REVIEW OF DOUBLE BETA DECAY EXPERIMENTS

A.S. Barabash ITEP, Moscow

OUTLINE

- Introduction
- Current experiments (GERDA-I, EXO-200, KamLAND-Zen)
- Future experiments
- Conclusion

1. Introduction

 $100 \text{Mo} \Rightarrow 100 \text{Ru} + 2e^{-1}$ $100 \text{Mo} \Rightarrow 100 \text{Ru} + 2e^{-1} + \chi^0 (+\chi^0)$ $100 \text{Mo} \Rightarrow 100 \text{Ru} + 2e^{-1} + 2v$

There are 35 candidates for 2β-decay

 $W \sim Q^5 (0\nu); W \sim Q^7 (0\nu\chi^0)$ $W \sim Q^{11} (2\nu)$

Q_{ββ}= 3.033 MeV

Candidates with $Q_{2\beta} > 2 \text{ MeV}$

Nuclei	<mark>Q</mark> _{2β} , keV	Abundance, %
1. ⁴⁸ Ca	4272	0.187
2. ¹⁵⁰ Nd	3371.4	5.6
3. ⁹⁶ Zr	3350	2.8
4. ¹⁰⁰ Mo	3034.4	9.63
5. ⁸² Se	2996	8.73
6. ¹¹⁶ Cd	2805	7.49
7. ¹³⁰ Te	2527.5	<u>34.08</u>
8. ¹³⁶ Xe	2458.7	8.87
9. ¹²⁴ Sn	2287	5.79
10. ⁷⁶ Ge	2039.0	7.61
11. ¹¹⁰ Pd	2000	11.72

Natural γ -rays background - E < 2.615 MeV. So, there are 6 gold and 5 silver isotopes

NEUTRINOLESS DOUBLE BETA DECAY

Experimental signature:

2 electrons $E_{\beta 1} + E_{\beta 2} = Q_{\beta \beta}$

Oscillation experiments \Rightarrow **Neutrino is massive!!!**

- However, the oscillatory experiments cannot solve the problem of the origin of neutrino mass (Dirac or Majorana?) and cannot provide information about the absolute value of mass (because the ∆m² is measured).
- <u>This information can be obtained in 2β-decay</u> <u>experiments.</u>

$$\langle m_v \rangle = |\Sigma| |Uej|^2 e^{i\phi_j} m_j|$$

Thus searches for double beta decay are sensitive not only to masses but also to mixing elements and phases ϕ_i .

What one can extract from 2 β -decay experiments? \Rightarrow

- Lepton number nonconservation (\(\Delta L=2\))
- Nature of neutrino mass (Dirac or Majorana?).
- Absolute mass scale (value or limit on m₁).
- Type of hierarchy (normal, inverted, quasi-degenerated).
 - **CP** violation in the lepton sector.

Best present limits on $\langle m_v \rangle$

Nuclei	Т _{1/2} , у	<m<sub>v>, eV QRPA + others</m<sub>	<m<sub>v>, eV [SM]</m<sub>	Experiment
⁷⁶ Ge	>2.1·10 ²⁵	< 0.19-0.30	< 0.66	GERDA-I
¹³⁶ Xe	>1.9·10 ²⁵	< 0.13-0.30	< 0.35	KAMLAND-Zen
¹³⁰ Te	>2.8.10 ²⁴	< 0.28-0.81	< 0.77	CUORICINO
¹⁰⁰ Mo	>1.1.1024	< 0.29-0.70	-	NEMO
⁸² Se	>3.6.10 ²³	< 0.77-1.38	< 2.4	NEMO
¹¹⁶ Cd	>1.7.10 ²³	< 1.16-2.16	< 1.8	SOLOTVINO

Conservative limit on $\langle m_v \rangle$ is 0.35 eV

DBD and neutrino mass hierarchy

Two neutrino double beta decay

- Second order of weak interaction
- Direct measurement of NME values!
 ⇒
 - The only possibility to check the quality of NME calculations!!!
 - g_{pp} (QRPA parameter \Rightarrow NME(0 $_{V}$)!)
- This is why it is very important to measure this type of decay for many nuclei, for different processes (2β⁻, 2β⁺, Kβ⁺, 2K, excited states) and with high accuracy.

