Статистика

Introduction to Statistics (Ввдение с статистику)
Cowan, G (University of London)
Лекция 1
Лекция 2
Лекция 3
Лекция 4

Kyle Cranmer
    Practical Statistics for Particle Physicists
    Статистика для физики частиц

Glen Cowan (RHUL)
    Practical Statistics for Particle Physicists
    Практическая статистика для физики частиц

Helge Voss (Physik-Institut)
    Statistics in HEP
    Статистика на БАК

Harrison Prosper (Florida State University) 
    Practical statistics for particle physicists

Tom Junk (Fermilab)
Statistics

José Ocariz (IN2P3/LPNHE Paris and University Paris-Diderot)
    Practical statistics for particle physicists
    Статистика для физики частиц

Harrison Prosper (Florida State University)
Practical Statistics
Kyle Stuart Cranmer (NYU)
Statistics for Particle Physicists
Kyle Stuart Cranmer (New York University)
Statistics in HEP
video video video
Wouter Verkerke (NIKHEF (NL))
Practical Statistics
Basics Concepts
Composite hypothesis, Nuisance Parameters
Dealing with systematic uncertainties
Wouter Verkerke (NIKHEF (NL))
Practical Statistics for Particle Physicists
Basics Concepts
Composite hypothesis, Nuisance Parameters
Dealing with systematic uncertainties
Louis Lyons (Imperial College Sci., Tech. & Med. (GB))
Practical Statistics for Particle Physicists
Louis Lyons (Imperial College Sci., Tech. & Med. (GB))
Bonus Lecture: "Learning to Love the Error Matrix"
Eilam Gross (Weizmann Institute of Science (IL))
Practical Statistics (Статистика)
Youngjoon Kwon (Yonsei University)
Practical Statistics for Particle Physicists
Basic elements
• some vocabulary
• Probability axioms
• some probability distributions
Two approaches: Frequentist vs. Bayesian
Hypothesis testing
Parameter estimation
Other subjects — "nuisance", "spurious", "look elsewhere"

Wouter Verkerke
(NIKHEF (NL))
Practical Statistics
Basics Concepts
Composite hypothesis, Nuisance Parameters
Dealing with systematic uncertainties

Kyle Cranmer
Statistics
Lecture 1: Preliminaries
• Probability Density Function vs. Likelihood
• Point estimates (measurements) and maximum likelihood estimators
Part 2: Building a probability model
• Examples of different “narratives”
• A generic template for high energy physics
Lecture 2: Hypothesis testing
• The Neyman-Pearson lemma and the likelihood ratio
• Composite models and the profile likelihood ratio
• Review of ingredients for a hypothesis test
Lecture 3: Limits & Confidence Intervals
• The meaning of confidence intervals as inverted hypothesis tests
• LHC-style CLs
• Asymptotic properties of likelihood ratios
• Bayesian approach

Glen Cowan
(Royal Holloway, University of London)
Statistics
1. Introduction and review of fundamentals
    Probability, random variables, pdfs
    Parameter estimation, maximum likelihood
    Statistical tests for discovery and limits
2. Further topics
    Brief overview of multivariate methods
    Nuisance parameters and systematic uncertainties
    Experimental sensitivity

Luca Lista
Statistics
 

На головную страницу

Рейтинг@Mail.ru