SUSY Searches with ATLAS

16th Lomonosov Conference on Elementary Particle Physics – 27.08.2013

Matthias Hamer
Georg-August-Universität Göttingen

On behalf of the ATLAS Collaboration
Outline

1) Introduction & Overview
2) Inclusive Searches for Squarks and Gluinos
3) Searches for 3rd Generation Squarks
4) Searches for Electroweak SUSY Production
5) Searches for RPV and long-lived SUSY
6) Summary
Outline

1) Introduction & Overview
2) Inclusive Searches for Squarks and Gluinos
3) Searches for 3rd Generation Squarks
4) Searches for Electroweak SUSY Production
5) Searches for RPV and long-lived SUSY
6) Summary
Introduction & Overview

★ the Standard Model is not the full story
→ CPV, Dark Matter, Higgs-Mass, GUT, . . .

★ SUSY is one concept which extends the SM towards a more complete theory of nature
→ symmetry that connects bosons and fermions

★ many possible manifestations of SUSY
→ excellent dark matter candidate
→ 'natural' Higgs mass
→ gauge unification

★ no evidence for SUSY so far
→ symmetry broken by unknown mechanism
→ modelled by effective Lagrangian at low scale
The MSSM

- Minimal Supersymmetric Extension to the Standard Model: MSSM
 - one SUSY operation
 - minimal particle content
 - each degree of freedom in the SM gets a superpartner with $|\Delta s| = \frac{1}{2}$
 - effective Lagrangian with 124 parameters
 - derived models with less parameters
 - useful multiplicative quantum number: R-parity

- R-parity conserved: stable LSP
 - if WIMP: DM candidate, MET signatures at LHC
 - other signatures possible

- R-parity violated: unstable LSP
 - decays and signature depend on RPV couplings, nature of NLSP, . . .
The ATLAS Detector

- acquired p-p collision data:
 - 2010: 45 pb\(^{-1}\) at \(\sqrt{s} = 7\) TeV
 - 2011: 5.25 fb\(^{-1}\) at \(\sqrt{s} = 7\) TeV
 - 2012: 21.7 fb\(^{-1}\) at \(\sqrt{s} = 8\) TeV
- most of that data analysed
SUSY searches with ATLAS

- **Prompt**
 - RPV
 - **RPC**
 - 1st/2nd gen. squarks and gluinos
 - high MET
 - 2-10 jets
 - 0-2 leptons
 - 3rd gen. stop and sbottom
 - high MET
 - 0-6 jets / b-jets
 - 0-3 leptons
 - Direct EWK gauginos and sleptons
 - high MET
 - \geq 2 leptons

- **Long-lived scenarios**
 - Displaced vertices
 - Disappearing tracks
 - Heavy charged leptons
 - Out-of-time decays

☆ limits in various models:
 - \rightarrow CMSSM
 - \rightarrow AMSB/GMSB
 - \rightarrow pMSSM
 - \rightarrow simplified models
 - \rightarrow ...
Outline

1) Introduction & Overview
2) Inclusive Searches for Squarks and Gluinos
3) Searches for 3rd Generation Squarks
4) Searches for Electroweak SUSY Production
5) Searches for RPV and long-lived SUSY
6) Summary
$\sigma_{\text{tot}}[\text{pb}]: pp \rightarrow \text{SUSY}$

$\sqrt{S} = 8$ TeV

prospino2

$m_{\text{average}} [\text{GeV}]$
Inclusive Searches for Squarks and Gluinos

★ targets scenarios with
→ direct squark/gluino production (jets)
→ R-parity conservation (MET signature)
→ full hadronic decays preferred (lepton veto)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Channel</th>
<th>A (2-jets)</th>
<th>B (3-jets)</th>
<th>C (4-jets)</th>
<th>D (5-jets)</th>
<th>E (6-jets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_T^{miss} [GeV] ></td>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_T(j_1)$ [GeV] ></td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_T(j_2)$ [GeV] ></td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_T(j_3)$ [GeV] ></td>
<td></td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_T(j_4)$ [GeV] ></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p_T(j_5)$ [GeV] ></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

