

SIXTEENTH LOMONOSOV CONFERENCE ON ELEMENTARY PARTICLE PHYSICS

Moscow, August 22-28, 2013

Electromagnetic counterparts of gravitational wave transients

M. Branchesi

(Università di Urbino/INFN Sezione di Firenze)
on behalf of the LIGO Scientific Collaboration
and Virgo Collaboration

LIGO-DCC G1300486

Expected “transient” GW sources detectable by LIGO/Virgo

“Transient GW signal”: signal with duration in the detector sensitive band significantly shorter than the observation time and that cannot be re-observed

Coalescence of Compact Objects

Neutron-Stars and/or Black-Holes

Binary containing a NS:

- **Inspiral** dominant phase
- **GW emission** enters sensitive band (> 50 Hz) < 20 s before merger
- **Energy emitted in GW:** $\sim 10^{-2} M_{\odot} c^2$

Initial LIGO/Virgo

Binary containing a NS detectable to ~ 50 Mpc likely rate 0.02 yr^{-1}

NASA

Core-collapse of Massive Stars

Ott, C. 2009, CQG, 26

Energy emitted in GW uncertain:

- Likely $10^{-8} M_{\odot} c^2$
- Optimistic $10^{-4} M_{\odot} c^2$

Ott et al. 2013, ApJ, 768

Initial LIGO/Virgo

Detectable within a fraction of the Milky Way (10 kpc)

These energetic astrophysical events are expected to emit EM radiation

Merger of NS-NS / NS-BH

Gamma-Ray Burst: intense flashes of gamma-rays isotropic-equivalent energy up to 10^{53} erg

Short Hard GRB

Progenitor indications:

- lack of observed SN
- association with older stellar population
- larger distance from the host galaxy center ($\sim 5-10$ kpc)

Long Soft GRB

Progenitor strong evidence: observed Type Ic SN spectrum

Optical Kilonovae
Radio Remnant

Metzger & Berger 2011

Core collapse of massive star

Supernovae
Type II, Ib/c

Advanced Era GW-detectors (ADE)

LIGO-H

LIGO-L

LIGO and Virgo detectors
are currently being upgraded

Virgo

**boost of sensitivity
by a factor of ten
(of 10^3 in number of detectable sources)
in the 10-1000Hz range**

Advanced era

Detection rates of compact binary coalescences

Source	Low	Real	High	Max	
	yr^{-1}	yr^{-1}	yr^{-1}	yr^{-1}	
Advanced	NS-NS	0.4	40	400	1000
	NS-BH	0.2	10	300	
	BH-BH	0.4	20	1000	

(Abadie et al. 2010, CQG 27)

Mass: NS = 1.4 Mo
BH = 10 Mo

Advanced era
Sky location and orientation

averaged range

197 Mpc for NS-NS

410 Mpc for NS-BH

968 Mpc for BH-BH

Core-Collapse Supernovae

2-4 yr^{-1} EM-observed within 20 Mpc

Rate of GW-detectable events unknown

GW-signal detectable

< **Milky Way** (Ott et al. 2012, Phy.R.D.)

few Mpc (Fryer et al. 2002, ApJ, 565)

LONG-GRB core-collapse - 10 Mpc (?)

Main motivations for joint GW/EM observations

- Consider the GW signal in its astrophysical context
- Give a precise (arcsecond) localization, identify host galaxy
- Multi-messenger picture for a complete knowledge of the most energetic events in the Universe
- GW and EM provide insight into the physics of the progenitors (mass, spin, distance..) and their environment (temperature, density, redshift..)
- Start the GW astronomy to answer a plethora of open questions on:
 - connection between short GRBs and compact object mergers
 - the birth and evolution of black holes
 - equation of state of nuclear matter
 - in the long term cosmology.....

