Neutrino oscillations and oscillation coherence

Evgeny Akhmedov

Max-Planck Institute für Kernphysik, Heidelberg
Idea of neutrino oscillations:
First put forward by Pontecorvo in 1957

Bruno Pontecorvo
1913 - 1993
Oscillation probability in vacuum

Master formula:

\[P(\nu_\alpha \rightarrow \nu_\beta; L) = \left| \sum_i U_{\beta i} e^{-i\frac{\Delta m^2_{i1}}{2p} L} U_{\alpha i}^* \right|^2 \]

What are the applicability conditions for this formula?

When are the oscillations observable?

– One answer to both questions!
Main assumption: Neutrinos produced and detected in weak interaction processes are flavour eigenstates – **coherent** linear superpositions of mass eigenstates:

\[|\nu^\alpha_a\rangle = \sum_i U^*_{ai} |\nu^\text{mass}_i\rangle \]

\((\alpha = e, \mu, \tau, \quad i = 1, 2, 3) \)

Overall production – propagation – detection process: amplitudes with different \(\nu^\text{mass}_i \) in the intermediate state contribute coherently (cannot be distinguished)
When are neutrino oscillations observable?

Keyword: **Coherence**

Neutrino flavour eigenstates ν_e, ν_μ and ν_τ are coherent superpositions of mass eigenstates ν_1, ν_2 and $\nu_3 \Rightarrow$ oscillations are only observable if

- neutrino production and detection are coherent
- coherence is not (irreversibly) lost during neutrino propagation.

Possible decoherence at production (detection): If by accurate E and p measurements one can tell (through $E = \sqrt{p^2 + m^2}$) which mass eigenstate is emitted, the coherence is lost and oscillations disappear!

Production and detection coherence \iff localization cond.:

$$l_{\text{prod}} \ll l_{\text{osc}}, \quad l_{\text{det}} \ll l_{\text{osc}}$$

Usually satisfied with large margins.

Propagation coherence:

$$L < l_{\text{coh}} \approx \frac{v_g}{\Delta v_g} \sigma_x = \frac{2E^2}{\Delta m^2} v_g \sigma_x$$
Oscillations and QM uncertainty relations

Neutrino oscillations – a QM interference phenomenon, owe their existence to QM uncertainty relations

Neutrino energy and momentum are characterized by uncertainties σ_E and σ_p related to the spatial localization and time scale of the production and detection processes. These uncertainties

- allow the emitted/absorbed neutrino state to be a coherent superposition of different mass eigenstates (Kayser, 1981)
- determine the size of the neutrino wave packets \Rightarrow govern decoherence due to wave packet separation (Nussinov, 1976)

σ_E – the effective energy uncertainty, dominated by the smaller one between the energy uncertainties at production and detection. Similarly for σ_p.
When are neutrino oscillations observable?

Production and detection coherence:

\[\Delta E \ll \sigma_E, \quad \Delta p \ll \sigma_p \]
When are neutrino oscillations observable?

Production and detection coherence:

\[\Delta E \ll \sigma_E, \quad \Delta p \ll \sigma_p \]

If coherence is lost: Flavour transition can still occur, but in a non-oscillatory way. E.g. for \(\pi \rightarrow \mu \nu_i \) decay with a subsequent detection of \(\nu_i \) with the emission of \(e \):

\[P \propto \sum_i P_{\text{prod}}(\mu \nu_i)P_{\text{det}}(e \nu_i) \propto \sum_i |U_{\mu i}|^2|U_{ei}|^2 \]

– the same result as for averaged oscillations.
When are neutrino oscillations observable?

Production and detection coherence:

\[\Delta E \ll \sigma_E, \quad \Delta p \ll \sigma_p \]

If coherence is lost: Flavour transition can still occur, but in a non-oscillatory way. E.g. for \(\pi \rightarrow \mu \nu_i \) decay with a subsequent detection of \(\nu_i \) with the emission of \(e \):

\[
P \propto \sum_i P_{\text{prod}}(\mu \nu_i)P_{\text{det}}(e \nu_i) \propto \sum_i |U_{\mu i}|^2 |U_{e i}|^2
\]

– the same result as for averaged oscillations.

How can the oscillations destroyed by precise measurements of neutrino energy and momentum? Suppose we can find the neutrino energy \(E \) and momentum \(p \) with uncertainties \(\sigma_E \) and \(\sigma_p \). From \(E_i^2 = p_i^2 + m_i^2 \):

\[
\sigma_{m^2} = \left[(2E\sigma_E)^2 + (2p\sigma_p)^2 \right]^{1/2}
\]
When are neutrino oscillations observable?

If \(\sigma_m^2 < \Delta m^2 = |m_i^2 - m_k^2| \) – one can tell which mass eigenstate is emitted.

\(\sigma_m^2 < \Delta m^2 \) implies \(2p\sigma_p < \Delta m^2 \), or \(\sigma_p < \Delta m^2 / 2p \simeq l_{osc}^{-1} \).
When are neutrino oscillations observable?

