Recent results on the searches for double beta decay processes with scintillators and pure samples

R. Cerulli INFN-LNGS

Lomonosov Conf. Moscow (Ru), August 21-28, 2013

DAMA project

The DAMA project was proposed to develop and to exploit low background scintillator in order to investigate rare processes

- ✤ DAMA/LIBRA (DAMA/NaI)
- DAMA/LXe
- DAMA/R&D
- DAMA/Crys
- DAMA/Ge and Ge facility (STELLA)

Collaboration:

Roma Tor Vergata, Roma La Sapienza, LNGS, IHEP/Beijing

+ by-products and small scale expts.: INR-Kiev

+ in LNGS: Chemistry Lab and Ge facility (STELLA)

+ some activities: JINR-Dubna Russia, ITEP-Moscow Russia, Nikolaev Institute of Inorganic Chemistry -Novosibirsk Russia, Institute of Physics and Technology- Kharkiv Russia, University of Jyvaskyla Finland, IIT-Ropar India

+ neutron meas.: ENEA-Frascati

Web Site: http://people.roma2.infn.it/dama

DAMA/Ge and STELLA

Physics in DAMA/R&D and LNGS Ge facility

- □ Dark Matter with CaF2(Eu)
- Solar Axions
- \Box 2 β decay in various isotopes
- First observations of rare α decays (¹⁹⁰Pt, ¹⁵¹Eu)
- \Box highly forbidden β decay
- Cluster decay
- □ CNC decay

- \circ 2 β -2 ν observed for several nuclides
- in the field experiments mainly on 2β ($T_{1/2} \sim 10^{23} \cdot 10^{25}$ yr)
- \circ 2 β + decay:
 - 34 candidates for 2ε ,
 - 22 also for $\varepsilon \beta^+$, 6 also for $2\beta^+$
- \circ 2β⁺2ν not observed yet (indication ¹³⁰Ba in geoch. exp.)(T_{1/2} ~10¹⁸-10²¹ y)

 2ε and $\varepsilon \beta^+$ important: observation of 0ν mode could help to distinguish between the mechanisms of neutrinoless 2β decay (non-zero neutrino mass or right-handed admixtures in weak interactions)

DAMA focus on search for $2\beta^+$ decay

AP7(1997)73, N.Cim.A110(1997)189, NPB563(1999)97, AP10(1999)115, NPA705(2002)29, NIMA498(2003)352, NIMA525(2004)535, NIMA555(2005)270, UJP51(2006)1037, NPA789(2007)15, PRC76(2007)064603, PLB658(2008)193, EPJA36(2008)167, NPA824(2009)101, NPA826(2009)256, JPG:NPP38 (2011)115107, JPG: NPP38(2011)015103, PRC85(2012)044610, JINST6(2011)P08011, PRC85(2012)044610

NIMA572(2007)734, NPA806(2008)388, EPJA42(2009)171, NPA824(2009)101, NIMA607(2009) 573, NIMA846(2010)143, NIMA615(2010)301, NPA846 (2010)143, EPJA47(2011)91, NPA859(2011)126, PRC83(2011)034603, NIMA626-7(2011)31, PLB711(2012)41, NIMA670(2012)10, NIMA704(2013)40, EPJC73(2013)2276, EPJA49(2013)24, PRC87(2013) 034607

Summary of searches for $\beta\beta$ decay modes (partial list)

T_{1/2} experimental limits by DAMA (in red) and previous ones (in blue). All the limits are at 90% C.L. except for $0v2\beta$ + in ¹³⁶Ce and 2β -0v in ¹⁴²Ce at 68% C.L.. In green observed!