EM emission from transient GW sources

GRBs emission - Fireball Model

Cataclysmic event

NS-NS NS-BH
merger

Collapsar

Central engine

Prompt emission
 γ -ray - within seconds

Afterglow emission
Optical, X-ray, radio
hours, days, months

Jet temporal evolution
Light curve (Flux vs time)

Optical afterglow ON-AXIS GRB

Source at distance of 200 Mpc

Observer along the jet axis

$$\theta_{\text{obs}} < \theta_{\text{Jet}}$$

Power-law luminosity decay with time $t^{-\beta} \rightarrow \beta = 1 \div 1.5$

Optical afterglow "Orphan GRB"

Source at distance of 200 Mpc

<http://cosmo.nyu.edu/afterglowlibrary/index.html>

By van Eerten & MacFadyen

X-RAY and Radio GRB Afterglow

X-RAY: GRB at distance of 200 Mpc

Kanner et al. 2013, ApJ, 759

Short GRB 050709:

Fox et al. 2005, Nature 437

Kilonovae and Radio Flares

Significant mass (0.01-0.1 m_{\odot}) is dynamically ejected during NS-NS NS-BH mergers at sub-relativistic velocity (0.1-0.2 c)

(Piran et al. 2013, MNRAS, 430; Rosswong et al. 2013, MNRAS, 430)

EM signature similar to Supernovae

Macronova – Kilonova

short lived IR-UV signal (days) powered by the radioactive decay of heavy elements synthesized in the ejected outflow

Kulkarni 2005, astro-ph/0510256;
Li & Paczynski 1998, ApJL, 507
Metzger et al. 2010, MNRAS, 406;
Piran et al. 2013, MNRAS, 430

RADIO REMNANT

long lasting radio signals (years) produced by interaction of ejected sub-relativistic outflow with surrounding matter

Piran et al. 2013, MNRAS, 430

Kilonovae Light Curves

Source at distance of 200 Mpc

New simulations including lanthanides opacities show:

- broader light curve
- suppression of UV/O emission and shift to infrared bands

Kilonova model afterglow peaks about a day after the merger/GW event

Major uncertainty OPACITY of “heavy r-process elements”

Barnes & Kasen 2013, arXiv:1303.5787

Possible HST kilonova detection for short GRB 130603B after 9.4 days
Berger & Fong arXiv:1306.3960, Tanvir et al. 2013, Nature/12505

Radio Flare Light Curves

Source at distance of 300

External ambient density $n = 1 \text{ cm}^{-3}$

Dominated by mildly relativistic outflow $v > 0.3c$ not included in the simulation
expected brighter emission

150 MHz

$F_{\text{peak}} \sim 0.2 - 1 \text{ mJy}$

$t_{\text{peak}} \sim 2 - 5 \text{ years}$

1.4 GHz

$F_{\text{peak}} \sim 0.04 - 0.3 \text{ mJy}$

$t_{\text{peak}} \sim 1.5 - 5 \text{ years}$

Piran et al. 2013, MNRAS, 430

External ambient density critical parameter
 $n = 0.1 \text{ cm}^{-3}$ → an order of magnitude fainter signals

EM signals from NS-NS/NS-BH merger and massive star core-collapse

❖ **Prompt γ -ray emission (beamed):**
GRB \rightarrow GW search **“Triggered off-line analysis”**

❖ **GRB afterglow emission, kilonovae:**
GW trigger \rightarrow EM search
“Low-latency EM follow-up”

❖ **Radio flares:**
GW trigger \rightarrow radio search **“High-latency follow-up”**
Blind radio search \rightarrow GW search **“Triggered off-line analysis”**

Triggered analysis
EM observations → GW analysis

GRB prompt emission - TRIGGERED SEARCH

EM observations guide GW analysis

Known GRB event time and sky position:

- reduction in search parameter space
- gain in search sensitivity

Analyzed 154 GRBs detected by gamma-ray satellites (most from Fermi GBM and Swift BAT) during 2009-2010 while 2 or 3 LIGO/Virgo detectors were taken good data

