

Rare Kaon decays at NA48 and NA62

Andrea Bizzeti

University of Modena e Reggio Emilia and I.N.F.N. Sezione di Firenze, Italy

on behalf of the NA48/2 and NA62 collaborations

Outline:

- 1. The NA48 and NA62 experiments at CERN
- 2. Study of the rare decay $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$
- 3. Precision measurements on $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$ and $K^{\pm} \rightarrow \pi^{0}\pi^{0}e^{\pm}\nu$
- 4. Summary

NA48/NA62 experiments at CERN SPS

 $\begin{array}{l} \text{NA48:} \\ \text{direct CPV} \\ (\varepsilon'/\varepsilon) \end{array} \begin{cases} 1997 - 1998 : K_L + K_S \\ 1999 : K_L + K_S ; K_S \text{ HI} \\ 2000 : K_L \text{ only } ; K_S \text{ HI} \\ 2001 : K_L + K_S ; K_S \text{ HI} \end{cases}$ NA48/1 $\begin{cases} 2002 : K_S / \text{hyperons} \end{cases}$ NA48/2 $\begin{cases} 2003 - 2004 : \\ K^+ + K^- \quad CPV(K_{3\pi}) \end{cases}$ NA62-R_K $\begin{cases} 2007 - 2008 : \\ K^+ + K^- (K_{e2}/K_{\mu2}) \end{cases}$ NA62 $\begin{cases} 2007 - 2013 : \\ \text{design & construction} \\ 2014 - 2016 : \\ K^+ \to \pi^+ \nu \, \bar{\nu} \end{cases}$

Beam and detector

2003 - 2008 : charged kaon beams + the NA48 detector

Narrow momentum band K^{\pm} beams

- NA48/2: 6 months in 2003-04
- NA62-R_K: 4 months in 2007

Main subdetectors:

- magnetic spectrometer (4 DCHs) 4 views/DCH: redundancy \Rightarrow efficiency $\delta p/p = 1.02\% \oplus 0.044\% p$ (NA48/2) $\delta p/p = 0.48\% \oplus 0.009\% p$ (NA62-R_K)
- scintillator hodoscope fast trigger, time measurements (150 ps)
- Liquid Krypton EM cal. (LKr) high granularity, quasi-homogeneous $\sigma_E/E = 3.2\%/E^{1/2} \oplus 9\%/E \oplus 0.42\%$ $\Rightarrow e/\mu/\pi$ discrimination (E/p)

K^{\pm} data samples

Experiment	NA48/2 (K [±])	$\frac{\text{NA62-R}_{K}}{(K^{\pm})}$	NA62 $(K^+, \text{planned})$
Data taking period	2003-2004	2007-2008	2014-2017
Beam momentum [GeV/c]	60	74	75
Beam momentum RMS [GeV/c]	2.2	1.4	0.8
Spectrometer thickness $[X_0]$	2.8%	2.8%	1.8%
Spectrometer P _T kick [MeV/c]	120	265	270
$M(K^{\pm} \rightarrow 3\pi^{\pm})$ resolution [MeV/c ²]	1.7	1.2	0.8
K^{\pm} decays in fiducial volume	1.9×10^{11}	$2.5 imes10^{10}$	$1.2 imes 10^{13}$
Main trigger	multi-track, $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$	e^{\pm}	$K_{\pi\nu\bar{\nu}}$ +
	Same detect	tor (NA48)	

Same deletion (INA+6)

ChPT description:

- Rate and spectrum depend on a single unknown parameter \hat{c}
- Leading contribution at $\mathcal{O}(p^4)$ loop: cusp at $2m_{\pi}$ threshold [Ecker, Pich, de Rafael, NPB303 (1988) 665]

ChPT description:

