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Cosmological Acceleration

The data in favor of accelerated expansion:
observation of the large scale structure of the universe

measurements of the angular fluctuations of the CMBR

determination of the universe age

discovery of the dimming of distant Supernovae

With cosmological inflation, at the very beginning,
the picture would be:

first acceleration (initial push)

then normal deceleration

and lastly (today) surprising acceleration again
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Phenomenological Explanations

Dark Energy: P < −%/3
small vacuum energy, which is identical to cosmological
constant
energy density associated with an unknown, presumably
scalar field, which slowly varies in the course of the
cosmological evolution

Modification of Gravity:

Sgrav = −
m2

Pl

16π

∫∫∫
d4x
√
−g [R + F(R)]

Here mPl = 1.22 · 1019GeV is the Planck mass.

Non-linear F(R)-function: the modified GR equations have a
solution R = const in absence of any matter source.
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Pioneering Works

The pioneering suggestion:
S. Capozziello, S. Carloni, A. Troisi, Recent Res. Develop. Astron.
Astrophys.1(2003)625; astro-ph/0303041.

S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Phys. Rev.
D70 (2004) 043528, astro-ph/0306438.

F(R) = −µ4/R

µ2 ∼ Rc ∼ 1/t2
u is a small parameter with dimension of mass squared.

Agreement with Newtonian limit for sufficiently small µ.

Strong instability in the presence of matter.

A.D. Dolgov, M. Kawasaki, Phys.Lett. B573 (2003) 1.
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Modified modified gravity: free from exponential instability

W.Hu, I. Sawicki, Phys. Rev. D 76, 064004 (2007).

FHS(R) = −
Rvac

2

c
(

R
Rvac

)2n

1 + c
(

R
Rvac

)2n
,

A.Appleby, R. Battye, Phys. Lett. B 654, 7 (2007).

FAB(R) =
ε

2
log

[
cosh

(
R
ε
− b

)
cosh b

]
−

R

2
,

A.A. Starobinsky, JETP Lett. 86, 157 (2007).

FS(R) = λR0

(1 +
R2

R2
0

)−n

− 1

 .
S.A. Appleby, R.A. Battye, A.A. Starobinsky, JCAP 1006 (2010) 005.
S.Nojiri, S.Odintsov, Phys.Lett.B657(2007)238; Phys.Rept.505(2011)59.
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Another Problems

The suggested modifications, however, may lead to infinite-R
singularities in the past cosmological history:

S.A. Appleby, R.A. Battye, A.A. Starobinsky, JCAP 1006
(2010) 005.

In the future in astronomical systems with rising
energy/matter density:

A.V. Frolov, Phys. Rev. Lett. 101, 061103 (2008)

I. Thongkool, M. Sami, R. Gannouji, S. Jhingan, Phys.
Rev. D 80 043523 (2009); I. Thongkool, M. Sami, S. Rai
Choudhury, Phys. Rev. D 80 127501 (2009).

E.V. Arbuzova, A.D. Dolgov, Phys.Lett.B700, 289(2011).

Some properties of such singularities were further studied in:

K. Bamba, S. Nojiri, S.D. Odintsov, Phys. Lett. B 698,
451 (2011).
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Cure of Sigularities: R2-term

Additional R2-term in the action: naturally appears as a result
of quantum corrections due to matter loops in curved
space-time.

V.Ts. Gurovich, A.A. Starobinsky, Sov. Phys. JETP 50 (1979)
844; [Zh. Eksp. Teor. Fiz. 77 (1979) 1683];

A.A. Starobinsky, JETP Lett. 30 (1979) 682; [Pisma Zh. Eksp.
Teor. Fiz. 30

¯
(1979) 719]; Phys. Lett. B91, 99 (1980).

A.A. Starobinsky, Proc. of the Second Seminar ”Quantum Theory
of Gravity” (Moscow, 13-15 Oct. 1981), INR Press, Moscow , 1982,
pp. 58-72; reprinted in: Quantum Gravity, eds. M. A. Markov and
P. C. West. Plenum Publ. Co., N.Y., 1984, pp. 103-128.

