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Introduction

Factorization introduces factorization scale
Into hard kernel and PDF

F(Q®) =H(Q, 1) ®#(Qy, 1)
Higher-order corrections produce
IN(Q/ ), In(x /Qyp)

due to splitting of log in F
IN(Q/Qy) =IN(Q/ 1¢) + In(x; /Qy)
Set 4 =Q to eliminate log in H
Need PDF inputs ¢(Q,,Q) for arbitrary Q?
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RG equations

o Factorization scale does not exist in QCD
diagrams, but Is introduced when physical
guantity factorized into H and PDF

 Renormalization- d
enormalization- |~ d .2

group equations du
Hi di¢(Q01 i) = 7,9(Qq, 1)
H

d
dug

H H(Q, ;) =-r,H(Q, 1)

* 7, Is anomalous dimension of PDF



RG evolution

e Solution of RG equations describes Q
evolution of PDF

du,
#(Qy,Q) = ¢(Q0’Qo)exp[j 80 “ 7/¢(:uf )]

f

e Evolution from summation of In(Q/Q,)
e just need to extract PDF at Qo #(Qo Qo)
 PDF at other Q i1s known via evolution

* Evolution increases predictive power of
factorization theorem



Extreme kinematics

QCD processes In extreme kinematic
region, such as low p; and large x,
generate double logs

Limited phase space for real corrections

Low p- Jet, photon, W, ... requires small p-
real gluon emissions

op pair production requires large x

/pT
<€

>
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Double logs
Large x demands soft real gluon x~1
emission -

Cancellation between virtual
and real corrections Is not exact

Large double logs are produced,
as IN°(E/p;), as In(L—x) /(11— X)
E being beam energy
Sum logs to all orders---resummation
Resummation improves perturbation



Evolution and resummation

 RG evolution (UV dynamics) can be found
In standard textbook

e Cover evolution equations involving
splitting kernels (IR dynamics): DGLAP
equation for PDF (collinear factorization),
BFKL equation for TMD (k; factorization)

e Cover threshold resummation for large x
(collinear factorization) and k-
resummation for small k; (k; factorization)



Resummation technique



Jet function Iin covariant gauge

* Quark jet function at amplitude level

J{pﬁn}=<[} P exp fg[ dz H-A{H:}]q{ﬂi p>

J0 /

n
 NLO diagrams contain double logarithms

 Perform resummation in covariant gauge
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Key idea
Derive differential equation p" dJ/dp™=CJ
C contains only single logarithm

Treat C by RG equation

Solve differential equation, and solution
resums double logarithms

J depends on Lorentz invariants p.n, N2

Feynman rules for Wilson lines show scale
invariance inn, n /n-I

J must depend on (p.n)%/n°
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Derivative with respect to n

Derivative with respect to p can be
replaced by derivative with respect to n

| "’ d

_I_
= — U J
v-n “dn,

Collinear dynamics independent of n

Variation does not contain collinear
dynamics, the reason why C contains only
single logarithm

Variation effect can be factorized
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Special vertex
e n appears only in Wilson lines

b 3

7

L

7 d n, 7 [ v-l o1
. —U
U -7

A
v-n “dn,n-l n-1 * | n-l

,d _
p dp* / — _Zl_

e If gluon momentum | parallel to p, v.
vanishes.

e Contraction of v with J, dominated by
collinear dynamics, also vanishes

Il -

[
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Soft factorization
 Two-loop diagrams as example

Y

o If | flowing through special vertex is soft,
but another is not, only 15t diagram
dominates

« Another gluon with finite momentum
smears soft divergence Iin other three
diagrams
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Soft kernel

e Factorizing the soft gluon with eikonal

approximation )
R Z

e If another gluon is also soft, we get two-
loop soft kernel K

T ¥ v T
®
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Hard factorization

If | flowing through special vertex iIs hard,
only 2"d diagram dominates,

It suppresses others, as another gluon is
not hard |

Factorize hard kernel with Fierz W
transformation

If both gluons are hard, they contribute to
two-loop hard kernel
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Differential equation

Extending the factorization to all orders

d

2 n’p—_ J=|K(m/p.alw)+Gp vip.alw))]s

Kernels K and G ?
are described by "
At LO, K = v

6= N T N\ A
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Integrals for kernels

da‘*=¢1 n, g" v,

K=—ig’Cpu* -
‘& F#J. (2m)*  €n-ll"—m* v-

-

[

o, Ef d* el 7
— gtk (2m)* € (n-)*(I?—m?

