DarkSide

Cristiano Galbiati
Princeton/FNAL

WONDER 2010
LNGS
Assergi (AQ)
Mar 23, 2010
DarkSide

Program Goals

Technology
DarkSide
Program Goals
Technology

DarkSide ⊗ Borexino Counting Test Facility (CTF)

Implications for DM Searches @ LNGS
Status of DM Exploration

- Direct DM searches currently reporting ~tonne-day exposures
- Experiments in progress aiming for >= tens of tonne-day
- SUSY models suggest tonne-year exposures may be necessary
Challenges for Future DM Searches

1. Radioactivity reduction in active and passive detector parts
2. Powerful discrimination against residual radioactivity
3. Reduction of internal neutron sources (mainly photodetectors)
4. Mitigation of external neutron flux and rejection of residual external neutron events
How are these challenges met by DarkSide?

A. DarkSide’s Depleted Argon (DAr) TPC and its new technology elements address the first three points with a powerful and scalable strategy.

B. In addition, a re-configured CTF would allow external neutron background reduction to levels compatible with tonne-year sensitivity, even at a relatively shallow site like Gran Sasso.
Game Changing Technologies of DarkSide

1. Depleted Argon from underground sources

2. High efficiency borated liquid scintillator neutron veto (>99.8% rejection efficiency for radiogenic neutrons)

3. QUPID photosensors
 - no background detected in best Ge
 - new photocathode with high QE at liquid argon temperature
DarkSide-50

- first implementation of the new technologies
- dual-phase TPC à la WARP
- 50 kg DAr active mass

sensitivity 10^{-45} cm^2 in 3-yrs

background-free operation
demonstrate potential of the technology for multi-ton year
background-free sensitivity
LAr is one of the brightest scintillators known. Pulse shape of primary scintillation provides very powerful discrimination for NR vs. EM events:

Rejection factor exceeds 10^8 for > 60 photoelectrons (Boulay & Hime 2004; Benetti et al. (WARP) 2006)

Ionization drift is well established technology on very large scale detector. Ionization:scintillation ratio is a strong and semi-independent discrimination mechanism:

Rejection factor $\sim 10^2$ (Benetti et al. (ICARUS) 1993; Benetti et al. (WARP) 2006)

Spatial resolution from ionization drift localizes events, allowing rejection of multiple interactions, "wall events", etc.

Two-phase LAr-TPC combines these characteristics into a powerful detection technique, as established by WARP
Why is depleted argon from underground crucial?

• Radioactive 39Ar produced by cosmic rays in atmosphere
 • beta decays, $Q = 565$ keV, $t_{1/2} = 269$ years

• In atmospheric argon:
 • 39Ar/Ar ratio 8×10^{-16}
 • specific activity 1 Bq/kg

• Consequences: atmospheric 39Ar limits size of two-phase argon detectors to 500-1000 kg due to 39Ar events pile-up
Why is depleted argon from underground crucial?

- 39Ar-depleted argon available via centrifugation or thermal diffusion, but expensive at the ton scale!
- Low background from 14C crucial for observation of low energy neutrinos with organic liquid scintillators
 - Borexino: hydrocarbons from deep underground reservoirs results in low cosmogenic 14C
- Motivated by success in Borexino, investigation of underground sources of Ar
 - 39Ar production by cosmic rays strongly suppressed underground
Underground DAr: a Reality

- Princeton group demonstrated collection of underground Ar with <0.04 Bq/kg 39Ar in 10's-of-kg quantity of DAr from natural gas wells in USA
- Cryogenic distillation to remove N$_2$, He, etc., about to be commissioned at Fermi Lab
- These achievements enable construction of multi-ton DAr TPCs for direct DM searches
Underground Source

- Kinder Morgan Doe Canyon complex (Cortez, CO)
- Ar ~400 ppm in underground gas
- ^{39}Ar level: factor 25 reduction or greater
- Total Ar production capacity: 3 tons per day
Extraction Technology

- Extraction technology for gas separation developed starting from Rn scrubber built in Princeton for construction of BX Vessels (Calaprice, Pocar, Shutt)
- Extraction plant entirely designed and built by Princeton personnel
- Starting from Ar ~400 ppm in underground gas, arriving at Ar ~6% in crude Ar (balance N₂, He)
- Significant capital investment from NSF, 4 years development plan
- First continuous campaign started Feb 2010, goal 100 kg
Princeton Extraction Plant
Achieved 1.2 kg/day, Collected ~30 kg
Extraction Upgrade Plans

- Plan to expand production capacity to 20 kg per day in 2011
- Engineering of plant expansion already started
- New plant nominally capable of producing ~1 ton in two months!!!
Princeton Prototype Cryogenic Distillation Column @ FNAL PAB
Princeton Prototype Cryogenic Distillation Column @ FNAL PAB
Counter for Underground DAr Measurement