M. Goeppert-Mayer

Two neutrino double beta decay

 By present time 2β(2ν) decay was detected in 11 nuclei: ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹⁵⁰Nd, ²³⁸U, ¹³⁶Xe

For ¹⁰⁰Mo and ¹⁵⁰Nd $2\beta(2\nu)$ transition to **0⁺ excited states** was detected too

ECEC(2 $_{\rm V}$) in ¹³⁰Ba was detected in geochemical experiments

<u>Main goal is</u>: precise investigation of this decay (NEMO-3, EXO-200, GERDA-I...)

2. CURRENT EXPERIMENTS

• EXO-200, KamLAND-Zen, GERDA-I

 Others (CUORE-0, CANDLES-III, DAMA, CdWO₄, excited states,...)

EXO-200

Location: WIPP (USA) – salt mine (1600 м w.e.) Passive shield – 25 cm of Pb Active shield - plastic scintillator (5 cm) ¹³⁶Xe: enrichment – 80.6%; mass – 175 κg; useful mass – 98.5 kg Signal: ionization + scintillation ΔE/E(FWHM) = 10.6% at 2.615 MeV (ionization) ~ 4% (ionization + scintillation) Strength of electric field – 376 V/cm (V = - 8 kV);

EXO-200 results

2v decay Precise half-life value is obtained: ~ 19000 2v events!

 $T_{1/2}(2\nu) = 2.172 \pm 0.017(stat) \pm 0.06(syst)x10^{21} yr$ (nucl-ex/1306.6106) 98.5 kg of ^{enr}Xe (79.4 kg of ¹³⁶Xe)

127.6 days; $\Delta E/E = 4\%$ (FWHM)

Ov decay: no signal is observed

 $T_{1/2} > 1.6 \cdot 10^{25} \text{ yr } (90\% \text{ CL})$

 $< m_{v} > < 140 - 380 \text{ meV} (90\% \text{ C.L.})$

Background in 0v window:

~1.4x10⁻³ c/keV·kg·yr

PRC (2012) 032505

KamLAND-Zen

3.16 m ϕ balloon

²³⁸U : 0.2~2.2×10⁻¹⁸ g/g ²³²Th : 1.9~4.8×10⁻¹⁷ g/g (Original idea of R. Ragavan, PRL 72 (1994) 1411)

1st phase enriched Xe 400kg R=1.7 m balloon

24 of September 2011 - beginning of data tacking

¹³⁶Xe: 330 kg, enrichment – 91% ∆E/E(FWHM) = 9.5% at 2.5 MeV

Sensitivity:

- ~ 80 meV for 2 yr of measurement
- ~ 60 meV 3a 5 yr of measurement

See J. Shirai presentation

KamLAND-Zen results

$$\begin{split} &\mathsf{T}_{1/2}(2\nu) = 2.30 \pm 0.02(\text{stat.}) \pm 0.12(\text{sys.}) \times 10^{21} \text{ yr} \\ &(\mathsf{PRC 86 (2012) 021601R; in agreement with EXO-200)} \\ &\mathsf{T}_{1/2}(0\nu) > 1.9x10^{25} \text{ yr} (90\% \text{ CL}) \implies <\mathsf{m}_{\nu} > < 0.13-0.35 \text{ eV} \\ &(\mathsf{PRL 110 (2013) 062502)} \end{split}$$

Ordinary (spectral index n = 1) Majoron-emitting decay of ¹³⁶Xe

 $T_{1/2} > 2.6 \times 10^{24} \text{ yr}$

 $< g_{ee} > < (0.8-1.6) \times 10^{-5}$

Background is <u>~ 100 times</u> higher than in KamLAND BI ~ 10⁻⁴ c/keV·kg·yr [U ~ 3.5·10⁻¹⁶; Th ~ 2.2·10⁻¹⁵; Fukushima isotopes]

Sensitivity will be ~ 10 better if background problem will be solved

GERDA-I (Gran Sasso)

8 HPGe detectors made of enriched Ge (17.66 kr; HM+IGEX) + 1 detector made of natural Ge; 3 natural HPGe $\Delta E = 4-5 \text{ keV}$ Sensitivity: ~ 2.10²⁵ yr for 1 year of measurement and B = 0.01 c/keV·kg·y