- Rate and spectrum depend on a single unknown parameter \hat{c}
- Leading contribution at $\mathcal{O}(p^4)$ loop: cusp at $2m_{\pi}$ threshold [Ecker, Pich, de Rafael, NPB303 (1988) 665]
- $\mathcal{O}(p^6)$ "unitarity corrections" increase BR at low \hat{c} and result in a non-zero rate at $m_{\gamma\gamma} \to 0$ [D'Ambrosio, Portolés, PLB386 (1996) 403] [Gérard, Smith, Trine, NPB730 (2005) 1]

ChPT description:

- Rate and spectrum depend on a single unknown parameter \hat{c}
- Leading contribution at $\mathcal{O}(p^4)$ loop: cusp at $2m_{\pi}$ threshold [Ecker, Pich, de Rafael, NPB303 (1988) 665]
- $\mathcal{O}(p^6)$ "unitarity corrections" increase BR at low \hat{c} and result in a non-zero rate at $m_{\gamma\gamma} \to 0$ [D'Ambrosio, Portolés, PLB386 (1996) 403] [Gérard, Smith, Trine, NPB730 (2005) 1]

Experimental status:

- BNL E787: 31 candidates BR= (1.10 ± 0.32) × 10⁻⁶ [PRL79 (1997) 4079]
- NA48/2, NA62-R_K : using "minimum bias" samples

$K_{\pi\gamma\gamma}$ candidates	149 NA48/2	175 NA62-R _K
$K_{2\pi(\gamma)}$ background	11.4 ± 0.6	11.1 ± 1.0
$K_{3\pi}$ background	4.1 ± 0.4	1.3 ± 0.3
$K_{\pi\gamma\gamma}$ signal	134 ± 12	163 ± 13

A. Bizzeti

16th LomConf, Moscow 27-08-2013

$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$: NA48/2 model-independent BR

NEW: July 2013

Sufficiently small bins: acceptance almost independent of kinematical distribution

z range	N_j	N_j^B	A_j	$\mathcal{B}_j \times 10^6$
0.20 - 0.24	13	4.89	0.194	0.045 ± 0.020
0.24 - 0.28	9	2.73	0.198	0.034 ± 0.016
0.28 - 0.32	18	2.33	0.194	0.087 ± 0.024
0.32 - 0.36	33	1.30	0.190	0.180 ± 0.033
0.36 - 0.40	31	0.98	0.184	0.177 ± 0.033
0.40 - 0.44	18	1.61	0.173	0.103 ± 0.027
0.44 - 0.48	23	1.21	0.135	0.175 ± 0.038
z > 0.48	4	0.52	0.049	0.076 ± 0.044

THE FINAL NA48/2 RESULT

 ${
m BR}_{
m MI}(z>0.2)=(0.877\pm0.087_{
m stat}\pm0.017_{
m syst}) imes10^{-6}$

A. Bizzeti

16th LomConf, Moscow 27-08-2013

- Data support the ChPT prediction of a cusp at the $2m_{\pi^+}$ threshold
- ChPT $\mathcal{O}(p^4)$ and $\mathcal{O}(p^6)$ predictions cannot be distinguished

$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ fits to ChPT: results

ChPT formulation: D'Ambrosio, Portolés, PLB 386 (1996) 403

$$\begin{array}{c} \text{NA48/2 (2004)} \\ \text{ChPT } \mathcal{O}(p^4): \\ \hat{c} = 1.36 \pm 0.33_{\text{stat}} \pm 0.07_{\text{syst}} = 1.36 \pm 0.34 \\ \text{ChPT } \mathcal{O}(p^6): \\ \hat{c} = 1.67 \pm 0.39_{\text{stat}} \pm 0.09_{\text{syst}} = 1.67 \pm 0.40 \end{array} \qquad \begin{array}{c} \text{ChPT } \mathcal{O}(p^6): \\ \hat{c} = 2.21 \pm 0.31_{\text{stat}} \pm 0.08_{\text{syst}} = 2.21 \pm 0.32 \\ \end{array} \\ \end{array}$$

cf. PDG(=E787): BR₆ = $(1.10 \pm 0.32) \times 10^{-6}$

A. Bizzeti

Ke4 decays

Ke4 decays: kinematics and formalism

Five kinematic variables: $s_{\pi} = M_{\pi\pi}^2$, $s_e = M_{e\nu}^2$, $\cos \theta_{\pi}$, $\cos \theta_e$, ϕ

