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PREFACE

In the late forties and early fifties it was widely thought not only by the
man in the street but also by well-known futurologists that the second half
of the twentieth century would be identified as the nuclear age. Howerver,
in the sixties the use of computers became so common’ and-indispensable
in nearly every part of our lives that the expression ‘nuclear age’ has been
more and more often replaced by ‘the era of the computer’. It is impossible
to predict whether people of later centuries will label our decades as the
years of nuclear energy, computerization, or the beginning of space exploi-
tation.,

Nuclear pwer stations and computers liberate man from most of his
physical and non-essential but time-consuming intellectual work and give
him the possibility to concentrate his efforts on solving the most important
and exciting problems of nature, life and society. Space vehicles free man
from his home planet and open up dimensions inconceivable a few years ago.
How fruitful will be this liberty brought by modern science to mankind,
depends on man himself.

in the early days of nuclear physics, evaluation of measurements did not
need sophisticated numerical calculations. The total number of observed
flashes on a scintillating screen, of later the accumulated counts of a GM
tube, both representing the intensity of radiation, were the main available
experimental data. The technical development of nuclear devices proceeded
nearly parallel with the construction of computers, and nuclear measuring
equipment has become more and more sophisticated. First scintillation
and later semiconductor detectors coupled to multi-channel analysers
vielded a tremendous amount of information from even one measurement.
To evaluate this mass of data computers were needed, and since then
computers have had an important role in nuclear physics. A decade ago,
they were used only to perform numerical calculations for rapid evaluation
of measured data or to solve numerically the complicated equations of theor-
etical phvsicists. But at present besides performing these tasks, computers
have become an ﬁs.aentriu.{j integral part of the modern experimental physi-
cist’s laboratory. They help to plan his experiment, control the whole experi-
mental set-up during his measurements, continually evaluate the recorded
data and from these decide what to do next, and at the end of the experi-
ments give the final answer to the problem.

With such an arsenal of technical apparatus, the only task of the physicist
seems to be to find a suitable, scientifically interesting problem, to program
the computer to control and evaluate the experiment, to summarize the
results in & form understandable to his colleagues, and obtain funds to
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purchase all the necessary equipment. Anyone who has worked in the field
of physics, however, knows that sometimes a completely satisfactory sohu-
tion of these ‘slight’ preblems may not be very easy.

In the present book the use of computers in modern scintillation and
semiconductor gamma-ray spectrometry is deseribed. Besides a compilation
of the author’s own experiences in the Nuclear Physics and Nuclear Chemis-
try Laboratories of the Central Research Institute for Physics, Budapest,
in the National Bureau of Standards, Washington, D.C. and at Texas A.
and M. University, College Station, Texas, the literature has been reviewed
till the end of 1969, but some of the later papers published auring the writ-
ing of the manusecript have also been incorporated into the text. |

The author is very grateful to Prof. R. K. Wainerdi at Texas A. and M.
University with whom he prepared his first summary on computerized
gamma-ray spectroscopy. His thanks are also due to Dr. A. Simonits at the
Central Research Institute for Physics, Budapest, and Dr. D. Kiss for their
valuable comments and suggestions while preparing the manuscript, and
to Dr. D. A. Durham for the revision of the English text.

P. QUITTNER



1. INTRODUCTION

i

The vast amount of information collected by modern semiconductor-and
scintillation detectors has led to the wide-spread use of computers in-tke
interpretation and evaluation of spectral data. Nuclear levels and decay
schemes have been determined by measuring the energy -and intensity
(and sometimes correlations) of the emitted gamma-rays. Instrumental
activation analysis, based upon the use of gamma-ray spectrometry, has
been developed into a rapid, non-destructive analytical method. Gamma-ray
epectrometers have reached the point in reliability and cost where their use
has become economical in several practical applications. Whole confer-
ences, or complete sections of large conferences, have been devoted to
the applications of computers in the measurement of nuclear radiation,
e.g. refs. [1-4].

Despite the rapid growth of interest in computer methods in nuclear
physics, only a few reviews have been published on this topic. Among these
should be mentioned Lindenbaum’s summary of the on-line applications [5],
Gelertner's review of bubble and spark chamber data evaluation [8], and
the book of Matalin, Csubarov and Néray [7].

Review studies devoted to some aspects of the computer evaluation of
gamma-ray spectra have been published in the last few years, but except
for the relatively short paper of Quittner and Wainerdi [8] they have not
covered the whole subject. Gibbons [0] and Yule [10] summarized computer
methods in activation analysis, Heath reviewed automated gamma-ray
spectrometers [11], and Schonfeld, Kibbey and Davis' paper [12] can be
regarded as a summary of the different methods of least-squares techniques
for scintillation spectra resolution.

This review gives the main applications of computers to modern gamma-
ray spectrometry, coupled with a short theoretical outline of the different
methods, and refers to illustrative practical applications.

Due to the statistical nature of nuclear disintegrations and detection
processes, counts in the individual energy intervals of observed gamma-ray
spectra can differ considerably from their expected values. Chapter 2 deals
with the statistics of nuclear measurements and with spectrum smoothing.
Properly performed, spectrum smoothing removes most of the statistical
fluctuations while retaining virtually all the significant features of the
original data.

Chapter 3 describes in brief the main features of gamma-ray spectra and
the determination of detector response functions for different energy gamma.-
rays. Giving the different analytical approaches to the shapes of full-energy
peaks and that of the response function outside the full-energy peaks, an
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algorithm is given to generate spectra of monoenergetic gamma-rays by
interpolation from measured standard spectra. Examples of the application
and limitation of calculated spectra are shown.

Chapter 4 -deals with computer peak recognition and peak location in
complex gamma spectra. After the trivial maximum-finding method, the
details of the more sophisticated smoothed first derivative and generalized
second differences are also shown. B

In quantitative gamma spectroscopy the most important task is to deter-
mine the intensities of the individual components of complex spectra.
Chapters 5, 6 and 7 deal with this problem. '

Chapter 5 explains the different methods of peak area calculation, how
to select the boundaries and approximate the shape of the peaks in a spec-
trum from which the intensities are calculated as the number of counts in
the peak region. Both curve fitting and base line construction are deseribed
in detail and the merits of relative and absclute intensity determinations
are discussed.

In Chapter 6 the analvsis of complex gamma spectra by the method of
weighted least-squares is amply described. Because the availability of high
speed digital computers has made the numerical calculations a relatively
simple matter, and for a given set of data this method usually gives the
solution with the smallest statistical error, least-squares techniques are used
extensively for spectrum decomposition. After an explanation of the basic
concepts, gain and threshold compensation by computer programs, the
selection of weighting factors, the effeet of a missing component and the
validity of the results are described.

Chapter 7 explains spectrum stripping and other methods which can
be applied for intensity determination without the use of a computer.

Chapter 8 shows such illustrative examples as decay curve analvsis,
optimization and activation analysis programs, sensitivity calculations and
on-line application of computers in modern gamma spectroscopy.

Chapter 9 describes in brief some special measuring apparatus while
Chapter 10 gives the most frequently occurring experimental errors for
which correction must be made by proper programming.

- Numerous figures and references and several tables supplement the text.
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2. STATISTICAL FLUCITUATIONS
AND SPECTRUM SMOOTHING

This chapter describes briefly for the experimental nuclear scientist; How
statistical methods may be applied to get more information from the T&a-
gured data, and how accuracy and precision is limited by statistical fluctua-
tions. The treatment presented here is neither rigorous nor eemplete. Only
those subjects which are most frequently encountered in applied gamma-ray
gpectroscopy are dealt with, For a more comprehensive summaryv and the
details, we refer the reader to the numerous textbooks published in this
field, e.g. refs. [13-16].

2.1 STATISTICAL FLUCTUATIONS OF THE MEASURED COUNTS

Both the decay of radioactive nuclei and the detection of the emitted
gamma-rays are statistical processes. It can not be predicted exactly either
when a certain nucleus disintegrates or how many nuclei will decay from a
given epecimen in & definite time interval. Even if we knew the exact number
of disintegrations, this would not determine unambigously the number
of counts measured by any type of radiation detector because the detection
process itself is also statistical in nature. The laws of probability govern the
whole phenomena, and the most we can do from a knowledge of all the
essential parameters of the dicintegration and detection processes, is to
predict the expected number of measured counts and its scatter.

In actual experiments this situation is reversed. Nuclear parameters,
most often intensities and half-lives, must be determined from the measured
counts. Due to the ambiguity mentioned above this can not be performed
exactly. Results obtained from nuclear measurements always have an in-
herent statistical error. Several authors have discussed the statistics of
nuclear detection processes. This problem is amply discussed, and the special
needs of the experimental nuclear scientist emphasized, e.g. in Jénossy's
book Theory and Practice of the Evaluation of Measurements [13].

In gamma spectroscopy the most often occurring problems are (1) the
measurement of gamma energy from the shape of the pulse-height distri-
bution; (2) the determination of half-life from the time-dependence of the
counts; and (3) the calculation of the (individual) gamma-ray intensities
from the number of counts in a given region of the spectrum. The first
problem will be answered in Section 3.2 and Chapter 4, the second in
Section 8.1, and the third in Chapters 5 and 6. The influence of statistical
fluctuations on energy and/or half-life measurement is lessened by proper
smoothing or curve fitting. Therefore, in this section we restrict ourselves
only to their effect on intensity determination.

11



- The intensity of a radicactive source contaming 4, radioactive nuclei
at £ = (, is a step function which oscillates around its expected value

3 I{t) =Tt = A4 e, - (2.1)

where I, and I(#) are the intensity of the source at t = 0 and ¢, respectively
and 4 is the decay constant related to the half-life (T',.) of the mucleus as
..'-'. - I]l E_i’T]_eg- .

In deriving Eq. (2.1), it has been assumed that the source contains only
one type of radicactive nuclei. If there are nucioi with different decay con-
stants (1.e. half-lives) present, and the decay of each individual component
is independent of any other one, then the total intensity, I, is the sum of the
intensities of the individual components, 7,,

()= 3 Li(t)= S L™= A A e (2.2)
k i

k=g|]comp.

If we denote by p the probability that a gamma-ray will be detected after
a decay (this detection can mean either the simple registration of the photon
or the registration of a pulse caused by this particle falling into a predefined
amplitude interval), then neglecting dead-time effects the expected counts
collected by the detector during the period (t,, ¢,) are

is Iy
Nty t,) = [ I(¢) p(t)dt = p [ I(t)de - (2.3)
Iy fy :

83 in most experiments p is time-independent.

Due to the finite dead-time of the detector, particles interacting with
the material in its sensitive volume within this time will not be detected sepa-
rately, but will be recorded as being only one event. This effect causes an
apparently lower counting rate than the true one. The dead-time correction
depends on the type of detector, but in most practical cases it can bhe approxi-
mated by

v . ¥
- =1 &0rr © r =
1 _— ..f_" J"Tﬂ

(2.4)

where N, and N are the dead-time corrected and the measured counts,
respectively, N, the (uncorrected) counting rate, and 1, is the dead-time
of the detector. The arguments ¢, {, have been omitted for brevity.

If Neon, calculated from N, is substituted into (N(t, &)), I, can be
determined from Egs. (2.3) and (2.1). As there is only a certain probability
that ¥ ... = N.,., the same applies to the I, intensity calculated from the
result of this measurement; there is only a certain probability that it is
equal to the true intensity, I, ... If there are different types of decaying
nuclei, 0 that Eq. (2.2) should be used instead of Eqg. (2.1), then the number
of measurements should be equal to or larger than the number of the compo-
nents (see Section 8.1).

It can be shown that not only the number of decayed nuclei but that of
the detected gamma photons too follows Poisson’s distribution. This means
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that the scatter of the measured value is _

o2 (V) = (N)=s Neoee ~ N (2.5)

i

and the relative scatter of the intensity is

o(ly) oo 1
: Il] Iﬂ,truz VET

For the experimental physicist or chemist the meaning of this equation”
13 that he knows that the relation

Ly — afe) o(ly) < I true < 1o + (2) 0(1) - (37)

13 true with a probability 1 — ¢, where ¢ is the confidence parameter,
Provided that ¥ > 1, z(e) = 2 gives & 0.95 and a(e) = 3 gives a (0,997
probability that (2.7) is valid.

As can be geen from Egs. (2.5) or (2.6), the larger the number of collected
counts the smaller is the error of the intensity calculated from them. In
mathematics, N -~ o= needs only good imagination and can be achieved
without any difficulties, but in real physical experiments this never comes
true as either the equipment or the patience of the researcher breaks dowr.
For these, and also for some other reasons, the measuring time and the
accumulated counts are always finite. What we can do is to distribute the
time between the different types of measurement so that we should obtain
meximum statistical accuracy, and to repeat the measurement several
times not only to obtain better statistical accuracy from the larger numbers
but also to check the stability of the equipment.

If a measurement is repeated % times, then the best approximation of the
true value of its result obtainable from these data is

K

2

i | =

m =

(2.6)

m,l,f'a-

r—

) :
i

K .
T/

E 1/

where the m,’s are the results of the individual measurements and the ;s
their standard deviations. In the special case when all o,'s are equal m is
the arithmetical mean

——

1 1
m=— ¥m,
k=
and

The small difference between o(7) and Texs 18 due to the fact that m is
not known a priori: it issubstituted from the measured m,'3s. Therefore the
individual components of s, are not completely independent and their
standard deviationissomewhat smaller than that of independent components.
However, the difference is neglizible in practice, where usually % > 1.
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In this frequently occurring case the experimentally observed variance is
defined as
=k

1 o
Taris == -~ r_;_: (m — m;)=.

If 04yp == 0; is nOt valid, then the different results of the individual measure-
ments are caused not only by statistical fuctuations but also bv other
factors. In this case a thorough investigation must be made which can
sometimes lead to new physical discoveries, but usuallv shows up some
instrumental instability or other experimental error.

In practice, intensities are alwavs determined as the difference and, or
the rado of two activities. Without going into the details, which can be
found in Chapter IX of ref. [13], we quote only the results for optimum time
gcheduling for measuring approximately constant intensities:

(1) When a difference, I, — [,, is to be determined, the best result is
obtained when more time is spent on the measurement of the larger inten-
gity, /), than on the measuremént of the smaller one, I,. The total measuring
time should be divided between the two measurements in proportion to
the square roote of the intensities.

(2) When the ratio 1,/1,, or I,/I,, of two intensities is to be determined,
the best result is obtained when more time is spent on the measurement
of the smaller intensity, /,, than on the measurement of the larger one, 1.
The total measuring time should be divided between the two in inverse
proportion to the square roots of the intensities. The explanation of these
‘contradictions’ in optimal time distribution is that to obtain the variance
of the result in the first case the absolute variances are added, so even a
relatively large error in the smaller component does not give a large contri-
bution to the total variance, while in the second one the relative variances
are summed, so the smaller component has to be determined with higher
absolute precision. As the precision is not very sensitive to the actual time,
division near the optimum, in practice a short preliminary measurement or
calculation must be made to determine the time schedule of the actual
measurement.

If the measuring time can be much larger than the half-life of the decaying
radioisotope the initial activity of which is smaller than the background,
then in practice the best precision is obtained by integrating the counts
over a period approximately twice as long as the corresponding half-life [17].

2.2 SPECTRUM SMOOTHING

Due to the statistical nature of nuclear disintegrations and detection
processes, counts in the individual energy intervals (channels) of observed
gamma-ray spectra can differ considerably from their expected values.
Such channel-to-channel scattering results in small changes in the shapes of
specira being overlooked. As there is a definite correlation between the
counts of adjacent channels., by a properly performed procedure, using
counts of neighbouring channels, most of the statistical fluctuations can be
removed while retaining virtually all the significant features of the original

14



data. This mathematical procedure is called spectrum smoothing. Althougn
the productien of smooth spectra is usually an intermediate step only,
followed by other data reduction procedures, we discuss spectrum smocothing
separately because it is so often used (sometimes even unnecessarily).

The channel-by-channel statistical fluctuations can be regarded as noise
on the expected shape of the spectrum; therefore, they can be filtered out
partly from the Fourier spectrum of the measured spectrum in the same
way that & suitable filter circuit removes most of the noise differing in fre-.
quency from a desired electrical signal, and the high frequency part of the’
Fourier transform is cut off. Ancther solution for lessening statistiéal
fluctuations is to perform a convolution integral with a suitable filter -re-
sponse curve between the measured data, assuming some distribution
function for the counts in the individual channels of the entire spectrum [18].

Instead of highly sophisticated methods, & much simpler smoothing
procedure can be applied in nearly every practical case. A small portion of
the measured spectrum can be well approximated by a polynomial. Thiz
polynomial can be determined by a least-squares fitting to the measured data.
It can be shown that the values and the derivatives of this polynomial can
be expressed as functions of the measured counts as follows:

W_ 1 = : .
F:T.?ﬂ:“; — Ekﬁm ﬂ-‘-r,n.m_!f“‘ =z 'E]* '.E'E}
where Y, (i) is the nth derivative of the smoothed spectrum in channel i
(n = 0 denotes the smoothed spectrum), (¢ + k) is the measured count in
channel (i + &), ¢, , » and K, are constants independent of the spectra,
and m’ = 2m + 1 data points were used for fitting the polynomial, i.e.
for smoothing [19]. In practice, fitting with & second or third degree polyno-
mial is sufficient, and for intensity determination and peak location, in ad-
dition to the smoothed spectrum, only a knowledge of the first two deriv-
atives is necessary. Numerical values of the smoothing constants, K ., and
Cy,nm are listed in Table I for second and third degree polvnomial fitting.
The optimum number of points used for smoothing depends upon the
shape of the fitted region. If m’ is too large, the smoothing flattens peaks
and fills in valleys, and the original features of the spectrum become distort-
ed. On the other hand, if m" is too small, scatters in the individual channels
of the smoothed spectrum do not decrease sufiiciently, so the significant
features of the spectrum will not come out. Assuming that the spectrum
does not vary rapidly in the region used for calculating the smoothed value,
and that the scatter of the counts is caused only by statistical fluctuations
(not by electronic or other experimental instabilities), the error of the
smcothed data is:

where the A, . values are listed in Table IT for fitting by second and third
degree polynomials. As a general guide, it is reasonable to use 1-2 channels
less in the smoothing than the energy resolution of the detector (FWHM)
in the region in question [20].



T'able I. Numerical Values of the

SR 'l.‘rlpf.l't.‘fl-fit?- M o= I 1] K
pai:‘n.umhl I-ti"'i:'&,“ Fi T *:l | 1 l '!
[ |
2or3 1] 5 33 17 ' 12 - =3
7 21 T i 3
g 231 5% 54 34
11 422 89 - 34 a9
i 13 143 25 24 21
15 11035 167 y 162 147
- 1 o 10 L] 1 2 .
T - 28 L} i 3 2
9 60 0 1 2
11 , 110 0 1 2
13 182 0 1 2
15 230 ! 0 1 2
3 : : | 5 12 0 8 -1
1 2562 0 53 67
9 1188 0 126 193
11 2148 0 200 503
13 24024 0 832 1489
16 334152 0 1506 13843
2 or 3 | 2 5 T -2 -1 2
q 42 -4 -3 0
1] 462 =20 -17 -8
11 429 -10 =0 — B
15 1001 : —14 =13 —10
i 15 6138 ~ 56 -53 — 44
I

Sometimes, the statistical fluctuation is considerable even in the smoothed
spectrum. In thie case it is often advantageous to repeat the gmoothing,
i.0. smoothing the smoothed data. It can be shown that a smoothing repeated
! times, each time from 2m + 1 points, is equivalent to a modified smoothing
using 2ml - 1 points [19]. The repeatedly smoothed values can also be
expressed as linear combinations of the measured data, but the coefficients
dif?er from that of Eq. (2.8), giving larger weight to the counts near the centre
of the smoothing. The effect of five-point smoothing on a small peak to find

Tabie I1. Ratio of the Statistical Scatter of the Smoothed Data
to that of the Measured One, An m ’

Crder of Degree of fitting Number of paints used in smoothirg, m’

darivative, polrnamial -

:n_'-:. = ] = 5 r g 11 13 15

|

0 ! 2 ar 3 0.693 0.577 0.505 0.455 | 0.418 0.38%
1 2 0.314 D.189 0.129 0.005 0.074 D.060
1 a | 0.950 0.513 0.338 0.245 0.1589 n.152
2 2 or 3 0.534 0.218 0.114 0.003 0.044 0.031
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Smoothing Constants K, » and ¢ o

=
I
h | 4 [+ [ ] F=Em
—3
14 =21
dd 9 -36 | Ck.,m
16 9 0 -11
122 BT 42 -~13 —78 |
i
3
3 4 . -
2 4 5 =k, m
4 4 3 B
3 4 5 8 7
-23
142 ~36 : s
552 304 - 300 l kynym
1786 1578 aao =1133
17542 15334 14150 ! 4121 12623
1
5
T 23
ol R 15 Ck.n,m
-5 2 11 22
-20 -3 19 52 21

its maximum for energy determination and boundary values for a peak area
calculation is shown in Fig. 1.

o Observed
E * Smoothed frem
5 190 Sdata points . 5 .y pesition
£ = known from energy
. = = ., Scale colibration
9 100F -0
" I!! Yok
S 5 : °
8 s T,

| Beasslyasgloing

an: 0. 3.
10C 110 120 130
Channel number

Fig. 1. Effect of smoothing from five points on a amall peak. The centre of the pealk
known from energy calibration, is in channel 111
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3. DETERMINATION OF DETECTOR RESPONSE FUNCTION

3.1 GENERAL DESCRIPTION

Gamma-rays interact with matter in three prinecipal processes: photoelec-
tric effect, Compton scattering and pair production. These processes are
discussed at length in all basic nuclear physics texts (e.g. refs. [21-23]).
The possibility for different interactions under identical circumstances
causes even the theoretical detector response function for monoenergetic
gamma-rays to be very complicated. In practice, other effects, such as
bremsstrahlung, annihilation, escape, backscattering, multiple internal
scattering, pulse pile-up, statistical fluctuations in the gamma-ray energy
to pulse-height conversion, inhomogeneity in the detector, ete., contribute
to the pulse-height spectrum; therefore, response functions calculated by
the Monte Carlo method from the physical processes either for Nal(Tl)
[24. 25] or for Ge(Li) detectors [26, 27] are usually inadequate for quanti-
tative analvsis.