- Many competitive limits obtained on lifetime of $2\beta^+$, $\epsilon\beta^+$ and 2ϵ processes (⁴⁰Ca, ⁶⁴Zn, ⁹⁶Ru, ¹⁰⁶Cd, ¹⁰⁸Cd, ¹³⁰Ba, ¹³⁶Ce, ¹³⁸Ce, ¹⁸⁰W, ¹⁹⁰Pt, ...)
- First searches for resonant 2β decays in some isotopes

Many publications on detectors developments and results Many future measurements in preparation

Summary of the results presented in this talk

✓ Search for 2 β decay of ⁹⁶Ru and ¹⁰⁴Ru

- Status and perspectives of ZnWO₄ crystal scintillators on the search for 2 β in Zn and W
- Status and perspectives of ¹⁰⁶CdWO₄ crystal scintillators on the search for 2 β in ¹⁰⁶Cd
- Status and perspectives of ¹¹⁶CdWO₄ crystal scintillators on the search for 2β in ¹¹⁶Cd

DAMA/Ge and STELLA

DAMA/RD and STELLA

Search for 2 ^β decays of ⁹⁶Ru and ¹⁰⁴Ru by ultra-low background HP Ge γ spectrometry EPJA42(2009)171

- ⁹⁶Ru potentially $2\beta^+$ active nuclei, $\delta \sim 5.54\%$, $Q_{2\beta} = 2718$ keV
- Resonant " $0v2\varepsilon$ -capture" possible (energy-release = energy of exited level daughter's nuclei), that can arise possibility of decay (up to 10^6)
- Favourable theorethical T_{1/2}: $2v2\varepsilon - (4.7-39) \times 10^{20} \text{ yr}, 2v\varepsilon\beta + - (2.0-23) \times 10^{21} \text{ yr} (g.s. \rightarrow g.s.),$ J. Suhonen, PRC 86 (2012) 024301

Stage 1

- Preliminary results EPJA, $2\beta^+/\epsilon\beta^+/2\epsilon$ (0v+2v) in ⁹⁶Ru
- Further measurements over 2162 h with a 473 g sample
- Preliminary limits on 2 β in ⁹⁶Ru: $T_{1/2} \approx 10^{18-19}$ y

Stage 2

- Purification from ⁴⁰K with electron beam melting method (10 times decrease of 40 K)
- Increased mass of Ru sample (720 g)
- T=5479 h in **Ge-Mult set-up** (4 x 225 cm³)
- Sensitivity:

$$T_{1/2}$$
≈10^{20–21} y for ⁹⁶Ru
 $T_{1/2}$ ≈10²⁰ y for ¹⁰⁴Ru (2β⁻)

Previous limits improved

 $T^{2k0v}_{1/2} > 1.0 \times 10^{21} \text{ yr } (90\% \text{C.L.}) \text{ in } {}^{96}\text{Ru}$ $T^{resKL0v}_{1/2} > 2.0 \times 10^{20} \text{ yr} (90\% \text{C.L.})$ in ⁹⁶Ru

New measurement with purified sample with higher mass

ZnWO₄ crystal scintillators

• Development of low background ZnWO₄ crystal scintillators with large volume and high scintillation properties is important to investigate double beta decay modes in Zn and W isotopes with source=detector approach

Transition	Energy release $(Q_{\beta\beta})$ (keV) [26]	Isotopic abundance (%) [27]	Decay channels	Number of mother nuclei in 100 g of ZnWO ₄ crystal	PLB658(2008)193 NPA826(2009)256
	1095.7(0.7) 998.5(2.2) 144(4) 489.9(1.4)	49.17(75) 0.61(10) 0.12(1) 28.43(19)	$2arepsilon, arepsiloneta^+ \ 2eta^- \ 2arepsilon \ 2eta^- \ 2eta^- \ 2eta^- \ 2eta^-$	$\begin{array}{l} 9.45\times 10^{22} \\ 1.17\times 10^{21} \\ 2.31\times 10^{20} \\ 5.47\times 10^{22} \end{array}$	NIMA626-627(2011)31 JP38(2011)115107

- Various detectors with mass **0.1-0.7 kg** realized by exploiting different materials and techniques
- Crystal inside a cavity (filled up with high-pure silicon oil) ϕ 47 x 59 mm in central part of a polystyrene light-guide 66 mm in diameter and 312 mm in length.

