Selected highlights from the STAR experiment at RHIC

Sonia Kabana for the STAR Collaboration

Laboratoire de Physique Subatomique et des technologies associees (SUBATECH) and University of Nantes, France

16th Lomonosov Conference on elementary particle physics
22-28 August 2013, Moscow, Russia
Outline

I Introduction
II STAR detector
III Selected physics results:
 1. Open heavy flavour
 2. Hidden heavy flavour
 3. Beam Energy Scan
IV Conclusions
V Outlook
I Introduction

Lattice QCD prediction:
The Hadron <-> Quark Gluon Plasma (QGP) transition

Goal of ultrarelativistic heavy ion physics:
Study QCD matter under extreme conditions of densities and Temperatures
Map out the QCD phase diagram and measure QGP characteristics

Reproduce a phase transition of the early universe at 10^{-6} sec after the Big Bang, between hadrons and quarks and gluons (Quark-Gluon-Plasma)

Beam Energy Scan at RHIC:
* Search for onset of QGP signatures
* Search for signals of the phase boundary
* Search for the QCD critical point
Particle identification mainly via
- de/dx in the TPC
- topological decay reconstruction in TPC for strange particles and D mesons
- TOF
- Barrel EMCal (used also as fast online trigger)
III Selected physics results

III.1 Open heavy flavor
STAR heavy flavor measurements

STAR measures:

* Charm via direct D meson reconstruction

* Open charm and beauty via electrons from semileptonic decay of charmed hadrons, and e-h and e-D correlations

* Quarkonia via reconstruction of their decay to -> e+ e-

p+p 500 GeV
e-h correlations

Au+Au 62 GeV
Jet quenching and heavy flavour

We compare A+A to expectations from p+p, using the “nuclear modification factor” R_{AA} defined as:

$$R_{AA}(p_T) = \frac{\text{Yield}(A + A)}{\text{Yield}(p + p) \times \langle N_{\text{coll}} \rangle}$$

N coll : Average number of NN collisions in AA collision

Suppression of jets in AuAu: $R_{AA} < 1$

Quarks are expected to exhibit different radiative energy loss depending on their mass (D.Kharzeev et al. Phys Letter B. 519:1999)

Partons interact with the medium and loose energy through eg gluon radiation

B and D separation in p+p 200 and 500 GeV

p+p 200 GeV

* B and D components to non-photonic electrons have been separately measured and are consistent with FONLL predictions
RAA of D0 at high pT:
- unsuppressed for peripheral events
- suppressed for central events
- suppression at high pT similar to pions

Models: bump may be due to radial flow of thermalized light quark which coalesces with charm

He et al, PRC86 014903, arXiv:1204.4442
PB Gossiaux: arXiv: 1207.5445
Flow coefficients v_n, $n=1,2,3..$

\[\frac{dN}{d\phi} \propto 1 + 2 \sum_{n=1}^{\infty} v_n \cos[n(\phi - \Phi_n)] \]

\[v_n = \langle \cos[n(\phi - \Phi_n)] \rangle \]

* Initial shape of the interaction region ($v2$ - elliptic flow)
Non-photonic electrons (NPE)

R_{AA} of D0 and NPE show similar strong suppression in central Au+Au 200 GeV at high p_T

Models with only radiative energy loss do not describe the data

NPE show nonzero v_2

Increase of v_2 at high p_T's may be due to jet-like correlation and/or path length dependence

Sonia Kabana, 16th Lomonosov conference, 22-28 Aug 2013, Moscow
Is B less suppressed than charm?

Hint of possible less suppression of B as compared to D in some cases

New STAR Heavy Flavor Tracker needed
III.2 Quarkonia
Quarkonia: Thermometer of QGP via their suppression pattern

Many effects play a role like dissociation in QGP, cold matter absorption, recombination/coalescence from c, cbar, feeding

A. Mocsy
p_T dependence of J/\(\Psi\) suppression in Au+Au, Cu+Cu 200 GeV

Liu et al, PLB 678 (2009) 72
Zhao et al, PRC 82 (2010) 064905

- J/\(\Psi\) not suppressed at high p_T's in non-central collisions
- J/\(\Psi\) suppressed at all p_T's for most central events
- R_{AA} of J/\(\Psi\) is systematically larger for higher p_T
J/Psi v_2 consistent with zero for $p_T > 2$ GeV -> Suggests that J/Psi does not originate dominantly from thermalized c and cbar quark coalescence (assuming c and cbar exhibit elliptic flow)
At which energy does J/Psi suppression turn off?