The usual procedure for constructing a pulse-height distribution caused
by monoenergetic gamma-rays of a desired energy is to measure the spectra
of & number of suitable monochromatic gamma-rays and to carry out an
interpolation between these experimental spectra. The disadvantage of
this method is that the calculated spectra are correct only for the particular
experimental arrangement in which the calibrating spectra were measured.
Change of the detector or any variation in the source positioning or in the
surrounding affects the response function and can cause erronecus results,
as will be discussed in Chapter 10.

A list of isotopes used to calibrate the measuring apparatus and calculate
the detector response to monoenergetic gamma-rays is given in Table 111
along with their most widely used production method, decay mode, half-
life, the energy of the gamma-ray, the percentage of decays which result in
the desired photons and other disturbing radiations, excluding low energy
X-rays, emitted by the same source for which correction must be considered.

Detailed descriptions of the different physical processes contributing to
the pulse-height spectrum, and their influence on the shape of the detector
response function are described in the literature [22, 29-31]. To generate
pulse-height spectra from calibrating pulse distributions, it is sufficient to
realize the main features in the spectra of monoenergetic gamma-rays.
These are the following: full-energy peak, Compton edge, Compton continu-
um, annihilation escape peaks, annihilation peak, backscatter peak, brems-
strahlung and X-ray escape peak (Fig. 2). There is a full-energy peak,
backseatter peak, Compton continuum and Compton edge in every experi-
mentally measured gamma-ray spectrum. Bremsstrahlung is present sig-

nificantly only if the source emits 3-rays as well. Escape peaks occur only

-
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Table ITI. Sources Used for Calibrating the Detector Response
to Monoenergetic Gamma-Radiation

I L]
l Bl iccompenying medissdon®?
3 Imten- |
Eourre Prodoetion Decay | Eali-life? ‘:E}'?: ‘ m ~| - |
| |deoaysy | uevy | P | Hpeas
L25=Tg n, ¥ 1T 5% d 110 0.3 35 7 £
IHm(g | n, y IT.§ 2.9h 128 14 550
HICs n, ¥ g- 33 d 145 43 580-
Lot n, p B , 3.44d | 160 73 B0
138Ce | m,p EC | 140 4 | 165 80 .
"Ra n, ¥ EC 2.5d 215 91 324 =
*WHg o, ¥ fi 47 d 279 i 214
S1Cr n, ¥ EC 258 d 320 9
e | n, 7 s o 4.5h 333 50 | 830
13aTy 1133 decay, TT 1.7h 393 a4
"Be d,n;p. x EC 53 d 477 10
55 n, o EC 64 d 514 100
Ny fission? IT 50 m | 551 a5
BCg fiszion B 30 ¥y 662 85 1176
®Nb fission 8- 35 d 766 | 100 180
Mn p, 0 | EC 303 d 835 | 100
waNbhb | a,n EC 10 4 034 69
&Zn n, EC,A+ | 246 4 1115 49 511° 34.
=Na I A+ EC| 28y 1278 | 100 s11° 181 5457
“Ar n, y A= 1.6h | 1203 | 99 1198/
HNa n, ¥ B 15 h | 1369 | 100 | 2754 100 | 1388/
ny n, ¥ B J3.8m | 1434 100 2470
L n, y B 12 h | 1524 18 310 0.2 | 3520
1] n, v B 2.3m | 1780 | 100 2850
®»g o, n;d,a B3t 7.7m | 2170 | 100 511¢ 200 2680
HNa n, + 8- 15 h | 2754 100 | 1380 100 1389/
Be n, o B — | 4430 |
|

* Dwta from ref. [25].

¥ X.ravs not listed

* From the g~ decay of *C4

4 3ome other weak v rays are present in thess nuclides or their daughters
* ¥From positron annfhilation

! Higher energy £ group exieta with much weaker [nteDsRity.

if the gamma-energy exceeds ~1.2 MeV. Annihilation peaks are found only if
the gamma transition is preceded by & §*-decay or By 2 1.2 MeV. X-ray
escape peaks in scintillation detectors can be resolved from the full-energy
peaks only for low enerzy photons, and the X-rays following the photo-
electric absorptions can leave the detector without being absorbed if the
interactions took place near the surface, i.e. for low-energy gamma-rays.
For very high energy gamma-rays, Ey 2 5 MeV, the escape of the brems-
strahlung produced by the recoil electrons must also be taken into account,
especially for Ge(La) detectors.
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#ig. 2. Main features of detector response function for monecenergetic gamma-rays.
Full-energy peak, backscatter peak, Compton edge and continuum are in every
spectrurm

3.2. SHAPE OF THE FULL-ENERGY PEAK

The full-energy peak is produced by events in which the total energy of
the incident photon is absorbed in the detector. Therefore, its position
contributes to the energy measurement of the radiation and, through this,
often to the identification of the emitting nuclei. For low energy gamma-
rays and small detectors it corresponds to the total energy transfer {o a
single electron in a photoelectric process; therefore, it is often termed ‘pho-
topeak’. However, at medium and high energies and in large detectors,
many signals in the full-energy peak are produced by single or multiple
Compton scatterings, followed by the photoelectric absorption of the scat-
tered photon or by pair production when both of the annihilation gammas
are absorbed in the detector. Since the total photon energv is absorbed in
the detector for a signal falling into the full energy peak, it is often referred
to as ‘total absorption peak’,

The statistical processes in the detector, following the energy transfer to
the electrons, broaden the line corresponding to total energy loss; the cal-
culated shape of the full-energy peak, ¥(z), can be approximated as a Gaus-
g1an: '

- L
yir) =Ade ¥ | (3.1)

where.z is the pulse-height, 4 is the amplitude, and p is the centre of the
peak. The scatter of the (Gaussian is related to the resolution of the detector,
1, (full width at half maximum, FWHM) as I' = 2.355 0, and the area
under the peak is NV = 1.064 4 I
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Multiple Compton scattering, non-linearity in the electron energy to
pulse-height conversion, and wall effects in the detector distort the low-
energy side of the Gaussian. (Besides these ‘statistical’, intensity-independ-
ent distortions, pulse pile-up also alters shapes of the spectra. This activity-
dependent dJ}:-J[-DI‘tlD]:L will be discussed in Section 10.3.)

For this reason, the parameters 4, p and I’ are calculated from an itera-
tive least-squares fitting to the measured data, y(z), only between p — &
and p + 3¢. From the approximate starting values, Aﬂ Po and oy, Z(1).
= y(3) — (i) is calculated for each point, and a linear least-squares fitting
iz performed to calculate A4, Ap, and s by minimizing the expression—=

_F"D"‘l":]'-'i 2
> w(s ‘[Z('l} s S 44 — % Adp — E.ﬁ]rj] : (3.2)
[=pg—ra L".’...fi EP do - P

where 1:(1)'s are the weighting factors, usually 1, ¥(3) " *orexp [ — {1—p.} /205 ].
A, and the response function is regarded as a discrete function of the channel
number i. (The derivatives are taken in the point ?{At, Por Go)-) Then the
whole calculation is TEpE.‘E..t.Ed with the new 4. = A, + 44, 2, = p, +
Ap, 6, = ¢, — Ac values calculating the next a.ppmnmatmn The
iteration is finished when the new parameter values do not differ substant-
ially from the previous ones or the number of iterations exceeds a given
number. In practice, the method is not verv sensitive to the starting values
and sufficient convergence is nearly elways achieved after 35 iterations.

A desire for more precise caleulations led Kowalski and Isenhour to use
a hyperbolic secant [327, while Heath and his co-workers proposed a
modi Ead Gaussian of the form:

) = A (1 + a(z -- p)t — 2,(z — p)*?) Xexp[ — (z — p)*{ 20%}, (3.3)

where the parameters A, p, o, «,, and «, must be determined for each peak.
Using NaI(Tl) spectra, the powers 4 and 12 were found to be the best combin-
ation over the energy range of interest, and the measured data could be
well ficted with Eq. (3.3) [29, 33]. For Ge(Li) data, a simple Gaussian,
ie. o, = x, = 0, was found to give better fitting, but even in this case

there were differences between the measured and calculated full-energy
peaks [34].

3.3 RELATIONS BETWEEN THE PEAK PARAMETERS

To calculate the hhﬂ-]']!:.‘ﬂ of full-energy peaks, Kqgs. (3.1) or (3.3) can be
used. When a peak is fitted, the p&mmatam obtained can give information
for several purposes. The peak- -height (4) and the peak area usually serve
for absolute or relative intensity determinations because for a given detector
system and gamma-ray energy they are proportional to the intensity of the
corresponding radiation. This problem will be discussed in detail in ‘Section
4.1.

The peak position can be used either to calibrate the spectrometer by
obtaining the pulse height vs. gamma-ray energy relationship from known
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gamma energies, or, knowing this calibration curve, for calibrating the
energies of gamma-ravs and for the identification of the radiation source
by its energy. , _

The peak position, p, is to a first approximation a linear function of the
gamme-ray energy, E.. However, for very precise energy determination or
pulse height vs. energy calibration, small deviations from linearity and
proportionality must be taken into account. For Ge(Li} detectors these
deviations are very small, and are mainly due not to the detector itself but
to the electronics, amplifiers and pulse-height measuring devices [35, 36].

“For scintillation detectors the deviations are more pronounced because
the phosphors themselves have a slightly non-linear and a somewhat more
pronounced non-proportional response to gamma-rays [37, 38]. From a
least-squares fit to the peak positions of gamma-rays having well-known

energies, Heath e al. [33, 34] found that for their NaI(Tl) spectrometer:
E, = k{—1.105 + s — 5.18 X 10442 4 8.11 X 10—%A
— 3.59 x 10—%k4 L 5.04 x 10~1145) (3.4)
and for their Ge(Li) detector
E, =k, (0455 - h + 2.63 X 1077A?) (3.5)

where k is the pulse amplitude and &, and k, are constants. Although the
actual numerical coefficients would be different for other detectors, t!lﬂil‘
orders of magnitude can be regarded as representative. From the coefficient
ratios in the different powers of 4, the superior linearity and proportionality
of the Ge(Li) detector is apparent. For the same Nal(Tl) detector the rela-
tive pulse-height vs. gamma-ray energy normalized to the €81 keV **7Cs
line can be seen in Fig. 3, '
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Fig. 3. Variation of the (pulse-height) / (gamma energy) ratio for a Nal(Tl) detector.
: The data are normalized to the 661 keV!¥ (s gamma-ray
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The number of terms used in expressions of type (3.4) or (3.5) for energy
vs. pulse-height calibration depends on the accuracy needed in the ener
determination. However, there is a practical limit due to the instability
and the finits resolution of the system. There is usually no reason to consider
terms whose contribution is less than 0.05 FWHW or f] 25 times the shift
which may occur through instabilities.

For most of the practical applications, (3.4) can generally be restricted
for any scintillation detector to the first two terms. From this

h=k(E,4b) for E, >100keV and '+ 38

For Nal(Tl) detectors this straight line intersects the energy axis between
—15 and —30 keV depending somewhat on the crystal. Below 50 keV the
h(E.) curve is definitely not linear. Due to this non-linearity a sum peak
will have an apparently higher energy than a monoenergetic one.

The resclution of the detector (full width at half maximum, FWHM),
I' = 2.3550, depends on the statistical fluctuation in the number of elec-
trons produced by the gamma-rays, on intrinsic noise effects in the detection
system and on the channel width of the spectrometer. Due to the statistical
effects /™ ~ &, while the contribution of the intrinsic effects is approxi-

matelv constant for scintillation detectors. Therefore, a good agreement can
be obtained by fitting

N VI & EIF (3.6)

where I', and a are constants and the second term usually dominates.

For semiconductor detectors I'; depends on the detector capacity and is
comparable with aE,, since the energy required for the production of an
electron-hole pair is about two orders of magnitude less than that of pro-
ducing a phutmlaﬂtrﬂn reaching the first dynode of the photomultiplier. For
this reason the (number of electrons andfor holes)/(unit gamma-ray energy)
is larger by the same magnitude, and the higher number of statistical
processes leads to a smaller relative statistical fluctuation.
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Fig. 4. Full-snergy Pﬂﬂk width (I') as a function of peak position, for 5 and 10 keV
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Experimentally measured resolution vs. energy curves for a particular
NalI(Tl) detector for different channel widths are shown in Fig. 4 taken
from ref. [34]

In spite of the E (I" or p(c]) relation, in the determination of the peak
parameters ¢ and p are regarded as independent parameters and, after
calculating them, Eq. (3.6) serves as control. If the I value obtained from
the fit deviates substantially from that calculated from Eq. (3.6), this
indicates that two or more peaks were unresolved and the it must be

repeated including not cne but two or more Gaussians for fitting the meas-
ured data.

3.4 RESPONSE FUNCTION OUTSIDE THE FULL-ENERGY PEAK

Several analvtical functions have been proposed to describe the shape
of the spectrum outside the full-energy peak. Except for the Monte Carlo
calculations [24-27] which are usually not accurate enough for quantitative
analysis, all these functions are empirical or at least semi-empirical, i.e.
there is no real physical basis for their selection. These response functions
contain several adjustable parameters. The latter are chosen in the same
way as in Eq. (3.2), i.e. by the criterion that the parameters should give
the best fit of the measured data in the calibrating spectrum to the calculated
pulse-height distribution. After the fitting of each calibration spectrum,
the energv dependence of all parameters is established and from this the
parameters of photons of any energy can be interpolated or extrapolated.
If these parameter values are substituted into the analytical form of the
response function, the shape of the spectrum of the desired photon energy
can be obtained. .

Salmon proposed a response function for the complete spectrum [39]

T 1 — ddexp|(z — a,)/2,] ]:
- e:-:p[{.:-: - ﬂ:aj,r'a,] -+ _{1 — @, 8Xp [{:c — aa‘;,{a;]]’
B - nﬁezzpl_'ix ;Eﬂ E] + agexp [[I;ﬂ“ r]‘ (3.7)
. \ 1 ) oD 4

where the last term represents the contribution of the full-energy peak.
The influence of the individual parameters on the calculated response
function can be seen in Fig. 3a.
This expression does not take into account bremsstrahlung, and additional
terms must be added for the annihilation and escape peaks if £, = 1.2 MeV.
Another possible approximation of the complete response function is the
following [327:

¥iz) = (az® + bz 4 c)[1 — tanh(A42 + B) — exp(Cz + D))
+ y,exp| —qx) + y, sech’[z(x — p)]

fop = 2
+ Syem| - F2EE. (3.5)
i P
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Here the first term describes the Compton edge and continuum; the
second, the bremsstrahlung; the third, the full-energy peak: and the summa-
tion extends to the backscatter, annihilation and escape peaks.

Several approaches similar to those mentioned above have been described
in various papers, but none of them (including Eqgs. (3.7) and (3.8)) has
come to be used either regularly by any author or genmerally by several
research groups.

A more accurate response funetion can be obtained by the method pro~
posed by Heath [29, 33], but its proper application requires 2 lot of calibra-
tion spectra.

All the calibration spectra measured strictly under the same conditions
are normalized to have the full-energy peak in the same channel and tc the
same number of emitted photons. The contributions of the full-energy
peaks calculated by Eq. (3.3) are subtracted. If the energy of the gamma-ray
is less than 1.2 MeV, the remaining part of each normalized spectrum is
divided into three segments according to the conditions

1<z2<z,+4 5—4<z<2.+4 2,—¢525 %, (3.9)

where 2,, z. and z,, are the channels of the normalized pulse-height scale
(2) corresponding to the backscatter peak. E, = E /(1 + 3.91E.) (MeV),
the Compton edge, K, = B, — B, and the full-energy peak, £, respec-
tively, 1f K, > 1.2 MeV, two additional segmente are created with the
dividing points at z, and z,, where z, and z, arc the channels of the single
and double-escape peaks having energies ¥, = E, — 0.511 and E,=F, -
1.02 MeV. The new borders of the former segments will then be z, I 4
and z, — 4 respectively. Each segment of each spectrum is fitted separately
with the function

glz] = ﬂ'ﬂ —i— EII]E + E E:l_‘: s1n [kﬂ[ﬂ — ZL]“EL — :F.';]' {3.1‘]:]

k=1

where z; and zj are the left and right borders of the ficting sections and the
number of terms in the summation is 2z ~ (zp — z,)/2. The overlapping
of the fitting sections assures smooth joints between the different portions
of the same spectrum. To fix z, a polynomial is fitted to the calibration
spectra represented by Eq. (3.10). This polynomial describes the dependence
of g(z) on B, for any given 2. As z, and z, depend on E',. this fit includes
only the same tvpes of sections of the spectra. From these polynomials
the g(z) values can be obtained for every z value and for any £, by inter-
polation. The normalized g(z) response functioncan be retransformed to the
original pulse-height scale.

Similar pulse shape distribution can be calculated by fitting 7(z) with &
polynomizl instead of trigonometric functions. The degree of the polynomial
is increzsed till ¥3_,/%2 <~ 1.2 for each calibration spectrum, where X} is
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Fig. 5. Caleulatsd and measured spectrum of '¥Cs for Nal(Tl) detectors. The calcu-
lated spectrum (solid line) was fitted with (a) Eq. (3.7) (from ref. FEQ ), (b) Eq. (3.5)
(from ref. [32]) and (¢} Eqgs. (3.3) and (3.10) (after rel. 33])

the (weighted) sum of the squares of the differences between the measured
and calculated spectra when the kth degree polynomial was fitted (see
Section 8.2). The coefficients of the polynomials are the gamma energy-
dependent parameters by which any response function can be generated.

In Fig. 5 experimentally measured 13°Cs spectra are compared with cal-
culated ones. The first two calculations mentioned above (Egs. (3.7) and
(3.8)) were performed and checked on data measured by Nal(Tl) detectors.
However, since gamma-ray energy transfer to electrons and the disturbing
effects of the surrounding are the same for semiconductor spectrometers,
these principles for response function generation can be applied for Si or
Ge(Li) detectors as well [40-43]. In Fig. 6 are shown the measured spectra

of 511 keV photons for a 1 cc Ge(Li) detector and those calculated from Egs.
(3.1) and (3.10).
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- for & 1 cc Ge(Li) detactor

3.6 APPLICATIONS AND LIMITATIONS OF THE CALCULATED SPECTRA

The use of calculated spectra for determining intensities by peak area
methods (Chapter 5), or for generating a library of standards to resolve
complex spectra to their constituents by either least-squares resolution or by
stripping (Chapters 6 and 7), can save a lot of measuring time if the detector
is once calibrated appropriately, and the reproducibility is high. The results
obtained by evaluating measurements with calculated spectra are satis-
factory provided that, in the region of calculation, the contribution of the
component to be determined to the total counts is comparable to that of
' the other components of the complex spectra. However, if the area of a
small peak superimposed on a large Compton continuum, or a small com-
ponent of a complex spectrum must be determined, the uncertainties in
the calculated spectra, especially outside the full-energy peak, can lead
to serious errors. -

For instance, if a single full-energv peak of a Ge(Li) detector could
really be described by a pure or a modified Gaussian such as Eq. (3.1) or
(3.3), then the expected value of

L > [vio) — #Flai

n—3 5

=
should be
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where y(i) is the measured and %(i) the calculated count in channel i, alt)
is the scatter of their difference, and n is the number of channels in the
peak region which were included in the fit.

The frequency distribution of #* for 81 peaks measured by a 2.5 cm? 0.8”
cm Ge(Li) detector having 0.9 keV resolution at 100 keV is shown in Fig. 7-
The large number of high 4* values indicates that the analytical funttion”
used for the fitting procedure does not describe the phenomena sufficiently.

Although such »* distribution patterns vary considerably from detector
to detector, Fig. 7 can be regarded as characteristic from the-point of view
that, due to the relatively large discrepancy between the measured and
calculated spectra, the intensity of a small peak near a larger one can be
determined only with large error when the peaks are fitted not by actually
measured but by calculated response functions.
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in the dotted histogram ¢ was regarded as an independent parameter
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4. PEAK-LOCATION

4.1 PRINCIPLES OF PEAK-LOCATING METHODE&

In scintillation and semiconductor gamma-ray spectrometry the full-
energy peaks contaln the most valuable information. Energies of gamma-
ravs are determined by locating the peaks in the spectra, and the areas
under them are often used for intensity determination. Large peaks can
easily be located visually, but to search spectra measured by 1,000-4,000
channel analyzers for all the possible peaks which could be interesting for
some reason would be very time-consuming. In an examination of the
raw data, small peaks could be overlooked due to statistical fluctuations,
while smoothing the spectra needs a computer anyway. Therefore, it is
economical and useful to instruct the computer how to find peaks in a
complex spectrum.

Several computer programs have been written for this purpose. Some
of them not only locate peaks, but also determine whether they are real
single full-energy peaks, Compton edges, backscatter peaks, or multiplets,
composed of two or more overlapping peaks.

There are three different methods which can be used routinely for find-
ing peaks by computer in a complex spectra. These methods are general
and can be applied not only for gamma-ray, but also for alpha-ray, neutron
time of flight, and other spectra, althéugh in the general case some glight
modifications might be necessary depending on the symmetry of the peak.

The first peak-locating method is the fastest and simplest one. It
searches the measured data channel by channel for a region where there
are significantlv more counts than in the adjacent channels on either
side. This technique is described in Section 4.2.