$\Delta\phi(j, E_T^{\text{miss}})_{\text{min}} > 0.4 \ (i = [1, 2, 3] \text{ if } p_T(j) > 40 \text{ GeV}))$ $0.4 \ (i = [1, 2, 3], 0.2 \ (p_T > 40 \text{ GeV} \text{ jets})$

$E_T^{\text{miss}} / m_{\text{eff}}(N_j) > 0.2$ $^a 0.3$ 0.4 0.25 0.25 0.2 0.15 0.2 0.25

$m_{\text{eff}}(\text{incl.})$ [GeV] > 1000 1600 1800 2200 1200 2200 1600 1000 1200 1500

(a) For SR A-medium the cut on $E_T^{\text{miss}} / m_{\text{eff}}(N_j)$ is replaced by a requirement $E_T^{\text{miss}} / \sqrt{H_T} > 15 \text{ GeV}^{1/2}$.

20.3 fb$^{-1}$ of p-p collisions at $\sqrt{s} = 8 \text{ TeV}$ analysed

transfer factors (DD, MC) to estimate SM background in the SR

ATLAS-CONF-2013-047
Inclusive Searches for Squarks and Gluinos

★ good agreement between SM prediction and data

MSUGRA/CMSSM: tanβ = 30, A₀ = -2m₀, μ > 0

ATLAS Preliminary

∫ L dt = 20.3 fb⁻¹, σ = 8 TeV

0-lepton combined

Observed limit (∓ σ_theory)

Expected limit (∓ σ_{exp})

Stau LSP

SUSY Searches with ATLAS – Lomonosov Conference 2013, Matthias Hamer - Georg-August-Universität Göttingen
Inclusive Searches for Squarks and Gluinos

- scenarios with higher jet multiplicity
- gluino decays via stops
- squark decays involving charginos and the heavier neutralinos

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Multi-jet + flavour stream</th>
<th>Multi-jet + M_T^2 stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>$8j50$</td>
<td>$9j50$</td>
<td>$10j50$</td>
</tr>
<tr>
<td>$7j80$</td>
<td>$8j80$</td>
<td>$9j50$</td>
</tr>
<tr>
<td>$> 10j50$</td>
<td>< 2.0</td>
<td>< 2.0</td>
</tr>
<tr>
<td>> 2.0</td>
<td>> 50 GeV</td>
<td>> 80 GeV</td>
</tr>
<tr>
<td>> 80 GeV</td>
<td>> 50 GeV</td>
<td></td>
</tr>
<tr>
<td>Jet count</td>
<td>$= 8$</td>
<td>$= 9$</td>
</tr>
<tr>
<td>$= 7$</td>
<td>$= 10$</td>
<td>$= 8$</td>
</tr>
<tr>
<td>> 8</td>
<td>> 9</td>
<td>> 10</td>
</tr>
<tr>
<td>> 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b-jets</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$(p_T > 40$ GeV,$\eta < 2.5$)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>> 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_T^2 [GeV]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 4 GeV$^{1/2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E_T^{miss}/\sqrt{H_T}$</td>
<td></td>
<td>> 4 GeV$^{1/2}$</td>
</tr>
</tbody>
</table>

20.3 fb$^{-1}$ of p-p collisions at $\sqrt{s} = 8$ TeV analysed

background estimation: DD and MC

BG model validated in CR

SUSY Searches with ATLAS – Lomonosov Conference 2013, Matthias Hamer - Georg-August-Universität Göttingen
Inclusive Searches for Squarks and Gluinos

★ good agreement between SM expectation and data

gluino – stop (off-shell)

gluino – squark via gauginos

Outline

1) Introduction & Overview
2) Inclusive Searches for Squarks and Gluinos
3) Searches for 3rd Generation Squarks
4) Searches for Electroweak SUSY Production
5) Searches for RPV and long-lived SUSY
6) Summary
\[\sigma_{\text{tot}}[\text{pb}]: pp \rightarrow \text{SUSY} \]
\[\sqrt{S} = 8 \text{ TeV} \]

prospino2
Search for 3rd Generation Squarks

- targets scenarios with
 - direct production of stops and sbottoms
 - heavy gluinos and 1st/2nd generation squarks
 - various decays of stop/sbottom/W

- here: stop search for an exclusive decay
 \[\bar{t} \rightarrow c \tilde{\chi}_1^0 \]