Partial wave expansion and form factors

$${\it K}^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$$

$$F = F_s e^{i\delta_s} + F_p e^{i\delta_p} \cos \theta_\pi + \dots$$

$$G = G_p e^{i\delta_p} + \dots; \quad H = H_p e^{i\delta_p} + \dots$$

$$F_s = f_s + f'_s \cdot q^2 + f''_s \cdot q^4 + f'_e S_e / 4m_\pi^2 + \dots$$

$$F_p = f_p + f'_p \cdot q^2 + \dots$$

$$G_p = g_p + g'_p \cdot q^2 + \dots \quad [F, G = \text{axial FF}]$$

$$H_p = h_p + h'_p \cdot q^2 + \dots \quad [H = \text{vector FF}]$$

$$(q^2) = \delta_s - \delta_p$$

A. Bizzeti

δ

Rare Kaon decays at NA48 and NA62

Pais, Treiman, PR 168 (1968) 1858

$$K^{\pm}
ightarrow \pi^0 \pi^0 e^{\pm}
u$$

 $F = F_s e^{i\delta_s}$

 $\pi\pi$ S-wave scattering lengths can be extracted from variation of δ with $q^2 = (S_{\pi}/4m_{\pi}^2 - 1)$ [Ananthanarayan et al., Phys. Rep. 353 (2001) 207; Colangelo, Gasser, Rusetsky, EPJ C59 (2009) 777]

16th LomConf, Moscow 27-08-2013

 $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$: form factors

Final NA48/2 results

[EPJ C70 (2010) 635]

 $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$ data sample:

▶ 1.13×10^6 candidates

Relative Form Factors

f_s'/f_s	=	0.152	$\pm 0.007_{stat}$	$\pm 0.005_{\text{syst}}$
$f_s^{\prime\prime}/f_s$	= -	-0.073	$\pm 0.007_{stat}$	$\pm 0.006_{\text{syst}}$
f'_e/f_s	=	0.068	$\pm 0.006_{stat}$	$\pm 0.007_{\text{syst}}$
f_p/f_s	= -	-0.048	$\pm 0.003_{stat}$	$\pm 0.004_{\text{syst}}$
g_p/f_s	=	0.868	$\pm 0.010_{stat}$	$\pm 0.010_{\text{syst}}$
g'_p/f_s	=	0.089	$\pm 0.017_{\text{stat}}$	$\pm 0.013_{\text{syst}}$
h_p/f_s	= -	-0.398	$\pm 0.015_{stat}$	$\pm 0.008_{\text{syst}}$

$K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$: $\pi\pi$ scattering lengths

s-wave $\pi\pi$ scattering lenghts a_I (I = 0, 2)

NA48/2 *K*_{3π} cusp [EPJ C64 (2009) 589]

NA48/2 *K*_{e4} phase shift + NA48/2 combination [EPJ C70 (2010) 635]

DIRAC $\pi\pi$ atoms [PLB 704 (2011) 24]

Lattice QCD [PLB 684 (2010) 268, PRD 77 (2008) 014505]

ChPT [PLB 488 (2000) 261] $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$: BR and f_s

BR measured w.r.t. normalization mode $K^{\pm} \to \pi^{+}\pi^{-}\pi^{\pm}$ Final result: [PLB 715 (2012) 105] BR $(K^{\pm} \to \pi^{+}\pi^{-}e^{\pm}\nu) = (4.257 \pm 0.004_{\text{stat}} \pm 0.016_{\text{syst}} \pm 0.031_{\text{ext}}) \times 10^{-5}$ cf. PDG: BR = $(4.09 \pm 0.10) \times 10^{-5}$