Unmodeled GW burst search

Binary system coalescence search

No evidence for gravitational-wave counterparts Abadie et al. 2012, ApJ, 760 16

GRB prompt emission - TRIGGERED SEARCH

Non GW-detection result: **lower bounds on the progenitor distance**

Abadie et al. 2012, ApJ, 760

Unmodeled GW burst (150 GRBs)
with 10^{-2} Moc^2 energy in GW (optimistic)

Binary system coalescence (26 short GRBs)

Population exclusion on cumulative redshift distribution

Results 2009-2010 & prospects for Advanced LIGO/Virgo

Abadie et al. 2012, ApJ, 760

Unmodeled GW burst

Binary system coalescence

- Detection is quite possible in the advanced detector era
- No detection will place relevant constraints on GRB population models

Electromagnetic follow-up
GW → prompt EM observations

2009-2010 first EM follow-up of candidate GW events

Low-latency GW data analysis pipelines enabled us to: 1) identify GW candidates in "real time" and 2) obtain prompt EM observations to detect the EM signature of the possible GW source

“Search Algorithms” to identify the GW-triggers:
• **Unmodeled Burst Search**
• **Matched Filter Search** for Compact Binary Coalescence

“Software” to identify GW-trigger for the EM follow-up:
• select statistically significant GW triggers
• determine telescope pointing

~ 10 min. \longrightarrow ~ 30 min.

ADE latency expected to be improved!

Abadie et al. 2012, A&A 539

Abadie et al. 2012, A&A 541

Evans et al. 2012, ApJS 203

Sky Localization of GW transients

The **sky position of a GW source** is mainly evaluated by “**triangulation**” based on **arrival time delay between detector sites**

low SNR signals were localized into regions of **tens of square degrees** possibly in several disconnected patches

**Necessity of wide field of view
EM telescopes**

Abadie et al. 2012, A&A 539

Ground-based and space EM facilities observing the sky in the Optical, X-ray and Radio bands involved in the follow-up program

Optical Telescopes

(FOV, limiting magnitude)

TAROT SOUTH/NORTH

3.4 deg², 17.5 mag

Zadko

0.17 deg², 20.5 mag

ROTSE

3.4 deg², 17.5 mag

QUEST

9.4 deg², 20.5 mag

SkyMapper

5.7 deg², 21 mag

Pi of the Sky

400 deg², 11.5 mag

Palomar Transient Factory

7.8 deg², 20.5 mag

Liverpool telescope

21 arcmin², 21 mag

X-ray and UV/Optical Telescope

Swift Satellite

XRT-FOV 0.16 deg²

Flux 10⁻¹³ ergs/cm²/s

Radio Interferometer

LOFAR

30 - 80 MHz

110 - 240 MHz

Maximum 25 deg²

EVLA

5 GHz - 7 arcmin²

Additional priors to improve the localization accuracy and increase the chance to observe the EM counterpart

Initial LIGO/Virgo horizon:

a binary inspiral containing a NS detected out to **50 Mpc**

EM-observation was restricted to the regions occupied by galaxies within 50 Mpc and Galactic globular clusters

(GWGC catalog White et al. 2011, CQG 28, 085016)

To determine the telescope pointing position:

The probability skymap of each GW trigger was ‘weighted’ taking into account luminosity and distance of nearby galaxies and globular clusters

Optical telescope

14 GW alerts \rightarrow 9 followed by at least one telescope

Swift Satellite: X-ray and UV/Optical telescope

2 GW alerts sent and followed

Evans et al. 2012, ApJS, 203

Radio Interferometers

LOFAR

5 GW alerts sent and followed

Expanded-VLA

Lazio et al. , 2012 IAUS, 285

High-Latency Follow-up

\rightarrow 2 GW alerts followed

3 weeks, 5 weeks + 8 months later

GW/EM transient data analysis results:

- Off-line analysis of the GW data alone \rightarrow GW candidates show no evidence of an astrophysical origin
- EM transients detected in the images consistent with the EM background
(optical analysis results under internal LIGO/Virgo review)

EM analysis procedure to identify a GW counterpart

Main steps:

1) Identification of all “Transient Objects” in the images

2) Removal of “Contaminating Transients”

Main challenge due to the “large sky area” to analyze

“Contaminating transients” rejection:

- by limiting the analysis to the **regions occupied by the most likely GW source host galaxies**
- by a **rapid transient discovery** and (light curve/color/shape) **classification** over wide sky areas

3) **Multi-wavelength** and **spectroscopic follow-up** of a small number of counterpart candidates **to uniquely identify a counterpart** of the GW trigger

Very promising result: discovery and redshift of **optical afterglow** for the long GRB 130702 over **71 sq. degree**

Singer et al. 2013, arXiv1307.5851

Electromagnetic Transient Sky

Exploration of the optical transient sky at faint magnitudes and short timescale has started recently

Pan-STARRS searching for fast optical transient (0.5 hr – 1d) brighter 22.5 mag:

- primary contaminants: M-dwarf flares and asteroids (19/19 transient detections)
- upper limit on extragalactic fast transients (no detection): rate $0.12 \text{ deg}^{-2} \text{ d}^{-1}$ (0.5 hrs)
- rate $< 2.4 \cdot 10^{-3} \text{ deg}^{-2} \text{ d}^{-1}$ (1d)

Berger et al. 2013, arXiv 1307.5324

Transient X-ray and radio sky is emptier than in the optical band

X-ray transients in the Advanced LIGO/VIRGO horizon

Systematic search in the **XMM-Newton Slew Survey** covering 32800 deg^2 above a **flux threshold of $3 \times 10^{-12} \text{ (erg s}^{-1}\text{cm}^{-2}$** → **$4 \times 10^{-4}$ transients per sq. degree**

Kanner et al. 2013, arXiv 1305.5874

Radio transients

(1.4 GHz and 150 MHz)
49 epochs of E-CDFS VLA observations on timescale 1 day – 3 months:
→ **transient density $< 0.37 \text{ deg}^{-2}$ above 0.21 mJy**

Mooley et al. 2013, ApJ, 768

Advanced detector era observing scenario

LSC & Virgo Collaborations, arXiv:1304.0670

Ground-based Gravitational Wave Detectors

The advanced LIGO and Virgo will observe the sky (10-1000 Hz) as a single network aiming at the first direct detection of GWs

Advanced Detector Era Observing Scenario

LSC & Virgo Collaborations, arXiv:1304.0670

Progression of sensitivity and range for Binary Neutron Stars

Larger GW-detectable Universe

Sky Localization of Gravitational-Wave Transients

→ Burst search “uncertainty region size”
 $\rho_c \geq 15$ median region of $30 \text{ deg}^2 - 200 \text{ deg}^2$

Network sensitivity /Localization accuracy
for Binary Neutron Stars

- → 90% confidence localization areas
- ✗ → Regions of the sky where the signal would not be confidently detected

Follow-ups would need to deal with large position uncertainties
with areas of many **tens of sq. degrees**

Summary of plausible observing scenario

LSC & Virgo collaboration
arXiv:1304.0670

		LIGO/Virgo Range				Rate	Localization
--	--	------------------	--	--	--	------	--------------

Epoch	Estimated Run Duration	$E_{\text{GW}} = 10^{-2} M_{\odot} c^2$		BNS Range (Mpc)		Number of BNS Detections	% BNS Localized within	
		LIGO	Burst Range (Mpc)	LIGO	Virgo		5 deg ²	20 deg ²
2015	3 months	40 – 60	–	40 – 80	–	0.0004 – 3	–	–
2016–17	6 months	60 – 75	20 – 40	80 – 120	20 – 60	0.006 – 20	2	5 – 12
2017–18	9 months	75 – 90	40 – 50	120 – 170	60 – 85	0.04 – 100	1 – 2	10 – 12
2019+	(per year)	105	40 – 80	200	65 – 130	0.2 – 200	3 – 8	8 – 28
2022+ (India)	(per year)	105	80	200	130	0.4 – 400	17	48

