

Neutrino Physics in 2020

Maury Goodman Argonne National Lab High Energy Physics Division

16th Lomonosov Conference on Elementary Particle Physics

Moscow August 2013

Outline/Purpose

- A review of the v future.
- Won't tell you anything you don't know
- I'll give some opinions on how neutrino physics will develop.
- Ideally provoke some discussions during coffee breaks

Pontecorvo, Shapiro, Cheget

v particles - 21st century

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,							
Leptons spin =1/2				Quarks spin =1/2			
Flavor	Mass GeV/c ²	Electric charge		Flavor	Approx. Mass GeV/c ²	Electric charge	
VL lightest neutrino*	(0-0.13)×10 ⁻⁹	0	u) up	0.002	2/3	
e electron	0.000511	-1	d	down	0.005	-1/3	
M middle neutrino*	(0.009-0.13)×10 ⁻⁹	0	C	charm	1.3	2/3	
(µ) muon	0.106	-1	S	strange	0.1	-1/3	
VH heaviest neutrino*	(0.04-0.14)×10 ⁻⁹	0	đ	top	173	2/3	
T tau	1.777	-1	b	bottom	4.2	-1/3	

Neutrino Physics

A notation issue

- $\Re \theta_{12}, \theta_{13}, \theta_{23}$ are labels, $* \Delta m_{ik}^2$ are ordered (sign) Only 2 are independent * We know the sign of Δm_{21}^2 $\Delta m_{31}^2 \equiv m_3^2 - m_1^2$ but not $\Delta m_{32}^2 \sim \Delta m_{31}^2$
- $\Delta m_{12}^2 \equiv m_1^2 m_2^2$ $\Delta m_{21}^2 \equiv m_2^2 - m_1^2$ $\Delta m_{13}^2 \equiv m_1^2 - m_3^2$ $\Delta m_{23}^2 \equiv m_2^2 - m_3^2$ $\Delta m_{32}^2 \equiv m_3^2 - m_2^2$

 $M \Delta m_{21}^2 + \Delta m_{32}^2 + \Delta m_{13}^2 = 0$

3v paradigm

♦ All of these numbers are in the 3 neutrino paradigm

- In other words, they were calculated using formulae assuming that there are 3 and only 3 neutrinos, and that they interact normally
- If this isn't true, the numbers may be wrong or meaningless, or just approximations

One way to test the paradigm, is to measure the numbers different ways

The World Neutrino Experimental Program

- ♥ Parameter Measurement
 - θ₂₃ Octant (>, < 45°)
 </p>
 - Mass hierarchy
 - Mass scale
 - \succ CP violation δ
 - Dirac or Majorana?
 - $\succ \text{More accuracy for } \theta_{12}, \\ \theta_{23}, \theta_{13}, \Delta m_{32}^2, \Delta m_{21}^2$

- ♥ Paradigm testing
 - Sterile neutrinos?
 - Non standard Interactions?
 - Lorentz violation?
 - CPT violation?
 - Non-Unitarity of MNS matrix?
 - > velocity

Questions with answers

Questions which might or might not have answers

How do we find the neutrino mass hierarchy

There are many ways

- 1. accurate measurements of Δm^2_{32} and Δm^2_{31}
- 2. reactor neutrinos

JUNO/RENO50
 a large detector
 ~50 km from
 reactors with good
 energy resolution

Hierarchy from cosmology

- 3. Cosmological fits
 - $rac{1}{2}$ $\Sigma m_v \geq 55 \text{ meV} \underline{\text{normal}}$
 - $\Sigma m_v \ge 105 \text{ meV}$ inverted
 - * $\delta(\Sigma m_v)$ ~ 50 meV South Pole Telescope 2019

 $\Sigma m_v < 300 \text{ meV}$

Planck, March 2013

Projected Reach: 2013-2016: $\Sigma m_v \sim 0.1 \text{ eV}$ 2016-2020: $\Sigma m_v \sim 0.06 \text{ eV}$ 2020-2025: $\Sigma m_v \sim 16 \text{ meV}$

