which are conse-
quences of conservation laws, and properties depending upon
details of structure and interaction. For example, the angular
distribution between two radiations emitted successively
from a nucleus depends partly on symmetry properties, i.e.
on the angular momenta of the states involved and partly on
the detailed structure of the states. An understanding of the
dependence on symmetry of the interactions enables one to
obtain information about the detailed structure from experi-
ments. A more familiar classical example is given by the



)

2 SYMMETRY IN PHYSICAL LAWS L§11

motion of a particle in a central field. The symmetry of the
interaction leads to a plane orbit and conservation of angular
momentum while the exact shape of the orbit depends upon
the detailed form of the central interaction.

1.2. The Symmetry of Physical Laws

We develop the ideas suggested in the introduction by defining
a symmetry transformation of a dynamical system as a trans-
formation which applied to any dynamically possible state of
motion carries it into another possible state of motion. As an
example consider the solution to a classical problem involving
two particles expressed by giving the positions of the particles
as functions of the time. If the two particles are identical in
their intrinsic properties and interactions then interchang-
ing the trajectories of the particles yields a second solution
to the problem. In the sense of the above definition the
operation of interchanging two particles is a symmetry trans-
formation.

In quantum mechanics a symmetry transformation has a
very simple representation. A state of motion of a quantum
system is determined by giving the wave function y(f) as a
function of time. This wave function represents a possible
state of motion if the Schrédinger equation is satisfied;

. By

if 3 = Hy.
A symmetry transformation is represented by a linear operator
U acting on the wave function with the property that Usy(t)
satisfies the Schrodinger equation whenever it is satisfied by
y(#), i.e. if y(f) represents a possible state of motion then so
does Upy(t). Symmetry transformations preserve the orthog-
onality of wave functions and, in general, can be represented
by unitary operators}, so that U-! = U+. If the symmetry

{ A unitary operator satisfies the condition U+U = UU+ = 1, where U+
is the adjoint of the operator, i.e. the adjoint operator U+ is also the inverse to
U. A unitary transformation preserves the orthogonality and normalization of

wave-functions. Some symmetry transformations are represented by anti-
unitary operators, cf. section 1.7.

1,§1.3 SYMMETRY IN PHYSICAL LAWS 3
transformation U is time independent then

hence ik E‘f = U-HUyp

and UH = HU.

Thus the operator representing a time independent symmetry
transformation commutes with the Hamiltonian of the system.

1.3. The Symmetry Group of a Dynamical System

An abstract group is characterised by the following prop-
erties. It is a set of elements @, b ... with a multiplication
law defined satisfying the conditions that

(1) itis associative a(be) = (ab)e,

(2) thereis a unit element 1 such that la = al =a,

(3) every element a has an inverse a~! with the property
that aa—! = a—'a = 1, and a1 is itself an element of the
group.

The group multiplication law is often non-commutative so
that ab # ba. A sub-group of a given group is a sub-set of the
group elements which itself satisfies the conditions of a group,
in particular that the product of any two elements of the sub-
group must lie within the sub-group, and the inverse of an
element of the sub-group must lie in the sub-group.

The set of all non-singular square matrices of order » with
the matrix multiplication law provides a particular example of
a group. Conditions (1) to (3) are satisfied since matrix
multiplication is associative, there is a unit matrix of order n,
and every non-singular square matrix has an inverse. Also
the product of two non-singular matrices is non-singulal:.
This group is called the full linear group of order n. The uni-
tary group of order = is the set of all X n matrices 4 jmth
the property that A-! = A+ where A+ is the adjoint matrix to
A. It forms a sub-group of the full linear group of order n.
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Returning to symmetry transformations it is clear that the
successive application of two symmetry transformations pro-
duces a third symmetry transformation, and it can be shown
that the set of all symmetry transformations with this law
of combination forms a group, the symmetry group of the
system. For a quantum system the symmetry transformations
are represented by unitary operators, and the successive
application of two symmetry transformations § and 7 is
represented by the operator product 7'S. From section 1.2 we
see the set of symmetry transformations of a quantum system
is contained in the set of all unitary operators which commute
with the Hamiltonian operator of the system.

1.4. Geometrical Symmetries

An important sub-group of symmetry transformations of
many dynamical systems has a geometrical origin. The space
of classical physics is described by a Euclidean geometry,
implying that all points of space and all directions are equiva-
lent and only statements relating to relative position and
relative orientation have a meaning independent of the
coordinate system. If the Euclidean character of space is
reflected in physical laws no point in space nor any directions
should be distinguishable absolutely by the performance of
experiments, The operations of translation and rotation
applied to a physical system should therefore belong to the
symmetry group of the system. Thus the geometrical charac-
ter of space determines symmetries of physical laws, or, per-
haps more correctly, the physical symmetries determine the
geometry of space. Lorentz transformations and space
reflection come also into the category of symmetries with a
geometrical origin.

In practical problems often a distinetion is made between a
physical system and its surroundings and the effect of the
surroundings is approximated by boundary conditions or by a
set of known fields or forces applied from the outside. This
approximate treatment may destroy the geometrical sym-
metries partially or completely. For example, the equations of

I,§14 SYMMETRY IN PHYSICAL LAWS 5

motion of an atom in an external magnetic field are not
invariant for arbitrary rotations unless the external field is
also rotated.

The geometrical symmetry operations of translation and
rotation can be looked at in two ways, called active and passive.
In the active sense introduced above they transform one state
of a system into another. A rotation actually rotates the
system from one position to another. The passive approach

Y Y y’f:
) /
’ P / P
/
V{3 /
! /
/¢ /¢
0 x 0 “"-—-L.___cﬂ z
(a) (b) z

F1c. 1. (a) Represents a rotation of the system. A vector OF is carried into
0P’ by the rotation.

(b) Represents the equivalent rotation of axes. The \_rgct.or oP
remains fixed, but its coordinates are changed. The position of OP
relative to the new axes in (b) is the same as that of O P’ relative to
the axes in (a).

interprets the symmetry operations as coordinate transforma-
tions, and the symmetry of the dynamical laws is expressed by
stating that the equations of motion are invariant under
translation or rotation of axes. Any translation or rotation of a
system may, however, be induced by a coordinate transforma-
tion and the two views are equivalent. This fact can be seen
most easily by considering a simple example, the rotation of a
one-particle quantum system through an angle « about the
z-axis. (See Fig. 1.) Rotating the system transforms its wave
function to a new one so that the value of the new wave
function at the point (¢ +«) is the same as that of the old one
at the point ¢ where ¢ is the azimuthal angle. Let the original
wave function be y(r,0,¢) and the rotated wave function
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y' = D,y then this argument shows that

w’(r,&, ¢+°’-) - — 'P(r!ﬂssb):
or

1}1'(!’, e;é) = y(r,0, ‘#_“’-

Thus the rotated wave function can be obtained from the
original wave function by making the coordinate transfor-
mation (r,0,4) — (r,0,¢ —=), i.e. by a rotation of the coordinate
axes through an angle —« about the z-axis. Both these views
of the rotation are important and will be used with the con-
vention that a positive (counter clockwise) rotation refers to a
positive rotation of the system, hence a negative rotation of
axes.}

1.5. Conservation Laws

There is a relation between the geometrical symmetries of a
physical system and the momentum and angular momentum
conservation laws, having its origin in the fact that the linear
and angular momenta are respectively the generators of
translations and rotations of the system. As an example
consider the canonical transformation generated by L,, the
z-component of the angular momentum of a classical particle.

If F is any function of the coordinates g, and the momenta
p; of a dynamical system and « is small then the transforma-

tion§ ¢
P = PI+“{P{:F}’

: 1.1)
i = Qt+¢{gnF}, (

is an infinitesimal canonical transformation in the sense that
Hamilton’s equations of motion retain the same form when
written in terms of p; and g;. F is called the generating fune-
tion of the transformation and it can be shown that if G(py, q.)

$ This convention agrees with Rose [54], Messiah [46]. Other authora use
the opposite convention, a positive rotation referring to a positive rotation

of the axes; Wigner | 78], Edmonds [22]. Cf, section 2.4 and Appendix V.
§ The Poisson bracket {@, F} of two functions of P and g, is defined as

e@ aF 9G 2
©n =St
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is any function of the coordinates and momenta then the same
function of the transformed coordinates is

G(pp@;) = G(pogs) +o{G.F}. (1.2)

The orbital angular momentum of a particle is the vector
product L = rap and in particular L, = 2p,—yp,. If we
replace p, and g, in equation (1.1) by the rectangular coordi-
nates and momenta of the particle and F by L, then simple
caleculation shows that the infinitesimal transformation
induced is :

7' = z—ay, Py = Pa—0Py,
Y =y-toz, Py = Py+oPe, (1.3)
Z =z P, =P,

It corresponds to a rotation of the particle position and
momentum through an infinitesimal angle « about the z-axis.
The angular momentum component L generates infinitesimal
rotations about the z-axis.

In classical dynamics the rate of change of any function
F of coordinates and momenta with time is given by the
equation
- ) (14)

with H(p,q) the Hamiltonian of the system. Invariance of the
equations of motion under rotations implies that the Hamil-
tonian should be unchanged by a rotation

H(r',p’) = H(r,p). (1.5)
Transformation theory (equation (1.2)) requires, however, that
H(r‘,p') - H(r!p)+m{H,Ll}

implying that {L,H} =0,
dL,
and from equation (1.4) > e 0.

Thus the motion is such that L, is constant in time, so we see
that invariance under rotations about an axis (equation (1.5))
implies conservation of angular momentum about that axis.

2
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Similar considerations establish the connection between
translation invariance of the equations of motion and con-
servation of linear momentum. The laws of conservation of
momentum and angular momentum are closely connected
with the geomietrical symmetries of translation and rotation,
hence in a sense they are geometrical in origin.

The above discussion has been given in terms of a simple
classical system, but the results are general and hold also in
quantum mechanics. The derivation follows an identical pat-
tern in view of the close analogy hetween classical dynamies
expressed in terms of Poisson brackets and quantum mecha-
nics in the Heisenberg representation, reflected in the corre-
spondence between the Poisson bracket and the quantum
commutator

FG—GF = [F,Q] = ik{FG). (1.6)

F and G are functions of the coordinates and momenta in the
classical case and of the corresponding operators in quantum
mechanics.

A transformation D applied to a quantum system can be
interpreted according either to the Schridinger or the Heisen-
berg representation. If 4 is an observable then results of
observations correspond to matrix elements of A,(1]4]2)
between states of the system. The corresponding matrix ele-
ment in the transformed system is (1| D+4 D|2) and the trans-
formation can be interpreted either as a transformation of the
state vectors [1) - D|1) and [2) — D|2) or as an operator
transformation 4 — 4’ = D+AD leaving the state vectors
unchanged. The second interpretation is more appropriate to
the Heisenberg representation and we shall use it to derive an
expression for the operator D, which rotates a quantumsystem,
from the classical results of equations (1.2) and (1.3) and the
correspondence principle expressed in the Poisson bracket
relation (1.6). When a system is rotated through an infinitesimal
angle o about the z-axis an operator 4 transforms to 4’ accord-
ing to equation (1.2)

A' = A+a{d,L)}

I,§1.6 SYMMETRY IN PHYSICAL LAWS 9
to first order in «. The correspondence relation (1.6) implies

A’ = A—'%‘(AL,—L,A),

ot 1o
= (1 +7£L,)A(l _EL')'

Thus the operator D, for an infinitesimal rotation about the

z-axis is ;
o

Dﬂ = (l—-?;L‘).

By integrating the operator for infinitesimal rotations it can
be shown that the operator for rotation through a finite angle
« about the z-axis has the explicit form

D, = exp(—ialL,[k). (1.7)

In the following, to simplify formulae, we suppose that angular
momentum is measured in natural units so that & = 1.

Some quantum systems have non-classical internal degrees
of freedom (‘spin’ degrees of freedom) in addition to the
classical ones. The orbital angular momentum operator
L = ¥.r; A p, generates rotations of the classical variables,
while the spin angular momentum operator S = 3 S, rotates
the internal degrees of freedom. The generator for rotations of
the system as a whole is the total angular momentum J =
L 48 and J rather than L or S separately is conserved as a
result of invariance under rotations. If L and S happen to be
conserved separately, as is approximately the case in some
atoms, it is a specifically physical rather than geometrical
property.

1.6. Commutation Rules for J

Let D, = 1—iaJ; be the operator which rotates a system
through an infinitesimal angle « about the z-axis. This rotation
applied to a vector operator A rotates it through an angle «
about the z-axis. The components of the rotated vector A’ are

A, = A,—ad, A =A,+ed, A, =4, (18)
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From the discussion of section 1.5, however, 4, transforms to
4, =D}4,D,

= (1+iaJ,) 4,(1 —iad,), (1.9)

= A, +ia(J, 4,— A, J).
Comparison of equations (1.8) and (1.9) yields
J. 4,—4,J, =[], 4,] =id,
[V 4,] = —iA,,
[/, 4] = 0.

Similar commutation relations are obtained with J.and J, by
rotation about the 2- and y-axes respectively. If A is the
angular momentum vector J itself we get

S Ty=d, &, = i,

and similarly

and

S J,—J. J, =i, (1.10)
J J,—J J, = i,
or JAJ =147,

for the commutation relations of the components of J. These
commutation relations also follow directly for the orbital

angular momentum L = r A p from the commutation relations
of r with p.

1.7. Parity

Reflection through the origin 2 — —z, Yy—> —y,z— —zis
a third symmetry operation of a geometrical and therefore
‘intuitive’ nature. It differs from the operations of trans-
lation and rotation in that it is discontinuous. Classically this
implies that invariance under reflections leads to no conser-
vation law, in the way that invariance under rotations leads
to conservation of angular momentum. This is not the case in
quantum mechanics. If P is the operator reflecting a system
through the origin and P is a symmetry operation then by
section 1.5 in the Heisenberg representation

LOP
ih—- =[P, H] = PH-HP =,

1,§1.8 SYMMETRY IN PHYSICAL LAWS 11

and the operator P is constant in time, or ‘parity’ is con-
served. It has been found, however, that the interaction
Hamiltonian responsible for g-decay is not invariant under
coordinate inversion and so does not commute with P. This
may be true also of some other interactions so that parity
would not be conserved for those interactions.

1.8. Time Reversal
Another symmetry operation often occurring in conjunction
with rotational symmetry is the time reversal transformation

[Wigner 78].
t— —L.
Time reversal transforms other dynamical variables as follows:
r—-rp——p;Jd - —J.

A stationary state of a quantum system has a simple time
dependence proportional to exp(—iEt/k), where E is the
energy of the state. The time reversal transformation changes
the sign of # in this exponential factor but has no effect on the
main part of the wave function. For this reason invariance
under time reversal gives no conservation law and no addi-
tional quantum numbers. On the other hand time reversal does
say something about non-stationary processes leading, for
example, to the law of detailed balance for nuclear reactions,
[Blatt and Weisskopf 9].

As a further introduction to the ideas of time reversal con-
sider a particle moving in one dimension. If the Hamiltonian
of the particle is a function of the coordinate 2 and the momen-
tum p then invariance under time reversal is expressed by the

equation
i H(z, —p) = H(z,p).
Alternatively H is a real operator when expressed in terms of z

d
and p = miha. If ¢(z,t) is a solution of the Schridinger
equation for the system then ¢(z, —1) is a solution of the time

reversed Schrodinger equation, but since H is real the complex
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conjugate ¢*(z, t) is also a solution. If the phase of ¢ is chosen
so that ¢ is real when ¢ = 0 these two solutions have the same
initial value at ¢ = 0, and it follows that the solutions are
identical for all times

Pz, —t) = ¢‘(£, t). (1.11)
If ¢ is a stationary solution we can write
$lat) = go(a)e ™M,

Equation (1.11) shows that the phases can be chosen so that
$o(#) is real, hence stationary states can be represented by real
wave functions in the coordinate representation. It can be
shown further that a complete set of wave functions (with
definite phases) can always be found so that all matrixelements
of operators invariant under time reversal are real. If we
introduce a time reversal operator 0 for the above system by

0(z,t) = $*(x, 1)
then B8(d1+da) = ¢+ = 04,404, (1.12)
and 8(ad) = a*$* — a*04,

if @ is a complex number. An operator which satisfies equations
(1.12) is called anti-linear. A real wave function is invariant
under this transformation.

The results found in this special example can be generalized
to apply to an arbitrary quantum system invariant under time
reversal. A time reversal operator can be defined which is
always anti-linear, but it cannot always be represented by
simple complex conjugation. Suppose one can find a complete
set of wave functions {|m)} invariant under the time reversal
operation (thus with definite phases). If |a) is an arbitrary
vector which is invariant under time reversal then

0fa) = [x);
but |e) and 8|a) can be expanded in the complete (invariant)
set {|m)}. %
|e) = ZIm}(m’m} (1.13)
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and 8l = 3 O(|m)(m|x))
m

= Y (8]m))(m|a)* (antilinear

property of 7')
= 3 |m)(m|a)*. (|m) is invariant)
i (1.14)

Comparing equations (1.13) and (1.14) we see that if |a) is
invariant the expansion coefficients (m|o) are real. A similar
calculation shows that the matrix elements of any operator
invariant under time reversal, between states of the set |m) are
real. Thus only one real parameter instead of two is required
to specify the value of a matrix element. Special problems
arise in systems with angular momentum since the angular
momentum operator is not invariant; but changes sign on
time reversal. A further discussion of this point is given in
section 4.9.

CHAPTER II

REPRESENTATIONS OF THE
ROTATION GROUP

2.1. Group Representations in Quantum Mechanics

AN important part of the theory of groups is that concerned
with the representation of their elements by matrices. If ¢
is an abstract group then a representation of ¢ with dimension
7 is a correspondence between the elements of G' and a subset
of the matrices of order n such that to each element a of the
group @ there is an n x n matrix R(a) with the property that
if @ and b are group elements then

R(a)R(b) = R(ab),

i.e. group multiplication corresponds to matrix multiplication.
In a quantum mechanical formalism the elements of the
symmetry group G of a system with Hamiltonian H are
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represented by unitary operators in the Hilbert space of state
vectors or wave functions, all of which commute with H
(section 1.2). If £ is an n-fold (n-finite) degenerate eigenvalue
of H, there exists an n-dimensional manifold .# in the Hilbert
space such that all the state vectors in.# are eigenvectors of
H with eigenvalue Z. Let ¢ be any vector in .4 and S any
symmetry transformation then the operator § commutes with

Thus 8¢ is also an eigenvector of H with eigenvalue E, and
8¢ is also in the manifold .#: § transforms .# into itself.
Choosing [1)...|n) as a set of orthonormal state vectors
spanning.#, then the transformation of # by the operator S is
represented by the matrix 8,, = (i[S|j). For if |a) is any state
in.# then |a) and S|a) can be expanded in the orthonormal set
as [a) = 3 a]i) and S|la) = 3 b,]i); but

Sla) = 2 af8i) = %a,-]j)(j]S[i).
Therefore b, = 3 (j|8]i)a,.
5

These matrices form a representation of the symmetry group
@ of the quantum system, for if § and 7 are in G then

al8T)j) = g @[S|k) k| T ),

and the matrices have the same multiplication law as the
group elements they represent. Hence follows the important
result that to every n fold degenerate eigenvalue of the
Hamiltonian of a system there corresponds an n-dimensional
representation of the symmetry group of the system. The
representations of the symmetry group can be used to classify
degenerate states of the Hamiltonian.,

There are an infinite number of ways of choosing the basis
of the manifold .# in the above discussion, and for each choice
of basis the symmetry transformations are represented by
different matrices. These representations are simply related
and one can pass from one to another by a change of basis or
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by a unitary transformation. Representations differing only
by a unitary transformation are considered the same.

2.1.1. Reduction of a Representalion

Consider a representation A of a group @ on a manifold .#.
Suppose there exist sub-manifolds.#, and .#, of # such that
M+ My =M and any matrix of the representation A trans-
forms a state in.#, to a state in.#; and a state in.#, to a state
in .. If such a decomposition is possible then the represen-
tation A is said to be reducible. Otherwise the manifold .# is
irreducible under the operations of the group and the represen-
tation is irreducible. If a basis is chosen for the manifold .# so
that the vectors [1) ... |r) span.#, and the vectors |[r+1). ..
|n) span.#, then any matrix 7', of the representation A takes
the partially diagonalized form

o= Ty oo T

My so

Tr+1,r+l wes Tr-i-l.n

Tn_r+1 s T‘"ﬂ

and the sub-matrices of 7', correspond to representations of
the group @ of dimension r and n—r respectively. The repre-
sentation A has been reduced to a sum of two representations,
A, of dimension r and A, of dimension n —r. This reduction is
written symbolically as

A =A+A,

2.2. The Irreducible Representations of the Rotation
Group

In the following we confine our attention to systems with

rotational symmetry and consider only the rotational sub-

group of the symmetry group. Consider a finite manifold .#
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associated with an irreducible representation A of the rotation
group. Any rotation can be produced by a succession of
infinitesimal rotations, thus a necessary and sufficient condi-
tion for the irreducibility of A is that the manifold.# should be
irreducible with respect to the generators J,, J,, J, of infini-
tesimal rotations.

To find the irreducible representations we introduce the
operators J, defined by

J, = J+id,. (2.1)

The operators J,, J,, J, obey the angular momentum com-
mutation laws (1.10), and it follows that

Iy J,=J J, =FJ,. (2.2)

Let |j) be the eigenvector of J, with the largest eigenvalue g
Then equation 2.2 gives

J I3y = J_J|i)—J_|j) = (j—=1)J_|j)

and J_|j)is an eigenvector of J, with eigenvalue J—1. Similarly
(J_)*j) is an eigenvector of J, with eigenvalue Jj—2 and so on.
Let [, [j—1), ... |j—r) with |j—r) = (J_)'|j) be a sequence of
eigenvectors of J, generated by successive application of J_.

Again J,J,|j) = (j+1)J.]j); but since j is already the
largest eigenvalue of J, in the manifold #, J .|7) must vanish.
The square of the total angular momentum has the expression

I = L+ +T]
=J, J_S5-J,
= J_J +J34J,. (2.3)
It follows that
) = (I +T3+ )5 = §(§+1)]3),

so that |j) is an eigenvector of J2 with eigenvalue j(j+1). J?
commutes with J_, hence |j—r) is also an eigenvector of J?
with the same eigenvalue j(j+1).

Because .# is a finite manifold the sequence 13) e [§—=7) of
orthogonal eigenvectors of J, generated from |[§) must
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terminate, say, with r =n, ie. J_|j—n) = 0. Now from
equation (2.3)
JYj—n) = (J,J_+J:—J,)|j—n),

= (J3—=J)i—n),
= {(j—np—(G—n)}lj—n),
but it was shown that J%|j—n) = j(j+1)|j —n),

hence JG+1) = (j—np—(j—n),
or Jj= %.

The number = is a positive integer, hence j must be a positive
integer or a positive integer plus one-half. The operators
J,, J_, J, transform the vectors |j) ... [j—n) amongst them-
selves, and since the manifold # is irreducible these vectors
must span .#, so the representation is of dimension n+41 =
2j+1. The basis vectors |j) ... |j—n) are eigenvectors of Jz,
with eigenvalues ranging in integer steps from +j to —j.
After normalization we denote these basis vectors by |j, m)
where J|j, m) = m|j, m)and —j < m < j. They are all eigen-
vectors of J? with eigenvalues j(j+1) and the non-vanishing
matrix elements of J are given by

(Gm|d |jm) = m,
(m 1| |im) = {(j+m+1)(GF m)}. (2.4)

The phases of the off diagonal matrix elements are arbitrary,
but normally they are chosen as above [Condon and Shortley
17), thus fixing the relative phases of [jm) and |jm').

The matrix elements of the infinitesimal rotation operators
are determined by the dimension (2j+1) of the representation
once the z-axis has been chosen; thus the representation of
dimension (2j+1) is unique. All other representations of the
same dimension can differ only by a unitary transformation.
This representation of dimension (2j + 1) is usually denoted by.
Z; and corresponds to an eigenvalue j(j-+1) of J? with j
integral or half-odd integral. In particular the basis | jm) of the
representation 2; depends upon the particular choice of the
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z-axis. The transformations of the basis corresponding to a
change of axes will be discussed in section 2.6.

2.3. Integral Representations and Spherical Harmonics

The representations with j integral arise in problems con-
cerning the orbital angular momentum of a single particle.
The state vectors are functions of the particle coordinates, and
the angular momentum has the explicit form

: .0
L=rAp, with p, = —iz ete.,
or in polar coordinates,
Li = L,ﬂ:iL,,
0 9
= totief 2 . o
= e (aa:l:‘b cot 0 aqb)’ (2.0)
.0
L, = —q,a_é :
L9 ] 1 22
8 R A i et — .
1 e [sin 0 ao(““‘ aae) tonio aq,s:l‘ (2.6)

If we take eigenfunctions of L2 and L, as basis vectors of the
irreducible representations then these eigenfunctions are the
spherical or surface harmonics,

YIM(G¢} - elm(e)q)m(q?):
214-1) (I—m)!
with 9*«‘“’=“”"'[(‘2L)::_+%

= (=1)"@,,,(0), if m <0
D, (p) = (2m) "l

i
:l Pro), if m>o0

P (0)(m > 0) is the associated Legendre polynomial [Jahnke
and Emde 40]. This definition of the spherical harmonies
involves an arbitrary choice of phase and we follow Condon
and Shortley [17]. With this choice

(Yim(0@)* = (—=1)" ¥,_,.(0p). (2.7)
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An alternative phase differing by ' from the above is used by
some authors [7] to give the spherical harmonics a more
convenient transformation under time reversal.

When m = 0

2141\
Y(0, ) = (i—i) Py(cos 0), (2.8)

where P; (cos 0) is a Legendre polynomial [Jahnke and Emde
40].

Reflection through the origin replaces (6, ¢) by (7 —0, = +¢)
hence cos 6 — —cos 6 and it follows from the property of
Legendre polynomials

Pp(m—0) = (—)'""PP(0), &™) = (—)meins

that the spherical harmonics have a definite parity (—1)*
where ! is the order of the spherical harmonic. Spherical
harmonies are normalized and orthogonal over the unit sphere

[ ¥ 10el0, $)* ¥ 1,0, 6) dQ = 8(1') (mam’),

where dQ = sin 0 dfd¢ is the infinitesimal element of solid
angle, and é(a b) is unity if ¢ = b and is zero if a # b. They
form a complete set for expanding bounded funections of 6
and ¢.

