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Outline

• Direct WIMP detection and CRESST detectors

• First results from present run (preliminary)

• Future



Detector Requirements for direct detection

• Small energy transfers to nucleus

• Featureless spectrum just above 
 threshold

• Very low event rate < 0.1/kg/day.
 Large class of MSSM models 
predict 0.1 /kg/year to 0.1/kg/day 

There is background 

• Shielding: underground, lead+copper shielding,neutron shielding,     
muon-veto

• discrimination  of β- and γ-background

W recoil spectra for various WIMP masses



Identification of a WIMP-signal

• Annual modulation
you have to prove that your background is 

constant in time ! 
and your detector runs stable 

• Use different target nuclei in same detector
cross section for background depends 

differently on target nucleus (mass) than 
WIMP-scattering

unique feature of CRESST Detectors

The trouble starts if you see a signal



  

CRESST type cryogenic Detectors
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Width of transition: ~1mK,  keV signals: few μK 
Longterm stablity: ~ μK

Advantages of technique:

- measures deposited energy independent  
   of interaction type
- Very low energy threshold and excellent 
   energy resolution
- Many different target materials
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CRESST-II Detectors
Discrimination of nuclear recoils from radioactive backgrounds by 
simultaneous measurement of phonons and scintillation light

300g scintillaing
CaWO4 crystal

β+γ

α

O
W

W sensor

Light detector W sensor

Light reflector
(scintillating)

Discrimination between neutrons and WIMPs possible



  

300 g CRESST-II  Detector Module

CRESST-II: up to 33 detector modules 

The phonon detector: 
300 g cylindrical CaWO4 

crystal.  Evaporated 
tungsten thermometer 
with attached heater.

The light detector:
Ø=40 mm silicon on sapphire wafer. 
Tungsten thermometer with attached 
aluminum phonon collectors and thermal link. 
Part of thermal link used as heater



  

CRESST set-up at LNGS

passive shielding:
• underground laboratory
• 45 cm PE (12 tons) 
• muon-veto
• radon box
• 20 cm lead (24 tons)
• 14 cm copper (10 tons)
• use only radio-pure materials
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Co-Calibration
57Co-Calibration of Phonon-Detector Verena
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Co-Calibration
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Spectral features at low Energies

•Very precise energy calibration 
•Lines down to 3.6 keV identified with excellent energy resolution 
 of 300 eV.

Cu Kα 8.1 keV
found @8.2 keV

41Ca 3.61 keV found 
@3.6 keV

210Pb 46.5 keV
@ 46.5 keV

Ratio 41Ca/40Ca = (2.2 ± 0.3) * 10-16

Sensitivity one order of magnitude better than other methods



  

Identification of α-Emitters

Decay of “stable” 180W
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180W

180W now listed unstable in tables with 1.8x1018 years half 
life

Q = (2516.4 ± 1.1 (stat.) ± 1.2 (sys.)) keV



  

Present run

All results preliminary

• running since summer 2009

• 10 detectors running (1 ZnWO4)

• Clamps not covered with scintillator

• data analysis is still in progress

• No neutron calibration yet

• Data discussed are from 9 CaWO4  
detectors (333 kgd)



  

Stability



  

Data

Light versus 
phonon-energy

Light yield versus
phonon-energy



  

Data
Several detectors added 

preliminary



  

Data
Several detectors added 

Electron-gamma-band

Recoil-band

Muon coincident events
(red dots)

main structures

preliminary



  

Data
Several detectors added 

α-decay related 
structures

Drawn bands only schematic

mainly related to
 uncovered clamps

210Po → 206Pb (104keV) + α (5.4MeV)

crystal
Pb α

Pb α

α-band

Recoiling nucleus hits crystal
α hits scintillating holder 

Full α-analysis
in progress

preliminary

α-emitter at crystal surface 
deposits nuclear recoil + 
fraction of α-energy



  

Data
Several detectors added 

Drawn bands only schematic

Oxygen recoil 
band

Oxygen recoils caused by muon induced neutrons

preliminary



  

Data
Several detectors added 

Drawn bands only schematic

W-recoil band

Pb-recoils tend to be
 below W-band

preliminary



  

Data
Several detectors added 

Drawn bands only schematic

events can be
attributed to
identified processes

preliminary



  

What does this mean for heavy WIMPs
Several detectors added 

preliminary

• Rate in all detectors
 equal within statistics
• Neutron calibration
 still needed

Limits deduced from overlap-free W-band 
reach upper 10-8pb range

σWIMP ~ A2

WIMPs show up in W-Band



  

What is going on in the Oxygen Band
Several detectors added 

preliminary

• Rate in all detectors
 equal within statistics
• decrease summer winter 
     there but statisticallly

not yet significant

Neutrons ?
•Rate to high for 
external neutrons
•„internal“ neutron 
source only if low 
energeticLow mass WIMPs ??

A combined analysis of all recoil-bands is in preparation

More statistics is needed



  

Inelastic Dark Matter

preliminary

preliminary

preliminary

preliminary

preliminary
Deduced from
full W-band



  

Next steps

• Continue measurement over summer

• Develop and test scintillator covered clamps in 
CRESST R&D-Cryostat at LNGS

• Develop neutron monitoring detector (CdWO4 or LiF)

• Make a run with scintillator covered clamps (strong 
reduction for α-decay induced events) and neutron 
monitor



  

CRESST III

Features:

50 kg total mass (fiducial volume)

Excellent background discrimination

Different target nuclei and therefore
 unique Dark Matter Identification capabilities

housed in present CRESST set-up



  

Modifications and developments needed

Increase experimental volume by factor 3
(modify cryostat and shielding)

Increase detector size by factor 5

Develop low mass holders with higher packing density

Keep number of readout channels and electronics



  

sensitivity

Multitarget with unique
Dark Matter identification
capabilities 



  

Conclusions

• CRESST detectors are very powerful and able to perform precision 
measurements

• The multi-target approach (in the same set-up) is a powerful tool 
for DM identification and unique for CRESST

• CRESST is now in a very exciting phase
• Inelastic Dark Matter scenario becomes very unlikely to explain 

DAMA results
• CRESST III will cover the most interesting parameter space and 

will have a unique DM-particle identification capability
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