Primary vertex
- \(E_T^{\text{miss}} > 120 \text{ GeV} \)
- Jet quality requirements
 - At least one jet with \(p_T > 120 \text{ GeV} \) and \(|\eta| < 2.8 \)
- Lepton vetoes: no isolated electrons (muons) with \(p_T > 20 \text{ GeV} \) (\(p_T > 10 \text{ GeV} \))

Monojet-like selection M1

- At most three jets with \(p_T > 30 \text{ GeV} \) and \(|\eta| < 2.8 \)
- \(\Delta\phi(\text{jet}, p_T^{\text{miss}}) > 0.4 \)

Charm-tagged selection C1

- At least three jets with \(p_T > 30 \text{ GeV} \) and \(|\eta| < 2.5 \)
- \(b \)-veto for second and third jet
- \textit{medium} \(c \)-tag for fourth jet
- \(\Delta\phi(\text{jet}, p_T^{\text{miss}}) > 0.4 \)

<table>
<thead>
<tr>
<th>Minimum leading jet p_T (GeV)</th>
<th>280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum E_T^{miss} (GeV)</td>
<td>220</td>
</tr>
</tbody>
</table>

ATLAS CONF-2013-068

20.3 fb⁻¹ of p-p collisions at \(\sqrt{s} = 8 \text{ TeV} \) analysed
Search for 3rd Generation Squarks

★ good agreement between SM prediction and data

ATLAS Preliminary \(\int L dt = 20.3 \text{ fb}^{-1}, \sqrt{s} = 8 \text{ TeV} \)

Signal Region

<table>
<thead>
<tr>
<th>Signal Region</th>
<th>M1</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events (20.3 fb^{-1})</td>
<td>30793</td>
<td>25</td>
</tr>
<tr>
<td>SM prediction</td>
<td>29800 ± 900</td>
<td>29 ± 7</td>
</tr>
</tbody>
</table>

ATLAS Preliminary \(\int L dt = 20.3 \text{ fb}^{-1}, \sqrt{s} = 8 \text{ TeV} \)

Charm-tagged + Monojet-like selection
Search for 3rd Generation Squarks

ATLAS Preliminary

- **Observed limits**
- **Observed limits (-1σ_{theo})**
- **Expected limits**

Status: EPS 2013

- $L_{int} = 20 - 21 \text{ fb}^{-1} \quad s = 8 \text{ TeV}$
- $L_{int} = 4.7 \text{ fb}^{-1} \quad s = 7 \text{ TeV}$

$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^\pm, \tilde{\chi}_1^\pm \rightarrow W^{(*)} \tilde{\chi}_1^0$

- $0L$, $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$
- $1L$, $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$
- $2L$, $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$
- $2L$, $\tilde{t}_1 \rightarrow Wb \tilde{\chi}_1^0$

- $0L$, $m_{\tilde{t}_1} = m_{\tilde{\chi}_1^0} + 5 \text{ GeV}$
- $1L$, $m_{\tilde{t}_1} = m_{\tilde{\chi}_1^0}$
- $1L$, $m_{\tilde{t}_1} = 150 \text{ GeV}$
- $2L$, $m_{\tilde{t}_1} = 150 \text{ GeV}$
- $2L$, $m_{\tilde{t}_1} = m_{\tilde{\chi}_1^0} - 10 \text{ GeV}$
- $1L$, $m_{\tilde{t}_1} = 2 \times m_{\tilde{\chi}_1^0}$

CDF 2.6 fb$^{-1}$ [1203.4171]

SUSY Searches with ATLAS – Lomonosov Conference 2013, Matthias Hamer - Georg-August-Universität Göttingen

18
Outline

1) Introduction & Overview
2) Inclusive Searches for Squarks and Gluinos
3) Searches for 3rd Generation Squarks
4) Searches for Electroweak SUSY Production
5) Searches for RPV and long-lived SUSY
6) Summary
$\sigma_{\text{tot}}[\text{pb}]: pp \rightarrow \text{SUSY}$

$\sqrt{S} = 8 \text{ TeV}$

prospino2

$m_{\text{average}} [\text{GeV}]$
Search for Electroweak SUSY production

- targets scenarios with
 - direct production of EW gauginos and sleptons
 - heavy coloured superpartners
 - different production and decay mechanisms
 - typically leptons in the final state