Renewed interest in possible effects of additional ultraviolet
terms, ∼ R2, in infrared-modified F(R) gravity models.

E.V. Arbuzova, A.D. Dolgov, L. Reverberi, JCAP 02 (2012) 049.

H. Motohashi, A. Nishizawa, Phys.Rev. D86 (2012) 083514.
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Model

We consider the version of the modified gravity suggested by
Starobinsky:

F(R) = −λR0

[
1−

(
1 +

R2

R2
0

)−n
]
−

R2

6m2

n is an integer, λ > 0, |R0| ∼ 1/t2
U, tU ≈ 13 Gyr is the universe

age.

Parameter m is bounded by m &&& 105 GeV to preserve successful
predictions of BBN.

R2-term is included to prevent curvature singularities in the presence
of contracting bodies and is relevant at very large curvatures.
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Basic Equations

The evolution of R is determined from the equation:

3D2F′R− R + RF′R− 2F = T

D2 is the covariant D’Alambertian operator, F′R ≡ dF/dR

T ≡ 8πTµµ/m2
Pl and Tµν is energy-momentum tensor of matter.

We are interested in the regime |R0| � |R| � m2, in which:

F(R) ' −λR0

[
1−

(
R0

R

)2n
]
−

R2

6m2
.

We study the evolution of R in a contracting astrophysical system
with rising energy density:

%m(t) = %m0(1 + t/tcontr)

We assume that the gravity of matter is not strong and thus the
background metric is flat: 3∂2

t F′R− R− T = 0.
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New Notations: Oscillator Equation

With the dimensionless quantities:

z ≡
T(t)

T(tin)
≡

T

T0
=
%m(t)

%m0
, y ≡ −

R

T0
, τ ≡ m

√
g t

g =
1

6λn(mtU)2

(
%m0

%c

)2n+2

, %c ≈ 10−29g/cm3

and new function, proportional to F′(R):

ξ ≡
1

2λn

(
T0

R0

)2n+1

F′R =
1

y2n+1
− gy

The equation of motion for ξ takes the simple oscillator form:

ξ′′+ dU/dξ = 0 , where dU/dξ = z− y(ξ).

y cannot be expressed through ξ analytically so we have to use
different approximate expressions in different ranges of ξ.
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Potential: U(ξ) = U+(ξ)Θ(ξ)+ U−(ξ)Θ(−ξ)
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Left panel (n = 2, z = 1.5): solid line: g = 0.02, dashed line:
g = 0.01, dotted line: g = 0.002. Right panel (n = 2, g = 0.01):
solid line: z = 1.3, dashed line: z = 1.4, dotted line: z = 1.5.

U+(ξ) = zξ−
2n + 1

2n

[(
ξ+ g(2n+1)/(2n+2)

)2n/(2n+1)

− g2n/(2n+2)

]
,

U−(ξ) =
(

z− g−1/(2n+2)
)
ξ+

ξ2

2g
.
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Oscillations of y

The oscillations of y are strongly unharmonic.

Τ

y

“Spikes” in the solutions. n = 2, g = 0.001

If the energy density rises with time, fast oscillations of the scalar
curvature are induced, with an amplitude possibly much larger the
the usual GR value R = −T̃.
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Spike-like Solutions

The maximum value of y in the spike region is:

y(t) ∼ 6n(2n + 1)mtu

(
tu

tcontr

)[
%m(t)

%m0

](n+1)/2( %c

%m0

)2n+2

E. Arbuzova, A. Dolgov, L. Reverberi, Eur.Phys.J.C(2012) 72:2247,

arX:1211.5011; Phys.Rev.D 88, 024035 (2013), arX:1305.5668.

