Andrey Arbuzov (Joint Inst. for Nuclear
Research (RU))
Field Theory & the E-W Standard Model (Теория
поля и электрослабая стандартная модель)
Lecture I: Introduction and QFT
• What is the Standard Model?
• Particle (field) content of the SM
• Principles of the SM Lagrangian
• Brief notes on Quantum Field Theory
Lecture 2: Construction of the SM
• The Fermi model
• Electroweak gauge interactions
• The Higgs mechanism (brief)
• Electroweak sector of the SM
• Generation of fermion masses
• Axial anomaly
• Parameters of the SM
Lecture 3: Phenomenology of the SM
• Input parameters
• The muon decay and (g - 2),,
• Tests of the SM at LEP/SLC
• Tests of the SM at LHC
• Problems in the SM
Eilam Gross (Weizmann Institute of Science (IL))
Practical Statistics (Статистика)
Alexander Dimitrov Mitov (University of Cambridge (GB))
QCD (Квантовая хромодинамика) Lecture 1,2: Basics of QCD and SM at colliders
• General introduction to colliders
• QCD: the dynamical theory of the strong interactions
• Modeling of strongly interacting bound-states at Colliders
• First attempt: apply QCD to collider processes: surprise! It
doesn't seem to work ...
• Go into the deep: augment the formal theory with physics
intuition
• Infra Red singularities
• Factorization
• Evolution Lecture 2:
• Collinear Factorization for cross-sections (amplitudes also
factorize but we will not consider this here)
• Fragmentation functions
• Parton Distribution Functions (PDF)
• Factorization and appearance of factorization scale(s)
• DGLAP evolution equation
• Soft-gluon resummation
• How to choose the factorization and renormalization scales
• Jets
• Decays of unstable particles Lecture 3:
• Jets
• Decays of unstable particles
• Monte Carlo Integration
• Fixed Order Calculations with MC methods
• Parton Showers
• Matching of LO calculations with Parton Showers Lecture 4:
• Matching of LO calculations with Parton Showers
• MC@NLO: the basic idea
• Some more specific points
• pdf at various orders
•Effective number of flavors inside the
proton
• LHC applications
Francesco Riva (Ecole Polytechnique Federale de
Lausanne (CH))
Heavy-Ion Physics
(Физика тяжелых ионов)
1. Motivation and introduction
2. Basic quantum chromodynamics
3. Particle production in heavy ion
collisions
4. Thermodynamics and fluid dynamics
5. Fluid dynamics of the fireball for more
and more realistic initial conditions
6. Initial state fluctuations and their fluid
dynamic propagation
7. Jet quenching
8. Quarkonia in hot matter
9. Conclusions
Stefania Gori
Flavour Physics & CP Violation
(Физика ароматов и нарушение СР-инвариантности)
Lecture 1. Standard Model
What is flavor?
Flavor structure of the Standard Model (SM)
Glashow-lliopoulos-Maiani (GIM) mechanism
Standard Model flavor problem
Tests of the Standard Model flavor and CP structure Lecture 2. Effective theories beyond the Standard Model
Why to go beyond the Standard Model. TeV scale New Physics (NP)
The New Physics flavor problem
Testing high scale New Physics using flavor
The Minimal Flavor Violation (MFV) ansatz Lecture 3. New Physics models
New Physics models and flavor implications
Prospects for the discovery of New Physics using flavor
transitions at high energy:
Top flavor chaging decays
Higgs flavor changing decays
Andrea Wulzer (Universita e INFN, Padova (IT))
Physics beyond the Standard Model (За
пределами Стандартной модели)
Lecture 1.
1. No-Lose Theorems (or, why the Higgs is
revolutionary)
2. The "SM-only" Option
3. The Naturalness Argument
4. What if Un-Natural? Lecture 2.
1. Composite Higgs
2. The Minimal CH couplings
3. CH signatures overview
Tatsuya Nakada (Ecole Polytechnique Federale de
Lausanne (CH))
Outlook and Future Prospects for HEP
Andrea De Simone (SISSA)
Cosmology (Космология) Lecture 1:
• The Universe around us. Dynamics. Energy
Budget.
• The Standard Model of Cosmology:
• the 3 pillars (Expansion, Nucleosynthesis,
CMB). Lecture 2:
• Dark Energy.
• Dark Matter as a thermal relic. Searches
for WIMPs. Lecture 3:
• Shortcomings of Big Bang cosmology.
Inflation. Baryogenesis
Serguey Petcov (SISSA)
Neutrino Physics (Физика нейтрино)
Plan of the Lectures
1. Introduction.
2. Massive Neutrinos, Neutrino Mixing and Oscillations:
Overview.
3. Three Neutrino Mixing. Massive Majorana versus Massive Dirac
Neutrinos I. Dirac and Majorana CP Violation.
4. Neutrino Oscillations In Vacuum: Theory and Experimental
Evidences.
5. Matter Effects In Neutrino Oscillations: Theory. Neutrino
Oscillations in the Earth.
CP Violation In Neutrino Oscillations. Flavour Conversions of
Solar Neutrinos.
6. Three Neutrino Mixing: the Angle θ13 and
Indications for Dirac CP Violation.
7. Open Questions In the Physics of Massive Neutrinos.
8. Understanding the Pattern of Neutrino Mixing.
9. The Absolute Scale of Neutrino Masses.
10. The Nature of Massive Neutrinos.
I. Massive Majorana versus Massive Dirac Neutrinos.
П. Origins of Dirac and Majorana Massive Neutrinos.
Ш. The Seesaw Mechanisms of Neutrino Mass Generation.
11. Determining the Nature of Massive Neutrinos.
12. Future LBL Neutrino Oscillation Experiments on sgn(Δm312)
and CP Violation.
13. Conclusions.