Advanced VIRGO EXPERIMENT

Advanced VIRGO Interferometer: a second generation detector for Gravitational Waves observation

F. Frasconi for the VIRGO Collaboration 16th Lomonosov Conference Moscow State University, Moscow, Russia August 22-28, 2013

The VIRGO Collaboration

INFN – Italy

Sez. Firenze/Un. Urbino Sez. Genova Sez. Napoli/Un. Federico II & Salerno Sez. Perugia/Un. Perugia & Camerino Sez Pisa/Un Pisa Sez. Roma/Un. Sapienza Sez. Roma2/Un. Tor Vergata Sez. Padova/Un. Trento

EGO Group completes the Collaboration: about 200 authors

August 24, 2013

CNRS - France

APC - Paris ESPCI - Paris LMA - Lyon LAL - Orsay LAPP - Annecy OCA - Nice

NIKHEF – Amsterdam (NL) RADBOUND Un. Nijmegen POLGRAW – Warsaw (Pol) RMKI – Budapest (Hun)

F. Frasconi / INFN Pisa

The Interferometer at EGO site

Advanced VIRGO

 $|||0\rangle||$

Gravitational Waves

- According to the Einstein's theory of General Relativity (1915), Gravitational Waves (GW) are perturbations of the "space-time" metric traveling in the Universe at the speed of light;
- They are expected to be emitted by astrophysical processes in which accelerated coherent motions of large masses take place (supernova explosions, pulsars, etc.);
- The aim of ground based interferometric detectors (ITF) is the direct observation of GW together with the possibility to localize their source in the sky (detectors network).

Importance of a detectors Network

- False alarm rejection requires coincidence
- Triangulation allows to pinpoint the source
- The Network allows to deconvolve detector response and signal wave form -> measurement of the signal parameters
 - Longer observation time better sky coverage

LIGO+VIRGO+GEO Transient Event Localization LIGO+VIRGO+GEO+TAMA Transient Event Loca F. Frasconi / INFN Pisa

LIGO Transient Event Localization

LIGO+VIRGO Transient Event Localizatio

August 24, 2013

Network: ITFs of the 1st Generation

August 24, 2013

F. Frasconi / INFN Pisa

VIRGO Italy

The broad band GW interferometers

- The detector is sensitive to **h** the Gravitational Wave strain amplitude (a GW impinging on the plane of a suspended interferometer stretches one arm compressing the other one alternatively)
- The detector sensitivity is expressed in terms of the amplitude spectral density of the detector noise referred to its input

H(f) [(Hz)^{-1/2}]

Sources of GW

 Neutron stars, low mass black holes, and NS/BS systems

Credit: Chandra X-ray Observatory

'Bursts'

• galactic asymmetric core collapse supernovae

||(O)||

 cosmic strings • ???

August 24, 2013

Cosmic GW background

- Stochastic, incoherent background
- unlikely to detect, but can bound in the 10-10000 Hz range F. Frasconi / INFN Pisa

Continuous Sources

- Spinning neutron stars
- probe crustal deformations, 'quarki-ness'

Advanced VIRGO Interferometer

Advanced VIRGO: upgrade of the VIRGO Interferometer

 Michelson Interferometer with two Fabry-Perot cavities along the arms 3 km long each one

((O))

Evolution of ITF sensitivity

|||0|||

Toward AdV operation

- Start in 2015 putting in operation the ITF with a simplified configuration, similar to VIRGO+ : likely to reduce the commissioning time
 - without Signal recycling
 - VIRGO+ laser up to 60 W
 - low power (reduced risks with thermal effects and high power laser)
- Target BNS inspiral range: > 100 Mpc

|||O|||

Detector Design

200W

- Main changes with respect to VIRGO:
 - larger beam
 - heavier mirrors
 - higher quality optics
 - thermal control of aberrations
 - 200W fiber laser
 - Signal Recycling

٠

- Vibration isolation by VIRGO Superattenuators:
 - performance compliant with new requirements
 - wide experience with commissioning at low frequency

POF

Faraday

Isélatoria

Seismic Noise

- Seismic noise limits sensitivity of ground based detectors at low frequencies - "seismic wall"
- Typical seismic noise at EGO site at 10 Hz is ~ few x 10⁻¹º m/√Hz
 - many orders of magnitude above target noise level
- Solution multiple stages of isolation system
- Isolation required in vertical direction as well as horizontal due to cross-coupling