In some problems it is more convenient to use modified
spherical harmonics with a different normalization

47 \!
Cunl0. ) =(515) Yonl0, 9. (2.9
With this normalization
Cio(8, $) = Py(cos 6), (2.10)
and 10, 4) = 3(m 0). (2.11)

2.4. Explicit Representation of the Rotation Matrices
In the previous sections we have found the possible irre-
ducible representations of the rotation group from the commu-
tation properties of the angular momentum operators J,, J,,
J .. It remains to discuss the matrices representing finite rota-
tions and for this purpose it is necessary to introduce a set of
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parameters to specify arbitrary rotations. These parameters are
the Euler angles («, 8, ). If a set of orthogonal axes (z, ¥y, z)
are rotated to new positions z’, ', and 2’, the Euler angles are
defined as follows (Fig. 2) by making the rotation in three

Fia. 2. Illustration of the rotation defined by Euler angles (,8.3)-

steps. First transform the axes to new positions (z;, ¥,, z) by
rotating through an angle o about the z-axis. Next rotate
through an angle § about the y,-axis to positions (zj, ,, ')
and finally make a rotation through an angle y about the z’-
axis. Positive rotations are defined by the right hand screw
sense,
From equation (1.7) the rotation operator corresponding to
this rotation has the explicit form
D(a, B, 7) = exp(—iyJ,Jexp(—ifJ, )exp(—iat,). (2.12)
A little thought or alternatively, a direct reduction of equation
(2.12) expressing Jy, and J; in terms of J, and J; shows that
the same rotation («, g, y) will be produced by making first a
rotation through an angle y about the original z-axis, then a
rotation through an angle g about the original y-axis and
eventually a rotation through an angle « about the original
z-axis. Again from equation (1.7) the rotation operator D(a, 8, y)
is
D(a, B, y) = exp(—iad,Jexp(—ipJ,)exp(—iyJ,). (2.13)
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Often we shall use R = («, 8, y) as an abreviation for the
Euler angles specifying a rotation. If R, and R, refer to two
successive rotations R,R, is the combined rotation. The
inverse rotation to R is R~! = (—y, —f, —a). With this nota-

tion we have D(R,)D(R,) = D(R,R,),

DYE) = DB, (2.14)

In an irreducible representation of the rotation group of
dimension 2741 corresponding to an angular momentum I
the rotation (« f y) is represented by the matrix}

IM'|D(a ) IM)Y = DL, pp(e B ). (2.15)

The operator D+ is the adjoint of D, hence its matrix elements
are related to the matrix elements of D by

(IM|DHIM'y = (IM'|D|IM)*
= (Dhea)*.
Also because D is a unitary operator:
DHafy) = DNapy) = D(—y —f —a),

(Dis @By )* = Diyy(—y —F —a).
The operator D is unitary
D+*D = DD+ = 1,

hence

hence the rotation matrices 2.15 are unitary matrices, and
E (Dhn(R)* Dy y(R) = 8(M, N),

b Dyx(R)( Dy (R))* = 6(M, N). (2.16)

} We use the convention of Rose [54], Messiah [46], that D(x f y) rotates the
system through Euler angles (« f§ ), while others, (Wigner [78], Fano and Racah
[31], Edmonds[22] and Rose [53]) use the opposite convention, i.e. that D(x 8 )
rotates the system through angles (—x —f —y). The relations between our
rotation matrices and theirs are thus

D(afy) corresponds to D(—a —f§ —y)
Diyxpy) corresponds to P4,y (—a —f —y) = (—1)*¥ (24 (xS )*
exlB) corresponds to di,y(—f) = (—1)¥~* di,(p).

a8
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Because the basis vectors of the representation are chosen as
eigenfunctions of .JJ; and D has the form of equation (2.13) the
matrices simplify as follows:

Diux(B7) = IM|exp(—iad Jexp(—ipJ,Jexp(—iyJ,)|IN),
= ¢ M EN (T Mlexp(—ifJ,)|IN),
= 7D dln(B). (2.17)
Phases of the rotation matrices depend upon the convention
adopted for the Euler angles and on the choice of phases of the
matrix elements of J. With the Condon and Shortley choice

of phases (equation (2.4)) the reduced rotation matrices d%,  are
real and can be expressed explicitly as

[(j+m)! (j —m)! (j+n)! (j—n)]F
d? = A T
w(F) Z( Y (J+m—t)! (j—n—t)! 8! (t +n—m)! o
X (cos B[2)¥ M=% (gin g/2)¥+n—m
where the sum is taken over all values of ¢ which lead to non-

negative factorials. (Formulae for j = }, 1, $, 2; Table 1.)
In particular

diyy(m) = (—1)"*M5(M,—N),
din(27) = (—1)28(M, N).

Symmetry relations for the matrices df,, are listed in
Appendix V. The rotation matrices reduce to spherical har-
monies when M or N = 0

Diao(B7) = (Cry (B 2))*. (2.19)

The second of the equations (2.18) gives
diga(27) = (—1)¥ db,,.(0),

thus if 7 is half-integral the rotation matrix for f# = 27 has the
opposite sign to the matrix for # = 0 and the rotation matrix
is periodic in # with period 4. Alternatively in the range
(0, 27) the rotation matrices are double valued, the two values
differing in phase by a factor of (—1). In terms of wave func-
tions, a wave function corresponding to half-integral angular
momentum changes sign on rotation through an angle 2«

(2.18)
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about any axis. This arbitrariness in the sign of the wave
functions leads to no arbitrariness of observable quantities
provided the initial choice of phase is used consistently
throughout the calculation. Care should be taken to use the
same phase for identical rotations. Wigner [78] gives a detailed
discussion of the double valuedness of the half-integral
representations.

Besides unitarity the rotation matrices obey another
orthogonality condition arising from a theorem of products of
representations under group integration [Weyl [75]]. The
theorem states that the products of matrix elements belonging
to inequivalent representations of a group, and products of
different elements of the same representation vanish on sum-
mation over all group elements (integration for a continuous
group). Applied to the rotation group the theorem gives

20 2o

f f f (D3 BY))* Dyy(e py)sin B dp dudy

000
82 5
= 3Tri (M, N)o(M', N') (I, J).
The normalization factor 872%/2I +-1 arises from the unitarity
equation (2.16) of the matrices of the representation.

The particular case of J = } deserves special mention
because of its importance in discussion of spin. The com-
ponents of J in the J = } representation are represented by
2 x 2 matrices conveniently expressed in terms of the set of
Pauli spin matrices ¢ by J = }o.

If J, is chosen to be diagonal and the choice of phases is
made as in equation (2.4), then

0 1 0—1:) _(1 0)
ety ol e 0l T T N0 gl

The matrices o have the anticommutation properties
0,0;+0,0, = 20,

and in particular o} = o} = o} = 1. Together with the 2 x 2

unit matrix 1 they are sufficient for a complete description of a

J = } system.
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TABLE 1
Formulae for di (B) for j =%, 1,  and 2
af, = dii—i = ms(g) gy = a2, = oos‘(L:)
Al s o ut e _:3 d:l = -—df, = "dl-n—-l
13 =
2 (2) =dl;_y = —}sin f(1--cos f)
al = dt,, = oost(£) B3 = diy =y
: - =diy = Vjsin'p

d‘!—l —- d:_' = ._.d!_n
= —d%,, = } sin B(cos f—1)

R MBS Ema(g)

déx 23z d-l-m = ”"dl—.t

= —dj, = sin ffy/2 By=d,, = Sin‘(g)
dio = 00 iy =dty
d'i = d!}—; = ——d‘ diy =diy
= _dti-i $ = ¥(2 cos fi+1)(1—cos B)

= — 2 § : ﬁ dfﬂ == Ijl’n'---a, = —dj
'\/3 cos (2) 31“(5) R _dim e j\/% sin .B aed ﬁ
dl-i - din = d%.;

dg, = (8 cos?f—1)
=0 =v3 coﬁ(g) ain'(-g)

df g = —dby, = —“iﬂ‘(g)

dfy =ab,
= cns(g) (3 noa’(g) -—2)
d- = -y,

oo

; References for additional tables for d/,. (8) are as follows:
4 2, 4, 6: Buckmaster, H. A, (1964) Can. J. Phys. 42, 386
L 1, 8, 5: —— (1966) Can. J. Phys. 44, 2525.

J = 8: YiNg-Naw CHrv (1966) J. chem. Phys. 45, 2069.

II,§2.5 REPRESENTATIONS OF ROTATION GROUP 25

The rotation matrices take a particularly simple form
because J, = }o, and o) = 1. Thus

exp(—ipJ,) = exp(—ifo,/2) = 1 cos B/2—io, sin f/2.
Substitution of the explicit form of the matrices o, and 1
gives Pr ! (cos B2 —sin 5/2)
srB) = \gin B2 cos B[2/"

2.5. Rotation Matrices as Symmetric Top
Eigenfunctions

The rotation matrices 2;,y(x, B, y) are eigenfunctions of the
total angular momentum of a rigid body whose orientation is
specified by the Euler angles «, f, y. (These angles measure the
orientation of the principal axes (2', ¥, ') fixed in the body
relative to a set of axes (w, ¥, 2) fixed in space.) The rotation
matrices are also eigenfunctions of L, and L, with eigen-
values M and N respectively. If the rigid body has an axis of
symmetry and the z’-body fixed axis is oriented in the direction
of this axis then L,. as well as L, are constants of the motion,
and the rotation matrices are eigenfunctions of the Hamil-
tonian of the rigid rotator. These facts follow simply from the
rotational properties of the wave function. Suppose ¢(E)
where R = (« 8 y) is a wave function of the rigid rotator.
A rotation of ¢(R) by R; = (% f, y,) produces a new wave
function ¢'(R) = D(R,)¢(R) and the value of the rotated wave
function ¢'(R) at the point R is the same as that of the old
wave function at the point R’ which is carried into R by the
rotation R, i.e.

#(R) = D(R)H(R) = $(R'). (2.20)

If $(R) = ¢;n(R) is an eigenfunction of L2, L, and H the
Hamiltonian with eigenvalues I(I+1), N and E, then ¢'(R)
must also be an eigenfunction of L? and H with the same eigen-
values. If the eigenvalue £ has only rotational degeneracy
the state ¢'(R) can be expanded in the set ¢, (R). Thus

¢'(R) = ¢n(R') = %ém(R)(IMW(RﬂUN),
= Zﬂ b1u(R) Dy y(Ry).
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In this expression the ket [IN) in the matrix element stands
for the state ¢,y(R). The relation takes an interesting form if
B, = R = («f ), because then R’ = (0 0 0) = (0). Using the
unitary property of the rotation matrices (2.16) we obtain

¢1M{R) = % (@fuy(R))*‘ﬁm(O)- (2.21)

Thus the 271 wave functions ¢,,,(R) are determined for all
values of R by their value at R = (0 0 0) and the rotational
invariance of the Hamiltonian. Equation (2.21) gives the general
form of the wave function of an asymmetric rigid rotator,
[42], [80]. When the rotator has an axis of symmetry (chosen
to be the z'-axis) there is a further specialization. An arbitrary
rotation y, about the symmetry axis 2’ should leave the wave
funetion invariant up to a phase and L. is conserved. This is
possible if only one of the ¢,,(0) is non-zero and the wave
function is (2Yy(R))* apart from a normalization factor.
The quantum numbers M and N are eigenvalues of L. and L,
respectively.

Relation (2.20) may also be used to obtain explicit expressions
for the components of L as differential operators. For example
if B, is an infinitesimal rotation through an angle e, about the

z-axis then B’ = (a—e,, B, y) if R = («, §, ) and D(R,) =
(1—te;L;). Thus (2.20) becomes

(1-—1:€2L2)¢(0‘., ﬂ! J.V) ~ ¢(a'—€z! ﬁ’ }’),

d
(o, B, y) —e, —;6 :
o
.0
and L, = —1 é;

Similar calculations using infinitesimal rotations about the z,
¥y, and 2'-axes give§

0 0 e, 0
= —ipkte] e L = —— S em i
L, e l: cot ﬁami@aﬁ+sinﬁay]’ L, = zay,
1 Bohr and Mottelson [13] use wave functions for the rigid rotator which are
the complex conjugate of ours.
§ To obtain L, and L, we need expressions for R’ -
(o¢det, ﬁ"!'dﬁ) ¥ +dy)
in terms of the infinitesimal angles of rotation about the z, y, and z-axes.
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while the expressions for L, L, give

0? d 1 (0* 9\ 2cosf 02 :I
L =[_a_ﬁf"°"’ ﬁéﬁ'@(é@”“é})* s 9 op)°
The above discussion also holds for half integral a.ngu:lar
momenta; but then the rotation matrices lose their meaning
as eigenfunctions of a classical rigid rotator. 'I'he?' are, how-
ever, the approximate eigenfunctions of a pa.lttwle of half
integral spin coupled to a rigid rotator and in this fcrn:-l oceur
as the collective eigenfunctions of a deformed nucleus with odd
atomic weight [18][80] and of a molecule where the component
of the electron angular momentum along the molecular
symmetry axis is not zero.

2.6. The Vector Model and Classical Limits .

As discussed in section 2.2 a representation of the 1'0138:'010!1
group is unique only up to a choice of basis for the manifold
determining the representation. The basis vectors are chosen
as eigenfunctions of the square of the total angular mon:}entl:.tm
J2 and its z-component J,. There are, however, an mﬁn.lte
number of equivalent ways of choosing J, corresponding
to all possible directions of the z-axis. If for.exa.mple, we
are applying a perturbation which has axial symmetry
about some direction it is most convenient to take J,
referred to this direction. Then the perturbing operator
commutes with J, and the perturbed states remain diagonal
in J,.

If a set of axes (2', ¥/, 2') is obtained by a rotation R from a
set (z, ¥, 2) then the eigenstates |[JN) of J, are given by
rotating the corresponding eigenstates |[JN) of J, with the

These may be obtained from expressions for the components of angular veloeity
of a rigid body and are

do. = €, cot f cos o + €, cot fsin o — €,
dff = €, sin o.—e, CO8 &

cos o sin o
dy = —€ m-%m-
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axes, i.e. by transforming the state |JN) with the operator

D(R), Ny = D(R)IN
— 3 W0 M| DR

= 3 M) D}y (R) (2.22)

Equation (2.22) specifies the eigenstates of J,* in terms of the
eigenstates of J;. The states (JN| conjugate to those in (2.22),

rotate as ‘IN| = (JN|D+ = 3 (D% * T M, (2.23)
M

and we say they transform contragrediently (cogredience is
defined by (2.22)). A symmetry property of rotation matrices
(Appendix V)
Dyy(B)* = (—=1)"Y 27, (R),

shows that the transformation (2.23) for (JN| is the same as that
for (—1)"|J —N); that is these two quantities behave in the
same way under coordinate rotations.

Spherical harmonics afford a particular example of equation
(2.22)

Clﬂ(a" ?") e z @:fm(‘xs ﬁ: y)oim(as ?)' (2-24)

The angles (0, ¢) and (¢’, ¢’) are the angular coordinates of a
point in the old and new coordinate systems. If n = 0 we
obtain an addition theorem for spherical harmonics (cf, also
section 4.6)

Py (008 0") = 3 C\n(B, a)*Cyn(0, @) (2.25)

using equations (2.19) and (2.10).

Equation (2.22) leads to a geometrical interpretation of the
rotation matrices. If we have a state with J2 = J (J+1) and
J, = M the indeterminacy of J, and J, is represented on the
vector model by a vector J (of length 1/{J(J +1)}) precessing
about O,.. If we make a measurement of the projection of J on
another axis 0. inclined at an angle f to O, (Fig. 3) the prob-
ability for finding a value M’ is just | 2%,/ (x 8 7)|%. On the
vector model we should expect to find the spread of values
My < M' < M;shown in Fig. 3 due to the precession of J
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about 0,, with a probability P(M’) of finding a v'alne M
assuming that J precesses uniformly about the O -axis,

P(M') = l[.l“(l —cos?f) —(M2+4-M'—2M M’ cos A1t (2.26)

The effect of quantum indeterminacy is to allow values of M’
outside the limits (M,, M,) given by the vector model, but

4
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\ '
\
! Classical
/ho limits, M,, M,

i izati i The classieal limit
Fic. 3. Rotation of the quantization axis from 0, to 0. ; )
indicates the spread of values for M’ to be expected from & classical precession
about 0,.

| Z3p.|? falls off exponentially with M’ in this region. A_lso
2., oscillates within the limits (M,, M,); but for large J, i.e.
in the classical limit, | 27,,|? averaged over several values o'f
M' to remove the oscillation is approximated by P(M’)
obtained from the vector model. The asymptotic beha.viou‘r ?f
the rotation matrices for large J has been discussed in detail in
the W.K.B approximation by Brussaard and Tolhoek [15].

The general rotation includes the two Euler angles « and y
(section 2.4) for azimuthal rotation about the old and new
2-axis respectively. These play the tole of phase angles only,
oceurring as a factor exp —i(Ma-+Ny). Since

| Dl B ) = |d3en(B?
they do not affect. the probability interpretation just described.
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2.7. Coupling of Two Angular Momenta

Often we work with systems made up of two or more parts,
each with angular momenta. These may be different particles,
or perhaps the spin and orbital properties of one particle. For
the present we consider a system in which the total angular
momentum J is the sum of components J, and J,. If an
interaction between the two parts is such as to leave the indivi-
dual angular momenta and their z-components constants of
the motion, a complete set of commuting operators would
include H, J3, J,, J; and J,,. The corresponding eigen-
functions |«jyjymym,) may always be written in the simple
product form

|y gmamg) = g |8y v ams),

where o, 8, and y represent any other quantum numbers needed
to specify the states. In the following they will not be written
explicitly. We have the eigenvalue equations

Jijrdamams) = J1(dy+1)|jrjsmams),
Jlsljljﬁ”"l’”ﬂ) = %,Jﬂ%nllms)s
for J7 and J, , and similarly for J2 and J,,. We could, however,
choose a set including H, J%, J3, J2 = (J,+J,)? and J, =

Jy:+J4., which contains as many physical observables as
before. The eigenfunctions |j,j,J M) now satisfy

Pl M) = I +1)|jujed M),

Jlidd M) = M|jyjoJ M),
while J7 and J; have the same eigenvalues as before. In
physical applications this is often a more useful set. For
instance when an interaction between the two parts of the
system is introduced as a perturbation J% and J, may be
conserved, but not the individual z-components J,, and J,,.

The unitary transformation connecting these two represen-
tations
li1de? M) = 3 | jujsmams){Gujamamoljijod M),

&y i o 15 el (2.27)
l.?l.?amlm2> =‘§‘IJﬂ2JM>Oﬂ2JM,Jﬁ2"%mz);
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defines the vector-addition coefficient (j,jmymy|j,jef M)=
(j1jeJ M|jijemims) (sometimes called a Wigner or Clebsch-
Gordan coefficient). Often for brevity we shall write the vector
addition coefficient as (j,jgmymy|J M) or even as (mymg|J.M)
when confusion will not result. For given j, and j, the values of
J are restricted by the ‘triangular condition’ [Dirac [20]]
htdz > J > |[h—dal

and J ranges from j, +j, down to [j; —7,| in integer steps. Classi-
cally J is the sum of j; and j,, so the magnitude of the vectors
must be such that they can form three sides of a triangle.
The triangle condition is symmetric in j,j, and J as suggested
by the classical vector picture. Since J, = J,, +J,, the vector
addition coefficient vanishes unless M = m,+m,. The ortho-
normality of the eigenfunctions [JM) and |j,jym,m,) leads to
the orthogonality relations for the coefficients

2 T M|jijamyms) Gujommald ' M') = 6(J,J") 8(M, M'),

Nty
and
Ef (Grdamamold M)(J M|jyjomims) = 8(my, m3) d(mg, my), (2.28)
which express the unitary nature of the transformation (2.27).
Since each coefficient vanishes unless M = m, +m, the sum
over M is purely formal in the second orthogonality relation
and in fact the sum is only over J.

From a dynamical point of view the transformations (2.27)
describe the addition of angular momentum. There is, however
a geometric or group theoretic interpretation. The wave
functions |j,jamym,) for a two-component system in angular
momentum states j;, j, span a (24, +1)(2j,-+1) manifold. On
rotation of the coordinate system the wave functions for the
two components transform separately according to represen-
tations &; and '@is of the rotation group and the composite
states transform as equation (2.22)

lidsmne) =3 Do, (R) D, (B)|jijammsy).  (2.29)

Tayihiy
The basis states of the composite system transform according
to a (2j,+1)(2j,+1) dimensional representation of the
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rotation group denoted by Z; xZ,. This representation is
reducible and the unitary transformation of equation (2.27)
reduces it to its irreducible components and the states | Ty
are basis vectors of the reduced representation. It can be
shown that J runs from j, +j, down to |j; —j,|. We may write

the reduction symbolically as
Jytds
@,IX Qj' = Z 9; (2.30)

J-”l —J'gi

Writing the reduction explicitly yields relations between
rotation matrices. If D is an arbitrary rotation we have

@:{,N = (JM,D[JN)
- z (J-Ml'”ﬁmzxmxmslDI":”&)(%ﬂzlJN>

Hiymgtiyty
= 2 (IMlmmy) D), Di, (nn,|JN) (2.31)
My Migtiyty

and similarly for the inverse relation

L SR =J§N(ml-m,[JM) Dy N|nm,).  (2.32)

2.7.1. The Vector Model

In terms of the vector model the state |j,j,J M) is represen-
ted by the two vectors j, and j, precessing in phase about their
resultant J (which in turn precesses about the z-axis) (Fig. 4(a)).
The precession of j, and j, about J and its projection on the
z-axis represents the indeterminacy in their individual z-
components m,; and m, although their sum M remains con-
stant. The square of the vector addition coefficient

| Guggmym| T )|

is the probability that a measurement in the state [J2 )
gives the particular values m, and my for Jy, and J,,.
Conversely in the state |j,jym;m,) the two vectors precess
independently about the z-axis (Fig. 4(b)) and | (J M |d1jzmams |2
is the probability that at any instant their resultant will be
J. As in the case of rotation matrices the vector model
suggests an expression for the squares of the vector coupling
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coefficients in the limit of large quantum numbers. A compari-
son of Figs. 3 and 4(a) leads to expressions for the vector-

B 2

(a) (b)

F1a. 4. Vector pioture of two angular momenta coupled to give a resultant J.
(a) In the (JM) representation §, and j, are coupled to give a resultant J which
is precessing about 0,. m, and m, are undetermined.

(b) In the (jym,jym,) representation j, and j, precess independently about 0,
leading to uncertainty in J.

coupling coefficients which should hold in the limit of large
quantum numbers.
If k> jand I > j then

(jkmg|ln) =~ (—1)y*4=D qi _(B)
andifm =0and k =1
(Glon|ln) = (—1)**=*P (cos B)

where cos f§ = 1—: These and other relations are derived by

Brussard and Tolhoek [15].

2.7.2. Explicit Formula for Vector Addition Coefficients

Recurrence relations for the coefficients can be obtained
from the operator identities J, = J,, +J,,. In matrix form
these become

JML1|J T M)

=3y (JM:I:IIM?%XM"JJ& +Jgi|m1ms){m,mg[JM).

Matrix multiplication from the left by (mymy|JM'), use of the
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orthogonality relation equation (2.27) and the matrix elements
of J_ (2.4), give us
{(J £ M +1)(JF M)} omymo| T M £ 1)
= {(iF my +1)(jy ma) Fomy T 1ol M) +
+{(jeF Myt 1)(aEma) (mymy T 1T ). (2.33)
These relations are sufficient to determine the vector addition
coefficients.

The left-hand side of equation (2.33) vanishes if we take the
upper sign and put M = J. With the normalization condition
(2.28) this enables us to determine the various (mymg|JJ ),
apart from an overall phase; this we fix (following Racah [48]) |
by the convention that (jiJ—ji|/J) is always real and posi-
tive. The lower sign in equation (2.33) gives us (mymo|J M —1)
in terms of (mmi|JM), so by a ‘ladder calculation’
starting with M = J we get all the coefficients, which, we see,
must all be real. After some heavy algebra along these lines
Racah obtained the general formula

(abapley) = d(z+B, )A(ab e)x

X[(2e+1)(a+a)! (@—a)! (b+8)! (B—P)! (e+)! (c—p)!1*x
X3 (=1)[(a—a—»)! (c—=b+at»)! (b+f—»)!X

. x(c—a—pB+v)! ! (@4b—c—2)!]",

(@a+b—c)! (a+c—b)! (b+c—a)l7?

A(abe) =[ @b o) :|, (2.34)

and » runs over all values which do not led to negative facto-
rials.

The formula can be simplified when o =pf =y =0
(Racah [4]); if 29 = a+b+c, (ab00]c0) = 0 if 2 is odd, and
(ab00]c0) = (—1)"**(2e-+1)} A(abo)g! [(g —a)! (g —b)! (g—c)1] ™"

(2.35)

where

if 2g is even (cf. section 4.7.2 and Table 2)
1 With identical results, Condon and Shortley [17] adopt the convention that
{hdaldy+ia jy+js) = +1 and that the matrix elements

(i M, | Grjed —1 M)
are real and positive for all J.
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Obtaining numerical values from the general formula is
tedious, but by assigning a definite value to one argument,
say b, equation (2.34) reduces to simple closed forms. Table 3
contains formulae for the more symmetric Wigner 3-j
symbol defined in equation (3.3) for b = 0, §, 1, §, 2. Symmetry
relations and other formulae are given in Appendix I.
Extensive numerical tables have been published [58]
[66], and for (ab}—}|c0) by de Shalit [18]. Values for
o = f§ =y = 0 are given in Table 2.

TABLE 2
‘a b c\? : g
Values of 000" An asterisk means the symbol is
negative.
b ¢ a b ¢ | a b e
01 1 13% 1 56 6143 | 3 3 6 100/3003
022 15 2 2 2 2/3* | 3 4 5 20/1001
0 3 3 1/7* 2 2 4 235 3 5 6 7/429%
0 4 4 1j9 2 3 3 4/106 | 4 4 4 181001
0 5 5 1j11* 2 3 5 10/231* 4 4 6 20/1287*
0 6 6 1/13 2 4 4 20/693* 4 5 5 2/143*
112 215 2 4 6 5/148 4 6 6 282431
1 2 3 3/35* 2 5 5 10/429 5 5 6 80/7293
1 3 4 4/63 2 6 6 14/715% 6 6 6 400/46189*
1 4 5 5/99% 3 3 4 21

2.7.3. Exchange Symmetry of Two-particle States

When eigenstates of total angular momentum of two
identical particles are constructed according to (2.27), and the
individual angular momenta are the same, j;, = j,, the sym-
metry of the states under exchange of the two particles is
determined by the symmetry of the vector addition coeffi-
cient g

. (Ggmm [Ty = (—1)! =¥ (Gjm'm| T My,

If we denote the state occupied by the ith particle as |),, the
coupled state may be written
|IM) = 3 |jmy|jm’ )y (Gimm!|J M ).

mm’

= %z’ﬂjm}l]jm')z—;-( =) jm’ )| jm) g Y (Gjmm' | J M ),
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TABLE 3

Algebraic formulae for (: g ;

1, 2 and 2.

)withc:i.
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Thus when particles 1 and 2 are interchanged it merely multi-
plies the state vector |jjJm) by (—1)"~%. That is, the state is
symmetric or antisymmetric under exchange as (J—2j) is
even or odd. If j represents an orbital angular momentum, 2j
is even, and the condition is whether the resultant J is even or
odd. On the other hand if j is the total (spin plus orbit) for
each particle (j —j coupling), j will be integral or half-integral
according to whether the particles are bosons or fermions.
Thus both the symmetric boson states and the antisymmetric
fermion states will have J even only, odd J states having the
wrong symmetry in both cases.

A very simple example is given by the total spin states of
two spin —} fermions, j = }. The singlet J = 0 state is anti-
symmetrie, the triplet J = 1 state is symmetric.

Of course, this simple property no longer holds when j, # j,,
and the exchange symmetry is no longer determined by the
vector coupling.

CHAPTER III

COUPLING ANGULAR MOMENTUM VECTORS
AND TRANSFORMATION THEORY

3.1. Transformation Theory

Orrex there are several degenerate but independent states
[}y, |@)y ... which are eigenstates of some operator a with the
same eigenvalue «. Thus we require other labels to distinguish
them. These may be provided by finding another operator
which commutes with «. Hence P has eigenstates which are
linear superpositions of the |«); belonging to the same eigen-
value «. It is then straightforward to diagonalize in this
subspace to find these superpositions |«,f) which are now
labelled by « and the various f. If two or more combinations
are still degenerate, i.e. share the same eigenvalues « and f§,
we need yet another operator y which commutes with both
@ and @. So we proceed until we have resolved the original set
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of states |a); degenerate in «, into a set completely non-
degenerate in the eigenvalues «, f, 7, ... of a set of commuting
operators «,B,y, ... Such a set is called complete and represents
the maximum number of simultaneously measured data
allowed by the uncertainty principle.

The most important of these operators is usually the Hamil-
tonian H of the system or at least the principal part of it,
the rest perhaps to be treated as a perturbation later. The
other operators then have to be chosen to commute with H.

The need for the present chapter arises because there are
often two or more ways of choosing our complete set. These
sets of course are not independent but have eigenstates which
are related by unitary linear transformation. If two such sets
are denoted by 4 and B we may write

|4) = Xz |B)(B|4). (3.1)
The expansion coefficients (B|4) are the transformation
amplitudes and form a unitary matrix. We have already met
with two examples in sections 2.6 and 2.7. One is the trans-
formation (2.22) linking states referred to differently oriented
quantization axes, the other is the change of representation
(2.27) for states comprising two angular momenta. Below we
extend the latter example to systems made up of more than
two angular momenta.

3.2. Scalar Contraction of Angular Momentum States

We have so far met the vector addition coefficient as giving a
rotationally cogredient linear superposition of the products of
two functions which separately behave cogrediently under
rotations. Alternatively, it projects out the various irreducible
parts of such products. A different point of view put forward by
Wigner [78] considers the coupling of three angular momentum
vectors to a zero resultant; and because the wave function of
the coupled state has zero angular momentum it is independent
of the choice of axes, i.e. it is a scalar or invariant quantity.
Equation (2.27) and the knowledge that

(cey —y[00) = (—1)°""[+/(2¢+1)

I1I, § 3.2 AND TRANSFORMATION THEORY 39

make it easy to perform, the scalar contraction product of
three state vectors and we find that

Zapy [a)|bp)|ey)(abafle—y)(—1)°"7 (3.2)
is an invariant.

