Recent BaBar Results on rare B decays, CP- and T-violation

Vladimir Golubev

Budker Institute of Nuclear Physics, Novosibirsk, Russia

(for the BaBar Collaboration)

16-th Lomonosov Conference on Elementary Particle Physics at Moscow State University, August 22–28, 2013

Outline

- CP violation in $B^0\overline{B}^0$ mixing
- CP violation in $B^0 \rightarrow (\rho \pi)^0$, Dalitz plot analysis
- Observation of T-violation
- $B \to \pi \ell^+ \ell^-$ and $B^0 \to \eta \ell^+ \ell^-$ decays
- $B \to D^{(*)} \tau \nu$ decay

- IL $\approx 430 \text{ fb}^{-1} Y(4\text{S})$ and $\approx 45 \text{ fb}^{-1} 40 \text{MeV}$ below Y(4S)
- $\approx 470 \text{ M} B\overline{B}$

• total IL
$$\approx 550 \text{ fb}^{-1}$$

 $|B_{\rm H}>=p|B^{0}>-q|\bar{B}^{0}>$

- $|B_L>=p|B^0>+q|\bar{B}^0>$
- $|\langle B^{0}|H|\bar{B}^{0}\rangle|^{2} |\langle \bar{B}^{0}|H|B^{0}\rangle|^{2} =$ $2Im(M_{12}\Gamma_{12})$
- $<\bar{B}^{0}|H|B^{0}>=M_{12}^{*}-i\Gamma_{12}^{*}/2$ $< B^0 |H| \bar{B}^0 > = M_{12} - i \Gamma_{12}/2$
- $(H) = (M) i/2(\Gamma)$

 \overline{b}

CPV in mixing $P(B^0 \rightarrow \overline{B}^0) \neq P(\overline{B}^0 \rightarrow B^0)$

CP violation in $B^0 \overline{B}{}^0$ mixing

- CP asymmetry A_{CP} = $\frac{N(B^0B^0) - N(\overline{B}^0\overline{B}^0)}{N(B^0B^0) + N(\overline{B}^0\overline{B}^0)} =$ $\frac{1 - |q| p|^4}{1 + |q| p|^4}$ • $\left(\frac{q}{n}\right)^2 = \frac{M_{12}^* - (i/2)\Gamma_{12}^*}{M_{12} - (i/2)\Gamma_{12}}$

CP violation in $B^0 \overline{B}^0$ mixing

Usually measured asymmetry using semileptonic B decays

$$A_{SL} = \frac{N(l^+l^+) - N(l^-l^-)}{N(l^+l^+) + N(l^-l^-)} \sim O(m_c^2 / m_t^2)$$

• A^{d}_{SL} is measured with $Y(4S) \rightarrow B^{0}\overline{B^{0}}$ HFAG average of CLEO, BaBar, Belle $A^{d}_{SL} = (-5\pm 5.6) \cdot 10^{-4}$

SM $A^{d}_{SL} = (-4.1 \pm 0.6) \cdot 10^{-4}$

- Hadronic colliders measure A^{b}_{SL} which is combination of A^{d}_{SL} and A^{s}_{SL} D0 result (Phys. Rev. D84, 052007 (2011)) on charge dimuon asymmetry differs by 3.9 σ A^{b}_{SL} =(-0.787±0.172±0.093)% SM A^{b}_{SL} =(-2.8 ^{+0.5} _{-0.6}) · 10⁻⁴
- $A_{SL}^{s} = (-0.24 \pm 0.54 \pm 0.33)\%$ (LHCb) $A_{SL}^{s} = (-1.12 \pm 0.74 \pm 0.17)\%$ (D0) SM $A_{SL}^{s} = (1.9 \pm 0.3) \cdot 10^{-5}$

CP violation in $B^0 \overline{B}^0$ mixing

New approach is used in BaBar analysis

$$A_{CP} = \frac{N(l^{+}K^{+}) - N(l^{-}K^{-})}{N(l^{+}K^{+}) + N(l^{-}K^{-})}$$

- partial reconstruction using only the lepton from $\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}$ and the soft π from $D^{*+} \to \bar{D}^0 \pi^+$ D^* 4-momentum estimated from π_{soft} kinematics
- *K*-tagging determines the flavor of the other *B*

CP violation in $B^0 \overline{B}^0$ mixing

$$A_{T} = \frac{N(l^{+}K_{T}^{+}) - N(l^{-}K_{T}^{-})}{N(l^{+}K_{T}^{+}) - N(l^{+}K_{T}^{-})} \cong A_{rl} + A_{K} + A_{CP}$$
$$A_{R} = \frac{N(l^{+}K_{R}^{+}) - N(l^{-}K_{R}^{-})}{N(l^{+}K_{R}^{+}) - N(l^{+}K_{R}^{-})} \cong A_{rl} + A_{K} + A_{CP}\chi_{d}$$
$$\chi_{d} = 0.1862 \pm 0.0023$$