Summary of the measurements with ZnWO₄ crystal scintillators

Run	Crystal	Mass (g)	T (h)
1	ZWO-1 (ISMA)	117	2906
2	ZWO-2 (ISMA)	699	2130
3	ZWO-3 (ISMA)	141	994
4	ZWO-4	239	834
5	(NIIC)		4305

Run	Crystal	Bac			
		0.2-0.4 MeV	0.8-1.0 MeV	2.0-2.9 MeV	
1	ZWO-1 (ISMA)	1.71(2)	0.25(1)	0.0072(7)	
2	ZWO-2 (ISMA)	1.07(1)	0.149(3)	0.0072(4)	α at level of
3	ZWO-3 (ISMA)	1.54(4)	0.208(13)	0.0049(10)	0.2 -2 mBq/kg
4	ZWO-4 (NIIC)	2.38(4)	0.464(17)	0.0112(12)	
5		1.06(1)	0.418(7)	0.0049(4)	

β β decay modes in Zn and W isotopes with (0.1 - 0.7 kg) low background ZnWO₄

Improved (up to 2 orders of magnitude) limits on the $\beta \beta$ decay modes of ⁶⁴Zn, ⁷⁰Zn, ¹⁸⁰W and ¹⁸⁶W:

 $T_{1/2} \sim 10^{18} - 10^{21} \text{ yr}$

up to now only 5 nuclides (⁴⁰Ca, ⁷⁸Kr, ¹¹²Sn, ¹²⁰Te and ¹⁰⁶Cd) over 34 candidates to 2 ε , $\varepsilon \beta^+$, 2 β^+ processes have been studied at this level of sensitivity in direct search experiments

- 1) A possible positive hint of the $(2v+0v)EC\beta^+$ decay in ⁶⁴Zn with $T_{1/2} = (1.1 \pm 0.9) \times 10^{19}$ yr [I. Bikit et al., Appl. Radiat. Isot. 46(1995)455] excluded
- 2) the 0v2EC capture in ¹⁸⁰W is of particular interest due to the possibility of the resonant process;
- 3) the rare α decay of the ¹⁸⁰W with T_{1/2} = (1.3^{+0.6}_{-0.5}) × 10¹⁸ yr observed and new limit on the T_{1/2} of the α transition of the ¹⁸³W to the metastable level 1/2⁻ at 375 keV of ¹⁷⁹Hf has been set: T_{1/2} = 6.7 × 10²⁰ yr.

Further developments, new detectors ... towards suitable mass fragmented set-up

The ADAMO project: Study of the directionality approach with ZnWO4 anisotropic detectors

Eur. Phys. J. C 73 (2013) 2276

Directionality: study of the correlation between the Earth motion in the galactic rest frame and the arrival direction of those Dark Matter (DM) candidates inducing just nuclear recoils

- Nuclear recoils would be strongly correlated with the DM impinging direction
- This effect can be pointed out through the study of the variation in the response of **anisotropic scintillation detectors** during sidereal day
- **light output** and **pulse shape** of **ZnWO**₄ depend on the direction of the impinging particles with respect to the crystal axes
- These anisotropic features provide two independent ways to exploit directionality, overcoming the difficulties of TPC detectors due to the very short track of recoils

Example (for a given model framework) of the expected counting rate as a function of the detector velocity direction

Complementary information to those by DAMA/LIBRA for some aspects

Development of enriched ¹⁰⁶CdWO₄ to search for 2β decay of ¹⁰⁶Cd in DAMA/R&DIMA651(2010)301 PRC85(2012)044610

- 66% enriched ¹⁰⁶CdWO4 crystal scintillator (215 g), 2.66×10^{23} nuclei of ¹⁰⁶Cd developed
- 2nd enriched CdWO₄ crystal ever produced

¹⁰⁶Cd promising for $2\beta^+$:

- 1) $\delta = (1.25 \pm 0.06)\%$; possibile enrichment up to 100%;
- 2) $Q_{2\beta} = (2770 \pm 7) \text{ keV}; 2\beta^+, \epsilon\beta^+ \text{ and } 2\epsilon$ decay modes possible with favourable theoretical mean lives (resonant processes possible)

