Liquid Argon TPCs for future neutrino oscillation experiments

Antonio Ereditato

Albert Einstein Center for Fundamental Physics (AEC) Laboratory for High Energy Physics (LHEP) University of Bern

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Happy birthday, Bruno!

Dubna, 1984

AE - Lomonosov - Aug. 2013

Arbitrary choice for a 25' talk

- describe a part of the intense R&D work in progress worldwide on LAr TPCs in view of future neutrino oscillation projects
- example: Bern group activities since several years aimed at LBL future projects such as LAGUNA, LAGUNA/LBNO (see next talk)
- this work that can also be useful for short time-scale experiments (SBL configuration) according to a graded strategy
- notable example: MicroBooNE at Fermilab
- another long-term LBL applications, LBNE, is the subject of the next-to-next talk

R&D issues for LAr TPCs

- realize XXL observatories: long drift distance is an issue (according to the specific approach)
- readout: double phase, wire planes with cold electronics (low noise), ...
- purity (recirculation), diffusion, recombination
- high voltage (how to supply and limitations)
- insulation, evacuation, mechanics,...
- calibration
- event reconstruction: exploit the rich information from the raw data

Evolution of LAr TPCs at LHEP Bern

0.5 cm

25 cm

57 cm

JINST 4, P07011 (2009) New J. Phys. 12, 113024 (2010)

JINST 5, P10009 (2010)

The Bern ARGONTUBE (5 m long drift)

JINST 7 (2012) C02011 JINST 1307 (2013) P07002

- Up to 4.76 m drift distance
- About 200 l active volume (total 1200 l), 280 kg LAr
- HV generated inside by a Greinacher circuit (up to 500 kV, 1 kV/cm design values)
- 2 wire planes, 20x20 cm², 3 mm wire pitch, 64x64 channels
- PMT's, scintillator planes and UV-laser beams for triggering
- LAr purity: better than 0.1 ppb contaminant
- S/N ratio >10

- Greinacher circuit: 125 stages, input 4 kV AC
- COMSOL finite element analysis software to optimize the geometry of the field-shaping rings
- Goal: drift field of 1 kV/cm
- Reached 170 kV (0.34 kV/cm)

The use of Greinacher for LAr detectors was originally proposed by the ETHZ group: J.Phys.Conf.Ser. 308 (2011) 012027

R/O electronics

CAEN v1724 (ADC) + v2718

e⁻ speed: $2mm/\mu s \rightarrow max drift time: 2500 \ \mu s$ (@ 1 kV/cm)

ARGONTUBE operation: 100-1000 ns sampling time

Cryogenics & purity

LAr recirculation system:

•first cleaning stage at filling, continuous liquid recirculation through filters with bellow pumps

•standard purification cartridges: active copper

Cryo-cooler to run 24/7 long term without refilling

Long drift tracks (cosmic-rays) routinely detected

(compressed aspect ratio!)

Cold electronics tests

- Preamplifiers immersed in LAr at 87 K
- Advantages:
 - Directly on the wire planes, close to signal source. Avoids long cables between wires and preamps (reduce noise from pickup on the way, cable capacitance,...)
 - @at 87K: CMOS technology gives lower thermal noise, higher gain and higher speed
 - Easier design of cryostat and cable feedthroughs
- Configurable (gain, timing, ...) CMOS ASIC chip (LARASIC) designed by BNL: V. Radeka et al, BNL and FNAL iopscience.iop.org/1742-6596/308/1/012021/pdf/1742-6596_308_1_012021.pdf
- ARGONTUBE: test chips in a real environment with long tracks and make comparison with warm electronics

Warm, for impedance matching (gain 1)

(Warm electronics running in parallel for comparison)

S

Cold electronics

Cold

S

Example of track correction for E-field disuniformities

Moving UV-laser beam in LAr (for the needs of the MicroBooNE experiment, see later)

Application: measurement of purity by UV-laser tracks

ARGONTUBE routine operation: 2.5 ms lifetime (0.12 ppb Oxygen equivalent)

Physics result from ARGONTUBE: measurement of transverse charge diffusion (by laser beams)

 $D = 4.21 \pm 0.42 \text{ cm}^2/\text{s}$

Notable physics case for future SBL oscillation experiments

- we entered the era of precision measurements of neutrino oscillations
- liquid argon TPCs also perfectly suited for X-section studies (particle ID) and SBL accelerator experiments
- physics goal: assess the completeness of the 3-flavor mixing scenario vs additional sterile neutrinos (LSND and MiniBooNE signal/indications)
- long standing issue with anomalies in:

 $v_{\mu} - v_{e}$ and $v_{\mu} - \overline{v_{e}}$ oscillations

• is it a real signal of new physics or an unknown background ?

MiniBooNE electron-like event excess

muon

electron

neutral pion

The excess translates into allowed oscillation parameters

Another mass splitting parameter? Then (at least) another (sterile) neutrino

Photon&

(LArTPC)8

LAr TPC technology (ArgoNeuT neutrino-induced event)

- ArgoNeuT: 175 | of liquid Argon
- Placed in the NUMI neutrino beam at Fermilab
- 3 wire planes oriented at 60° relative to each other
- Each plane: 240 wires with 4 mm pitch
- Electric field of 500 V/cm
- 2048 samples in 400 μs
- Large samples of low-energy neutrino interactions (0.1-10 GeV) collected and analyzed:

JINST 7 (2012) P10019 JINST 7 (2012) P10020 Phys. Rev. Lett. 108 (2012) 161802 JINST 8 (2013) P08005

The experiment will measure low energy neutrino cross-sections, and investigate the excess of events observed by the LSND/MiniBooNE experiments.

The collaboration includes groups from:

Bern U, Brookhaven, Chicago U, Cincinnati U, Columbia U, Fermilab, Kansas SU, LNGS INFN, Los Alamos NL, MIT, Michigan SU, New Mexico SU, Otterbein U, Princeton U, Saint Mary's U Minnesota, SLAC, Syracuse U, Texas U at Austin, Virginia Tech, Yale U

MicroBooNE: a "classical" SBL oscillation experiment

Start data taking 2014: in 3 years expect 6.6x10²⁰ pot and ~140 k events (BNB)

e/γ separation performance (dE/dx + topology)

MicroBooNE oscillation physics

(projections for 6.6x10²⁰ POT)

The MicroBooNE detector

Dimensions: 10 m x 2.3 m x 2.5 m 125 kV high voltage, 2.5 m drift length 3 wire planes (3 mm pitch) Y, U, V 32 8" PMT's

Y: vertical plane (2.5 meter long wires), U,V planes: +/- 60 degrees from vertical (5 meters long)

E

£J

The realization of the various sub-systems is on schedule

One example: the UV-laser calibration system

Two independent laser lines on either side of the cryostat

Remote controlled steered beam (mirrors) with easy slow control

The laser source has to be in a box, due to its UV radiation

Full scale test of the MicroBooNE laser system

Бруно Понтекоры

Спасибо за ваше внимание!