Advantages of a **double** over **single** pendulum, same overall length

Mirror Suspensions

The SA chain

• The pre-i freq allow the s • It ; hiero suspe and mHz

Augu

Main features of SA

\|(())|\

 \mathbf{x}

Activities on SA for AdV

- Different spatial distribution of the mechanical filters along the suspension chain (optimization of seismic noise filtering in accordance with a new geometry of the Intermediate Vacuum Chamber)
- Re-tuning of mechanical filters in accordance with the load to be supported (heavier mirrors + new TCS + baffles)
- Re-design and construction of the last mechanical filter (Filter7) in accordance with the new Payloads geometry (presence of large baffle for diffused light mitigation)
- Construction of new control electronics:
 - analog and digital parts embedded in a single board
 - about 100 channels per SA

((()))

Mirror Suspension Comparison

Stray light mitigation

- Lesson from 1st generation detector: scattered light is one of the major risks towards the final sensitivity goal
- A big effort has been done to mitigate it:
 - better optics quality
 - baffles to shield mirrors, pipes, vacuum chamber exposed to scattered light
 - photodiodes suspended in vacuum to isolate them from seismic/acoustic noise
 - if needed, control the position of the benches with respect to the ITF

((O))

aLIGO Seismic Isolation

Hydraulic external pre-isolator (HEPI - one stage of isolation; low frequency positioning)

Active isolation platform (two stages of isolation – isolate above ~ 0.2 Hz)

Quadruple pendulum (four stages of isolation) with monolithic silica fiber last stage

|||(O)||

aLIGO Seismic Isolation (cont.)

- Thermal noise reduction: use monolithic fused silica suspension as final stage
- Seismic isolation: use quadruple pendulum + 3 stages of maraging steel blades for vertical isolation
- Control noise minimizing: apply damping at top mass (for 6 degrees of freedom) + use quiet reaction pendulum for global control actuation
 - coil/magnet actuation at top 3 stages
 - electrostatic drive at test mass
- Design is developed from the GEO 600 triple pendulums which have been in operation for more than 10 years

August 24, 2013

KAGRA: underground detector

- Underground ITF located in the Kamioka mine (Japan) with 3 km orthogonal arms:
 - reduced seismic noise (about a factor 50 @ 10 Hz) and gravity noise
 - simplified seismic isolation system
- Second phase: cryogenic cooling of test masses:
 - reduced thermal noise

KAGRA

|||0|||

KAGRA Vibration Isolation

Top Tunnel rocks all around **Bottom Tunnel**

- KAGRA SAS (Seismic Attenuation System) is mounted between two tunnels:
 - a simplified and improved version of the VIRGO Superattenuator
- Good filtering performance
- New Features:
 - Geometric anti-spring (GAS) filters replaces Magnetic antispring (MAS) filters
 - Magnetic damping stage
 - Compact pre-isolator stage (IP)

 $\Pi(O))$

August 24, 2013

F. Frasconi / INFN Pisa

KAGRA SAS schematic view

||(*(*))||

Network: ITFs of the 2nd Generation

aLIGO-HA

((O))

aLIGO-LI

Advanced VIRGO

aLIGO-India

2nd Generation Network

Prospects for Localization of Gravitational Wave Transients by the Advanced LIGO and Advanced Virgo Observatories