The second method uses the first or the second derivative of the measured
data instead of the original data itself. It exploits the fact that the first
derivative changes sign and the second derivative has a pronounced mini-
mum at a peak as can be seen in Fig. 8. To lessen statistical Auctuations,
some type of smoothing (or averaging) is applied. Some other expressions
which takeinto account the number of counts in several neighbouring channels
can be constructed, by means of which some characteristics such as peaks
or discontinuities in composite pulse-height spectra can more easily be
determined. These peak-locating methods are explained In Sections 4.3
and 4.4.

Suggestions have been made to use third or higher order derivatives
to find small peaks or to resolve very complex cnes [44, 45], but due to
the large statistical fluctuations in the higher order derivatives the behaviour
of the third and higher derivatives does not seem to give any more infor-
mation than that obtainable from the first two derivatives.
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Fig. 8. Behaviour of the smoothed first and second derivatives in the vicinity of a
full-energy peak

The third method fits one or more Gaussians to the experimental points
by least-squares techniques. The centroid of this curve is the peak position.
This method was discussed in detail in Section 3.2 where the determination
of detector response function in the full-energy peak region was deseribed.

4.2 PEAK-I.OCATION BY FINDING MAXTMA

The simplest peak-locating program first scans the entire spectrum and

then selects the possible peaks by finding those channels where the counts
fulfil the conditions

yip—2)<wyip) — KVy(p)
and (4.1)
¥ip+2)<ylp)— EKlylp,

where K i3 a constant chosen experimentally. Analyzing different spectra,
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K = 1 gave satisfactory results. The border channels of the peak, p — |
and p — r, are determined on both sides of the possible peak channel, p,
by the criterion that the decrease in the channel contents should no longer
be statistically significant. This is equivalent to finding the nearest channels

on both side of p for which

yp—1—1)>yp—0l—Kjyip—1D
and (4.2)

“yp+r—1)>ylp+r)— Kiylp+r)

The area, N, of the peak and its standard deviation, /¥, are then calculated
by Egg. (5.4) and (5.5) as described in Section 5.3 and the peak is retained
as true peak if N > 24N. Its final location is determined by calculating
the symmetry axis of the background corrected peak.

This method is fast and can be programmed easily [46—48] but often over-
looks peaks, especially small ones, and cannot separate double peaks.

4.3 METHOD QF SMOOTHED FIRST DERIVATIVE

If the number of counts is regarded as a continuous function of the chan-
nel number, then the first derivative of the spectrum changes sign at the
top of peaks. Before a peak it is positive and after it it is negative in a few
adjacent channels. The first derivative attains a maximum positive value
at about half maximum height on the left side of a peak, continuously
decreases as the channel number increases, becomes approximately zero
at ihe peak centro and reaches a minimum negative value at about half
height on the right side of the peak (see Fig. 8). This fact can also be used
for locating peaks. The computer looks for groups of neighbouring channels
such that the smoothed first derivative, ¥,, fulfils the following criteria:

Y,(p) <0
Y,p+ 4 <0 for v =12, :.;F
~and
o Y, p—1) >0 for +=1,8 ...,

To be able to recognize significant peaks but disregard statistical fluctua-
tions, r and I must be chosen in accordance with the energy resolution.
For Nal(Tl) spectra having 15 keV/channel calibration, satisfactory results
were found with r = 4, ! = 2, using the first derivative of second degree
polynomials fitted to five points [49]. To be able to detect small peaks in
Ge(Li) spectra, the peak area is calculated whenever the smoothed first
derivative changes from positive to negative and the peak is regarded as
a true one if N > 2AN [50].

A monoenergetic gamma-ray, having energv E_, produces a Compton edge
14+ 391xE,
and E. = E, — Eg. respectively (see Chapter 3). These can be distin-
- guished from full-energy peaks by finding a peak with the appropriate

energy and sufficient intensity to produce such peaks. However, back-

and a backscatter peak in the spectrum at energies Eg =
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scatter peaks cannot usually, be resolved from each other and often not
from low energy photopeaks either, especially in scintillation spectra.

- The resolution of the detector increases monotonically as a function of
the gamma-ray energy, and the constants of Eq. (3.6) are usually known
from calibration. By ecalculating the widths of the measured peaks, the
unresolved multiple peaks can often be distinguished from single ones by
giving larger I' than that predicted from Eq. (3.6).

4.4 GENERALIZED SECOND DIFFERENCES

By a procedure proposed by Mariscotti, it is possible not only to—find
and locate peaks with high precision in the presence of a large background,
but also to distinguish single full-energy peaks from Compton Ehﬁul&em and
double peaks by their shape [51]. -

In a ama.il interval the number of counts as a function of the channel
number ¢ can be approximated as

yi) = dg,ip — i) + B+ Ci, (4.3)

where g, (p — i) is a Gauseian function centred in channel p with unit
amplitude, 4 is the height of the peak and B and C are constants describing
the background. The scatter of the Gaussian is o = I/2.355, where I" i3
the full width at half maximum of the peak, i.e. for a single full-energyv
peak the energy resolution of the r.ietec-tnr at Lhu.rmel

Assuming again that »(i) is a continuous functmr its second deriva-
tive y'(i) = 4 gp(p — 1) becomes independent of the background. As
gp(p — 1) ~= 0 everywhere except in the vicinity of the peak channel p, a
peak will be located whenever y"(¢) = 0.

Because of the discrete nature of the data, the second derivative must
be replaced by the second difference

SG) = [pii + 1) — yl)] — () — 6 — 1] = 90 + 1) — 2y(i) + y(E — 1)
(4.4)
which, like y"(¢), should be different from zero only around a peak. Un-
fortunately, d...hr the statistical fluctuation of the second difference is so
large that the expected wvalue of S(i) in a peak with ¢ = 4 exceeds its3
variance, even if there is no background under the peak. only if 4 > 1600.
To detect much weaker peaks, S(i) is replaced by a ‘smoothed’ second
difference; neglecting the presently unimportant normalizing constant,
this is the average of the S"D[-i}’s over w = 2m -+ 1 neighbouring channels
around 1

S li) = 2 S8(4). (4.5)

The relative statistical ﬂuatua,tmn of S_(i) is smaller than that of S5(i).
AS“I[_” =5 *_115'{1-] SiFa

S.(4) (1)
if S8(j) does not vary rapidly in the interval used for the averaging.) To

e
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lessen the influence of statistics even more, thiz process is repeated. The
averages are averaged (again without normalizing) and the generalized
second difference is defined as

i+m
Suli)= 3 8,0 (4.6)
Jmi—m
In obtaining &, (¢}, the averages of the second difference were averaged
z times over w channels around 1. Equations (4.4) and (4.5) are the daﬁmtmnﬂ
of the special cases S, (i) (in this case w has no pmctma,l meaning) and
S, (i), respectively. FUI‘ numerical calculations S, (i) and its error can
be expressed as

+zm+1 .
‘S.,,u l.i:l — _2 Ez,w{i'_ f:'yl:ﬂ (4'”
J={—zm-=1
and for small peaks
S i—m+1
:153_1,[1]|W1,fy(i][ b (_,,,,g=-;})z] (4.8)
J= f-::m—l
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(after ref. [51])

In obtaining Eq. (4.8) it was assumed that the error is due only to statis-
tics, gain and threshold shifts, and other experimental error sources can
be neglected. For big peaks Eq. (4.8) overestimates A4S, (1), but in this case

8, (1) is much larger even than this overestimated error. The coefficients
€.y and ASE (i)fy(i) = Zc2, are shown in Fig. 9 for w = 5 and z <5.

Cﬂnstruﬂtmg the generalized second differences defined in Eqg. (4.4)—(4.6)
or in (4.7) as a hnear combination of the measured counts, one obtains a
function which is proportional to the second derivative of the spectrum
and has small statistical fluctuation if z and w are chosen correctly. Thus,

S.,.(1) =~ 0 at the background and Unmptun continuum, differs signifi-
Eﬂﬂtl}" from zero around a peak, and is proportional to the second deriva-
tive of a Gaussian if the peak is a full-energy peak su perimposed on a linear
background. It can be seen from Fig. 9 that the effect of this iterative
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difference, Sy, ocorresponding to the experimental spectrum at the top, is plotted
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o computer as full-energy peaks (after ref. [51]) '

procedure gives a weighted difference between the counts in, and just out
of, the peak region. Therefore, by this method weaker peaks can be detected
than by the second difference or by the methods described in Sections
4.2 and 4.3. Mariscotti made a detailed study of the optimum selection of
the averaging parameters, & and z [51]. The results of his calculations were
that from the practical point of view the best results are achieved when
w = 0.6 I" and z = 5 are selected. With these averaging parameters it is
possible to identify not only peaks having amplitude 4 =~ 50 and width I"~+9
on & background B ~ 5000 (C' ~ 0), but also to resolve double peaks.
Using a larger w (more points for averaging) would increase the probability
of detection of small peaks but would considerably reduce the possibility
of recognizing and resolving overlapping ones. The increase in z would
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lead to the same reduction without any considerable improvement in the
peak detection.

A peak is identified in channel p if —S.u(®) > 248, ,(p)(S.,, is negative
around the peak !). Then it is tested whether it is a real full-energy peak or
a Compton shoulder. For a real full-energy peak which has a Gaussian
shape, the number of channels around p, n,, where S; ,,{i) < 0, is N, =2
[1.221" + 1/2] + 2, where the [a] symbol denctes the integer part of a.
The number of channels where S, _(2) > 48, (i), must be between certain
limits for a real single full-energy peak, so these can serve as further tests
to discriminate between full-energy peaks and Compton edges. A Gaussian
plus a linear term is fitted to the data around p by iterative weighted least-
squares techniques (see Section 3.2), and the exact position of the peak is
identified as the centre of the Gaussian.

Figure 10, taken from ref. [51], shows the application of the method
with 2 = 5 and w = 5 to a complex spectrum. &, ; and A8, 5 are also plot-
ted. The nine peaks numbered are those defined by the computer. It can be
seen for example that the Compton edges O, and C,, in spite of giving a
large significant minimum in 8, ,, can be identified unambiguously by the
IE or the smallness of the positive peak in 8, before the significant
negative values.

Adém, Quittner and Zentai [52] presented a method which uses instead
of the generalized second differences other expressions, obtained from the
counts in successive adjacent channels, by which some characteristic
such as peaks or discontinuities in composite pulse-height spectra can be
identified even when the statistical fluctuation does not allow their visual
observation either in the original or in the smoothed data. Thev used this
method euccessfully in fast neutron spectroscopy, but it can be applied
without any variation in gamma-ray spectroscopv.

Studying the following expressions

Lr 1 L
VL TR . y{k+i—}—j}]
) %Ly 2L+1J,;2_1L
P L wvmen o
% |k =) — e — %y
E g i j)
Bo= S|yt +1 LI
= +h)——— ¥ ylk 44
E E':ny ﬂ"i_lj:r[_y i‘?d
E—0D 1 5 '
xlye—n——1 _ By
[yi e et 2 SRR

and
¥
Cr = 3 [ylk + 1) — y{k — 1))
Ie=0}

they found that for suitably selected (not too small and not too large)
L, the quantity C, was the most sensitive to the change in the shape of
the spectra around channel %.
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5. PEAK AREA DETERMINATION

8.1 :’!-.__'BEDLUTE AND RELATIVE INTENSITY DETERMINATIOX

Intensities can be determined from the number of counts either in the
entire spectrum of the gamma-ray or in a part of it. Besides the desired
gamma-ray, the detector measures other radiations too; therefore, it is
necessary to determine how many counts in the spectrum are due to the
selected one. In Chapter 6 and Section 7.1 we discuss how to resolve a
complex spectrum into its individual constituents by weighted least-squares
resolution and stripping techniques. In the methods explained in this
chapter, a part of the complex spectrum is selected where the activity
due to the photons to be determined iz well distinguishable from the back-
ground and other radiations. This part is a peak in the spectrum of the
photons in question. The higher the probability that a detected photon
gives a signal in this peak region, the better is the detector for gamma-ray
spectroscopy, provided that other factors, e.g. total efficiency, energy
resolution, linearity, are approximately equal. Germanium has a higher
atomic number than gilicon. Therefore, for photon energies above~~100 keV
the photoelectric process/Compton scattering ratio is significantly higher
in Ge than in Si. This is the reason why Ge(Li) detectors, in spite of being
more difficult to handle, are preferred to Si detectors in gamma spectroscopy
except for very low energy radiation measurement.

The gamma-ray intensity is calculated from the number of counts in the
peak region, often called peak area. For peak area calculations the full-
energy peaks are most often used. For energies above a few MeV the double-
escape peak becomes more intense than the full-energy Feak. In this energy
_region the escape peak is preferred for intensity calculations. The gamma
energy where this change occurs depends on the type and the size of
the detector and is higher for large NaI(Tl) scintillators, used for detecting
_ high-energy gamma-rays, than for Ge(Li) detectors. Figure 11 shows the ex-

perimental intensity ratios of the full-energy and escape peaks for different
detectors as a function of the gamma-ray energy {35, 41, 53]. In the sub-
sequent part of this chapter when we refer without any adjective to a
peak, the most intense peak is meant in the spectrum of the gamma-ray
to be measured.

Intensities can be calculated from the peak area either by absolute or
by relative methods. In the first case the intensity, 7, is obtained from the
measured peak area, IV, as |

I(t) = 4N {(t)/Qe,, (5.1)

where 2 is the solid angle subtended by the detector from the source and
¢, is the intrinsic peak efficiency of the detector, i.e. the fraction of the
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gamma-rays impinging the detector which give a signal into the peak.
In Eq. (5.1) N(t) is expressed in counts per second, and the total accumu-
lated counts are N = (N (#)d7. In practice, the total counts, N, are usually
used and time corrections are performed if necessary to calculate N(¢).
The expression & = (e /4n, which we call total peak efficiency, is known
either by caleulation or by calibration with standard sources for the photon
energies where the intensities are to be obtained. .

In the relative method the peak areas of the same energy gamma-rays
are compared and their ratio gives the ratio of the intensities. In this case
it is obligatory that all areas should be calculated by the same method as
there are several methods for computing peak areas (Sections 5.3 and 5.4).

In activation analysis, where comparative sources can easily be produced,
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relative Intensity measurements are nearly always performed (see Section
8.3). In other types of experiments both relative and absolute determina-
tions are used, depending on the problem.

5.2 DETECTOR EFFICIENCY CALIBRATION

By measuring peak areas of sources of known intensity, the energy de-
pendence ol the total efficiency can be determined by Eq. (5.1) [341. For
Nal(Tl) crystals where the sensitive volume is well defined it can also be
calculated with sufficient precision [29, 54-56], but for semiconductor
detectors (except for some true coaxial detectors), for the present caleu-
lated absolute efficiencies are far from being accurate. Unfortunately, the
number of calibrated sources is usually not sufficient to cover the entire
energy range, and their activities are not known very accurately, Efficiency
measurements for gamma-ray energies up to 2.76 MeV (**Na) are usually
made by calibrated radioactive sources. and above this by using capture
gamma-rays. The high energy calibration is usually more complicated
because capture gamma-rays are emitted virtually immediately after
a target nucleus captures a neutron. Therefore the detector must be cali-
brated by an open channel of a thermal reactor.

For calculating the total peak efficiency, both e, and 2 must be deter-
mined. Several attempts have been made to calculate &,. The best results
were obtained by calculating from the well-known cross-sections the total
intrinsic efficiency &y, which is the probability that a gamma-ray striking
the detector will interact with at least one electron in the sensitive volume;
this is multiplied by the experimentally measured peak to total ratio R.
K is the probability that if a photon interacts with the detector the resulting
signal will fall in the peak region.

As R is nearly independent of the detector-source distance and can be
measured with good accuracy, e, = &7 i is also well known for different

Tabile IV. Energies in keV and Felative Intensities of Gamma-Rays Utilized in the Determi-
-~ nation of the Detector Full-Ensrgy Peak and Double-Escape Peak Efficiencies

Radizactive desay

| | |
135Ba Wompf  lEmAg| #2Ng |ThL | B8e = BY | $9Co | #Na
B, 81 | 215 432 | 511 | 583 | 889 898 | 1173 | 1388
B, 356 335 | 443 615 | 727 | 1274 ! 2614 | 1120 1836 | 1333 | 2753
I, 0.52 0.86 | 0.98 0.994¢ 0.993| 1.82 0.852| 100 0.94 [ 1.00 | 1.001

Caprure ganma-ray

T M L

E, 341 1497 535 1762 2939 3720 | 2319
E, B413 4876 3383 7100 6642 5999 5610
11, 1.00 1.00 1.56 1.13 1.00 0.75 1.00)




experimental arrangements. For Nal(Tl) detectors, 2 is well defined.
The calculated total efficiencies for crvstals having varicus forms and sizes
are tabulated and compared with measured values obtained from cali-
brated sources by Eqg. (5.1) in several books and papers, e.g. [29, 54, 55].

Numercus Monte Carlo caleulations of both full-energy and double-
escape peak efficiencies have been made for Ge(Li) detectors as well [26,
27, 42]. The former agree with the measurements, but the calculated double-
escape peak efficiencies deviate considerably from the measured values:
For this reason, and because efficiencies calculated for one Ge(Li) detector
are not valid for another due to uncertainties and wide variations irr fhe
sensitive volumes, it is best to use a relative calibration method whah
avoids the calculation of e and 2 [35, 53]. Naturally, this method can be
applied for scintillation detectors as well [57]. e

For calibration, sources are used which emit two or more gamma-rays
with accurately known relative intensities. The areas of the peaks are deter-
mined by any of the methods described later in this chapter. The ratio
of the peak areas is equal to that of the peak efficiencies divided by the
intensity ratio. Energies and relative intensities of gamma-rays utilized
in the determination of detecter efficiency are compiled in Table IV, In
- Fig. 12 is shown the energy interval covered by these sources. By fitting
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pairs of such gamma-rays (having the same length in the figure) and inter-
polating between the measured points, a satisfactory relative efficiency
calib--fion can be cbtained. An arbitrary efficiency is adopted for one
calibrating photon energv and the efficiencies relative to this are caleulated
for the gamma-rays of the same isotope (or level). This efficiency ‘curve’
is interpolated or extrapolated to the energy of another calibration point.
For this energy the efficiency so obtained is adopted, and the relative effi-
ciencies compared to this value are again calculated with the help of the
cther gamma energies of the second calibrating isctope. The efficiency curve
is extended by the new points. This process is then continued for all the
calibration sources. -

A simple and rapid method to obtain an approximate relative calibration
curve is to measure the spectrum of the *Th radioisotope and its daughrers.
The energy range of these radio isotopes covers nearly completely the
energy region up to 2.7 MeV, and the relative intensities of the individual
gamma energies can be fairly well determined.

As (2 is independent of £, and in practical spectrometer arrangements
the dependence of £, on £ can be neglected, this relative calibration is
gocd for a given detector in any geometry. The absolute efficiency can be
obtained by measuring a source with accurately known intensity or for
which the detector has a well-known (usually 1009%,) intrinsic peak effi-
ciency, and then @ is calculated.

The detector total peak efficiency is stored in the computer either as a
set, of corresponding &(E.) values from which the total peak efficiency can
be calculated by interpolation for any energy, or as an analytical (&)
function. For Ge(Li) detectors the full-energy peak efficiency| e, ~ E;* in
a wide energy range, where the k constant depends on the size and shape
of the detector. Significant deviation from this curve occurs only under 100
keV due to the self-absorption in the detector itself. A better fit was ob-
tained by the approximation

E E

!TI-EF:‘I?I.H'—E'"" eln? =2,
v v

-

where b, ¢ and &, were constants for a given detector and geometrv [53].
Good agreement was also found [54] with the following formula:

g, ~ 1 — exp (—1C) — Ao exp(—BE,),

where 4 and B are empirical constants, € is the detector thickness and 1
apdlu are the photoelectric and Compton absorption coefficients, respec-
tively.

Relative effciencies of a 35 em?® planar, a 9 cm?® coaxial, and a 4 em?x 0.5
cm Ge(Li) detector, measured by the above mentioned method, are shown
in Fig. 13. The data were taken from refs. [58, 35] and [53] respectively. All
relative efficiencies are normalized in the same way, to be 1.0 at B, =
0.511 MeV,
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For very precise intensity determinations a correction for the summing
effect (Section 10.2) is necessary. For every count under the sum peak,
one count is removed from the peak of each coincident member. To obtain
the correct peak area in the first approximation, the measured counts
must be divided by [1 — &4 %[ (1, 2)], where ey, is the total detection effi-
ciency for the other coincident gamma-ray and f(1, 2) is a factor describing
the angular correlation between the simultaneously emitted hnmns

(If there is no angular correlation f(1, 2) = 1.) For large volume scmtﬂla
tion detectors this correction can be as large as 10-20%,.

5.3 CCRYE FITTING

As it was discussed in Section 3.2, full-energy peaks can be very closely
approximated by a Gaussian in Nal(Tl) spectra and with less accuracy for
peaks in Ge(Li) spectra. In most cases the peaks are superimposed on a
background or a Cumptﬂn continuum which is regarded as linear In the
region of the peak.. Therefore, the function which is to be fitted to the
measured data bv iterative weizhted least-squares techniques has the
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- form [54]

?{-i}zﬁexp[—ﬂ’—[—ﬂﬁ—u (5.2)
2¢g° -
The area of the peak is

N=254c=1.0844%T. (5.3)

For more preecise calculations, either the background is regarded as
quadratic or the Gaussian in Eq. (5.2) may be replaced by the modified Gaus-
sian of Eq. (3.3). In this latter case Eq (5.3) iz modified -shightly [34]. .

If the E]]E.pE of the spectrum or the I" values obtained from the first

fitting indicate that there is more than one peak in the fitting region, a
fitting can be performed by the function:

. a[]p:ah‘i ': P; B
y'ﬁ}: 2‘ ;‘EIP[ -—2—2—]‘1— v+ C

j=1 ot

and the intensity of each component is V; = 2.54 0,. To reduce the number
of parameters, ¢ can be regarded as mnstant for overlapping peaks.