If \(\sigma m^2 < \Delta m^2 = |m^2_i - m^2_k| \) – one can tell which mass eigenstate is emitted.

\(\sigma m^2 < \Delta m^2 \) implies \(2p\sigma p < \Delta m^2 \), or \(\sigma p < \Delta m^2 / 2p \simeq l_{osc}^{-1} \).

But: To measure \(p \) with the accuracy \(\sigma p \) one needs to measure the momenta of particles at production with (at least) the same accuracy \(\Rightarrow \) uncertainty of their coordinates (and the coordinate of \(\nu \) production point) will be

\[
\sigma_{x,\text{prod}} \gtrsim \sigma_p^{-1} > l_{osc}
\]

\(\Rightarrow \) Oscillations washed out. Similarly for neutrino detection.
When are neutrino oscillations observable?

If \(\sigma_{m^2} < \Delta m^2 = |m_i^2 - m_k^2| \) – one can tell which mass eigenstate is emitted. \(\sigma_{m^2} < \Delta m^2 \) implies \(2p\sigma_p < \Delta m^2 \), or \(\sigma_p < \Delta m^2 / 2p \simeq l_{osc}^{-1} \).

But: To measure \(p \) with the accuracy \(\sigma_p \) one needs to measure the momenta of particles at production with (at least) the same accuracy \(\Rightarrow \) uncertainty of their coordinates (and the coordinate of \(\nu \) production point) will be

\[
\sigma_{x, prod} \gtrsim \sigma_p^{-1} > l_{osc}
\]

\(\Rightarrow \) Oscillations washed out. Similarly for neutrino detection.

Natural necessary condition for coherence (observability of oscillations):

\[
L_{source} \ll l_{osc} , \quad L_{det} \ll l_{osc}
\]

No averaging of oscillations in the source and detector. For usual neutrinos:

Satisfied with very large margins in most cases of practical interest
Wave packet separation

Wave packets representing different mass eigenstate components ν_i have different group velocities v_{gi} \Rightarrow after time t_{coh} (coherence time) they separate \Rightarrow Neutrinos stop oscillating! (Only averaged effect observable).

Coherence time and length:

$$\Delta v_g \cdot t_{coh} \simeq \sigma_x; \quad l_{coh} \simeq v_g t_{coh}$$

$$\Delta v_g = \frac{p_i}{E_i} - \frac{p_k}{E_k} \simeq \frac{\Delta m^2}{2E^2}$$

$$l_{coh} \simeq \frac{v_g \sigma_x}{\Delta v_g} = \frac{2E^2}{\Delta m^2} v_g \sigma_x$$

The standard formula for P_{osc} is obtained when the decoherence effects are negligible.
Neutrino oscillations: \textit{Coherence at macroscopic distances} – $L > 10,000 \text{ km in atmospheric neutrino experiments}$!
A manifestation of neutrino coherence

Even non-observation of neutrino oscillations at distances $L \ll l_{osc}$ is a consequence of and an evidence for coherence of neutrino emission and detection! Two-flavour example (e.g. for ν_e emission and detection):

$$A_{\text{prod/det}}(\nu_1) \sim U_{e1} = \cos \theta, \quad A_{\text{prod/det}}(\nu_2) \sim U_{e2} = \sin \theta$$

$$A(\nu_e \rightarrow \nu_e) = \sum_{i=1,2} A_{\text{prod}}(\nu_i) A_{\text{det}}(\nu_i) = \cos^2 \theta + e^{-i\Delta \phi} \sin^2 \theta$$

Phase difference $\Delta \phi$ vanishes at short L ⇒

$$P(\nu_e \rightarrow \nu_e) = (\cos^2 \theta + \sin^2 \theta)^2 = 1$$

If ν_1 and ν_2 were emitted and absorbed incoherently) ⇒ one would have to sum probabilities rather than amplitudes:

$$P(\nu_e \rightarrow \nu_e) \sim \sum_{i=1,2} |A_{\text{prod}}(\nu_i) A_{\text{det}}(\nu_i)|^2 \sim \cos^4 \theta + \sin^4 \theta < 1$$
A universal oscillation probability?

Q.: When are the oscillations described by a universal (production and detection independent) oscillation probability \(P_{\alpha\beta}(E, L) \)?
Q.: When are the oscillations described by a universal (production and detection independent) oscillation probability $P_{\alpha\beta}(E, L)$?

A.: When neutrinos are relativistic or quasi-degenerate in mass and the conditions of coherent neutrino emission and detection are satisfied:

$$\Delta E \ll \sigma_E, \quad \Delta p \ll \sigma_p$$
Q.: When are the oscillations described by a universal (production and detection independent) oscillation probability $P_{\alpha\beta}(E, L)$?

