The XENON Dark Matter Search

Elena Aprile on behalf of the XENON collaboration

The XENON Dark Matter Search

Elena Aprile on behalf of the XENON collaboration

The XENON Dark Matter Search

Elena Aprile on behalf of the XENON collaboration

XENON Collaboration

USA, Switzerland, Portugal, Italy, Germany, France, China, Netherlands

The XENON Roadmap

past (2005 - 2007)

NSI

XENON10

Achieved (2007) σ_{SI}=8.8 x10⁻⁴⁴ cm² Phys. Rev. Lett. **100**, 021303 (2008) Phys. Rev. Lett. **101**, 091301 (2008) current (2008-2010)

XENON100 *Projected (2010)* σ_{SI}~2x10⁻⁴⁵ cm²

XENON1T Goal: $\sigma_{SI} < 10^{-46} \text{ cm}^2$

Liquid Xenon for Dark Matter

- scalability: relatively inexpensive for very large detector (today < \$800/kg)</p>
- Large mass number (A~131): high rate for SI interactions if NR threshold is low
- Excellent Stopping Power: active volume is shelf-shielding
- Excellent Scintillator and Ionizer: highest yield among noble liquids
- Intrinsically pure: no long-lived radioactive isotopes; Kr/Xe reduction to ppt level with established methods
- NR Discrimination: by simultaneous charge and light measurement

$$R \sim \frac{M_{det}}{M_{\chi}} \rho \sigma \langle v \rangle$$

The XENON two-phase TPC

XENON100 Events

XENON100 Events

Tuesday, March 23, 2010

XENON100

- Use lessons/technologies from XENON10 to build a detector with x 10 more fiducial mass and x 100 less background
- 170 kg of LXe: the active target (65 kg) is surrounded on all sides by a 105 kg of LXe active veto
- TPC size: 30 cm drift x 30 cm diameter viewed by two arrays of PMTs with <1 mBq (U/Th) and ~30% QE (bottom array)
- Background from internal components reduced by: a) materials screening and selection; b) cryocooler and FTs outside shield; c) cryogenic distillation to reduce Kr/Xe contamination
- Background from external sources reduced by: a) active LXe veto; b) improved shield with 5 cm Cu lining of Poly and with water outside Pb

more detector photos at: <u>http://xenon.astro.columbia.edu</u>/

XENON100: Kr Distillation Column

- XENON100 goal requires ~100 ppt Kr/Xe contamination
- We start with Xe commercially cleaned to a Kr/Xe <10 ppb (verified by delayed coincidence events analysis)
- We use a dedicated cryogenic distillation tower to reduce this Kr/Xe contamination to the required level
- After distillation, delayed coincidence analysis gives a Kr/ Xe contamination of ~150 ppt (limited by low statistics)

XENON100: Status

- In continuous operation underground for the past 6 months with high stability
- Neutron calibration performed in mid-December 2009
- Gamma calibrations are performed on regular basis (Cs137 for e-lifetime; Co60 for gamma band)
- Measured background level is consistent with design goal of 100 less than XENON10
- Dark Matter search run started on January 13, 2010: data in ROI "blinded"
- Event selection and cuts developed and optimized on calibration data

Position Dependence of Charge and Light Signals

11

- XENON100 is a 3D position sensitive TPC: for each event the XY information is extracted from from the light patten on PMTs and Z from measured drift time
- Three algorithms developed for XY positioning: tested with a collimated Co57 beam. Results consistent with a position resolution < 3 mm
- SI and S2 signals are position dependent. The dependence is extracted from gamma and neutron calibration data

SI Position (r, Z) Dependence

S2 Position (X,Y) Dependence

XENON100

XENON100: Neutron Calibration

XENON100: Energy Resolution

XENON100: Gamma Recoil Band

XENON100: Neutron Recoil Band

XENON100: Rejection Power

XENON100 Dark Matter Data to-date

XENON100 Data Taking

Analysis of XENON100 non-blinded data

- 11.2 live days of background data from October-November 2009
- Non-blind analysis: but cuts optimized only on neutron and gamma calibration data
- Only very basic event selections are applied:
 - events with reasonable S/N ratio (TPC has high sensitivity to single electrons)
 - events with single S1 and single S2 peaks (remove delayed coincidence events and multiple Compton and neutron scatters)
 - events with the S2 pulse width compatible with drift time (remove gas events)
 - events with an SI signal in active volume but no veto signal

Select Fiducial Volume and Event Energy

11.2 days: Select Fiducial Volume 11.2 days: Select Event Energy 40 kg mass (further optimization ongoing) < 28 keVr (~XENON10 WIMP search range) z [mm] z [mm] -50 -100 -100 -150 -150 -200 -200 -250 -250 -300 -300 100 120 160 20 120 160 60 80 100 140 r [mm] r [mm]

XENON100: the power of LXe self-shielding!

and apply S2/S1 Discrimination..