August 2013

More ways to learn the v mass hierarchy

4. Supernova neutrinos.

∜spectrum swap:

5. Atmospheric neutrino measurements6. Long-baseline neutrino measurements

Atmospheric Neutrinos

Handles on the mass hierarchy from atmospheric neutrinos:

- 1. Due to enhanced matter effects in $v_{\mu} \rightarrow v_{e} \text{ OR } v_{\mu} \rightarrow v_{e}$, the angular distribution of v_{e} s will differ for normal and inverted hierarchy.
- 2. Due to enhanced matter effects in $\nu_{\mu} \rightarrow \nu_{e} \text{ OR } \nu_{\mu} \rightarrow \nu_{e}$, the angular distribution of the μ^{+}/μ^{-} ratio (from ν) will differ for normal and inverted hierarchy.

How do we find the neutrino mass hierarchy in long-baseline experiments?

At an accelerator $P(v_{\mu} \rightarrow v_{e})$ (in Vacuum)

 $P(v_u \rightarrow v_e) = P_1 + P_2 + P_3 + P_4$ $P_1 = \sin^2(\theta_{23}) \sin^2(2\theta_{13}) \sin^2(1.27 \Delta m_{31}^2 L/E)$ $P_2 = \cos^2(\theta_{23}) \sin^2(2\theta_{12}) \sin^2(1.27 \Delta m_{21}^2 L/E)$ $P_3 = -/+ J \sin(\delta) \sin(1.27 \Delta m_{31}^2 L/E)$ $\Re P_{A} = J \cos(\delta) \cos(1.27 \Delta m_{31}^{2} L/E)$ where $J = cos(\theta_{13}) sin(2\theta_{12}) sin(2\theta_{13}) sin(2\theta_{23}) x$ $\sin(1.27 \Delta m_{31}^2 L/E) \sin(1.27 \Delta m_{21}^2 L/E)$

Matter effects

Socillations in matter $P=P(\theta,\theta,\theta,\Delta m^2,\Delta m^2,\delta,n_e,hierarchy)$

Series Series

Section Sec

August 2013

v, \overline{v} oscillation probabilities

August 2013

20

Can we measure the CP parameter δ without running antineutrinos?

Yes, we can compare $P_1(\theta,\theta,\theta,\Delta m^2,\Delta m^2,\delta,n_e,hierarchy,L_1) \& P_2(\theta,\theta,\theta,\Delta m^2,\Delta m^2,\delta,n_e,hierarchy,L_2)$

This measures δ assuming the 3 v paradigm as does any measurement.

Of course comparing oscillations for both neutrinos and antineutrinos is one of the most obvious and important paradigm tests we can do. August 2013

How do we determine if the neutrino is Dirac or Majorana?

DIRAC/MAJORANA?

- ✓ Something about a Lagrangian
- ✓ There can be Dirac terms, there can be Majorana terms
- ✓ As I understand it, if there are both Dirac and Majorana terms, the neutrino is Majorana (rewriting things)

- ✓ If the neutrino is Majorana:
 - ✓ Neutrinoless double beta decay happens at predictable rates
 - depends on masses, mixing angles, matrix elements
- \checkmark If the neutrino is Dirac:
 - ✓ Neutrinoless double beta decay does not happen

$0\nu\beta\beta$ rates

Decay rate is given by the golden rule and depends on an effective Majorana mass. It requires knowledge of nuclear physics quantities.

$$\left(T_{1/2}^{0\nu} \right)^{-1} = G^{0\nu} \cdot \left| M^{0\nu} \right|^2 \cdot \left\langle m_{\beta\beta} \right\rangle^2$$
Phase space
Matrix element

CP-phases can lead to cancellation. But how much? Replace masses by two possible choices of minimal mass m_1 or m_3 and add knowledge of mixing and mass splitting from oscillations.