Beginning of data taking: 09.11.2011 Main goal – to check the Klapdor's result

See L. Bezrukov presentation

GERDA-I results

2v decay of ⁷⁶Ge:

 $T_{1/2}(2\nu) = (1.84^{+0.14}_{-0.10}) \cdot 10^{21} \text{ yr}$ (J. Phys. G40 (2013) 035110; in agreement with G-M experiment) $T_{1/2} > 2.1 \cdot 10^{25} \text{ yr}$ (90% CL)

<m_v> < 0.19-0.66 eV

Exposure: 21.6 kg·yr of ⁷⁶Ge BI = 10⁻² c/keV·kg·yr

(nucl-ex/1307.4720)

Klapdor's results:

 $T_{1/2} = (1.19^{+0.37}_{-0.23}) \cdot 10^{25} \text{ yr}$ (PLB586 (2004) 198)

 $T_{1/2} = (2.23^{+0.44}_{-0.31}) \cdot 10^{25} \text{ yr}$ (MPL A21 (2006) 1547)

III. FUTURE EXPERIMENTS

• Main goal is:

To reach a sensitivity ~ 0.01-0.1 eV to <m_v> (inverted hierarchy region)

- Strategy is:
 - to investigate different isotopes (>2-3);
 - to use different experimental technique

Here I have selected a few propositions which I believe will be realized in the nearest future

- **CUORE** (¹³⁰Te, cryogenic thermal detector)
- **GERDA** (⁷⁶Ge, HPGe detector)
- MAJORANA (⁷⁶Ge, HPGe detector)
- **EXO** (¹³⁶**Xe**, TPC + Ba⁺)
- SuperNEMO (⁸²Se or ¹⁵⁰Nd, tracking detector)
- KamLAND-Zen (¹³⁶Xe, liquid scintillator)
- SNO+ (¹³⁰Te, liquid scintillator)

Other proposals: CANDLES, XMASS, NEXT, LUCIFER, DCBA, COBRA, MOON ...

SUMMARY TABLE

Experime nt	Isotope	Mass, kg	Τ _{1/2} , y	<m<sub>v>, meV</m<sub>	Status
CUORE	¹³⁰ Te	200	1·10 ²⁶	50-130	Funded
GERDA	⁷⁶ Ge	I. 17 II. 40 III 1000	2·10 ²⁵ 2·10 ²⁶ 6·10 ²⁷	60-200 10-40	Funded Funded R&D
MAJORANA	⁷⁶ Ge	I. 20-30 II. 1000	10 ²⁶ 6·10 ²⁷	90-300 10-40	Funded R&D
EXO	¹³⁶ Xe	200 1000	(4-5)·10 ²⁵ 10 ²⁷	80-240 20-50	Funded R&D
SuperNEMO	⁸² Se	100-200	(1-2)·10 ²⁶	40-110	R&D 1-st step is fund.
KamLAND- Xe	¹³⁶ Xe	330 1000	~ 2·10 ²⁶ ~ 6·10 ²⁶	40-110 23-58	Funded R&D
SNO+	¹³⁰ Te	800 8000	~ 10 ²⁶ ~ 10 ²⁷	50-130 15-45	Funded R&D

CUORE (Gran Sasso)

<u>Cryogenic Underground Observatory for Rare Events</u> Closely packed array of 988 TeO₂ crystals 5×5×5 cm³ (750 g) 741 kg TeO₂ granular calorimeter 600 kg Te = 203 kg ¹³⁰Te . Single high granularity detector

Towards 1TGe

- Modules of ^{enr}Ge housed in high-purity electroformed copper cryostat
- Shield: electroformed copper / lead
- Initial phase: R&D demonstrator module: Total ~40 kg (up to 30 kg enr.) - 2014

- 'Bare' enrGe array in liquid argon
- Shield: high-purity liquid Argon / H₂O
- Phase I (2011): ~18 kg (HdM/IGEX diodes)
- Phase II (2014): add ~20 kg new detectors Total ~40 kg

Joint Cooperative Agreement:

- Open exchange of knowledge & technologies (e.g. MaGe, R&D)
- Intention is to merge for 1 ton exp. Select best techniques developed and tested in GERDA and MAJORANA