Observational strategies for each epoch..key points:

- ❖ **Image the whole GW error box:**
 - Large “etendue surveys” (PTF, Pan-STARRS, LSST)?
 - Wide-medium FOV telescope networks?
- ❖ **Galaxy targeting:** → is still useful to point small-FOV telescope?
 - to reduce the EM FAR?
 - Galaxy priors to sample GW source population?
- ❖ **Identify uniquely the EM counterpart:** survey the explore the “transient sky”? multi-wavelength observations? larger telescope and spectroscopic-follow up?
- ❖

**TIGHT LINK is required between GW/EM COMMUNITIES
to be ready for the UPCOMING GW-TRANSIENT ASTRONOMY!!**

Summary of promising EM counterparts

EM Band	Sources	Analysis	Strength	Weakness	Example Facilities
γ-rays	On-axis GRB	EM→GW “off-line”	→ strong EM signal → temporal coincidence	→ beamed emission/small % of events	Fermi-GBM Swift-BAT
X-ray	On-axis and “orphan” GRB	GW →EM Low-latency	→ few false positive	→ lack of wide FoV facilities	Swift-XRT ISS-Lobster
UV/O/IR	On-axis and “orphan” GRB Kilonova	GW →EM low-latency	→ Transient “survey” facilities → Isotropic	→ numerous false positive → Faint in UV/O	PTF, PanStarrs, VISTA, LSST
Radio	GRB Radio flares	GW→EM high-latency EM→GW “Off-line”	→ few false positive → isotropic	→ long time delay → Dependence on ambient density	ASKAP Apertif LOFAR

EXTRA SLIDES

Short hard GRB070201 / GRB051103

➤ **γ-ray emission:**

- GRB070201 sky position overlaps with M31 (Andromeda, 770 kpc)
- GRB051103 sky position overlaps with M81 (3.6 Mpc)

➤ **No binary coalescence GW detection**

- compact binary progenitor in M31 excluded at 99% c.l.
- compact binary progenitor in M81 excluded at 98% c.l.

➤ **No burst GW detection set emitted energy limits compatible with:**

- soft gamma-repeater giant flare
- coalescence in galaxy more distant than M31/M81

Abbott et al 2008, ApJ, 681; Abadie et al. 2012, ApJ, 755

Observational galaxy priors to identify the most likely GW-host

Useful:

- to define an optimal observational strategy
- to identify the image region to be analyzed

In the 2009/2010 follow up the “**blue luminosity**” was used to identify the most likely hosts → **actual star formation**

EM observational results vs GW source population numerical simulation

- Assuming that the short GRBs trace the binary neutron star mergers:

Sample: 36 short GRBs

- **Population synthesis models** indicate a **relevant fraction (20 – 50%) of elliptical galaxy hosts** at $z=0$
(O'Shaughnessy et al. 2008, ApJ, 675)

Swift Satellite: analysis and results

X-ray and Optical/UV image analysis

- 1) detection of the sources in the FOV
- 2) comparison with the number of serendipitous sources
- 3) variability analysis

RESULTS:

XRT-analysis 20 detections (1.5σ)
UV/OP-analysis 6800 detections

- ALL consistent with EXPECTED SERENDIPITOUS sources
- NO single source with significant variability

Joint GW/X-ray search sensitivity improvement

Figure shows

- an efficiency increase with the X-ray counterpart flux
- an efficiency gain observing with 10 (dashed) wrt 5 (solid) Swift fields

An X-ray telescope with wide FOV increases the chance to observe the counterpart despite the larger serendipitous X-ray background