M

GCM

Allowed $m_{ee} = m_{\beta\beta}$ values

Discovery matrix for $0\nu\beta\beta$

	Dirac	Majorana
Normal Hierarchy	× NO	✗ Not anytime soon
Inverted Hierarchy	× NO	√ Feasible

Leading factors for $0\nu\beta\beta$ and Direct mass

For the Normal mass hierarchy $(m_3 > m_2)$ and non-degenerate or hierarchical structrure $(m_2 > m_1)$

♥ 0νββ
 ♥ U_{e3}² m₃ ± U_{e2}² m₂ ± U_{e1}² m₁
 ♥ ±1.19 meV + 2.47 meV + 0
 ♥ Dominated by m₂

✤ Tritium Beta Decay

 ${}^{\textcircled{a}} \ \ U_{e3}{}^2 \ m_3{}^2 \pm U_{e2}{}^2 \ m_2{}^2 \pm U_{e1}{}^2 \ m_1{}^2$

 $\Rightarrow 50 \text{ meV}^2 \pm 21 \text{ meV}^2 + 0$

🖏 Dominated by m₃

August 2013

Beyond the 3v paradigm "anomolies"

- -Sterile Neutrinos
- -Lorentz Violation
- -Non-Standard Interactions
- -Neutrino velocity
- -Non-unitary MNS matrix
- -CPT violation
- "...there are an infinite number of tests of the null hypothesis" MCG

- \succ Sterile v hints
 - ✤ LSND
 - MiniBooNE
 - Reactor v anomaly
 - Chromium anomaly

"Almost any problem in a neutrino experiment can be interpreted as a sterile neutrino." MCG

August 2013

The current world neutrino program

Maury Goodman

 v_e appearance 10 events so far 28!

NOvA

The NOvA detectors

- 14 kton Far Detector
 - >70% active detector.
 - 360,000 detector cells read by APDs.
- 0.3 kton Near Detector
 - 18,000 cells (channels).
- Each plane just 0.15 X_0 . Great for e⁻ vs π^0 .

Friday talk by Kravtsov

32*-*pixel APD

Both ends of a fiber to one pixel

Far detector 14 kton 928 planes

Near detector 0.3 kton

Prototype detecor

0.2 kton

32

Other stuff

Minerva
 NuSTORM
 Neutrino Telescopes
 Miero Recht

MicroBooNE

India-Based Neutrino Observatory INO Other Long- and Short-Baseline ideas

Lots of ideas for Snowmass white papers

- More NOvA
- CHIPS
- Lake Superior
- GLADE
- RADAR
- Daedalus

LBNE Long-Baseline Neutrino Experiment

Talk today by Urheim

August 2013

Hyper-Kamiokande

"SNOWMASS on the Mississippi" 2013 for planning the future US program

August 2013

Snowmass Summary Talks

Neutrino Oscillations Intensity Frontier The U.S. with the Long-Baseline Neutrino Experiment (LBNE) Shoutout to I BNF and a future multi-megawatt beam from Project-X is uniquely in summary of positioned to lead an international campaign to test the **Cosmic Frontier** 3-flavor paradigm, measure CP violation and go beyond. Talk by Steve Ritz (now chair of P5) An underground location for a far detector significantly enhances the physics breadth & allows for the study of **Cosmic Frontier** atmospheric v's, nucleon decay, & precision measurement of v' s from a galactic supernova explosion This is now considered phase I

On Electroweak Symmetry Breaking

The LHC has revealed that the minimum SM prescription for electroweak

the one Higgs double model — is at least approximately

Energy Frontier at

at have to do with neutrinos?

Beautiful^mNOvA^o and^{ff}L^eBNE^{lit}programs ¹ Neutrinos talk to the Higgs locon view weakly (Dirac retrinos): might very well influence the Higgs 2. Neutrinos talk to a different Higgs boson – there is a new source of electroweak symmetry brackOgram eutrinos);

- While there are several paths to the mass hierarchy, only the long-baseline accelerator experiments, and to a lesser extent the atmospheric neutrino experiments, are sensitive to the CP δ parameter
- One or more of these experiment will be starting around 2020.

Theory comment I Challenge for our theorists here

- \blacksquare We will soon measure the hierarchy.
- I Quarks and charged leptons have what we would call a normal hierarchy.
- \blacksquare If we measure the inverted hierarchy, would that be:
 - C3 New?
 - C∃ Surprising?
 - Tell us something qualitative about the nature of neutrinos?