- searching in final states with 2, 3 and ≥4 leptons

2 Leptons

<table>
<thead>
<tr>
<th>SR-$m_{T2,90}$</th>
<th>e^+e^-</th>
<th>$e^+\mu^-$</th>
<th>$\mu^+\mu^-$</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>15</td>
<td>19</td>
<td>19</td>
<td>53</td>
</tr>
<tr>
<td>Background total</td>
<td>16.6 ± 2.3</td>
<td>20.7 ± 3.2</td>
<td>22.4 ± 3.3</td>
<td>59.7 ± 7.3</td>
</tr>
<tr>
<td>WW</td>
<td>9.3 ± 1.6</td>
<td>14.1 ± 2.2</td>
<td>12.6 ± 2.0</td>
<td>36.1 ± 5.1</td>
</tr>
<tr>
<td>ZV ($V = W$ or Z)</td>
<td>6.3 ± 1.5</td>
<td>0.8 ± 0.3</td>
<td>7.3 ± 1.7</td>
<td>14.4 ± 3.2</td>
</tr>
<tr>
<td>Top</td>
<td>0.9^{+1.1}_{-0.9}</td>
<td>5.6 ± 2.1</td>
<td>2.5 ± 1.8</td>
<td>8.9 ± 3.9</td>
</tr>
<tr>
<td>Higgs</td>
<td>0.11 ± 0.04</td>
<td>0.19 ± 0.05</td>
<td>0.08 ± 0.04</td>
<td>0.38 ± 0.08</td>
</tr>
<tr>
<td>Fake</td>
<td>0.00^{+0.18}_{-0.00}</td>
<td>0.00^{+0.14}_{-0.00}</td>
<td>0.00^{+0.15}_{-0.00}</td>
<td>0.00^{+0.28}_{-0.00}</td>
</tr>
</tbody>
</table>

Signal expectation

- $(m_{\tilde{t}}, m_{\tilde{\chi}^0_1}) = (191, 90)$ GeV
 - 21.6 0 21.6 43.2
- $(m_{\tilde{t}}, m_{\tilde{\chi}^0_1}) = (251, 10)$ GeV
 - 12.2 0 12.5 24.7
- $(m_{\tilde{t}}, m_{\tilde{\chi}^0_1}) = (350, 0)$ GeV
 - 11.7 16.6 10.5 38.8
- $(m_{\tilde{t}}, m_{\tilde{\chi}^0_1}) = (425, 75)$ GeV
 - 4.3 6.7 4.4 15.4

20.3 – 20.7 fb$^{-1}$ of p-p collisions at $\sqrt{s} = 8$ TeV analysed.

Background estimation: DD and MC

ATLAS-CONF-2013-035

ATLAS-CONF-2013-049
Search for Electroweak SUSY production

- good agreement between SM prediction and data
- limits in simplified models with well defined mass hierarchy, gaugino mixing and branching fractions

SUSY Searches with ATLAS – Lomonosov Conference 2013, Matthias Hamer - Georg-August-Universität Göttingen
Outline

1) Introduction & Overview
2) Inclusive Searches for Squarks and Gluinos
3) Searches for 3rd Generation Squarks
4) Searches for Electroweak SUSY Production
5) Searches for RPV and long-lived SUSY
6) Summary
Searches for RPV and long-lived SUSY

★ **RPV scenarios**
- LSP is unstable
- may decay into multilepton final states
- direct LSP production typically negligible
- consider NLSP production only
- chargino and gluino NLSP considered here

\[\lambda_{ijk} L_i L_j \tilde{E}_k + \lambda'_{ijk} L_i Q_j D_k + \lambda''_{ijk} \tilde{U}_i \tilde{D}_j \tilde{D}_k + \kappa_i L_i H_2 \]