A.: When neutrinos are relativistic or quasi-degenerate in mass and the conditions of coherent neutrino emission and detection are satisfied:

$$\Delta E \ll \sigma_E, \quad \Delta p \ll \sigma_p$$

Under these conditions the rate of the overall neutrino production-propagation-detection process can be factorized into the production rate $d\Gamma_{\alpha}^{\text{prod}}(E)/dE$, propagation (oscillation) probability $P_{\alpha\beta}(E, L)$ and detection cross section $\sigma_{\beta}(E) \Rightarrow P_{\alpha\beta}(E, L)$ can be extracted

Are coherence constraints compatible?

Observability conditions for ν oscillations:

- Coherence of ν production and detection
- Coherence of ν propagation

Both conditions put upper limits on neutrino mass squared differences Δm^2:

(1) $\Delta E_{jk} \sim \frac{\Delta m^2_{jk}}{2E} \ll \sigma_E$;

(2) $\frac{\Delta m^2_{jk} L}{2E^2} \ll \sigma_x \simeq v_g/\sigma_E$
Are coherence constraints compatible?

Observability conditions for ν oscillations:

- Coherence of ν production and detection
- Coherence of ν propagation

Both conditions put upper limits on neutrino mass squared differences Δm^2:

(1) $\Delta E_{jk} \sim \frac{\Delta m^2_{jk}}{2E} \ll \sigma_E$;
(2) $\frac{\Delta m^2_{jk}}{2E^2} L \ll \sigma_x \simeq v_g/\sigma_E$

But: The constraints on σ_E work in opposite directions:

(1) $\Delta E_{jk} \sim \frac{\Delta m^2_{jk}}{2E} \ll \sigma_E \ll \frac{2E^2}{\Delta m^2_{jk}} \frac{v_g}{L}$ (2)
Are coherence constraints compatible?

Observability conditions for ν oscillations:

- Coherence of ν production and detection
- Coherence of ν propagation

Both conditions put upper limits on neutrino mass squared differences Δm^2:

\[
\begin{align*}
1. \quad \Delta E_{jk} &\sim \frac{\Delta m^2_{jk}}{2E} \ll \sigma_E; \\
2. \quad \frac{\Delta m^2_{jk}}{2E^2} L &\ll \sigma_x \simeq v_g/\sigma_E
\end{align*}
\]

But: The constraints on σ_E work in opposite directions:

\[
\begin{align*}
1. \quad \Delta E_{jk} &\sim \frac{\Delta m^2_{jk}}{2E} \ll \sigma_E \ll \frac{2E^2}{\Delta m^2_{jk}} \frac{v_g}{L}
\end{align*}
\]

Are they compatible? – Yes, if LHS \ll RHS \Rightarrow

\[
2\pi \frac{L}{l_{osc}} \ll \frac{v_g}{\Delta v_g} (\gg 1)
\]

– fulfilled in all cases of practical interest
Are coherence conditions satisfied?

The coherence propagation condition: satisfied very well for all but astrophysical and cosmological neutrinos (solar, SN, relic ν's ...)

Are coherence conditions satisfied?

The coherence propagation condition: satisfied very well for all but astrophysical and cosmological neutrinos (solar, SN, relic ν's ...)

Coherent production/detection: usually satisfied extremely well due to the tininess of neutrino mass
Are coherence conditions satisfied?

The coherence propagation condition: satisfied very well for all but astrophysical and cosmological neutrinos (solar, SN, relic ν’s ...)

Coherent production/detection: usually satisfied extremely well due to the tininess of neutrino mass

But: Is not automatically guaranteed in the case of “light” sterile neutrinos!

$m_{\text{sterile}} \sim \text{eV} - \text{keV} - \text{MeV scale} \Rightarrow$ heavy compared to the “usual” (active) neutrinos
Are coherence conditions satisfied?

The coherence propagation condition: satisfied very well for all but astrophysical and cosmological neutrinos (solar, SN, relic ν's ...)

Coherent production/detection: usually satisfied extremely well due to the tininess of neutrino mass

But: Is not automatically guaranteed in the case of “light” sterile neutrinos!

$m_{sterile} \sim eV - keV - MeV$ scale \Rightarrow heavy compared to the “usual” (active) neutrinos

Sterile neutrinos: hints from SBL accelerator experiments (LSND, MiniBooNE), reactor neutrino anomaly, keV sterile neutrinos, pulsar kicks, leptogenesis via ν oscillations, SN r-process nucleosynthesis, unconventional contributions to $2\beta0\nu$ decay ...
Are coherence conditions satisfied?

The coherence propagation condition: satisfied very well for all but astrophysical and cosmological neutrinos (solar, SN, relic \(\nu \)'s ...)

Coherent production/detection: usually satisfied extremely well due to the tininess of neutrino mass

But: Is not automatically guaranteed in the case of “light” sterile neutrinos!

\[m_{\text{sterile}} \sim \text{eV} - \text{keV} - \text{MeV} \text{ scale} \Rightarrow \text{heavy compared to the “usual” (active) neutrinos} \]

Sterile neutrinos: hints from SBL accelerator experiments (LSND, MiniBooNE), reactor neutrino anomaly, keV sterile neutrinos, pulsar kicks, leptogenesis via \(\nu \) oscillations, SN \(r \)-process nucleosynthesis, unconventional contributions to \(2\beta0\nu \) decay ...