)

e 5K , 5SG additive counterterm

— oK

— oK
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e Chinese saying: One stone, two birds
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Goals of this lecture

e Now one stone, five birds:

e Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) equation

e Threshold resummation

« Balitsky-Fadin-Kuraev-Lipatov (BFKL)
equation r * ® & ¢

e K: resummation
e Joint resummation




Master equation for TMD

e Consider TMD

9
du d a;;r. izpty— ik ey /
4”*5-’

1 |
(x, kp,pT (pla(y™.yr)57 "q(0)|p)

e Three scales: (1 — z)p™  ap™ Ly
¢ depends on pT via the ratio (p - n)*/n?
e Derivative

Lo d n’ d
P b = Ugy
dp™ v-n - dn,

)
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Kernels (in axial gauge)

o Soft kernel K (virtual + real)

_|_

)
 Hard kernel G (virtual — soft subtraction)




K+ resummation and
BFKL equation
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XP*

XP* +1

+ + +
XP™+1 +1;

Rapidity ordering

XP* )
S -
________ XP"+1;
M ~ L
XP™ +1
________ |, >> 1] o
L, =1
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Approximation under
rapidity ordering

TMD Is independent of I+ under rapidity
ordering. Soft approximation

oz + 17 /pT, |k + Ip|) = o(x, |k + 1))

k- and | are of the same order

I+ Integrated up to infinity, the scale (1 — z)p*
does not exist

Usually work in conjugate space in b via
Fourier transformation
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K+ resummation

e Two scales zpt krp

e Solution of resummation equation sums

double logs of b
cﬁ(r.i).pﬂ = Ap(b. xp™ )”(U}{ )
e Sudakov exponentlal
N rx’p Podp
-2 [ ok (as(p))
J1i/b p Ji/b |

e Anomalous dimension

2 2 2 -
(Vg (Vg i i O T 5
v = —C — | Cp|Cy| — —— —n
K= VR T (w) F{ . (:3;(;:. 12) 3 fL

Ap(b, zp™) = exp




Direct photon

« Soft and collinear radiation at low p+

e k-

P2

27



(Data-TheoryyTheory

Direct photon before resum

3.0

29

20

1.9 r

1.0

0.5

0.0

-0.5 |

o efle
OEuab
G- wail
A T806
Vv cdf
¥ ua2

p; ~ few GeV

1 ' |
10
Xt

1y = 2pr/ Vs

10”28



(Data—Theory)/Theory

Direct

3.0

photon after k; resum
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07 — ONLOdir

High p; data of direct photon

1.0

0.5r

: threshold resum
ji_ig N’LL,+NLO

[
T

Becher et al, 2|

S 00f NLO )
Z _
0l Theory vs. ATLAS data
't |0<y<0.6| Direct Photon (LHC, 7 TeV, 35 pb™)
_1.0| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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pr(GeV)

K resum for low py, threshold resum for high p;?

012
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Small x

e At small x with zp+ ~ kp

[ 1
d;r:j{r.f;;r.pﬂ —1{;—1{*;(1 kr, p™)
 Two scale system reduces to single-scale

e Consider gluon TMD, Cpr =4/3 - N, =3

pT

| 1 dy~ [ d*y . _
Flx, kr) = —_/ )’L 4‘Tt--—?-ffp+y —kr-yT)

X — Zap o|F (v~ yr) F*7(0)|p. o)
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BFKL eqguation

* Only soft scale exists. Drop G
o Keep soft kernel with a UV cutoff

1/

d*l 0P
i T

—|—??TE'E\J‘{'[2){’_J[I. |kT + 1T|.p_)} .

O(k2 — 12)
f?

b(a kp.pt) = ig?N, / o, b, pt)

 BFKL equation

ﬁs — ..'.,\IEE._-LS III-'IIIII.}T

do(x, kp,pt) [ d?lp
— (4

H T + (1.2 2\ i( 1. +
1) O, [ky + 1| pT) = 0k — 1) p(x. by, p")]
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Leading-log BFKL

* High-energy cross section predicted by LL

BFKL h 1/ & \“P !
o~ — | —
- t \ |t] center-of-mass

momentum transfer squared energy-squared

« Pomeron intercept wp

AN, .cvg In 2

—

i

L,:.!p—l —

 Violate Froissart (unitarity) bound

2
Tiot < const. x In“ s
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NLL BFKL
o Unsatisfactory prediction of LL BFKL

called for NLL corrections---but too big
oo DT oo DT oo DT oo
10 - Lo B
________ LO+NLO
% > Thorne, 1999
=
I e ]
_5 | IIIIII| | IIIIII| | IIIIII| | A I
_ _ .