<table>
<thead>
<tr>
<th>SR</th>
<th>(N(\ell = e, \mu))</th>
<th>(N(\tau))</th>
<th>Z Candidate</th>
<th>(E_T^{\text{miss}} \text{[GeV]})</th>
<th>(m_{\text{eff}} \text{[GeV]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR0noZb</td>
<td>(\geq 4)</td>
<td>(\geq 0)</td>
<td>extended veto</td>
<td>(> 75)</td>
<td>or</td>
</tr>
<tr>
<td>SR1noZ</td>
<td>(= 3)</td>
<td>(\geq 1)</td>
<td>extended veto</td>
<td>(> 100)</td>
<td>or</td>
</tr>
</tbody>
</table>

background estimation DD and MC

20.7 fb\(^{-1}\) of p-p collisions at \(\sqrt{s} = 8\) TeV analysed
Searches for RPV and long-lived SUSY

★ good agreement between SM expectation and data
→ limits set in various models
Searches for RPV and long-lived SUSY

★ AMSB scenarios
→ lightest chargino and neutralino nearly mass degenerate
→ chargino has significant lifetime
→ look for disappearing tracks

<table>
<thead>
<tr>
<th>Selection requirement</th>
<th>Observed events</th>
<th>Expected signal events (efficiency [%])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality requirements and trigger</td>
<td>20479553</td>
<td>1873 (8.8)</td>
</tr>
<tr>
<td>Jet cleaning</td>
<td>18627508</td>
<td>1867 (8.8)</td>
</tr>
<tr>
<td>Lepton veto</td>
<td>12485944</td>
<td>1827 (8.6)</td>
</tr>
<tr>
<td>Leading jet $p_T > 90$ GeV</td>
<td>10308840</td>
<td>1571 (7.4)</td>
</tr>
<tr>
<td>$E_T^{miss} > 90$ GeV</td>
<td>6113773</td>
<td>1484 (7.0)</td>
</tr>
<tr>
<td>$\Delta\phi_{min} > 1.5$</td>
<td>5604087</td>
<td>1444 (6.8)</td>
</tr>
<tr>
<td>High-p_T isolated track selection</td>
<td>34379</td>
<td>21.9 (0.10)</td>
</tr>
<tr>
<td>Disappearing-track selection</td>
<td>3256</td>
<td>18.4 (0.087)</td>
</tr>
</tbody>
</table>

20.3 fb⁻¹ of p-p collisions at $\sqrt{s} = 8$ TeV analysed

ATLAS-CONF-2013-069
Searches for RPV and long-lived SUSY

★ good agreement between the background expectation and data
Outline

1) Introduction & Overview
2) Inclusive Searches for Squarks and Gluinos
3) Searches for 3rd Generation Squarks
4) Searches for Electroweak SUSY Production
5) Searches for RPV and long-lived SUSY
6) Summary
SUSY Searches with ATLAS – Lomonosov Conference 2013, Matthias Hamer - Georg-August-Universität Göttingen

<table>
<thead>
<tr>
<th>Model</th>
<th>e, μ, τ, γ Jets</th>
<th>$E_{\text{T}}^{\text{miss}}$</th>
<th>\sqrt{s} [TeV]</th>
<th>Mass limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSUGRA/CMSSM</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.2 TeV</td>
</tr>
<tr>
<td>MSUGRA/CMSSM</td>
<td>3-6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.1 TeV</td>
</tr>
<tr>
<td>MSUGRA/CMSSM</td>
<td>7-10 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.3 TeV</td>
</tr>
<tr>
<td>$\tilde{g} \rightarrow q\tilde{q}^0$</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.18 TeV</td>
</tr>
<tr>
<td>$\tilde{g} \rightarrow q\tilde{q}^0$</td>
<td>3 jets</td>
<td>Yes</td>
<td>20.7</td>
<td>1.4 TeV</td>
</tr>
<tr>
<td>GMSB (f NLSP)</td>
<td>2-4 jets</td>
<td>Yes</td>
<td>4.7</td>
<td>1.24 TeV</td>
</tr>
<tr>
<td>GMSB (f NLSP)</td>
<td>7 jets</td>
<td>Yes</td>
<td>20.7</td>
<td>1.24 TeV</td>
</tr>
<tr>
<td>GGM (bino NLSP)</td>
<td>3 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.45 TeV</td>
</tr>
<tr>
<td>GGM (wino NLSP)</td>
<td>0</td>
<td>Yes</td>
<td>4.8</td>
<td>619 GeV</td>
</tr>
<tr>
<td>GGM (higgsino-bino NLSP)</td>
<td>1</td>
<td>Yes</td>
<td>4.8</td>
<td>900 GeV</td>
</tr>
<tr>
<td>\tilde{g}</td>
<td>0-3 jets</td>
<td>Yes</td>
<td>5.8</td>
<td>690 GeV</td>
</tr>
<tr>
<td>Gravitino LSP</td>
<td>0</td>
<td>mono-jet</td>
<td>Yes</td>
<td>10.5</td>
</tr>
</tbody>
</table>