Color Evaporation Model (CEM) estimate for p+p reference used for 39, 62 GeV

R_{AA} of J/Psi is suppressed in similar way at 39, 62 and 200 GeV
Y(1S+2S+3S) in Au+Au collisions at 200 GeV:

* No suppression in most peripheral collisions
* Exhibits suppression in more central collisions increasing with centrality
* The suppression observed is consistent with model assuming Y(2S) and Y(3S) suppression

Assumes $T_0 = 428-442$ MeV and $1/4 \pi < \eta/S < 3/4 \pi$
III.3 Beam Energy Scan
Model used for particle ratio fits: THERMUS by J Cleymans et al

Grand canonical ensemble and strangeness canonical ensemble fits to particle ratios give consistent results for mid-central and central Au+Au collisions and disagree for peripheral collisions.
Directed flow of protons

Directed flow slope is sensitive to a 1st order transition

STAR: v_1 slope changes sign from positive to negative between 7.7 and 11.5 GeV

Pions and antiprotons have always negative v_1 slopes.

Net-proton v_1 slope shows a minimum around 11.5-19.6 GeV

UrQMD model (model without phase transition) cannot explain the data.
Elliptic flow energy dependence

* Difference between baryon and antibaryon elliptic flow coefficient v_2 is getting larger in lower energies

PRL 110 (2013) 142301
PRC 88 (2013) 014902
At which energy does jet quenching switch off?

\[R_{\text{CP}} \text{ suppression measured from } \sqrt{s} = 39 \text{ GeV on} \]
IV Conclusions

- Several sQGP signatures observed in central Au+Au collisions at high energy:

Open Heavy Flavor:
- “Jet quenching” of D mesons and of electrons from charm and beauty quarks in Au+Au 200 GeV
- Elliptic flow of electrons from open charm and beauty in Au+Au 200 GeV further constrain models

Quarkonia suppression:
- J/Psi suppression and elliptic flow
- Upsilon suppression in central Au+Au collisions 200 GeV, consistent with suppression of \(Y(2S+3S) \)

Beam Energy Scan:
- Dissapearance of key QGP signatures at low energies
V Outlook
Short term STAR upgrades

Heavy Flavor Tracker

* HFT pixel prototype with 3 sectors took first data in 2013

* MTD 63% installed and took data in 2013

* Outlook: 2014 full HFT and MTD for Au+Au 200 GeV run

Muon Telescope Detector

J/Psi event in p+p 500 GeV
Outlook
BES-II program (>2017)

BES-II:
* Fine energy scan of region $\sqrt{s} \leq 20$ GeV
* Increased luminosity \sim 3-10 times
* STAR upgrade to extend mid-rapidity coverage

Fixed Target proposal:
* Energy scan of region down to $\sqrt{s} \sim 3$ GeV
* Annular 1% Au target inside STAR beam pipe, and 2 m away from the interaction point center
* Data taking at beginning of each fill in collider mode
Thank you very much for your attention
Upsilon

\[p+p \sqrt{s_{NN}} = 200 \text{ GeV} \]
\[|y_{ee}| < 0.5, 0 < p_t < 10 \]

- \(N_+ + N_- \)
- \(N_+ \)

- Comb. Background (CB)
- CB + Drell-Yan + b\bar{b}
- CB + DY + b\bar{b} + \gamma (19, 29, 38)
- Integral of CB + DY + b\bar{b} + \gamma

Counts

\(m_{oo} \) (GeV/c\(^2\))
Table 2. Estimates of the isotropic and anisotropic dissociation scales for the J/ψ, χ_{c1}, $\Upsilon(1s)$, $\Upsilon(2s)$, $\Upsilon(3s)$, χ_{b1}, and χ_{b2}. Estimates are taken from Refs. [129, 130].

<table>
<thead>
<tr>
<th>State</th>
<th>Isotropic QGP ($\xi=0$)</th>
<th>Anisotropic QGP ($\xi=1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J/ψ</td>
<td>307 MeV</td>
<td>374 MeV</td>
</tr>
<tr>
<td>χ_{c1}</td>
<td>< 192 MeV</td>
<td>210 MeV</td>
</tr>
<tr>
<td>$\Upsilon(1s)$</td>
<td>593 MeV</td>
<td>735 MeV</td>
</tr>
<tr>
<td>$\Upsilon(2s)$</td>
<td>228 MeV</td>
<td>290 MeV</td>
</tr>
<tr>
<td>$\Upsilon(3s)$</td>
<td>< 192 MeV</td>
<td>< 192 MeV</td>
</tr>
<tr>
<td>χ_{b1}</td>
<td>265 MeV</td>
<td>351 MeV</td>
</tr>
<tr>
<td>χ_{b2}</td>
<td>< 192 MeV</td>
<td>213 MeV</td>
</tr>
</tbody>
</table>

M Strickland et al 1302.2180