Production/detection coherence has to be re-checked – important implications for some neutrino experiments!
QM wave packet approach
QM wave packet approach

The evolved produced state:

\[
|\nu_{\alpha}^f(x, t)\rangle = \sum_i U_{\alpha i}^* |\nu_{\text{mass}}^i(x, t)\rangle = \sum_i U_{\alpha i}^* \Psi_i^S(x, t)|\nu_{\text{mass}}^i\rangle
\]

The coordinate-space wave function of the \(i\)th mass eigenstate (w. packet):

\[
\Psi_i^S(x, t) = \int \frac{d^3p}{(2\pi)^3} f_i^S(p) e^{i\vec{p}\vec{x} - iE_i(p)t}
\]

Momentum distribution function \(f_i^S(p)\): sharp maximum at \(\vec{p} = \vec{P}\) (width of the peak \(\sigma_{pP} \ll P\)).

\[
E_i(p) = E_i(P) + \left. \frac{\partial E_i(p)}{\partial \vec{p}} \right|_{\vec{p} = \vec{P}} (\vec{p} - \vec{P}) + \frac{1}{2} \left. \frac{\partial^2 E_i(p)}{\partial \vec{p}^2} \right|_{\vec{p} = \vec{p}_0} (\vec{p} - \vec{P})^2 + \ldots
\]

\[
\vec{v}_i = \left. \frac{\partial E_i(p)}{\partial \vec{p}} \right|_{\vec{p} = \vec{P}} = \frac{\vec{p}}{E_i}, \quad \alpha = \left. \frac{\partial^2 E_i(p)}{\partial \vec{p}^2} \right|_{\vec{p}_0} = \frac{m_i^2}{E_i^2}
\]
Evolved neutrino state

\[\Psi_i^S(\vec{x}, t) \simeq e^{-iE_i(P)t + i\vec{P}\vec{x}} g_i^S(\vec{x} - \vec{v}_i t) \quad (\alpha \to 0) \]

\[g_i^S(\vec{x} - \vec{v}_i t) \equiv \int \frac{d^3p_1}{(2\pi)^3} f_i^S(\vec{p}_1) e^{i\vec{p_1}(\vec{x} - \vec{v}_i t)} \]

Center of the wave packet: \(\vec{x} - \vec{v}_i t = 0 \). Spatial length: \(\sigma_{xP} \sim 1/\sigma_{pP} \)

\((g_i^S \text{ decreases quickly for } |\vec{x} - \vec{v}_i t| \gtrsim \sigma_{xP}) \).

Detected state (centered at \(\vec{x} = \vec{L} \)):

\[|\nu_{\beta}^\text{fl}(\vec{x})\rangle = \sum_k U_{\beta k}^* \Psi_k^D(\vec{x}) |\nu_i^\text{mass}\rangle \]

The coordinate-space wave function of the \(i \)th mass eigenstate (w. packet):

\[\Psi_k^D(\vec{x}) = \int \frac{d^3p}{(2\pi)^3} f_k^D(\vec{p}) e^{i\vec{p}(\vec{x} - \vec{L})} \]
Oscillation probability

Transition amplitude:

\[A_{\alpha\beta}(T, \vec{L}) = \langle \nu_{\beta}^{f} | \nu_{\alpha}^{f}(T, \vec{L}) \rangle = \sum_{i} U_{\alpha i}^{*} U_{\beta i} A_{i}(T, \vec{L}) \]

\[A_{i}(T, \vec{L}) = \int \frac{d^{3}p}{(2\pi)^{3}} f_{i}^{S}(\vec{p}) f_{i}^{D*}(\vec{p}) e^{-iE_{i}(p)T + ip\vec{L}} \]

Strongly suppressed unless \(|\vec{L} - \vec{v}_{i} T| \lesssim \sigma_{x}\). E.g., for Gaussian wave packets:

\[A_{i}(T, \vec{L}) \propto \exp \left[-\frac{(\vec{L} - \vec{v}_{i} T)^{2}}{4\sigma_{x}^{2}} \right], \quad \sigma_{x}^{2} \equiv \sigma_{xP}^{2} + \sigma_{xD}^{2} \]

Oscillation probability:

\[P(\nu_{\alpha} \rightarrow \nu_{\beta}; T, \vec{L}) = |A_{\alpha\beta}|^{2} = \sum_{i,k} U_{\alpha i}^{*} U_{\beta i} U_{\alpha k} U_{\beta k}^{*} A_{i}(T, \vec{L}) A_{k}^{*}(T, \vec{L}) \]
Oscillation probability in WP approach