 $K_{\rm R}$ and $K_{\rm T}$ are charged K mesons from decays of B mesons Reconstructed and Tag, respectively

- *K_R* can come from the Cabibbo-Favored decays of *D*⁰ produced with the lepton from the partially reconstructed side
 K_R is usually emitted in hemisphere opposite to *l K_T* is produced randomly
- A_{re} and A_K are detector-induced asymmetries

CP violation in $B^0\bar{B}^0$ mixing

 A_{CP} from binned four-dimensional fit to $\cos\theta_{\ell K}$, Δz , $\sigma(\Delta t)$, p_{K} on 4 samples: unmixed $\ell^{\pm}K^{\mp}$ and mixed $\ell^{\pm}K^{\pm}$

BaBar •

 $A_{SL}^{d} = (0.06 \pm 0.17^{+0.36}_{-0.32})$ % $1 - |q|p| = (0.29 \pm 0.84^{+1.78}_{-1.61}) \cdot 10^{-3}$

- consistent with previous measurements
- consistent with SM
- most precise measurement

16-th Lomonosov Conf., Moscow

CP violation in $B^0 \rightarrow (\rho \pi)^0$, Dalitz-plot analysis

Motivation

- CP violation in $B^0 \rightarrow \pi^+ \pi^- \pi^0$ dominated by $B^0 \rightarrow \rho^{\pm} \pi^{\mp}$
- precision measurement $\alpha = arg[-V_{td}V_{tb}^* / V_{ud}V_{ub}^*]$

The update of earlier 2007 BaBar analysis was done due to:

- increased dataset, 431fb⁻¹ vs. 346fb⁻¹
- improved tracking and particle identification
- reoptimized cuts
- more rigorous study of the ρ line-shape systematic uncertainties

Selection

- measured energy of the *B* candidate between 4.99 and 5.59 GeV
- $m_{\rm ES}$ between 5.200 and 5.288 GeV/ c^2

NN selection

- Legendre moment L0, L2
- angle between the beam axis and the momentum or the B thrust axis

CP violation in $B^0 \rightarrow (\rho \pi)^0$, Dalitz-plot analysis

preliminary results

arXiv:1304.3503[hep-ex], submitted to Phys. Rev. D

 $A_{\rho\pi}^{+-} = 0.09_{-0.06}^{+0.05} \pm 0.04$ $A_{\rho\pi}^{-+} = -0.12 \pm 0.08_{-0.05}^{+0.04}$ $C = 0.016 \pm 0.059 \pm 0.036, \ \Delta C = 0.234 \pm 0.061 \pm 0.048$ $S = 0.053 \pm 0.081 \pm 0.034, \ \Delta S = 0.054 \pm 0.082 \pm 0.039$ T transformation is antiunitary

 $\vec{v} \rightarrow -\vec{v}$ and exchange of in and out states

- P violation in nuclear β decay (T.D.Lee, C.N.Yan, C.S.Wu et. al., 1957)
- CP violation in K^0 mesons (J.W.Cronin et. al., 1964)
- CP violation in B^0 mesons (BaBar and Belle, 2001)

Y(4S) decay yields an entangled state of B mesons

- $|i\rangle = \frac{1}{\sqrt{2}} (B^0(t_1)\overline{B}^0(t_2) \overline{B}^0(t_1)B^0(t_2))$ Flavor tag: semileptonic decay to $\ell^- X(\ell^+ X)$ projects $\overline{B}^0(B^0) \to B^0(\overline{B}^0)$ tag
- $|i\rangle = \frac{1}{\sqrt{2}} (B_+(t_1)B_-(t_2) B_-(t_1)B_+(t_2))$ CP tag: *B* decay to $J/\psi K_L$ projects $B_+ \to B_-$ tag and *B* decay to $J/\psi K_S$ projects $B_- \to B_+$ tag

Observation of T-violation

T-transformed processes

4 independent T comparisons

$B^0 \rightarrow B_+$	$(l^{-}, J/\psi K_{L}^{0})$	$B_+ \rightarrow B^0$	$(J/\psi K_{S}^{0}, l^{+})$
$B^0 \rightarrow B$	$(l^-, J/\psi K_S^{-0})$	$B_ \rightarrow B^0$	$(J/\psi K_{\rm L}^{0}, l^+)$
$\overline{B}{}^{0} \rightarrow B_{+}$	$(l^+, J/\psi K_L^{0})$	$B_+ \rightarrow \overline{B}{}^0$	$(J/\psi K_{\rm S}^{0}, l^{-})$
$\overline{B}{}^{0} \rightarrow B_{-}$	$(l^+, J/\psi K_S^{-0})$	$B_ \rightarrow \overline{B}{}^0$	$(J/\psi K_{\rm L}^{0}, l^{-})$