1 t detector - ~ 2016-2018

1TGo Sonsitivity

Hum

EXO (Enriched Xenon Observatory) USA-RUSSIA-CANADA

¹³⁶Xe → ¹³⁶Ba⁺⁺ + 2e⁻ (E_{2β} = 2.47 MeV)

 Main idea is: to detect all products of the reaction with good enough energy and space resolution (M.Moe PRC 44 (1991) 931)

Sensitivity of EXO

• **EXO-200** (5 y of meas., **80 kg**, background = 140 events, $\Delta E/E(FWHM)=3.8\%$):

 $T_{1/2} > 4x10^{25} \text{ yr}, \quad <m_{v}> < 0.09-0.24 \text{ eV}$

 EXO-5000 (w/o Ba⁺ tagging): [5 y, 4000 kg, ∆E/E(FWHM)=3.8%]

 $T_{1/2} > 3.10^{26} \text{ yr}, \quad \langle m_v \rangle < 0.03 - 0.08 \text{ eV}$

 EXO-5000 (Ba⁺ tagging): [5 y, 4000 kg, ∆E/E(FWHM)=3.8%, efficiency of Ba⁺ tagging is ~ 0.7]

 $T_{1/2} > 2x10^{27} \text{ yr}, \quad \langle m_v \rangle < 0.013 - 0.034 \text{ eV}$

G.Gratta (Osaka'2011): "~2% Ba tagging efficiency obtained in the lab. Plenty of R&D still left to do to demonstrate if the technique is viable"

SuperNEMO

A module

20 modules

	Demonstrator module	20 Modules
Source : ⁸² Se	7 kg	140 kg
Drift chambers for tracking	2 000	40 000
Electron calorimeter	500	10 000
γ veto (up and down)	100	2 000
T _{1/2} sensitivity	6.6 10 ²⁴ y (No background)	1. 10 ²⁶ y
<m<sub>v> sensitivity</m<sub>	200 – 400 meV	40 – 100 meV

Start of measurements:

Demonstrator – 2015 SuperNEMO - 2017

Demonstrator module(7 kg) is under construction

See F. Piquemal presentation

Future KamLAND possibilities

 330 kg of ^{enr}Xe during 2 yr of measurement (BI ~ 10⁻⁶ c/keV⋅kg⋅yr) ⇒ ~ 10²⁶ yr (<m_y> ~ 60-150 meV)

And, of course, present background problem has to be solved

SNO+

Reuse of SNO equipment with Liquid Scintillator in the Acrylic Vessel

Original plan: ¹⁵⁰Nd

Current plan: ¹³⁰Te (using natural Te) - good Te solubility is demonstrated (0.3-3%) - 34.5% vs 5.6% natural abundance

Scintillator fill in 2014

Initially 0.3% loading (~ 800kg of ¹³⁰Te; maybe increased)

Sensitivity is ~ 10²⁶ yr (Phase I) ~10²⁷ yr (Phase-II)

Start of data taking in ~ 2014

IV. Conclusion

1. Significant advance has been made in the investigation of 2v-decay (NEMO-3, EXO-200, KamLAND-Zen).

- 2. Present conservative limit on $\langle m_v \rangle$ from $2\beta(0v)$ -decay experiments is $\sim 0.35 \text{ eV}$.
- 3. 3 current "large-scale" experiments continue to produce new results:
 - GERDA-I (18 кг ⁷⁶Ge);
 - EXO-200 (200 кг ¹³⁶Хе);
 - KamLAND-Zen (330 кг ¹³⁶Хе).
- 4. In 2013-2015 we are waiting for start of GERDA-II, MAJORANA-Demonstrator, CUORE, SuperNEMO-Demonstrator, SNO+, NEXT.
- 5. In 2016-2018 we are waiting for start of GERDA/MAJORANA, SuperNEMO, KamLAND2-Zen and some other "large-scale" experiments.
- 6. New generation of experiments will reach sensitivity to <m_y> on the level ~ (0.01-0.1) eV in ~ 2014-2020.

The next few years expected to be very interesting!!!

Backup slides

S.M. Bilenky and C. Giunti hep-ph/1203.5250

A Recent Claim

Klapdor-Kleingrothaus H V, Krivosheina I V, Dietz A and Chkvorets O, *Phys. Lett.* B **586** 198 (2004).