SECTION A-A
SCALE 1 : 6

Teflon Retaining Collar

Thin Wall Section

Teflon Reflecting Sleeve

Copper Shielding

Scintillator Cell

Teflon Cell Retainer

Copper Rods

Feedthroughs

Spring PMT holder

PMT

O-ring Groove

O-ring Groove

DETAIL B
SCALE 1 : 3

Tuesday, March 23, 2010
Our approach (F. Calaprice): rely on (n,α) on ^{10}B

- Alpha particle extremely low range
- Alpha particle can be observed using borated liquid scintillator ... remember BOREX?
- 99.8% efficiency for radiogenic neutrons with ~1 m thick shield
- Many 9’s of efficiency possible with thicker shields for radiogenic neutrons not captured within detector
7Be Results: 192 Days

Fit: χ^2/NDF = 185/174

- 7Be: 49±3 cpd/100 tons
- 210Bi+CNO: 23±2 cpd/100 tons
- 85Kr: 25±3 cpd/100 tons
- 11C: 25±1 cpd/100 tons
- 14C
- 10C
The expected number of background events is

*For the sake of clarity, independent

distributions that the radial cut reduces by a factor

due to the short distance of thermalization of the low

radiative cut is very effective in removing positrons

*In the Borexino data

*The signal resulting from the fit

*The darker area isolates the contribution of the geo–\(\bar{\nu}_e\)

*The horizontal axis shows the number of candidates and the best fit with Eq. 5

*From a sample of pure water

*The lower left part of the spectrum is the background

*The solid line is the reactor–\(\bar{\nu}_e\)

*The horizontal axis shows the number of candidates and the best fit with Eq. 5

*The solid thick line is the reactor–\(\bar{\nu}_e\)

*The horizontal axis shows the number of candidates and the best fit with Eq. 5

*The horizontal axis shows the number of candidates and the best fit with Eq. 5

*The light yield spectrum for the positron prompt events

*In the Borexino data

*The signal resulting from the fit

*The darker area isolates the contribution of the geo–\(\bar{\nu}_e\)

*The horizontal axis shows the number of candidates and the best fit with Eq. 5

*The solid line is the reactor–\(\bar{\nu}_e\)

*The horizontal axis shows the number of candidates and the best fit with Eq. 5

*The solid thick line is the reactor–\(\bar{\nu}_e\)

*The horizontal axis shows the number of candidates and the best fit with Eq. 5

*The light yield spectrum for the positron prompt events

*In the Borexino data

*The signal resulting from the fit

*The darker area isolates the contribution of the geo–\(\bar{\nu}_e\)

*The horizontal axis shows the number of candidates and the best fit with Eq. 5

*The solid line is the reactor–\(\bar{\nu}_e\)

*The horizontal axis shows the number of candidates and the best fit with Eq. 5

*The solid thick line is the reactor–\(\bar{\nu}_e\)

*The horizontal axis shows the number of candidates and the best fit with Eq. 5

*The light yield spectrum for the positron prompt events

*In the Borexino data

*The signal resulting from the fit

*The darker area isolates the contribution of the geo–\(\bar{\nu}_e\)

*The horizontal axis shows the number of candidates and the best fit with Eq. 5

*The solid line is the reactor–\(\bar{\nu}_e\)

*The horizontal axis shows the number of candidates and the best fit with Eq. 5

*The solid thick line is the reactor–\(\bar{\nu}_e\)

*The horizontal axis shows the number of candidates and the best fit with Eq. 5

*The light yield spectrum for the positron prompt events

*In the Borexino data

*The signal resulting from the fit

*The darker area isolates the contribution of the geo–\(\bar{\nu}_e\)

*The horizontal axis shows the number of candidates and the best fit with Eq. 5

*The solid line is the reactor–\(\bar{\nu}_e\)

*The horizontal axis shows the number of candidates and the best fit with Eq. 5

*The solid thick line is the reactor–\(\bar{\nu}_e\)
Calaprice’s Talk: Summary

• Possibility to conduct high sensitivity DM searches at shallow depth (LNGS ~3,600 m.w.e.) questioned for long time in DM community

• Possibility of achieving a background of $\sim 10^{-48}-10^{-49}$ cm2 at shallow LNGS depth can be addressed experimentally using current Borexino data

• Central role of technologies and facilities developed for BX

• It is possible to conduct **ultimate** DM search at LNGS!
Proposal of DarkSide to Borexino

Conduct DarkSide Development Test within CTF tank
Benefits to Borexino

- CTF used so far for testing scintillator for Borexino. CTF vessel built by Princeton group.
- Upgraded scintillator screening facility required for next, extremely challenging steps in Borexino program (pp, pep, CNO neutrinos; higher precision 7Be, 8B, geo-anti-v_e).
- Combine active scintillator veto for DarkSide and new screening facility for BX in CTF tank; extremely beneficial to BX program.
Benefits to DarkSide

- Integration of water and scintillator purification plants (distillation column, counter-current water extraction column, stripping column)

- Availability of second purification plant under construction by Princeton University for purification of scintillator fluors

- Unique expertise of Borexino collaboration in handling of scintillators and low background techniques
Background of DarkSide/CTF