We shall meet the contraction (3.2) in another guise in section
4.7 where we discuss the Wigner-Eckart theorem.

Among the various notations (listed in Appendix I) used for
vector addition coefficients the Wigner 3 —j symbol emphasises
this contraction property. It is related to our present trans-
formation coefficient by

abe o
(oc e y)\/(2c+l) = (=1)*""(abaple—y),  (3.3)

provided, of course, that «+pf-+y = 0. Now the result 3.2
becomes

D [aa)]bﬁ)|cy)(: ; ;) = scalar invariant.  (3.4)

In addition, use of the 3 —j symbol often facilitates algebraic
manipulation because of its high degree of symmetry. It is
invariant under an even—eyclic—permutation in the order of
its arguments, while an odd—non-cyclic—permutation merely
multiplies it by (—1)****°, It thus avoids the unsymmetrical
surds and phases appearing in the corresponding Clebsch-
Gordan symmetry relations. The origin of these symmetries
also appears more clearly through the contraction (3.4). All three
angular momenta a, b, ¢, enter on an equal footing, thus the
scalar invariant should be unchanged within a factor 41 by
re-ordering them. A special case with @ = b = ¢ =1 is the
triple scalar product of vectors}

UAV W=VAW'U=WAu-v
. ) 1 Ul |
= —iy/63,, uzvyw,(l = v)'
The 3—j symbol also has the visual advantage of displaying

{ The quantities u;, v, w, are the spherical components of the vectorsu, v,
and w defined in equation (4.10).

4
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z-components on a different level from the vectors in accord
with their inferior role.

Specializing equation (3.4) to the case ¢ = 0 (and therefore
a =b, a+f = 0) allows us to define also a 1—j symbol, the
analogue of the metric tensor. We have

Db |am)|bﬂ>(aaﬁ) = a scalar,

where (:ﬂ) = (—1)***4, _,. (3.5)
In many physical problems measured quantities are inde-
pendent of the choice of coordinate axes, hence these quanti-
ties may be expressed in terms of scalars. In the course of a
calculation of such a quantity we may be confronted with a
complicated expression containing products of vector addition
coefficients, and the solution of the problems often lies in
extracting the various scalars. In the following sections we
give some of the scalar invariants which are common to many
problems.

3.3. Coupling of Three Angular Momenta
When we have three angular momentum vectors we may use
an uncoupled representation

[y, Jamg, Jsma),
or one in which the vectors couple to a resultant J and M, that
is, an eigenstate of J% = (j,+j,+1s)® and J, = j;,+Ja. +Jss
However, the latter is no longer unique, and we require a
further quantum number. There are three possibilities: We
may couple j, and j, to form J,,, then add j, vectorially to
give J. First

A |ideiedMys) = Z..,,,., |1 |d gmg) (Grd stmamg| Ty o M o),
then

|G iadas JM) = 3, o |15 edie Myo)|dsme) (Jyods Mygma| JM),
(3.6)
This state is also an eigenfunction of J3, = (i;+i,)% and J,
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provides the additional quantum number which specifies the
state of the coupled 3-vector system completely.

Alternatively, we may first combine j, and j; to give J,, and
then add j, to give J, that is

adsTaa Mas) = Zpym, |dama)|sms) (Gafsmams|Jps Mog)
then
i1 Gada)ags JM) = 3 ar,, | 53m)] Gods 23 M os)
(jn g My Mgl J M) (3.7)

So we now have an eigenfunction of J3; = (j,-+js)*. Similarly
we could have used Ji4, the resultant of j, and j,, to define a set
of states |(jyjs)/ya: j2; J M ). Clearly, these three representations
are not independent, and since they span the same subspace
they must be connected by a linear transformation (equation
(3.1)). For example

|(Grie)ras Jas I M) = ZJ,, |d1s (Jada)eg; J M) X
X (s (Jeda)ea; I| (Gade) radaid ) (3.8)
The transformation coefficient is a scalar and independent of
M. We use the coefficient to define the Racah W-function [48],
Gv(iads)oss J|(ade) g Jas J) =
= [(2J12+ 1)(2as -+ 1)1 W (jrj olligs TraTes)s (3.9)
whose normalization is chosen to simplify its symmetry
properties. We may easily express it in terms of vector
addition coefficients. We use (3.6) and (3.7) to expand both
sides of (3.8) in the uncoupled representation |jimijzmajams ).
Equating coefficients we obtain
(Gamamg|Jys Mya)(Jyg Gy My mg|lJ M) =
= 3, (Gadsmama| o Mog) (s o3 my Myg|J M) x
X (gus (Gada)as; J|(G1ds) Jyas Jai J). (3.10)
For clarity, we rewrite this using a, b, ¢, d, e and f for the
vectors and «, f, ¥, 4, &, and ¢ for the corresponding z-com-
ponents

(abap|ea+p)eda B, y —a—pBley)

= Y, (bdp, y —a—p|fy —a)(afa, y —alcy) X
x[(2e+1)(2f+1))* W(abed; ef). (3.11)
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Multiplication of both sides by (bd B,y —a—p|f'y —«) and
summing over f leads to the further relation

(afa, y—aoy)[2e+1)(2f +1)]'W (abed; ef) =

= 3, (abaf|ex+p)(eda+p,y —a—pley)(bdp, y —a—p|fy —).
(3.12)
In a similar manner we finally obtain

[(2e+1)(2f +1)]*W (abed; ef) d(ce’) (yy') =
= 3,5 (abaplex+p)leda+p, y—a—Bley) x  (3.13)

X (bdp, y —a—B|fy —a)(afay —alc’y’),

in the summation of which y is held constant. In this last form
the W-function appears not as transformation coefficient but
as the scalar invariant obtained by contraction of four vector
addition coefficients. In this, perhaps, lies its greatest value.

The symmetry properties of the W listed in Appendix IT
can be obtained easily from equation (3.13) by considering the
corresponding symmetries of the vector addition coefficients
involved. Equation (3.13) also makes it clear that the following
triads of vectors have to satisfy ‘triangular conditions’ (section
2.7): (acf), (abe), (bdf), and (cde). In diagrams introduced by
Levinson [85] lines represent angular momenta and triangular
conditions must be obeyed at each vertex (ef. Chapter VII).

(3.14)

Equation (3.13) may be put into a form which shows the
symmetry of the Racah W-function in a more obvious way by
using the 3—j symbol defined in equation (3.3) (cf. Appendix
II). This form is probably the most useful for calculations.

A general formula for the Racah functions may be found
from (3.13) by using expression (2.34) for the vector addition
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coefficients. Racah [48] succeeded in reducing this to
W(abed; ef) = A(abe) Alacf) A(bdf) Alcd e) x
x 3. (—1f(a+b+e+d+1—2)[zl(e+f—a—d+2)! X
% (e+f—b—c+2)(a+b—e—z)(c+d—e—2)! X
x(@a+e—f—2z)(b+d—f—2)!17, (3.15)

where A(a b ¢) is given by equation (2.34).

In the same way as the general expression for vector addi-
tion coefficients (3.15) may be reduced to simple closed forms by
assigning a definite value to one argument, say e. Formulae
fore = 0, }, 1, 3/2, 2 have been given by Biedenharn et al. [7],

TABLE 4
Formulae for W(abed; ef) with e = }, and 1

W ;
{M+w+i(f)¢*"‘[ (a+b+e+2)(a+b—et1) ¥
Rt (2a+1)(2a+2)(2b+1)(2b +-2)
W(aa+3bb—1¥; dc)
- EP'H[ (a—b+te+1)(c—a-+b) :Ii
( (2a+1)(2a+2)2b(2b+1)

W(aa+1bb+1; 1e)
- (b (a+b+c+3)(at+bte+2)(at+b—c+2)a+b—ct1)]
= 1(2a+3)(a+1)(2a + 1)(26 +8)(26 +1)(b+1)

W(aa+1bb; lc)
T (a+b+c+2)(a—b+c_+_‘l}{a+b—c+1)(o—a+b] i
= 3@a TO) @ 1) (Za BB 15 +1)

W(aa+1bb—1; le)

= {_)n th—c

(c-—a+b)(o—a+b—l}{a—b+c+2)(a—b+c+]]:|l
4(2a+3)(a+1)(2a+41)(26—1)b(2b +1)
W(aabb; lc)

g (_},u,_,_; a(a+l)+b\b+l)_°{c+”

= [d4a(a+1)(2a+1)b(b-+1)(2b - 1)]%

those fore = 0, }, 1 can be found in Table 4. Extensive numeri-
cal tables have been prepared by Biedenharn [4] Simon el
al. [66], and Rotenberg et al. [58].

The unitary nature of the transformation (3.8) which defines
the Racah function leads to the orthogonality relation

S, (2e-+1)(2f+1) W(abed; ef) W(abed; eg) = 6.  (3.16)
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We can use the expansions (3.6) and (3.7) of the three-vector
states to get relationships between the transformation coefli-
cients (3.9). For example, the symmetry properties of the
vector addition coefficient (Appendix I) show that

|a, (db) f; ¢) = (—1)"*4|a, (bd) f; c), (3.17)
so that
(a, (db)f; c|(ab)e, d; ¢) = (—1)>* (a, (bd)f; c|(ab)e, d; c)
= (—1y=*4[(2e+1)(2f+1)]* x
x W(abed; ef) (3.18)
from equation (3.9). Similarly we can show that

((bd)f, a; c|(ab)e, d; €) = (—1)*7-* (a, (bd)f; c|(ab)e, d; ¢)
(3.19)
A fruitful source of sum rules is the closure relation for
transformation coefficients
(4| B) = 3 (4]|C)(C|B), (3.20)

where the sum runs over a complete set of eigenstates |C).
Applying this to the change-of-coupling coefficients we can
write, for example,

(a, (bd) f; ¢|(ab) e, d; ¢) =
= 3, (a, (bd)f; c|(ad)g, b; c){(ad)g, b; c|(ab)e, d; ¢),
which using equation (3.19) gives the Racah sum rule
20 (29-+1)(—1)"* W(adeb; gf) W (abdc; eg) = W (abed; ef),
(3.21)

where p = a-+b+c+4d}e+f. Other sum rules derived in a
similar way and some other relations are displayed in Appen-
dix II [5], [7], [23].

Parallel to his treatment of the vector addition coefficients
as contraction symbols Wigner [77] has defined a 6 —j symbol.
This differs from the Racah function in phase only,

{abe

2 f} = (—1)*R+e+ W (abed; ef). (3.22)

III, § 3.3 AND TRANSFORMATION THEORY 45

The 6 —j symbol has somewhat higher symmetry being invari-
ant under interchange of any two columns and also under the
interchange of the upper and lower arguments in each of any
two columns (Appendix II). Some extensive tables of the 6 —j
symbol are now available [38], [58].

3.4. Four Angular Momentum Vectors

A state in which four angular momenta a, b, d, and e have a
resultant ¢ is specified by giving the resultants of two pairs of
the vectors. For example, we may couple @ and b to a resultant
¢, then d and e to f before finally adding ¢ and f to give i. This
state with total z-component m can be written as

|(@b)e, (de)f, im)
being an eigenfunction of the angular momentum operators

A2, B2 D2 E2 C? = (A+4B)? F2 = (D+E)},

I! = (A+B+D+E)? = (C+F)? and I..
These form a complete set for describing its angular mo-
mentum properties.

Clearly there are three ways of choosing pairs from g, b, d,
and e, but just as in the three vector case discussed above the
corresponding eigenfunctions are not independent. They are
connected by a linear transformation, e.g.

|(ad)g, (be)h; im) = 3, |(ab)e, (de)f; im) x
X {(ab)e, (de)f; i|(ad)g, (be)k; 7). (3.23)
The transformation coefficient in equation (3.23) that changes
the coupling defines the 9 —j symbol of Wigner [77].

((ab)e, (de)f; i|(ad)g, (be)h; i) =
abce
= [(2e+1)(2f+1)(2g+1)(2h+ 1)} {j ¢ f}, (3.24)
hi

which is identical to the X-function of Fano [28]. For typo-
graphical convenience it is often written X(abe, def, ghi). We
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may obtain an expression for the 9—j symbol by expanding
both sides of equation (3.23) with vector addition coefficients.
The calculation is exactly similar to that for the W-function in
equations (3.10)—(3.13), thus we shall not give it here. The result
expressed as a contraction of six Wigner 3—j symbols is given
in Appendix ITI together with some related formulae.

The Racah W-function may be used to contract the sums
over vector addition coefficients, leading to the form most suit-
able for numerical evaluation

X(abe, def, ghi) = ¥, (2k+1) W(aidk; kg) x
x W(bfhd; ke) W(aibf; ke). (3.25)
There is often a small number of terms only in the sum over £,
k being limited by triangular inequalities in the triads (kat),
(kbf), and (kdh). In particular, if one of the arguments of X is
zero the sum over k reduces to one term (Appendix II).
The orthogonality properties of the 9—j symbol follow from
the unitary nature of the change of coupling transformation
(3.23)

abe)(abc
Son (264+1)(2f+1)2g+1)2h+1){d e frid e f'p =
hi)]lghi
= e’ Opy'- (3.26)
The 9—j symbol is highly symmetrical. Interchange of any two
adjacent rows or columns multiplies it by (—1)? where
P =a+btc+d+te+f+g+h+i,
i.e. the sum of all its arguments. It is also invariant under
reflection about either diagonal.
The closure relation (3.20) can be used to generate sum rules
just as in the case of Racah functions in equation (3.21). In
particular, we use

((abe, (de)f; j|(ad)g, (be)k; j) =

=3 ul(ad)e, (de)f; j|(ae)k, (bd)l; j) %
X {(ae)k, (bd)l; j|(ad)g, (be)h; j),
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to give the analogue of the Racah sum rule (3.21)

abe
{i ¢ f} = Skt (— 1Pk 1)@ 1) X

hj
abe) (adg
’ {ed f} { M} o)
klj)\klj

Other such relations are left to Appendix III.

The large number of arguments makes tabulation of the 9—j
difficult, but despite this fairly extensive numerical tables are
now available [67]. The 9—j symbols with two arguments
equal to 4 are of particular importance. They represent the
coefficients in the change from L—8 to j—j coupling of two
spin —% particles and have simple explicit forms.

3.5. More Complex Coupling Schemes

The number of possible coupling modes rapidly increases
with increase in the number » of angular momentum vectors.
Corresponding to transformations between these modes we
may define more complex coefficients or invariants. Owing to
the difficulty of numerical tabulation however, their usefulness
is confined to arguments based on symmetry and orthogonality
properties. Two 12 —j symbols have been defined and their
properties discussed [24], [39], [47], [61]; they correspond to
changes of coupling of 5 vectors.

For n > 4 it can be shown [Sharp 62] that there exist two
3n —j symbols whose symmetries can be displayed by writing
their arguments on a cylindrical band, in one case twisted (a
Mobius strip), in the other not. When # is greater than 4 there
exist other less symmetric symbols as well. Wigner [77] has
shown that these coefficients are not specific to the group of
real rotations in space with which we are concerned here, but
have their analogues for any arbitrary simply reducible group.

{ We have again used the change of phase that ocours when the order of the

Vectors is changed, e.g.
|(ab)e, (ed)f; i) = (—1)-*~4|(ab)c, (de)f; ©).



CHAPTER IV

TENSORS AND TENSOR OPERATORS

4.1, Scalars and Vectors

WE are accustomed to deal with certain physical quantities
such as mass and energy which are in no way connected with
the orientation of our coordinate system and which have no
directional properties. Such quantities are scalars, or tensors of
rank zero.

Other quantities, such as the position of a point in space or
the velocity of a particle, have associated with them a direc-
tion as well as a magnitude. These quantities are vectors or
tensors of rank one and in order to specify them we must give
the direction as well as the magnitude. Alternatively, a vector
can be specified by giving its components along the directions
Oz, Oy, Oz of a set of orthogonal axes. The components repre-
senting the vector depend upon the particular choice of axes,
and changing the axes changes the components in a specific
way. The components (z,, Zs, %), or (%), of the position vector
r with respect to a new set of axes are obtained from the
components (2], €}, %), or (), referred to the original axes by
a linear transformation

7} = f?'_'a“a:,. (4.1)

The coefficients a,, are the direction cosines of the new axes
with respect to the old and are definite functions of the Euler
angles specifying the rotation which takes the old axes into
the new. If A is an arbitrary vector with components (4,),
then these components transform under rotation of axes
according to the same law as the components of r,

A: = ?ﬂ“.d’ (4°2)

1 Pseudoscalars, which depend upon the handedness of the coordinate
system but not its orientation, are counted as scalar for the purpose of this
discussion.
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where the coefficients a,, are the same as in (4.1). This transfor-
mation leads to a new definition of a vector, as a quantity
represented by three components which transform according
to (4.2) when the coordinate axes are changed.

Let us consider a property of a physical system represented
by a vector A with components (4,) with respect to some
chosen set of axes, and enquire how the vector A transforms
when the system is rotated. The discussion of section 1.4 shows
that the change in A produced by rotating the system can be
described by making an opposite rotation of the coordinate
axes. Thus A transforms to a vector A’ with components

Ai = ;‘iuAr

The transformation matrix &, is the inverse of the matrix a,,
of (4.2) for the same rotation.

On either view of a rotation, considering it as a rotation of a
physical system or as a coordinate transformation, the new
components of a vector are given in terms of the old by a
matrix transformation which is specified by the Euler angles
of the rotation. These matrices form a representation of the

rotation group of dimension 3, and the components of the
vector are the basis for the representation.

4.2. Tensors of Higher Rank
The mass moments of a system of particles are given by

My,=73 M oi g

where (z,) is the position vector of the particle « and m, is its
mass. The mass moments are a set of 6 linearly independent
quantities (M,, = M,) and represent a symmetric tensor of
rank 2. On rotation of axes the particle coordinates transform
as in equation (4.1) hence the mass moments transform as

A general (non-symmetric) tensor of rank 2 is represented by
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9 components 7T',, with the same transformation law on
rotation of axes as equation (4.3)

kl

Similarly the general tensor of rank # is represented by 3"
components which transform according to the obvious
generalization of equation (4.4).

If the nine components 7', of a general second-rank-tensor
are written as a column vector, the transformation coefficients
form a 9 X 9 matrix; the set of these matrices for all rotations
forms a representation of the rotation group of dimension 9.
It is well-known that one can form from the general second-
rank tensor 7', a scalar g, T, an antisymmetric tensor

fu = Q(Tu—Tu)-
and a symmetric tensor with zero trace,
Ty= i‘(TfH‘Tu)—'%'sug T
Conversely the 5 independent components T, the 3 inde-

pendent components T,, and Y T, together specify the
'

nine independent components 7', Under a rotation the

components ’f’,, transform amongst themselves as do the com-
ponents 7', while ¥ 7'y, is invariant. Thus the above reduc-
E

tion of the general second-rank tensor 7', corresponds to the
reduction of the 9 dimensional representation of the rotation
group of equation (4.4) to its irreducible components of dimen-

sion 5, 3, and 1. The tensors 7, i"ﬂ and ¥ 7', are the irreduc-
¥

ible components of the general second rank tensor belonging to
the representations 2,, 2,, and Z, of the rotation group.

4.3. Irreducible Spherical Tensors

Cartesian tensors are defined in section 4.2 as quantities
represented by a set of components which have a definite
transformation law under rotations of the coordinate system.
It is natural to define a general spherical tensor T, of rank k as
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a quantity re.presented by 2k +-1 components 7', which trans-
form according to the irreducible representation 2, of the
rotation group.}

T, = § Ty, D} (afy) (4.5)

(«py) are the Euler angles (section 2.4) of the rotation taking
the old, unprimed, axes into the new, primed, axes. Thus (4.5)
expresses a component 7', with respect to the new axes in
terms of the components 7, defined with respect to the old
axes.

It is an immediate consequence of the irreducibility of 2
that the tensor T, is irreducible. ;

4.4. Products of Tensors

In the theory of Cartesian tensors the simple (uncontracted)
product of two tensors of rank m and # respectively yields a
tensor of tank m +n. For example, the nine products ab, of
the components of two vector a and b are the components of a
second rank tensor, which transforms according to the repre-
afsnta.tion 9y X 9, of the rotation group. The tensor ab, gives
rise to irreducible tensors }(ab,+ab,)—36,a.b, aAb and
a.b, and this reduction corresponds to the reduction

of the rotation group (equation (2.30)).

If c is a third different vector, the set of 27 products ab,c
represent a third rank tensor transforming according to t.h;
representation 2, X2, x%, of the rotation group. This
representation is reducible as follows,

D\ X(2y X Dy) = D, X(Dy+D,+2,),

= D3+29,+392,+2,;
Phat is, the 27 components of the tensor ab,c, give rise to one
irreducible tensor of rank 3, two of rank 2, three vectors and
1 The definition (4.5) is chosen to agree with the transformation law (2.24)

for spherical harmonics on rotatio i
. _ n of axes. This means that i -
monies provide a special example of spherical tensors. et
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one scalar. Explicitly the three vectors are (a.b)c, (b.c)a,
(c.a)b, and the scalar is (a A b) . ¢. In this way we can count
the number of different irreducible parts of a general cartesian
tensor of rank n.

If R,, and 8, are irreducible tensors of rank k and &’ re-
spectively in the spherical representation, the (2k -+-1)(2k’+1)
products R, S, form a tensor transforming under the repre-
sentation 2, X Z,., of the rotation group. This representation
is reducible (equation (2.30)) and its reduction gives the irre-
ducible tensors}

Txo(kk') = g By (kK'eq'| KQ), (4.6)

with K running from k+k’ to |k—k’| and @ = ¢-+¢'.

Unless the operators R, and 8} commute there is no simple
relation between Tyq(R,, Sy) and Tgy(S,, R,). An interesting
special case occurs when R = § and k = k' which is analogous
to the exchange symmetry property of two-particle states
(section 2.7.3). Provided the components R,, and R, _,
commute interchanging them merely multiplies 7'xq(kk) by
(—1)X~% (= (—1)% if k is integral). Thus only product
tensors with K even do not vanish. This property is a generali-
zation of the vector relation v A v = 0.§

When k = k' and K = 0 the product (4.6) is the generali-
zation of the scalar product of two vectors. When £ is integral
another phase and normalization is used in the definition of
this product

R,.S, = 3 (—1VR.S;_, = (—1)*V/(2k+1) Ty(R, S). (4.7)
q

4.5. Tensor Operators
The notion of tensors can be extended directly to quantum
mechanical tensor operators. An irreducible tensor operator

t Sometimes we use as arguments of a composite tensor the actual tensors
out of which it is constructed writing it as

Tgq(Ry, Sy) instead of Tgqlk, k).

§ The angular momentum J does not obey this relation but rather
J A J = iJ, because its components do not commute.
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of rank £ is an operator with 2k+1 components T}, which
transform under a rotation («fy) of axes as]

Ti, = DT\, D+ = 3 T, D} (afy). (4.8)
P

Relation (4.8) with D representing an infinitesimal rotation
leads to commutation laws of the components of the angular
momentum J with the components of T,.

Let D be the infinitesimal rotation (1—i«J;). Thus from
equation (2.15)

Dy, = (kp|1l—iad)|kg) = 8,,—ia(kp|J,|kg).
With this rotation equation (4.8) becomes

(1 —iad )Ty (1 +iad)) = 3 T, 2%,
P

or
STy =T J; = 2 T,,(kp|-f3|kq).
»

Putting J; = J, and J_ in turn and using the matrix elements
of J, from equations (2.4) one obtains
[J:' TJN] ir qT ’
(Vi Tiol = (kg +1)KF 9))'T, .y (4.9)
The commutation rules (4.9) of J with spherical tensor
operators can be used in finding the spherical equivalents of
Cartesian tensors. For example, if A is a vector,
[/, 4.] =0
from the commutation relations in equations (1.9). Thus
4, = A,. From (4.9) we have
1
V2
uly 1
vy
1
= :FW (Ax:I:‘&A,).

} A rotation R of a quantum system transforms an operator 4 as
A’ = D*(R) AD (R), cf. section 1.5.
However, a rotation R of axes is equivalent to an inverse rotation R-! of the

A4, = [/, 4],

[Var 4] £1[J,, 4.], (4.10)
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Again, if A and B are vectors the spherical tensor of rank 2
formed by their produect is

T(AB),, = ¥ A, B,(11mn|2q).

In particular, using the value of (22[1111) =1
Then from the commutation relations (4.9)
T(AB)y = §{J_, 4,B)]
= #[J_, 4,]B,+A,[J_, By))

1
=75 (oBy +4,B,) (4.11)
1
and T(AB)y = 7 (34,8,~A. B).

4.6. Spherical Harmonics as Tensors

Spherical harmonics transform on rotation of axes according
to equation (4.5), hence are examples of spherical tensors.
There are some relations involving products of spherical
harmonies which follow simply from section 4.4. These take
their simplest form when expressed in terms of the modified
spherical harmonic

c ( = )i Y
WOUNEREY T
I C,,(0,9) and C, (0, ¢') are modified spherical harmonics then
the scalar product (equation (4.7))
GI: s Gi- “—“’2 (—1)°Ch(0, QD)O;,_,(G', ?”)’

q
is invariant with respect to rotation of axes. It follows that the
scalar product must be a function of the angle ©® between the
directions (6, ¢) and (', ¢’), this angle being the only quantity

system so that the transformation operator in equation (4.8) is D(R-1) or
D*(R) rather than D(R). If |0) is a spherically symmetric wave function
Ty, |0) is & wave funetion with angular momentum gquantum numbers (k, g).
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independent of choice of axes. Choosing axes so that the
direction (6, ¢") becomes the new z-axis

Cro(0', ¢") — Cy(0, 0) = é(q, 0), (cf. equation (2.10))
Cio(0, ¢) — Py(cos 0) = P,(cos ©), (cf. equation (2.11))

and the scalar product (cf. equation (2.25))
C,.C; = P,(cos O). (4.12)

Again, if O (0,9) and Cp, (0, ¢) are spherical harmonics of
the same angles (6, @) then

:Zr (KQ|kk'qq" Y0y Crryrs

is a tensor of rank K. Since it is a function of (0, ¢) only it must
be proportional to Cpo(0, ¢). That is

zr (KQ]kk'gg’) th(er ¢)0¥r(8! ¢) i Axoxq(es ‘P)!
= (KO|kk'00) Cro(0, ¢). (4.13)

The value of 4 ; in equation (4.13) is found by putting 0= ¢= 0
and making use of equation (2.10). Equation (4.13) follows also
as a special case of the rule (2.31) for the combination of
rotation matrices.

Examples of the spherical harmonics polarized by the vec-
tor operators V and L are discussed in section 4.10.2 in
relation to vector fields.

Spherical harmonies with different arguments may also be
used to construct product tensors

Bo(kk') = 3 (KQ|kk'qq") Cro(0)Crp(@’).  (4.14)
L

These tensors, which we may call bipolar harmonies, con-
tinually appear in problems involving two directions,
(u and u’ being unit vectors along those directions). For
example, they describe the angle dependence of two particles
moving in a central field in an eigenstate of total angular
momentum L,

(u,w'|WLM) = [(214-1)(2U + 1)1 By (V') [47.




56 TENSORS AND TENSOR OPERATORS IV,§4.6

Often they are required in problems of the angular correlation
of nuclear radiations [5], [16].

The bipolar harmonics are orthogonal for integration over
the angles of u and u’

[ S o(1,03) o(l,l5) S(LL") s(M M)
fdufdu B 5(bl3) By pe (Lil5) = 1672 @, + D)1

(they would also be normalized to unity if they had been
defined with the normalized Y, rather than with the C,) and
have the closure property

2 |Bru(bl)* = 1.
LM
When K = @ = 0, (4.14) reduces to the spherical harmonic
addition theorem (4.12)
Byy(kk') = (—)F o(kk")Py(u . u')[/+/(2k+1).
Again, when & = k' = 1, we retrieve the vector relations

By,(11) = —u . u'[4/3
and B, (11) = i(u A u’),/4/2.

