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Let us consider the model

of φ4 self-interacting quantum field

in one-dimensional ”space-time”.

Under the non-linear non-local substitution

χ(t) = φ(t) +
t∫

0

φ2(τ )dτ (1)

it turns into the free field model.

And we get

the formal equality of the functional integrals

∫
exp



−

1

2

1∫

0

(χ̇(t))2dt



 dχ =

∫
exp



−

1

2

1∫

0

(φ̇(t))2dt− 1

2

1∫

0

φ4(t)dt−
t=1∫

t=0

φ2(t)dφ



 dφ . (2)

In eq. (2), the last term in the exponent

is the well-known Ito stochastic integral

t=1∫

t=0

φ2(t)dφ = (3)

1

3

[
φ3(1)− φ3(0)

]
−

1∫

0

φ(t)dt .

Note that functions χ(t) and φ(t)

belong to different functional spaces.

Namely, if

χ(t) ∈ C([0, 1]) ,

than

φ(t) ∈ X 6= C([0, 1]) .
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Here, X is the space of functions

that can have a finite number

of singularities of the type

(t− t∗i )
−1

on the interval [0, 1] .

It is quite natural

as for a bounded function χ(t)

there can be some regions

where |ϕ(t)| becomes large enough.

And in these regions

the behavior of the function φ(t)

is prescribed by the equation φ̇ = −φ2 .

3



Thus, the equivalence of the two theories

manifests itself in the

equality of the functional integrals

Z =
∫

C[0,1]

exp



−

1

2

1∫

0

(χ̇(t))2dt



 dχ =

∫

X

exp



−

1

2

1∫

0

(φ̇(t))2dt− 1

2

1∫

0

φ4(t)dt



 (4)

exp



−

1

3

[
φ3(1)− φ3(0)

]
+

1∫

0

φ(t)dt



 dφ .

We see that for interacting quantum fields

the functional space appears to be more singular

than the one for the free field.

Note that on the space X ,

exp



−

1

2

1∫

0

(φ̇(t))2dt



 dφ

is not a measure.

An attempt to expand the exp

in powers of the interaction φ4

leads to ambiguous infinite expressions.

And only

exp



−

1

2

1∫

0

(φ̇(t))2dt− 1

2

1∫

0

φ4(t)dt





exp



−

1

3

[
φ3(1)− φ3(0)

]
+

1∫

0

φ(t)dt



 dφ

can be considered as a measure on X .

The similar picture takes place
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for four-dimensional space-time

where the interacting quantum field

is not a continuous function but a distribution.

The Gaussian measure of the set of continuous functions

is equal to zero

∫

C

exp




−1

2

∫

RD

φ(x)∆(D)φ(x)dDx





dφ = 0 , D = 2, . . . ,

and the well-known Haag theorem is valid.

The non-linear non-local substitution (1)

and the equality of the functional integrals (4)

lead to an interesting effect.

The classical action

and the classical limit of the corresponding quantum theory

turn out to be different.

First, let us describe the model.

We slightly modify the interaction term

and consider the action

A =
1

2

+T∫

−T

(ϕ̇(t))2dt+ (5)

a2

2

+T∫

−T


ϕ2(t)− 1

4

b2

a2




2

dt .

The potential

V (ϕ(t)) =
1

2
a2

(
ϕ2(t)− β2

)2
(6)

(β ≡ b

2a
; a > 0, b > 0)

has two degenerate minimae at

ϕ = ±β
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and a local (unstable) maximum at

ϕ = 0 ,

and is symmetric:

V (−ϕ) = V (ϕ) .

The Euler-Lagrange equation has the form

ϕ̈(t))− 2a2ϕ
(
ϕ2(t)− β2

)
= 0 . (7)

So, the classical system given by the action A

is symmetrical under the substitution

ϕ → −ϕ .

For the classical system given by the action

A+ = A− a
+T∫

−T

ϕ(t)dt+ (8)

a

3

[
ϕ3(+T )− ϕ3(−T )

]
− aβ2 [ϕ(+T )− ϕ(−T )]

the symmetry is broken because of the term

linear in ϕ and the boundary terms.

The action A+ leads to the Euler-Lagrange equation

ϕ̈(t))− 2a2ϕ
(
ϕ2(t)− β2

)
+ a = 0 (9)

and the boundary conditions

ϕ̇(±T ) + a
(
ϕ2(±T )− β2

)
= 0 . (10)

The corresponding quantum theory

deals with the functional measure
∫

exp{−A+(ϕ)}dϕ .
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Now the substitution

χ(t) = ϕ(t)+ (11)

a
t∫

−T

(
ϕ2(τ )− β2

)
dτ

results in the equality of the functional integrals

∫

X+
F (ϕ) exp{−A+(ϕ)}dϕ = (12)

∫

C[−T,+T ]

F (ϕ(χ)) exp



−

1

2

+T∫

−T

(χ̇(t))2dt



 dχ .