∏ or;

Would it just rule out half of a semi-infinite number of models?

Statistics Rant

 \gtrsim A standard criterion for a discovery (but a wrong one in my opinion) is 5 σ .

Physicists can set up an experiment and do an a-priori test of a hypothesis. When we see an unexpected result, we can calculate an a-posteriori probability for that result.

- ✤ The probability calculations we do in these two cases are <u>identical</u>
- ✤ The meaning is <u>totally different</u>

For measurements, the PDG quotes $\pm 1\sigma$. The mass hierarchy determination, in my opinion, is a measurement, not a discovery. When we know it with 99% CL, I won't think another long expensive experiment is important.

When we measure θ_{13} , m_H, B(B⁺ \rightarrow anything), ... we often want to measure them better. When we measure the mass hierarchy, there is nothing to measure better.

Theory comment II

- C3 We rely on theoretical motivation for experiments more than we are willing to admit.
- C3 We may not have a theoretical prediction for something that we are trying to measure, but we always have a theoretical context.
- Bethe told us mixing angles were small. He was wrong, but
- Pontecorvo gave us

 $P = sin^2(2\theta) sin^2(1.27 \Delta m^2 L/E)$

and it has served us well for over 50 years.

As our field to moves to fewer more expensive and longer experiments, I would like the theoretical community to play a more active role in helping us make the tough choices. "Do everything" will not be the answer.

My guess by 2020

Questions with answers

Questions with answers

In 2020, Maybe

- We'll know these parameters with no paradigm shifts, but theoretically we'll be where we are now; then
 - I see no strong argument for a new or continued \$B scale program.
- Or there will be strong theoretical progress an we'll want to know parameters even better, then
 - ➡ We'll press on with better larger long-baseline experiments.
- Or something outside the 3v paradigm shows up, then
 We'll need new experiments, but don't know what those might be.

Intelligent Design of Neutrino Parameters?

(from S. Wojcicki)

• The optimum choice for Δm_{21}^2 ?

Such as to give resonant transition (MSW effect) in the middle of solar energy spectrum -, $\Delta m_{21}^2 = 8.2 \times 10^{-5} \text{ eV}^2$

• The optimum choice for $\sin\theta_{12}$?

Big enough for oscillations to be seen in KamLAND - ~0.8

- The optimum choice for Δm_{32}^2 ?
- Such as to give full oscillation in the middle of the range of possible distances that atmospheric v's travel to get to the detector $\Delta m_{32}^2 = 2.3 \times 10^{-3} \text{ eV}^2$
- The optimum choice for $\sin \theta_{23}$?

Big enough so that oscillations could be seen easily - $\theta_{23} \sim \pi/4$

• The optimum choice for $\sin\theta_{13}$?

Small enough so as not to confuse interpretation of the above - $\theta_{13} < 10^{\circ}$

• But the acid test - will θ_{13} be big enough to see CP violation and determine mass hierarchy?

In 2020

? Suppose parameters are such that the "Intelligent Design" arguments can get longer?

∜δ ~ π/2

- to most quickly determines the hierarchy
- to get large CP violation & answer the CP violation question
 The inverted hierarchy, so we can tell Dirac/Majorana
 & maybe beta decay endpoint
- Some of our theorists will be happy (seesaw, etc.)

Conclusion

- Neutrino Physics is currently in an excellent position:
 - Much recent progress
 - Questions that have answers
 - Many will be answered in the next decade
 - We'll have a program of long-baseline accelerator experiments and 0vββ decay that can answer the remaining v questions of 2020.

Advertisement

- Free monthly neutrino rumor newsletter sent to 1900--~100 lines, send "subscribe" to maury.goodman@anl.gov or see <u>http://www.hep.anl.gov/ndk/longbnews/</u>
 - Newsletter will continue till at least 2020
 - it started in 1992
- Neutrino Oscillation Industry Web Page http://www.neutrinooscillation.org/