4.7. Matrix Elements of Tensor Operators

4.7.1. Wigner-Eckart Theorem

We wish to evaluate matrix elements of a tensor operator
with respect to the state vectors of a dynamical system. When
angular momentum is conserved, so that the state vectors are
eigenfunctions of J2 and J, the matrix elements of a tensor
operator have a simple geometrical dependence on the
magnetic quantum numbers. Let T, be a tensor operator of
rank k and consider the matrix element (oM | Ty p|e’T ).
The state vector T |«'J'M’) transforms according to the
representation 2, X Z,. of the rotation group. We reduce this
representation to its irreducible components by forming the
vectors with angular momentum (K, Q)

|BEQ) = 32’:' (EQ'EM'q) Ty’ d" M").
z
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Inverting this relation and taking matrix elements with
(ad M| gives

(@ M| Ty |’ My = 3, (] M|BEKQYNEKQ|J kM q)
KQ

= (o] M|BI M y(J M|J 'k M'q)

= (— 1) (o] || T| |’ T YT M| kM q). (4.15)
The inner product of state vectors (a/ M|BJ M) is independent
of M. Thus the matrix element of the tensor operator factorizes
into two parts. The directional properties are contained in the
(Clebsch-Gordan coefficients and the dynamics of the system
appear only in the scalar matrix element («/ M |8J M) usually
written as (o/||T;||«'J’) and called the reduced matrix
element.}

Inverting (4.15) gives the analogue to the scalar contraction

of vectors (section 3.2)

(@d|| Tl Ty = (—=1)2%* 3 (JM|J kM 'g) o M| Ty |’ T’ M").
Mg

The prototype of such matrix elements is the integration
over three spherical harmonies:

{lm] lel'm’) = | Y0, )* Y, (0, 9) Y,,.(0, 9)dQ. (4.16)

This is evaluated by combining the last two harmonics in the
way described in the last section (equation (4.13))

Yo Yo = 3 Yiol0, @) (g LU My (k0| LI'00) X
k
s (21'+1)(2L+1)]i
[ 4n(2k+1) ]
From the orthogonality properties of the harmonics we see
that only the k = I, m = ¢ term has a non-zero integral. Thus

Am| Y ypp|lm’y = @m|l Lo’ M0YA|| Y ||1")

2I' +-1)2L+1)7? '
al| ¥ =[(_4—w(2_1(_-1T:| 0| Lr00y.  (4.17)

i The definition used here is that of Wigner [78] and Rose [564]. Wig'ne_:r’s
tensors T'f,, however, are equivalent to the adjoints, e ?f ours (cf. section
4.8) because of the rotation conventions he adopts (Appendix IV). H_.acah [481.
[31], and Edmonds[22] define reduced elements which are (2J + ._lii times those
in (4.15). (The factor (— )% makes the phases of the two definitions identical.)

where
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The physical significance of the Wigner-Eckart theorem is
now clear. The ‘integrand’ of the matrix element on the left
of (4.16) must be a scalar if the element is not to vanish. So the
only part of the product of T, and |J'M') which can contri-
bute is that which rotates contravariantly to (JM |; that is,
like |JM ). By definition its amplitude is just the Clebsch—
Gordan coefficient, and this is the geometrical factor contain-
ing all dependence on magnetic quantum numbers. A further
important example is the matrix of the angular momentum
operator J whose spherical components J, form a tensor of
rank 1 as discussed in section 4.5. The reduced matrix is easily
obtained by considering J,, = J,:

TM|J "M’y = Moy s(MM’)
= (JM"10)T||J]|7).

The explicit form for the Clebsch-Gordan coefficient (Table 3)
gives immediately

||| = 8(JT') A/{T(T +1)}. (4.18)

All processes which do not involve a definite spatial direc-
tion (such as radiation transition probabilities) are indepen-
dent of the magnetic quantum numbers and are described by
reduced matrix elements. This can be seen explicitly by
supposing that matrix element (JM|T,|J'M’) describes a
radiative transition from state |JM) to |J'M’). If there is no
preferred direction then all orientations M’ of the final state
are equivalent and the total transition probability is

L3 |(.}'M|.’g",i,,,|¢,"’jla‘”)]2
oM’

= [T 3 | 2|k g2 )2
g "
= [Tl
since the Clebsch-Gordan coefficients are normalized.
The above theorem due to Wigner and Eckart [78], [21]
represents an important step in the program outlined in the

introduction to make a division between the geometrical
and physical properties of a system, or to remove from the
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problem those aspects which relate to the symmetry of the
system. The Wigner-Eckart theorem makes this division
explicit, the matrix elements factorizing into a Clebsch-Gordan
coefficient containing purely geometrical information concern-
ing the orientation of the system and a reduced matrix
element depending on the detailed physical structure of the

system.

4.7.2. Selection Rules

Selection rules connected with the conservation of angular
momentum are mostly derived by using the Wigner—Eckart
theorem. It follows from the properties of the Clebsch-Gordan
coefficient in section 2.7 that the matrix element

T M|T, | T2

vanishes unless
M=q+M

and the triangular conditions are satisfied,

V7| < kb < J+J". (4.19)
Clearly for k = 0 we must have J =J', M = M’ and the
corresponding Clebsch-Gordan coefficient is unity. This shows
that the matrix element of a scalar is independent of the
magnetic quantum number (i.e. of the choice of quantization

axis), as it must be, and is identical to the reduced matrix
element with our definition

TM|T ool My = 8(JJ") S(UM") (J|| ||

The spherical harmonic integral (4.16) also contains the parity
selection rule for the spatial part of a single particle matrix
element; (I410'4-L) must be even, otherwise (H’OO|L0)
vanishes (cf. equation (2.35)).

4.8. The Adjoint of a Tensor Operator
The hermitian conjugate or adjoint T+ of an operator 7 is
defined by expressing its matrix elements in terms of matrix

elements of 7" as (1|T+|2> = <2IT|1>*. (4.20)
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The operator 7' is called hermitian if 7' = 7'+, A necessary
and sufficient condition for an operator to be hermitian is that
all its eigenvalues should be real. For example, the compo-
nents of J,, J,, J, of the angular momentum operator are
hermitian and from section 2.2 they have real eigenvalues.
If A and B are operators and a is a complex number it fol-
lows from the definition (4.20) of the adjoint operator that

(AB)* = B*A* and (ad)* =a*4+ (4.21)
hence
[4, B]* = [Bt, A*] = —[A*, Bt].

From (4.21) and from the hermitian property of the compo-
nents of J it follows that
Ji=J.,J5 =J,

and from the commutation relations (4.9) of the shift operators
J+ and Jo with the components of a spherical tensor operator
Ty that

[Jo: T;;] = _[Jus Tl-q]+: B _qT:\;
o Tl = U5, Tood” = —[(kF g+ 1)k L) Tz,

Thus T, transforms contragradiently to T, (section 2.6).
Hence if we define an operator 7', by

T, = (=0T, (4.22)

then the 2k-+-1 components of T“ transform as a tensor
operator of rank %, (p is an arbitrary integer or half integer
depending on whether k is integral or half integral).

As a result of the property (4.22) at most only the ¢ = 0
component of a tensor operator can be hermitian. It is possible,
however, to extend the notion of hermitian operators to cover
tensor operators by defining a hermitian tensor operator as
one with the property

Ty, = (—1P4T] . (4.23)

The choice of phase p is arbitrary, although some authors
demand that p =k (Edmonds [22]) and others use
p = 0 (Schwinger [60]). Then operators which have p = k+1
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or 1 respectively are called anti-hermitian. On the other hand
the phase (—1) is essential to preserve the correct rotational
properties (4.8). The spherical harmonies ¥ zar and the spherical

components Jq of J (Jo = Jz, J21 = (Jz4-1Jy), cf. equation

1
T
(4.10)) show this hermitian property with p = 0.

Yiu = Yiy = (=1)" Y,y

JF=(-1pJ_,
There is a simple conjugation property for reduced matrix
elements of a hermitian tensor operator which corresponds to
equation (4.20). From equations (4.22) and (4.20)
IM|T I’ M) = (=1 M|T,_ ' M)
= (=1)>9J' M'|T,_ | T M)*,
or in terms of reduced matrix elements
VT +1) G| T
= (=17 @ 1) || Tl |D)*. (4.24)

4.9. Time Reversal

The results of section 1.8 do not apply directly to a system
with angular momentum because J is not invariant but
changes sign on time reversal. If 6 is the time reversal
operator then

P 0J,0- = —J,

0J, 0 = —J..

(The anti-linear character of 8 requires that the complex con-
jugate of any number which appears in the transformed
expressions should be taken, hence J, — —J_.) It follows
from the above transformation equations that if |jm) is a set of
states with angular momentum (j, m) then

JoBlajm) = —8J|ajm) = —mB|ajm)

J . 8|ajm) = —8J . |ajm)

= —[((Fm+1)(jLm)] OlojmTF1).  (4.25)
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Thus 8|«jm) transforms contragradiently to |ajm ). If we put
|Bjm) = (—1)*~™8|aj—m) then |Bjm) has the correct trans-
formation laws for a wave function of angular momentum
(3, m).

We consider a system with Hamiltonian H which is time
reversal invariant. The requirement that wave-functions are
eigen-states of angular momentum makes it impossible to
choose them invariant under time reversal, but the trans-
formation properties of a time-reversed wave function
discussed in the last paragraph make it possible to choose a set
of eigenstates of H, J® and J, for which

Blajm) = (—1)""|aj—m). (4.26)

The phase p is so far not specified but it is usual to require that
p = j, for then the choice of phases of the vector addition
coefficients (section 2.3) determines that

W) =3 |drjamams)(mymalJ M)
ﬂllm'

satisfies equation (4.26) if it is satisfied by |jym,) and jym,). If
we say that a tensor operator T, has a definite transformation
under time reversal when

then by an argument similar to that given in equations (1.13)
and (1.14) it can be shown that the reduced matrix elements of
T, are real if (p —k) is even and pure imaginary if (p —k) is odd.
In each case only one real parameter is necessary to specify
the value of the matrix element.

The requirement that (4.26) and (4.27) should be satisfied
with p = [ is the origin of the factor i* sometimes introduced
into the definition of spherical harmonics ¥,,, (section 2.3).

Equation (4.26) implies that

0% Jojm) = (—1)*™ |ojm) = (—1)¥ |ajom)
= |ajm) if j is an integer
= —|ujm) if j is & half-integer.
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4.10. Multipole Expansions

4.10.1. Scalar Fields
Let V(r, 0, ) be an arbitrary scalar field. Rotating the field
through a small angle « about the z-axis produces a new
field V' given by
V'(f, 0, qp) = V(fa 6, p—a)

d
= (1—iaL,)V. (4.28)
.0 [ 0 d\ . -
The operator L, = —tﬁ = —s(ma—y —ya) is the infinitesi-

mal rotation operator for the field about the z-axis. The
remaining components of L, L, and L, are defined similarly.

A multipole expansion aims at expressing the field V as a
sum of components with rotational properties of spherical
tensors, and for a scalar field this is achieved by expanding V
as a series of spherical harmonics:

Vir, 0,9) =2 Vin(r) Y1n(0, $)* (4.29)

where Vin = [ Y10, $)V (7, 0, $) dS2.

A rotation of the field V(r, 0, $) specified by Euler angles
(e, B, 7) is given by transforming ¥, according to equation
(2.22) while a transformation of the field produced by a
rotation of axes through angles («, §, y) is given by trans-
forming the coefficients V,, according to equation (4.5). A
simultaneous transformation of ¥, and V,, corresponds to
a rotation of axes with the field and produces no change in V.
The components of V,,, transform as components of a tensor
of rank ! and are the multipole components of the field V.

As examples we consider the expansion of a plane wave and
of a potential function. A plane wave travelling in the z-direc-
tion is symmetrical about the 2-axis and can be expanded as a
series of Legendre polynomials referred to this axis,

e*s =¥ {42l +41)j,(kr) P (cos 0). (4.30)
1
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The radial functions j,(kr) can be expressed as Bessel functions
of half-odd integer order

Jlkr) = (%)i'fxﬂ(’“')-

We may obtain the equation for a plane wave travelling in an
arbitrary direction (f, «) by rotating the wave travelling in
the z-direction. Equations (4.30) and (4.5) (or alternatively the
addition theorem (4.12) for spherical harmonics) give

expik.r = ;i'(2l+1)j,(kr)0,,,,(0, PICE (B, 0). (4.31)

The electrostatic field produced by a system of charges
provides an example of a scalar potential field. If r and r’ are
two vectors with direction (6, ) and (6', ¢') and if @ is the
angle between the two vectors then for » > ¢

1 '
r—r| = Z;}nP, (cos @)

7't
! Z T7i0m(0: )03 (0, ¢).  (4.32)
m

Thus the potential at r due to a charge distribution of density
p(r’) is given by
p(r’) Q;
Vi) o f & = 2. gE0m09), (439
where o

Qun = [p(r')r"1C,, (0", #) dr”.

The tensors @,,, are the multipole moments of the charge
distribution. For a system of point charges

@ = 2{: riCin(0;> 4,), (4.34)

~where (r;, 0,,¢,) are the spherical coordinates of the ith particle
and e, is its charge. For a quantum system the Ith multipole
moment of a state is the expectation value of Q,,, in that state.
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4.10.2. Vector Fields
Let A(r,0,¢) =3 A.e, be a vector field. The e, are unit
B

vectors along the coordinate axes and the A, are the com-
ponents of A along those axes. A rotation of the field through
a small angle o about the z-axis produces a new field

A'(r,0,9) =3 A(r, 0, —a)e;
where e; are unit vectors along a set of axes rotated with the
field. These unit vectors expressed in terms of e; are
e, =e,+oe,e =e, —ce, and e =e,
or e; = €;-}ue, A€,

Expanding the 4, as a power series in o and substituting for
e;in terms of e; we obtain an expression for the rotated field to
the first order in o

Al(r,0,¢) = A-f-m(e AA—B‘—A),
» 0, 2 Y
or A'(r,0,¢) = (1—iad,)A, (4.35)
where J, = -—ias—l- e, A
L. 8 Oy
s —a(xa —ys;) e, A, (4.36)
= L, +8,.

Thus one part of the change produced by rotating a vector
field is due to the variation of the field components at different
field points. The differential operator L, generates this part of
the transformation. The other part of the change generated by
S, is due to a re-resolution of the vector field components
when the field is rotated. The operator S, can be written as a
3 X3 matrix and is one of the infinitesimal transformation
matrices of the representation 2, of the rotation group, thus
the ‘intrinsie spin’ § = 1 properties associated with a vector
field.
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Let us define a set of three vector fields from the unit I respectively. As an example the vector field r can be written
vectors e,, e,, and e, by e
as r=r ~Z(—1)ﬂ‘1’,_mem
eil ‘\/2(e j:'le’.) 3 r
e =e, (4.37) = —rq/4m Yg,(0p).
and three operators Thus the field r is the scalar product of the spherical tensors
4 g : 7Y, and e,, (both of rank 1) and is invariant for rotations as
= (8.xi8,) = i(e.xie,) o, concluded above. In addition the vector spherical harmonics
8, = ie, A (4.38) Y%, (09) satisfy the orthogonality conditions,
The operators (4.38) obey the cognmutat.ion relations of angular J‘ (Y2 (68))*. Y2, (0p) AQ = S(II') S(LL') S(MM'), (4.40)
momentum operators, and, acting on the set (4.37) of vector )
fields they transform them as components of a tensor of rank and they form a oognplet.e set for expanding the angular
one, as may be proved by testing the relations (4.9). For dependence of an arbitrary vector field.
example It has been shown that the vector field r is invariant for

rotations of axes. If ¢,, are a set of 2L-+1 scalar fields

8.8 = i(e,+ie,) A&, = —(e,+ie,) = /26, forming a spherical tensor of rank L (e.g. ¥ ,,,) then the set of

The field r provides an interesting example of the above vector fields r¢,,, also transforms as a spherical tensor of rank
analysis. L. The vector field operators
Jor = (L, +8,)we,+ye, +z,), Vee : ? e :z
== _"( —Yye, +3ev) +£es A (xex +yel +ze,),
L = —ir AV,

from the definition (4.36) of L, and §,. d VAL
Hence it follows that e Adn

J,r =0, share with the field r the property of being invariant under

 rouutt which ok surpeislai beokuse the Asld ¢ i suberivelly rotation. Hence each of the three sets of vector fields,

symmetrical and a rotation transforms it into itself. Vs Ldyy and VAL, (4.41)

Vector fields which are generalizations of spherical harmonics
may be formed by taking products of the vectors e, defined in S T
(4.37) with spherical harmonics and by using equation (4.6) o e L Y,y = [L(L+1)] Y¥,
to give an irreducible tensor.

form spherical tensors of rank L. In the special case when

is a vector spherical harmonic. The fields (4.41) share with the

Y¥ =3 (LM|limn) Y e, (4.39) vector spherical harmonics the property of orthogonality with

mn respect to angular integrations and sometimes are a more

The set of 2L +1 fields Y}, transform amongst themselves convenient set than the vector spherical harmonies for making
as components of a tensor rank L, i.e. according to equation a multipole expansion of a vector field.

(4.5). They are products of the tensors e, and Y,,, of rank 1 and Such a case arises in considering solutions of the wave
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equation for a vector field A with wave number £,

VA +k2A = 0. (4.42)
The functions ¢, = t%(2L+1)j(kr)C 5 (04) where j,(kr) are
the spherical Bessel functions introduced in section 4.10.1
satisfy the scalar wave equation corresponding to equation
(4.42), and with this choice of ¢, the vector fields (4.41) form
a complete set of expanding solutions of equation (4.42). In
addition the set A, A%, A7, with

Apy = (k)7 Ve,

ALy = [kV{L(L+1)}]7V ALy,

ATy = [W{L(L+1)}]7 Ly (4.43)
have the same normalization as ¢,,. The fields A,, are
irrotational and have parity (—1)**?, while the fields A%, and
A%, are solenoidal and have parity (—1)**' and (—1)%
respectively. The notation looks forward to the application of
these fields in expanding the vector potential of the electro-
magnetic field. The fields A ;,, are longitudinal fields whereas
the fields A%, and A7,, will represent the electric and magnetic
components of the transverse field. It follows from equations
(4.43) and (4.42) that

A%, = k(V AAT,), (4.44)
and A, = kYU AA%,).

As an example of the expansion properties of the vector
spherical harmonics and of the vector multipole fields (4.41)
we obtain expansions of a plane wave in a vector field moving
in the z-direction and with polarization vector e, If ¢ =0
the wave has longitudinal polarization, if ¢ = -+ 1 the wave is
transverse and has right or left circular polarization. Remem-
bering the expansion of a scalar plane wave given in equation
(4.30) and the definition (4.39) of vector spherical harmonics
we get an equation

et = 2 i/ {42+ )}illr) V(0. 4)e
- gi‘«/{4«(zl+1)}5;(kr)<t10qqu>Y‘m (4.45)

as a series of vector spherical harmonics.
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Alternatively we may expand the plane wave in terms of the
fields (4.43). For the longitudinal component

1
e ettt — _elks
¢ ik

4
== 2 Vo
- ;A e (4.46)

The transverse wave is a little more complicated. The sym-
metry about the z-axis determines that ee™ is a sum of
components with M = ¢ = 41 and since the fields (4.43) form
a complete set

eee‘kl' = % (aLALG+bLA”L‘§+cLA}4)'

Taking the divergence of both sides of this equation deter-
mines that a; = 0, taking the curl of both sides (V A) and
using equations (4.37) and (4.44) gives b, = gc,, and, finally,
taking the scalar product of the operator L with both sides and
using the expansion (4.30) for exp (ikz) gives ¢, = —1//2.
Hence the transverse circularly polarized wave has expansion

1
e ettt — cives Z (AR +AS,). (4.47)
L

Equations (4.45) and (4.47) give the expansion of a plane polar-
ized vector wave travelling in the direction of the z-axis. The
expansions for a wave travelling in an arbitrary direction
with wave number k can be obtained by rotating these
expansions. For example the transverse wave has the expan-
sion

1
e = “ ; (GATy +A%) Z 5 (R) (4.48)

where R is the rotation taking the z-axis to the direction k
(equation (2.22)). These calculations show that the Az are the
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natural fields for expanding a longitudinal vector wave. In the
expansion of the vector potential in a transverse electro-
magnetic wave the components A%, and A7, correspond
directly to its division into electric and magnetic multipoles.

4.10.3. Spinor Fields
The general spin-half field has two components and may be

e S =3 7.8,(r, 0,4),

where y, is the two-component spinor,

arl) = 20l

The two components S, and S_; of S are defined with respect
to a particular z-axis. A rotation changes the spatial depen-
dence of the §, and also mixes the two components. Just as
in the case of a vector field the infinitesimal rotation operator
is a sum of two parts

where L, acts on the spacial dependence of the field and S,
mixes its components. For the spin half-field the spin operators
can be represented by the Pauli matrices §; = 1o,.

The analogues of the vector spherical harmonics are

b = :Zn (jn|3lom) 3 4'C,.(0p).

Note that j is always half integral and can never be zero.
Hence there is no spherically symmetric spinor field analogous
to the vector field r.

There is also an expansion of a spinor plane wave similar to
(4.45)

2L " = HZ“: (21+1)(}00jn) ji(kr)$y, 25,(R).

The suffix o refers to the polarization of the wave along Kk, its
direction of propagation.

IV,§4.10 TENSORS AND TENSOR OPERATORS 71

4.10.4. Electromagnetic Multipoles
The electric and magnetic fields are given in terms of a
vector potential A obeying the gauge condition div A = 0 by

1 0A
H=curlA,E = ——.
¢ ot

The component of the vector potential which oscillates with
wave number k =% can be expanded in terms of the multi-
pole fields (4.43) as
A =A'+Am
e 3‘:{ (@20 A% + 903 AT)- (4.49)

The fields V¢, ,, do not obey the gauge condition div A = 0,
therefore do not appear in the expansion. The first terms
of expression (4.49) denoted by A® are the electric multipoles
and the terms denoted by A™ are the magnetic multipoles.

On quantizing the electromagnetic field the Fourier coeffi-
cients ¢7,, and ¢7,,in (4.49) can be written in terms of creation
and annihilation operators for photons (Heitler [34]).

If the photon states are normalized in a spherical box of
radius R, then the electric multipole part of the vector poten-
tial takes the form

fio\} . .
M) = () @Al ) +HSATD)  (450)
74

where af}, and aj, are the creation and annihilation opera-
tors of electric 2”-pole photons.} There is a similar expansion
for the magnetic multipole part of the field.

1 An electromagnetic transition probability is given by

A.pl.

=25[ o

where p(E) is the density of final photon states. For waves of a definite angular
momentum and for a spherical box of radius R, p(E) = R[xnlic. The radius of

R of the region of quantization therefore cancels with the factor Rin A (equa-
tion (4.50).

2

6.
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4.10.5. Multipole Sources and Hyperfine Interactions

In potential problems where the extension of the source of a
field may be neglected it is convenient to introduce the idea
of a point source, for example a point charge or a point
dipole in an electric field. Mathematically the source of the
field produced by a unit point charge is represented by a
o-function] and the potential equation for the field 1/r is

1
V“; = —47x 5(!‘)

If we differentiate both sides of this equation with respect to
z we obtain the result that the source for the dipole field
z _  04(r)

— 18 47m——0H.
oz

3
This idea of a point source can be generalized by introducing

1
a source function for the multipole field ——C,.(64) by the
equation v

1
V’(’m(}‘m(ﬂ-ﬁ)) = —dm 8,,,(r). (4.51)

The source functions é,,(r)§ are tensors of rank L, and
are generalizations of the three-dimensional §-function which
vanish if » 54 0 and have a singularity at r = 0 such that if
f(r) is an arbitrary scalar function regular at the origin

|1 *(x) 8yp0(x) dr = F,, (4.52)

where F,, is the coefficient of 7“C',, in a power series expan-
sion for f(r) about the origin.
In particular

[r4C%py. Byp(x) dr = 8(L'L) (30" M),
1 A d-function is defined by the property that for any function f(z) regular

atx =0
[1e) dta) dz = si0)
and the derivative of a 4-function §(z) by

dd d
%2 @) da = — [oe)F de = —p10),

a result obtained by a formal partial integration.
§ Oy is an Lth derivative of the 3-dimensional §-function.

IV, §4.10 TENSORS AND TENSOR OPERATORS 73

The set of singular functions may be further augmented by
introducing functions
X (n+L) (2L+1) _
O = o1 (2L+2n +1)!v O1u(T) (6:69)
and the resultant set includes all derivatives of the é-function.
The functions d7,, have the property that for a scalar function

f(r)

[£4(x) 8p(r) dx = F, (4.54)
where F7, is the coefficient of +“**'C, in a power series
expansion of f(r) about the origin. This result can be demon-
strated by a series of formal partial integrations, reducing
equation (4.54) to an integral of the form (4.52).

If we have an arbitrary scalar density distribution p(r)
concentrated near the origin we may introduce the formal
series

p'(r) = 3 Q7 05 (r) (4.55)
nLM

with coefficients @7, given by
o = [P0, (0.4)p(x) dr. (4.56)

Equation (4.55) can be considered as an expansion of the
function p(r) as a series of derivatives of the d-function in the
following sense. If ¢(r) is a function of r which is expandable in
a power series about the origin with a sphere of convergence
which includes p(r) then

[#)p(x) dr = [$(x)p'(x) dx (4.57)

where p'(r) is the series given in equation (4.55). The relation
4.57 may be proved by substituting the series for p’(r) and
using the property of the -functions given in equation (4.54).
It may seem strange at first that the function p(r) of finite
extent may be represented as a series of §-functions which take
values only at the origin; but if it is remembered that equation
(4.57) defines the meaning of the series p’(r) and that ¢(r) must
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be of finite extent then the difficulty is removed. The expres-
sion (4.55) may be used to find the potential V(r) produced
by a charge distribution p(r). We have

V2V = —4mp
and combining equations (4 51), (4.53), (4.55) we get

V(r) HZ[ ML :.+: "me} (4.58)

p=1

The first terms in (4.58) give the potential outside the charge
distribution (equation (4.33)), while the further terms represent
the modification of the potential inside the charge distribution.

The interaction energy between an extended charge
distribution p,(r) and a concentrated distribution p,(r) (e.g.
the potential energy of an electron in the field of a nucleus)
can be found by expanding p,(r) as in equation (4.55) and
obtaining ¥, (r) by equation (4.58). The interaction energy is

W =[p(r)V(r) dr (4.59)
= 2 Q7u(€)Qry(n),
LM

retaining only the first term in the expansion (4.58). The
Q1x(n) are given by equation (4.56) and

Qrale) —I Lgif pe(r) dr. (4.60)

Inclusion of higher terms in equation (4.58) gives an expansion
of the interaction energy W as a power series in radius of the
charge distribution p,(r).

A similar expansion can be made for the magnetic field
produced by a static distribution magnetization M and a
stationary current distribution of density j. The magnetic
induction B and the magnetic field H are given by

B =H-+42M,
curl H = 47j,
B =curl A,
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and the vector potential A is chosen to satisfy the gauge con-
dition div A = 0. These equations yield an equation for the
vector potential
V2A = —dn(j+curl M),
= —d4xJ,

introducing an effective current density J which is the sum of
the charge current and the ‘magnetization current’. Remem-

bering the stationary current condition div J = 0, J may be
written in terms of two scalar fields as

J = L¢1+(v A L)éz'
If we retain only the lowest terms of a power series in the
radius of the charge distribution it can be shown that the
field ¢, gives no contribution. Expanding ¢, as a -function
series (equation (4.55)) and keeping only the lowest terms for
each multipole we can write

1
3= ;EM;,,L 8 pr(T); (4.61)
hence
1
%.3 =;EM}:3L”' 8 0(T)
= ""E, Mp,, (L41) 8,,(r).

Therefore the coefficients M ,,, are given with the help of
equation (4.56) as

Wiy o L;-I—l J'rﬂow L.Jdr. (4.62)
Since J = j+V A M we see that the multipole moments M ,,,
have contributions from the current j and the magnetization
M. The current contribution has exactly the form of equation
(4.62) with j replacing J, while the magnetization part can be
transformed by partial integration. Using the result of equa-
tion (6.6) (cf. Appendix VI) we get

My = [V Cyy). M dr. (4.63)
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In a quantum system the current j is due to motion of charges

while the magnetization M is associated with particle spins.
For a single particle the current is represented by the operator

jiom e e v
=l P = —'"mth
and the magnetization by
M eh
= s

where m is the particle mass and g, and gg are its orbital
and spin g-factors, (eg; is the particle charge). In a many
particle system j and M are sums of the corresponding single
particle operators. With this identification the moments (4.62)
and (4.63) are exactly equivalent to the dynamic magnetic
moments (6.12b) and (6.12d).