The functional space X+

is the space of functions

that can have singularities

on the interval [−T, +T ] .

Note that the term linear in ϕ

and breaking the symmetry

appears in the integrand

of the left-hand side of eq. (12)

from the Ito integral (see eq. (3)).

Now consider the classical limit of eq. (12)

F (ϕ̃) =

lim
h̄→0

∫

X+
F (ϕ) exp{−1

h̄
A+(ϕ)}dϕ =

lim
h̄→0

∫

C[−T,+T ]

F (ϕ(χ)) (13)

exp



−

1

h̄

1

2

+T∫

−T

(χ̇(t))2dt



 dχ .
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In the right hand side of eq. (13)

the classical limit yields the equation

χ̈(t) = 0 ,

or

χ̇(t) = const .

Actually, const = 0 as χ(+T ) is not fixed.

It follows from the boundary conditions (10) as well.

In terms of the function ϕ(t)

the equation looks like

ϕ̇(t) + a
(
ϕ2(t)− β2

)
= 0 . (14)

Note that eq. (7) can be represented in the form

ϕ̇ = ±√f (ϕ)

and has two branches of solutions

corresponding to the different signs.

It can be easily seen that eq. (14)

is the certain branch of eq. (7)

with the proper integration constant.

Thus, a solution of eq. (14)

ϕ̃+(t)

is a solution of eq. (7) but not one of eq. (9)!

In this sense,

quantum theory restores the symmetry

broken in classical theory.

The crucial point here

is the integration over the functional space X+
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containing singular functions.

If it were the space C

we would get the ordinary result

obtained after integration

over the Wiener measure

exp



−

1

2

1∫

0

(ϕ̇(t))2dt



 dϕ .

The explicit form of the solution ϕ̃+(t)

can be easily found.

Depending on the bound value

ϕ̃+(−T ) ≡ −α

it is

ϕ̃+
α (t) = β tanh(bt + c) , for − α > −β , (15)

or

ϕ̃+
α (t) = β coth(bt + c) , for − α < −β . (16)

If we set the integration constant c

to be equal to zero,

the solution is the odd function

ϕ̃+(−t) = −ϕ̃+(t) .

In this case,

A+

(
ϕ̃+)

= A
(
ϕ̃+)

.

So far, we have considered the theory given by the action A+ .

However, the similar picture holds for the ”mirror” action

A− = A + a
+T∫

−T

ϕ(t)dt (17)
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−a

3

[
ϕ3(+T )− ϕ3(−T )

]
+ aβ2 [ϕ(+T )− ϕ(−T )] .

The corresponding substitution is

χ(t) = ϕ(t) (18)

−a
t∫

−T

(
ϕ2(τ )− β2

)
dτ .

And we have the equality of the functional integrals
∫

X−
F (ϕ) exp{−A−(ϕ)}dϕ = (19)

∫

C[−T,+T ]

F (ϕ(χ)) exp



−

1

2

+T∫

−T

(χ̇(t))2dt



 dχ .

The structure of the space X−

is the same as of the space X+ .

But the functions from X+ and the functions from X−

have singularities at different points.

The solutions ϕ̃−(t) of the equation of motion

ϕ̇(t) + a
(
ϕ2(t)− β2

)
= 0 (20)

obtained in the classical limit

belong to the other branch of the solutions of eq. (7).

They are connected with the solutions (15), (16)

by the substitution t → −t .

For an invertible substitution

ξ(t) = ϕ(t) +
t∫

0

f (ϕ(τ ))dτ (21)

the equality

∫
F (ξ) exp



−

1

2

1∫

0

(ξ̇(t))2dt



 dξ =
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∫
F (ξ(ϕ))

exp



−

1

2

T∫

0

(
(ϕ̇(t))2 + f 2(ϕ(t))− f ′(ϕ(t))

)
dt + b.t.



 dϕ (22)

is valid.

For the model of quantum scalar field

with the classical action

Ã(ϕ) =

1

2

T∫

0

{
(ϕ̇(t))2dt− αλ eαϕ(t) + λ2 e2αϕ(t)

}
dt (23)

we can get the explicit form of the function ϕ(ξ)

ϕ(t) = ξ(t)− 1

α
ln


αλ

t∫

0

eαξ(τ)dτ


 . (24)

The scale factor

a(t) = eϕ(t)

in terms of ξ(t) looks like

a(t) = eξ(t)


αλ

t∫

0

eαξ(τ)dτ



− 1

α

. (25)

Now, in the quantum theory

given by the action Ã(ϕ)

we can evaluate the mean value of the scale factor,

moments and other quantities connected with it.
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