$K^{\pm} \rightarrow \pi^0 \pi^0 e^{\pm} \nu$: signal selection

- ▶ Plot P_T vs reconstructed $\pi^{\pm}\pi^0\pi^0$ mass (assuming charged track = pion)
- K_{e4} candidates well separated from $K_{3\pi}$ events

- electron identification: E/p and shower properties
- $66 \times 10^3 K_{e4}$ candidates, 1.07% background

A. Bizzeti

$K^{\pm} \rightarrow \pi^0 \pi^0 e^{\pm} \nu$: form factor

15

 $K^{\pm} \rightarrow \pi^0 \pi^0 e^{\pm} \nu$: BR and f_s

BR measured w.r.t. normalization mode $K^{\pm} \rightarrow \pi^0 \pi^0 \pi^{\pm}$ Preliminary result:

 $BR(K^{\pm} \to \pi^0 \pi^0 e^{\pm} \nu) = (2.585 \pm 0.010_{\text{stat}} \pm 0.010_{\text{syst}} \pm 0.032_{\text{ext}}) \times 10^{-5}$ cf. PDG: BR = $(2.2 \pm 0.14) \times 10^{-5}$

 $BR(K^{\pm} \to \pi^0 \pi^0 e^{\pm} \nu) = \tau_K (|V_{us}| f_s)^2 \mathcal{I} \to \text{absolute } f_s \text{ measurement.}$ Results: $|V_{us}| f_s = 1.372 \pm 0.003_{\text{stat}} \pm 0.004_{\text{syst}} \pm 0.008_{\text{ext}}$ $f_s = 6.092 \pm 0.012_{\text{stat}} \pm 0.017_{\text{syst}} \pm 0.045_{\text{ext}}$

Summary

- $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ rare decay (NA48/2 + NA62-R_K) [preliminary]
 - data agree with ChPT description
 - ► cannot distinguish between $\mathcal{O}(p^4)$ and $\mathcal{O}(p^6)$ predictions
 - new NA48/2 model-independent measurement of BR(z > 0.2)
 - final results and publications are in preparation
- $K^{\pm} \to \pi^{+}\pi^{-}e^{\pm}\nu$ decay (NA48/2) [PLB 715 (2012) 105]
 - precision measurements of form factors and BR
 - determination of $\pi\pi$ scattering lengths
- $K^{\pm} \rightarrow \pi^0 \pi^0 e^{\pm} \nu$ decay (NA48/2)

[work in progress]

- first measurement of form factor
- evidence of $\pi\pi$ rescattering in final state
- ▶ most precise BR measurement (1.3% relative uncertainty)

A. Bizzeti

BACKUP SLIDES

A. Bizzeti Rare Kaon decays at NA48 and NA62

 $K^{\pm} \rightarrow \pi^0 \pi^0 e^{\pm} \nu$: event reconstruction

 $K^{\pm} \to \pi^0 \pi^0 e^{\pm} \nu$ relative to $K^{\pm} \to \pi^0 \pi^0 \pi^{\pm}$, BR=(1.761 ± 0.022)%

Common event reconstruction for $(\pi^0\pi^0 + \text{charged track})$:

Find γ cluster pairs 1(ab) and 2(cd) and:

1) derive vertex positions Z_1 , Z_2 using π^0 mass constraint:

$$Z_1 = Z(LKr) - \frac{1}{m(\pi^0)}D(ab)\sqrt{E_aE_b}$$

$$Z_2 = Z(LKr) - \frac{1}{m(\pi^0)}D(cd)\sqrt{E_cE_d}$$

2) require:

▶
$$|Z_1 - Z_2| < 5 \,\mathrm{m}$$

- $Z_n = \frac{1}{2}(Z_1 + Z_2)$ within fiducial volume
- 3) combine with a charged track if Z_3 (CDA to beam line) satisfies $|Z_3 Z_n| < 8$ m