Neutrino emission and detection times are not measured (or not accurately measured) in most experiments ⇒ integration over T:

$$P(\nu_\alpha \rightarrow \nu_\beta; L) = \int dT \, P(\nu_\alpha \rightarrow \nu_\beta; T, L) = \sum_{i,k} U_{\alpha i}^* U_{\beta i} U_{\alpha k} U_{\beta k}^* e^{-i \frac{\Delta m^2_{ik}}{2P} L} \tilde{I}_{ik}$$
Neutrino emission and detection times are not measured (or not accurately measured) in most experiments \(\Rightarrow \) integration over \(T \):

\[
P(\nu_\alpha \to \nu_\beta; L) = \int dT P(\nu_\alpha \to \nu_\beta; T, L) = \sum_{i,k} U_{\alpha}^* U_{\beta i} U_{\alpha k} U_{\beta k}^* e^{-i \frac{\Delta m_{ik}^2}{2P} L} \tilde{I}_{ik}
\]

\[
\tilde{I}_{ik} = N \int \frac{dq}{2\pi} f_i^S (r_k q - \Delta E_{ik}/2\nu + P_i) f_i^D*(r_k q - \Delta E_{ik}/2\nu + P_i) \\
\times f_k^S*(r_i q + \Delta E_{ik}/2\nu + P_k) f_k^D (r_i q + \Delta E_{ik}/2\nu + P_k) e^{i \frac{\Delta \nu}{\nu} q L}
\]

Here: \(\nu \equiv \frac{\nu_i + \nu_k}{2} \), \(\Delta \nu \equiv \nu_k - \nu_i \), \(r_{i,k} \equiv \frac{v_{i,k}}{\nu} \), \(N \equiv 1/[2E_i(P)2E_k(P)\nu] \)
Oscillation probability in WP approach

Neutrino emission and detection times are not measured (or not accurately measured) in most experiments ⇒ integration over T:

$$P(\nu_\alpha \rightarrow \nu_\beta; L) = \int dT \, P(\nu_\alpha \rightarrow \nu_\beta; T, L) = \sum_{i,k} U^*_{\alpha i} U_{\beta i} U_{\alpha k} U^*_{\beta k} e^{-i\frac{\Delta m^2_{ik}}{2P} L} \tilde{I}_{ik}$$

$$\tilde{I}_{ik} = N \int \frac{dq}{2\pi} f^S_i (r_k q - \Delta E_{ik}/2v + P_i) f^{D*}_i (r_k q - \Delta E_{ik}/2v + P_i)$$

$$\times f^{S*}_k (r_i q + \Delta E_{ik}/2v + P_k) f^D_k (r_i q + \Delta E_{ik}/2v + P_k) e^{i\frac{\Delta v}{v} q L}$$

Here: $v \equiv \frac{v_i + v_k}{2}$, $\Delta v \equiv v_k - v_i$, $r_{i,k} \equiv \frac{v_{i,k}}{v}$, $N \equiv 1/[2E_i(P)2E_k(P)v]$

For $(\Delta v/v)\sigma_p L \ll 1$ (i.e. $L \ll l_{coh} = (v/\Delta v)\sigma_x$) \tilde{I}_{ik} is approximately independent of L; in the opposite case \tilde{I}_{ik} is strongly suppressed
Oscillation probability in WP approach

Neutrino emission and detection times are not measured (or not accurately measured) in most experiments ⇒ integration over T:

$$P(\nu_\alpha \to \nu_\beta; L) = \int dT P(\nu_\alpha \to \nu_\beta; T, L) = \sum_{i,k} U_{\alpha i} U_{\beta i} U_{\alpha k} U_{\beta k} e^{-i \frac{\Delta m^2_{ik}}{2P} L} \tilde{I}_{ik}$$

$$\tilde{I}_{ik} = N \int \frac{dq}{2\pi} f_i^S (r_k q - \Delta E_{ik}/2v + P_i) f_i^{D*} (r_k q - \Delta E_{ik}/2v + P_i)$$

$$\times f_k^S (r_i q + \Delta E_{ik}/2v + P_k) f_k^{D} (r_i q + \Delta E_{ik}/2v + P_k) e^{i \frac{\Delta v}{v} qL}$$

Here: $v \equiv \frac{v_i + v_k}{2}$, $\Delta v \equiv v_k - v_i$, $r_{i,k} \equiv \frac{v_{i,k}}{v}$, $N \equiv 1/[2E_i(P)2E_k(P)v]$.

- For $(\Delta v/v)\sigma_p L \ll 1$ (i.e. $L \ll l_{coh} = (v/\Delta v)\sigma_x$) \tilde{I}_{ik} is approximately independent of L; in the opposite case \tilde{I}_{ik} is strongly suppressed

- \tilde{I}_{ik} is also strongly suppressed unless $\Delta E_{ik}/v \ll \sigma_p$, i.e. $\Delta E_{ik} \ll \sigma_E$ - coherent production/detection condition
The standard osc. probability?

The standard formula for the oscillation probability corresponds to \(\tilde{I}_{ik} = 1 \).