Solution of modified gravity equations for finite-size astronomical
objects with rising energy density:

R = RGR(r)y(t), RGR = −T̃(r) = −
8πTµµ(r)

m2
Pl

RGR is the would-be solution in the limit of GR

quickly oscillating function y(t) is much larger than unity
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Spherically Symmetric Solutions in F (R) Gravity

E.V. Arbuzova, A.D. Dolgov, L. Reverberi, arXiv: 1306.5694.

We consider a spherically symmetric bubble of matter of radius rm, and
study spherically symmetric solution of modified EoM:

R00 − R/2 =
T̃00 + ∆F′R + F/2− RF′R/2

1 + F′R

Rrr + R/2 =
T̃rr + (∂2

t + ∂2
r −∆)F′R − F/2 + RF′R/2

1 + F′R

We use the Schwarzschild metric:

ds2 = A(r, t)dt2 − B(r, t)dr2 − r2(dθ2 + sin2θ dφ2)

A1 = A− 1� 1 and B1 = B− 1� 1

If the energy density of matter inside the the cloud, i.e. for r < rm, is
much larger than the cosmological energy density, then:

F′R� 1 and F� R
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Equations of Motion and General Solutions

In the weak field limit:

R00 ≈
A′′ − B̈

2
+

A′

r
, Rrr ≈

B̈− A′′

2
+

B′

r

R ≈ A′′ − B̈ +
2A′

r
−

2B′

r
+

2(1− B)

r2

We assume that spatial derivatives of F′R are small and we find:

B′1 +
B1

r
= rT̃00

A′′1 −
A′1
r

= −
3B1

r2
+ B̈1 + T̃00 − 2T̃rr +

T̃θθ

r2
+

T̃ϕϕ

r2 sin2 θ
≡ SA

General solutions:

B1(r, t) =
CB(t)

r
+

1

r

∫∫∫ r

0

dr′r′2T̃00(r′, t)

A1(r, t) = C1A(t)r2 + C2A(t) +

∫∫∫ rm

r

dr1 r1

∫∫∫ rm

r1

dr2

r2

SA(r2, t)
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The Schwarzschild Limit

The mass of matter inside a radius r is defined in the usual way:

M(r, t) =

∫∫∫ r

0
d3r T00(r, t) = 4π

∫∫∫ r

0
dr r2 T00(r, t)

If all matter is confined inside a radius rm, the total mass is
M ≡M(rm) and it does not depend on time.

Since T̃00 = 8πT00/m2
Pl, we obtain for r > rm:

B1 = rg/r, where rg = 2M/m2
Pl

The metric coefficient A1 outside the source is:

A1 = −
rg

r
+

[
C1A(t)−

rg

2r3
m

]
r2 +

[
C2A(t) +

3rg

2rm

]
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Metric Functions inside a Cloud

The metric functions inside the cloud are equal to:

B(r, t) = 1 +
2M(r, t)

m2
Plr

≡ 1 + B
(Sch)
1 ,

A(r, t) = 1 +
R(t) r2

6
+ A

(Sch)
1 (r, t) .

For the Schwarzschild part of the solution we find:

A
(Sch)
1 (r, t) =

rgr2

2r3
m

−
3rg

2rm

+
π%̈m

3m2
Pl

(r2
m − r2)2

The oscillating part R(t)r2/6 gives the dominant contribution into A1:

r2R(t) ∼ r2y(t)RGR with y� 1, |RGR| = 8π%m/m2
Pl.

the canonical Schwarzschild terms: rg/rm ∼ %mr2
m/m2

Pl ∼ r2
mRGR.
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Anti-gravity inside a Cloud

For large objects, such that Rr2/6 ∼ 1, the approximation used here is
not applicable.
If A1 ∼ 1, the evolution of R(t) may significantly differ from presented
above, but even for small A1 there would arise interesting new effects.

In the lowest order in the gravitational interaction the motion of a
non-relativistic test particle is governed by the equation:

r̈ = −
A′

2
= −

1

2

[
R(t)r

3
+

rgr

r3
m

]
Since R(t) is always negative and large, the modifications of GR
considered here lead to anti-gravity inside a cloud with energy
density exceeding the cosmological one.

