Status of the SNO+ Experiment

Sean Grullon

16th Lomonosov Conference on Elementary Particle Physics

Friday, August 9, 13

SNO+ Collaboration

SNOLAB TRIUMF University of Alberta Queens University Laurentian University Oxford University Queen Mary, University Of London University of Liverpool University of Sheffield University of Sussex Armstrong State University Black Hills State Brookhaven National Lab University of California Berkeley University of Chicago University of North Carolina University of Pennsylvania University of Washington

TU Dresden

LIP Coimbra LIP Lisboa

SNOLAB

- 6800 ft (2 km) below the surface
- 6000 m.w.e (70 muons/day)
- Class-2000 clean room

SNO+ Detector

Acrylic Vessel - 12 m diameter

LAB scintillator - 780 ton

> PMTs - 9500

Water Shielding -1700 t inner - 5300 t outer

> Urylon Liner (Radon Seal)

Physics Program

- Low Energy Solar
 Neutrinos (pep, CNO, pp, ⁷Be, ⁸B)
- Geo, Reactor, and Supernova neutrinos

 Neutrinoless
 Double Beta Decay with ¹³⁰Te (Priority)

SNO+: Liquid Scintillator

- Linear Alkyl Benzene (LAB) is liquid scintillator solvent.
- High light yield (~11,000 pe/ MeV)
- High purity
- Low scattering & good optical transparency
- Fast timing

 High flash point (140 C) and high Boiling Point (278-314 C)

PPO

Solar Neutrinos

Measurement of pep, CNO, and pp fluxes
 Precision measurement of ⁸B and ⁷Be fluxes

Probe Transition Region from Vacuum to Matterdominated neutrino oscillations

Assuming Borexino level Backgrounds:

	1 year	2 years
рер	9.1%	6.5%
8B	7.5%	5.4%
7Be	4%	2.8%
рр	A few %	
CNO	~15%	

Geo Neutrinos

1/2 of anti-neutrino signal in SNO+
Well-studied local crust composition

Reactor anti-neutrinos

 90 events / yr
 Two baselines give shape which provides sensitivity to Δm₂₁²

Supernova Neutrinos

111 v-p Events for a 3 x 10⁵³ erg supernova at 10 kpc. (v+C can add a few events

Friday, August 9, 13

Neutrinoless double beta decay

• Neutrinos: Majorana or Dirac?

- Absolute Mass Scale
- CP violating Majorana Phase important for Leptogenesis

$0\nu\beta\beta$ in SNO+ with ¹³⁰Te

- Load ~2.3 tons of natural Te in 780 t of LAB liquid scintillator.
- 34.1% ¹³⁰Te isotopic abundance: no need to enrich

- Large active mass of LAB scintillator allows fiducialization
- Large mass, spectral fitting, low inherent backgrounds, and precise timing compensate for poor energy resolution
 - Demonstrated removal of cosmogenic backgrounds
 - Can be loaded in scintillator to percent level concentrations

Te-loaded LAB Optical Properties and Backgrounds

• $2\nu\beta\beta$: Intrinsic Background

•⁸B Solar: Irreducible

•Cosmogenic Backgrounds: Demonstrated reduction to negligible levels Te loading stable over time
High light yield (~9800 photons/MeV)
Optically clear; less absorption than Nd-loading
Candidate wavelength shifters under investigation

SNO+ Backgrounds - Cont

Thorium Chain

- Target Purity of Scintillator: $10^{-14} g_{U}/g_{Te}$ and $10^{-15} g_{Th}/g_{Te}$
- ²¹⁴Bi ²¹⁴Po β /α coincidence tagging reduces by 99.99%
- ²¹²Bi ²⁰⁸TI α/β tagging reduces by 97%.
 - Different U/Th concentrations for "External" Backgrounds (U/Th in AV, Water Shielding, PMT glass)
- External Backgrounds minimized by self-shielding of scintillator
- Dominant backgrounds don't scale with Te mass

Uranium Chain

Expected SNO+ Energy Spectrum

Assumptions:

3.5 m (20%) fiducial volume cut
2 year livetime
99.99% efficient ²¹⁴Bi tag
97% efficient internal ²⁰⁸Tl tag
100% reconstruction efficiency
Factor 200 reduction ²¹² Bi

no systematic uncertainties Te cocktail radioactivity SNO H₂O levels Acrylic and PMT radioactivity at SNO levels

m_{BB}=270 meV

SNO+ 0vββ Sensitivity

Friday, August 9, 13

Changes in SNO+: Rope Net

- Liquid Scintillator is less dense than Water
- Hold Down Rope system installed to hold AV in place
- Ropes pre-tensioned

Changes in SNO+: Electronics

- Trigger rates dramatically increased due to liquid scintillator.
- Upgrades to the trigger, readout electronics, and DAQ have been made to handle the increased rates

Changes in SNO+: Scintillator Purification

- LAB Liquid Scintillator
 Replaces Heavy Water
- New Purification systems needed.

Changes in SNO+: Calibration

• New calibration sources being developed.

 Redesigned universal interface and new cover gas system

• New in-situ light source calibration systems

Summary & Outlook

• SNO+ Now searching for 0v double beta decay through ¹³⁰Te

• Ov Sensitivity similar to CUORE and can be improved with likelihood fitting techniques and increased loading. (ongoing)

• Schedule:

- Fall 2013: First water data, calibrations, nucleon decay
- Early 2014: Start filling with scintillator
- Summer 2014: Scintillator data taking
- ➡ Fall 2014: Te isotope deployment

Backup Slides

Solar Neutrinos

- SNO+ has decided to prioritize the search for neutrinoless double beta decay
- Radon daughters have accumulated on the surrface of the AV over the last few years in a significant way. If these leach into the scintillator, the purification system has the capability to remove them.
- However, depending on the actual leach rate, that removal might be inefficient and the 210Bi levels in the scintillator too high for a pep/ CNO solar neutrino measurement without further mitigation
- Mitigation could include enhancing online scintillator purification, draining the detector and sanding the AV surface to remove the radon daughters, or deploying a bag.
- Neutrinoless double beta decay and the 8B solar neutrino measurements are not affected by these backgrounds.

OV SENSITIVITY: Counting method

arXiv:1109.0494

 Two classes of Backgrounds: One that scales with mass of ¹³⁰Te (b*M) and one class that's independent (c).

 $\circ \delta E$ Limited by loaded scintillator light yield. Accurately Measure Intrinsic Scintillator Light Yield

External Background Sources

External Background sources

	Mass		Activity	Decays/year
Hold-down ropes *I	222.09 kg	Bi 214	0.58 ± 0.40 [Bq/kg] *2	4.06E+06
		TI 208	0.33 ± 0.15 [Bq/kg] *2	2.30E+06
AV	30 t	Bi 214	1.0E-12 g/g *3	1.29E+07
		TI 208	1.0E-12 g/g *3	1.38E+06
shielding water	1555 t	Bi 214	2.1E-13 g/g *3	9.80E+07
		TI 208	5.2E-14 g/g *3	2.87E+06
AV dust	0.1µg/cm2	Bi214	1.1E-6 g/g *4	1.20E+05
		TI 208	5.6E-6 g/g *5	2.03E+05
PMT	9456 PMTs	238 U	100 µg / PMT *6	3.70E+11
		232 Th	100 µg / PMT *6	1.20E+11

internal backgrounds

Source	lsotope	Activity	Decays/Year
LAB Scintillator	Bi 214	1.6 x 10 ⁻¹⁷ g/g	4896
	TI 208	6.8 x 10 ⁻¹⁸ g/g	245
Nd	Bi 214	1x 10 ⁻¹⁵ g/g	918
	TI 208	1 x 10 ⁻¹⁴ g/g	1078
Te	Bi 214	1x 10 ⁻¹⁵ g/g	918
	TI 208	1x 10 ⁻¹⁴ g/g	245

 $2\nu\beta\beta \frac{\text{Nd: }T_{1/2} \sim 10^{19} \text{ y} (\sim 10^7 \text{ events/year})}{\text{Te: }T_{1/2} \sim 10^{21} \text{ y} (\sim 10^6 \text{ events/year})}$ Irreducible $^8\text{B} \vee \text{ Cosmogenic Activation of Isotope}$