If the two above conditions are satisfied, \(\tilde{I}_{ik} \) is not suppressed and is \(L-, E- \) and \(i, k \)-independent (i.e. a constant).

The standard probability is obtained when this constant is 1 (normalization necessary!)

Normaliz. condition:

\[
\int \frac{d^3 p}{(2\pi)^3} |f_i^S (\vec{p})|^2 |f_i^D (\vec{p})|^2 = 1
\]
How can neutrino wave packet be derived?

Amplitude of the production process (neutrino ν_j with a momentum \vec{p}):

$$\Phi_{jP}(\vec{p}) = \int d^4x_1 e^{ipx_1} \int [dq] \int [dk] f_{Pi}(\vec{q}, \vec{Q}) f^*_{Pf}(\vec{k}, \vec{K}) e^{-i(q-k)x_1} M_{jP}(q,k)$$

Detection amplitude:

$$\Phi_{jD}(\vec{p}) = \int d^4x_2 e^{-ipx_2} \int [dq'] \int [dk'] f_{Di}(\vec{q}', \vec{Q}') f^*_{Df}(\vec{k}', \vec{K}') e^{-i(q'-k')x_2} M_{jD}(q',k')$$

But: The probability amplitude that ν_j is produced with momentum \vec{p} is its momentum-space w.p.!

$$f^S_j(\vec{p}) = \Phi_{jP}(\vec{p}) \quad f^D_j(\vec{p}) = \Phi^*_{jD}(\vec{p})$$
Coherence of ν production in different points

Neutrino production in extended sources: Amplitudes of neutrino emission in different points must be summed – a consistent QM procedure.

The standard approach: calculate the probability that neutrino produced at a fixed point x oscillates, and then integrate over all x in the source (probability summation procedure – classical in nature).

Both procedures give identical answers under realistic conditions!

The two approaches lead to different results whenever the localization properties of the parent particles at neutrino production and of the detection process are such that they prevent the precise localization of the point of neutrino emission – difficult to realize in practice.
Graphical interpretation
Finite-width pion WP

Additional phase for the segment AB:

$$\Delta \phi = -[E_j(P_j) - E_k(P_k)] \Delta t + (P_j - P_k) \Delta x.$$

Δt and Δx: projections of AB on the t and x axes.

$$\Delta t = \frac{\sigma_{x\pi}}{v_g - v_\pi}, \quad \Delta x = \sigma_{x\pi} \frac{v_g}{v_g - v_\pi}.$$

$$\Delta \phi \approx -\frac{v_g}{v_g - v_\pi} \cdot \frac{\Delta m_{jk}^2}{2P} \sigma_{x\pi}.$$
Are deviations between the results of the coherent amplitude summation and incoherent probability summation approaches experimentally observable? Requires extremely high energies of the parent pion:

$$2 \left(E_\pi \sigma_{x\pi} \right) \frac{\Delta m^2}{m^2_\pi} \gtrsim 1.$$

E.g. for $\sigma_{x\pi} \sim 10^{-4}$ cm and $\Delta m^2 \sim 1$ eV2 $\Delta \phi$ would be ~ 1 for pion energies $E_\pi \gtrsim 10^3$ TeV – not feasible,

Another possibility: increase significantly the spatial width of w. packets of ancestor protons, which would increase the values of $\sigma_{x\pi}$. But: not clear how this could be achieved.

Other possibilities...
Unless otherwise specified, $\Delta m^2 = 2 \text{ eV}^2$. For β-beams $E_0 = 2 \text{ MeV}$, $\tau_0 = 1\text{s}$, $\gamma = 100$.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>$\langle E_\nu \rangle$(MeV)</th>
<th>L(m)</th>
<th>l_p(m)</th>
<th>l_{dec}(m)</th>
<th>l_{osc}(m)</th>
<th>ϕ</th>
<th>$\Gamma l_p/v_P$</th>
<th>ϕ_p</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSND</td>
<td>\sim40</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>3.8</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>KARMEN</td>
<td>\sim40</td>
<td>17.7</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>2.24</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MiniBooNE</td>
<td>\sim800</td>
<td>541</td>
<td>50</td>
<td>89</td>
<td>992</td>
<td>3.43</td>
<td>0.56</td>
<td>0.32</td>
<td>0.56</td>
</tr>
<tr>
<td>NOMAD</td>
<td>$2.7 \cdot 10^3$ (20 eV2)</td>
<td>770</td>
<td>290</td>
<td>3009</td>
<td>33480</td>
<td>0.145</td>
<td>0.1</td>
<td>0.054</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CCFR(102 eV2)</td>
<td>$5 \cdot 10^4$</td>
<td>891</td>
<td>352</td>
<td>5570</td>
<td>1240</td>
<td>4.51</td>
<td>0.06</td>
<td>1.78</td>
<td>28.2</td>
</tr>
<tr>
<td>CDHS</td>
<td>3000</td>
<td>130</td>
<td>52</td>
<td>334</td>
<td>3720</td>
<td>0.22</td>
<td>0.155</td>
<td>0.088</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>(20 eV2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K2K</td>
<td>1500</td>
<td>300</td>
<td>200</td>
<td>167</td>
<td>1861</td>
<td>1.01</td>
<td>1.2</td>
<td>0.68</td>
<td>0.56</td>
</tr>
<tr>
<td>T2K</td>
<td>600</td>
<td>280</td>
<td>96</td>
<td>66.4</td>
<td>744</td>
<td>2.36</td>
<td>1.45</td>
<td>0.81</td>
<td>0.56</td>
</tr>
<tr>
<td>Minos</td>
<td>3300</td>
<td>1040</td>
<td>675</td>
<td>368</td>
<td>4092</td>
<td>1.6</td>
<td>1.84</td>
<td>1.04</td>
<td>0.56</td>
</tr>
<tr>
<td>NOνA</td>
<td>2000</td>
<td>1040</td>
<td>675</td>
<td>223</td>
<td>2480</td>
<td>2.64</td>
<td>3.03</td>
<td>1.71</td>
<td>0.56</td>
</tr>
<tr>
<td>β-beams</td>
<td>400</td>
<td>$1.3 \cdot 10^5$</td>
<td>2500</td>
<td>$3 \cdot 10^{10}$</td>
<td>496</td>
<td>1647</td>
<td>$8.3 \cdot 10^{-8}$</td>
<td>31.7</td>
<td>$3.8 \cdot 10^8$</td>
</tr>
</tbody>
</table>

