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Two types of supernovae : Core-collapse and Thermonuclear

® SN la have similar light curves, powered ® SN la: no H in spectra, and IME lines
by — %6Co — >°Fe decays. SNIb, SNIc, SNII : H lines in spectra.

Spectrotomography of a SN la
Hachinger et al. 2012



@ SN la light curves are ‘standardizable’
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@ SN la revealed the acceleration of the expansion of the Universe
Perlmutter, Schmidt & Riess Nobel Prize 2011

@ SN la provide complementary
constraints to BAO and CMB

for ACDM models

« But the determination of the Hubble
constantfrom SN la (Riess et al., 2009)

Hy=724 +34kms *Mpc
is in tension with the value obtained

by Planck:
Hy =67.3 £1.2kms~*Mpe™



@ Thermonuclear supernovae result from the thermonuclear
explosions of a Carbon-Oxygen white dwarf

SN 2011fe (in M101) has a radius
R<0.02R; (Bloom & al 2011)

@ Despite considerable numerical efforts, even the actual
combustion regime is still uncertain (Calder et al. 2013)

« We propose a new mechanism as a contribution to the long-
lasting problem of the transition from the delagation to
the detonation (DDT) combustion regimes.



Deflagration (or Flame)

@ Propagates through efficient electronic conduction and radiation
@ Very subsonic (AP/P « 1) — Inflation of the star > Synthesis of IME

@ Unstable against Rayleigh-Taylor, etc. = > Generation of acoustic energy

Vadim N. Gamezo et
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Detonation

@ Supersonic: Propagates as a shock wave (AP/P > 1), followed by combustion

@ No inflation of the star

~— High density nucleosynthesis = most material incinerated to>®Ni

@ Weak cellular instabilities

- Supernova remnant !

White Dwarf




=N

Detonations

Complete combustion (10°1erg)
« Brighter-Slower » light curve correlation
Synthesisof 1,4 M__, {Fe}ens

No intermediate mass elements {Mg, Si, S, Ar, Ca}

Deflagrations

Nucleosynthesis :

internal layers {Fe} — intermediate {Mg-Ca } — external {@}

« Brighter-Faster » light curve correlation

Slow velocity of the IME layers : 10 000 km/s vs. 25 000 km/s obs.



Combining ...

@ A deflagration
to expand the star

@ A detonation
to incinerate the remaining fuel

Consistent with nucleosynthesis
and energetics if

@ pppr~2x%x107gcm™3

The physical mechanism for
Deflagration to Detonation
Transition is still unknown !



Several models have been designed to obtain a
detonation after an initial phase of deflagration
and expansion

@ Turbulence induced DDT
(Khokhlov 1997)

@ Gravitationally confined detonation
(Plewa & al 2004)

@ Pulsational detonation
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They all rely on the Zel’dovich

indiction time gradient mechanism ...

But on widely unresolved scales



In unconfined media a DDT could be triggered through the
Zel’dovich gradient mechanism (Zel’dovich & al. 1970)

A suitable gradient of induction time of thermonuclear reactions
requires well shaped gradients of temperature, density or composition.

Spontaneous Combustion Wave with velocity D, = 1/V7;

smallt; B large t;

2.776 ms 3.156 3.216 - 3.395 3.792 4.193
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Oran & Gamezo 2007 _— M (gicmd)

Turbulence would create in some places the appropriate gradients.



Woosley (2009) obtained a DDT in 1D Linear Eddy Model
simulation and concluded that the level of turbulence needed

shouldbe 20% of sound speed.

Is such a level of turbulence realistic ?

Maybe through intermittency ( Ropke 2007)

But strong turbulence may destroy the gradient itself ...
before the induction time.

In this context we propose a novel
approach...



Acoustic wave amplification in a density gradient

We considered another original approach :
© Perturbations are produced in the flame,

Sound waves :
o Energy carried :
F = 3pu*Cs
@ Flux conservation :
u(h) = uo %‘;—}
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Acoustic wave amplification in a density gradient

We considered another original approach :

@ Perturbations are produced in the flame,
@ get amplified through the density gradient,
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Acoustic wave amplification in a density gradient

We considered another original approach :

@ Perturbations are produced in the flame,
@ get amplified through the density gradient,
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Acoustic wave amplification in a density gradient

We considered another original approach :

© Perturbations are produced in the flame,
@ get amplified through the density gradient,
© degenerate into shocks and heat up the medium.
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Acoustic wave amplification in a density gradient

We considered another original approach :

@ Perturbations are produced in the flame,
@ get amplified through the density gradient,
© degenerate into shocks and heat up the medium.
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Successful Detonation

We considered another original approach :

© Perturbations are produced in the flame,
@ get amplified through the density gradient,
© degenerate into shocks and heat up the medium.
©Q |[f strong enough : a detonation can be ignited
( well ahead of the flame = non local DDT )

gl Propagating Detonation
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Successful Detonation

We considered another original approach :

@ Perturbations are produced in the flame,
@ get amplified through the density gradient,
© degenerate into shocks and heat up the medium.
@ If strong enough : a detonation can be ignited
( well ahead of the flame = non local DDT )
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Successful Detonation

We considered another original approach :

@ Perturbations are produced in the flame,
©Q get amplified through the density gradient,
© degenerate into shocks and heat up the medium.
@ If strong enough : a detonation can be ignited
( well ahead of the flame = non local DDT )
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Successful Detonation

We considered another original approach :

@ Perturbations are produced in the flame,
©Q get amplified through the density gradient,
© degenerate into shocks and heat up the medium.
@ If strong enough : a detonation can be ignited
( well ahead of the flame = non local DDT )
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High resolution (few um) HD simulation with ASTROLABE (ALE)
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3 Burning stages : 3 well separated reaction lengthes
Carbon — Oxygen- Silicium burning C:1lcm-0:1m-Si:1km

Ignition of the non local TDD is confirmed by a very high resolution calculation
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@ We propose a new process able to initiate a detonation from a
deflagration, based on the amplification of low amplitude acoustic
waves in the density gradient of a white dwarf.

@ A major input for this process is the spectrum and level of the acoustic
noise produced by the turbulent flame.

@ The non-local nature of this process may generate specific signatures

in the SN la light curves, and may partly account for the diversity of
these events.

Thank you !