Used five ⁷⁶Ge crystals, with a total of 10.96 kg of mass, and 71 kg-years of data $\tau_{1/2} = 1.2 \times 10^{25} \text{ y}$ (4.2 σ) 0.24 < m_v < 0.58 eV (± 3 sigma) (NME from Eur. Lett. 13(1990)31)

There are some problems with this result:

- 1) Only one measurement.
- 2) Only ~4 σ level (independent analysis gives even ~ 2.7 σ).
- 3) In contradiction with HM'01 and IGEX.
- 4) Moscow part of Collaboration: NO EVIDENCE.
- 5) ²¹⁴Bi peaks are overestimated.
- 6) "Total" and "analyzed" spectra are not the same.
- 7) Chkvorets'08 1.3σ

"2β community": very conservative reaction

In any case new experiments are needed, which will confirm (or reject) this result

Mod.Phys.Lett. A21(2006)1547

Old data, new pulse shape anal. $\tau_{1/2} = 2.23^{+0.44}_{-0.31} \times 10^{25} \text{ y}$ (6 σ) $m_v = 0.32 \pm 0.03 \text{ eV}$ $n = 11\pm 1.8 \text{ events} \Rightarrow$ where is a statistical error?! non-correct peak position?!

Detector Mount and String Design

LANL thermal test string Jan 2011

LBNL test string (w/ thermal blanks)

Design as released for R+D production June 2, 2011

P-type Point-Contact (PPC) Detectors

Point contact:

- •Small capacitance: ~1pF
- Pronounced weighting field
- •Small electrical fields
- •Sub-keV Thresholds
- •Excellent Pulse-shape Analysis
- •Use Commercial BEGe Design

The Initial Majorana Modules (DEMONSTRATOR)

• 40-kg of Ge detectors

- 30-kg of 87% enriched ⁷⁶Ge (20 kg of natural and 10 kg of enriched HPGe detectors are ready)
- Low-background Cryostats & Shield
 - ultra-clean, electroformed Cu
 - naturally scalable
 - Compact low-background passive Cu and Pb shield with active muon veto
- Background Goal in the $0\nu\beta\beta$ peak ROI(4 keV at 2039 keV)

~ 4 count/ROI/t-y (after analysis cuts)

(scales to 1 count/ROI/t-y for tonne expt.)

Sensitivity is $\sim 10^{26}$ yr in 3 yr of measurements

Start of data taking with natural Ge in ~ 2013 and with enriched Ge in ~ 2014

DEMONSTRATOR Sensitivity

Him

NEMO-3 \rightarrow SuperNEMO

 $T_{1/2}^{0\nu}(n_{\sigma}) = \frac{4.16 \times 10^{26} \, \text{y}}{n_{\sigma}} \left(\frac{\varepsilon a}{W}\right) \sqrt{\frac{Mt}{b\Delta E}}$

- n_{σ} number of std. dev. for a given C.L. M total mass of the source (kg)
- a isotopic abundance
- ε detection efficiency
- W molecular weight of the source
- t time of data collection (y)
- b background rate in counts (keV · kg · y)
- ΔE energy resolution (keV)

NEMO-3	R&D since 2005	SuperNEMO
¹⁰⁰ Mo	isotope	⁸² Se (maybe also ¹⁵⁰ Nd or ⁴⁸ Ca)
7 kg	mass	100-200 kg
A(²⁰⁸ TI) < 20 μBq/kg A(²¹⁴ Bi) < 300 μBq/kg Rn ~ 5-6 mBq/m ³	Radio-purity of the foil Radon in the tracker	A(²⁰⁸ TI) < 2 μBq/kg A(²¹⁴ Bi) < 10 μBq/kg Rn < 0.1 mBq/m ³
18%	efficiency	30%
8% FWHM @ 3 MeV	Energy resolution	4% FWHM @ 3 MeV
T _{1/2} (0νββ) > 10 ²⁴ y <m<sub>v> < 0.3 – 1 eV</m<sub>	sensitivity	T _{1/2} (0νββ) > 10 ²⁶ y <m<sub>ν> < 40 – 100 meV</m<sub>
1 module	modularity	>20 modules (new lab)