4 independent CP comparisons

4 independent CPT comparisons

Fit to signal parameters 8 time-dependent decay rates

 $g_{\alpha,\beta}^{\pm}(|\Delta t|) \propto e^{-\Gamma|\Delta t|} [1 + S_{\alpha,\beta}^{\pm} \sin(\Delta m_d |\Delta t|) + C_{\alpha,\beta}^{\pm} \cos(\Delta m_d |\Delta t|)]$

 $\pm \quad - \quad \Delta t > 0, < 0$

 α, β – flavor, CP reco

- for example $\overline{B}^0 \to B_-(l^+K_s)$ is characterized by $S^+_{l^+,K_s}$
- T-reversed transition $B_{-} \to \overline{B}^{0}(K_{L}, l^{-})$ is characterized by $S_{l^{-}K_{-}}^{-}$
- parameter of T violation: $\Delta S_T^+ = S_{l^-, K_L}^- S_{l^+, K_S}^+$

 $(\Delta S_T^- = S_{l^-, K_L}^+ - S_{l^+, K_S}^-)$

 ΔC^+ vs. ΔS^+ and ΔC^- vs. ΔS^- ; Central values (blue points and red squares) and countors of (1–C.L.) at 1 σ intervals for the T(left), CP(middle), and CPT(right) results. The + sign shows no-violation point on each plot.

Significance of T violation 14 σ , CP violation 17 σ , CPT violation 0.3 σ

FIRST DIRECT OBSERVATION OF T VIOLATION

Phys. Rev. Lett. 109, 211801, (2012)

- flavour-changing neutral current $b \rightarrow d$
- forbidden at tree level in SM
- predicted fraction $\sim 10^{-8}$

• LHCb
$$B^+ \to \pi^+ \mu^+ \mu^-$$

 $Br = (2.3 \pm 0.6 \pm 0.1) \times 10^{-8}$

$B \rightarrow \pi l^+ l^-$ and $B^0 \rightarrow \eta l^+ l^-$ decays

preliminary

Mode	3	Yield	$B(10^{-8})$	Upper limit (10^{-8})
$B^+ \rightarrow \pi^+ e^+ e^-$	0.207	$4.2^{+5.7}_{-4.6}$	$4.3^{+5.9}_{-4.3} \pm 2.0$	12.5
$B^0 \rightarrow \pi^0 e^+ e^-$	0.166	$1.0^{+4.2}$ -3.2	$1.3^{+5.4}_{-4.1} \pm 0.2$	8.4
$B^0 \rightarrow \eta \; \mathrm{e^+e^-}$			$-4.0^{+10.0}$ $_{-8.0}$ ± 0.6	10.8
$B^0 \rightarrow \eta_{\nu\nu} e^+ e^-$	0.166	$-1.2^{+3.1}$		
$B^0 \rightarrow \eta_{3\pi}^{\gamma\gamma} e^+ e^-$	0.111	$-0.5^{+1.2}$ -0.9		
$B^+ \rightarrow \pi^+ \mu^+ \mu^-$	0.149	$-0.5^{+3.1}$	$-0.7^{+4.4}_{-3.2}\pm0.9$	5.5
$B^0 ightarrow \pi^0 \mu^+ \mu^-$	0.121	$-0.2^{+3.0}$	$-0.3^{+5.3}$ -3.6 ± 0.6	6.9
$B^0 ightarrow \eta \mu^+ \mu^-$			$-2.0^{+10.0}$ -6.6 ± 0.4	11.2
$B^0 \rightarrow \eta_{\gamma\gamma} \mu^+ \mu^-$	0.104	$-0.4^{+1.9}$		
$\mathrm{B}^{0} \rightarrow \eta_{3\pi} \mu^{+} \mu^{-}$	0.063	$-0.1^{+0.6}$ -0.4		
$B \rightarrow \pi e^+ e^-$			$4.0^{+5.1}$ -4.3 ±1.6	11.0
$B \rightarrow \pi \ \mu^+ \mu^-$			$-0.7^{+4.1}$ $_{-3.1}$ ± 1.2	5.0
$B^+ \longrightarrow \pi^+ \ell^+ \ell^-$			$1.6^{+3.6}_{-3.0} \pm 1.2$	6.6
$B^0 \longrightarrow \pi^0 \ell^+ \ell^-$			$0.5^{+3.7}_{-2.9} \pm 0.3$	5.3
$B^0 \longrightarrow \eta \ \ell^+ \ \ell^-$			$-2.8^{+6.6}_{-5.2}\pm0.3$	6.4
$B \rightarrow \pi \ell^+ \ell^-$			$1.6^{+3.2}$ $_{-2.7}$ ± 1.0	5.9