- 3 charged tracks, forming a good vertex
- 2 opposite sign pions, 1 electron $[E_{LKr}/p \simeq 1]$
- some missing energy and $p_T(\nu)$
- good reconstructed P_K (missing ν hypothesis)

- 3 charged tracks, forming a good vertex
- 2 opposite sign pions, 1 electron $[E_{LKr}/p \simeq 1]$
- some missing energy and $p_T(\nu)$
- good reconstructed P_K (missing ν hypothesis)

Background main sources (suppressed by specific cuts):

- $K^+ \to \pi^+ \pi^- \pi^+$ $(\pi^+ \to e^+ \nu \quad \text{or} \quad \pi^+ \text{ mis-ID})$
- $K^+ \to \pi^+ \pi^0$ $(\pi^0 \to e^+ e^- \gamma \text{ and } e^- \text{ mis-ID})$

- 3 charged tracks, forming a good vertex
- 2 opposite sign pions, 1 electron $[E_{LKr}/p \simeq 1]$
- some missing energy and $p_T(\nu)$
- good reconstructed P_K (missing ν hypothesis)

Background main sources (suppressed by specific cuts):

$$K^+ \to \pi^+ \pi^- \pi^+ \qquad (\pi^+ \to e^+ \nu \quad \text{or} \quad \pi^+ \text{ mis-ID})$$

$$K^+ \to \pi^+ \pi^0 \qquad (\pi^0 \to e^+ e^- \gamma \text{ and } e^- \text{ mis-ID})$$

- 3 charged tracks, forming a good vertex
- 2 opposite sign pions, 1 electron $[E_{LKr}/p \simeq 1]$
- some missing energy and $p_T(\nu)$
- good reconstructed P_K (missing ν hypothesis)

Background main sources (suppressed by specific cuts):

$$K^+ \to \pi^+ \pi^- \pi^+ \qquad (\pi^+ \to e^+ \nu \quad \text{or} \quad \pi^+ \text{ mis-ID})$$

$$K^+ \to \pi^+ \pi^0 \qquad (\pi^0 \to e^+ e^- \gamma \text{ and } e^- \text{ mis-ID})$$

Background control sample from data (assuming $\Delta S = \Delta Q$):

- $\pi^{\pm}\pi^{\pm}e^{\mp}\nu$ ("Wrong-Sign" events)
- Ratio "Right-Sign" : "Wrong-Sign" =
 - 2:1 if coming from $K_{3\pi}$ (dominant) 1:1 if coming from $K_{2\pi}$

- ► 3 charged tracks, forming a good vertex
- ▶ 2 opposite sign pions, 1 electron $[E_{LKr}/p \simeq 1]$
- some missing energy and $p_T(\nu)$
- good reconstructed P_K (missing ν hypothesis)

Background main sources (suppressed by specific cuts):

$$K^+ \to \pi^+ \pi^- \pi^+ \qquad (\pi^+ \to e^+ \nu \quad \text{or} \quad \pi^+ \text{ mis-ID})$$

• $K^+ \to \pi^+ \pi^0$ $(\pi^0 \to e^+ e^- \gamma \text{ and } e^- \text{ mis-ID})$

Background control sample from data (assuming $\Delta S = \Delta Q$):

- $\pi^{\pm}\pi^{\pm}e^{\mp}\nu$ ("Wrong-Sign" events)
- Ratio "Right-Sign" : "Wrong-Sign" =

2:1 if coming from $K_{3\pi}$ (dominant)

1:1 if coming from $K_{2\pi}$

Data sample: 1.13×10^6 events. Total background is less than 1%

Ke4(+-) decay: background rejection

Data sample: 1.13×10^6 events. Total background is less than 1%

The S-wave $\pi\pi$ scattering lengths a_0 and a_2 (I = 0 and I = 2) are precisely predicted by ChPT Two statistically independent measurements by NA48/2:

1. from the phase shift $\delta(M_{\pi\pi}) = \delta_s - \delta_p$ in Ke4 decay [Eur.Phys.J. C70 (2010) 635]