Given the magnetic moments M, ,, of the source the vector

potential A can be calculated by using relations (4.51) and
(4.61) giving

D
AX) =2 SMELE-“0,(0,4).  (464)
773
The induction B is found by evaluating curl A and making use
of a result analogous to equation (6.6)
(V AL)(f-lL+!’CLM) = —'*:Lv("_u'ﬂ)ow)‘“""'r Orm
giving
B = u3,[ve-ivo,,) 27
_; 2ol Ve )~ | (465)

We shall show that the d-function singularity in B at the

origin is responsible for the spin contact interaction in hyper-
fine structure.

The Hamiltonian for the magnetic interaction between an
electron and the nucleus of an atom is

W = [(,.A,+M,.B,)dr (4.66)

where j, and M, are operators representing the electron cur-
rent and intrinsic magnetization and A, and B,, are the vector
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potential and magnetic induction of the nuclear magnetic field.
By replacing the fields by their multipole expansions we obtain

W =3 M}, (e) My, n). (4.67)
LM

The nuclear nioments M, (n) are given by equations (4.62)
and (4.63) while M, (e) is a sum of two parts, one being due
to the electron orbital motion, the other to the spin interaction
coming from the terms of equation (4.66) containing j, and M,
respectively. The orbital part is (from equation (4.64))

i
M, (e) = EIL(r"“"Cw).j, dr. (4.68)
and the spin part is (from equation (4.65))

4
My, (e) =fV(r“"‘+1)Cw}. M, dr—-%-"M, T 3y, dr,
(4.69)

For L = 1 the last term in equation (4.69) is the familiar con-
tact interaction between the electron spin and the nuclear spin
when the electron is in an S-orbit. These are the same as the
formulae for multipole interactions given by Schwartz [59].
Equation (4.66) represents the magnetic interaction between
a classical electron and the nuclear magnetic field. The
corresponding relativistic interaction is
W = |ea.A,dr, (4.70)

where a is the Dirac [20] matrix giving the electron velocity.
The multipole expansions still hold if j, is replaced by ea
and M, — 0 because the spin interaction is already included
in (4.70).

CHAPTER V
MATRIX ELEMENTS OF TENSOR OPERATORS

W= are now in a position to calculate those parts of any
physical problem which are concerned with angular integra-
tions, the coupling of angular momentum vectors, or our
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choice of coordinate system—in fact general rotational
symmetries—which we might call the ‘geometrical’ parts.
The basic technique is to exploit the simplest matrix reduction
which we have already met in Chapter IV, namely the Wigner—
Eckart theorem for the matrix elements of spherical tensors

IM|T o' M’y = (— 12KJMJ' EMQYJ||Tk||7). (5.1)
The aim is to derive some general formulae for matrix elements
which depend only on the geometrical structure of the states
and tensors involved, so then they can be applied to a variety
of physical situations. Some of these applications are described
in the next chapter. The results of such calculations are
expressed in terms of the algebraic functions discussed in
Chapter III. Owing to the extensive tabulation of these
functions for a wide range of values of their arguments, this
is a form very suitable for numerical work.

5.1. Projection Theorem for Vector Operators

First, we draw attention to the so-called Projection Theorem
for vector operators V, which is the special case of the Wigner-
Eckart theorem for tensors of rank one. It concerns matrix
elements between states with the same J,

UM\VIIM) = (M| II.V)TMHIT +1)
= gAV)IM|3|T ), (5.2)
This may be proved by expanding the right hand side, with

the help of the Wigner-Eckart theorem. The physical signi-
ficance of (5.2) becomes obvious when we realize that

JJ.V)[J(J+1)
is the component of V along the unit vector
IV (T +1)}

According to the vector model, V is precessing about J, and
its component perpendicular to J averages to zero (cf. Fig.
5). The theorem states that the expectation value of a vector
operator in a state of sharp J is always proportional to
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the expectation value of J, as the second form of (5.2) emphasis.
The coefficient g;(V) is a generalization of the g-factor familiar
in magnetic moment problems. In reduced form, (5.2) becomes

VI = gV +1)}. (5.3)
5.2. Matrix Elements of Tensor Products

Next we consider a tensor 7 go(k,k,) which is itself a tensor
product of tensors of rank k, and k,, as described in Chapter IV.

J-v % .

VI + 1)}

Vv

F16. 5. The veetor V precesses rapidly about J so that its component at rfght
angles to J averages to zero. Then the component of V along 0, is determined
by the direction of J.

We may write such a tensor

T gqlkiks) = 3 Ry Sy g o(kksqQ —q|KQ). (5.4)
¢

The reduced matrix of the composit tensor T may be evaluated
in terms of the matrices of the R and S by using (5.4) and
introducing intermediate states between the two tensors,

T = 3 (— 1)K TM|T g oI M—Q)I M| KM —QQ),
Q
=3 (= V)T MK M —QQ)(KQ|kkgQ—g) %
P

X (T M| Ry JJ" M —q) " M —q| Sy q_ | M @)},
= 3 (=1)Fh k(27" £ 1)(2K + 1)} WIS kyky; KJ”) X
-

X (J"Rk.l|J'>(J'”Sk,”'r>' (5.5)
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The geometrical significance of the Racah function is readily
understood when we notice we have carried out a recoupling
of three angular momentum vectors, expressing a scheme like
[(kyks) K ,J'; J] in terms of one like [k,,(k,J')J”; J]. The Racah
W is just the transformation coefficient between these two
schemes.

When K =0, (5.4) defines the scalar product of two
tensors, although a different normalization is convenient
(cf. equation (4.7))

Ry oSy = (—1)*V/(2k+1)T oo (k). (5.6)

Equation (5.5) then reduces to

2J' +
VlIRe Sl = (=0~ (

ey T EAATEN Y

(5.7)

IfS, = R,, and is Hermitian in the sense of (4.23), we may use
(4.24) to reduce (5.7) further

IRy R = 3 (-DGRIOE. 6)

We have said nothing about the nature of the tensors R, and
S,; in the next section we shall consider the special case of a
system composed of two parts, with R acting on one, S on the
other. In such a case (5.5) can be expanded further.

5.3. Reduction of Matrices for Composite Systems

We are often faced with the problem of computing the value
of an operator which refers to only one part of a composite
system. Such a composite system may consist of two or more
separate systems, or merely different aspects of the same
system, such as the spin and orbital properties. Suppose we
have a two-component system with angular momenta j, and
Jo» and resultant J, while the tensor 7'(1) acts only on part 1 of
the system. The coupled state vectors are given by (2.27), and
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the reduced matrix of 7',(1) found by expanding them
G [ Te|j1de ) = 2 (—1)%J M|J kM —gg) X
q
X (Guje M| Ty(V)|jyjed ' M —q)
= S (JM\|J' kM —qq){j,jomM —m|J M) x
qm
X (Jrjem —qM —ml|J M —q) X
X Gymljilem —a@)Gil| TeW)]30) 8(ad2),
= (=1)"ER{QT £1)(25, + 1)} W (G5’ ki) %
X Gl T3 0Gadz).  (5.9)

The Racah function appears for precisely the same reason as
it does in (5.5). The mirror formulato (5.9), when T,(2) actsonly
on part 2 of the system, is easily obtained by remembering
that changing the order of coupling of parts 1 and 2 only intro-
duoce & Phae, |5, jul M) = (—1yxh iy B0,

from the symmetry of the Clebsch-Gordan.coefficient.

A simple example is that of a particle with spin, and an
operator which acts only on the spatial coordinates. Such an
operator could be the spherical harmonic C',,. If the particle’s
total angular momentum j is made up of orbital [ and spin s,

(sj||CL||'si"y = (=1~ E*+ (21 4+1)(2Z' +1)]F %
x W(W'55'; Ls)||Cr||t'y  (5.10)

where (||C,||’) has been given in (4.17.) When /41’ + Lis even
and s = } this simplifies considerably when the relation for W
in Appendix II is used,

j L
ajllcLlltsi’y = (=17 "Iy (25 +1)( ao) (5.11)

which is independent of / and ['.

More generally we may have a product of tensors with
R(1) acting on part 1 and S(2) on part 2 of our composite
system. The matrix of such an operator may be expressed in
terms of the matrices of the component systems in the same
way as (5.9), or by noticing that in this case each of the matrix
elements on the right hand of (5.5) are of the form (5.9). Either
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way we have to change the coupling of the four vectors j,
from a scheme [(jyju)J, (j1jsh'; K] to one like [(f,3;)ky (jajs)o;
K] which indicates that an X-coefficient is involved. We soon
find
a3l || Trlleiky)Gi3e7") = (27 +1)(2K +1)(2), +1)
JJ'K
X (Ze 11 X 4Gy gt Ky p GilRall5) GellSellis).  (5.12)
e i s
Putting &, = 0 of course, (5.12) reduces to (5.9). When K = 0,
we have the scalar product (5.6), and .(5.12) becomes

(el || R(1) « Sp(2)|[drdad ") = {(2]; + 1N(2j, + DI x
X O, J' )N —1) 79 W (4,51 dadas k) Gy |[Ry |50 Gl ISl 5)-
(5.13)

(This may also be obtained from (5.7) by using the Racah sum
rule (3.21).)

There is a simple geometric interpretation of the diagonal
elements of (5.13) with j, = j;, j, = ji. The reduced elements
on the right hand are the average or expectation values of R
along j, and S along j,, respectively (see 5.2), while in the limit

of large j,, j, and J [Biedenharn 5],
(—=1)7 (2, +1)(2o + 1)1 W(jyj,dader k) = Py(cos 0).
Here 0 is the angle between the vectors j, and
cos 0 = {J(J +1) —j,(j, +1) —joldo +1)}/2j1Je-

For k = 1, this is the familiar form for the scalar product of
two vectors.

There are many such scalar product operators, one example
being the scalar product of the renormalized spherical har-
monics of (2.9).

(hLL||C(1) . C(2)||its L)
= O(L; L)(—1)" (21, +1)(20,+ 1) (24 +1)(28+1)]* x

_ k1 U\(kl, 1
x WL, 11,15 kL) (0 0 0‘) (0 0 ;“) (5.14)
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Another important example is the spin-orbit coupling
operator 1. s, with k& = 1. This has matrix elements

Asj||1. s||i's5") = 8(s, 8") 8(1, ') 8(j, 3')(— 1) ™'~ * W (Hss, 1) x
X [UI+1)(20+1) s(s+1)(28+1)]*.
The explicit form for the Racah function form Table 4 leads to
sj|[1. s||isj) = 3HG+1)—U(1+1)—s(s+1)].  (5.15)
In this particular case, of course, this result could have been
obtained far more easily by using the vector relation
2].8 = j2—12—s2 (5.16)

It should perhaps be emphasized that in the explicit
examples (5.11), (5.14), and (5.15) above we are concerned only
with angular and spin integration; any radial integration has
not been included explicitly.

Other more complex systems with more than two com-
ponents may be dealt with by repeated application of the
techniques described here, or by the methods described in the
next section.

5.4. Systems of Many Particles
When dealing with systems of n similar particles, we are
interested mainly in the matrix elements of two simple types

n
of operators. The first is the one-body operator F = 3 f(i),
i=1

where f(¢) acts only on the coordinates of the ith particle. The
other is the two-body operator G = ¥ g(ij), where
i>j
9(%j) = 9(j9)
acts only between particles ¢ and j, and ¢ > j means a sum
over all pairs.

It is not appropriate here to go into the details of the
construction of multi-particle wave functions; the reader is
referred to other standard works [14], [17], [26], [49]. We
shall merely indicate briefly the technique for evaluating
matrix elements of operators like F and G.

The wave function for a number # of identical fermions
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(bosons) must be written so that it is antisymmetric (sym-
metric) under the exchange of the coordinates of any two
particles. Thus it is not possible in general to write it as the
simple product of an antisymmetric (symmetric) function for
n—1 of the-particles times a wave function for the nth.
However, it must be possible to write it as a suitable sum of
such products. Suppose the system had total angular momen-
tum J and z-component }M, we may write (summed over a,,
J,, @ and j)

[x(n), JM) = 3 |ay(n—1) ,, ajs J M) (a,(n—1)T,, aj|}a(n)] ),
(5.17)
where |a,(n—1)J,, aj; JM) = 3 |a,(n—1)J, M —m)|ajm), x
X (J, jM —mm|J M), (5.18)

and «, ,, @ are any additional quantum numbers needed to
specify the states fully. The parent states |/, M,) are
orthonormal and fully antisymmetric (symmetric) in the
first n—1 particles, while the nth occupies the state |ajm),.
The individual terms of (5.17) are not fully antisymmetric
(symmetric) in all » particles, but their sum, weighted by the
numerical coefficients of fractional parentage (efp)
(%Jp! @j I}“J)
must be. The cfp describe how the state |«/ M) may be built
up from its possible parent states obtained by the removal
of one particle. The second relation (5.18) merely describes
the vector coupling of the two parts to the correct total
angular momentum. The orthonormality of the various states
in the expansion (5.17) ensures that the cfp obey
°"J):W(ac.,!{|a:,,.1',, aj) agd, aj|}’J’) = O(x, ') 8(J, J’). (5.19)
The expansion 5.17 is of principal interest when the many-
body wave function |«/M) describes a single ‘independent
particle’ configuration, that is, one in which each particle may
be assigned a set of quantum numbers (aj) (an ‘orbit’) inde-
pendently of the others, the whole suitably vector-coupled to
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give the correct total angular momentum. Configurations of a
number of ‘equivalent’ fermions, that is, all occupying the
same orbit (aj), have been widely studied in the literature and
many of the cfp tabulated [26].

Since the n similar particles are indistinguishable, the
matrix element of the one-body operator F' must be just »
times that of f(n). Suppose F' were a tensor of rank k, F,. When
we use the wave function (5.17), f,(n) only acts on the nth
particle, so we have a sum of matrix elements of the form
(5.9) discussed above. We find

()|l )"y
= nZ(— 1)t S 1)+ DP W (ST kS p) X
X (ajllfiella’s’) @n){|ap(n—1)T5, aj) (ap(n—1)Tp aj’ |}’ (n)J" )
(5.20)
summed over «,, J,, @, @', j, j’. Because of the orthogonality of
the parent wave functions, only those parent states common
to |x(n)J M) and |«'(n)J' M) can contribute to (5.20). A very
interesting result appears when we have n equivalent particles,

all with angular momentum j, so the sum over j, j’ reduces to
one term and

(@G ||Fel |’ (M) = ndaj]|f(n)||aj) x
X ¥ (=12 020 +-1)( 2+ D) RFW (T kdJ ) %
ayy
X (o {|ot, s @) oy, @[ '), (5.21)
When F is scalar, £ = 0, this becomes
(@(G)||F ||’ (5" = n d(ax, &) 8(, IV aj||follagy.  (5.22)

The form of (5.21) shows that for these equivalent particle
configurations the ratio of the matrix elements of two such
one-body operators, F, and R,, is equal to the ratio of the
corresponding single particle matrix elements.

("W || Fallo Gy _ Caillfyllai
@G| Relle' G ag|ryla)’

(5.23)
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independently of «, ', J and J'. In particular, with the vector
operator V we may take R, to be J, obtaining the simple result

J(J +1
(a(jn)J“V“a’(j")J'> = 6(:;, U»’J 6(‘}: J’) (j:j :_-1))

i
) wilIvlfa>-
(5.24)

When discussing the projection theorem for vector operators
in section 5.1 we defined a generalized g-factor by (5.2), (5.3).
The relation (5.24) shows that for one-body operators the g-
factor for # equivalent particles is the same as for one part-
icle, independent of J and «. Putting F, = J in equation
(5.21) yields a sum rule for efp.

Matrix elements of the two-body operator G may be evalu-
ated in the same way, except that now we need to apply the
fractional parentage expansion twice in order to ‘peel off’ the
nth and (n—1)th particles. The value of (7 is then the value of
g(n, n—1), times the number of pairs, n(n —1). In practice the
two steps are often combined, and cfp defined for the reduction
of the n-particle wave function to produets of a function for
the first 7 —2 times one for the last pair, appropriately sym-
metrized [26]. Again, only parent states of the n—2 particles
common to both » particle states can contribute to matrix
elements of G between the latter. With independent particle
wave functions this means the configurations for the two
states can differ at most in two sets of single particle quantum
numbers if the matrix element is not to vanish.

5.5. Isotopic Spin Formalism

In nuclear problems, neutrons and protons are often treated
on the same footing by introducing isotopic (or ‘isobaric’)
spin.

The i-spin operator T is identical with the Pauli spin
operator o, except that it is said to operate in an abstract
charge, or i-spin, space. The eigenvalues --1 of =, are
then used to denote neutron or proton respectively. Charge
independence of nuclear forces then leads to conservation of
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total i-spin, T = Y =,, and nuclear state vectors are simple
i

products of ordinary space-spin functions with an ¢-spin
function, |a/ M, a;TM;) = |/ M)|e,TM,). Since the opera-
tors * and T behave in charge space just as angular momenta
in ordinary space, all the vector coupling and other techniques
described in this book apply equally to them and their
eigenfunctions. In particular, we may construct operators in
this space (which, just as in Pauli spin space, can always be
expressed in terms of = and the unit operator 1), whose matrix
elements are to be evaluated as described in this chapter. If
the interactions are charge-independent the operators repre-
senting them must be scalar in the product charge space for
the whole system, but if not (such as for electromagnetic
interactions) higher rank tensors will appear. For example,
the two-body charge exchange operator P can be written in

the scalar form
5 P;?. = }(1+7. Ty),

while the electrostatic interaction of two nucleons take the

form
o

e
- I~ 5
(1—=m.)( ‘fs)Fm

= [1 =73, =79, +3(7y . T2) +1/§T 50(m1, 72)] €3/4ry,
in which scalar, vector, and second rank tensors appear.

CHAPTER VI
APPLICATIONS TO PHYSICAL SYSTEMS

TaE purpose of the present chapter is to apply the results of
the previous two chapters to some physical systems of interest
in atomic and nuclear physics, as examples of the usefulness of
these techniques.

6.1. Electromagnetic Radiative Transitions
In this section we shall use the multipole expansion
of a vector field, described in section 4.10.2, to define the

7
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electromagnetic interaction tensors and to calculate their mat-
rix elements for the emission of a photon. We confine ourselves
to non-relativistic particles, which is usually sufficient for
nuclear problems. The treatment of relativistic motion follows
very similar lines [34], [53], [54].

A particle of spin s and momentum p moving in an electro-
magnetic field whose vector potential is A experiences (in the
Lorentz gauge) an interaction [59],

H'(r) = —5 (g, [A(K). p+P. A®)] 9. V AA(D)].
(6.1)

g, is the spin g-factor so that the intrinsic magnetic moment of
the particle is p = gs8(ehi/2me), while g, is its orbital g-factor
and egy, its charge. Terms quadratic in A are neglected in (6.1)
since they lead to two-photon emission. Also, the first two
terms of (6.1) are identical since A commutes with p in this
gauge (div A = 0).

6.1.1. The Multipole Operators

The multipole expansion of the vector potential A, for a
circularly polarized plane wave has already been described in
section 4.10.2. It remains to insert these multipoles into (6.1) in

order to find the corresponding interaction tensors. From
(4.48) we have

1
Ak, 1) = e™ = — > (qAT(r)+ ALy (r) DL (R)
V2

(6.2)
where  /{L(L+1)}A%, = i%(2L+1)j(kr)LC

and
A%y = (1/E)V A A%, (6.3)
corresponding to a flux of (k/4=h) photons per second along k.

R is the rotation taking the quantization axes into those with

z-axis along k, and ¢ = 41 for left/right circular polarization
about k.
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The charge dependent terms of (6.1) are proportional to
A . V. The magnetic potential of (6.3) can be used as it stands,
but it is more convenient to use the vector relation which
follows from L.V = 0,

Lf(r).V = —Vf(r).L, (6.4)

because the operator L commutes with the radial part of the
particle wave function while V does not. This is particularly
advantageous when the long wavelength approximation is
used,

Jpller) = (kr)¥ QL+, if kr<l (6.5)

Then f(r) is proportional to the solid harmonie #*C',,,, and the
gradient formula of Appendix VI can be used.

The long wavelength approximation also simplifies the
electric radiation field in (6.3), for we have the relation

VAL Cpy) = i(L+1)V(C ) (6.6)

and the electric part of the vector potential is the gradient of a
scalar potential. We then use the anti-hermitian property of V
and the Schrodinger equation for the states |«) of the radiating

pa.rticle, [_(kglzm)vs_l_y_ﬂa]lu) =({), (6.7)

to simplify the electric radiation matrix element. With (6.6)
the electric component of the vector potential (6.3) is propor-
tional to Vf(r) where f(r) is the solid harmonic r%C,,. The
matrix element of this part of (6.1) is then proportional to

BIVf. V+V . Vf|a)
= (B|Vf . V|a)— (a|Vf. V|p)*
= —(B|fV2|a) -+ (x|fV2|B)*
= (B,—E;)(2m[h*)(B|f|x). (6.8)
We have assumed the potential V in (6.7) is hermitian. Thus
the effective electric multipole transition operator for long
wavelengths is the solid harmonic »*C ,,,, which is the same

as the operator for the electrostatic moments, Q,,,, derived in
section 4.10.1. This result is easily shown to hold for systems of
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more than one particle (the energies %, £ 5 are then the total
energies of the system). A derivation parallel to (6.8) uses the
continuity equation [9].

For the spin terms of the interaction (6.1) we require the
magnetic field vector H = V A A. From (6.3) we see immedi-
ately that

Y, = bAL,. (6.9)
An analogous result follows for H* from (6.3) if we remember
the wave equation for A, V A (V AA) = k%A,

H, = kAT,. (6.10)

Collecting these results together we can write down the

multipole tensor expansion of the interaction (6.1) when A,

represents a plane wave circularly polarized about its direction
of motion.

Hilks %) = H; @L—1)AN 3

X {(@par+@ar) —q( My + M)} (6.11)

@z, and Q7 are used to denote, respectively, the charge and
spin contributions of parity (—)%, leading to electric radiation,
while similarly M, and M) have parity (—)“*! and lead to
magnetic radiation. Explicitly, in the long wavelength
approximation (kr < 1), and with the magneton § = eli/2me,

kE L+
7Dt R) %

Quu(r) = eg(r"C ), (6.12a)
M 1y (r) = 289,9(r"C ) . L)(L+1), (6.12b)
Qua(r) = —kfgL(r*Cpy) . S[(L+1),  (6.120)
Myp(r) = BgV(r"Chy) . S. (6.12d)

These spherical tensors are of quite general application;} the
coefficients outside the brackets in (6.11) merely select the

$ The multipole tensors (6.12) agree with those used by some authors [113,
[50], [58). They are [47/(2L--1)] times the tensors defined by others [9],
[1173]. [;12]. because of t.ih: use in (6.12) of the more convenient €, instead of

L addition to this, the Blatt and Weisskopf [9] multipole tenso:
the hermitian adjoints of ours. Lo i i
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combination appropriate to the emission or absorption of a
photon with definite linear momentum k and circular polari-
zation ¢ about k. The interaction for other polarization states is
given by a simple combination of terms like (6.11). For ex-
ample, from (4.37) we see the operator for photons with linear
polarization in the z-direction is just

Sl 1)~ ik, ).
Of course, if the polarization state is of no interest, we use an
incoherent sum of the ¢ = 41 terms.

The tensors (6.12) are hermitian in the sense of section (4.8).
and have simple time reversal properties (section 4.9). If ', ,,
stands for any tensor of (6.12),f

Thy = —0T 5 072 = (=17, _,, (6.13)

where p = 0 for the magnetic and p =1 for the electric
terms.

For systems of more than one particle the interaction
operator will be a sum of terms (6.11), one for each particle.

Hk,r) =

6.1.2. The Matriz Elements and Transition Probabilities

The selection rules operating for matrix elements of the
tensors (6.12) are given immediately by section 4.7.2. In
particular the different parity of electric and magnetic multi-
poles of the same rank L ensures that only one can contribute
for each allowed L, to transitions between states of definite
parity. For the same reason, when two multipoles of rank L
and L+1 contribute, one will be electric and the other mag-
netic in order to conserve parity. The time reversal properties
(6.13) ensure that reduced matrix elements of H (k, r) will be
real (section 4.9.).

The static electric and magnetic multipole moments of a
system with total angular momentum J are given by the

i Apparently (6.13) is not obeyed by the Q@ of (6.12a), but it should be re-
membered that this is only an gffective operator in the sense of equation (8.8).

When the hermitian conjugate of a matrix element (§|T|x) is taken, the
factor (Eyx — Ejp) in (6.8) also changes sign.
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diagonal, M = J, elements of the tensors (6.12) (summed over
all particles in the system). The magnetic dipole moment is

= P9 L+9,80T) = /(T |(T+1) I || My +D||T

(6.14)
while the conventional electric quadrupole moment is
Q — -, 2(Q2>/e)
o J(2J—1)
= e(JJ|g (322 —r2 =2
eQ = e(JJ |g,(32* —r¥)|JT ) 2(( SV, +3,) Qs l>-
(6.15)

The other static moments of interest are the magnetic octu-
pole moment Q [41] [59], and electric 24-pole, or hexadecapole,
moment Q¥ [74] (this reference uses the symbol M,; = 8QW)

= —f(JJ|(3g:L +9s8).V(r3Cg0)|JJ )

=_( J(T—1)(2J —1)
(J+1)(J+2)(2J+3)) ||+ 21317y (6.16)

€
QW = £ (J7|g5(352 — 30222 + 394)|.7)

s ( J(J=1)(2J—-1)(2J—3)
(J+2)(J+l)(2J+3)(2J+5)) T[@ql).  (8.17)

To first order, the probability amplitude for a transition
from a state |ea 1 M) to |oyJy M ;) with emission of a circular
polarized photon along the direction % is proportional to the
matrix element of the interaction (6.11),

E\#
) = (3) > o tfu i3t Ty psaatsy

. (6.18)
where 7 is ¢ for electric (¢" = 1), w is m for magnetic (7" = q),

e (k)e  (L4-1)\4
“ *(2L—1)1!( 21 )

a.n.d Vil L3t stands for the tensors (6.12). If we do not observe the
orientation of the spin J, of the final system we must sum over

y Gp = —iag, (6.19)
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M,, and the probability P, (k) of emission from the initial
substate with z—component M is equal to 3 |48, 4 (K)[* If
i

linear, not circular, polarization is observed, wrt;I take a coherent
superposition of ¢ = 41 terms A¢ as described in the previous
section, while a polarization insensitive measurement requires
an incoherent sum over g. If the radiating system is in a
eylindrically symmetric environment, so that M, is a constant
of the motion if the z-axis is chosen along the symmetry
axis, the total radiative probability for photons along k is
obtained by weighting each P§, with the population or
relative probability w(M,) of the substate M,

PA(k) = S w(h) Pl (k) = 3 ()3 | 4%, 0"
’ ¥ (6.20)

(If the system does not possess cylindrical symmetry, J,,
cannot be made diagonal, and w(M,) has to be replaced by a
more general density matrix p(M;, M]): (see section (6.4).)
Using the Wigner-Eckart theorem of section 4.7.1 and com-
bining the rotation matrixes according to (2.32), we soon reduce
the angular distribution (6.20) to

Pak) = M Bg(J1)Px(cos f) W(JJ1LL'; KJg) X
270 f e
X (2J1+1)} (—1)et/i-Tatloli-Kqugn' (LL'q—q| KO) X
X (Jl"mlTillJE) (Jlllﬁf'TE'"Js y*. (6.21)
g is the angle between k and the symmetry axis, and B,
describes the orientation of the initial system (for example, an
assembly of oriented nuclei [12],

By(J) = gw(mt—1)""“«/(2J+1)<K0|JJM — M),
B,(J)=1. (6.22)

If the system was initially randomly oriented, so w(M,) is just
the statistical weight (2J, +1)~7, only the K zero term survives,
and (6.21) becomes

Pip) = 5o > [T IRL+)  (6:23)
L=
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which is independent of the polarization q and the direction of
emission k, as expected. The total decay rate is obtained by in-
tegrating (6.21) over the direction of emission k and summing
over the polarization g. We note that, while different multipoles
interfere coherently in the angular distribution (6.21), there are
no interference contributions to the total decay probability
(6.23). The decay probability per second is

3 > FINLAT) || TR
Tt AL ILCL-I)IF  (2L+1)

while the ‘reduced’ transition probabilities introduced by
Bohr and Mottelson are just

21’“) (6.24)

Buoatnl) =[5
Comparison with (6.21) also shows that the matrix element
which appears in formulae for the angular correlation of
gamma rays is, in the conventional notation of Biedenharn
and Rose [8], [19],

GlElg,) = N (Gllez T35y /(2L A1)
where the normalization factor N is independent of L and .