-5 -4 -3 <
10 10 10 X 10 10



Threshold resummation and
DGLAP equation
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o IlT

_|2T

Kt

ordering
_|2T
IlT
|, = |
I2T >> I1T
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Approximation under k; ordering

TMD is independent of | under k; ordering
Soft approximation

o(x =17 /pT, |k + 11]) = LIt /pT k)
X and |+/p+ are of the same order
Integrate over k, TMD -> PDF

I Integrated up to Iinfinity, the scale k-
disappears
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Threshold resummation

* Atlarge x, two scales (1 — z)pt ap™T
e Mellin transformation

_ 1 S
Osr( N, p+) — / draN 1o srlz,p™)
J0

zpt ~ pt (1= 2)pt ~pt/N

» Rewrite - I

dpt N d(pT/N)
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Solution

e Solution of resummation equation sums
double logs of N

H(N,pt) = AN, pH)opV

) p" odp PTdy
AN, pT) =exp [2 [+ N —; —; h(ﬂsuf})}
Jpt/N D Jp

* Equivalent expression

’\.1_1

1—=2

N - d\
A(N.pT) = exp —/ dz / — k(A {‘v:'\P ))
J0 J(1—2z)2 A
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Top-quark pair production with
NNLL threshold resummation

Beneke et al., 2011
a,; [pb]
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Determination of top mass

()| pb]
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DGLAP equation

Intermediate x, «p" ~ (1 —x)p”
Single scale
DGLAP equation

d Lde ,
p+ = o, p+} = [ % P(x/&. ;_}Jr}c;}{& . j‘_}+)

Zz->1 limit of spllttlng kernel

Fuq = (g (F;*){l_F ) (I—2)4
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Complete DGLAP kernels

0 as \ _ [ tag Fyg s
f:Jan‘Z( g >_ ( Pgq FPyg ® g

(2) Q) () / X @b Z)

L

splitting kernels have been
calculated to two loops

10000007

:
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Valence quark LO evolution
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Deuteron structure function
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Joint resummation
Li, 1999;
¢ k: resummation Laenen et al., 2000
, " dp [P ody
O(x,b,pT) = exp [—2 / b /p {—J”"}I{(HS(}U))] H0)
J1 1

/b p J1/b [

e Threshold resummation

_J-‘\,*."_l _ l

et 1 2z 1 d\ 4 (0)
O(N,p™) =exp | —2 / dz— / 7 klas(ApT))| ¢
Jo z

— 1—=

e Same anomalous dimension
e Unification of the two resummations?
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General soft approximation

» Keep both I+ and | dependence
ol + 17 /pT. |k + 17| p7)

e Joint resummation

- pt A p T i
(J ( 4\ . b. j)—i_) — X p, [ 2 / (_p / l ,.}_,JK ( (Vg ( ; f)) (J(“)
. P . L
\ N / . |
N ND) = — 2
N = NeE X (V. 0) [+ 0/ )

b=0bMe® /2
e Large b, joint — k; resummation
 Large N, joint — threshold resummation
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do/dq, | tb/GeV |

Resummation effect

pp =12 — e, e, atthe LHC

0.3 i — Jointly matched
- II{ n\ _____ ¢, matched
R
0257 | M =g =M
1
0.2 |
I
i \
I \
0.15 \
i Y
! threshold
ol resummation
H appears
! Fuks, 2007
0.051 /
0-_ N N N N N N N N N B |__| A i
0 50 100 150 200

v 48
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Resummation effect

pp — Z_ %j at the LHC (7 Tel’)

- Joint resummation
EO - ““ ~‘l~‘ F' resummation
X W Fixed order
>
o
&)
=
A
= il
ﬁ r
—
©
=
Debove et al,
2011
0.1
| | ' |
0 20 40 60 80 100 49



Summary

Sophiscated evolution and resummation
techniques have been developed in PQCD

Predictive power enhanced
Perturbation improved
Precision increased

Resummation of other logs need to be
developed: rapidity logs, non-global
logs, ...
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