XENON10 *PRL 100, 021303 (2008)*

136 kg-days Exposure= 58.6 live days x 5.4 kg x 0.86 (ε) x 0.50 (50% NR)

(data collected between Oct.2006 and Feb.2007)

XENON100 PRL in preparation

190.4 kg-days Exposure= 11.2 live days x 40 kg x 0.85 (ε) x 0.50 (50% NR)

(data collected between Oct.and Nov.2009)

XENON100: 40 kg "Background free"

XENON100: the lowest background of all DM detectors

XENON100: First Spin Independent Limit

Nuclear Recoil Energy Scale from Leff in LXe

New Measurements of Leff in Liquid Xenon

New experiment ongoing at the Columbia Nevis Lab, with a 2-phase miniTPC optimized for high light collection. Measure ionization and scintillation yield of very low energy ER and NR in LXe, as a function of field and energy. DD- generator for neutrons Additional set-up also at UZurich

The case for XENON1T

- XENON100 is working very well. It is the largest mass and lowest background DM experiment in operation underground and with a large exposure ready to be unveiled.
- Within 2010 XENON100 will a) either see a signal or b) will significantly constraint WIMP models for both SI and SD cross-section.
- Larger scale experiments with even lower background are needed in both cases.
- Critical technologies developed within the XENON10/100 programs can be directly applied to the next scale. Risks and the costs are fully understood.
- A strong international collaboration, with valuable expertise and resources, is in place.
- A technical design proposal for a XENON1T is in preparation. With 50 50 share of resources between US and other groups, we plan to realize the experiment before 2015.

XENON1T Funding Sources

SWISS NATIONAL SCIENCE FOUNDATION

DOE

NSF

XENON1T: A tremendous scientific reach

XENON1T: constraints on WIMP mass

Number of events		Mass (GeV)				
		20	50	100	200	500
Cross Section	10 ⁻⁴⁴ cm ²	230	710	560	330	140
	10 ⁻⁴⁵ cm ²	23	71	56	33	14

XENON1T: Detector Overview

- Baseline design similar to XENON100 with improvements in different areas
- Iower radioactivity cryostat (Ti and Cu)
- Iower radioactivity PMTs (QUPIDs)
- high efficiency heat exchanger: >98% achieved with Columbia setup
- filling & recovery in liquid phase
- Design has been validated with detailed MC studies of internal/external background sources

Capital cost ~ 8M\$ shared equally between US and foreign groups

QUPID (QUartz Photon Intensifying Detector)

QUPID (QUartz Photon Intensifying Detector)

QUPID Characteristics

Extremely low radioactivity: • < 0.1 neutron / year</p>

< 1 mBq

3 inch

Bialkali LT

- < 10 times lower than conventional low radioactive PMTs.</p>

- Large diameter:
 6 inch is also under investigation.
- Special Photocathode:
 > 30 % QE at 170 450 nm

 - Low resistivity even at Liquid Ar temperature (- 185 °C)

True photon counting.

- 1, 2, 3... photoelectron peaks clearly visible.
- 100% collection efficiency.

- Simple HV supply.
 Common HV (-6 kV) for all QUPIDs
 Resistor chain not necessary

First successful operation in Liquid Xenon at UCLA

First Liquid Xenon Light Detected by QUPID

Expected Backgrounds from Detector Materials

Neutrons

Z (cm) Z (cm) 80 80 QUPIDs QUPIDs 70 70 PTFE PTFE Titanium Titanium 60 60 Acrylic Acrylic 50 50 0.07 y / ton-year 0.1 n / ton-year 40 40 30 30 20 20 1.1 ton 1.1 ton 10 10 otuuluuluuluuluuluuluuluulu 10 15 20 25 30 35 15 20 25 30 35 40 45 50 50 0 5 40 45 n 10 R (cm) R (cm)

Gamma Rays

WIMP Signal and Gamma Background

Location for XENON1T

Collaboration is studying two options for site and shield

- LNGS with a water tank acting as shield and muon veto
- LSM with a Polyethylene-Lead shield and plastic scintillators for muon veto

Advantage of depth for Muon-induced Neutrons

Water Shield Study for LNGS

Neutrons and Gamma from Rock Radioactivity

Gammas from U/Th/K in rock (γ flux in Hall B ~ 0.5 / cm² / s) reduced by ~10⁶ by 3m of water: after ER discrimination, rate below 0.0001 evt / keVee / ton / year in the fiducial volume.

Fission and (α , n) neutrons from U/Th/K in rock and concrete (neutron flux in Hall B ~ 9 10⁻⁷ n / cm² / s) reduced to a completely negligible level with 3m of water.

Muon-induced Neutrons in Rock

Tagging muons with the active veto (water Cerenkov) with a water buffer of 3, 4, 5 m allows to remove respectively about 20, 30, 40% of the neutrons produced in rock.

A further reduction of 96, 98, 99.5% of the neutrons is given by the moderation in the water shield itself.

Single Scatter Neutrons in Rock and Water

Less than 1 event/ ton / year with 4 m thick water shield and 98% muon veto efficiency

Muon-induced Neutrons: LNGS vs LSM

The <u>neutron flux</u> inside the Poly-Pb shield @ LSM is <u>of the same order of magnitude</u> as the one inside a <u>3m thick water shield</u> @ LNGS.

With 5 m-thick water shield one gains an order of magnitude reduction, making such a shield ready also for the next generation LXe experiment (i.e. DARWIN).

XENON1T @ LSM

Solid shield (55 cm Poly, 20 cm Pb, 15 cm Poly, 2 cm ancient Pb) plus >99 % muon veto

XENON1T at LNGS