'I'he advantage of using peak areas instead of peak heights fur intensity
determination is that changes in detector resolution, mainly due to counting
rate variations and overloading, do not effect the results. HIE’h count rates
can significantly broaden full-energy peaks, especially when no pole-zero
cancella*mn and/or baseline restoration (Section 10.1) is used. According
to the author’s own experiments, without pole-zero cancellation the resolu-
tion of a 3 ce Ge(Li) detector increased by a factor of two for the #9Co peaks
when the count rate was increased from 10° count/sec to 3 X 10* count/see.
Using the pole-zero cancellation circuitry, the deterioration of the peaks
was much less pronounced and the increase in resolution was about 20%,
for the same counting rate variation. At any rate, one must remember
that if the full width at half maximum cannot be estimated precisely
(whieh is usually the case in graphical evaluation) more precise intensity
results can be obtained by comparing the peak heights rather than the
areas, if the latter are calculated by Eq. (5.3).

o

5.4 BASELINE CONSTRUCTION

There are several procedures by which peak areas can be calculated
without any assumption for the shape of the peak. The disadvantage of
these methods is that areas of overlapping peaks cannot be calculated
individually.

The background under the peak is estimated from the spectrum outside
the peak and a baseline is interpolated to distinguish the activity due to
background and Compton scattering from the counts in the peak. The
(net) peak area is given by N =7 — B, where 7' is.the total measured
count under the peak and B is the area, measured in counts, under the
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baseline in the peak region (Fig. 14). The selection of the peak boundary
channels, betweer. which the channel contents are to be summed to obtain
the peak area, must be consistent for a given gamma energy in all spectra
for which intensities are compared. The optimum selection of the boundary
channels, i.e. the optimum portion of the peak region which should be in-
cluded into the peak area calculation, will be discussed in the next section.
In this section we restrict ourselves only to baseline construction.

The simplest method for constructing the baseline is to connect the data
of the selected boundary points, x,, z,, by a straight line [59]. The base
area i3 then a trapezoid. The peak area and its error are

N= STH~22H0T " 176 4 ¥im) (5.4)
and -
Xa ( i . = — I .
(AVp= S PR+ B AT lff* 5= 9 (¥(r,) + Vi)
L G B (5.5)
o



As the baseline is influenced strongly by/the statistical fluctuations in
the chosen boundary channels, better resul Its can be obtained bv using for
the determination of the baseline the smoothed values at the boundaries
instead of the raw data. A five-point smoothing (Section 2.2) reduces the
error approximately to

MWFMT+%_T_EB (

_l.'.."l.
=T
e

To lessen further the effect of the statistical fluctuations more points
cught to be used in the smoothing. But for good precision the boundaries,
where the baseline constructed in this way starts, hawe to be in or very
near the peak region where only a small P'Dl'trlﬂﬂ of the spectrum can be
approximated by the second or third degree smoothing pelynomials.

Other methods fit the strmgh‘ baseline either to the smoothed first
derivative on the left of the peak [49, 60], or to functions fitted to the raw
data on each side cf the Pea.k [61, 62].

If the base area is much smaller than the peak area, there is no signifi-
cant difference between the various mcthmla mentioned above. However,
if B iz comparable to T, as is the case when measuring low intensity radia-
tions or gamma-rays in the presence of intense higher energy gamma-rays,
the method of baseline construction can influence the peak area very strong-
lyv. Even small deviations of the actual baseline from linearity can cause
large errors in the intensity determination. To overcome this, higher degree
polynomials constructed as explained below can be used as baseline [63,
64].

Due to the excellent energy resolution of Ge(Li) detectors, there are
several channels on each side of the peaks of interest which in most prac-
tical cases do not contain any other peaks. In these regions a second degree
poly m:mml is fitted to the measured values with least-squares techniques,
using 2k, + 1 and 2k, + 1 points around the centres z, =z, — I; and
Ty =X, b Eq, re&pectwelv where x, is the location of the eﬂk fsﬂﬂ Flg
14). The baseline is then constructed in such a way that at - and rp it
has the same magnitudes (p,, py) and slopes (., 95) as the ﬂtt.ed ulvnu-

mials. The simplest polvnomial satisfying these conditions is the fo lowing
cubic:

- —qr — 29; (pe — po) ] i
- blxy=pr+g(x— 7)) + 4+ (z — z.)°
T [ N PO TR R Y il

L =9 2(p; — Po) -l{x — ;)2 (5.7)
(I, + Ig)? (2, +12)7° |

The net count in the peak is:

|
s

¥z :
N = 3 [¥(i) — b(i)]. (5.8)

[I -I.

The values (p;, Pg) and the derivatives (g, gz) of the ﬁttmg polynomials
can be expressed as function of the measured counts using the smoothing
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constants of Table I (pp. 16-17), or for K > 7 the Tables of ref. [19] (cor-
rected for misprints!). “

For an often occurring practical case, when z, —z. =z, — z_ = 4,
Eq. (5.8) can be written in the form: | s

N= ¥ Y(i) —45(p; — pr) — Fll,lg) (7. — qr), (5.9)

f=I]

where F(15,15) = 32.75 and F(18, 18) = 30.867.% o
The first two terms on the right side of Eq. (5.9) give the net peak area
calculated with a linear baseline, while the third term gives the correction
for the non-linearity. For a large number of experimental spectra this
correction ranged from 10-20 counts to 160-2350 counts for a base composed
of Compton gcattering and with B varving from 1,400 to 30,000 [64].

It has been experimentally demonstrated [64] that peak areas are nearly
independent of the fitting regions, provided that sufficient points are used
to reduce the statistical fluctuation (k;, kg > 35), and that fitting regions
are outside the peak to be determined (I;, {; = 3I') and do not contain
any other peak.

If too few points were used for fitting the polvnomials (i.e. k;, k; <7 5),
then the baseline and the area under the baseline were influenced strongly
by the statistical fluctuations in the individual channels. The effect
i3 shown in Fig. 15(a), where baselines are constructed for the same spec-
trum with [, = [, = 18, fitting second degree polynomials to T(k, = kp =
= 3) and 23(k; = kg = 11) points, respectively, for the determination
of the boundary values of the baseline. Unsatisfactory results were obtained
when too many points were included from the peak region into the fitting
interval. In this case the influence of the peak distorted the baseline. This
can be seen from Fig. 15(b), where baselines were constructed by fitting
with second degree polvnomials in the regions specified by k; = kp = 7
and {;, =I; = 13 and 18, respectively.

* The tlopes and the rnagnitudes of the second degree fitting polynomials are
(M = L, R)

Ay :
Iy — 3Tkallepr — 1)(2&p + 1)] ] .l'k t Y(zp + i,
i=—Kky

1 167 ‘ | :
Py = "Tj_‘ﬁ[ 5 Yo + 162y, + 14Ty, + 122y, + 8Ty, + 42y, — 13y, — T8y,
for ky = T,
1 [70 = 5 s i " .
Pm Zwl—'ﬁ'yn — 18y, + T8y, + Ty, — 63y, + Sdyws — 43y, + 30y, + 15y,
—2yy — 21y, — 42";’:1)

T

for kyy=11, where y; = ¥izpy + 1) + ¥(zpy —9), + =0, 1, 2,..., 11\



It can be shown that when the same data are fitted with a second or a
third degree polynomial the errors in the magnitudes of the functions are
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Fig. 15. Baselines interpolated by using different fitting polynomials. The solid curves
were obtained from suitably ficting polynomials while the dotted ones were fram
unsatisfactory fittings.
(a) Using too few points for fitting, the statistical fluctuations in the individual
channels influences the baseline,
(b} If the fitting interval contains tco many points
from the peak region, the peak distorts the baseline



the same. while the error of the first derivative is ~ 2-3 times smaller in
the first case. 32 tests showed that both the background and the Compton
continuum could be well approximated by second degree polynomials in
intervals containing about 20 or 30 channels (20-30 keV). Therefore, it
can be expected that baselines constructed from fitting by second degree
polynomials would lead to higher precision than those interpclated from
third degree polynomial fitting.

Indeed, for a 1 keV/channel calibrated Ge(Li) spectrometer the results
of the repeated measurements showed that best results were obtained for
peak areas when 15-23 measured points were fitted with second degree
i]ﬂlj‘ﬂﬂﬂ‘liﬂlﬁ (k, = k5 = 7-11) centred about 15-21 channels away from
the peak (I, =5 = 15-21). The optimum width of the peak ares (uw,
wy) depended on the ratio of baseline to total peak height and was in agree-
ment with the calculations [635].

It can be shown [63] that for &, = k; = 11 and I,_’ = {5 = 15, the error
of the peak area calculated by Eq. (5.9) is AN ~ |T 4 1.3 B, which for
large B is considerably less than the errors of other peak area methods.

In Fig. 16 the precisions of different peak area determinations are shown
as functions of the baseline height-to-total peak height ratio for a peak
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Fig. 16. Caleulated statistical errors of different methods used for peak area determi-
nation as a function of the (baseline heizht/{total peak height) ratio for a peak with
I' = 5 channels. To obtain the standard deviation (1) in percentage for a given ratio,

the ordinate must be divided by VN, .. where N,y is the net peak height, the
number of countsz above the baseline in the peak channsl.
I — Non-linsar baseline [63], [64] constructed by Eq. (3.7 with ky = kp = 11; || =
lp = 15; 2 — trapezoid method [59] using the raw data according to Egs. (5.4) an
(5.8); 3 — trapezoid method using data smoothed from five peints in the second
term of Eq. (5.4). Errer caleulated by Eg. (5.68); 4 — method of the smoothed first
derivative [49, 60]
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having I' = 5 charnels. In calculating the errors, it was assumed tha: there
is no systematical error in the baseline, i.e. the statistical Aluemations are
the only sources of errors. One can see from Fig. 16 that if the height of
the baseline (or area) is small compared to the total peak height (or area),
all methods have about the same scatter. But for peaks superimposed on
a large background and/or Compton continuum, the precision cbtained
with the non-linear baseline is higher than that of the others. However,
it has to be mentioned that this latter method is not applicable to scintil-
lation detectors, because there are usually not sufficient ‘peak-free’ chan-
nels available to construct the fitting polynomials of the baseline.

3.0 SELECTION OF FEAK BOTUNDARIES

OUnce a peak has been located, itz boundary channels, between which
the counts in the individual channels are to be summed to obtain the area
of the corresponding peak, must be selected. For intensity calculations the
boundary selection must be consistent in each spectrum for a given gamma-
ray energy. Since the exact location of the boundaries is influenced by
various experimental parameters, the best way is to determine them from
the actually measured spectra.

50
a=001 /

40
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G ! [ ] 1
0 5 W0 1K 20
B
Fig. 17. Optimum portion of the peak region, w;y, for minimizing the relative statist-
ical error in the peak area calculation as a function of detector resolution I', for differ-
ent baseline height-to-total peak height ratios, a. (from ref. [55]). In calculating w5
N = FT -~ B was assumed

80



For Nal(Tl) spectra above a few hundred keV the left boundary is usually
taken as the nearest minimum in the raw or the smoothed data below the
peak channel. As waa discussed in Section 4.2, (irardi e al. chose both
boundaries such that from these channels the decreases in the channel
contents were no more significant [46, 47].

The right side boundary channel is selected either svmmertrical to the
lefr one [59]. or at the minimum on the right side of the peak, or where
the smoothed first derivative drawn from the left side boundary inter-
cepts the spectrum on the right side [20, 49, 60]. B

All these methods have the advantage that slight changes in detector
resolution do not affect the peak area, but have the sericus disadvantage
that the positions of the boundaries themselves are influenced by statis-
tical fluctuations and thus increase the variance of the peak area. This
error can be eliminated by using a fixed number of channels (at least for
& given gamma energy) when summing the counts. This can be seen in
Fig. 18 where the precisions of different peak area methods are compared.
The curves I-3 relate to fixed boundary methods, while in curve 4 the
boundary channels vary and are determined by the intersection of the
spectrum and the smoothed first derivative drawn from the left side mim-
mum. Since changes in resolution can be minimized by well-designed
amplifying chain (built-in pole-zero cancellation, pile-up eliminator, base-
line restorer, ete.), for well stabilized spectrometers the use of a fixed width
peak region is preferred. It must be emphasized that the constant width
must be valid only for a given energy, and the region for peak area calcu-
lation can increase with gamma energy in accordance with the increase
in detector resolution,

The optimum portion of the peak region, w,,, which should be included
into the peak area calculation to minimize the relative statistical error in
N depends on the baseline height-to-total peak height ratio, a, and on
the detector resolution, I'. Calculations for w,y,, are shown in Fig. 17 taken
from ref. [65]. However, these calculations can serve only as rough guide-

lines. First, they were performed with the assumption AV = VT + B
which underestimates the error. The error of the base area, 4B, is larger

than the simple statistical error of B counts. Generally, 4B = k/ B, where
k > 1 depends on the method used for the baseline construction. In the
gecond place, in practice the resolution for a given energy may vary with
counting rate, especially for Ge(Li) detectors. Therefore, the width of the
region used for peak area calculations must be wide enough that the
change in resolution should not affect the peak area.

In Table V are the experimentally measured standard deviations of re-
peated peak area detorminations. The same peaks were evaluated by the
non-linear baseline and the trapezoid method (Egs (5.9) and (5.4), respec-
tively) using different numbers of channels for the peak area calculation.
It can be seen that when the baseline-to-total peak height ratio is near 1,
areas obtained from wider peak regions are less accurate than those ob-
tained from relatively narrower ones. For low baseline-to-total peak height
ratios the situation is reversed.
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Table V. Precizion of Peak Area Determination Using Different

Total Besalina HBxpesimental s;m.n:ii:d
]:Eihk‘;. Total peak | wFWHM =~ 0.3 I w0 FWHL = 0.7
(COUrTa} heighs® | '
4 | B | - D £ B o D
|
203 0.01 3.3 3.2 | 7.5 1.3 3.3 3.5 I 4 4.3
153 0.87 17 1T | 41 | 38 148 16 23 14
277 0.71 15 15 2 | 41 14 | 14 39 30
1567 | 0.85 12 14 9 | 2B 14 16 39 16
4763 | 0.94 22 28 57 | 40 27 26 52 29

* Calenlated in the channel which contained the maximum number of esunta.
T W = wg = w; = pumber of channels on sach side of the peak used for peak area determination
FWHM = measured full width at half maximum of the peak.

5.6 AUTOMATIC PEAK LOCATION AND PEAK AREA CALCULATION

I'he following computer program combining the smoothed first deriva-
tive and non-linear baseline methods has been routinely used in the author’s
laboratory for peak location and sensitive and precise peak area calculation
in Ge(Li) spectra.

In the first step, possible peak positions (p,) were chosen at the channels
where the sign of the smoothed first derivative changed from positive to
negative. The corresponding approximate peak areas (4,) were calculated
by the trapezoid method, Eq. (5.4). The number of channels used for the
area caleulations increased with gamma energy and was approximately
equal to 0.6 X 'FWHM’ on both sides of the peak.

If 4, > 20(4,) was fulfilled, the peak was regarded as definitely existing,
if 0.2 a{..:iF] <4, < 20(4,) then as a poesible one, while if 4, < 0.2¢ (4,)
it was rejected. (o(4,) was the standard deviation of 4,.) Then the chan-
nel differences were calculated between each possible peak and its near-
est neighbouring definitely existing peaks. These distances and the 4,4,
ratios determined the limiting factors for the k and ! fitting parameters.
If these values were larger than the optimum ones (see Section 5.4), the
optimum values were used for non-linear baseline construction and peak
area calculation. If they were smaller than the optimum, but larger than
the minimum permitted £ and [/ values, they were used.

However, in very complex spectra it occurred that peaks were not wide-
ly enough separated. If there were less than 6-8 points between the
tails of adjacent peaks, the slope of the baseline could be determined only
with large error. When this occurred, then on the corresponding side of
the peak only the value of the fitting polynomizl was calculated. The base-
line was approximated by a second degree polynomial having the same
values as the fitting polynomials on each side of the peak, and the same

52



Numbers of Channels for thae Pealk Calmalation

deviaticn in permentages™

o5 W = 1 | SF WM m 1.3
A | ] | ¢ D ‘ 4 B | c I
a2 - 3.2 3.9 | 4.1 3.1 3.0 | 3.0 3.0
13 13 29 19 13 13 ' 40 3l
15 23 45 . 29 16 22 34 21
12 15 19 27 15 17 33 2%.
33 37 o8 K E ¥ J a0 : 44
| 3

A — non-litesr baseline with second degree polynomisl fitting, £ = 11, I = 15:

E — same 88 4, but ¥ = 11, ] = 18; ' i

C — traperold method (Fga (5.4) and (B.5))

L — same as C, but using the smoothed data for delermining the counts at the boundaries.

All devistions are the experimental values obtained from 10-15 measurements.

first derivative on the corresponding side where the polvnomial was fitted
to sufficient data points to give an accurate shpe. 1t was shown that the
(net) peak area did not depend on k and ! provided both were in the allowed
interval, and was the same even when the derivative was fitted only
on one side of the peak. Therefore this method did not give uncorrect results
except for unresolved or very close peaks.

For each possible peak the exact peak areas (N ) were calculated by the
non-linear baseline method, the parameters of which had been determined
r:.:s deserih;d above, and all peaks were finally definitely identified for which
"".r = 20| -r]'

The N,/s could be used for both absolute and relative intensity cal-
culations. :

When neighbouring peaks were resolved but were go near that the non-
linear baseline. could not be fitted, then the area was calculated only by
the trapezoidal method.

The peak widths were controlled and for too wide ones no areas were
calculated, only warning messages were given.

The block-diagram of this program is shown in Fig. 18.

To have the program run faster when more information was available
from visual examination of the data, an option was built in to jump through
the peak locating part and calculate by non-linear baseline peak areas only
in the peak positions and with &k and ! parameters given by the programmer.
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READ Shcatrum\
i

Caiculate the smoothed first cerivative ¥, in each pecint

{

Select possible (and existing) peak channels by the criteria:
K {pﬁ_ -1120i i {p,1£0 and Y, (g, 1)< 0

l
L

Fer each possible peak calculate its arza A4p , and its
error, € (4,), by the trapezoid method

X
Sort peaks

If 4. £028(A:) reject;
if Ap 026 (A,)<A,<26(4,),possible;
1 26 (A,)< Ae existing

i

Determine the minimum distances from neighbouring existing
peaks for each possible (and existing) peak
:‘u-:dﬁ.=rnin{pr-pp} and 0< d, amin {p;=p,}

!

Determing kand ( for non-linear baseline construclion
from d and d, and the corresponding A4, /4, ratios

for each possible (and existing) peak

Calculate the peak area Nz and its standard error
6(N. ) by non-linear baseline for zach possible
(and existing) peak

Reject peaks for which 26 (Np) > Np . List peaks as
detinitely indentified, for which Ny > 26 (Np)

¥

Indicate peaks which were too close or too wide

3

Use jpeak area for intensity determination

A

no @

yes

(CEND D

Flig. 18. Automatic peak-locating and area-calculating program




6. WEIGHTED LEAST-SQUARES RESOLUTION

The analysis of complex gamma-ray spectra by the method of weighted
least-squares is now used extensively, because the availability of -high-
speed digital computers has made the numerical calculations a relatively
simple- matter and for a given set of data this method ususally gives the
solution which has the smallest statistical error. In this section, onlv the
fundamental assumptions and the basic mathematical concepts of least-
squares analysis are considered. More detailed information on the general
problem can be found, e.g. in the book written by Hildebrand [66], and
numerous authors have discussed its application to gamma spectrometry,
e.g. refs. [12, 67-79].

6.1 BASIC ASSUMPTIONS

In the practical applications of weighted least-squares techniques to
gamma-ray spectrometry, the following basic assumptions are made:

(2) The spectrum to be analysed results from a mixture of known nu-
clides and the exact shape of all of the standard spectra of these nuclides
(often called spectrum library) are available either by direct measurements
or by calculations described in Chapter 3.

(h) The activities of the individual components are added linearly
and the response function of the detector system is not activity-dependent.

(¢) Each component of the complex spectrum has a different spectrum,
all of these being linearly independent. In practice, due to statistical fluc-
tuations and electronic instebilities this condition must be strengthened
30 that the spectra are substantially different.

In principle, (a2) could always be fulfilled by including the spectrum of
each radioisotope into the standard speectra. But this has no practical
reason because the mere the number of standards included in the fit,
the less the accuracy of the results. If the components are not known a
priwori then the possible components are selected by a preliminary caleula-
tion, usually based on the peaks in the spectrum. After completing the
calculations, the residuals and the X2 test (see later) can prove the validity
or invalidity of (a), i.e. whether all components of the mixture are among
the standards or not.

If the counting rate is low, (8) can always be regarded as valid. For high
counting rates, corrections must be made for pulse pile-up and dead-time
losses. Some of these problems are discussed in Section 10.3.