- 1. from the phase shift $\delta(M_{\pi\pi}) = \delta_s \delta_p$ in Ke4 decay [Eur.Phys.J. C70 (2010) 635]
- 2. from the "cusp" in $M^2(\pi^0\pi^0)$ in $K^{\pm} \to \pi^{\pm}\pi^0\pi^0$ decay [Eur.Phys.J. C64 (2009) 589]

- 1. from the phase shift $\delta(M_{\pi\pi}) = \delta_s \delta_p$ in Ke4 decay [Eur.Phys.J. C70 (2010) 635]
- 2. from the "cusp" in $M^2(\pi^0\pi^0)$ in $K^{\pm} \to \pi^{\pm}\pi^0\pi^0$ decay [Eur.Phys.J. C64 (2009) 589]

- 1. from the phase shift $\delta(M_{\pi\pi}) = \delta_s \delta_p$ in Ke4 decay [Eur.Phys.J. C70 (2010) 635]
- 2. from the "cusp" in $M(\pi^0\pi^0)$ in $K^{\pm} \to \pi^{\pm}\pi^0\pi^0$ decay [Eur.Phys.J. C64 (2009) 589]

- 1. from the phase shift $\delta(M_{\pi\pi}) = \delta_s \delta_p$ in Ke4 decay [Eur.Phys.J. C70 (2010) 635]
- 2. from the "cusp" in $M(\pi^0\pi^0)$ in $K^{\pm} \to \pi^{\pm}\pi^0\pi^0$ decay [Eur.Phys.J. C64 (2009) 589]
- Different systematics: electron misID and background vs. calorimeter and trigger
- Different theoretical inputs: Roy equations and isospin breaking correction vs. rescattering in final state and ChPT expansion

- 1. from the phase shift $\delta(M_{\pi\pi}) = \delta_s \delta_p$ in Ke4 decay [Eur.Phys.J. C70 (2010) 635]
- 2. from the "cusp" in $M(\pi^0\pi^0)$ in $K^{\pm} \to \pi^{\pm}\pi^0\pi^0$ decay [Eur.Phys.J. C64 (2009) 589]
- Different systematics: electron misID and background vs. calorimeter and trigger
- Different theoretical inputs: Roy equations and isospin breaking correction vs. rescattering in final state and ChPT expansion
- Large overlap in the a_0, a_2 plane

Ke4(+-): absolute Form Factors

 $BR \rightarrow$ overall form factor normalization:

$$K_{e\,4}^{\pm}(+-)$$

$$\begin{aligned} f_s &= 5.705 \pm 0.003_{\text{stat}} \pm 0.017_{\text{syst}} \pm 0.031_{\text{ext}} \\ &= 5.705 \pm 0.035_{\text{norm}} \end{aligned}$$

$$\begin{array}{lll} f_s' &=& 0.867 \pm 0.040_{\rm stat} \pm 0.029_{\rm syst} \pm 0.005_{\rm norm} \\ f_s'' &=& -0.416 \pm 0.040_{\rm stat} \pm 0.034_{\rm syst} \pm 0.003_{\rm norm} \\ f_e' &=& 0.388 \pm 0.034_{\rm stat} \pm 0.040_{\rm syst} \pm 0.002_{\rm norm} \\ f_p &=& -0.274 \pm 0.017_{\rm stat} \pm 0.023_{\rm syst} \pm 0.002_{\rm norm} \\ g_p &=& 4.952 \pm 0.057_{\rm stat} \pm 0.057_{\rm syst} \pm 0.031_{\rm norm} \\ g_p' &=& 0.508 \pm 0.097_{\rm stat} \pm 0.074_{\rm syst} \pm 0.003_{\rm norm} \\ h_p &=& -2.271 \pm 0.086_{\rm stat} \pm 0.046_{\rm syst} \pm 0.014_{\rm norm} \end{array}$$

 \rightarrow Published in Phys. Lett. B 715, 105-115 (2012)

A. Bizzeti