Gravitational repulsion dominates over the usual attraction if:

|R|r3
m

3rg

=
|R|r3

mm2
Pl

6M
=
|R|r3

mm2
Pl

8π% r3
m

=
|R|
T̃00

> 1
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Conclusions

We have shown:

In contracting astrophysical systems with rising energy density
powerful oscillations of curvature scalar, R, are induced.

Initially harmonic, these oscillations evolve to strongly
unharmonic ones with high frequency and large amplitude,
which could be much larger than the value of curvature in the
standard GR.

Structure formation in modified gravity would be very much
different from that in the standard GR.

Sufficiently large primordial clouds would not shrink down to
smaller and smaller bodies with more or less uniform density
but form thin shells empty (or almost empty) inside.

This anti-gravitating behavior may also be a possible driving
force for the creation of cosmic voids.
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THE END

THANK YOU FOR THE
ATTENTION!
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Spherically Symmetric Solutions in F (R) Gravity

Assumption: the background space-time is nearly flat and so the
background metric is almost Minkowsky.
Is this approximation valid for large deviation of curvature from its GR
value?

E.V. Arbuzova, A.D. Dolgov, L. Reverberi, arXiv: 1306.5694.

We consider a spherically symmetric bubble of matter of radius rm, and
study spherically symmetric solution of modified EoM(
1 + F′R

)
Rµν −

1

2
(R + F) gµν +

(
gµνDαDα −DµDν

)
F′R = T̃µν

3D2F′R − R + RF′R − 2F = T̃

We use the Schwarzschild metric and assume that the metric is close to
the flat one:

ds2 = A(r, t)dt2 − B(r, t)dr2 − r2(dθ2 + sin2θ dφ2)

A1 = A− 1� 1 and B1 = B− 1� 1
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Equations of Motion

It is convenient to use EoM in the following form:

R00 − R/2 =
T̃00 + ∆F′R + F/2− RF′R/2

1 + F′R

Rrr + R/2 =
T̃rr + (∂2

t + ∂2
r −∆)F′R − F/2 + RF′R/2

1 + F′R

In the weak field limit:

R00 ≈
A′′ − B̈

2
+

A′

r
, Rrr ≈

B̈− A′′

2
+

B′

r

R ≈ A′′ − B̈ +
2A′

r
−

2B′

r
+

2(1− B)

r2

If the energy density of matter inside the the cloud, i.e. for r < rm, is
much larger than the cosmological energy density, then:

F′R� 1 and F� R

For static solutions the effects of gravity modifications in this limit are
weak and the solution is quite close to the standard Schwarzschild one.
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General Solutions

We assume that spatial derivatives of F′R are small and we find:

B′1 +
B1

r
= rT̃00

A′′1 −
A′1
r

= −
3B1

r2
+ B̈1 + T̃00 − 2T̃rr +

T̃θθ

r2
+

T̃ϕϕ

r2 sin2 θ
≡ SA

Equation for B1 has the solution:

B1(r, t) =
CB(t)

r
+

1

r

∫∫∫ r

0

dr′r′2T̃00(r′, t)

To avoid a singularity at r = 0 we have to assume that CB(t) ≡ 0.

A1(r, t) = C1A(t)r2 + C2A(t) +

∫∫∫ rm

r

dr1 r1

∫∫∫ rm

r1

dr2

r2

SA(r2, t) ,

SA = −
3

r3

∫∫∫ r

0

dr′r′2T̃00(r′, t) +
1

r

∫∫∫ r

0

dr′r′2 ¨̃T00(r′, t) + T̃00 − 2T̃rr+

T̃θθ

r2
+

T̃ϕϕ

r2 sin2 θ
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The Schwarzschild Limit

The mass of matter inside a radius r is defined in the usual way:

M(r, t) =

∫∫∫ r

0

d3r T00(r, t) = 4π

∫∫∫ r

0

dr r2 T00(r, t)

If all matter is confined inside a radius rm, the total mass is M ≡M(rm)
and it does not depend on time.
Since T̃00 = 8πT00/m2

Pl, we obtain for r > rm:

B1 = rg/r, where rg = 2M/m2
Pl

In the region r > rm we have Tµν = 0 and the integral containing ¨̃T00 is
also zero due to total mass conservation. The remaining integral gives:∫∫∫ rm

r

dr1 r1

∫∫∫ rm

r1

dr2

r2

3

r3
2

∫∫∫ r2

0

dr′r′2T̃00(r′, t) =
rg

r
+

rg r2

2r3
m

−
3rg

2rm

Thus the metric coefficient outside the source is:

A1 = −
rg

r
+

[
C1A(t)−

rg

2r3
m

]
r2 +

[
C2A(t) +

3rg

2rm

]
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Modified Gravity Solutions

The coefficient C1A(t) can be found from equation for R:

R ≈A′′ +
2A′

r
−B̈−

2B′

r
+

2(1− B)

r2

In systems with rising energy density the curvature scalar may be
much larger than its value in GR.

Using eqs. for A1 and B1 and comparing them to expression for R, we
get: C1A(t) = R(t)/6,

R(t) ∼ −6n(2n + 1)mtu

(
tu

tcontr

)[
%m(t)

%m0

](n+1)/2(
%c

%m0

)2n+2

T̃

The difference between modified and standard solutions in vacuum:

In the standard case the term proportional to r2 appears both at
r < rm and r > rm with the same coefficient and must vanish.

For modified gravity such condition is not applicable and the
C1Ar2-term may be present at r < rm and absent at r� rm.
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Metric Functions inside a Cloud

The metric functions inside the cloud are equal to:

B(r, t) = 1 +
2M(r, t)

m2
Plr

≡ 1 + B
(Sch)
1 ,

A(r, t) = 1 +
R(t) r2

6
+ A

(Sch)
1 (r, t) .

The matter is nonrelativistic, so the space components of Tµν are
negligible in comparison to T00.

T00 ≡ %m(t) is spatially constant but may depend on time.

For the Schwarzschild part of the solution we find:

A
(Sch)
1 (r, t) =

rgr2

2r3
m

−
3rg

2rm

+
π%̈m

3m2
Pl

(r2
m − r2)2

The oscillating part R(t)r2/6 gives the dominant contribution into A1:

r2R(t) ∼ r2y RGR with y� 1, |RGR| = 8π%m/m2
Pl.

the canonical Schwarzschild terms: rg/rm ∼ %mr2
m/m2

Pl ∼ r2
mRGR.
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Applicability of the Approximation

If the initial energy density of the cloud is of the order of the
cosmological energy density

RGR ∼ 1/t2
u,

the metric would deviate from the Minkowsky one for clouds
having radius:

rm > tu/
√

y.

Structure formation proceeds at red shifts of order unity when
the density fluctuations δ% became of the same order of the
background cosmological energy density.

For large objects, such that Rr2/6 ∼ 1, the approximation used
here is not applicable.
If A1 ∼ 1, the evolution of R(t) may significantly differ from
presented above, but even for small A1 there would arise
interesting new effects.
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Anti-gravity inside a Cloud

In the lowest order in the gravitational interaction the motion of a
non-relativistic test particle is governed by the equation:

r̈ = −
A′

2
= −

1

2

[
R(t)r

3
+

rgr

r3
m

]
Since R(t) is always negative and large, the modifications of
GR considered here lead to anti-gravity inside a cloud with
energy density exceeding the cosmological one.

Gravitational repulsion dominates over the usual attraction if:

|R|r3
m

3rg
=
|R|r3

mm2
Pl

6M
=
|R|r3

mm2
Pl

8π% r3
m

=
|R|
T̃00

> 1
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