Several radioisotopes emit gamma-rays differing in energy by less
than the detector energy resolution. This is especially true for scintillation
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Fig. 15. The principle of spectrum combination. Radivisotopes 4 and B emit the same
energy gamma-rays. The shapes of their spectrs are identical at any time. Due to their
different half-lives the shapes of their combined spectra differ substantially

detectors where least-squares techniques are most often applied. Due to
the relatively poor energy resolution, full-energy peaks and Compton-
edges of gamma-rays close in energy nearly coincide. %ua shapes of spectra
of different radioisotopes hecome nearly identical, and the slight differences
may be concealed by statistical fluctuations. For this reason assumption
(c) may often be viclated. The problem is further complicated when not
the product radioisotope but the parent nucleus from which it was produced
is to be determuned. For example, in neutron activation &na.]’;/aia a radio-
isotope 4X can be produced from the isotopes 43X, 413X, 24, 213W (if
these isctopes exist in nature) via the reactions

A-1X (n, Y)3X, A°3X(n,2n)3X. 2zAY(n,p)2X, and FHW(n, )3

The measurement of the activity of X, without further consideration, cannot
be used for the determination of one of the elements X, ¥ or W, if any of
the other elements are present in comparable amounts.
_To satisfy condition (¢) for these unfavourable cases, the » channel spectra
measured after j different decay times for each standard and sample (and
for the background) are combined without any decay correction into one
spectrum consisting of nj channels [87]. The 1%, 2%, ..., j* spectra
need not be measured under the same experimental conditions provided
all the E'* spectra (k= 1,2,...,j) are measured in the same way. For
sxample, the first measurement for each standard and sample can be per-
formed using a large source-detector distance to reduce pulse pile-up
and dead-time, while the later cnes can be performed using a larger de-
tector, improved counting geomeiry and longer measuring time to improve
statistics. Following neutron activation, no different radioisotopes are
produced having precisely the same half-lives and gamma-ray energies
[80]. The combined spectrum can, therefore, be considered unigue and
substantially different for each pure radicisctope (Fig. 19).

Besides the desired radioisotope $X, other radioisotopes are produced
from the elements X, ¥, W by the (n, pj, (n, 2n) and (n, z) reactions. The
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activity ratios of these isotopes to each other and to that of 2X are differ-
ent. For this reason the combined spectra of each element are substan-
tially different, even if they contain the same radioisotope, and in spite of
the fact that when the activity of this isotope dominates their simple
spectra are essentially the same.

Since the standard spectra measured and combined in the way described
above fulfil all the given requirements, the usual weighted least-squares
resolution of the combined spectrum of the sample is possible.

6.2 DEEIVATION OF THE ‘LEAST-SQUARES EQUATIONE®’

If a complex spectrum measured in » channels has to be decomposed
to I known components (one of them mayv be the background), the intensity
x, of each component relative to that of ite standard is determined bv the
requirement that the value of the normalized y? defined as

]
2

-

I: s — —’E'H";' F T 2‘ Ir':-f{k: (6.1)
L N | | k=1 :

should be minimum. ¥, and A,, are here the counts recorded under the
same experimental conditions in the ith channel of the analyzer for the
complex and for the known kth component spectrum, respectively, and
w, is a suitably selected weighting factor, usually the reciprocal of the
variance of the difference between measured and calculated counts in the
ith channel.
The relative intensities minimize y* if
By
oy

—1 (for all k). (6.2)

Equation (6.2) leads to the following set of equations for the unknown
relative intensities

1"‘,l;::

"
F T"“E T.Ff‘!-_."'lkf_r"'!m_: e ; ’ﬂf"ﬂfﬂf}?f {k _ ]., E+ SRy l!i. IE-EI]

m=1 =1 ]

N B

.'-

Naturally, a similar result is obtained when Eq. (6.2) 1s solved bv the matrix
techniques (see Section &.1), the intermediate steps then being shorter,
but their understanding needs somewhat more mathematics. 1t can be
shown that for this problem the maximum likelihood method leads to the
same set of equations [71].

If all the conditions mentioned in Section 6.1 are fulfilled then the ex-
pected value of %® is ¢ 4% ; = 1 with the scatter 1'2/(n—1) while the zcatter

of z, is Az, = || Mz, where M ! is the inverse matrix of the set of Eq.
(6.3} [13, 72].
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6.3 THE VALIDITY OF THE RESULTS

If y* deviates significantly from its expected value, this indicates either
& missing component from the standard spectra or alterations between
the experimental conditions in which the standards and the composite
spectra were measured, usuallv gain and/or threshold shift. A channel-by-
channel plot of the residuals,

¥, — _2‘:::;,&,-“-. or the weighted residuals, o, (}’, — ¥z 4y
k=1 i

k=1

often gives a clue to the source of error. In this plot, missing components
are characterized by a peak at the position of the peak in their own spec-
trum, while a valley and a peak in addition to a true peak in the spec-
trum suggest electronic instabilities,

To plot and examine the difference visually between the measured and
calculated spectra is a lengthy time-consuming procedure, and anyway,
a decision as to whether the fit is gocd, acceptable or poor, remains rather
subjective. An increase in 42 — when the spectrum library is complete — is
due mainly to the electronic instabilities of the measuring equipment.
Several authors have investigated the relationship between the results of
least-squares resolution and gain and threshold shifts.

Dudley and Ben Haim studied the influence of multiplier and amplificr
gain variation on the values, computed by least-squares techniques, of the
different contributions to complex spectra [81]. According to an earlier
paper of the present author [82], the increase in 2, 452, due to electronic
instabilities can be fairly well approximated L %

L S FGLId/F 06, (6.4

Ay? o
: N — & rut

where C', 13 the height of the baseline and &, is the amplitude, both in counts,

Counts per channel

Energy

Fig. 20. Tha estimation of the increase in y* due to slectronic instabilities
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and F_ the width and d, the a,hsnluie value of the total shift, both in chan-
nel, for the rth peak (see Fig. 20). The summation is extended to all peaks
present in the complex spectrum. The values of I, (d,/F,; C,/G,) as funmnns
of d,/F, and C /G, are shown in Fig. 21.

For the extreme cases

C. < G,; I, ~ 5.85d%F?, (6.5)
C.> G,.; I, ~ 2.25d%F2. [E-,E;i_

The instability of any detector system can be determined by repeating
measurements on the same standard spectra over a reasonably long time.
Knewing this, the maxima of the 4,'s and from these the maximum permis-
sible TrElUE of y* can he determmed by Eq. (6.4) and by means of Fig. 21
or Eqs. (6.5) or (6.6). The weighted least-squares decomposition of a
complex spectrum for which f remaing below this maximum can be
accepted, while for higher values of #* the decomposition is sure to be inad-
equate. If this happens, then in most cases one or more components have
not been included in the standards. If the missing components can be fig-
ured out from the plot of residuals and their standard spectra are availabls,
a new fit can be perf::lrrre-d with the extended set of standards.

A priori known information can be used to improve the accuracy and
validity of the results [83]. The most trivial case is where there are no ‘nega-
tive intensities’, 2, > 0 for all components. If z, <Z 0 for any %, the least-
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Fig. 21. The factor I, of Eq. (6.4) as & function of C,/&, and d,/F,



squares precedure is repeated, excluding from the standards the spectra
of these components. A more severe condition can be applied from the
fact that the measured activity is the sum of the individual activities in
each channel,

Sz dy=N, (=12,...,n)

k=1
from which
I.ll'g'ﬁr[—f'di!- [izl.ﬂ.--.,ﬂr; kzl,ﬂ,”.,f].

In practice this is substituted by .
i"'r

Lo a4
b

N,
Ay

mkgminimum[ ]] =12 .coam =100 10)

where A(N,/4,;) is the statistical error of N,/A4,,.

Even for ideal electronic stability and a complete library of standand
spectra, the accuracy of the decomposition is still affected by the difference
between the shapes of the component spectra. The diagonal elements of
the inverted matrix give the accuracies of the results only after the meas-
urement. To prediet what accuracy can be achieved by the least-squares
techniqués Fig. 30 in Section 8.4 and Wohlberg's graphs can be used [84].

6.4 GAIN AND THRESHOLD COMPENSATION

Instrumental instabilities appear mainly as gain and/or threshold shifts.
These can be inherent in the eloctronic system itself, but can also be caused
by varying experimental conditions, e.g. count rate variation, or pulses
which are much larger than those to be measured. Several digital spectrum-
stabilizer and amplifier baseline restoring circuits have been developed
to minimize electronically the gain and threshold shifts (see Section 10.1).
Parallel with or instead of these sophisticated devices, computer programs
can also correct electronical instabilities. For compensating small chan
in gain and zero intercept, linear interpolation is the simplest way [85,
86]. After a change in zero intercept of z channels and a fractional change
in gain g, the new channel boundaries corregpond to energy intervals differ-
ent from the original ones. The new boundaries of channel i are:

Li=i+ 24 gt — z,)
Bi=1+4+14+z4 g0+ 1— z,),

and

where z, is the original zero-energv intercept corresponding to the stand-
ard energy calibration of the spectrometer.
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If ¥; denotes the number of fcrunta (or the counting rate) in channel ¢
of the shifted gpectrum, then the shift corrected count is given by

}.f S {I = LF]F—LI _1_ F ] RFYEI

In this equation L and R; denote respectively the fractional, and I,
and BE; the integral parts of L; and R;, and Y is the sum of the channel
content between L; and R,

Ri—
S Y, and Y=0 if L;+1>R —1.

J=Lis:

Although this method i3 very simple in principle, in practice it is often
preferable to other more sophisticated procedures, provided-that the gain
shifts are smaller than the mdths of the peaks. A number of other tvpea
of gain changing programs have been proposed in the last few vears. Some
of them apply quadratic fitting to groups of channels to determine peak
positions and determine the gain changed spectrum after appropriate
rescaling using the coefficients of these fits, while others rely in some way
on the channel counts conservation method [87, 88, 89].

Another method for estimating gain and threshold shift by least-squares

techniques was proposed by Schonfeld [12]. For small ah1fta the corrected
count in channel 1 is

Y, ma ¥4+ 1/2(F ;0 — ¥y [(g — 1) (5 — 20) + 20 — 2], (6.7)
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Fig. 22. Decrease in normalized y® dus to successive gain and threshold chift eorree-
tions. The eventual gain shifts are indicated on the eurves. The threshold shift was leas
than (0.1 channel and the dezree of freedom was 238
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In thiz case instead of Eq {:"Ll}

is to be minimized. Subatituting Eg. (6. a] into Eq. (6.8) the minimizing condi-
tion leads to a similar set of equations to Eq. (6.2) with two more unknowns, g
and z, and two more equations due to the conditions 0x*/og = 0 and 8y*/5z= 0.

Since Eq (6.7) is only a first approximation to the corrected spectrum, it
may be that several iterations are necessary to obtain the correct fit. From
the first gain and threshold shifts a corrected spectrum is calculated, and
a new gain and threshold corrected fit is performed with these corrected
data. The dramatic decrease in the normalized y* due to this gain and thresh-
old compensation is shown in Fig. 22. The details of this procedure and
its results are described in ref. [12].

€.56 SELECTION OF WEIGHTING FACTORS

The weighting factor for the data measured in channel i, w; in Egs. (6.1)
and (6.2}, is usually the reciprocal of the variance of the difference betv;een
the measured and calculated counts in the corresponding channel,

. ! {°
1jw, = <}, = Erﬁt—:.&”> (6.9)

k== X

if the background is regarded as an-individual component, and

m—/h e —-B:sz?rlf,*‘lm—""ﬂb (6.10)

.IE' k=1

if the background is substracted from each datum. Here B, and A, are
the counts accumulated from the background and the kth standard, re-
spectively, during their corresponding measuring pericds, fp and 7, ¢ is
the measuring time of the complex spectrum and experimental instabili-
ties are neglected. The { ) notation means the expected value.

In most cases Y; or ¥, + }z-;-ﬂi- is much larger than the remaining parts

between the brackets. The expected values can be approximated by the
measured ones so

£= :
ljw; =Y, or llu;=1Y;+ EE—B,. (6.11)
B

If 1/w; were zero according to Eq. (6.11), then ;= 1 is usually taken arbitrar-
ily. Us:ulg these weighting factors in Eq (6.2), the equations are linear in the
unknowns and can be solved directly.
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If the statistical error of the standards is not regligible compared to
that of the composite spectrum, then a weighted least-squares resolition
is performed, first using Eq. (6.11) as weights, and from the z, values so
cbtained the more precise weights are calculated accarding to Eqgs. (6.9) or
(6.10) and the £it is repeated [85].

Counts that are less than their expected values have a relatively larger
weight than those that are larger than their expected values in the (¥ > =
= ¥, approximation. This leads to a syvstematical underestimation of the-
x, values, which can be significant when the numbers of counts are small
in a lot of channels. In t-hiar case an iterative fit is necessary, and in—the

consecutive iterations w; = EI*A xr 18 used instead of ¥, [90]. For instance,
Kl

for a complex Ge(Li) specira the usual weighted least-squares resolution

gave values of 0.85 and 0.86 for the ratio of the measured and true inten-

zities with an experimental standard deviation of 0.05 around the measured

mean value for spectra where the average counts per channel were ~ 10

and ~ 5, respectively [64].

If smoothed data are used in the fit, then the weighting factors must
be multiplied by a corresponding factor, taken from Table I, due to the
reduction of the statistical error of the smoothed data, or the expected
value of the normalized y* will be less than 1.

8.6 EFFECT OF MISSING COMPONENT

In gamma spectroscopy, especially in activation analvsis, it can be
always expected that appreciable activities are produced from the elements
the spectra of which have not been included in the standard input spectra
used for fitting. In this case the intensities of the standards determined by
the method of weighted least-squares are usually higher than their actual
values and the contribution of the unknown element i somewhat levelled
off by the additional weight of the known components. The effect of a
missing component is shown in Fig. 23. The curve of the residuals exhibits
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Fig. 23. Effeet of a missing component in weighted least-squares resolution
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Fig. 24, Spectrum of the measured and ecaloulated composite
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Table VI. Relative Intensity Determination
F*tpfk HBssic af the measured ard sxpacted
Total ATEA
% Tozal _
—_ - > - on-11 0 mw.ld =
e | mms | el Twa | TR | faei
ragion (=moothsad)

522 0.95 0.97+0.08 0.98+0.086 | 0.98-+0.10 0.97+0.05
1008 0.93 0.99-0.03 1.014-0.03 0.99+0.03 0.88+0.03
1165 0.23 1.02—0.15 0.9140.43 0.914+0.16 1.2340.50
1782 0.25 0.94—0.18 0.974+-0.29 0.9040.19 0.83-+0.35

13483 | 0.072 1.08=0.12 1.0210.10 1.08 £ 0:16 1.1230.50
30710 ' 0.031 1.18—0.22 1.614-0.62 1.034+0.27 1.46-+0.90

* Fitting with szeond degre2 polynomials, ¥ = 11, [ = 15




a peak close to the full-energy peak of the missing standard, and valleys
appear in the vicinity of the peaks of the standards which are ineluded.
The nearer these peaks are to the peak of the omitted standard, the more
pronounced are these features.

To eliminate erroneous results for the known compcnents, due to ac-
tivities of unidentified radicisctopes, an iterative procedure can be used
[91]. The procedure yields not only the precise relative intensities of the
known components but also the full-energy peak of the unknown compo-
nent, from which its spectrum can be generated if necessary. '

The procedure exploits the fact that for a good fit the residuals are EI‘-‘-'IlJﬁ
cantly positive in the channels where the contribution of the unknown
component is high. Consequently, the significantly positive counts give
a very crude approximation to the contributions of the unkfiown constit-
uents. This approximate shape is added to the known standards as a new
standard, the fit is repeated, and the significantly positive residuals are
added again to the shape of the unknown spectrum. It can be proved that
the procedure is convergent and gives the shape of the missing component
if this has the lowest energy among the standards, and gives the shape of
its full-energy peak otherwise. The shape of the missing component and
the measured and calculated spectra aftcr different numbers of iterations
are shown in Fig. 24.

8.7 PEAK AREA CALCULATION OR WEIGHTED LEAST-SQUARES
RESOLUTION ¢

If the exact laws of mathemadtics could always be applied to experimen-
tal nuclear physics, this question could be answered without any hesitation
in favour of least-squares techniques. The argument of the theoreticians
would be: The more the counts used for evaluation, the less is the statis-
tical error obtained from these data. Thercfore the least-squares method is
more preferable for semiconductor detectors, where the peak to total
ratio is amaller, than for scintillation detectors.

by Different Methods

vLitls Caliulgied melazive eoruc
Weigttad . Noom-linenr Irr;e;t?;i_d Trapezold ! Eﬂmt:'.ﬁ | Weighted
ledsi-2guares baszalins® c ,. merhod ! 1% Jeriy. | lenst-27pares
0.944-0.07 0.06 0.06 0.06 0.10 0.04
0.964+0.03 .04 0.04 0.04 0.04 0.02
0.8 1+-0.18 0.17 0.35 0.20 D.45 0.11
0.964-0.11 0.12 D.26 0.15 . 0.32 0.10
0.9240.04 0.18 0.24 0.19 | D.80 0.14
0.98+0.17 0.26 0.55 0.23 | 1.00 0.20

Determined by non-linear basaline by fitling with sscond degree polynomisla, £ = 11, [ = 13
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Unfortunately, for those who actually perform experiments .the answer
is rot so unambiguous. ‘

Different peak area calculations and weighted least-squares resolutions
were systematically compared for a two-component system measured by
a 30 cc. Ge(Li) detector [64]. Peak areas were evaluated by the non-linear
baseline method, by the trapezoid method, using the raw and smoothed
data at the boundaries (Section 5.4}, and by the method of the smoothed
first derivatve [49] (see Chapter 5). Relative intensitics were also deter-
mined by weighted least-squares techniques using the iterafive weighting
process proposed by Schonfeld [90] and explained briefly m Section 6.5.
The ratios of the measured and expected intensities obtained by different
methods, together with their experimentally observed and calculated stand-
ard deviations, are listed in Table VI. For the non-linear baseline and the
trapezoid methods, the optimum portion of the peak region was chosen
for peak area calculation (Section 5.5). In calculating the errors, it was
assumed that there was no svstematic error in the baseline, ie. statistical
fluctuation was the only source of errors.

It can be seen from Table VI that the results of least-squares resolution
are somewhat better than any peak area result. However, in spite of this,
it is not so simple to answer the question in the title of this section. One
has to consider that an ALGOL or FORTRAN computer program for weighted
least-squares resolution of complex gamma spectra contains a few hundred
instructions and needs thousands of memory spaces, depending on the num
ber of components. On the other hand, pe:i area calculations could be
performed even with a desk calculator. A computer program written in
ForTRAN for this method usually requires less than 50 instructions and
uses less than 100 extra memory locations (words) in addition to the space
needed to store the contents of the channels read in from one spectrum.

The other big advantage is that for peak area determination one does
not need the standard spectra of all of the components present in the com-
plex spectrum but only the spectra of those elements whose relative inten-
sities are to be calculated from their peak areas. In least-squares resolu-
tior. the standard spectra of each component must be measured with
high statistical accuracy, and, furthermore, missing spectra can lead to
systematic errors in the calculated intensities of any component. Using
_calculated spectra instead of measured ones can also lead to erroneous
results, especially when gamma-rays giving very small peaks on a large
Compton continuum are determined.

Taking all pros and cons into consideration, tlie personal opinion of the
author of this book, based on his own experiences, 1s that for the determi-
nation of the intensities of individual components of a complex gamma
gpectrum measured by Nal(Tl) scintillation detectors, a weighted lea-.si_'.-
squares resolution is recommended whenever it is possible. For Ge(Li)
detectors, however, the advantage of using much shorter measuring and
calculating times more than compensates for the slightly better precision
of the least-squares techniques over the non-linear baseline method.
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7. SPECTRUM STRIPPING AND NON-COMPUTER METHODS

7.1 STRIFFPING TECHNIQULES

Spectrum stripping or peeling has very often been used to decompose
complex spectra by graphical or instrumental methods, eg. [92-94].
Manv modern multi-channel analysers have built-in hardware to perform
spectrum stripping directly. -

The essence of the method is the following: from the position of the highest
energy peak the highest energy component is determined. The pulse-
height distribution of this gamma-ray is multiplied in each channel by the
same factor, Z, determined by the condition that after subtraction the
mean difference between the composite and the multiplied spectra should
be zero in the peak region. The intensity of this gamma-ray in the complex
spectrum is Z times the intensity of the standard which has been used for
the comparison, provided that both spectra were measurad under identical
circumstances. The spectrum shape needed is obtained either by meas-
uring the pure spectrum of the corresponding radiation or from calculation
(Chapter 3). The whole procedure is then repeated with the highest energy
peak of the remaining composite spectrum and is continued for all observ-
able peaks.

The principal disadvantage of this procedure is that the statistical and
measurement errors accumulate at each stage of the stripping. After three
or mare spectra have been peeled off, the remaining data are usually very
inaccurate. Intensity results for the highest energy gamma-rays of complex
spectra have about the same precision and accuracy as those obtained from
peak area calculation (Chapter 5), since the comparison is performed in
the peak region. For lower energy gamma-rays the results are much poorer
due to the errors accumulated in the successive strippings. The presence of
bremsstrahlung further increases the uncertainties. It is very difficult
to estimate the counts caused by this effect, if the complex spectra are
resclved bv peeling. Again, the errors are higher in the low energy part ol
the spectrum. For overlapping peaks there is ambiguity when the individ-
ual components are subtracted correctly. In this case it is advisable to
substract the higher intensity peak even if its energy is lower.

Only when a peak is superimposed on a rapidly varying background is
the stripping technique more advantageous than peak area calculation,
but even in this case least-squares resolution gives better results than strip-
ping. Because all problems and difficulties which arise in least-squares reso-
lution exist in spectrum stripping as well, the peeling method is very scarcely
used for computer data reduction nowadays, and is not recommended.
However, for a rapid, but rough, estimation of the main components 1t
may remain useful, because it can be performed with the more sophisti-
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cated multi-channel analysers on the spot, while a prompt least-squares
check would need an on-line coupled computer. But even this advantage
is decreasing with the advance of small, direct-coupled computers substi-
tuting wired program multi-channe] analysers.

When stripping is performed by the multi-channel analyser itself then the
standard spectra are measured either immediately before or after the
spectrum to be decomposed, or are stored on paper or magnetic tape. For
rapid comparison one measures in —-1 mode (subtracts) the standards
individually “after the complex spe-::tmm till the corresponding peak is
not visible on the oscilloscope screen of the analysers,

7.2 NON-COMPUTER METHODS

Complex gamma-ray spectra can be evaluated without computer by
combining numerical calculations with graphical examination. In favour-
able cases, a trained person can determine intensities by spectrum strip-
ping within a few percent accuracy, but a more realistic average value is
about 8-12%,. To speed up and simplify calculations the spectra are plot-
ted on logarithmical or double logarithmical scales if changes in gain mayv
oceur. The intensity and gain ratios can then be easily obtained by ahﬂ'tng
the lvganthlmcmh plotted response functions till they fit Enmpl&wlv In
the corresponding regions.