Noticeable effects for MiniBooNE, NOMAD (20 eV2), CCFR (100 eV2), CDHS (20 eV2), K2K, T2K, MINOS, NOνA, very large effects for β-beams
The standard formula for osc. probability is stubbornly robust.
Conclusions

The standard formula for osc. probability is stubbornly robust.

Validity conditions:
Conclusions

The standard formula for osc. probability is stubbornly robust.

Validity conditions:

- Neutrinos are ultra-relativistic or quasi-degenerate in mass
Conclusions

The standard formula for osc. probability is stubbornly robust.

Validity conditions:

- Neutrinos are ultra-relativistic or quasi-degenerate in mass
- Coherence conditions for neutrino production, propagation and detection are satisfied.
Conclusions

The standard formula for osc. probability is stubbornly robust.

Validity conditions:

- Neutrinos are ultra-relativistic or quasi-degenerate in mass
- Coherence conditions for neutrino production, propagation and detection are satisfied.

Gives also the correct result in the case of strong coherence violation (complete averaging regime).
Conclusions

The standard formula for osc. probability is stubbornly robust.

Validity conditions:

- Neutrinos are ultra-relativistic or quasi-degenerate in mass
- Coherence conditions for neutrino production, propagation and detection are satisfied.

Gives also the correct result in the case of strong coherence violation (complete averaging regime).

Gives only order of magnitude estimate when decoherence parameters are of order one.
Conclusions

The standard formula for osc. probability is stubbornly robust.

Validity conditions:

- Neutrinos are ultra-relativistic or quasi-degenerate in mass
- Coherence conditions for neutrino production, propagation and detection are satisfied.

Gives also the correct result in the case of strong coherence violation (complete averaging regime).

Gives only order of magnitude estimate when decoherence parameters are of order one.

But: Conditions for partial decoherence are difficult to realize
Conclusions

The standard formula for osc. probability is stubbornly robust.

Validity conditions:

- Neutrinos are ultra-relativistic or quasi-degenerate in mass
- Coherence conditions for neutrino production, propagation and detection are satisfied.

Gives also the correct result in the case of strong coherence violation (complete averaging regime).

Gives only order of magnitude estimate when decoherence parameters are of order one.

But: Conditions for partial decoherence are difficult to realize

They may still be realized if relatively heavy sterile neutrinos exist
Coherence production conditions:

\[|\Delta E| \ll \sigma_E, \quad |\Delta p| \ll \sigma_p. \]

On the other hand:

\[\Delta E \simeq v_g \Delta p + \frac{\Delta m^2}{2E}. \]

Constraint \(|\Delta E| \ll \sigma_E \Rightarrow \)

\[\left| \frac{v_g \Delta p}{\sigma_E} + \frac{\Delta m^2}{2E \sigma_E} \right| \ll 1. \quad (\ast) \]

(a) The two terms in \(\Delta E \) do not approximately cancel each other. \(\Rightarrow v_g |\Delta p| \ll \sigma_E \leq \sigma_p, \) i.e. for relativistic neutrinos \(|\Delta p| \ll \sigma_p \) follows from \(|\Delta E| \ll \sigma_E. \)

(b1) There is a strong cancellation, but both terms on the l.h.s. of \((\ast)\) are small – see case (a).

(b2) Strong cancellation, but both terms on the l.h.s. of \((\ast)\) are \(\gtrsim 1\): momentum condition is independent. But: the only known case – Mössbauer neutrinos.
The paradox of σ_E and σ_p

QM uncertainty relations: σ_p is related to the spatial localization of the production (detection) process, while σ_E to its time scale \Rightarrow independent quantities.

