NEUTRINO TELESCOPES AS TARGETS FOR LONG-BASELINE NEUTRINO BEAMS

J. Brunner CPPM (Marseille)

Layout

Neutrino Telescopes

- (→talk Ch.Spiering, Saturday)
- Antares, IceCube/DeepCore

Neutrino Oscillations

- Results from Antares
- Results from IceCube/Deep-Core

Matter effects & Neutrino Mass hierarchy

- PINGU : Low energy extension of IceCube
- ORCA : Low energy option of KM3Net

Neutrino Beams

- Muon Event Counting
- Electron Event Counting

IceCube

- Deep-Core ~10 GeV

Deep-Core

- More densily instrumented than IceCube
 - 8 special strings + 7 nearest standard strings
 - Spacing 45 -72 m
 - (IceCube 125 m)
 - Vertical Spacing 7m
 (locCube 20m)
 - (IceCube 20m)
 - Clearest ice ($\lambda_{eff} \sim 45-50$ m)
 - High QE PMT (35%)

Deep-Core

- More densily instrumented than IceCube
 - 8 special strings + 7 nearest standard strings
 - Spacing 45 -72 m
 - (IceCube 125 m)
 - Vertical Spacing 7m
 (IceCube 20m)
 - Clearest ice ($\lambda_{eff} \sim 45-50$ m)
 - High QE PMT (35%)

Antares

- Mediterranean Sea close to Toulon
- Depth ~2475 km
- Volume ~0.01 km³
- 12 strings,
- each with 25 PMT triplets
- Operating in final configuration since 2008

Oscillations of atmospheric neutrinos

Muon neutrino survival probability

Vertically upward

IceCube/Deep-Core results

IC79 :May 2010-April 2011 319 days lifetime Neutrino events: 719 DeepCore 38000 high energy Zenith angle only analysis

IC86 :May 2011-April 2012 343 days lifetime 1487 neutrino events Strict selection : "direct light"

Summary of Results

- Clear signal of atmospheric neutrino oscillations seen in IceCube and Antares
- IceCube/DeepCore :
- One year of data analysed
- Strong potential for future studies

Deep-Core 6 years (2017)

- Current results statistics limited
- Shown extrapolation assumes additional improvements
- 1)Higher efficiency
- 2)Better resolutions
- 3)Smaller systematics uncertainties

Matter effects & Mass Hierarchy

- Solar Neutrinos : Matter effects inside sun
 - \rightarrow m₂ > m₁
- Matter effects in Earth (not yet measured !)
 - \rightarrow m₃ >< m₁,m₂

Example Earth Matter Effect : $P(v_{\mu} \rightarrow v_{\mu})$

Resonance energy Earth mantle : 6-7 GeV

PINGU Design

- Precision IceCube Next Generation Upgrade
- 20-40 Additional Strings inside Deep-Core Volume
- Strings ~300m high, 60-120 Optical Modules
- Instrumented Volume 3-4 Mtons
- Energy threshold ~2 GeV

KM3Net project

- Next generation (multi-km³) neutrino telescope in Mediterranean
- Main goal: detection of v from galactic sources (SNR)
- recent milestones
 - multi-pmt Optical Module design agreed & prototyped
 - string configuration
 - partial funding obtained
 - ~1/5 of total wishes (~50 strings)
 - must be spent soon → 'phase 1'

KM3Net project

Mutliple small pmt's (helps in photoncounting and background rejection)

KM3NeT Optical Module integrated in Antares instrumentation line.

KM3Net – ORCA Layout

Oscillation Research with Cosmics in the Abyss

x [m]

Other parameters determined by deployment constaints

PINGU – ORCA : Energy

- Energy reconstruction from total light yield
- Ice is a better calorimeter due to scattering

 Energy reconstruction from fitted track length

PINGU – ORCA : Zenith angle

- Resolution close to kinematical limit
- Water is a better tracker due to absence of scattering

Sensitivity Calculation

- Fit of event count in Energy-Zenith space
- Color code : bin-by-bin significance of hierarchy difference

PINGU Oscillation parameters

- Side effect of correlation between mass hierarchy and oscillation parameters
- After one year of data taking with PINGU competitive measurement of dm²₃₂

Sensitivity Calculation

- 3 years PINGU (20 lines)
- 1.3-2.9 sigma separation of mass hierarchy hypothesis
- Challenges of measurements with atmospheric neutrinos:
- Cancellations !
 - neutrinos / antineutrinos
 - muons / electrons (flavour ID)
 - Energy resolution
 - Oscillation parameters

Neutrinos from Beams

- Eliminate ambiguities
- Improve mass hierarchy sensitivity

COUNTING MUONS TO PROBE THE NEUTRINO MASS SPECTRUM CAROLINA LUJAN-PESCHARD^{1,2}, GIULIA PAGLIAROLI¹, FRANCESCO VISSANI^{1,3}