16-th Lomonosov Conf., Moscow

$B \rightarrow \pi l^+ l^-$ and $B^0 \rightarrow \eta l^+ l^-$ decays

- no statistically significant signal observed
- lepton-flavor and isospin averaged upper limit at the 90% CL $\mathcal{B}(B \rightarrow \pi \ell^+ \ell^-) < 5.9 \times 10^{-8}$

factor of three of the SM expectation

- upper limits have also been calculated for different $\pi \ell^+ \ell^-$ modes
- $\mathcal{B}(B^0 \to \eta \, \ell^+ \ell^-) < 6.4 \times 10^{-8}$
- upper limits have also been calculated for different $\eta \ell^+ \ell^-$ modes
- lowest upper limits to date for $B^0 \to \pi^0 \ell^+ \ell^-$
- first search for the decays $B^0 \rightarrow \eta \, \ell^+ \ell^-$

arXiv:1303.6010[hep-ex], submitted to Phys. Rev. D

$B \rightarrow D^{(*)} \tau \nu$ decay

- SM rate well predicted, $\sim 2\%$
- many common factors in decay rate to e, μ , τ

•
$$R(D^{(*)}) = \frac{Br(B \to D^{(*)}\tau\nu)}{Br(B \to D^{(*)}l\nu)}$$

independent of $|V_{\rm cb}|$ and to large extent of parametrization of hadronic matrix elements

- SM uncertainty for R(D) 6% and for $R(D^*)$ 2%
- charged Higgs contributions at tree level
- sensitive to vector vs. scalar current

• reconstruct only

 $\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau$ and $\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau$

- fully reconstructing B_{tag} $m_{\text{ES}} > 5.27 \text{ GeV}/c^2$ $|\Delta E| < 0.072 \text{ GeV}$
- B_{sig} : $D^{(*)}$, lepton and ν (missing energy)

First observed by Belle in 2007
 Phys. Rev. Lett. 99 (2007) 191807

16-th Lomonosov Conf., Moscow

$B \rightarrow D^{(*)} \tau \nu$ decay

Phys. Rev. Lett. 109, 101802, (2012)

- excesses over the SM predictions for R(D) and $R(D^*)$ of 2.0 σ and 2.7σ
- $R(D^{(*)})_{\text{th}} = R(D^{(*)})_{\text{SM}}$ • probability of 6.9×10⁻⁴ SM predictions is excluded at the 3.4σ
 - $R(D) = 0.440 \pm 0.058 \pm 0.042$ $R(D)_{\rm SM} = 0.297 \pm 0.017$
- $R(D^*) = 0.332 \pm 0.024 \pm 0.018$ $R(D^*)_{\rm SM} = 0.252 \pm 0.003$

- $\tan \beta / m_{\rm H}^{\pm} = 0.44 \pm 0.02 \,{\rm GeV^{-1}}$ R(D)
- $\tan \beta / m_{\rm H}^{\pm} = 0.75 \pm 0.04 \,{\rm GeV^{-1}}$ $R(D^*)$

efficiency corrected q² distributions for $D\tau\nu$ (top) and $D^*\tau\nu$ (bottom) events with $m^2_{miss} > 1.5 \text{ GeV}^2$ scaled to the results of the isospin-constrained fit.

Left: SM, Center: $\tan\beta/M_{\rm H} \pm = 0.30 \text{ GeV}^{-1}$. Right: $\tan\beta/M_{\rm H} \pm = 0.45 \text{ GeV}^{-1}$. The uncertainty on the data points includes the statistical uncertainties of data and simulation

$B \rightarrow D^{(*)} \tau \nu$ decay

2HDM type III preliminary

- favored regions for real values of the type III 2HDM parameters
 S_R and S_L given by measured values of R(D^(*))
- bottom two solutions are excluded by the measured q^2 spectra with significance of at least 2.9σ

Summary

- Search for CP violation in $B^0\overline{B}^0$ mixing (New) Improvement of the average *Y*(4S) result on |q/p| for the B^0_d mixing
- Search for CP violation in $B^0 \rightarrow (\rho \pi)^0$ Results are consistent with SM
- First direct observation of Time-Reversal Violation Expected from CP violation, but was not directly observed before
- Search for $B \to \pi \ell^+ \ell^-$ and $B^0 \to \eta \ell^+ \ell^-$ decays (New) Lowest upper limits to date for $B^0 \to \pi^0 \ell^+ \ell^-$ and first search for the decays $B^0 \to \eta \ell^+ \ell^-$
- Study of the $B \rightarrow D^{(*)}\tau\nu$ decay Hints of tension with SM
- BaBar finished collecting data five years ago but the collaboration continues to publish new results
- the current publication rate is about 30 journal publications per year
- many analyses in progress