6.1.3. Single-particle Matriz Elements

We can now calculate the matrix elements of the multipole
tensors (6.12) between the states of a single particle in a central
field. For a spin—} particle with spin-orbit coupling these
states are

im) = 3 [§o)u(nit¥,, _,(0¢)@m —aa|jm)

where i’ is included to give the required time reversal prop-
erties (section 4.9.). The matrix elements now have the forms
discussed in Chapter V. The elements of Q13 follow immedi-
ately from (5.11), while M, has the form of (5.5). The spin
terms Q;,, and M7, both have the form (5.1 2). Using these and
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some of the standard reduced matrix elements listed in
Appendix VI we obtain
(‘1’&3‘1”01,”22“2) = egJ(L) byy :

(zzi‘jlllML”li'}js) = 2ﬁ9:.il'_l‘(—l)j‘hiJ(L—l)W(J}l]Jzzn; %LLX

X[(%y+ 1)k + (& + D+ D E L+ (3 2 %)

(lli‘jlno'x,"‘nije) = 39.BkJ (L) (@, —ag)byof (L 1)

Gﬁ.‘]l"Mi"lﬂ'.?a) = 4g,8 J(L—1)(L —a; —a,)by,

— thla (_ 1yt (9 1;(51 Ja L)}
where by = 27 (=1)274 (25, 4-1) b —3 0
a = (1—5)(2j+1),
and J(L) is the radial integral
J(L) = f g (r)rZ 2 ug(r) dr.

To conserve parity (Ll -1,) must be even for electric

operators and odd for magnetic.
For M1, E1, and E2 transitions the elements are very

simple. For M1 we have I, # [, transitions are forbidden, and
4j|My+Mi45) = [+ (D),
@il + Mk +1) = Blg.—gu)v/ (I+1)/(21+1).
u(jl) is the Schmidt value for the magnetic moment of a
particle in an orbit (j, Z) [11].
#(Gl) = jBlgrt(gs—gr)/(21+1)] as j =it}
The dominant charge contribution to E1 transitions has
Clements 4 4|Quliaks) = degz (VMG + 1T,
43| Qult+1, 45 +1) = —HiegrJ(1)[(2Z+3)/(G+1)%
Similarly the charge contributions to E2 elements are
(2 —1)(2j+3)\
asld) = —iensTd) (F)
. . gt [ 3(243) )‘
G| Qullati +1) = degr ()i ™H (2 e )
3(25 +3)(2j +5)\}
ATIQU+2 1.5+2) = @ (G 2.
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6.1.4. Systems of More Than One Particle

Systems of more than one particle may be treated as
described in section 5.4, since the electromagnetic interaction
is a one-body operator. To emphasize the possible importance
of the coupling to other particles we consider here just two
particles, with a transition from a state |j,jJ, M, ) to |7odT oM ,).
The matrix element is given directly by (5.9). In particular let
us compare the 2”-pole transitions (4) j,j — j2 and (B) hi =33
when J, = J,+ L. Expanding the Racah functions in (5.9) the
ratio of the square of the reduced matrix for transition 4 to
that for B is :

(% —J)! (J3+2j, +1)!
(=T (Jy+2+1)!

The interesting cases arise when j, and J, are large, and j, J,
are small. For example take j, =12, j =3, Jy =17, and
J, =2, so that L = 5. Then, although the same single
particle matrix element (3||7|]#) is involved in both transi-
tions, the ratio of their probabilities is 1/728, while transition
4 is reduced by the angular momentum coupling to 1/2070
the intensity of the single particle L = 5 transition 3-8

More detailed considerations of transitions between many-
particle states have been given elsewhere for both j—j and
L—8 coupling [14], [43], [46], [49]. Some interesting results
arise from the general properties of matrix elements discussed
in Chapter V. For example, the relative probabilities (or ‘line
strengths’ [17]) for electric transitions between the com-
ponents of two Russell-Saunders multiplets follow immedi-
ately from the decoupling relation (5.9). The reduced transition
probability B(EL) of (6.24) between the L —S states |oty L8y
and o, L,S,,) becomes

47 B, o(BL) = 85 (2L +1)(2J3+1)(2L+1) x
X WAy Jy Ly Ly; LS|y L T flog L) (6.25)
So between states of the same two multiplets, but with
different J; and J,, we have the purely geometrical ratio
By -y (EL) oF (2J§+1)W‘(J;J§L1L2; LS,)
By, g (BL) (23 1) W¥J\J,L,Ly; LS,)
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Again, if we sum (6.25) over final angular momenta J,, we get

473 B,y (BL) = (LAD)| @l Toflea Lol

So, between two L —S multiplets the total intensity from an
initial Zeeman level with J;, M, is independent of both J; and
M,. Hence the sum of intensities from the Zeeman compo-
nents of a given J, is proportional to its statistical weight
(27,4 1). Conversely, the sum of intensities feeding the Zeeman
levels of a given final J, is proportional to (2J,+1).

6.2. Interaction between two Systems

In this and the following section we shall discuss the inter-
action of two systems, each of which may itself possess some
structure. If the combined system is isolated, the Hamiltonian
is invariant under rotations and any interaction terms coup-
ling parts 1 and 2 must be expressible as scalar products of
tensors as in (4.4),

v(1,2) = ; Ry(1).Sx(2). (6.26)

The matrix elements of such products are given by (5.13) in
terms of the matrix elements for the component parts 1 and 2;
it merely remains to discuss some specific forms for the
tensors Ry and Si.I We shall also mention briefly a case,
anisotropic hyperfine structure, where the effective interaction
has to be represented by a tensor product rather than the
scalar form (6.26).

6.2.1. Interaction of Nuclei with Atomic Fields
The interaction between two charge distributions was
discussed in section 4.10.5, and the form (6.26) found for both

{ With a second quantization treatment of radiation fields, as mentioned in
section 4.10.4, radiative transitions are also induced by secalar product inter-
action terms like (6.26). For example, the electromagnetic interaction will
have the same form (6.11) as in the previous section, except that, following
(4.50), each multipole tensor will be associated with a photon creation or
annihilation operator in the proper scalar combination. Matrix elements are
then taken between product states for field and radiating system.
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the electric interaction (4.59) and the magnetic interaction
(4.66). Important dynamic applications of these interactions
oceur in the theory of internal conversion [53], [55], whereby a
nucleus transfers excitation energy to an atomic electron, and
Coulomb excitation of a nucleus by bombardment with
charged particles [1]. Here we shall consider briefly the station-
ery effect of the interaction between a nucleus and its elec-
tronic environment which leads to the hyperfine splitting of
atomic spectral lines [41] [59]. Ignoring penetration into the
nucleus by the electrons (sor, > r,), the interaction for iso-
lated atoms is given by (4.59) and (4.67)

Vie,n) = 5 [QLal€)Qua(n) + Mp(e) M 1y (n)].  (6.27)

The nuclear electric moments Q(n) are just those defined by
(6.12a) in the previous section, while the electric moments
M(n) are the sum of the charge and spin contributions (6.12b)
and (6.12d). (Summed, of course, over all nucleons.) The
corresponding moments Q(e¢) and M(e) for the electron
cloud are given by (4.60) and (4.68), and are similar to the
nuclear moments except in radial dependence. The quad-
rupole operator Q,(e), for example, is just }82V/0z? at the
origin, where V is the electrostatic potential due to the
electrons.

The small contributions from r, < 7, may be deduced from
section 4.10.5, for example the higher terms in the expansion
(4.58).

The first-order hyperfine energy shift W;sr for an atomic
level with total angular momentum F (vector sum of nuclear 7
and electronie J) is just the expectation value of V(e, n)}. It

{ Second order effects of low multipoles may be important in the interpre-
tation of higher multipoles; for example, the second order term for the dipole
L =1 has a part which looks like a first order quadrupole, L = 2, term [41],
[59]. Also the much closer approach of the meson in p-mesic atoms allows

higher order effects to be important which involve excitation of low-lying

nuclear levels (nuclear ‘polarization’) through the off-diagonal elements of
V(e, n) [79).
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follows immediately from (5.13) that
Wisp = AJF|V(e, n)|IJF)
=3 (=1)I*=F2r+1)(2J +1)]* W(IJIJ; FL) x
L

x || Ty @) Ty (6.28)
where T¢ = Q, T™ = M, and parity conservation ensures
that only Q,, with L even, and M, with L odd, can contribute.
We can invert (6.28) to express the reduced matrix elements in
terms of the observed W, 5, using the orthogonality (3.17) of
the Racah coefficients

(I +1)@J + )| TD G| T
=3 (=1 F[(2F +1)(2L+1)] WIJIJ, FL) W, .
F

(6.29)

The evaluation of the reduced matrix elements has been
discussed in the previous section and elsewhere [11], [41], [59].

Allied problems, such as in molecular spectra, or with the
application of external magnetic fields, can be treated by
similar techniques [41], [60]. We shall confine ourselves to a
few remarks on an ion which is not isolated, but situated in a
crystalline electric field. Such an electrostatic field can be
expanded in solid harmonics about the position of the ion
(following section 4.10)

V =3 a,*C, (0, p). (6.29)
iq

The coefficients a,, are determined by the nature and sym-
metry of the crystal lattice [10]. The matrix elements of (6.29)
are readily evaluated using the Wigner-Eckart theorem and
the techniques of Chapter V [25]. In the ‘single-electron’
approximation for the ionic states this is almost trivial. An
alternative method for diagonal matrix elements between
many-electron states is to find an ‘operator equivalent’ for
each term in (6.29) [68]. Between states of the same J we use
Ja Jy, and J, to construct operators which have the same
matrix elements as (6.29); for example

r*Cyy — ag(r¥)[8J% —J(J +1)].
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Then a,(r?) is proportional to the reduced matrix element of
72C,, and techniques have been devised for their evaluation [68].
The other part of the operator equivalent gives matrix
elements proportional to the Clebsch-Gordan coefficient of the
Wigner-Eckart theorem; for the example above,

MBI —I(J +1)|J M)
- 5(MM')[J(J+1)(2J—1)(2J+3)]*(JM|J2M0).

This approach, however, will not give off-diagonal matrix
elements.

This overall erystal field polarizes individual jons and
induces anisotropic hyperfine structure. The environment is
no longer spherically symmetric and the effective nucleus-
electron interaction can include tensor products of higher
rank than the scalars in (6.27), A particular example is the
spin-Hamiltonian of Abragam and Pryce [10] which includes
a term

Hgy = A8, 1,+BS, I, 408, I,
= A8yl +3(B—C)(8 1y +8_,1_,) —$(B+O) Sy +8_,1,).

S is an effective spin of the atomie electrons. The symmetry
characteristics of Hg, are made evident if we express it in
terms of product tensors (4.8) built from S and I.

Hg = oS . I4+8T,S, I) +UTos(S, 1)+ T, (S, I)]
where (6.30)

PG TE T S %(2%3—-0), y = HB—0).

The effect of the anisotropy is to introduce second rank
tensors into the interaction which will connect states of
different F'; that is, ¥ is no longer a good quantum number in
the presence of this interaction. However, if axial symmetry
is restored by putting B = C, the Ty, terms vanish and
F, =1,+48, does remain a constant of the motion. Hg, is, of
course, diagonal in S and I even though it mixes different S, 7 X
values.
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This interaction is the basis of the Bleaney method of
orienting atomic nuclei [12]. The crystal field orients tlfe
ionic electron clouds which in turn, through the anisotropic
interaction Hg,, orient the nuclei. Of course, to be effective
the sample must be cooled to a temperature 7' such that k7T By
the hyperfine splittings induced by Hg;. Because Hg, is
symmetric in +17,, only nuclear ‘alignment’ can be pz:oduced;
that is, only even-order polarization moments are induced,
and (/") vanishes for » odd.

6.3. Interactions between two Particles in a
Central Field _
A particular case of the interaction of two systems which is
sufficiently important in the theory of atomic and nuclear
structure to warrant separate treatment, is the mutual-
interaction of two particles moving in orbits in a central field.
The particles may possess spin. Then the various interacti-on
terms, although scalar in the overall product space of spins
and orbits, may be classified according to their properties
under spatial rotations in the spin and orbit spaces aeparatel;r.
If the position coordinates are denoted r, and r, and the spin
operators s, and s,, the interaction can be written in the scalar
product form
v(12) = g Ry(r,, ry) . Sk(s,, 8y). (6.31)

Ri(rirz) operates only on the position coordinates, Sx(.sl, 82)
only on the spins; each is built up from its arguments in the
way discussed in Chapter IV. )

A nuclear system of neutrons and protons may be described
by the isotopic spin formalism; the extension of (6.31) and 1.;he
discussion below to this case is straightforward (see section
5.4.2 and [26]) and will not be considered here.

6.3.1. Spinless Particles and Ceniral Forces ]
Simplest is the scalar K = 0 (or central) force .acting

between particles without spins. This will be just a function

of the distance r,, between the particles, J(r,,) say, where
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Iy, = r;—r,. The matrix element of this may be evaluated by
the Slater method [26], [70] by expressing J (ry9) itself in the
form (6.26). We write

J(rye) = szk("v ) Py(cos ) (6.32)

where .
Tilry, 75) = H(2k+1) [J (1) Py(cos w)sin o do.  (6.33)

0

Expressions for J, for various interactions have been given
[69], and the particular case J = ¢¥/r,, has been discussed in
Chapter IV.  is the angle between r, and r,. The Legendre
polynomials may be expanded by the addition theorem (2.25),
Py(cos o) = Cy(1). Cy(2). If the particles are spinless and their
orbital angular momenta are coupled to a resultant L, we may
immediately carry out the angular integrations of the matrix
element of (6.32) using (5.14). In the usual notation, and using

single particle wave functions
Ilm> e ‘!bn;(?') Ylm(ea ?)
L LM|J (ry) LI L' M"Y
= O(LL)S(MM') 3 f(hlhily; L) RO(LILL)  (6.34)
3
where f, is just (1,1, L|C,(1).Cy(2)|l;l; L) given in equation (5.14).
The f, have the following symmetries :
Jelblehly; L) = fylhlhly; L) = fulhll;; L)
and (6.35)
fo= 5(!11;) O(lyly).
The condition that both (k-+1,+1}) and (k-+I,--I}) be even
ensures that J(r,;) does not connect states of different total
parity, and k is limited to </, +1; and <l,-+1;. The R* are

Slater radial integrals, parameters independent of the total
angular momentum value L,

RY1,1,11) =jrf dr, J‘ri dry J 1y, o)y (ry)uy (ry)oy (ro)uy (r,).
(6.36)
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u,,(r) is the single particle radial wave function; the indices n
denoting the principal quantum numbers of the orbits have
been suppressed for clarity. In the limit of very long range
(compared to the extension of the wave functions wu(r))
J(ry,) becomes constant, independent of r, and r,, and (6.3?)
ensures that J, vanishes unless & = 0. In this limit all matrix
elements vanish which are off-diagonal in the single particle
orbits, and the others are independent of L:

QLMW (r [GLLIL) — 3(0,15) S(eli) RO, (6.37)

The other limit of zero-range is of interest for nuclear structure.
The expansion (6.32) for a delta function is

1
o(r,—r,) = Py 8(r, —ry) d(cos w—1)

;
= ot A=) 2, (BRH1C(1).C(2), (639)

then immediately in this limit

2k+1

Jyry, 7)) = 4 4m’f

8(ry—rs) = (2k+1)T(ry, 75), (6.39)

if J(ry,) = A 8(r,—r,). Thus we have R*® = (2k+1)R? and
this allows us to carry out the sum over k in (6.34) using (3.11).
The zero range matrix element becomes

Wl LM|J (r )| GLLM )Y = P(LLL; L)R®  (6.40)
where

Pl LLL; L)

L I\l L ’
5" (5 % o) (5 0 o)[(ﬂ:+1)(2I,+1)(21;+1)(2z,+1)]l

which, of course, vanishes unless (I, +1,+ L) and (I;+4I;+ L)
are both even. The radial overlap R'® has become simply

il ﬁ fr’ dr u‘l(r)u&(r)url(r)u,’(r). (6.41)
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Occasionally it is more convenient to work with the uncoup-
led matrix elements, (,m,lym,|J|!;m|lim.). This will be so if the
environment is not spherically symmetric, such as for the
motion of individual nucleons in a strongly deformed nucleus
[13], so the total L is not a constant of the motion any more
than the individual 7. The same multipole expansion (6.34) is
used, and the angle integrations ecarried out by use of (4.16)

(!,mllzmzlJ(rn)ll;m;I;m;) = 6(my +m,, m{ +my) x
x 2, X (lym,limy) e (lymglymy) RO ; (6.42)
3

H(Iml'm') = [(2A+1)(2 +1)]{(—1)" (f) I0 l’;) (1:1 —:;' m'im)
= (—1)""™ c*(U'm'lm),

Values of ¢* have been tabulated [17], [64].

Finally, it should be remarked that a technique different
from the application of (6.32) has been developed by Talmi
[32], [70], [73] for use when the functions U, (r) are eigen-
functions of an harmonic oscillator potential well.

6.3.2. Particles with Spin; Central Forces

When the particles have spin, K + 0 terms may appear in
(6.31), and the scalar K = 0 matrix element is itself modified.,
Because of the form of (6.31) it is most convenient to use an
L-8 or Russel-Saunders coupling scheme, when we get an
example of the general matrix element (5.13)%.
(LSTM|V(2)|L'S'T' M’y = 8(JJ") §(MM')(—1 | o

X2, W(LL'SS'; KJ)A/(2L+1)L||Ry(ry, ry)|| L' x
K
X ‘\/(28+1)(S"Sx(81, 82)"8’)- (643)
If the scalar part (K = 0) of V(1, 2) is spin independent

} Matrix elements in the j—j coupling representation are easily obtained
from (6.43) by using the transformation (3.23), (3.24)

Guid|Vi5s ) = 3 (LSI|V|L'ST)yx
LL’'88

X ('(ll‘l}jl' (‘l‘l)jl; JI(‘II!}L. (#,8,4)8; J)((‘lflﬂj{. (‘.’a.}j"; Jr{‘l""}Ll ('33.]8’; J).
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(Se(s;8,) = 1, (S|1||S) = 1), the decoupling factor represented
by the Racah function gives unity. In addition, however,
there may be a scalar spin interaction,

S, =8,. 8,

(Slis1 . 82l|8) = S(S+1)—s1(s1+1)—82(s2+1)). (6.44)
When s, = 8, = s we may introduce also the spin exchange
operator P¢. Because of the symmetry induced by the Clebsch-
Gordan coefficient in the coupled state [ssSM) when the
angular momenta are equal (see section 2.7.3.), P* has the
eigenvalues (—)5~%, y

: P'lssSM) = (—1)°"*|ssS M) (6.45)
hence

S||PISy = (—1)°~*.
In particular, when s = } we can use (6.45) to give a represen-
WHEEEE S iy e e v e o), (6.48)
The second form in terms of the Pauli spin matrices fo].lc.nws
since s = }o here. This allows us to evaluate the expectation

value of the spin exchange operator for n spin-} particles,
M = }{3 P, (known as Hund’s operator) without recourse

to the &ethods of Section 5.3. Because of the meaning of P*
in (6.45), the value of M is the difference betwe.en the I}umbera
of symmetric and antisymmetric pairs of spins. Using 6.46
and remembering that

§'=(38) =Zei+3 8.8
we get
: M = Q[}ﬂ(n—l)+2S*—2§ s7]
and since s = }, for a state of total spin §
(S| M|S) = Hin(n—4)+28(S+1)]. (6.47)

6.3.3. Vector and Tensor Forces
The terms with KX = 1 and 2 in (6.31) are referred to as

vector and tensor forces, respectively. The only vector term
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linear in the spins and momenta which satisfies the require-

ments of symmetry and space- and time-inversion invariance
is (Wigner [76])

J(rp)LA(1, 2) .8, (6.48)
where
S =8, ,+s
and i i
L(1, 2) = (r;—r,) A (P, —Dy) (6.49)

is the relative orbital angular momentum. The matrix elements
of S,(s;8,) =S are simply dealt with, but R(ryry) = J(ry)
L(1, 2) requires more attention. The terms in the expansion
(6.32) of J(r,,) have to be coupled to those from the corre-
sponding expansion of L(1, 2),

L(1,2) = L{1)+L(2)—r1,\p2+pl AFs. (6.50)

The- first two terms, the one-particle orbital operators, are
straightforward. To manipulate the other two terms we use
the relations p = —iV and

d i

V=C7—-G\L, (6.51)

where C, is the unit vector along r; L(1, 2) then becomes

L(L,2) = L)L) +G() A2 (1 o, >
2 1

+Gy(1) A (Cy(2) AL(2)) 2

T2
+Gy(2) A (G AL() 2 (6.52)
1

W]?en combined with the expansion (6.31) of J(ry,), this is a
series of tensor products. These may be evaluated by straight-
forward, although somewhat lengthy, applications of the
;;eohmquea described here and in the previous chapter [23]
37). '

The tensor force with K = 2 is simpler because of the
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absence of the gradient operator. It is usually written

J(r,5)8(12)
where
S(12) = (s,. p)(Sy. p) —4(S; . 8y) (6.53)

= Ry(p) . Sy(s;8,),

p being the unit vector along r,,. The interaction of two
magnetic dipoles @, and p,, for example, would have
J(r19) = §,9s/73e, Where g, is the g-factor for the ith particle,
@ = ¢.8;. From (5.12) the matrix elements of the spin tensor
for two spin } particles aref

(S|[Sy(s182)[IS") = 6(88")8(S1)v/ . (6.54)

It is diagonal and vanishes for singlet, § = 0, states. The
coordinate tensor is just a spherical harmonic and is readily
re-written in terms of tensors acting on the coordinates r, and
r, separately,

72,Calp) = 13Cy(1) +73Cy(2) —+/6Ry(ryTy).  (6.55)
It is convenient to expand, not J(r,,), but

1
T = Z I(ryr)Ci(1) . Cy(2). (6.56)
Again we have a series of tensor products to be evaluated by
repeated application of the standard techniques. Because of
the 1/r}, in (6.56), the separate radial integrals contain diver-
gent parts, but these cancel in the final result [23], [36].

Again, when the radial functions for the single particle
motion are eigen functions of an harmonic oscillator well,
the technique of Talmi [71] greatly simplifies the matrix
elements for vector and tensor forces.

6.4. Multipole Expansion of the Density Matrix
It is beyond the scope of this book to give a detailed
discussion of either the basic theory or the widespread
t S8(12) is defined in (6.53) with the actual spin operators 8. Thus for spin §

it is } of the tensor operator often defined using instead the Pauli spin oper-
ators, ¢ = 28.
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applications of the density or statistical matrix and its associ-
ated statistical tensors. We can only outline the techniques,
briefly referring the reader to the literature for more details
(8], [19], [30], [31], [72].

6.4.1. The Density Matriz

If all the (identical) component systems of an assembly are
described by the same wave function

P=Zaln), Ilaft=1 (6.57)

the assembly is said to be in a pure state, and the density
matrix p for the assembly is defined by

Pam = Gy,  lrp =1, (6.58)

It often happens that we do not have such complete infor-
mation about the assembly. An example is our knowledge of
the individual spin orientations in a partially polarized beam of
particles or assembly of non-interacting atoms or nuclei. This
more general mived state can always be described as a weighted
mixture of the pure states (6.57) and (6.58), so that p becomes
an average over all N component systems of the assembly

1 & S
P = 35 a,(v)a,(v)* = ﬂ,‘ﬂ«;. (6.59)

ve=]

Clearly p is Hermitian, and from (6.57) and (6.59) the expecta-
tion value in the assembly of some operator O is given by

(0) = 3 popOpa = tr(p0). (6.60)

If the representation we have chosen makes p diagonal (for
example if p describes a paramagnetic gas in a uniform
magnetic field, and m is the component of spin along the field
direction) we can write

Pam = w(m)amn° (8'61)
w(m) is then the population function, or probability of
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finding one of the component systems in the state |m). (6.60)
then takes a particularly transparent form

(0) = 3 w(m) O (6.62)

6.4.2. Statistical Tensors or State Multipoles

When the angular symmetries of the assembly are of
interest (that is, its properties under spatial rotations), the
natural choice for the basis |n) in (6.57) are the eigenstates
|« M) of the angular momentum J and its z-component M
(« denoting any other quantum numbers required). From (6.58)
and (6.59) we see p transforms like an operator under a ({ha.nge
of representation p’ = R+pR if |n)’ = R|n). In particular,
upon rotating the coordinate axes through Euler angle.:s (ofy),
an element of p referred to the new axes is expressed in terms
of those referred to the old by

PuMassr = 2}{(9" m(“ﬂy))*Pdp.dryg;:m(“ﬂ?)- (6.63)
"

It is more convenient however to choose linear combinations
of the elements (6.63) that form an irreducible representation;
that is, carry out a multipole expansion of the elements of p.
This is clearly just a matter of vector addition since from (6.59)
the elements of p are bilinear combinations of tensor com-
ponents a,,. So we can write

Parmaa'str =
S proled, «'J'WEQIT', —MM')(—1)¥~" . (6.64)
KQ

The pygq were called statistical tensors [28], or state multipoles
[29], by Fano,} and by inverting (6.64) may be written

Prq (ad, &'J’) =
S purstwsa{ =D MIT —MM'|KQ) (6.85)
M

! : ik . e

Unfortunately a variety of notations and definitions are in use for &
nta.tt,iatical t.ensorsy Ours agrees with some others [8], [6], [28], [29]. _Savm-al
authors define them so that the tensor of mnk K behave:; unt?ar rotations l.ike
Y%, contragrediently to ours [31], [19]. This is appropriate if the statistical
tensors are regarded as the coefficients in an expansion of the density operator
into & set of multipole operators.
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where
Poolee] @' J') = 05 (2] + ”4 Z Passtaam.
A

When «, J have unique values, the latter becomes

Poo = (27 +1) Hrp,
From its construction Prq 18 a component of a spherical

tensor,
P = 2 PreZgq(eBy) (6.66)

which may be confirmed directly from (6.63) using (2.31).
The Hermitian property of p reappears as

Pro(0], aJ") = (1) (T’ ad)y*  (6.67)
The definition (6.65) shows we can define tensors of rank K
where |J —J'| < K < J+J". It is then consistent to talk of
the assembly possessing dipolarization (K = 1), quadripolari-
zation (K = 2), ... 2K-polarization, if the corresponding
tensors do not vanish. Only for spin-} systems does the term
‘polarization’ have a unique meaning.f The monopole tensor
(K = 0) is merely a normalization constant. For systems of
sharp J the other low rank tensors have simple interpretations
[6]. For example the dipole tensor is just the expectation value
of the angular momentum operator

Pl IT) = (o) (BT +1)(2T +1)] 7,

and the @ = 0 component of the quadrupole tensor is

Pl ) = BT —T(J +1))AI (T +1)(2 —1)(27 +1)(2] +3)]F.
. Ifit is possible by a rotation of axes ( 6.66) to make p diagonal
in M, then with this choice of axes only tensors Pro With
Q = 0 do not vanish. Physically this implies an axis of eylin-
drical s;rmmetry for the assembly (for example, the direction of
an apPhed magnetic field in a gas of paramagnetic atoms). If
there is no such axis there will always be tensors with Q = 0.
If the assembly is isotropic, so that p does not depend on M or
M’, (6.65) and the orthogonality of the Clebsch-Gordan

 Some authors restrict the use of ‘polarization’ to systems with odd-order

polarization, using ‘alignment’ for even-ord . Dipolarization i
E it oo 3 er. Dipolarization is also called
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coefficients shows that only the monopole (K = 0) tensor does
not vanish, and the assembly is said to be unpolarised.
If some operator O is expressed as a sum of spherical tensor

operators
P O =KZQGKOOEQ,

its expectation value in the assembly is found to be
(0) = tr(p0)

1l i
=Z(§_JK‘$T) axoproled, ') (@ J|Oglled).  (6.68)
The sum runs over K, @, «, o', J,J'. We see that all dependence
on the orientation of the coordinate axes (that is, on Q) is
thrown into the statistical tensors pxo. It is this which makes
these tensors such a convenient way of describing the assembly.
Further, we see from (6.68) that the expectation value of a
multipole operator O 4 of rank K depends only on the statis-
tical tensor of the same rank.