¹ INFN, LABORATORI NAZIONALI DEL GRAN SASSO, ASSERGI (AQ), ITALY
 ² DEPARTAMENTO DE FISICA, DCEI, UNIVERSIDAD DE GUANAJUATO, LEÓN, GUANAJUATO, MÉXICO
 ³ GRAN SASSO SCIENCE INSTITUTE (INFN), L'AQUILA, ITALY

arXiv:1301.4577

 $P(\nu_{\mu} \rightarrow \nu_{\mu})$

 $P(v_{\mu} \rightarrow v_{\mu})$

 $P(v_{\mu} \rightarrow v_{\mu})$

Counting Muons from Beam Neutrinos

Optimal Beamline : 7000-8000 km

	Fermilab	CERN	J-PARC
South Pole	11600	11800	11400
Sicily	7800	1230	9100
Baikal Lake	8700	6300	3300

arXiv:1301.4577

- Favoured Option:
 - FermiLab KM3Net site in Mediterranean Sea
 - 1300 versus 950 events for both mass hierarchy hypotheses in Mton underwater detector (ORCA)
- → Inverse approach : Counting "Electrons"

E_v (GeV)

E_v (GeV)

Optimal Baseline ?

- For L>2000km the oscillation probabilities are always well separated for both MH hypotheses
- To find optimal baseline calculate event rates
 - N ~ 1/L²
 - N ~ E (cross section)
 - Fixed beam profile
 - ORCA detector response

Optimal Baseline

 L=2600km maximizes the difference in event rates between two MH hypotheses

Proton Accelerator Complex Protvino

Presentation S. Ivanov (IHEP) on 22/11/2012 @ CERN \rightarrow Talk Wednesday

Protvino – ANTARES (ORCA)

- Baseline 2588km ; beam inclination : 11.7 $^{\circ}$ (cos θ = 0.2)
- Deepest point 134km : 3.3 g/cm³

SKAT bubble chamber

Courtesy: R. Nahnhauer

Beam parametrisation (1988)

- Very clean v_{μ} beam
- Less than 1% contaminations from other flavours
- Most neutrinos between 1-8 GeV

Event rates - Signal

- Event numbers for 1.5 10²¹ p.o.t.s
- \bullet 20 σ statistical separation of both Mass Hierarchy hypotheses from signal
- 10000 muon events for beam normalisation
 - 3.5% separation between MH hypotheses
- Other contributions: v_{τ} : 1316 +/- 13 ; 1416 +/- 8 ; NC : 4732

Flavour identification

- Misidentification probability :
 - assume same for both directions
 - 50% at 2 GeV \rightarrow random ; 20% at 5 GeV ; 10% at GeV

Event rates – All Flavours & Mis-ID

- Event numbers for 1.5 10²¹ pots
- 9-18% difference for NH/IH
- 7 σ statistical separation of MH hypotheses
- Can allow for few % syst. Uncertainty
- No requirement of energy reconstruction

Synergies between potential Sites

Conclusion

- Upgraded proton accelerator at Protvino well suited for LBL towards Mediterranean Sea
- Needed : 10²¹ p.o.t. within few years
- Preliminary Performance Figures of ORCA encouraging
- Synergy with Underground Labs in the same beam
- Complementary to measurement with atmospheric $\boldsymbol{\nu}$
- →High Significance determination of Mass Hierarchy

Backup

Oscillation parameters

- Taken from Global Fit (Fogli et al.) for both hierarchy options
- CP phase left free

Arxiv:1205.5254

Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5} \text{ eV}^2$ (NH or IH)	7.54	7.32 - 7.80	7.15 - 8.00	6.99 - 8.18
$\sin^2 \theta_{12}/10^{-1}$ (NH or IH)	3.07	2.91 - 3.25	2.75 - 3.42	2.59 - 3.59
$\Delta m^2/10^{-3} \ {\rm eV^2}$ (NH)	2.43	2.33 - 2.49	2.27 - 2.55	2.19 - 2.62
$\Delta m^2 / 10^{-3} \text{ eV}^2 \text{ (IH)}$	2.42	2.31 - 2.49	2.26 - 2.53	2.17 - 2.61
$\sin^2 \theta_{13} / 10^{-2}$ (NH)	2.41	2.16 - 2.66	1.93 - 2.90	1.69 - 3.13
$\sin^2 \theta_{13} / 10^{-2}$ (IH)	2.44	2.19 - 2.67	1.94 - 2.91	1.71 - 3.15
$\sin^2 \theta_{23} / 10^{-1}$ (NH)	3.86	3.65 - 4.10	3.48 - 4.48	3.31 - 6.37
$\sin^2 \theta_{23} / 10^{-1}$ (IH)	3.92	3.70 - 4.31	$3.53 - 4.84 \oplus 5.43 - 6.41$	3.35 - 6.63

TABLE I: Results of the global 3ν oscillation analysis, in terms of best-fit values and allowed 1, 2 and 3σ ranges for the 3ν mass-mixing parameters. We remind that Δm^2 is defined herein as $m_3^2 - (m_1^2 + m_2^2)/2$, with $+\Delta m^2$ for NH and $-\Delta m^2$ for IH.