On the other hand: Neutrinos propagating macroscopic distances are on the mass shell. For on-shell mass eigenstates $E^2 = p^2 + m_i^2$ means

$$E\sigma_E = p\sigma_p$$

How can this be understood?

The solution: At production, neutrinos are *not* on the mass shell. They go on shell only after they propagate $x \sim$ (a few)\times De Broglie wavelengths. After that their energy and momentum get related by $E^2 = p^2 + m_i^2 \Rightarrow$ the larger uncertainty shrinks towards the smaller one to satisfy $E\sigma_E = p\sigma_p$.

On-shell relation between E and p allows to determine the less certain of the two through the more certain one, reducing the error of the former.
What determines the length of ν w. packets?

The length of ν w. packets: $\sigma_x \sim 1/\sigma_p$. For propagating on-shell neutrinos:

$$\sigma_p \simeq \min\{\sigma_p^{\text{prod}}, (E/p)\sigma_E^{\text{prod}}\} = \min\{\sigma_p^{\text{prod}}, (1/v_g)\sigma_E^{\text{prod}}\}$$

Which uncertainty is smaller at production, σ_p^{prod} or σ_E^{prod}?
What determines the length of ν w. packets?

The length of ν w. packets: $\sigma_x \sim 1/\sigma_p$. For propagating on-shell neutrinos:

$$\sigma_p \simeq \min\{\sigma_p^{\text{prod}}, (E/p)\sigma_E^{\text{prod}}\} = \min\{\sigma_p^{\text{prod}}, (1/v_g)\sigma_E^{\text{prod}}\}$$

Which uncertainty is smaller at production, σ_p^{prod} or σ_E^{prod}?

Consider neutrino production in decays of an unstable particle localized in a box of size L_S. Time between two collisions with the walls of the box: T_S.
What determines the length of ν w. packets?

The length of ν w. packets: $\sigma_x \sim 1/\sigma_p$. For propagating on-shell neutrinos:

$$\sigma_p \simeq \min\{\sigma_p^{\text{prod}}, (E/p)\sigma_E^{\text{prod}}\} = \min\{\sigma_p^{\text{prod}}, (1/v_g)\sigma_E^{\text{prod}}\}$$

Which uncertainty is smaller at production, σ_p^{prod} or σ_E^{prod}?

Consider neutrino production in decays of an unstable particle localized in a box of size L_S. Time between two collisions with the walls of the box: T_S.

- If $T_S < \tau$ (τ – lifetime of the parent unstable particle) $\Rightarrow \sigma_E \simeq T_S^{-1}$ (collisional broadening). Mom. uncertainty: $\sigma_p \simeq L_S^{-1}$.

But: $L_S = v_S T_S \Rightarrow \sigma_E < \sigma_p$ (a consequence of $v_S < 1$)
What determines the length of ν w. packets?

The length of ν w. packets: $\sigma_x \sim 1/\sigma_p$. For propagating on-shell neutrinos:

$$\sigma_p \simeq \min\{\sigma_p^{\text{prod}}, (E/p)\sigma_E^{\text{prod}}\} = \min\{\sigma_p^{\text{prod}}, (1/v_g)\sigma_E^{\text{prod}}\}$$

Which uncertainty is smaller at production, σ_p^{prod} or σ_E^{prod}?

Consider neutrino production in decays of an unstable particle localized in a box of size L_S. Time between two collisions with the walls of the box: T_S.

- If $T_S < \tau$ (τ — lifetime of the parent unstable particle) \Rightarrow $\sigma_E \simeq T_S^{-1}$ (collisional broadening). Mom. uncertainty: $\sigma_p \simeq L_S^{-1}$.

 But: $L_S = v_S T_S$ \Rightarrow $\sigma_E < \sigma_p$ (a consequence of $v_S < 1$)

- If $T_S > \tau$ (quasi-free parent particle) \Rightarrow $\sigma_E \simeq \tau^{-1} = \Gamma$.

 $\sigma_p \simeq [(p/E)\tau]^{-1} \simeq [(p/E)\sigma_E]^{-1}$, i.e. $\sigma_E \simeq (p/E)\sigma_p < \sigma_p$.
In both cases $\sigma_{E}^{\text{prod}} < \sigma_{p}^{\text{prod}} \iff$ also when ν's are produced in collisions.

$$\implies \sigma_{p \text{ eff}} \simeq \frac{\sigma_{E}}{v_{g}}, \quad \sigma_{x} \simeq \frac{v_{g}}{\sigma_{E}}$$

In the stationary limit ($\sigma_{E} \to 0$) one has $\sigma_{p \text{ eff}} \to 0$ even though σ_{p} is finite! Therefore $\sigma_{x} \to \infty$ and so the coherence length $l_{\text{coh}} \to \infty$ – a well known result.