When the systems of the assembly are composite, so that
the angular momentum J is the resultant of two or more com-
ponent angular momenta (for example the spin and orbital
momenta of a particle), the statistical tensors will show a
corresponding structure. They will be expressible in terms of
the tensors for the component parts, coupled in a way closely
analogous to the matrix elements discussed in section 5.3

(6], [19].

6.4.3. Development in Time

The statistical tensors are a very convenient way of
expressing the ‘angular information’ contained in the assem-
bly. Now we look at the changes that can occur as the system
evolves from time {, to ¢,, such as in a nuclear reaction or
radioactive decay. These are described by the unitary trans-
formation induced by the time-development operator of

Dirae [20], |ty = Ultito)lte
so that plty) = Ultyto) p(te) Ultyto) ™. (6.69)
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As a special case we have the S-matrix [33] or collision matrix
[44], 8 = U( o0, — o0), connecting the initial and final states
of some reaction or decay process. In an interaction Tepresen-
tation, for example, U can be written

t
Ultyty) = exp[ —(i/#) H’dz]
t

where H' is the perturbing interaction.

The important thing for our purpose is that for isolated
systems H’, and thus U or 8, is scalar under spatial rotations
(conservation of total angular momentum). We establish
from this that the statistical tensors pz, transform in the same
way (6.69) as p, and that the tensor rank is conserved,

pro(B), B ) = 3 prqled, «'J'; tg) Ul (to) U pltity) *.(6.70)

This means that the polarization or angular complexity of the
final system (measured by the maximum rank of tensor
required for its description) can never exceed that of the
initial. For example a nuclear reaction initiated by s-waves
will always display an isotropic angular distribution unless the
colliding particles are polarized [19].

Perturbation theory is often used to caleulate transition
probabilities, in angular correlation problems for example [8].
This corresponds to an expansion of U or § in powers of the
perturbation H’, so that the spherical symmetry remains and
the transformation (6.70) still holds.

CHAPTER VII

GRAPHICAL METHODS
IN ANGULAR MOMENTUM

IN any angular momentum coupling problem it is necessary to
evaluate expressions containing sums of produects of Clebsch-
Gordan coefficients or Wigner 3j-coefficients. Such caleulations
may often be simplified by using the graphical methods of
Levinson [85]. These methods have been extended by a number
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of authors and the results are collected in two books by Yutsis,
Levinson, and Vanagas [86] (this reference is denoted by YLV)
and by Yutsis and Bandzaitis [87]. The present chapter gives a
brief account of the graphical method which is complete enough
to be used for solving simple angular momentum coupling
problems.

The rules presented in this chapter for constructing and
manipulating graphs are not identical to those given by YLV,
but are related to them in a simple and well defined way (cf.
section 7.2.1). Our rules are somewhat more flexible than those
of YLV; they may be used to evaluate algebraic expressions
involving both 3j-symbols and Clebsch-Gordan coefficients,
while the YLV rules can be used only for formulae expressed in
terms of 3j-symbols. The graphical methods of YLV are similar
to those introduced by Edmonds [22] and Judd [84], but the
former give the correct signs as well as the magnitudes of
expressions, while the latter give only the magnitudes. Exten-
sions of the graphical method to include tensor operators and
rotations matrices have been given by several authors [82, 83].

7.1. The Basic Components of the Graphical Represen-
tation

A graphical representation is a correspondence between
diagrams and algebraic formulae. Each term in an algebraic
formula is represented by a component of an appropriate
graph. In a consistent graphical representation it must be
possible to write down the algebraic formula corresponding to
a given diagram in a unique, unambiguous way.

The basic components of our graphical representation are as
follows.

(1) The Wigner 3j-symbol is represented by a node or vertex
with three lines joined to it. These lines stand for the angular
momenta which are coupled by the 3j-symbol.

cy b
(ab c) _ aw _ aa (7.1)
aBy - =
bg o
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It is convenient to denote the orientation of the node by a sign;
an anti-clockwise orientation is denoted by a -+ sign and a
clockwise orientation by a — sign. Rotating a diagram does not
change the cyclic order of the lines. The 3j-coefficient has simple
symmetry properties (cf. Appendix I) and remains unchanged
by a eyclic permutation of the columns in the symbol.. There-
fore, a rotated diagram represents the same 3j-symbol as the
original diagram. The angles between the lines and the lengths
of the lines have no significance. Consequently, any geometrical
deformation of the diagram which preserves the orientation of
the node does not change the 3j-symbol represented by the
diagram. A deformation which changes the eyclic order changes
the orientation of the node and if the deformed diagram is to
represent the same 3j-symbol then the sign of the node must be
changed. The symmetry relation

(£57) - el

implies that
ao P
CY _ (—yatdie X cY 7.9
- (—Jasbie - (7.2)

(2) The anti-symmetric symbol or ‘metric tensor’
(55) =t 1o

which carries a phase present in many angular momentum sum-
mations is denoted by a line with an arrow on it:

“ B s S(ab)( a)
In particular p (7.3)
aa a.—a=(_}“‘ o a,—a=(_)‘_n
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The 3j-coefficient reduces to the anti-symmetric symbol when
one of the angular momenta is zero:

(25 0) = @aar otan) (7, (1.4)

This relation is represented graphically by

0 b8
““_< = ““-< o B, (2a+1)%
+ -—
b8 0

(7.5)

(8) An undirected line (a line with no arrow) represents the
expression d(a b) d(x f),

ax____ B _ s(ab) 8(ap). (7.6)

(4) More complicated diagrams may be com?t.ructed by jo-in-
ing the three basic components together. Two lines rep‘ne‘sentmg
the same total angular momentum can be joined. Joining two
lines implies that the z-components of the two angular momenta
should be set equal and summed over. It is not necessary t.o
write these z-components explicitly in the diagrams and we will
omit them. Often we will not even write the z-component of an
angular momentum corresponding to a free end of a line
explicitly, and will assume that the Roman letters a, b,c...
denoting total angular momenta have z-components denoted
by the corresponding Greek letters a, 8, 7 ... . {

Lines which join nodes are called internal lines. External lines
have one end connected to a node and one end free. Closefi
diagrams have no external lines. We will illustrate these defini-
tions by constructing a few simple diagrams.

(a) The first orthogonality relation for 3j-symbols

b3 (: ; ;) (z g ;) B (2&:’, o(ee’) d(yy") (7.7)

af
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is represented by the graphical equation

b
c g 1 4 8 ¢’
+ - (2¢+1)
a (7.8)

The cyclic order of angular momenta (a b ¢) is the same in both
3j-coefficients in equation (7.6). This order corresponds to an
anti-clockwise orientation of the first node and a- clockwise
orientation of the second. Hence the first node has a positive
sign, while the second has a negative sign.

If we put y = »’ in equation (7.6) and sum over y we get the

result
—®+ =1 (7.9)

The signs of the nodes have been changed because their orienta-

tions have been reversed. The factor (2¢+41)-! has cancélled

because the summation over y contains (2¢+1) equal terms.
The second orthogonality relation for 3j-coefficients

Z (2c+1)(: ; :) (: ;;’) = o(aa’) (BF')  (7.10)

is represented by the graphical equation

ac ac’' <
ac ac
> (2+1) >_c__< -
e o T
bB b8 4 p (7.11)
(b) The contraction of a 3j-coefficient with an anti-symmetric

symbol is represented by a node with one arrow

ac
rrla) =3 - D=

(7.12)
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This graph is very useful because it gives a way of representing
a Clebsch—-Gordan coefficient. This advantage is the main reason
for modifying the original YLV scheme. A Clebsch-Gordan
coefficient is related to the 3j-symbol by equation (3.3)

b
@bafloy) = (—p-voizo+1 (T 0 O} (.
Comparing equation (7.12) with equation (7.11) we get two
graphical representations of the Clebsch-Gordan coefficient:

@
CabeBleyy = (= )yr-v-e(20+1)% x >+‘°
b (7.14)
@
= (- R x et
b (7.15)

In the last equation the sign of the node has been changed. This
corresponds to a change in the cyclic order of the angular
momenta in the 3j-symbol and gives a factor (—)*+?+¢ hecause
of the symmetry relation (7.2).

(e) As a final example we give graphical representations of
the Racah W-function and the Wigner 6j-symbol.

W(abed; ef ) =
DA s W [ [ P O

(7.16)
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i i i h are:
o Jo+ote-a— @af ¢\fed ¢\ (eb a\(bdf The rules for adding or removing arrows in a graph ar
{d y f} y Z(— e (“ ¢_7) (7’ '5_‘) (‘ B _“) (ﬂ 0 4') A. A line with two oppositely d1rect.ed. AITOWS is e-qmva.lent
to a line with no arrows. This is a graphical expression of the
result.

(7.17)

The sums in equations (7.16) and (7.17) are to be taken over all
magnetic quantum numbers. Graphical representations of the
9-j symbol are given at the end of the chapter.

7.2. Simple Rules for Transforming Graphs

A calculation using the graphical technique often contains
the following steps.

(i) An investigation of a physical problem leads to a formula
involving sums over Clebsch-Gordan or 3j-symbols.

(ii) The formula is represented by a graph using the rules
defined in section 7.1. (Sometimes it may even be possible to go
directly from the physical problem to the graph without writing
down the algebraic formula.)

(iii) The graph is transformed using rules derived in this
section and in section 7.3. Each transformation of the graph
corresponds uniquely to some algebraic manipulation of the
formula. The aim of the transformation is to isolate various
components of the graph which may be identified with standard
invariant functions such as the Racah W-function, the 6j-
symbol or the 9j-symbol.

(iv) The transformed graph is reconverted to an algebraic
formula. This can be done by comparison with standard graphs
for 3nj-symbols. Often the last manipulations of a graph involve
adding or removing arrows or deforming the diagram to get it
into some standard form. These operations are discussed in the
present section,

or

S () (&) = St eres ey 8 =i = )

(7.18)

’ !

ac ae _ aa o

B. A line corresponding to an angular moment.um @ with
two arrows in the same direction is equivalent to a line with no

arrows times a factor (—)%.

Z,(jﬁ) (;“) = 3 (—)reres (e —p) S(B—a) = (=) ea)

o gL e (1.19)

C. If an arrow on a line with angular momentum a is Peveraed
the graph must be multiplied by a factor (—)%. This result
follows from the symmetry relation

() === (2

o 0w () ace’ (7.20)

D. Three arrows may be added at a node, one to each line
joined to the node, without changing the value of the graph
provided the arrows are directed either all away from or all

towards the node.

a a a
ol [4 Al C
" +
+ +

(7.21)
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A graph may be deformed in any way without altering its
value provided
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The proof of the first of these relations is
a b ¢ a b ¢ a b ¢ y : »
.;, (or.' B y’) (or.cc') (ﬁﬂ') (w’) e (_)Mmﬂﬂﬂ(—a ] —y) (i) the direction of any arrow relative to the nodes it con
nects is not changed,

S el (ii) the sign of a node is aha.nged.if the cyclic order of the

N (“ 4 y) angular momenta at the node is reversed.
opet S o b i 7.2.1. Relation with the Graphs of Yutsis, Levinson, and Vanagas
il The YLV graphs have an arrow on every lin.e. A c!osed.
( 8 c) 2 (_)Mm(a : G)' (7.22) diagram in normal form of the type discussed in this chal'),t:; is
e ks completely equivalent to a YLV graph. Geometrically similar

i algebraic
The second relation may be proved from the first and rule (. closed graphs in the two schemes represent the same alge

The number and orientation of arrows in a graph may be formula. : h
changed in many ways using rules A-D. A graph is in normal A YLV graph with exterr_xal lines can be converted to a grap
Jorm if there is exactly one arrow on every internal line. YLV of the type discussed here if

have shown that only those diagrams which can be put into
normal form represent formulae arising from coupling of
angular momenta. A diagram with no external lines represents
an invariant 3nj-symbol only if it can be put into normal form.

The normal form of a graph is not unique as the directions of
arrows may be changed in many ways without altering the
value of the graph.

E. The direction of all arrows and the signs of all nodes may
be changed simultaneously in a closed diagram without altering
the value of the diagram. Let J be the sum of the total angular
momenta of the internal lines. Reversing the direction of all
arrows in the diagram gives a factor (—)?/. This result follows
from rule C if the graph is in normal form, because then there is
exactly one arrow on every line. Adding or removing arrows by
rules A, B, or D does not change the value of the graph, hence
it holds for any graph which can be put into normal form.
Reversing the sign at a vertex (@ bc) gives a factor (—)a+dic
(equation (7.15)). In a closed diagram each line is connected to
two vertices. Hence changing the sign of every vertex produces
another factor (—)2/. This cancels the factor (—)27 coming
from reversing the direction of all arrows,

i i i V graph is left unchanged,
i) any internal line of the YL .
(21; an external line with an arrow directed out of the YLV
aph is replaced by a line with no aITow, ;
(iii) 2:1 I;xtema.l line (ax) with an arrow directed into the
YLV diagram is retained with the arrow and the graph
is multiplied by a factor (—)—=.

The graphical method may be used to simplify angular
momentum formulae at two different levels:

(a) if care is taken with the directions of arrows a.nc% the signs
of nodes, the method gives the correct magnitude and
sign of the result, . _

() ifg:eductiona are made without worrying about signs of
nodes or directions of arrows the graphical method gives
the correct magnitudes. In some problems where the sign
of the result is not important or wherc.a it can be deter-
mined by physical arguments the magnitude of the result
is all that is required.

It should be emphasized that any calculation m.a.de using
graphical methods can also be made using conventional alge-
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braic techniques. To every graphical reduction there is a corre-
sponding algebraic reduction because of the correspondence
between graphs and algebraic formulae. The graphical
method has two advantages over the algebraic method:

(i) the notation is more compact because the redundant
magnetic quantum numbers need not be written ex-
plicitly, and

(ii) reductions can be made by recognizing geometrical
patterns.

We conclude this section with some illustrations

of applica-
tions of the results presented so far.

Ezample 1

Verify that the graphical representation (7.16) of the Racah
W-function is equivalent to the definition in terms of Clebsch-
Gordan coefficients given in equation (3.13).

If equation (3.13) is summed over the m
number y then we get

| {(2e-+1)(2f +1)(20-+1)%}* W(abed,ef)
= 3 (abfialee) (ededley ) (bdpo|f) (afasloy ),

where the sum is taken over all magnetic quantum numbers.

| We write this equation as a graph using the representation
i (7.18) for each Clebsch-Gordan coefficient.

agnetic quantum

—_

{(2e+1)(2f+1))% / \x [(2e+1)(2f+ 1)(2c+ 1)2]%
(2c+1)W (abedsef)= — e -
\/ (—)2a+2+20+2a

(7.23)
The diagram in (7.28) can be reduced by omitting the oppositely

i arrows on the line ¢ (rule A). Reversing the arrow on
line ¢ and inserting two arrows in the same direction on line b
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cancels the factor (—)2+2t. Hence we get after cancelling the
square roots

W(abed;ef )=«

In the first step of the reduction in equation ‘(7.24) arTows
directed out of the vertices (abe) and (afc) are inserted umeng
rule D, and then pairs of oppositely directed SITOWS are remoy
from the lines a,b,e,f by rule A. These operations leav? a,rrf)ws
directed in a clockwise sense on lines ¢ and b and m.aga?we fg;a
on the vertices. Finally the signs of all the vertices an :he
directions of all arrows are reversed using rule E to obtain the
graph of the W-function in equation (7.16).

Example 2
Prove the symmetry relation

W (abed;ef) = (—)bre-+! W(aefd;be).
First draw the graph for the W-function given in equation (7.16)

W(abed; ef) = +

(7.25)

The diagram has been deformed so that e a.m.i [ form ttv]:o
opposite edges. The deformation changes the cyelic order ::wd e
nodes (afe) and (abe) so the signs of those nod:as must be rev > .
The arrows may be transferred from the lines b and ¢ to the
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lines e and f by inserting arrows directed into the node (afe) and
out of the node (aeb). Pairs of arrows in the same direction on
lines @, b, and ¢ can then be removed giving a factor (—)2+20+2
Hence

W(abed; ef) = (- )2m-2b+?;(c

= (_ )b*r.'—!—!

In the final step the signs of the vertices (afc) and (abe) have
been reversed giving an additional factor (—)t@tri0)i(a+die) and
the desired result obtained by comparison of the last diagram
with equation (7.16).
Example 3

Prove

W(abed;ef) = (—)atorera {: : ;}

where the W-function and the 6j-symbol are defined in equa-
tions (7.16) and (7.17).

The result can be proved by the following sequence of
graphical transformations.

125
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- e +
= (.__}n+b+c+d b
c a
e

ing the signs of the
A phase (—)a+bterctd+e gomes from reversing .
notli)es (abe) and (cde) and a factor (—)% from changing the
direction of the arrow on the line e.

Ezample 4 . :
The following graphs all represent the same 9-j symbol:
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7.3. Theorems on Block Diagrams

This section begins with a discussion of certain generalized
angular momentum coupling coefficients constructed from 3j-
coefficients and anti-symmetric symbols which have been called
Jm-coefficients by Yutsis, Levinson, and Vanagas (YLV). Let
$1(J1mu), . . . du(jama) be the wave functions of the components

of a quantum mechanical system. The function 7, ( ﬂ.i .. ?i:)
iniw

is called a jm-coefficient if it couples the angular momenta of the
states ¢1 ... ¢a to a zero resultant, that is if the state

© =3 Falr ) biGim .. bam) (129

is a scalar invariant. In general ¥, will be a sum of products of
3j-coefficients and anti-symmetric symbols which would be
represented graphically by a diagram with n external lines. The
detailed internal structure of the graph is of no importance for
the questions considered in this section, and it is convenient to
denote the graph of F, by a block with 7 external lines

jnmn

jl . .jﬂ' i :
ns)- | E

Jimy

(7.27)

Conditions which an expression F,, must satisfy in order that
it should be a jm-coefficient have been investigated by YLV.
They may be stated in terms of the graphical representation
presented in this chapter in the following way.

The expression Fy is a jm-coefficient if, by using rules A-D
of section 7.2, its graph can be put into a form in which every
internal line has exactly one arrow on it and every external line
has no arrow on it.

a

The anti-symmetric symbol ( ap

) and the 3j-symbol (abc)

apy.
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are the simplest examples of jm-coefficients. G-enera.l jm-
coefficients retain some of the properties of these simple func-
tions. For example

(i) The jm-coefficient

F,.(:;i :;) =0 (7.28)

unless 3j; is integral and 37m; = 0.
(ii)

. cottnFy( 9100 ). (1.20
F,,(_Tii“._?n)=(_y‘+ HF”(m;...m..) (7.29)

The following theorems hold for jm-coefficients Fn with
n =1, 2, and 3.

Tasorem I If Fl(; ) is @ jm-coefficient associated with a

graph with one external line then the function is zero unless
j=m=0,

Fl(:z ) - Fl(g) 8(j0) 8(m0). (7.30)

Treorem I If Fs(i:lg:s) is a jm-coefficient associated with
a graph with two external lines then

L WS AT ( a )Fg (7.31)
F’(mxma) (21+1) (1) myms
= J IR )
Lo Fags ,g (m;mg) XFa(mlma
TR TE L Y .
Taeorem III. If F’(i:lfn am:;) is @ jm-coefficient associated
with a graph with three external lines then
o7 9293 = (-“‘ o j") x Fs (7.32)
mymems, mymeing
J1 j2 js J1 Je js).
where F3 = Z (mlmgms) sz( amaie
Ty Mgty
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The proof of Theorem I follows directly from the definition
(7.26) of a jm-coefficient. The only case in which one angular
momentum (jm) can be coupled to give a zero angular momen-
tum occurs if j = 0. Theorem II can be reduced to a special
case of Theorem I by coupling the angular momenta ( jimy) and
(jame) to a resultant (jm). Graphically F is represented by a
block with two external lines. If these lines are coupled using
the relation (7.11) we get

- . jz jz
Fz(-“ 3“) =>@2+1) | F

nmy mo + =

J1

J1

(Arrows have been added at the vertices by rule D and removed
from the line j by rule A in order to get the left-hand part of
the graph in normal form.) By Theorem I this graph is zero
unless j = 0. Hence, using relation (7.5) and cancelling re-
dundant arrows,

PR EL 3'2) _ 8(jrje)
’(m:mz e+ | F i
J1 i

which is the graphical form of equation (7.31). Theorem ITT can
b'e }-)roved by reducing it to a special case of Theorem IT in a
similar way. Details of this proof will be left as a problem for
the reader.

:.I‘he properties of jm-coefficients discussed in the first part of
this section may sometimes be used to decompose a complicated
graph into simpler components. Suppose & graph can be
separated into two blocks ' and @ where F has either one, two
or three external lines and is joined to @ by these lines. I;.
follows from Theorems I, II, and III of this section that such a
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graph will split up into a product of disconnected components,
one associated with the block F and the other with G. If the
graph has one external line and is connected to @ by this line,
then Theorem I shows that the angular momentum associated
with this line must be zero. The graphs F and G are dis-
connected by simply omitting this line and using relation (7.4)
at the associated nodes in ¥ and G. The cases where F has two
or three external lines will be considered in more detail.

Theorems II and III can be used only if the graph F repre-
sents a jm-coefficient. This condition is satisfied automatically
if the graph F is in normal form with an arrow on every internal
line and any arrows on the lines joining F to G are incorporated
in @. If these conditions are satisfied, and if F and G are con-
nected by either two or three lines, then the graphs decompose
as follows.

(a) Two connecting lines

8(ab)
@a+1) " N
@ a -

o I L A

(7.33)
(b) Three connecting lines

c (o
a a
(7.34)

These results follow directly from equations (7.31) and (7.32).
In applications it is not necessary to put F explicitly into
normal form. It is sufficient to be certain that any graphs
formed by decomposing a larger graph can be put into normal

I E ksl

| L
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form by using the rules A-D. To satisfy this condition it is

sometimes necessary to add pairs of arrows on the co i

; . nnecting
lines before breaking them (cf. problem 6). We shall illustrate
the decomposition (7.34) by an example.

Ezample 5

Prove the relation

Z ('—‘; : :)(—: i :)(—i tj z) (—)aters—b-e-¢ —
~{aerf(sl) o
g:;hni;:;l:v:;n be proved graphically by using (7.34) in the

Graphs which can be separated into blocks ¥ and @ where F
has three or less external lines are called reducible graphs. We
have seen that such a graph splits up into a produet of factors
Irreducible graphs cannot be reduced to a product of fa.etors.
but often they can be written as a sum of products of simple;'
components. We will discuss the most important case where a
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graph may be divided into blocks Fs and & where Fs has four
external lines. The block F4will be assumed to have anarrow on
every internal line and arrows on the four lines joining s to @
will be associated with @. If these conditions are satisfied, Fg
represents a jm-coefficient. The angular momenta associated
with the external lines of F4 are denoted by a, b, ¢, and d. The
graph may be decomposed by coupling the angular momenta
@ and b to a resultant 2 and ¢ and d to a resultant y by using
the graphical relation (7.10).

sy L ﬁ y d: L
[ + -
Fy G| =2 @e+1)(2y+1) | Fy . b @
@ i o [
(7.36)
Pl "
=D (2u+1) | Fa k2424 G
xz N 3
(7.37)

The result (7.37) follows from (7.36) by using Theorem II or the
equivalent graphical decomposition (7.33). Arrows may be
added to vertices using rule D of section 7.2 if desired and the
signs of the nodes may be chosen in several different ways. We
illustrate this result by an example:

Ezample 6
The jm-coefficients

505592 ( (s
wlepy )= Gederd

represent two ways of coupling four angular momenta to a zero
resultant. Find the relation between the two coupling schemes.

and
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Drawing the graph for £ and using the decomposition (7.37)

we get
ge : ; +_ ;
Do i >

b T B L e o il
(7.38)
Equation (7.38) is another of the familiar relations between
6j-coefficients and 3j-coefficients (Appendix IT).
An important special case of the result (7.37) arises when a
sequence of blocks each with four external lines is connected as
in the following graph,

& )

D= F G H K
5, L

We assume that every internal line in F, @, ... has exactly one
arrow on it, and that arrows on connecting lines are shown
explicitly. Hence each of the blocks F, @, ... represents a jm-
coefficient and the diagram D is in normal form.,

This graph reduces to the following sum:

D= ; Cy+DF()G(Y) ... K(y), (7.39)

where

F(!l)='- F &

and similarly for G(y), ete. The result may be proved in the
same way as (7.37).

The results of this section are illustrated by a graphical proof
of the Biedenharn-Elliott sum rule [5], [23].
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Example 7
Consider the graph
o
a b |
h |
D= + T
e
d (]

-9 + _
This graph may be decomposed by separating it on the lines
(ghj) using the result (7.34)

b
(7.40)
¢
_ [ghi {g h i}
™ {a edf\bfe
It may also be decomposed by using the result (7.39)
X
R —1-
D= j h q
+| @a d_ |+
C R (7.41)
L[N\ b ¢ ¢/ g zf
=D (2z+1) X e > x & -
i 3 (7.42)
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The 6j-coefficients can be extracted from the graphs in (7.42) by
comparing them with the standard graph (7.17):

. soserasersrgmninal® £ %[0 b 2\[d o
D= X (1) ~pprasasiouse “*‘”{ba i}{c “}{/”}
(7.43)

For example the first graph in equation (7.42) has a value
(-—)“0-‘-'{: ‘:: :r:}_ We use the facts that g-+h+i is an integer

i
and (—)=% = (—)* in obtaining the final form of equation
(7.43).

BExample 8
Evaluate the expression
F(kqk'q") = 3 (—=)r-m+I=N (W' —mm'|kq) (JJ' —NN "|'q")
- (lemllLM ) (Illz‘m;_?r&gIKQ) (ngMmzlJN) %
X Ulm'mi| L'M" ) Gilymim;| KQ ) (L'l M 'mb|J'N'),
where the sum is taken over all magnetic quantum numbers

except for ¢ and ¢'.
Using the relations (7.12) and (7.14) this expression reduces to

F = Fy(=)[(L+1) (2L +1)(2T +1)(2J +1)(2k+1)(2k’ +1)]}
x (2K+1)

where

¢ = 204+-2L+20 21" +-2L" 4215 +-21+-2J,

(the phase (—)¢ = (—)2+27 because (ILl) and (I'L'l}) satisfy
triangular conditions) and F) is represented by the graph

T <
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From Theorem III the graph for F'; may be sep.arat.ed on the
lines [, J, and K, and on the lines I', J', and K giving a product
of three factors Gy, G2, and G3. These factors are

» = (=)WW(l,llJ; KL).

-

/ P l 1
@, k x — d(kk') 3(gq’)

- T 2%+ 1
\ U

__('_)d" RN e kY olqq’).
=35 W('JJ' kK) 6(kk') o(qq’)

where @1 = 2J —(I+J+K)+('+1+k) = I'+k+J—K.

10
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Collecting the results we get
F(kqk'q") = W(lilolJ;KL) W(LLIJ ;K L) W'JJ ;kK) x
X O(kK') O(gq' (=) VKKK +1)[(2L - 1)(2L" +1) X
X (2 +1)(21 1))

VIL. § 7.3

APPENDIX 1
3j AND CLEBSCH-GORDAN COEFFICIENTS
Tre C@ coefficient is defined by the transformation (2.30)
labey) = 3 |abap)abapley)

and vanishes unless « -+ = y. Other authors use the notations
(abaflabey) [17), (asbBlabey) [22], Cofey; af) (9], Clabe; ap)
[54], C& [65), CZys [39], S [78], and C:g [42] for the same
quantity. The Wigner 3-j is related to it by

@eflo—y) = (~r~rao+1p (5 5 ).

Note the appearance of y with a minus sign on the left, so that
now a+f+y = 0. Related quantities are defined by Racah
[31]

P s

Orthogonality relations:
@« b o\fe b ¢
nzp(zc+l)(¢ B 7)(a B ?')=a°="’W"
b

;(2.::-{4)(: 8 ‘;)(: ;’3, ‘;)=au,a,,,,..