3'gen. squarks, sparticles direct production

<table>
<thead>
<tr>
<th>Model</th>
<th>$b_1, b_1 \rightarrow b_1, b_1$</th>
<th>$E_{\text{T}}^{\text{miss}}$</th>
<th>\sqrt{s} [TeV]</th>
<th>Mass limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_1, b_1 \rightarrow b_1, b_1$</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.2 TeV</td>
</tr>
<tr>
<td>$b_1, b_1 \rightarrow b_1, b_1$</td>
<td>3 jets</td>
<td>Yes</td>
<td>20.7</td>
<td>1.1 TeV</td>
</tr>
<tr>
<td>$b_1, b_1 \rightarrow b_1, b_1$</td>
<td>7 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>1.3 TeV</td>
</tr>
<tr>
<td>$t_1, t_1 \rightarrow Wb_1, b_1$</td>
<td>1-2 jets</td>
<td>Yes</td>
<td>4.7</td>
<td>220 GeV</td>
</tr>
<tr>
<td>$t_1, t_1 \rightarrow Wb_1, b_1$</td>
<td>3 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>225-525 GeV</td>
</tr>
<tr>
<td>$t_1, t_1 \rightarrow Wb_1, b_1$</td>
<td>7 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>150-580 GeV</td>
</tr>
<tr>
<td>$t_1, t_1 \rightarrow Wb_1, b_1$</td>
<td>1 jets</td>
<td>Yes</td>
<td>4.7</td>
<td>200-610 GeV</td>
</tr>
<tr>
<td>$t_1, t_1 \rightarrow Wb_1, b_1$</td>
<td>3 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>320-660 GeV</td>
</tr>
<tr>
<td>$t_1, t_1 \rightarrow Wb_1, b_1$</td>
<td>1 jets</td>
<td>Yes</td>
<td>4.7</td>
<td>200 GeV</td>
</tr>
</tbody>
</table>

EW direct

<table>
<thead>
<tr>
<th>Model</th>
<th>$\ell_1, \ell_1 \rightarrow \tilde{e} \tilde{\nu}$</th>
<th>$E_{\text{T}}^{\text{miss}}$</th>
<th>\sqrt{s} [TeV]</th>
<th>Mass limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ell_1, \ell_1 \rightarrow \tilde{e} \tilde{\nu}$</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>100-630 GeV</td>
</tr>
<tr>
<td>$\ell_1, \ell_1 \rightarrow \tilde{e} \tilde{\nu}$</td>
<td>4 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>430 GeV</td>
</tr>
<tr>
<td>$\ell_1, \ell_1 \rightarrow \tilde{e} \tilde{\nu}$</td>
<td>6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>167 GeV</td>
</tr>
</tbody>
</table>

Long-lived particles

<table>
<thead>
<tr>
<th>Model</th>
<th>$\chi_1 \rightarrow \tilde{e}_L \tilde{\nu}$</th>
<th>$E_{\text{T}}^{\text{miss}}$</th>
<th>\sqrt{s} [TeV]</th>
<th>Mass limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_1 \rightarrow \tilde{e}_L \tilde{\nu}$</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>85-315 GeV</td>
</tr>
<tr>
<td>$\chi_1 \rightarrow \tilde{e}_L \tilde{\nu}$</td>
<td>4 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>125-450 GeV</td>
</tr>
<tr>
<td>$\chi_1 \rightarrow \tilde{e}_L \tilde{\nu}$</td>
<td>6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>180-330 GeV</td>
</tr>
</tbody>
</table>