	¹⁰⁶ CdWO ₄ [1]	¹¹⁶ CdWO ₄ [2]
Attenuation length @ 480 nm	(60 ± 7) cm *	(31 ± 5) cm
FWHM (CWO on PMT)		
@ 662 keV of ¹³⁷ Cs	10.0%	10.1%
@ 2615 keV of ²⁰⁸ TI	8.4% **	6.7% (5.6% **)
Enrichment	66.4% of ¹⁰⁶ Cd	82.2% of ¹¹⁶ Cd
(Isotopic abundance in ^{nat} Cd)	(1.25%)	(7.49%)

 * – Never reported for CdWO₄
 ** – FWHM that was reached in 2β experiment [1] NIMA615(2010)301 [2] JInst6(2011)P08011

Data taking periods

Run No.	t(h)	$\Delta E(\text{MeV})$	BG [counts/(yr \times keV \times kg)] in energy interval		
			0.8-1.0 MeV	2.0–2.9 MeV	3.0-4.0 MeV
1	283	0.05-4.0	474(18)	2.6(6)	0.4(3)
2	2864	0.40-1.8	453(11)	_	-
3	6307	0.57-4.0	412(4)	2.3(1)	0.33(4)

Search for 2β decay in ¹⁰⁶Cd

Limits on $T_{1/2}$ of some 2 β decay modes in ¹⁰⁶Cd

				Phys. Rev. C 85 (2012) 044010
Decay channel	Decay mode	Energy level of ¹⁰⁶ Pd [keV]	T _{1/2} [yr] (90% CL)	Example of fit to determine the limit on $T_{1/2}$
2ε	2v	1128 (2+)	$>4.1 \cdot 10^{20}$	2 10 ³
	0ν	g.s.	>1.0 · 10 ²¹	
		512 (2+)	>5.1 · 10 ²⁰	$\left \begin{array}{c} \frac{1}{20} \\ \frac$
				5 $T_{1/2} = 2.1 \times 10^{20} \text{ yr}$
		1128 (2+)	$>3.1 \cdot 10^{20}$	
				$0\nu\epsilon\beta'$ $T_{1/2} = 2.2 \times 10^{21} \text{ yr}$
ϵeta^+	2ν	g.s.	$>2.1 \cdot 10^{20}$	
		512 (2+)	$>1.1 \cdot 10^{20}$	-1
				10 and and a second a
	0ν	g.s.	$>2.2 \cdot 10^{21}$	1000 1500 2000 2500 3000
		512 (2+)	$>1.3 \cdot 10^{21}$	Energia (keV)
				$T_{1/2}$ (26, ¹⁰⁶ Cd \rightarrow ¹⁰⁶ Pd) \ge 10 ¹⁹⁻²¹ vr
$2\beta^+$	2v	g.s.	>4.3 \cdot 10^{20}	

 $>1.2 \cdot 10^{21}$

0v

g.s

27 new results for 2β ¹⁰⁶Cd,
9 of them for the first time

C 05 (2012) 044610

New measurement with ¹⁰⁶CdWO₄ in GeMulti

- 106 CdWO₄ in coincidence / anticoincidence with 4-crystals HPGe detector (GeMulti)
- Registration efficiency $\sim (3-8)\%$
- Expected background ~ few counts/yr

Sensitivity to $2\nu\epsilon\beta^+$ and $2\beta^+$ in ¹⁰⁶Cd:

 $T_{1/2} \sim 10^{20} - 10^{21} \,\mathrm{yr}$

```
Theory: 2v2K: 10^{20} - 5 \times 10^{21} yr,
                   2\nu\epsilon\beta^+: 8\times 10^{20} - 4\times 10^{22} \text{ yr}
```

In data taking since December 2012

Future and general perspectives:

increase mass, running time, enrichment, ... reasonable goal

Developments of ¹¹⁶CdWO4 and investigation of 2β decay in ¹¹⁶Cd with DAMA/R&D

Coll. DAMA+INR-Kiev+NIIC+ITEP-Moscow+ JSC NeoChem

JINST 06 (2011)P08011 Proc. NPAE2012, (2013) 353 Rad. Meas., in press

Schema of AURORA set-up (stage 1,2):