Symmetry: If the 3-j is rewritten [51]

;)EV(abc;uﬁr)=(—)°+°"(: e

+ec—a c+a—b a-4b—c
a b ¢
( )= d=gx  b=p c—y ]
BT a+a  b+p oty
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it is invariant under interchange of rows and columns ({eﬂec-
tion about diagonals), and is multiplied by (—)*#*¢ upon inter-
change of two adjacent rows or columns, giving 72 equivalent
gymbols. In particular this means

(a b e )=(_)¢H+‘(a b c)

—&—p — « By

and that the 3-j is invariant under cyclic perm.utation of its
columns and multipied by (—)***#¢ by non-cyclic ones

[ 5 St sl e

Recurrence relations:
; b ¢
e ey (2 8 ,,:H)+

b [
+l(@Fa)ata+1)] (u:: 1 B y) +

b ¢
a b ¢ v
[(@+b+ec+1)(b+c—a)] (a. ) y)= [(b+B)e—p)) x
b—3} c—} a b—} c—} ,

i(t:l'. b c+1)

[(@+b+c+2)(b+ec—a+1)a+ec—b+1)(a+b—c)] e oy
b c )

B+1 y-—1
¢

y) —[(b+B)x

l a

= [(b—p)b+p+1)(c+y)e+7+DI
b

o+ 1)e— 0 (25

s (@ b ¢ )

X (b—p+1)(e—p)e—y+1)] (o'. B—1 yp+1)

Algebraic formulae for the general 3-j are given by equation
(2.34), and for « = f = 0 by equation (2.35). Formulae for

10*
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¢ =1, 1,4, 2 are given in Table 3. Other special cases are

(a b 0) i
a B 0)=(=r""00, _, (2a+1)~}

(a b a+b)
« By
(- H[ (2¢)! (26)! (@ +b+y)! (@+b—y)! )
(2a+2b-+1)! (a+a)! (@a—a)! (b+5)! (b —,3)!] '

¢ b a+4b-—1
(u ) ” )=(—)‘“”"'2(5a—aﬁ)><

[(20,—1)! (2b—1)! (@+b+y—1)! (a+b—y—1)17}
(2a+20)! (a+a)! (a—a)! (b-+p)! (b—p)! ] '

a b atb-—2
(nt B y )__‘(_)“_bhrx
. [(a-i—b —7=2)! (a+b+y—2)! (2a—2)! (2b—2)17
2a—a)! (@+a)! (b+p)! (b—PB)! (2a +2b—-1)!]

*[a+a)a+a—1)b—p)b—p—1)+(@a—a)a—a—1)x

X(O+B) 0+ —1)—2(a—a)(a+a)(b+p)(b =Bl

& B B
i == (_)Hs+b+k-2} 2A(“bc)
(a } 0) [(Ra-+1)2b+1)fF
[4(k-+ab)]!
*[Ha+b =B a-+k—b—1)) GoTF—a—T)j

with k =c¢ if a4-b+c even, k — ¢ ’
y k=c+l
A(abe) as in (2.34). +1if a+b+c odd, and

Boeesn haprs

x[ (2e)! (a+b—c)! (@a—a)! (c+b+-a)! ¢
(@+b+ec+1)! (c—a+bd)! (c+a—b)! (b—c—a)! (a+u}!]

APPENDIX I 139
By specializing some o‘.l' the relations in Appendix II:

Z(z"“’( ) Z(Zc+1)(“ b c) 8¢

d b c(c+1)+b(b+1} a(a+1)
Zﬁ(2c+l)(m ﬁ ) <ﬁAv = 2G(G+1)
. b _ (@ b c\e(e+1)—ala+1)—bb+1)
(1 i 0) _(0 0 0) 2[a(a-+1)b(b+1))*

if a+b--c even,

ab o (a be (e—2)t
(1 1 —2)—(1 o o)‘b_“)(“'*'b‘l'”[(cw)!]
if @ 4-b +c odd.

B3935 Al
i (a—l a—1 ¢\r(2a+e)l2a—c—1))*
il b A )[(w—c)(za+c+1)]

(a a—1 c) [ (a+1)(@—1) ]*
c(c-I—il)(2a—-c)(2a+c+l)
(.: 1 *-;) =(3 0 ;) [{ci(:)t::)uz)] TS

a ac [ a ¢ 2a
(a —a o) ( —1 1—a 0)c(c+l) 2a

ab ¢ a b ¢\(20+1)+(—)"4¢(2a+1)
(i . T 1)_ " (i -3 0) [e(c+1))*
|
a a—1 ¢\[(2a—1)(2a—c)(2a+c+1)7}
. (i o 0)[ ofe+1)(2a+1) ]

e _(a a+2 c) [(c—1}(c+2){2a+5)(2a+c+2)(2a.-—-c+1) ¢
T \F =% OJ| ele+1)(2a+1)(2a+4c+3)(2a—c+2) :|

if ¢ is even.
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Clebsch~Gordan coefficients, symmetries:
(@bafley) = (—)#+0-¢(@b—a—Blo—p),
= (—)*+b-¢ (bafalcy ),

2c4-1
(2b+1))( =)= (aca—y|b—p),
21
(2a+1))( — )8 (cb—ypla—a).

Special cases:
(@bap|00) = (—)a=2(2a+1)4dupdy, -5,
(@0x0]cy ) = ac by

APPENDIX II

6 SYMBOLS AND RACAH COEFFICIENTS

Tue Racah coefficient is defined by the transformation (3.8),

l(able, d; ) = 3 |a, bd)f; e)(2e-+1)(2f + 1)1} W (abed; ¢f).
Orthogonality :

; (2¢+1)(2f+1) W (abed; ef) W (abed; eg) = 4.
Symmetry: (giving 144 equivalent coefficients [38], [52])
W(abed; ef) = W(bade; ef) = W (cdab; ¢f) = W(achd; fe), ete.
= (=)"*=*7 W(aefd; be), ete
also = W(aBCd; EF), where

B = j(b+et+e—f), C = Yb+c+f—e), B = §(b+e-+f—0),

F = =
Sum rules [5], [7], [23), [48] Fet =),

W(abed; ef) = g (—=)"*=%(2g +1) W (gabf; de) W (gdbe; ac),
W(abed; ef) W (abgh; ei) — 2 (2 +1) W(jgfa; ci) W (jdib; hf) x

X W(jgde; ch) = 2(2J+1)(2k+1)W(uf9, ka) W (cijb; kh)x
X W(gfjb; kd)W (cdhg; ej).
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Contraction of 3-j symbols:

e T [

(55 G <7)
summed over all z-components except y,
ressn(s2) 3059605

Z(2f+1)W(abcd; qf)(:’ : 4') (2 ‘; _i)(_)!—c—a—a
=(¢l b e)(d c e).
58 By «

S o1+ Wl LA [ RAAT P B

core(th 9

§(2o+1)(2e+1)(2f+1)mabod e.f)(" @ i)( ; —-i) %

4395 e

If a+b e is even, a special case is

( 1‘;3) —{(2a+1)(2b+1))'W(abed; "*’(Og;)

Algebraic formula for the general Racah coefficient is given
by equation (3.15), and for e =} and 1, in Table 4. Other
special cases are
W(abed; a+b, f) =

(2a)! (2b)! (@+b+c+d+1)! (a+b+c—d)!
=[(2a+2b+ 1)! (c+d—a—b)! (a+c—f)! (a+f—e)!
4 (@a+b+d—c)! (c+f—a) (d+f—b)! ]"
(@+c+f+1)! (b+d—f) (b+f—d)! (b+f+d+1)!
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( o )(s +e—Jf)

Wabed, of) =tz 1)@ T

d(a, b) é(c, d).
6~ symbol, definition:
b
{: ¢ ;} = (—)erbierd W (abed;ef ).

Triangukfr conditions: the four triangular conditions which
must ba-ss,t.;sfied by the six angular momenta in the 6-j symbol
may be illustrated in the following way:

TP e R

Symmetries: the 6-j symbol is invariant for interchange of
any two columns, and also for interchange of the upper and
lower arguments in each of any two columns, i.e.

et ={ird=-0ed=fs -5
Contraction of 3-j symbols:

PR e [ P ()

zcyll ,.Jo b e
_2c+1"“*‘5’"{A Bo}’

Spmcn{d 2e)(2 0e)e a1,

=ler )b
Sum rules:
3 et ) M,

Z (— )a+o+k(2h4-1 : f: ?} = dro{(2a+1)(2b+ 1)},
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b k\fa bk
2+ 1)(2f+14 = ds4,
>, ke e 5 SHe o o= o

Formonsnfs st 042

APPENDIX III
9-j SYMBOLS OR X-COEFFICIENTS
Tue X of Fano is defined by the transformation (3.23), with

((ab)e, (de)f; i|(ad)g, (be)h; i) :2;
[Ce+1)E+DRg+DED} | 45

= X(abe, def, ghi).

Orthogonalily:

abe)fabe
Z(20-{-1)(2f+1](2g+1)(2h+1){d e ij ¢ f} = Bgs Onk.
of g hi)lj ki

Symmetry: (72 relations [39]). The X is invariant under
interchange of rows and columns (reflection about a diagonal)
and is multiplied by (—)”

(where p = a+b-+c+d+e+f+g+h+i)
upon interchange of two adjacent rows or columns.

Sum rule: (others are given in the literature [2], [61])

abelfae] abe
Z(—)"+""‘“(2j+1)(2k+l){j d f}{;’. b k} ={:, e ;}
ik i k3 hoi hoi

Contraction of Racah coefficients:
X (abe, def, ghi) = 3. (2k+1) W (aidh; kg) W (bfhd; ke) W (aibf; ke),

Y (2e-+1) W(aibf; k::)X (abe, def, ghi) = W (aidh; kg) Wbfhd; ke),

ete.
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W(ghjk; i) X (abe, def, ghi) = g (28 +1)(2t+1) W(cfjk; is)x

x W (desk; fe) W (belk; ht)X (abe, dts, glj).

R——
o iz (22908 D19
summed over all z-components ezcept . § (j : 9 (p i ")
Y ] A A [ P T
6h)  Swels )6}
D2 AN L |
R o [ R ()

(36206
«dp/\8 ed pvjv'etc'

Special cases:

: 2 ; ) ey Ogp(—)0+7-=* W (abde; cg)
o [(2e+1)2g+D)F

d =
[T Teler1) e+ 1)glg+1) g+ T

{:b '"'} a(@+1)—d(d+1) —b(b+1)+e(e+1)
g1

% (—)et0-2-¢W (abde; cg)-

With g = }, c+d+-e even, and using A.1, this gives

cde[? b e b
A TR

s
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When ¢+d e is odd, we have two other relations

b e
c+1d e @
d +1
( 0 0 0){1 ; "‘] }
( )b+s+l'[(d-—a)(2a+l)+{e-—-b)(2b+1)+c+l]x(a b c),
[3(G+1)(26+1)(26+3)(2d+1)(28+1)]' -1 0

b
(4]

_ = )"““[(d-—a)(%+1)+(e-—b)(2b+1)—c]( b c)
[6c(2¢-+1)(2c —1)(2d +1)(2e+1)}* 110

Algebraic formulae for ¢ = h = } are easily obtained from
these.

APPENDIX IV
SPHERICAL HARMONICS

TresE are defined with the same phase as Condon and Shortley
(17}, = (2k+1/4m)'C,,, where

Oul08) = (— )‘[(,c +§;J PO, # g>0,

and
Oy _o(08) = (—)'C,y(09)*.
The P are the associated Legendre polynomials, with
P = P,; their properties are well known [40], [42]. Special
cases are
Cp=1;, Cyp=cosb; OC, = F(3)sin 0 e*“
Cy = ¥(3 cos®0—1); Gy = F(3)! cos 0 sin 0 e*

Cyyo = (§)lsin®0 g M
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Orthogonality :
(2k+1) [ G, (04)* Cyq(68) sin 0 d0d = 5, 8 g,
Sum rules: 2 |G (0)]2 =1,
q

2 (2k+1)Cpy(0¢) = 25(cos 6—1).
k
Addition theorems: Y Cr(09)C, (0'4')* = Py(cos w)
if w is the angle betwe:sn the two directions (64) and (6'4’).

Cul01009) =3, Cotoirza+1 (> (5 5 _7)(5 5 o).
)=S0 ).
[ u016, 0010, 00)sin 0 a0ag = an(* 1 ) (22 ),

apy
b
i) i i 0 im0 =3(3 4 )

> om0, 5

APPENDIX V

ROTATION MATRIX ELEMENTS

Our definition of 24 .(«fy) for the rotation of axes through
(¢fy) is the same as that of Rose [54], Messiah [46]. Bohr and
Mottelson [13] use rotation matrices which are the complex
conjugate of ours. Wigner [78], Fano and Racah [31], Edmonds
[22] and Rose [53] use the same notation, but (x8y) are then
Euler angles for a rotation of the system. Associated with this
is the equivalent coordinate rotation (y f &)1 = (—a —p —9),
so their usage is equivalent to a different sign convention for the
angles of rotation.
With our definition (equation (2.17))

D i(afy) = e~ @i (B)e= .
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The formula for &, (B) is given by equation (2.18), and given
explicitly for j =4, 1, # and 2 in Table 1.

Orthogonality :
(2+1) [ D * D sin fdpady = 85 dpag Syt S
Sum rule: 3 D Dhrw)* = b
Closure: S, Dl #s272) Drcnt(taP?1) = Dt (#B7);
where (aﬁ;; is the resultant of first («,8yy,) then (xyf37s),
b3 WA Pt (Br) = BoBr+Bo)-
Symmelry: m

djm'(ﬁ) i (—)m-‘“‘d{.’m(ﬁ} = d’—m’—m(ﬁ) = dfu’m( _ﬁ)
= (=) "d, _ n—p) = (=Y ™ & _e(m+B),

o Qjm,(aﬂ?}‘ - (_)ﬂ-ﬂb‘@_f_“-m‘(aﬁ?) = Q:l'a( _'?"'ﬁ_a))
where (—y —B —a) is the rotation inverse to (By).

Special cases:
2} o(apy) = Cjn(Ba)*;
j —m)? i
o Bl = (P[] BO om0,
and

dgo(B) = Pjlcos p).

& (B) = (—1Y7™((2)!/(j+m)! (j —m)!]t x
o (008 36)*"(sin 1B/

Contraction:

A BC
%(“ﬁ?)@g’(“ﬂ?) = Z(2C+l)(f f (:)(ar b cr)gfn’{“ﬂy).s

aseon (s 5 ) =2 (2 3 ) okesnatioon,

e ¢ a-b o

11
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(AB

S T R 4 BC
Sapprt= > @0+1); ).

c
b G)wa(aﬁy)@ﬁ-(mﬁy)(a. 2 o

> aitnabiapnasom(y ; 9)=(2 5 o)

a b ¢
[t 80089) 9 a8 sin papaady
CANE O') (A B C)

=~ g.,,s(
a b o\ v e)
APPENDIX VI

TENSORS AND THEIR MATRIX ELEMENTS

TaE commutation rules for spherical tensor components with
the spherical components J =0, £1) of J are

Ui T = Togy [l (@1 F—prorer(_E ET),
—q—Kqp

Basic tensors are the spherical harmonics C,. When k =1

we have vectors, a = aC,(0¢) = E (—)'a,e_,. (04) are the

polar angles of a, so C, is a unit veet.or along a. The e, are unit
spherical vectors, e, = e, e,, = F (e, +ie))/2}, s0 the vector
components a, = aCy,(6¢). Product tensors are defined by
(4.6),

TEQ(Rtl' Sl,) = qu(kp kg)
i (2K+l)i( }zk.+x-oz (K _kl. k

=
7172
When & = k, = 1, 4/2Ty(a, b) = ia A b, and T,(a, b) i is given
in section 4.5. Other examples are the bipolar harmonics of
section 4.6, and the spherical harmonic addition theorem. We
may derive various re-coupling relations for such tensors; for
example, if tensors k, and k; commute

Tr(ky, k) . Te(kes, ky)
= (2K +41)(—)4rtk ; W(kikoksky; KK') Ty (kyky) » Trolkok,).

klhst'ﬁ'
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For example, with K = 0,k =k, = kg =k, = 1,
(a.c)b.d) = }(a.b)(c.d)+}aAab).(cAad)+
+Ty(a, b). Ty(c, d).

When c, d are Pauli matrices, with ¢, 6 = 3, Ty(0,0) = 0,

[20],
(a.o)(b.o) =(a.b)+ic.(aAb),

and whena = b =J,, ¢ =d = J,, we get
To(Jydy) « Te(dody) = (Jy . I2)2+3(J; . Jp) — 35

Again, ifa = s, b = s,, ¢ = d = r, we get the tensor force
813

Ta(s,8,) - To(rr) = 1Sy, = (8, . T)(8; . ) —&(s, . 8y)r*
where Ts(rr) = J (g)recz(egs). This may be recoupled, using
r(s.r)—r%s = —(10/9)}2T;(C,,8)
to give Ty(s;8,). To(rr) = —(10/9)ir?s,.Ty(Cy,8,).

Tensors may be formed by ‘polarizing’ solid harmonics
*C,, with n < k vectors A, B, - - - [27], [75],

TH(A’ B, . H, r*—i‘l) - z (__),\+,.|+... %
Apares
XA;B HV V - v_ﬂreou(&#),

n' -4
and if B, - - - H commute with V,
= (A.V)B.V) - (H.V)*C,(64).
Each step replaces a vector r by a vector A, B---,
leaving unchanged the transformation properties. Other

polarized harmonies may be formed with the operators L and
V; vector harmonics were introduced in section 4.10.2 and are

further discussed by Hill [35] and Edmonds [22]. In the
product tensor notation above, the vector harmonic is

7Y T |
YS, = ,e) = 2K +1)}(—)E-¢
Kkl xq(Yg e) ,Z,.( (=) (Q —q _#)X
X Yh(&#)e”.
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Some useful properties of the various tensors follow from

L,0,08)
= ke E O E o Yo g,

g+u —q —p
(k+1)(2k+3)7} &
L e e [ e 5"
d k k(2 —1)71
X Cpp1,44u(08) (‘— —‘)f(r) +[~—(2§m1—)] (—)eratny

A PO R

V.(*C,) = (=)0t A [R(2k —1)(2k+1)]* x

Bt Lok B
x(q+p —q —.u)"‘E Ce-ra
V,(rE10,) = (=R 1)(2k 4 1)(2k4-3)] X

B+l B 01\ ..
x(q_l_‘u _g _#) * 20*1’1"""

So we have [k(k+1)1*YE, = L( Y
(k@E+D)PAIYE = V(T
[(k+1)2k+ 1) YL,y = V(41 1,),
Further, using the relation
d
Va Lq# = -—t[!‘V'oﬁ—V(a )],
we get
k ] : ] d k
(2k+1)VAL(fY,) = ik(k+1) Y:;Ht("g.‘_;)f(')'f'

_ d k
il DB YL,y (547 ) ),

and in particular
VAL(*C,) = i(k+1 WV(*C,).

Similar tensors arising in radiation theory are discussed in
section 6.1.1, and others have been applied to f-decay theory
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[3], [45], [57]. We also have

k4
(DTG = RV () ) i Cas D

—[(k+41)(2k +3)]'(dfr —;)f(r)T,,,(Cm, V).

Some of the multipole tensor expansions useful in physics
are

¢t = 3 (2 1) (kr)Ci(Ouhy) . Ci(64)
é(a—b) = (4ma®)"1o(a —b)g (214-1)Cy(0.85) « C,(0,85),
emviab’® = ; =120 4-1)e@+0% ji(2iyab)Ci(fada) - Ci(Osbp);
and if p = b—a, with b > a,
p = :2 (@' [bH1)Ci(Oadq) « Ci(Oy,)
e*?p = ikh( (kp) = ik}l: (21 +1)j(ka)R{V(kb)Cy(0,9,) - C(8,8,),

efop = — ; (204-1)j (iaa)h{"(iab) C(0.8,) - CilOyps);
ifr=a+b

21 i
g ; (zmm=an) - %
X Crn,m-u(Oapa)Cru(Ovpv) L —Adm —ppe|lm ).

Reduced matrix elements, definition:
The Wigner-Eckart theorem (4.15) states
M| Tyl ' M) = (—)%JMJ'kM'q) J||TellJ")
B e '
= (g o ) QTN IT

The reduced matrix element (J||Ti||J’) defined and used by
Racah [31, 48] and Edmonds [22] is related to ours by the
equation

U Te|J) = 2+ J||Tefl” ).
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The factor (—)2* is included in our definition so that the phases
of both reduced matrix elements should be the same. It is
relevant only if k is half-integral (for example if 7'k, is a creation
operator for a spin-} particle).

Reduction formulae in terms of 6-j symbols:
For convenience we collect the principle reduction formulae

of section 5.3 and rewrite them in terms of 6-j symbols. In a
two-component system the tensor Ry, (1) acts only on the first

part and Sg,(2) only on the second part. If
T'rolkiks) = Z, Ri,q,(1) Siy,(2) (krkoqage| KQ)
TNl

then formula (5.12) gives

J
Grded [ Tlkiko)|71g5d " ) = {(2J"+1)(2K + 1)} J: Ji I‘J X
j2 J2 k

X (Z1+ 1) Gl[Rg, |57 )2 +1) (GallSllge )-
Special cases of this result are
S=1 , K=k =k (equation (5.9)),
e A ] JJ
G RG5> = i +105 - 7 x

1 l
X (=025, 1) G| |[Ry (1|55 )5
R=1, K=k==Fk

G = ot +0 {5 T 1) x

2 Ja Ja
X (=PI 21 ) (ol|S(2)154 )
K =0 , k= ks =k (equation (5.13)),
RSk = (—)¥(2k+1)!Too(kk)

(e [Re. Slliigad "y = o(II')(—yirsurad It T3 J} %

2 2

X (Zj+1)! GiIRelg: (252 + 1) (GellSallge -
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Basic reduced matrices are
I = [T +1)1y,

&
ey =@ +1)}— )‘(0 0 0)

awey = @r+=1(g o o) (g +5

= (_)l+a+1(;_:i_13) <£ 8

g +2 s>,
where the last factor is a radial integral and a = —I' if
l=U+l,a=V41ifl =1-1. :

The matrices of tensor products and for composite systems
are discussed in Chapter 5. Application of (5.9) gives

e
aledris = e +i—y == 6

provided I+’ +k is even, and zero otherwise;
" i K
Wil Tx(Cr, o)'45") = ar(—)~K4(2j +l)'(i—3i 0 )

where ar = (x—2')[v/{k(k+1)},
ag-1 = —(k+x+4a')[v/{k(2k+1)},
apnr = (k+1—z—2a')[v/{(k+1)(2k+1)},

with = (I—)2j+1), 2" = (I'—5")(25'+1).

(il allisisd ) = 8,58, (=Yt "hx o |
x[.h(.?ri'1)(231+1}{2J'-|-1)]‘W(Jﬂ1‘; s 154),

and for example, since ¢ = 2s for spin }
jllelld’y = 8,I3+i(G+1) —+DILG+H ifj =5,
= &2+ 1)/+1)]} if j =j'—1

and (348]|ey[|338") =[S(S+1)] if 8§ =58,
= —+/3 if §=8-1.
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Equations (5.12) and (5.13) give
Gy « Iellii el ) = 8,8, AT +1) =1y +1) —jalGa+1)),
(338||oy . 0g|338) = —3 if 8 =0,and1 if §=1.
Also (138]|Ty(y, 0,)[[138") = 85586, (3

o
.

[
B W N = O

ot
[=- -]

[
=]

ot
© o

1~
=

B o
b =

23.

24,
25.

26.
27.

® @ Nem Bk ® N
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SUBJECT INDEX

Addition theorems, 28, 55.
Adjoint, 59, 60.
momentum, commutation
relations, 10, 53.
— —, matrix elements of, 17, 58,
126, 127.

Bipolar harmonics, 55.

Clebsch-Gordan coefficients, see
Vector addition coefficients.

Central forces, matrix elements of,
101-5.

Cogredient, 28.

Contragredient, 28, 60, 62.

Correspondence principle, 8.

Density matrix, 107-12.

Electromagnetic multipoles, 71-7,
88-91, 98-100.

— —, transition matrix elements,
91-5.

Equivalent operators, 99.

Euler angles, 20.

Fractional parentage, 83—6.

Graphs, arrows on, 114, 119.
—, basic components, 113, 114.
—, normal form, 120.

—, rules for construecting, 115.
—, — — reducing, 126-33.
Group symmetry, 3, 4.

— representations, 13-15.

Hyperfine interactions, 74, 76,
98-100.

Isotopic spin, 86.
jm-coefficients, definition, 126.
—, graphical tation, 126.

represen
—, reduction formulae, 127, 131.

Matrix elements, electromagnetic
multipoles, 81-5.
—, factorization of, 57, 80-3.

—, reduced, 57, 58, 61, 79-83, 85,
151, 152, 153.

—, rotation 21-4, 28, 32, 146, 147,

— of spherical harmonics, 57, 81,
82, 153.

— time reversed, 62.

Multipole expansions of a scalar
field, 63, 64.

— — — a spinor field, 70.

— — — a vector field, 65-70.

— — — a vector plane wave, 69.

special functions, 127, 131.

Multipoles, see electromagnetic.

Parity, 10, 19, 59.
Pauli spin matrices, 23.
Projection theorem, 78.

Racah coefficient, 41-4, 140, 141.

— —, explieit formulae, 43, 141.

— —, graphical representation,
117.

— —, sum rules, 44, 140,

—_— ies of, 45, 140.

Reduced matrix elements, defini-
tion, 57, 78, 151.

— — —, phase, 57, 151.

— — —, reduction formulae, 79,
81, 82, 152.

— — —, special cases, 57, 58, 153.

Rotation of angular momentum
eigenfunctions, 28.

— conventions, 5, 21, 146.

— of spherical harmonics, 28.

— of spherical tensors, 51, 53.

Rotation matrices, 21-4, 146, 147.

— —, explicit forms, 22, 24.

— —, reduction of product of, 32.

— —, symmetries, 147.

Rotation operator, 9, 20, 21, 53,
63, 65.

Selection rules, 59.

Spherical harmonics, 18, 145, 146.

— —, addition theorems, 28, 54,
55, 146.

— —, matrix elements of, 57, 81,
82, 153.
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Spherical harmonics, as tensors, 54.

— —, vector, 66, 67, 68, 149.

Spin Hamiltonian, 100.

Spin of a vector field, 65.

Spin orbit forces, 83, 108.

Statistical tensors, 109.

Sum rules, construction, 44.

— —, Racah coefficient, 44, 140,

— —, 6-j symbol, 134, 142, 143.

— —, 9-j symbol, 143.

Symmetry and conservation laws,
6.

—, geometrical, 4.

T mpr 3! 4.
—, rotational, 5.

Tensor Cartesian, 49, 50.

—, irreducible spherieal, 50.

—, products of, 51, 52, 54, 55, 67,
79, 148,

—, transformation of, 51, 53.

— forces, 106, 107, 149.

—, operators, commutation rules
with momentum, 53.

—, adjoint of, 59, 60, 61.

—, matrix elements of, 57.

—, time reverse of, 61, 62, 91.

Time reversal, 11, 61, 91.

Veetor addition coefficients, 30, 30.
— explicit 33, 34, 35,
36, 137, 138, 139.

SUBJECT INDEX

~—— — —, graphical representation,
117.

— recurrence relations, 34, 114,

-— symmetries, 136, 140.

—gemodel. for rotation matrices,

——, for vector addition coeffi-
cients, 32.

Wigner 3-j symbol, 39, 126.

— —3 —_ ical representation,
113.

— — —, orthogonality, 115, 1186,
136.

— — —, recurrence relations, 137.

— — —, special cases, 138, 139.

— — —, see also vector addition
coefficient.

Wigner 6-j symbol, definition, 4, 9,
142,

— — —, graphical representation,
118.

— — —, sum rules, 134, 142, 143.

— — —, symmetry, 142,

— — —, see also Racah coeffi-
cient.

Wigner 9-j symbol, 45-7, 143, 144.

— — —, graphical representation,
125.

X-coefficient, see Wigner 9-j sym-
bol.




This book introduces the quantum theory of angular
momentum to students who are unfamiliar with it and
develops it to a stage useful for research.

The first part contains the basic theory of rotations
and angular momentum. As the book aims to empha-
size applications, mathematical detaiis are avoided
and difficult theorems stated without proof. The
second part contains examples of applications to a
wide range of physical phenomena and presents a
collection of results helpful in solving problems.

This second edition contains a new chapter on
graphical methods. The first edition appeared in 1962,
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