RPV

<table>
<thead>
<tr>
<th>Model</th>
<th>$\tilde{g} \rightarrow \tilde{t} \tilde{t}$</th>
<th>$E_{\text{T}}^{\text{miss}}$</th>
<th>\sqrt{s} [TeV]</th>
<th>Mass limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{g} \rightarrow \tilde{t} \tilde{t}$</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>315 GeV</td>
</tr>
<tr>
<td>$\tilde{g} \rightarrow \tilde{t} \tilde{t}$</td>
<td>3 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>270 GeV</td>
</tr>
</tbody>
</table>

Other

<table>
<thead>
<tr>
<th>Model</th>
<th>$\tilde{g} \rightarrow \tilde{t} \tilde{t}$</th>
<th>$E_{\text{T}}^{\text{miss}}$</th>
<th>\sqrt{s} [TeV]</th>
<th>Mass limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{g} \rightarrow \tilde{t} \tilde{t}$</td>
<td>2-6 jets</td>
<td>Yes</td>
<td>20.3</td>
<td>270 GeV</td>
</tr>
</tbody>
</table>

Mass scale [TeV]

- $\sqrt{s} = 7$ TeV full data
- $\sqrt{s} = 8$ TeV partial data
- $\sqrt{s} = 8$ TeV full data

Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.
Summary

★ p-p collision data taken during three years of LHC operation has been/is being analysed

★ no evidence for the existence of superpartners has been found

★ superpartners with masses of \(O(1) \) TeV ruled out in many models

★ standard scenarios have been strongly constrained by the results → difficult to sustain these scenarios ('naturalness')

★ wide variety of simplified models derived from more complicated models are being studied

★ more results to come
Thank you!
Extra Material
Inclusive Searches for Squarks and Gluinos

★ good agreement between SM prediction and data

SUSY Searches with ATLAS – Lomonosov Conference 2013, Matthias Hamer - Georg-August-Universität Göttingen
Inclusive Searches for Squarks and Gluinos

observe no excess in signal regions → constrain models

simplified model: gluino NLSP

simplified model: squark NLSP

ATLAS-CONF-2013-047
Search for 3rd Generation Squarks

★ targets scenarios with
 → direct production of stops and sbottoms
 → heavy gluinos and 1\(^{st}\)/2\(^{nd}\) generation squarks
 → various decays of stop/sbottom/W

★ here: stop search for 2 exclusive decays

1) \(t \rightarrow b \chi_1^+ \)

 SR: 2 OS leptons (pT < 60 GeV)
 2 b-jets
 \(m_{T2} < 90 \text{ GeV} \)
 \(m_{b-Jet} > 160 \text{ GeV} \)

2) \(\bar{t} \rightarrow t \chi_1^0 \)

 SR: 2 OS leptons
 \(\geq 2 \) jets (leading jet: pT > 50 GeV)
 \(m_{eff} > 300 \text{ GeV} \)

 BDT to define 11 SR

\(m_{T2}(p_T^1, p_T^2, q_T) = \min_{q_T^1 + q_T^2 = q_T} \left\{ \max\left[m_T(p_T^1, q_T^1), m_T(p_T^2, q_T^2) \right] \right\} \)

<table>
<thead>
<tr>
<th>Training Sample ((m(t\bar{t}), m(\tilde{\chi}_1^0))) [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR(^{DF})_1</td>
</tr>
<tr>
<td>SR(^{DF})_2</td>
</tr>
<tr>
<td>SR(^{DF})_3</td>
</tr>
<tr>
<td>SR(^{DF})_4</td>
</tr>
<tr>
<td>SR(^{DF})_5</td>
</tr>
<tr>
<td>SR(^{DF})_6</td>
</tr>
<tr>
<td>SR(^{DF})_7</td>
</tr>
<tr>
<td>SR(^{SF})_1</td>
</tr>
<tr>
<td>SR(^{SF})_2</td>
</tr>
<tr>
<td>SR(^{SF})_3</td>
</tr>
<tr>
<td>SR(^{SF})_4</td>
</tr>
</tbody>
</table>

20.3 fb\(^{-1}\) of p-p collisions at \(\sqrt{s} = 8\) TeV analysed

ATLAS-CONF-2013-065
Search for 3rd Generation Squarks

★ good agreement between SM prediction and data
Search for 3rd Generation Squarks

★ limits are set in simplified models

combination with an analysis requiring $m_{T2} > 90$ GeV
Search for Electroweak SUSY production