The other, more often used. faster and more simple method calculates
gamma-ray intensities either from peak areas or from peak heights. The
peak area can be determined either by planimeter (in which case the baseline
is usuallv a straight line connecting two properly selected points on each
side of the peak) or by the trapezoid method discussed in Section 5.4. The
miwanmhv of these methods over the procedure using only peak heights

is that the area is not affected by changes in resolution.

Peak hElE}L is usuallv defined as the numher of counts above the base-
line in the channel containing the maximum number of counts in the peak

~region. This is semetimes subatituted by the maximum in the ‘graphically
smoothed” spectrum, i.e. in the spectrum where a smooth curve is drawn
by visual examination to approximate the measured data points ‘as well
as poesible’. The baseline is a straight line either connecting ‘the local min-
ima on both sides of the peak or drawr &s a tangent to the spectra on one
+'L-:ua’l} the left) side just outside the peak. If the resclution may vary, then
the Intensity is regar dbd as proportional to A" where 4 is the hEIg]lt and I’
the width of the pE‘.ﬂ.l{ For a true Gaussian the pe&k area is 1.064 Al
However, ons must be very cautious, because intensities determined by
peak area calculated in this wav can be less accurate than those obtained
only by peak height compariscn, since a graphical determination of I
gives a much higher weight to the measured points in the neighbourhood
of the half maximum than to others. Therefore the error in I' can cause
a larger error in the intensity, when caleulated as being proportional to 4T,

than the error due to change in resolution when intensity is calculated only
from peak height.
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& MISCELLANEOUS APPLICATIONS

3.1 DECAY CURVE ANALYSIS

In Chapter 6, the resolution of complex, time-dependent gamma-ray.
spectra b? weighted least-squares tr:r:hmr]aes was discussed. With this
methbod the differsrces ot cnly in the pulse-height spectra but also in the
half-lives are taken into account and a decav-curve analysis i3 completed
automatically.

There are experimﬂnts where a complete time-dependent least-squares
resolution is either unnecessarv or cannct be completed from the measured
data. The former is the case when the intensity of interest is the only com-
pt}nent or is determined from the complex spectra by peak area calculation

(Chapter 5). The latter arises when the spectra of the different gamma-rayvs
are experimentally identical or a single- channel analyser was used to
measure the radiation. In the first case Ealf-lives usually give only a check;
while in the second, they do serve for the identification of the radioisotopes.
For the identification of pure positron emitters by the measurement of
the annihilation gamma-rays, nnl,, the decay of the radiation can be uti-
lized. Rude decay-curve :,um,h ses are important also therefore, because
from combired encrgy-hali-life tables 7807, the emitting radioisotope can
be uniquely determined even if both data were measured with modest
ACCUracy.

If N, is the total count in the jth measurement over a period 1; (1, =

) 2, . J.,m) after a delay time ¢, then the decay-curve analysis re-
[']'llll‘!""q a. ﬁ: TO t-hll'-" I"r-l'ﬂ]‘]T"-';

) n
;= D xexp(—Adt,

K =1 i

1 — expi . AT

[ 8
-

(F=1,2,i..;m); 481

where n < m is the number of components contributing to the measured
activity, x, is the activity at { = 0, and A, the decay constant (In 2/half-
life) of the Ath component. The z, purameters (wnd sometimes gome or al
of the 4,'s) must be determined to give the best fit to the data.

In mnst experiments the measurement times are substantially shorter
than the half-lives of the isotopes contributing significantly to the total
activitv. In this case Eq. (8.1) can be rewritten in the usual form:

i n
A_;Z%—"Z_E‘:z:kexp{—lkij} (f==1 2. .00 (8.2)
T, k=l
or in matrix notation:
() = [ A [ X s (8.3)
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where the 4 s are the measured total activities and the dimensions of the
matrices are m{h-ﬂa ed for clantv. The elements of the [ I] matrix are 4;, =

exp (—Ay,) and for [4] and [X] 4,, = 4, and X, respect n:re:lqr
The weighting factor of each datum i¢ the remprﬁcal of its variance.
The weighting matrix fH = = 15 diagonal, its elements are W,, = 13N,

t/4, and W;, =0 ]f == k. In measurements where the st Llﬂtlﬂﬂ-l er-
rors are smaller than the other experimental errors, A, it is advisable
to use weights W,, = 1,42
If the half-life of each component i3 known. the problem is the same as

that of Eq. (6.1) in Section 6.2, which has been solved by a linear le.SI--
squares fit. The same prt:w:ed'zre could be repeated to ﬁrd the best value
of the =, parameters. However, the matrix notation will be used by w h.l[‘h
the re*—»u]ta can be expressed in a much condensed form. The initial activi-
tvies obtained from the weighted least-squares fit are:

{X]n."_ = ['H_L:Iﬂ,rl i [‘EI;::,m 2 [H—r]m.m = [A lma
and the variances of the x, parameters are:
ﬂ:[‘rk} — ;'.I-!I:l

where [B~%],, is the inverse of [A'], ., [Wlnm ' [4]n, and ¢ indicates
the transpose matrix [95].

If any of the decay constants is unknown, then a direct linear least-
squares solution is not possible. However, from a set of initial guesses,
xp and 4]

T, exp(—Ad)) == x, exp[ — (4 + 04, )] ~ 7, exp(—At)) — dAxpt; exp(—A}L))

and a solution for the 54 terms is possible. An iterative procedure may then
be used until sufficient convergence iz attained — if convergence is attained
at all. In the matrix notation, one extra column of the term —z:rf Pxpk—};
15 added to [A] and one extra row, 84,, is added to [X] for eﬂ.ch uﬂknnwn
half-life [96].

[t should be mentioned that the exponential functions charaecterizing
the decay curves can be regarded as far ‘less orthogonal’ than the detector
response functions for d!ﬁ'erpnt ganmma energies. Therefore, intensities
obtained by decay-curve .E!.I'}.&I"ralﬂ are usuallv less precise than those ob-
tained from the resolution of pulse-height spectra. This inaccuracy is more
pronounced if some of the half-lives are also to be determined by the least-
sfquares fit.

In the least-squares method the number of the decaying components
and their exact or approximate hali-lives must be known a priori. Using
another approach this is not necessary [97, 98]. The Fourier-transform of
Eq. (8.2) is a sum of delta functions. Expresaed with the measured N,'s
by numerical integration as a function of 7, the delta functions broaden
into peaks at the decay constants of the cammn&nta of the complex decay
curve. The amplitude of each peak is related to the activity of the corre-
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sponding component. Unfortunately, due to errors in the measured data
and to the mathematical procedure. small “false” peaks, not corresponding
to any real decay constant. are also produced. Although thev can be dis-
ringuished from ‘real’ peaks representing true components, they do mask
weak activities.

The maximum likelihood method can also be used to perform decay-curve
analysis. To find the best values of the x, and A, unknown parameters
of Eq. (8.1} by the maximum likelihood principle, the following equations
must ke solved numericallv [13]:

T r ﬂ?’f
Sty 1—==0 k=12...,n) (8.4]
op. 0\ @. ’
and
m '_?1'._"\ ¥
;E-‘H‘I -——t-I-—i =0 (k=1.2 y ) ',ﬁ D]
= r] i
where |
. :;I;'!'l'_
a@;={Np= >z J exp (—At)di
k=1

and the coefficients
g
o = | exp(—A.t)ds 18.6)
Iy
and

f:p -'-r,-
By==z, | texp(—Aitdl (8.7)
s

are functions of the unknown intensities and decay constants.

In the favorable case when all decay constants (1) are known, the z,
intensities can be estimated using only the set of equations (8.4), and equa-
tions (8.5) can serve as a check on whether the assumed A, values are really
compatible with the measured data. However, these equations are very
inconvenient for numerical calculations. Fortunately, they can be approxi-
mated by the following set of linear equations:

5 |
racp="b ({=1,2...,m) (8.8)
k=]
where
m -
Cix = 2‘ bl_,bh.,’{ﬂr ;+ 1) 18.9)
Jj=1
m
'b'f == E b‘!f

J=1

and b, is defined by Eq. (3.5).



Equation (8.8) can be solved without any serious difficulties and the
relative differences between the solutions of Eqs. (8.8) and (8.4) are in prac-
tice smaller than the relative instrumental and statistical errors of the
measurements. The scatters of the intensities are ¢¥(z,) =~ ¢j32, where ¢
are the corresponding diagonal elements in the inverse matrix of Eg.
(8.8). |

A multi-channel analyser working as a multi-scaler records the total
accumulated number of detected particles during the time period 7, With
& precise timer_and an on-line coupled computer, it is possible to store the
exact decay time of each detected particle and to use these data for the
maximum likelihood estimation of the intensities. Surprisingly, the results
obtained from this extra information have scatters only a few percent
smaller than the maximum likelhood estimates of the intensities measured
by a multi-scaler whose time window (the time over which the counts are
integrated to give the N; values of Eqs. (8.4) and (8.9)) is small compared
to the half-lives of the decaying radioisotopes.

Applications of the maximum likelihood method for decay-curve analysis
are amply discussed in Chapter 1X of ref. [13].

8.2 OPTIMIZATION PROGRAMS

In the production and measurement of radicisotopes, the flux of the irra-
diating particles and the sensiuivity of the detector are usually given for
a certain type of experiment and are in most cases maximized. But the
irradiation, cooling and measuring times can be varied by the experimenter
within wide limits. The results of experiments with optimum time schedule
are often superior to one performed with a higher flux and a better detector
but no proper time selection. ;

From the equation of growth and decay of radionuclides

— exp(—AT)
‘1 ]

i N = nogpG[1 - exp(—AiT;)] exp( - rp) 1

where IV is the total accumulated counts from the product radicisotope,
n the number of target atoms, ¢ the constant flux of bombarding particles,
o the isotopic cross-section, p the isotopic abundance, X the decay constant
{ln 2/T,,,, T,y the half life}, 7', the irradiation time, T',, the cooling time, time
elapsed between the end of irradiation and the beginning of measurement,
T the measuring period, G the detection efficiency, the probability of detecting
an emitted gamma-ray in the pulse-height interval determined by the energy
selection of the detecting system.

If the irradiated sample is a mixture of different types of nuclei, then,
according to the type of experiment, various expressions of N are to be
maximized. The maximum condition usually leads to transcendent equa-
tions which are numerically solved for numerous nuclear parameters.

Isenhour and Morrison showed [99, 100] that the ratio of the activitv
of the jth component to the total activity is maximum if the irradiation
. and cooling times are chosen to fulfil the following equations:
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th{";‘.’f EE ";‘_lr} I:l = EKFI_AJTII]E’IP‘—AITH) == {)
and

%'Ex{jvj exp(— 4. 7)[1 — exp(—4,T;)]
— Ay exp(-—4,T) [1— EIP{—J-_,-'TI}]} exp(—4,7Tp) = 0,

where K, = n, 0, ., and the summation is extended to all isotopes present
in the irradiated sample.

To obtain maximum sensitivity for the isotope j in activation analysis,
N /4N ; must be maximized. General equations for this problem together
with numerical solutions for various parameters have been given by Quittner
and Montvay [101]. The following can be regarded as general guidelines
for optimum time scheduling in activation analysis:

(@) Ty, ; << 274, « for all &, except k = j, then to achieve maximum
sensitivity for isotope j, cooling time T'5; = 0 must be chosen.

(0) If the measuring time is short compared to the half-lives, 47" < T4, .
for all £, then all accumulated eounts increase linearly in time. The statis-
tical error of any component is proportional to the square root of the counts,

and from this it follows that its relative error is inverselv proportional to
N, 1

aN,

() It Ty, < 4T < Ty, (for all &, k = j), then the optimum measuring
time, 7', ;, depends on K, the activity ratio of the other disturbing activ-
ities to the activity of j at the beginning of the measurement. 7',_, can be
found by solving the equation [101] :

]

the square root of the measuring time,

f T

T
" upl

I |

1

X o

Fig. 25. Ratio of the optimum measuring time to the half lifs of the isotope to be

measured a3 a function of the activity ratio of the other disturbing activities to the

activity to bs determinsd at the beginning of the measurement. If B; = 1, then
Topt =2 Ty j
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1 — expl—§&) "
=00 and Tn — A 8.10
exp(@) — 260 — 1 ! P ne )

The numerical solution of Eq. (8. lﬁj is shown in Fiz. 25. For general use
T..: is expressed in ‘half-life units’; T /T, ; is given. If the disturbing
activities are equal to or larger than the actlntv to be determined, then
the optimum measuring time is ﬂ,pprntlmatﬂly twice the half-life. The
optimum measuring time increases rapidly when the ratio of the disturb-
ing activities to the activity being determined decreases.

Rome optimum time distributions have been discussed in Section 2.1

and solutions of several other optimization problems in activity measure-
ments can be found in the book of Janossy [13].

3.3 ACTIVATION ANALYSIS PROGRAMS

Activation analysis is one of the most sensitive analvtical methods.
With high resclution gamma spectrometry it can be automated and used
tor anai}smb samples on a large scale [102, 103]. For the principles and
applications of activation analyvsis the reader is referred to the numerous
excellent books 104 — lf}lﬂ Many methods used for evaluation of gamma-
ray spectra have been dev Eluped and many computer programs written
for the purposes of activation analysis. The computation of experimental
results in activation analysis has been summarized by Yule (10] and by
Gibbons [9] and the application of gamma-rayv-spectrometry in this field
by Heath [11]

In the most straightforward analysis, known amounts of each of the
elements to be determined (the so-called standards) are irradiated and
measured under the same conditions as the samples to be analysed. If 4,
and a, are the measured activities of element j in the atm:dard ﬂnd the
&zr.mpm respectively, then the concentration, p, of this element is

M,
peol 5 0L,
5 A, ]

a4

(8.11)

where M, and m are the weights of the jth standard and the sample, re-
spectively.

- The input data contain besides the (repeatedly) measured spectra of the
sample and the standards, their weights, the time elapsed between the end
of thE irradiation and the beginning of the measurement, the meas
time of each spectrum, the half-life of each component and information
about the irradiation conditions and background. The a, activities are
determined either by peak area calculation or by least-squares resolution
and are normalized to the same cooling time as the standards.

Equation (8.11) is valid only if the radioisotopes emitting the measured
gamma-rays can be produced EI{_].L'LSI‘L elv from one component of the sample.
If this is not valid, then either several measurements must be taken on the
same sample and the spectra combined into one spectrum to perform a
least-squares resohition [67] (see Section 6.2), or the sample and the stand-
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ards must be irradiated by fluxes with different energy distributions to
utilize the energy dependence of the reaction cross-sections for the different
reactions [107, 108].

The first automated computer-coupled activation analysis system was
built by the Texas A. anéd M. group. Their first program 1dentified spectral
components and then evaluated peak areas to obtain guantitative results
103, 109].

Fcllowing the intrcduction of Nal(Tl) scintillation detectors and multi-
chanrel analvsers, weighted least-squares resolution of the gamma spectra
of the activated aamphs became more and more general. This technique was
discussed in detail in Chapter 6.

High resolution Ge(Li) detectors have allowed the qualitative ldEI.':"J_ﬁ{_H.-
tion of numerous compornents in an activated sample. From the well sep-
arable full-energy pEEI.]:F measured by these detectors, quantitative results
are zlso obtainable. Since in conventional least-squares resolution, in con-
trast to peak area calculations, the spectra of all components must be known
peak area calculations have mgamed importance in quantitative activation
analysis in the last few years. Wainerdi e al reported a general activa-
tion analysis data handling program which allows the analy st to choose be-
tween the peak area method, least-squares or quadratic fitting [109].

Together with simple pulse-height spectrum measurement, coincidence
measurements can also be performed (see Section 9.3). For some elements
the more precise results obtained from the coincidence data can be used to
subtract their contributions from the complex spectrum, and the weighted
least-squares resolution can be performed with less cnmpnnents to give
higher precision [110]. This is especially advantageous if the detectors are
Nal(Tlj crystals, where the spectra of gamma-rays differing only slightly
in energy are very similar, but due to high efficiencies even the coincidence
counts have relatively small statistical fluctuations.

If the conditions of both the irradiation and the activity measurements
are highly reproducible, it is sufficient to use as standards spectra which
were measured once with high precision and stored permanently on mag-
netic tape.

The first gamma-ray spectrum catalogue for activation analysis was pre-
pared by Anders [111]. Using thermalized neutrons the generated spectra
of the radioactive products were compiled for most of the activated stable,
naturally occurring elements. The computer preparation of data for the
catalogue included (2) smoothing of the experimental data; (b) correction
for counting losses caused by dead-time; (¢) background subtraction; (d)
normalization to 1 minute measuring time and standard flux, and (e)
a semi-logarithmic plot of each spectrum. In very accurate quantitative
analysis neither this nor other spectrum catalogues [29, 53] can be used since
there are no two completely matching detectors which have exactly the
same characteristics.

For this reason the experimenter must always measure each standard or

have his own carefullv collected library. Once he has this and is convinced
of the high reproducibility of his spectra, then the most advanced form
of this evaluation method is when all spectra of the radioisotopes possibly
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present in any sample are stored on magnetic tape together with their
other nuclear characteristics. Data are read from punched cards or tape
or from magnetic tape. Invalid or suspicious data points are rejected or
replaced by & special editing routine which examines the channel-by-
channel variation in the measured counts. The presently existing programs
locate the peaks in the gamma spectrum by the smoothed first derivative
method (4.3), reject meaningless statistical fluctuations, Compton edges
and backscatter peaks, determine the energies of the full-energy peaks,
select from the energy the corresponding radioisotope from the llhra.rv
spectra of the standards and, by comparing the peak areas, perform a
quantitative analysis [50, 112- 114]

The block diagram of such a program is shown in Fig. 26.

Other checks, such as half-life determination, are also incorporated
to avoid false identification of nearby peaks by inaccurate energy measure-
ment. For isotopes emitting two or more gamma-rays the intensity ratios
of these peaks serve as further checks. Gunnick, Levv and Niday [112,
113] worked out a six-step test to select the most likely radioisotopes from
the possibilities corresponding to a given pealk.

Cohen was the first to discuss the application of on-line computers to
activation analysis [115]. A small digital computer collected the data from
several different analog-to-digital converters, and performed some control
functions and simple calculations. Since the first steps, other authors have
also reported on using on-line coupled computers in activation analysis
laboratories, e.g. [116, 117].

Several tahles claim the excellent sensitivitv of activation analysis.
Most of them are based on the assumption that an element can be detected
if its induced activity exceeds a certain limit. Tables giving the detection
limits according to this definition are very misleading and should be en-
titled at least as “'The sensitivity for s,::trratmn analysis under ideal con-
ditions which can very rarely be sttained’. Since titles should be short,
the second part is omitted, but it must be understood. The reason that
practical sensitivities can not be calculated in this way is that besides the
interesting radioisotope others too are nearly always produced. Therefore,
whether the counts due to the desired radioisotope are detectable or not
depends on the natural background and on the other constituent of the
sample. This problem will be discussed in detail in the next section.



8.4 DETECTION LIMITS

In nuclear physics and chemistry it often oceurs that & small intensity,
1, must be determined in the presence of much higher ones. These disturb-
ing background effects arise from the natural backeround and/or from
other activities present in the measured sample. The problem is then either
to determine what is the minimum I intensity which can be detected beside
the background, B, within a given reascnable measuring time, 7', or esfi-
mate the measuring time which is necessary to establish the presence of
a given intensity above the background level. Since both problems can
Le treated in the same way, in this book only the first one will be discussed
in detail. _

In the simplest case two measurements are performed (ofF these are the
averages of different measurements), one to measure the background inten-
sity. B, and another one to measure the sum of B and I. (From the point
of view of the calculations it is unimportant which one is carried out first.)
As we assumed that [ is small, B == B -~ I, and the optimum time division
is obtained by dividing the total measuring time equally between the two
measurements, { = g = ig5,; = T/2 (see Section 2.1). If both intensities
can be regarded as constant during the measurements, then the presence
of I is positively detected if

Fi =<‘?\TH+I:- J}TB H\% NB+!£ Nﬂ }D ':S.IE:I

significantly, where N5 and Ng_; are the total counts recorded in the first
and second measurements, respectively. (The actual counts obtained in the
two measurements due to the background need not be equal.)

The left side of Eq. (8.12) is positive with a probability 1 — ¢ if it is
x(e) times larger than its error, o(]), i.e.

o — N {oR -
I =~ 3’5”! Ng > afe) o) :m::a(e}ls 20 =l (8.13)
¢
from which the detection limit, [,,. i3
(&) ! 8tE _
T ket o | JCHE (R . (8.14]
T o +L T @) o

In practice = = 2 (0.95 probability) or « = 3 (0.997 probability) are
chosen.

It should be mentioned that Eg. (8.14) can be used only as a guideline
for estimating detection limits. In favourable cases the fluctuation can cause
N g to be smaller and Ng, , larger then their expected values, so a smaller
intensity than that predicted from Eq. (8.14) can also be definitely estab-
Lished. On the other hand, in unfavourable situations Ny may be larger and
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Ny, smaller than their expected values. Then, even an intensity larger
than [, can not be positively identified.