- 2 ¹¹⁶CdWO₄ crystal 4.5×5 cm
- ultra-low background PMTs
- plastic scintillator with cavity (to place ¹¹⁶CdWO₄)194 mm lenght + 200 mm high purity quartz
- 116 CdWO₄ surrounded by active shield made of plastic scintillator of large volume (500 × 300 × 240 mm), viewed by four low background 2" PMTs.
- complete 4π active shield of the main (¹¹⁶CdWO₄) detectors provided

This measurement will also improve aspects of the low background techniques and can act as a pilot for next larger mass experiment

AURORA: search for 2β decay of ¹¹⁶Cd with ¹¹⁶CdWO4

Absolute isotopic composition of Cd

ICP-MS analysis

	Atomic	Isotopic composition of Cd, %				
	numbe	Natural Cd [1]	Enriched ¹¹⁶ Cd			
	r					
2 β	106	1.25(6)	0.11(1)			
2β	108	0.89(3)	0.10(1)			
	110	12.49(18)	1.80(5)			
	111	12.80(12)	2.00(5)			
	112	24.13(21)	4.35(4)			
β	113	12.22(12)	2.14(6)			
2β	114	28.73(42)	7.30(6)			
2β	116	7.49(18)	82.2(1)			

[1] M. Berglund and M.E. Wieser, Pure Appl. Chem. 83 (2011) 397.

JINST 06 (2011)P08011

Stage	Mass(g)	Livetime (h)	Some Features
1	586.2 589.3	1727	Detector: Veto covered by PTFE; Light-guides covered by PTFE; LS –"LS-221" (ISMA, Kharkiv). DAQ: Sampling rate 20 MS/s; low level threshold ≈ 50 keV.
2	579.8 582.4	2512	Detector: Veto covered by Tyvek; Light-guides covered by Mylar; LS –Ultima gold liquid scintillator.
3		8552	DAQ: Sampling rate 50 MS/s; low level threshold ≈ 300 keV.
4	579.8 582.4	5557 running	Detector: Plastic veto removed; additional OFHC low radioactive Cu added

Further improvements in preparation

Radioactive contamination of ¹¹⁶CdWO₄ crystals (stage 2)

Background ¹¹⁶CdWO₄ (stage 2)

Source		Activity in ¹¹⁶ C	CdWO ₄ , mBq/	kg
	No.1	No.2	¹¹⁶ CWO[1]	¹⁰⁶ CWO [2]
²³² Th	≤ 0.08 ^b	≤ 0.08 ^b	0.053(9) ^b	≤ 0.07 ^b
²²⁸ Ra	≤ 0.2 ª	≤ 0.2 ª	≤ 0.004 ª	-
²²⁸ Th	0.032(2) ^c	0.054(3) ^c	0.039(2) ^c	0.042(4) ^c
²²⁷ Ac	≤ 0.002 ^c	≤ 0.002 ^c	≤ 0.01 ^c	_
²³⁸⁺²³⁴ U	≤ 0.4 ^b	≤ 0.6 ^b	≤ 0.6 ^b	≤ 0.6 ^b
²³⁰ Th	≤ 0.06 ^b	≤ 0.05 ^b	≤ 0.5 ^b	≤ 0.4 ^b
²²⁶ Ra	≤ 0.005 ^b	≤ 0.005 ^b	≤ 0.004 ^b	0.012(3) ^b
²¹⁰ Po	≤ 0.4 ^b	≤ 0.6 ^b	≤ 0.4 ^b	≤ 0.2 ^b
Σα	2.1(2) ^b	2.9(3) ^b	1.4(1) ^b	2.1(2) ^b
⁴⁰ K	≤ 0.9 ª	≤ 0.9 ª	0.3(1) ^a	≤ 1.4 ª
⁹⁰ Sr- ⁹⁰ Y	≤ 0.1 ª	≤ 0.1 ª	≤ 0.2 ª	≤ 0.3 ª
^{110m} Ag	0.12(4) ^a	0.12(4) ^a	-	≤ 0.06 ª
¹¹³ Cd	100(10) ^d	100(10) ^d	91(5) ^a	182 ^d
^{113m} Cd	460(20) ^d	460(20) ^d	1.1(1) ^a	116(4)×10 ^{3 a}
¹³⁷ Cs	≤ 0.3 ª	≤ 0.05 ª	0.43(6) ^a	-

^a Fit of background spectra;
^c Time-amplitude analysis;

Pulse shape discrimination;
 ICP-MS analysis

[1] F.A. Danevich et al., PRC 68 (2003) 035501.