J. Aasi¹, J. Abadie¹, B. P. Abbott¹, R. Abbott¹, T. D. Abbott², M. Abernathy³, T. Accadia⁴, F. Acernese^{5ac}, C. Adams⁶, T. Adams⁷, P. Addesso⁸, R. X. Adhikari¹, C. Affeldt^{9,10}, M. Agathos^{11a} O. D. Aguiar¹², P. Ajith¹, B. Allen^{9,13,10}, A. Allocca^{14ac}, E. Amador Ceron¹³, D. Amariutei¹⁵ S. B. Anderson¹, W. G. Anderson¹³, K. Arai¹, M. C. Araya¹, C. Arceneaux¹⁶, S. Ast^{9,10}, S. M. Aston⁶, P. Astone^{17a}, D. Atkinson¹⁸, P. Aufmuth^{10,9}, C. Aulbert^{9,10}, L. Austin¹, B. E. Aylott¹
P. Baker²¹, G. Ballardin²², S. Ballmer²³, Y. Bao¹⁵, J. C. Barayoga¹, D. Barker¹⁸, F. Barayoga¹, D. L. Barsotti²⁴, M. Barsuglia²⁵, M. A. Barton¹⁸, I. Bartos²⁶, R. Bassiri^{3,27}, M. Bastarrika J. Batch¹⁸, J. Bauchrowitz^{9,10}, Th. S. Bauer^{11a}, M. Bebronne⁴, B. Behnke²⁰, M. Bejger²⁸ A. S. Bell³, C. Bell³, G. Bergmann^{9,10}, J. M. Berliner¹⁸, A. Bertolini^{9,10}, J. Betzwieser⁶ P. T. Beyersdorf²⁹, T. Bhadbade²⁷, I. A. Bilenko³⁰, G. Billingsley¹, J. Birch⁶, S. Biscans² M. A. Bizouard^{31a}, E. Black¹, J. K. Blackburn¹, L. Blackburn³², D. Blair³³, B. Bland¹³ O. Bock^{9,10}, T. P. Bodiya²⁴, C. Bogan^{9,10}, C. Bond¹⁹, F. Bondu^{34b}, L. Bonelli^{14ab}, R. R. Bork¹, M. Born^{9,10}, V. Boschi^{14a}, S. Bose³⁶, L. Bosi^{37a}, B. Bouhou²⁵, J. Bowers², C. P. R. Brady¹³, V. B. Braginsky³⁰, M. Branchesi^{38ab}, J. E. Brau³⁹, J. Breyer^{9,10}, T. D. O. Bridges⁶, A. Brillet^{34a}, M. Brinkmann^{9,10}, V. Brisson^{31a}, M. Britzger^{9,10}, A. I D. A. Brown²³, D. D. Brown¹⁹, F. Brueckner¹⁹, K. Buckland¹, T. Bulik^{28b}, H. J. F. A. Buonanno⁴¹, J. Burguet-Castell⁴², D. Buskulic⁴, C. Buy²⁵, R. L. Byer²⁷, L. Ca G. Cagnoli^{35,44}, E. Calloni^{5ab}, J. B. Camp³², P. Campsie³, K. Cannon⁴⁵, B. Canuel² C. D. Capano⁴¹, F. Carbognani²², L. Carbone¹⁹, S. Caride⁴⁷, A. D. Castiglia⁴⁸, S. M. Cavaglià¹⁶, F. Cavalier^{31a}, R. Cavalieri²², G. Cella^{14a}, C. Cepeda¹, E. Cesarini^{49a}, T. C. S. Chao¹⁰¹, P. Charlton⁵⁰, E. Chassande-Mottin²⁵, X. Chen³³, Y. Chen⁵¹, A. Chincarini⁵² H. S. Cho⁵³, J. Chow⁵⁴, N. Christensen⁵⁵, Q. Chu³³, S. S. Y. Chua⁵⁴, C. T. Y. Chung' F. Clara¹⁸, D. E. Clark²⁷, J. A. Clark⁴³, F. Cleva^{34a}, E. Coccia^{49ab}, P.-F. Cohadon⁴⁰, C. A. Colla^{17ab}, M. Colombini^{17b}, M. Constancio Jr.¹², A. Conte^{17ab}, D. Cook¹⁸, T. R. Corbit N Comish21 A Consil103 C A Costa2.12 M Counthlin57 J D Coulon346 S

Source localization in the sky

((O))

	Estimated	$E_{\rm GW} =$	$10^{-2}M_{\odot}c^2$		Number		% BNS Localized	
	Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS	within	
Epoch	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5 \mathrm{deg}^2$	$20 \mathrm{deg}^2$
2015	3 months	40 - 60	-	40 - 80	-	0.0004 - 3	-	-
2016-17	6 months	60 - 75	20 - 40	80 - 120	20 - 60	0.006 - 20	2	5 - 12
2017-18	9 months	75 – 90	40 - 50	120 - 170	60 - 85	0.04 - 100	1 – 2	10 - 12
2019+	(per year)	105	40 - 80	200	65 - 130	0.2 - 200	3 – 8	8 - 28
2022+ (India)	(per year)	105	80	200	130	0.4 - 400	17	48

August 24, 2013

S

Conclusions

- Still waiting for the first detection ...
- Fundamental experience acquired with the 1st generation of ground based ITF:
 - wide experience collected in operating sophisticated detectors
 - important results obtained with collected data
- The construction of the Advanced Detectors (target sensitivity 10 times better) is in progress:
 - end of AdV installation in the fall of 2015
- They will increase of a factor 10³ the observable volume of the Universe opening the phase of the GW astronomy