Wonder-ful final remarks

Roberto Petronzio INFN

wonder

- 1.
 - a. One that arouses awe, astonishment, surprise, or admiration; a marvel: "The decision of one age or country is a wonder to another" (John Stuart Mill).
 - b. The emotion aroused by something awe-inspiring, astounding, or marvelous: gazed with wonder at the northern lights.
- 2. An event inexplicable by the laws of nature; a miracle.
- 3. A feeling of puzzlement or doubt.
- 4. often Wonder A monumental human creation regarded with awe, especially one of seven monuments of the ancient world that appeared on various lists of late antiquity.

A good title for the workshop

- Dark matter came as a surprise,
- A strong emotion is associated with the awareness that we seem to know the basic laws of nature but we still miss... what is the universe made of..
- Raises doubts on our understanding of early universe
- Its discovery may need a monumental effort
- BUT, hopefully it CAN be explained by the laws of nature

Progress on DM

- Evidence from Dama/Lybra ...
 CDMS, Cogent ... and from indirect searches (Pamela, Fermi, Atic)
 - A low mass Bino or RH sneutrino ???
 - The LEP limits challenged
- Improvements of upper bounds on wimp-nucleon cross section (Xenon100)
 - the challenge of low-mass wimps
- Spin dependent versus spin independent measurements as an important tool
 - Different cross sections
 - LSP and LKP

Technological developments

- External background
 active and passive shielding, pulse analysis
- Internal background
 material selection, purification, new photon
 detectors
- Light yield, energy threshold
- 3D reconstruction → direction

Impressive progress

Many puzzles

The WHY NOW problem

 The dark energy size compared to existing vacuum expectations

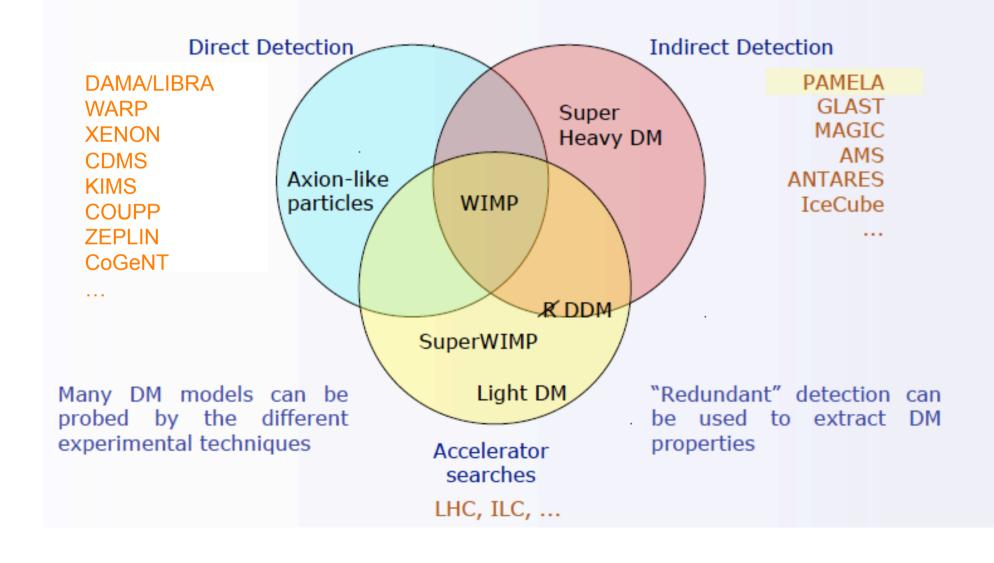
Associated (??) puzzles

Matter antimatter asymmetry

The antineutrino oscillations (LSND)

The sterile neutrinos and/or CP violation

(Too) many candidates


- Susy
- Kaluza-Klein and extra dimensions
- Axion-like
- Right handed neutrinos or sterile neutrinos

. . .

Need for different experimental approaches

Complementarity of DM searches

We are attacking the DM in various fronts:

The LHC challenge

- Do next two years of LHC running complement passive detector based searches ??
- What sizes/technologies make good competition ??
- How does the competition extend to higher energy/luminosity of LHC ??
- Toward a composite strategy, not just a single experiment issue... a wonder

LNGS

- Dark matter and Majorana neutrinos as the main program in the next years
- Dark matter:
 - Profit from Warp/Xenon experience
 - Profit from Icarus: the prototype large detector
 - Clarify further Dama results, with additional investments
 - develop complementary options (High A-low A liquid gases..??)

Guide-lines

- Do not trust theory too much
- Stick to experimental results
- Do not take anything for granted
- Do not leave holes around