Paulv and his co-workers gave a mathematical method to determine
the detection limit for a radioisotope whose activity is measured within
a complex gamma-ray spectrum [118]. A sensitivity spectrum can be de-
rived from the measured gamma spectrum. In this sensitivity spectrum each
channel content represents the minimum detectable gamme-ray counting
rate of an isctope having a full-energv peak centrsd on the channel. From
this the minimum detectable amount of any element in the particular sample
can be expressed, knowing the nuclear data and the irradiation and meas-
uring conditions. | '

The most sensitive way to detect the presence of a low activity ina complex
spectrum i3 to find the full-energy pezk of the corresponding radicisotope.
The portion of the Gaussian shape peak which must be taken into consid-
eration when determining the intensity depends on the peak to total ratio.
The best signal-to-noise ratio is obtained in the peak channel, but this gives
poor statistics and therefore the results have large relative scatters due to
the small number of counts used for the intensity caleulation. The maximum
counts are accumulated with infinite (very wide) sgeparated boundaries,
but the statistical error is too large again, because the results are the differ-
ences of two nearly equal numbers.

The problem is similar to that discussed in Section 5.5 (selection of peak
houndaries). -

If the background is large compared to the peak, which is the case when
detection limits are determined, then the smallest statistical scatter is
obtained approximately when the channel contents are summed in the
[p — 0.8I", p + 0.6"] region, where p is the location of the peak and I'
is its full width at half maximum (FWHM). If the background is constant
then the minimum detectable quantity becomes instead of Eq. (8.14).

e

p+i.al’

i " rhfxz{s}J. (8.15)
-0

L+N1+8:
1.66¢ |

| -

il'rnuh'!l. peak ™ -

where n, is the count rate in channel .
- 1f the full-energy peak of the element to be detected is superimposed on
a visible peak of the composite spectrum, then the detection limit 1s great-
er than the value given by Eq. (8.15), since a part of the total peak area
can be produced by radioisotopes having gamma-rays falling into this
energy region. In this case, the detection limit is defined by Pauly & al.
[118] such that the two gamma-rays separated by a given (energy) dis-
tance produce two distinet peaks, i.e. there should be a definite minimum
between the peaks. :

The results of their calculations are shown in Fig. 27 where the minimum
amplitude ratio of two neighbouring peaks, separated by a minimum, is
plotted vs. distance between the peaks measured in FWHM units.

If the energy difference is less than 0.86 times the FWHM, then the small-
est peak which can be distinguished has an area (amplitude) equal to that
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of the disturbing one.* When the energv difference iz larger. this value
decreases rapidly. When it becomes smaller than that obtained from Eq.
(B.14) then the detection limit is again expressed by the latter expression.

The sensitivity speetrum of a 3 x 3" Nal(Tl) scintillation detector and
that of a 2.5 em®x 0.3 em Ge(Li) semiconductor detector in the presence of
a 1*’Cs source are shown in Fig. 28 taken from ref. [118].

However, the detection limit for overlapping peaks defined as zhove
is a cautious overestimation. If the detector resolution is stable, then over-
lapping peaks can be distinguished by least-squares techniques even if
there is no observable minimum between them. This can be seen from Fig.
29, where the intensities of two unresolved peacks were determined with
zood accuracy by fitting two (Gaussians by the non-linear least-squares
method described in Section 3.1. o

2

Qo1+

Tntensity ratio

o

(-]

9
L

i 1 1
1 2
Distance between peaks
(in FWHM units)

£ig. £7. Minimurn amplitude ratio of two neighbouring peaks separated by a minirmum
ve. distance between the peaks measured in FW units

Wohlberg made calculations to predict what accuracy can be achieved
by weighted least-squares technigues when decomposing complex spectra
(84]. He approximated the response functions by a horizontal straight
line until the Compton edge, then added a smooth connecting function which
connected this to the Gaussian full-energy peak. The synthetized complex
spectra were the sums of such components and the standard deviations
were calculated as discussed in Section 6.2, i.e. they were the diagonal
elements in the inverse matrix of the ‘least-squares equations’, Eqs. (6.3).

The errors were functions of (z) gamma-ray energies; (b) intensity ratios
of gamma-rays; (c) absolute amplitude (total detected counts) of the com-
posite spectrum, and (4) spectrometer parameters.

The parameters used in the caleulations for (d), such as resolution and
peak-to-total ratios, were those typical for commercial 3 x3” Nal(Tl)
scintillation counters. -

* In these evaluations as well as in Eq. (8.15) the aetivity is not obtained as the

difference of two separate measurements but as the result of distinguishing the compo-
nents in one complex spectrum.
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To eliminate the dependence of the resulis on absolute intensity, so-called
normalized scatters o/4 were introduced instead of scatters, where 4 was
the amplitude (total detected counts) due to the component to be deter-
mined and o its scatter.

Some of the results of these calculations for two-component svstems are
shown in Fig. 30. The normalized scatters, o/4, are plotted as a function
of amplitude (total detected counts) ratics for gamma-ravs with 1 MeV
and 1.5 MeV, respectively, in the presence of a second gamma-ray having
energy E,.

The following approximate general formulae can be derived, for £, > F,:

¥

When 4,/4, — oo, then g, — [ 4; 0, — Le’ ] A“f where [ is the fraction
of the E, spectrum overlapped by the B, spectrum; |

When 4,4, — 0, then g, —C,J 4,; o, — C,)/ 4, where the constants
can be determined from the graphs. The constant (', is significantly greater
than 1 only when E, is approximately equal to E..

The more the energies differ, the faster the results approach their asymp-
E::ti; values. It is interesting to note that o, does not depend strongly on

1/

When E, — E, then o, — co.

In activation analysis it frequently occurs that during in-pile irradiation
identical nuclides are produced from different elements by fast and slow
neutron activation. Reactions of this type are, e.g., Y7Al(n, ¥) BAl, »Si(n, p)
#2Aland *1P(n, ) 3Al, or ¥Co (n, v) ®Co, #*Ni(n, ) °Co and® Cu(zn, «) *Co. In
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Section 6.2 it was shown how the spectra measured after different cooling
times can be combined into one spectrum. from which unambigous results
can be obtained by least-squares resclution even for the interfering ele-
ments.

However, it may occur that other activities present in the sample mask
the small differences in the combined spectra, or, after chemical separation,
the only remaining radicisotope is the verv one which was produced from
two (or sometimes three) elements. i

In this case the problem is usually overcome by exposing the sample
to neutron fuxes of different energy distributions, that is by irradiating
them once with, then without a cadmium or boron filter. The energy de-
pendences of the individual reaction cross-sections being appreciably differ-
ent, both parent nuclei can be quantitatively determined from the activ-
ities produced in the same nucleus when irradiated with fluxes of differ-
ent energy distributions.

In this case, however. the minimum detectable guantity can not be
determined by the usual practice of activation analysis, requiring simply
that the measurable activity should exceed the level determined by Eg.
(8.14). This is quite obvious if one considers that, e.g., the ZAl activity
produced bv the “Al(n, y) *Al reaction even with minute guantities of
aluminium, though well measurable individually, can not be identified in
a sample with considerable silicon contamination because of the statistical
error of the much higher *8Al activity produced from #8i. Or, in the opposite
case, since the cadmium ratio as a rule does not exceed two orders of magni-
tude, when using & cadmium filter the sensitivity to silicon will be consid-
erably reduced by the presence of much aluminium.

It can be said in general that if the radioisotope C is produced from ele-
ments A and B the minimum detectable quantity for either will depend
not only on background activity but also on their relative quantities pres-
ent.

If the background was measured for a sufficiently long time, so that the
error of ita expected value during the actual measuring time (calculated
from the separate long time measurement) can be neglected, then the
minimum dstectable quantity of 4 (x, in ug) is given by the positive solu-
tion of the equation [108].

z,(ab, — abf — z,23(e) X (ab? — ab?)
— o*(e) X [zpb /(b + ©)) + By + by ] = O, (8.16)

where 2, &, a;, b, are the expected total numbers of counts during the actual
measurement from radioisotope C preduced by irradiating 1 pg of elements
4 and B separately without and with a cadmium or boron filter; ¥ and v,
are the expected total numbers of background counts during the actual
measurement from the natural background and from the sample irradiated
without and with a cadmium filter; and «(s) is the confidence parameter
discussed earlier.

In Fig. 31 is shown the maximum sensitivity of activation analysis
(for a given irradiation faeility) for aluminium and silicon in tungsten as
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evaluated from Eq. (8.16) with «{e) = 38 (1 — & = 0.997). From this it is
apparent that for activation with pile neutrons the sensitivity to aluminium
decreases only in the presence of large amounts of silicon, while that to
gilicon is markedly affected by even small quantities of aluminium.

8.6 ON-LINE APPLICATIONS

The wide variety and decreasing cost of computer systems available today
have facilitated the automation of data collection and control functions for
nuclear physics and similar experiments. The actual selection of a particular
system has become increasingly difficult, since besides the numerous con-
ventional characteristics, e.g. price, core memory size and speed, other
factors especially aimed at satisfying the demands of the nuclear scientist,
such as e.g. programming effort required, complexity of the experiment
facility of experimenter interruption, the interrupt requirements and the
availability of interface, the amount of on-line computation, ete., have won
extreme 1mportance.

The development of computers is so rapid compared to the preparation and
printing of a scientific book that it would be useless to try to give a summary
of all of the different types and their relative merits of computers applied
for on-line measurements in nuclear phvsies, because by the time the book
is published most of the compiled data would be out of date.

Without specifying any firm or model, on-line computers can be used in
two ways, depending mainly on their sizes.

(@) Small digital computers are coupled by an appropriate interface to
one measurement. By calling on different programs permanently present
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in the core memory or stored on magretic tape, the computer can sclve
different problems within the same type of measurement. With two direc-
tional interfaces, by feedback not only evaluation, but alse control of the
measurement, is possible.

(6) Large digital computers perform the same task for several experi-
ments. The measurements are connected to interrupt channels and the com-
puter works in time-sharing mode, and the highest priority interrupt is
always served.

The on-line use of computers in nuclear physics has been discussed at
several conierences [119, 120] and was excellently summarized in Linden-
baum'’s review paper. -

In low-energy nuclear physics the prime use of computers has been as
multi-parameter analysers. The conventional multi-parameter and multi-
channel analyser which could also be regarded as a computer having very
limited programming capacity (i.e. which has been wired in by hardware)
is continually being replaced by computers which perform mainly pulse-
height analysis for one or more detectors.

Ihe on-line system of the National Bureau of Standards (Washington,
D. C.) installed in 1964-65 [121] has 80 interrupt lines, ordered according
to the priority of the measurements, and can control the following experi-
ments at the linear accelerator:

Electron scattering spectrometry

Heavy particle scattering spectrometry

Time of flight spectrometry

Single and multi-parameter pulse-height analysis

Multi-parameter analysis, such as the study of (y, py), (v, ny), (n, n'y)
reactions. |

In gamma-ray spectroscopy on-line coupled computers perform the oper-
ations discussed in the previous chapters, either during or immediately
after the measurements, e.g. [122, 123]. Several special macro instructions
aré¢ written for rapid and easy data handling, e.g. for peak location, area
calculation, background subtraction, ete. Depending on the results of these
calculations various changes can be initiated in the experiment. The main
difference between an on-line coupled computer and a computer-coupled
multi-channel or multi-parameter analyser is that the digitalized data of
the analog-to-digital converter are fed directly into the core memory of the
computer instead of the core memory of the analvser. Therefore the data
reduction can be started before accumulating all counts and after completing
the measurement a data transfer (usually via magnetic or punched tape)
is unnecessary.

An interesting method has been worked cut by a group of physicists
at the Central Research Institute for Physics, Budapest, to measure the
hali-lives of isomer states by an on-line correlation method [124, 125].
They exploited the fact that if the results of events 4 and B are recorded
% times by two independent detectors for time 4,, then the correlation
funetion | |
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gives the expected number of the correlated events, ie. the true coinei-
dences which could be detected by the same experimental system equipped
2lso with coincidence circuitry [126]. Here 4, and B, represent the results
of the ith measurement.
Uncorrelated events do not affect the value of ¢ but only increase its error.
Similarlv, the correlation function

1 !'ZI_|| l by | |
o(T)=— > A4.B; r— TEA:'EBHT
T jaml ' LT R N |

gives the expected number of true coincidences occurring after a time delay
T. Here B,, ; is the result of the measurement which started T' later than
the ith one.

A small, 8k memory word organized computer performed the calculation
during the data acquisition. The block-diagram of the program is shown
in Fig. 32. The command SampLE! served to calibrate the individual
detectors, and the commands MEasure! and Go ox! to start and con-
tinue, and Caeck! and Finisu! to stop the measurement, respectively,

The results of such a measurement for determining the half-life of the
end-product of the *“Yb (n, y) ¥*Yb reaction are shown in Fig. 33. They
are in sgreement with thoge obtained by other methods. The 20 ms half-life
component is due to the activated sodium of the scintillator.
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 Fig. 33. Half-life of ¥*Yb measured by the cross-correlation method. The 20 1 4 m3
compenent is-due to the activated sodium of the scintillator (from ref. [125])
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9. SPECIAL MEASURING APPARATUS

Till pow it has been tacitly assumed that spectra are collected by single
Nal(Tl) or Ge(Li) detectors. The shapes and the most significant features
of these spectra were discussed in Section 3.1. Many nuclear textbooks give
de+ailed information on the different physical processes contributing to the
detector response function and on their effect on it (e.g. [21-23, 127, 128]).
Several spectrometers, utilizing two or more detectors, have been built to
improve on the peak-to-total or the signal-to-background ratio of the
detector for the selected type of disintegrations or to establish time corre-
lation between the emitted particles and by exploiting this correlation
automatically increase the signal-to-noise ratio for the coinciding events.
Multi-detector systems usually have higher selectivity but lower efficiency
than single detectors. Although the additional detection conditions can
improve the sensitivity and precision, sometimes by geveral orders of
magnitudes, the concepts of spectrum evaluation remain the same for these
more sophisticated devices as for single detectors. Naturally, either for
meonoenergetic gamma-rays or for coinciding radiations or for both, the
response functions of multi-detector spectrometers differ substantially
from those of the single-detector arrangements. As improvements are
achieved either by coincidences or by anti-coincidences between the detec-
tors, great care must be taken to estimate properly the contributions of
chance coincidences; this is especially difficult when the counting rates are
high and vary between different or during the same measurement.

Without going into the details we list the most often used mu Iti-detector
spectrometers and their main advantages. A complete summary of the
different spectrometers can be found, e.g., in Chase’s book [129].

9.1 ANTI-COMPTON SPECTROMETERS

The Compton continuum of higher energy gamma-rays is a disturbing
background for lower energy photons. Most of the contribution of Compton
scattered electrons can be removed from the spectra by anti-coincidence
shielding techniques, called anti-Compton spectrometers [130, 131]. The
main detector, serving for pulse-height spectrometry, is surrounded by a
second large, high-efficiency detector in anti-coincidence. If a Compton
scattered or an annihilation quantum, following the corresponding process
in the principal detector, leaves it, there is a high probability that it will
interact with the second detector. In this case the anti-coincidence conditicn
is not fulfilled, and a pulse not falling in the full-energy peak is rejected.
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For non-coinciding radiations the Compton continuum can be reduced
4-10 times without any significant loss in the full-energy peak. For Ge(Li)
detectors, where multiple interactions are less probable than in large scin-
tillators, the improvement is even more pronounced. Perkins and his co-
workers reported on a 20 ce Ge(Li) diode incorporated near the centre of 2
26 in. diameter by 24 in. thick NE-102 plastic phosphor anti-comncidence
shield [132, 133] The Compton edge was reduced by a factor of 10 and a
peak-to-Compton edge ratio of 245 was achieved for the 661 keV 297°Cs
gamma-rays. The Cnmptcrn distribution was relatively emooth and void of
a sharp Compton edge. The reduction in the full-energy peaks efficiency was
less than 27,. Due to background suppression the improvement in sensi-
tivity with anti-coincidence shielding is approximately a factor of 3 for
single radionuclide sources. For complex mixtures it may be much greater
(7-10) because in addition to reducing the natural background. the Eﬂmptﬂn
interference is also significantly reduced (in favourable cases an S’D——lﬂﬂﬁfuld
reduction can be achieved).

In Fig. 34 is shown the spectrum of %Zn measured with a 33" Nal(Tl)
detector with and without an anti-coincidence shield. Figure 35 shows the
gamma-ray spectrum of ¥°Cs measured by the Ge(Li) anti-Compton system
of Perkins etal. [1327, and Fig. 36 that of the muscle of a radioactive tuna
fish collected in the region of the Bikini atoll [133].
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tissue from a tuna collected in the ragion of the Bikini atoll (from ref. [133])

For sources emitting two or more gamma-rivs simultaneously, the reduc-
tion in the full-energy peak efficiency can be considerable. YWhen studying
such decays, the advantage of a simple anti-Compton spectrometer is not
so obvious and direct coincidence counting is usually preferable. Of course,
1t 1s advantageous to surround any of the detectors used for measuring the
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coincidence radiations with an anti-Compton shield. To take full advantage
of the information provided by the main detector without the anti-coin-

. cidence shield, the spectrum of coincidence events between the principal
and Compton-scatter detector is recorded in one half of the memory of the
multi-channel analyser, while the anti-coincidence events are stored in the
second half of the memory [132]. The sum of these spectra gives approxi-
mately the same informations as the spectrum of the main detector meas-
ured without using any Compton reduction (see Fig. 35). Thus, the simulta-
neous storage of both coincidence and anti-coincidence speectra assures a high
detection efficiencv for gamma-emitting radionuclides with and without
coincident gamma-rays.

For thin scurces the contribution of bremsstrahlung can be reduced
substantially bv placing a thin plastic phosphor, viewed by a photomulti-
plier, between the detector and source to absorb the beta-rays. A coincidence
between the main detector and. the absorbing one indicates a bremsstrahlung
photon, so the two detectors are in anti-coincidence.

9.2 PATR SPECTROMETERS

For gamma-rays above a few MeV the most intense peaks of the spectra
ars the double-escape peaks. The energv, where the double-escape peak

2753 kaV |
dcuble-escape peax

3-
‘s
I
£

g ir
s
[ ]
v
a
»

3 c

ﬂ 1" 1
L
1369 kaV
double-zscape peax

|

I

Ok

Channe! number

Fig. 37. Spectrum of *Na obtained by a pair spectrometer. The principal detecmE
was a 4 em?® Ge(Li) detector. The annihilation quanta were detected by two 3 < 3
Nal(Tl) erystals 6 cm from each other (from ref. [1367)
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becomes more intense than the full-energy peak depends on the detector
type and size and is higher for large Nal detectors. If the main detector is
surrounded in coincidence with two large scintillation detectors for measur-
ing the annihilation quanta produced in the main detector, the spectrum
of monoenergetic gamma-rays ¢ontains in principle only the double-escape
peak [134, 135]. Although the total peak efficiency of a detector in a pair
spectrometer is less than that of the same one used as a single detector,
the porticn of the spectra outside the double-escape peaks caused by chance-
coincidences is much more suppressed. The spectrum of *Na measured by
a 4 cm® Ge(Li) principal detector and two 3 x 3" Nal{Tl) crystals 6-em
from each other[136] is shown in Fig. 37. Other coincidence-anti-coincidence
combinations are also possible between the three detectors.

=

9.3 COINCIDENCE MEASUREMENTS

The establishment of a time correlation between radiations emitted by
the same isotope gives great help in understanding nuclear decay schemes.
Utilization of the simultaneous emission of two or more quanta allows their
measurement in the presence of a much stronger but not time-correlated
background and other radiations. The coincidence technique may also be
used for the absolute standardization of a radicactive source when its
decay scheme is known. Excellent reviews on the principles and applications
of the coincidence method have been given by De Benedetti and Finley
[137] and more recentlv by Wapstra [138].

The most widely used coincidence arrangement is a one-dimensional
multi-channel pulse-height analyser measuring the pulse height distribution
of one of the detectors only if the pulse is in coincidence with a signal of the
second detector. This coincidence or gating signal usually comes from a
single-channel analyser, sensitive predominantly for one of the coincident
radiations, i.e. having its window in the full-energy peak if it is gamma-ray.
Besides the true coincidences, uncorrelated events occurring within the
finite resolving time, 1, of the coincidence cireuit in both detectors are also
recorded. The rates of these chance coincidences and those of the true ones
in channel ¢ are (for 7 y,..(1) onlv to a very good approximation):

Tichanee(t) = 27, Nq(1)T = 2?‘1—5&-‘:‘;“}1 (9.1)

and
Rircald) = ETgELE4(1) f(1, 2). (9.2)

where n, and n,(i) are the counting rates without coincidence condition In
the fixed window single-channel analyvser and channel i of the multi-channel
analyser, respectively. n, is the source total disintegration rate and k its
ratio £o that of the coinciding radiation. &, and £,(i) are the total detection
efficiencies, i.e. the probabilities that an emitted gamma-ray will hit the
detector and undergzo an interaction resulting in a pulse which will fall in
the selected energy range. f(1, 2) is constant for a given decay, describing
the energy and angular correlation between the coinciding radiations.
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Using Eqgs. (9.1) and (9.2) it should be remembered that all n's represent

counting rates and not total accumulated counts.
_ In a properly selected coincidence arrangement, the chance coincidences
usually give the main contribution to the background.

From Egs. (9.1) and (9.2) it can be seen that

(i) 2t (3)
n_ 1) =——— fig N .
chance’ ﬂ:ﬂ_l.E} D "vtrue\”.

This, together with Eq. (9.1), means that for a given type of source the
spectrum of chance coincidences is (2) similar in shape to the single spec-
+rum measured without anv coincidence restriction (except for some very
special cases), (b) its intensity increases with the square of the sourcestrength,
and therefore (c) its relative contribution compared to the true coincidences
increases linearly with the source strength and’is independent of the efficien-
cies of the detectors in any fixed energy interval, provided that there is no
angular correlation between the coincident radiations. From (c) it follows
that to obtain a good true/chance coincidence ratio for & given coincidence
circuitry, the intensity of the source must be under a certain level.