Oscillation Probabilities

- All relevant oscillation probabilities taken into account
- Full 3-flavour treatment
- CP-phase variations included

Neutrino Cross sections

Simple parton scaling assumed (QE, Res. ignored) Flavour universality

$$\sigma_{\nu_{\mu}}^{CC}(E_{\nu}) = 0.68 \cdot (E_{\nu}/GeV) 10^{-38} \text{cm}^2$$

$$\sigma_{\bar{\nu}_{\mu}}^{CC}(E_{\nu}) = 0.34 \cdot (E_{\nu}/GeV) 10^{-38} \text{cm}^2$$

00

$$\mathbf{n}^{\sigma_{\nu_e}^{CC}} = \sigma_{\nu_{\mu}}^{CC} \text{ and } \sigma_{\bar{\nu}_e}^{CC} = \sigma_{\bar{\nu}_{\mu}}^{CC}$$

$$\sigma_{\nu_{\tau}}^{CC} = \sigma_{\nu_{\mu}}^{CC} 0.29 \log\left(\frac{E_{\nu}}{E_0}\right)$$

$$\sigma_{\nu}^{NC}(E_{\nu}) = \frac{1}{3}\sigma_{\nu_{\mu}}^{CC}(E_{\nu})$$
$$\sigma_{\bar{\nu}}^{NC}(E_{\nu}) = \frac{1}{3}\sigma_{\bar{\nu}_{\mu}}^{CC}(E_{\nu})$$

Neutrino Cross sections

Simple parton scaling assumed (QE, Res. ignored) Flavour universality

$$\mathbf{n}_{\nu_{e}}^{CC} = \sigma_{\nu_{\mu}}^{CC} \text{ and } \sigma_{\bar{\nu}_{e}}^{CC} = \sigma_{\bar{\nu}_{\mu}}^{CC}$$

$$\sigma_{\nu_{\mu}}^{CC}(E_{\nu}) = 0.68 \cdot (E_{\nu}/GeV) 10^{-38} \text{cm}^2$$

$$\sigma_{\bar{\nu}_{\mu}}^{CC}(E_{\nu}) = 0.34 \cdot (E_{\nu}/GeV) 10^{-38} \text{cm}^2$$

$$\sigma_{\nu_{\tau}}^{CC} = \sigma_{\nu_{\mu}}^{CC} 0.29 \log\left(\frac{E_{\nu}}{E_0}\right)$$

$$\sigma_{\nu}^{NC}(E_{\nu}) = \frac{1}{3}\sigma_{\nu_{\mu}}^{CC}(E_{\nu})$$
$$\sigma_{\bar{\nu}}^{NC}(E_{\nu}) = \frac{1}{3}\sigma_{\bar{\nu}_{\mu}}^{CC}(E_{\nu})$$

Event rates

- Here : no flavour misidentification
- CC Rates

$$\begin{split} \frac{dN_{\alpha}}{dE_{\nu}} = & N_{pot} \left(\frac{l_{SKAT}}{l_{LBL}}\right)^2 \frac{M_{eff}(E_{\nu})}{m_p} \\ & \left[\sigma_{\nu_{\alpha}}^{CC} \left(\frac{d\Phi_{\nu_{\mu}}}{dE_{\nu}} P_{\mu\alpha} + \frac{d\Phi_{\nu_{e}}}{dE_{\nu}} P_{e\alpha}\right) + \sigma_{\bar{\nu}_{\alpha}}^{CC} \left(\frac{d\Phi_{\bar{\nu}_{\mu}}}{dE_{\nu}} P_{\bar{\mu}\alpha} + \frac{d\Phi_{\bar{\nu}_{e}}}{dE_{\nu}} P_{\bar{e}\alpha}\right)\right] \end{split}$$

$$\begin{aligned} \frac{dN_{NC}}{dE_{\nu}} = & N_{pot} \left(\frac{l_{SKAT}}{l_{LBL}}\right)^2 \frac{M_{eff}(E_{\nu}/2)}{m_p} \\ & \left[\sigma_{\nu}^{NC} \left(\frac{d\Phi_{\nu_{\mu}}}{dE_{\nu}} + \frac{d\Phi_{\nu_{e}}}{dE_{\nu}}\right) + \sigma_{\bar{\nu}}^{NC} \left(\frac{d\Phi_{\bar{\nu}_{\mu}}}{dE_{\nu}} + \frac{d\Phi_{\bar{\nu}_{e}}}{dE_{\nu}}\right)\right] \end{aligned}$$

Event rates

- Include Background and Flavour tagging
- Total Background :