Expanded Very Large Array: analysis and results

Three epochs (3, 5 weeks, 8 months after the GW alert) of 6 cm observations

For each of the two GW-candidates observed \rightarrow 3 most probable host galaxies

Image Analysis:

- 1) radio source detection
- 2) variability analysis
- 3) identification of contaminating transients

variability of AGN emission caused by
interstellar medium scintillation of Galaxy

Light curves

Imaged region ($\approx 30'$) around one galaxy

About **6 sources** in the field of each galaxy
consistent with number of
expected serendipitous sources
(Windhorst 2003)

Rate of False Alarm GW triggers

FAR will depend on the data quality of the advanced detectors
“instrumental glitches” will produce an elevated background of loud triggers

2009-2010 LIGO-Virgo data

Compact Binary Coalescence search

Burst search

Modelled-search reduces the background
→ conservatively, p_c of 12 is required for a **FAR 10^{-2} yr^{-1}** in aLIGO and aVirgo

Unmodelled search → more difficult to distinguish signal from glitches.
At frequencies below 200 Hz significant tails of loud bkg events

Optical afterglow “Orphan GRB”

Source at distance of 200 Mpc

<http://cosmo.nyu.edu/afterglowlibrary/index.html>

By van Eerten & MacFadyen

Gamma Ray Burst Optical afterglow

Source at distance of 200 Mpc

Synthetic afterglow light curves

LONG bright GRB

$$\theta_{\text{obs}} = 0.3 \text{ rad}$$

LONG low-luminosity GRB

$$\theta_{\text{obs}} = 0.4 \text{ rad}$$

SHORT GRB

$$\theta_{\text{obs}} = 0.4 \text{ rad}$$

<http://cosmo.nyu.edu/afterglowlibrary/index.html>

By van Eerten & MacFadyen

Optical Afterglow Light Curves for GRBs and kilonovae

Source at distance 50 Mpc

Optical Transient Sky

Exploration of the optical transient sky at faint magnitudes and short timescale has started recently, but it is still largely unknown..

Pan-STARRS searching for fast optical transient (0.5 hr – 1d) brighter 22.5 mag:

→ primary contaminants: M-dwarf flares and asteroids (19/19 transient detections)

→ upper limit on extragalactic fast transients (no detection): rate $0.12 \text{ deg}^{-2} \text{ d}^{-1}$ (0.5 hrs)
rate $< 2.4 \cdot 10^{-3} \text{ deg}^{-2} \text{ d}^{-1}$ (1d)

Berger et al. 2013, arXiv 1307.5324

Extremely valuable

→ optical transient survey

→ algorithms for a rapid transient discovery and classification over wide sky areas (Bloom et al. 2012, PASP, 124)

→ to select small number of counterpart candidates to be multi-wavelength and spectroscopic followed-up

→ to uniquely identify a counterpart of the GW trigger

Very promising result by Singer et al. 2013, arXiv1307.5851
discovery and redshift of optical afterglow of long GRB 130702 over 71 sq. degree

X-ray and radio

Transient X-ray and radio sky is emptier than the optical at the expected fluxes of the EM counterparts

systematic search in the **XMM-Newton Slew Survey** covering 32800 sq. deg

--- 1411 objects above flux 3×10^{-12} erg s $^{-1}$ cm $^{-2}$

- - - 97 transients ($> \times 10$ brighter than RASS)

— 12 transients spatially coincident with known galaxy, after rejecting AGN

Above flux threshold of **3×10^{-12} (erg s $^{-1}$ cm $^{-2}$)**
 $\rightarrow 4 \times 10^{-4}$ transients per square degree

Kanner et al. 2013, arXiv 1305.5874

Radio sky

Transient contaminants (1.4 GHz and 150 MHz)

49 epochs of E-CDFS VLA observations on timescale 1 day – 3 months show:

- 1% of unresolved sources show variability above 40 μ Jy
- density of transients is less than 0.37 deg $^{-2}$ above 0.21 mJy

Mooley et al. 2013, ApJ, 768