[2] P. Belli et al., PRC 85 (2012) 044610

$2\upsilon 2\beta$ decay of ¹¹⁶Cd

• Radioactive contamination of the similar PMTs was measured in [1]

• U/Th in ¹¹⁶CdWO4 were bounded according to PSD and T-A results

Half-life on $2\sqrt{2}\beta$ decay of ¹¹⁶Cd (g.s-g.s.)

Experimental T _{1/2} , 10 ¹⁹ yr			
Present work	Present work Previous results		
2.6 ± 0.06(stat.) ± 0.3(syst.)	2.6 ^{+0.9} -0.5	[1]	
	2.9 ± 0.06(stat.) ^{+0.4} - _{0.3} (syst.)	[2]	
	3.75 ± 0.35(stat.) ± 0.21(syst.)	[3]	
	2.88 ± 0.04(stat.) ± 0.16(syst.)	[4]	
	2.8 ± 0.2 [world average value]	[5]	

[1] H. Ejiri et al., J. Phys. Soc. Japan 64 (1995) 339.

[2] F.A. Danevich et al., Phys. Lett. B 344 (1995) 72; Phys. Rev. C 68 (2003) 035501. [3] R. Arnold et al., JETP Lett. 61 (1995) 170; Z. Phys. C 72 (1996) 239.

[4] V.I. Tretyak on behalf of the NEMO-3 collaboration, AIP Conf. Proc. 1417 (2011) 125.

[5] A.S. Barabash, Phys. Rev. C 81 (2010) 035501.

Stage 4 - preliminary

[1] R. Bernabei et al., JINST 7 (2012) P03009.

2 \cup 2 β decay of ¹¹⁶Cd: $T_{1/2} = (2.6 \pm 0.06(\text{stat.}) \pm 0.3(\text{syst.})) \times 10^{19} \text{ yr}$

AURORA experiment with ¹¹⁶CdWO₄: stage 4

5557 h, DAMA/R&D set-up, LNGS (Italy)

Two ¹¹⁶CdWO₄ crystals ≈0.58 kg each; enriched in ¹¹⁶Cd to 82.2(1)%

 $Q_{2\beta}$ (¹¹⁶Cd)=2813.50(13) keV

Rate @ 2.7–2.9 MeV: 0.14(3) cnts/(keV×kg×yr)

Main contribution: internal ²⁰⁸Tl, ^{110m}Ag; external ²⁰⁸Tl (PMT+Cu)

sensitivity of the experiment in accordance with G.J.Feldman and R.D.Cousins [Phys. Rev. D 57(1998)3873] = 7×10^{22} yr (90% CL)

Estimated sensitivity over 5 yr of measurements (subject to reduce the background by a factor 2-10):

 $T_{1/2} \sim (0.5-1.5) \times 10^{24} \text{ yr}$ $\langle m_{\nu} \rangle \sim (0.4-1.4) \text{ eV}$

Conclusions

- Continue efforts to develop new/improved crystal scintillators for low background physics
- □ Effectiveness of the low background scintillation technique for the search of rare processes proved
- Many rare processes investigated with high sensitivity in DAMA/R&D and DAMA/Ge and LNGS STELLA facility
- □ Sensitivity for $2\beta^+$ decay at level of 10^{21} yr
- Experiments on 2 β decay of ¹⁰⁶Cd and ¹¹⁶Cd running/under-improvement
- Other new measurement in preparation and/or foreseen (Gd, Nd, Ru, SrI, etc.)

