Европейская школа по Физике высоких энергий (ESHEP-2018)

Alexander Bednyakov
    (Quantum) Field Theory and the Electroweak Standard Model

Lecture I

  • What is the Standard Model?

  • Introducing Quantum Fields

  •  Global Symmetries

Lecture II

  • Introducing Interactions

  • Perturbation Theory

  •  Renormalizable or Non-Renormalizable?

Lecture III

  • Gauge Symmetries

  • Constructing the EW SM

  • Experimental tests of the EW SM

  • Issues and Prospects of the EW SM

Silvia Pascoli

Lecture I: theory and phenomenology of neutrino oscillations
Lecture II: Neutrino masses and mixing, the phenomenology view
Lecture III: Neutrino masses and mixing: theory Neutrinos in cosmology

Eduardo S. Fraga
    QCD under Extreme Conditions

First lecture:
★ First question you should ask: WHY??
‣ Motivation and some disturbing facts
Collective effects x “fundamental” physics
★ Second question you should ask: WHERE??
‣ Accelerator experiments, astro, early universe
My focus: the EoS
★ Third question you should ask: HOW??
‣ Theory, models, etc
Second lecture:
★ Effective model building
★ Z(N), the Polyakov loop, and confinement
★ Chiral symmetry breaking
★ Two examples on relevance and difficulties in exploring
the phase diagram
‣ Chiral magnetic effect and the strong CP problem
‣ Drawing the phase diagram
★ Final comments

Francesco Tramontano

Lecture  1

  • Motivations for QCD

  • QCD Lagrangian and Feynman rules

  • QCD and phenomenology ( e+e- )
    ‣Renormalization and running coupling
    ‣Infrared and collinear safety|
    ‣Differential predictions

Lecture  2

  • Hadrons in the initial state

  • Naive parton model and Deep Inelastic Scattering

  • Radiative corrections

  • parton evolution and the proton structure functions

Lecture  3

  • colliders are discovery machines

  • QCD is ubiquitous in hadronic collisions (many tests) and

  • essential to establish signal and background rates

Lecture  4

  • Higher order corrections for LHC processes

  • Resummation for specific distributions

  • Parton shower

  • Merging, Matching, and both

Jure Zupan
     Flavor physics and cp violation

lecture 1:

  • flavor structure of the standard model

  • testing the Kobayashi-Maskawa mechanism

lecture 2:

  • test Kobayashi Maskawa mechanism

  • constraints on new physics

lecture 3:

  • the BSM probes using the mixing

  • BSM probes using decays

  •     flavor anomalies

  • Higgs and flavor

Harrison B. Prosper
    Practical Statistics for Particle Physicists

Lecture 1

  • Introduction

  • The Frequentist Principle

  • Confidence Intervals

  • The Profile Likelihood

Lecture 2

  • Hypothesis Tests

  • Introduction to Bayesian Inference

Lecture 3

  • Introduction to Machine Learning

Ben Allanach
    Beyond the Standard Model

  • Lecture 1  

  • Lecture 2

  • Lecture 3

 Nadia Pastrone 
LHC Run-2 and Future Prospects

  • The need of the Large Hadron Collider

  • The experiments and the enabling technologies

  • The physics: before LHC and Run1 – a short recap

  • The ongoing Run2 – what’s new – Standard Model (SM) – BSM – Flavour physics – Heavy ions

  • Prospects for near and far future

 Jo van den Brand
    Gravitational waves

Andrea De Simone
    Cosmology and Dark Matter


  • The Universe around us. Dynamics. Energy Budget.

  •  The Standard Model of Cosmology: the 3 pillars (Expansion, Nucleosynthesis, CMB).


  • Dark Energy. Dark Matter as a thermal relic.

  • Searches for WIMPs.


  • Shortcomings of Big Bang cosmology. Inflation. Baryogenesis

Fabio Maltoni
    Higgs physics

Lecture I 

  • The SM in a nutshell

  • Higgs basics: interactions, decays and production

 Lecture II

  • Higgs couplings

  • Searching for new physics via an EFT approach

На головную страницу