★ targets scenarios with
 → direct production of EW gauginos and sleptons
 → heavy coloured superpartners
 → different production and decay mechanisms
 → typically leptons in the final state

★ here: search for production of neutralino pairs

SR: ≥ 4 leptons

MET > 50 GeV

veto Z → 2,3,4 l candidates

20.7 fb\(^{-1}\) of p-p collisions at \(\sqrt{s} = 8\) TeV analysed

<table>
<thead>
<tr>
<th>Sample</th>
<th>VR0noZ</th>
<th>VR0Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ</td>
<td>7.2 ± 3.6</td>
<td>167 ± 38</td>
</tr>
<tr>
<td>ZWW</td>
<td>0.031 ± 0.031</td>
<td>0.35 ± 0.35</td>
</tr>
<tr>
<td>t\bar{t}Z</td>
<td>0.17 ± 0.05</td>
<td>1.5 ± 0.7</td>
</tr>
<tr>
<td>Higgs</td>
<td>0.17 ± 0.05</td>
<td>4.5 ± 0.9</td>
</tr>
<tr>
<td>Irreducible Bkg.</td>
<td>7.4 ± 3.6</td>
<td>173 ± 39</td>
</tr>
<tr>
<td>Reducible Bkg.</td>
<td>0.3^{+0.7}_{-0.3}</td>
<td>2.0^{+2.6}_{-2.0}</td>
</tr>
<tr>
<td>Total Bkg.</td>
<td>7.7 ± 3.4</td>
<td>175 ± 37</td>
</tr>
<tr>
<td>Data</td>
<td>3</td>
<td>201</td>
</tr>
</tbody>
</table>

background estimation: DD and MC
validated using control regions

ATLAS-CONF-2013-036
Search for Electroweak SUSY production

★ good agreement between SM prediction and data

<table>
<thead>
<tr>
<th>Sample</th>
<th>SR0noZa</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ</td>
<td>0.6 ± 0.5</td>
</tr>
<tr>
<td>ZWW</td>
<td>0.12 ± 0.12</td>
</tr>
<tr>
<td>t\bar{t}Z</td>
<td>0.73 ± 0.34</td>
</tr>
<tr>
<td>Higgs</td>
<td>0.26 ± 0.07</td>
</tr>
<tr>
<td>Irreducible Bkg.</td>
<td>1.7 ± 0.8</td>
</tr>
<tr>
<td>Reducible Bkg.</td>
<td>0.0^{+0.16}_{-0}</td>
</tr>
<tr>
<td>Total Bkg.</td>
<td>1.7 ± 0.8</td>
</tr>
</tbody>
</table>

\[\int L \, dt = 20.7 \text{fb}^{-1}, \, \sqrt{s} = 8\text{TeV} \]
Search for Electroweak SUSY production

★ limits are set in simplified models

All limits at 95% CL

ATLAS Preliminary

$\int L dt = 20.7 \text{ fb}^{-1}, \sqrt{s}=8 \text{ TeV}$

$m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} = 5 \text{ GeV}$

$m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} = 80 \text{ GeV}$

Observed limit ($\pm 1 \sigma_{\text{SUSY}}$)

Expected limit ($\pm 1 \sigma_{\text{exp}}$)

ATLAS-CONF-2013-036
Search for Electroweak SUSY production

★ final states with two and three leptons

ATLAS Preliminary

\[
\int L \, dt = 20.3 \, fb^{-1}, \, \sqrt{s} = 8 \, TeV
\]

- Observed limit (±1 \(\sigma_{\text{SUSY}}\))
- Expected limit (±1 \(\sigma_{\text{exp}}\))
- LEP \(\tilde{\mu}_{\text{R}}\) excluded

All limits at 95% CL

ATLAS Preliminary

\[
\int L \, dt = 20.7 \, fb^{-1}, \, \sqrt{s} = 8 \, TeV
\]

- Observed limit (±1 \(\sigma_{\text{SUSY}}\))
- Expected limit (±1 \(\sigma_{\text{exp}}\))
- ATLAS 13.0 \(fb^{-1}\), \(\sqrt{s} = 8 \, TeV\)

All limits at 95% CL

ATLAS-CONF-2013-049

ATLAS-CONF-2013-035