To reduce the number of chance coincidences without losing true events,
the resolving time of the coincidence circuit has to be shortened. For typical
multi-channel analvser gating circuits z ~~ 107%s, but with modern fast
coincidences 10~ & can be achieved without any difficulties. In fast coinei-
dence circuits not linearity but fast pulse rise time is important. Therefore
the amplification of the detector is so large and the sensitivity of the fast
coincidence circuit so low that it can be triggered even by the first few photo-
electrons. Another method is the cross-overpick-off circuit which deter-
mines the amplitude-independent time when a pulse reaches its maximum.
While in both cases the amplitude of the fast signal is not proportional to
the energy loss in the detector, detectors used for nanosec coincidence
measurements usually have a second output too, where the pulse-rise time

Energy proportional signal I_ MULTI-CHANNEL
- l for spectrum ‘PULSE-EE!GHT-AH#L?SEH
. FESt 51 ] | -
-DETECTOR e LGating
signat
\1&'1“}3 CERAR FAST COINCIDENCE| SLOW COINCIDENCE
/H"I & T~10" sec - T~10 " sec
Fast signcl
DETECTOR ~ A
\} Energy propcrticnal signal SINGLE- CHANNEL
| for coincidence cendition PULSE- HEIGHT ANALY3ER

Fig. 35. Block-diagram of typical fast-slow coineidanee arrangernent
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is not. so fast but linearizy is fulfilled. The energy measurement is performed
further by the conventional slow slectronies from the information coming
from this second output and the fast coincidence circuit is used only to
eszablish the simultaneity of the signals. The block-diagram of a typical
fast-slow coincidence set-up is shown in Fig. 38. In this arrangement the
resolving time of the fast coincidence circult must be substituted into Eq.
(9.1), but the apptﬂli:m&ti{:lu for the chance coincidences hecomes less accu-
rate. A detailed study of the different types of coincidence in fast-slow
circuits has been given in ref. [139]. The efficiency of the coincidence.
method for selecting simultaneous radiation from a much higher background
is illustrated in Fig. 39. e

A patural extension of the multi-channel single-channel coincidence
arrangement is the multi-dimensional analyser [131, 140]. In_this case the
energies K, and E, of both coincdent radiations are measured separately
and the result is stored as a count in the E,, £, plane. The system response
functions by which the measured data must be fitted are surfaces instead
of curves.

The cost of magnetic storage becomes very high for more than & few
thousand channels. Therefore, either the resolution of the individual detec-
tors cannot be fully exploited or another type of storage must be used.
Magnetic tapes with post-measurement playback and sorting allow only
slow data acquisition. The other approach is to select only & part of the
E,, E, plane either from previous knowledge of the radiation or from the
intensity of the incoming pulses into the various channels. In both cases
the capability of the multi-parameter analyser to handle a large number of
different data is considerably reduced. The most promising solution of the
problem scems to be the use of computers on-line coupled to the converters
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Fig. 39. The effectiveness of the eoincidence teschrnique. A complex spectrum reas-

ured with coincidence of the full-energy peak of the 511 keV annihilation photons
and without coincidencs
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(see Section 8.5) digitelizing the energy proporticnal analog signals of the
detectors, and to store the data in the memory of the computer which is
used at the same time for data reduction as well. As was mentioned In
Section 8.5, at present most of the on-line coupled computers perform only
or mainly this task. The on-line use of ecomputers in nuclear measurements
being beyond the scope of this book, for further information the reader 1s

referred to the review paper of Lindenbaum [5] and for the newest devel-
opments to refs [7, 120].

9.4 SUM-COINCIDENCE METHOD

A coincidence method, particularly useful in nuclear decay studies, where
the total energy of the coincident gamma-rays 1s constant, has been devel-
oped by Hoogenboom [141]. The outputs of the two detectors are equalized
to give the same energy-to-amplitude conversion. The signals of the detec-
tors are summed. The multi-channel analyser measuring the pulse-height
distribution of one or both detectors is gated by a single-channel analyser.
The latter selects those signals of the summing circuit for which the total
energy left in the two detectors is equal to the energy of thelevel to be stud-
jed. The measured spectrum contains only the full-energy peaks of those
coincident radiations whose summed energy is equal to that selected by the
single-channel analyser and from other true or chance coincidences only
those for which this condition is accidentally fulfilled. The main advantages
of the sum-coincidence method are the simple spectrum shape, improved
resolution and relatively high efficiency. Denoting the individual resolu-
tions of the detectors by 1, Iy, their efficiencies by ¢, and e,, and the channel
width of the sum-coincidence detecting single-channel analyser by I,
the width of a peak, I's;, observed in the sum-coincidence mode i3 [141]

F.S‘l =P1.P'T-?1' -"r' Pﬁfr P{:‘ f% e —g

and the efficiency for this peak is

£s, =2/ In2/n Elzzi’*.sﬂffi + I3+ FES .

For gamma-rays having equal energies the resolution is improved by a
factor of J3 and for the higher energy member of a cascade the reduction
compared to a single crystal spectrometer is even greater. The practical
limit for I's is I's~ min (I}, I',), since further reduction in I's causes only
a loss in efficiency without significant improvement in resolution.

The relatively high efficiency compared to other coincidence methods is
obtained because the individual detector efficiencies, &, and &,, can be main-
tained relatively high since no collimation is necessary and both crystals
can be placed in close proximity to the source.

The sum-coineidence spectrum of ®Co measured by 2" NaI(Tl) detectors
"is shown in Fig. 40.
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10. EXPERIMENTAL ERRORES

Computer-oriented scientists often forget that besides statistical errors
there exist a lot of other hidden sources of errors connected with the actual
collection of spectra. They try to reduce statistical fluctuations with smooth-
ing and sophisticated filters, fit the data with more and more complicated
functions, use repeated iterations, ete. But even the most sophisticated
computer program cannot help in the case of erroneous measurements,
unless it is incorporated in the program itself how to correct the errors
unwillingly and often unnoticed eommitted by the experimenter.

In many cases one simply can not get rid of some disturbing effects.
Sometimee their contribution can only be reduced. For instance, the vari-
ation in background intensity due to cosmic-ray showers, other nearby
radiation sources, and the varying random content of the air, can be reduced
by bulkier shielding and often repeated background measurements, but ite
disturbance in the measurement of weak radiations can not be completely
eliminated. Computer programs can often indicate inconsistencies among
the input data, but the last word must always come from the analyst.
It iz he who must decide in the knowledge of the experimental conditions
of data scquisition what corrections to apply and how reliable the obtained
results are. To be able to perform fhis task, he must know what errors can
occur due to the detection process itself.

In this section a brief description is given of some artifacts and errors
connected with the measurement of gamma-ray spectra. For more details
the reader should consult the papers of Lyon ef al. [143] and Lazar [144 ]

—and Section 3.2 of ref. [21].

10.1 ELECTRONIC INSTABILITIES

In Section 6.4 it has been shown how threshold and gain shifts can be
corrected by programming. However, especially at high counting rates, these
effects can lead to such serious spectrum distortion that to correct their
effects only by software is impossible or at least unpractical. Since the
stability of gain and zero intercept in a pulse-amplitude analysis system is
most important for satisfactory performance of high resclution systems,
modern multi-channel analysers are equipped optionally with a spectrum
stabilizer (usually a digital one) to eliminate gain and sometimes baseline
shift, and the pulse shaping circuits in some stage of the amplifier system
have pole-zero cancellation and a baseline rastorer to reduce baseline shift
and fluctuation.
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In the most widely used digital type spectrum stabilizer the position

- (pulse-height) of one or two peaks is stabilized in the spectrum. On the

lower and upper sides of the peak to be fixed two digital windows are estab-

lished. The positions and widths of these windows are selected such that in

normal circumstances, i.6. in stable operating mode, their counting rates

should be equal. Pulses falling into channels bounded by the windows are

fed to an up-down scaler, from the lower position channels in additive,

from the higher ones in subtractive, mode. 1 hus the total count in this scaler

at any time provides a signed digital value which is proportional to the shift

in the peak position. This digital value is converted into an analog error-
signal by which the gain and/or the zero reference of the system is cor- -
rected.

Such systems can secure approximately —0.1%, stability. Difficulties
arise when there exists no suitable peak for control in the spectrum, or the
counting rate is low in this peak, when statistical fluctuations can lead to
unwanted regulation. The one neglectable, only theoretical disadvantage of
the digital spectrum stabilizer is the slight deterioration in system resolution
due to the normal overshoot of such types of correcting method.

Operating at high counting rates without special precautions, serious
shifts of zero and gain and degradation of resolution may occur. Most of
these effects are the result of random fluctuation in the zero reference
baseline at the input of the analog-to-digital converter. To achieve optimum
signal-to-noise ratio for the pulses of the system, a monopolar pulse shaper
with equal integration and differentistion time constants is generally em-
ployed. In this case the output pulses are followed by a negative undershoot
with generally a few hundred microseconds recovery time constant. At low
counting rates there is only a very slight probability that a pulse arrives
before the undershoot of the previous one has finished. But at high counting
rates several pulses will start from the ‘undershoot level’ which results
from the point of view of the analog-to-digital converter in a reduced ampli-
tude. The net effect of this will be a count rate-dependent asymmetry of the
peaks: the low energy side will be broadened.

The pole-zero cancellation technigue [145] quite effectively reduces the
undershoot from monopolar pulses at moderate counting rates. In practice
the complete pole-zero cancellation is limited by (a) the need for removal of
low frequency noise by an additional differentiation, and (b) the difficul-
ties of slabilizing the DC output level of an entirely DC-coupled amplifier.

At high counting rates (above 5000 counts/s) the residual undershoots
will charge the coupling capacitors and so result in a long time shift in zero.
The baseline restorer circuit forces the signal to return to the baseline imme-
diately after each pulse [146-148]. Due to the restorer, small losses will
result in resolution at low counting rates, because its performance can be
optimized only for a given rate. Therefore, most recent DC restorers have
switches for selecting the most suitable time eonstant to optimize for the
counting rate expected in the experiment.

With pole-zero cancellation and baseline restoration the increase in reso-
lution for #°Co can be less than 0.4 keV, while the count rate increases from
1000 to 35,000 counts/s [11].
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For spéctrometers having a digital spectrum stabilizer, pole-zero cancella-
tion and baseline restoration, gain and threshold corrections by programming
(see Section 6.4) are often superflucus or need only cne iteration step. The in-
crease in ¥ due to the still remaining electronic instabilities can be fairly
well approximated by Fig. 21 and Eq. (6.4), or by Eqs. (6.5) and (6.6] [62].

10.2 SUMMING EFFECT

If two gamma-rays interact with the detector within the resolving time
of the pulse-amplitude determining circuit, only one pulse wil be stored
with amplitude equal to the sum of the pulses. This pulse pile-up can be
caused by the summing of true coincident gamma-rays, when both of the
coincident radiations are detected by the same detector, and by random

summing, when two independently emitted photons interact with the
detector within the resolving time.

Theoretically, summing of gamma-rays can be avoided by a suitable
choice of experimental ccnditions, but practically this is often not worth-
while. In experiments where the rate of data acquisition would be otherwise
too slow, e.g. in coincidence measurements where the true coincidence rate
would be too small, it i3 necessary to detect the gamma-rays very efficiently
and to correct them for pulse summing. An easy experimental method to
distinguish between single pulses and random or true sum-coincidences is
that (z) the count rate of single pulses varies linearly with the efficiency,
e, (solid angle % intrinsic efficiency) of the detector, while that of the sum
pulses varies quadratically, (Vangle = Ie, Nyum,true = 18182 Noum, chance =
— 2I%1e,s,); (b) the measured rate of random sum-coincidences increases
quadratically, and that of the trie ones linearly with source strength.
The effect is shown schematically in Fig. 41. Gamma-rays with energies
K, and E, are emitted in coincidence while the emission of ¥ 1s independent
of them. The peak-amplitudes at energies ¥, £, and E; vary linearly with
both source strength, /, and detector efficiency, e. The sum peaks at E, +

&, E, — E;and E, + E; vary quadratically with e, and the true sum peak
at E, + E, decreases linearly, and the random sum peaks at E, +E;
and E, - E, decrease quadratically with I.

If y, (E) and y, (E) are the detector response functions for two completely

coincident gamma-tays, then the response function of the su mmed gpectrum

will be

y(B) = [ yE — x)yslz) f(1, 2)dx (10.1)

f(1, 2) being a correction factor for possible anisotropic angular dependence.
If there is no angular correlation between the coincident photons, then
f(1, 2) = 1, and for annihilation quanta originating outside the detector
(even outside the well of well crystals) f(1,2) = 0. In the derivation of Eqg.
(10.1), all response functiens are expressed in number of counts per energy
interval per emitted gamma-ray, and corrections due to non-linearity in
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e, for single pulses and true and random sum-coincidences

the energy-pulse-height conversion and counting losses are neglected.
1f intensities are to be determined by absolute peak area calculation (Section
5.1) the measured peak area must be divided by [1 — erof(1, 2)] to correct
for true coincidence summing losses. Here er, is the total detection efficiency
for the other coincident gamma-ray. For detectors having high total efficien-
cv, this correction factor can be 0.8-0.9.

'As the number of true sum-coincidences is independent of other radiations
present, in relative evaluations, when the spectra of the standards are
measured under the same conditions as the samples, their contributions

are automatically ineorporated in the response function. Using a calculated
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response function in the evaluation, a true sum-coincidence component,
calculated from HKq. (10.1), must be added to the spectra of coinciding
radiations to prevent erroneous results and the discovery of non-existent
gamma-rays from sum peaks. In Fig. 42 are shown the measured and cal-
culated true sum-coincidence specira of *°Co gamma-rays [149].

10.3 RANDOM PULSE PILE-UP

The correct estimation of the random sum-coincidences (pile-up spectrum)
1s much more problematical. Measuring strong sources with high-efficiency
detector pulse pile-up can cause serious errors if its contribution is not
corrected appropriately. To simplify the discussion pile-up pulses are divided
into two classes: (a) peak pile-up, which occurs when two pulses arrive
within the time that the linear gate on the input of the analog-to-digital
converter is open, and (&) tail pile-up, which happens when the ADC has
completed the conversion but a second pulse comes before the tail of the
preceding one has diminished. Tail pile-up effects are normally eliminated
by a fixed dead-time, which ensures that pulses which are to be considered
for amplitude measurement must have been preceded and followed by a
fixed time period, longer than the overshoot recovery time, in which no
detection event occurred. The number of random peak pile-up coincidences
can be substantially reduced by special electronics without any significant
loss in the single pulses [150-152]. The relative contribution to the spectrum
of any type of pile-up can be lessened by reducing the source strength and,/or
the detector efficiency directly or by placing a thin lead absorber between
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‘the source and the detector. The lead absorber is effective only when the
attenuation for the principal gamma energy is less than the product of the
attenuations of the lower energy photons seemingly giving the same energy
by pulse pile-up.

Besides the spectrum distortion caused by pulse summing, there is a loss
in the counting rate due to the finite dead-time of the spectrometer system.
Due to tail pile-up this dead-time can not be verv small (less than ~10us
for multi-channel analysers) and relatively large losses may occur at high
counting rates. If we denote by n(E) the counting rate in the spectrum
measured by a hypothetical ideal spectrometer with no random pile-up
distortion and dead-time counting loss, then the counting rate in the ob-
served spectrum is

=~

Rops E) = n(E) [1 — (7p — 1p) | n(E)AE]

0

+ 215 | w(E — z)n(z)dz(1 — 1, | n(E)dE), 10.2)
g (1]

where 1, is the dead-time of the spectrometer (practically the dead-time of
the multichannel analyser) and 7, is the peak pile-up resolution time; two
gignals detected within this period will be summed. The term besides 1 in
the first bracket is for dead-time counting correction and the second term
is for random pulse summing.

Similar expressions can be written for all ¥, ..(#), where y, ..(E) and
¥y () are the response functions for the kth component meéasured (or
calculated) individually with the real and the ideal spectrometer. If we
denote by r, the relative intensity ratio of component k in the complex
gpectrum compared to its standard, then

n(E) = = rlE),

k = alleomponenta

but as is obvious from Eq. (10.2), this is not true for the observed spectra,
Nos( E) = 21 r.-'cyk,r:ub:[E ) -

# == all components

Due to dead-time counting loss and coincidence summing, the individual
components do not add linearly ! Thizs means that one of the basie assump-
tions for least-squares resolution (assumption () of Section 6.1) is not ful-
filled. As has alreadv been mentioned, the error caused by this fact i3 negli-
gible for low counting rates but increases quadratically with the counting
rate.

Dead-time correction can be performed by caleulation according to Eq.

(10.2). The dead-time
T = 2  n(i) (4 -+ Bi),
[ = all ehannels

where %n(t) i3 the measured count in channel ¢ and 4 and B are constants
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for a given analyser. (For conventional multi-channel analysers 4 ~~ 10-50 us,
B ~ 0.04 — 1us.) Many multi-channel analysers have an optional built-in
dead-time correction, giving the opportunity to measure in live-time instead
of clock-time. If the measurement was performed in live-time, then 75 = 0
in Eq. (10.2).

The best way to correct for random pile-up, if it is necessary, is to do all
measurements in live-time and determine the intensities, ., using the orig-
inal standard spectra, ¥, .(£), by any of the methods described in Chap-
ters 3, 6 or 7. Then a new set of standards having intensities r, times the
urlgmﬂ,l ones i3 created by

Ul B) = 1y ors(E) [1 — 7 j Nps(B)dE]
i

E'
1— .uTP _l’ n-‘bg{E _ I rl;yﬁ: ﬂhErdex

and the spectrum is evaluated with y,'s as standards. In practice, the in-
tegrals are replaced by summing all over the channels. 1f necessary, the
whole process can be repeated and a new set of standards can be calculated
from the y,'s. If 7, is the relative intensity of ¥, then the relative intensity
of y, will be r, -7,

The effect of random pulse pile-up can be estimated by adding pulses of
a pulse generator having well-known fixed amplitude and frequency to the
gpectrum. From the broadening of the peak and from the reduction of its
area, the parameters necessary to construct the pile-up spectrum can be
obtained.

It must be remembered that in all corrections it is assumed that the
counting rate does not change rapidly during the measuring period. If
this were not true, instantaneous corrections should be calculated and
integrated over the measuring period. This would affect predominantly the
results obtained for isotopes whc:af:: half-lives are shorter than or comparable
to the measuring time.

10.4 MEASUREMENT OF ANNIHILATION GAMMA-RAYS

Positron emitters are most often identified by detecting one or both of
the annihilation quanta. The strong angular correlation between the two
photons can be exploited in coincidence measurements and provides a very
sensitive method for detecting weak positron emitters in the presence of
intense other radiations [110]. This is illustrated in Fig. 39 (Section 9.3).
To distinguish between the different positron emitters and from the contri-
bution of 0.511 MeV photens originating in the surroundings after the pair
production process of high energy gamma-rays, the lntEIlElt_? determination
is very often followed by a decay-curve analysis (Section 8.1).

In pualtmn annihilation measurements the two main sources of errors are
the summing effect and uncertainty in the place where the positron anni-
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kilated. Less important is the variation in the energy of gamma-rays due
to annihilation in flight [153, 154].

Summing effect was diseussed in the previous paracraphs. To this it has
to be added that whern measuring positron emitters 1t is possible that one
of the annihilation quanta will be detected in coincidence with the 180°
Compton back-scattered gamma-ray of the other. This summing removes

counts from the 0.511 MeV full-energy peak and results in & peak around
~-0.7 MeV, whose magnitude can be relatively large in coinecidence H.rra.née—-
ments where scattering materials are near the detectors.

Most of the annihilations take place after the stopping of positrons.
If the source is not sufficiently :l'nck onlv & small fraction of the positrons
will be stopped in the source itself. The solid angle subtended by the detector
depends on the place of annihilation, and varies with gource thickness.
It was shown [143] that depending on the thickness of the positron emitter
and the absorber around the source the uncorrected resulis deviated by
--20%, from the true positron activity. To avoid this it is best either to
ﬂurrnund all sources with sufficient absorber (usually Be, or other light Z
elements) or to use sources with the same thickness tc assure that annihi-
lation quanta will always be produced in the same volume.

To distinguish between annihilations taking place in the source (and in
the sample hUldLrl and in the surroundings (mainly in the shielding) two
measurements are peﬂﬂrmed In the first the source is on the straight line
connecting the detectors, while in the second one it is outside it. The diff-
erence between the two measurements gives the Imsitrr-n activity of the
sample. Special care must be taken that when moving either the source
or & detector the solid angle of the detectors from the source should remain
exactly the same, and t]"E]I‘ relative position to the shielding should not
alter considerably. The same method can be applied when measuring weak
positron emitters in the presence of other strong (coincident) but not g+-

emitting radiations.

10.5 CROSS-TALK COINCIDENCES

In coincidence measurement a photon after being Compton-scattered in
one detector can reach the other one and pru:-duw a false coincidence.
The relative intensity of this effect to the true coincidences can be reduced
neither by shortening the resolving time, ner by reducing the efficiencies
of the detectors. However, they can easily be recognized, hEH..E.unE the peaks
in cross-talk coincidence spectra are geometry-dependent and at the usual
180° geometry at the backscatter peaks and at the Compton edges of the
gamma-rays present in the source. If they are disturbing, their relative
contribution can usually be lessened by placing sufficient lead or lead colli-
mator between the detectors to absorb the lower energy photons. Naturally,
this additional lead increases the number of photons scattered mto the detec-
tor from the surroundings.

Some possible genmetncal arrangements to reduce cross-talk coinei-
dences are shown in Fig. 43. The geometry shown in (b) considerably reduces
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767 - BT
D D
(a) (k) (c)

Fig. 45. Different goometrical arrangements to reduce eross-talk coincidences

cross-talk coincidences but gives much lower efficiency than normal coinci-
dence arrangements without any lead absorber. For favourable energies the
(a) geometry can give less cross-talk without reducing the coincidence
efficiency too much. When measuring coincidences between gamma-rays
in the energy region of backscatter radiation the geometry shown in (e)
can be advantageous.
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