- Cosmogenic Neutrons: $<0.1\, \text{events/(ton-yr)}$
- Radiogenic Neutrons: $<0.1\, \text{events/(ton-yr)}$
DarkSide

UMass Amherst
Arizona State University
Augustana College
Black Hills State University
Fermilab
University of Houston
University of Notre Dame
Princeton University
Temple University
UCLA
Augustana College, USA Prof. Drew Alton
Black Hills State University, USA Prof. Dan Durben, Prof. Kara Keeter, Prof. Michael Zehfus
Fermi National Accelerator Laboratory, USA Dr. Steve Brice, Dr. Aaron Chou, Dr. Jeter Hall, Dr. Hans Jostlein, Dr. Stephen Pordes, Dr. Andrew Sonnenschein
Temple University, USA Prof. Jeff Martoff, Prof. Susan Jansen-Varnum, Christy Martin, John Tatarowicz
University of California at Los Angeles, USA Prof. Katsushi Arisaka, Prof. David Cline, Chi Wai Lam, Kevin Lung, Prof. Peter F. Smith, Artin Teymourian, Dr. Hanguo Wang
University of Houston, USA Prof. Ed Hungerford and Prof. Lawrence Pinsky
University of Massachusetts at Amherst, USA Prof. Laura Cadonati and Prof. Andrea Pocar
University of Notre Dame, USA Prof. Philippe Collon, Daniel Robertson, Christopher Schmitt
University of Virginia, USA Prof. Kevin Lehmann
Other European Groups Have Expressed Interest

INFN Laboratori Nazionali del Gran Sasso
INFN and Università degli Studi Genova
INFN and Università degli Studi Milano
INFN and Università degli Studi Napoli
Joint Institute for Nuclear Research, Dubna
RRC Kurchatov Institute, Moscow
St. Petersburg Nuclear Physics Institute
Technische Universität München
The DarkSide Quest for High Light Yield in Argon Detectors
Hamamatsu R5912-02 (18% QE)

64 kg LAr
6.7 kg active mass

Light Yield: 5 pe/keV

Tuesday, March 23, 2010
Hamamatsu R11065 (32% QE)

2 kg LAr
0.7 kg active mass

Light Yield: 7.3±0.2 p.e./keV
20-kg 2-Phase Detector

- Support Rod
- Conical Compression Spring 3" 1/8" Washer
- Compression Stop
- Support Rod Wing Nut
- Compression Plate
- Compression Spring
- Conical Compression Spring 8"
DarkSide Photosensors

- EM backgrounds in DarkSide are suppressed to the necessary levels for tonne-year sensitivity by ultra-pure DAr discrimination
- Internal neutron backgrounds (mostly from (α,n) in conventional PMTs) would still interfere with tonne-year sensitivity
- Zero background operation of 50 kg detector possible with metal-bulb Hamamatsu R11065
- DarkSide collaboration procured a set of Hamamatsu R11065 for first installation
• However, UCLA group has worked with Hamamatsu to develop and bring to manufacture the QuPID photosensor

• Fused Silica envelope + APD

• no dynodes, minimal glass-metal seals

• no need for a "PMT base"

• Therefore no detectible radioactivity in 3 mo. GATOR exposure.
DarkSide & QUPIDs

- Excellent single (and 2-, 3-, 4-) PE response
- >30% QE at LAr temperature
- Prototypes already delivered from Hamamatsu, mass production process development completed
- Routine delivery to commence soon - first implementation reserved for DarkSide and XENON collaborations
- Use of QUPIDs removes the dominant internal neutron source in DarkSide, reducing this background below that required for tonne-year sensitivity
New 3" QUPID (Production Version)
Charge Distribution (~ 2 pe average)

Hamamatsu Data

Entries: 10000
\(\chi^2 \) / ndf: 87.98 / 43
Max BG: 248 ± 11.4
\(\sigma \) BG: 1.248e+06 ± 44728
Center of BG: 3.579e+05 ± 50794
Max 1PE: 234.3 ± 6.5
\(\sigma \) 1PE: 4.459e+06 ± 151341
Gain: 1.205e+07 ± 94942
Max 2PE: 223.4 ± 8.6
\(\sigma \) 2PE: 3.73e+06 ± 158673
Max 3PE: 159.5 ± 5.3
\(\sigma \) 3PE: 5.334e+06 ± 443700
The first Scintillating lights detected by QUPID from 57Co in Liquid Xenon

Spectrum 4.5kV, 305V Bias, 122keV

122 keV $\mu=32940.5$, $\sigma=3126.87$
Recalling the Program Goal

• Bring together three innovative techniques
 1. Depleted Argon from underground sources, reduced by factor 25 or more
 2. 3” QUPID low background photosensors
 3. High efficiency borated liquid scintillator neutron veto (>99% possible!)
Perspectives and Future

- Define and establish technical basis for multi-ton detectors
- Goal is to reach zero background with very large exposure
 - Many tons fiducial target
 - Many years of background-free exposure
- Very large scale dark matter detectors can be built and operated at LNGS using two technologies already developed at LNGS (BX scintillator and two-phase depleted argon)
The End