

# Outline

#### I Introduction

#### **II STAR detector**

#### **III Selected physics results :**

- 1. Open heavy flavour
- 2. Hidden heavy flavour
- 3. Beam Energy Scan
- **IV Conclusions**

#### V Outlook









Beam Energy Scan at RHIC:

Jubatech

- \* Search for onset of QGP signatures
- \* Search for signals of the phase boundary
- \* Search for the QCD critical point

#### I Introduction

Lattice QCD prediction :

The Hadron <-> Quark Gluon Plasma (QGP) transition

Goal of ultrarelativistic heavy ion physics:

**Study QCD matter under extreme conditions of densities and Temperatures** 

Map out the QCD phase diagram and measure QGP characteristics

Reproduce a phase transition of the early universe at 10<sup>-6</sup> sec after the Big Bang, between hadrons and quarks and gluons (Quark-Gluon-Plasma)



Sonia Kabana, 16th Lomonosov conference, 22-28 Aug 2013, Moscow



3



III Selected physics results

III.1 Open heavy flavor













![](_page_8_Figure_0.jpeg)

![](_page_9_Figure_0.jpeg)

![](_page_10_Figure_0.jpeg)

![](_page_11_Figure_0.jpeg)

# III.2 Quarkonia

![](_page_12_Picture_1.jpeg)

![](_page_12_Picture_3.jpeg)

![](_page_13_Figure_0.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_15_Figure_0.jpeg)

#### At which energy does J/Psi suppression turn off?

![](_page_16_Figure_1.jpeg)

Color Evaporation Model (CEM) estimate for p+p reference used for 39, 62 GeV

 $R_{AA} \mbox{ of J/Psi}$  is suppressed in similar way at 39, 62 and 200 GeV

Jubatech

Sonia Kabana, 16th Lomonosov conference, 22-28 Aug 2013, Moscow

![](_page_16_Picture_5.jpeg)

#### Upsilon in Au+Au 200 GeV

![](_page_17_Figure_1.jpeg)

![](_page_17_Figure_2.jpeg)

\* No suppression in most peripheral collisions

\* Exhibits suppression in more central collisions increasing with centrality

\* The suppression observed is consistent with model assuming Y(2S) and Y(3S) suppression

Model by Strickland et al (PRL 107, 132301, 2011) :

Assumes  $T_0$  = 428-442 MeV and  $1/4\pi < \eta/S < 3/4\pi$ 

| state     | $J/\psi(1S)$ | $\chi_c(1P)$ | $\psi'(2S)$ | $\Upsilon(1S)$ | $\chi_b(1P)$ | $\Upsilon(2S)$ | $\chi_b(2P)$ | $\Upsilon(3S)$ |
|-----------|--------------|--------------|-------------|----------------|--------------|----------------|--------------|----------------|
| $T_d/T_c$ | 2.10         | 1.16         | 1.12        | > 4.0          | 1.76         | 1.60           | 1.19         | 1.17           |

![](_page_17_Picture_10.jpeg)

# III.3 Beam Energy Scan

![](_page_18_Picture_1.jpeg)

![](_page_18_Picture_3.jpeg)

![](_page_19_Figure_0.jpeg)

![](_page_20_Figure_0.jpeg)

![](_page_21_Figure_0.jpeg)

At which energy does jet quenching switch off?

![](_page_22_Figure_1.jpeg)

Jubatech

23

### **IV Conclusions**

- Several sQGP signatures observed in central Au+Au collisions at high energy:

Open Heavy Flavor:

- "Jet quenching" of D mesons and of electrons from charm and beauty quarks in Au+Au 200 GeV

- Elliptic flow of electrons from open charm and beauty in Au+Au 200 GeV further constrain models

Quarkonia suppression:

- J/Psi suppression and elliptic flow

- Upsilon suppression in central Au+Au collisions 200 GeV, consistent with suppression of Y(2S+3S)

Beam Energy Scan:

- Dissapearance of key QGP signatures at low energies

![](_page_23_Picture_10.jpeg)

![](_page_23_Picture_12.jpeg)

![](_page_24_Figure_0.jpeg)

## Outlook BES-II program (>2017)

BES-II:

\* Fine energy scan of region  $\sqrt{s}$  <~ 20 GeV

\* Increased luminosity ~ 3-10 times

\* STAR upgrade to extend mid-rapidity coverage

Fixed Target proposal:

\* Energy scan of region down to  $\sqrt{s} \sim 3 \text{ GeV}$ 

\* Annular 1% Au target inside STAR beam pipe, and 2 m away from the interaction point center

\* Data taking at beginning of each fill in collider mode

![](_page_25_Picture_9.jpeg)

![](_page_25_Picture_11.jpeg)

# Thank you very much for your attention

![](_page_26_Picture_1.jpeg)

![](_page_26_Picture_3.jpeg)

![](_page_27_Figure_0.jpeg)

Table 2. Estimates of the isotropic and anisotropic dissociation scales for the  $J/\psi$ ,  $\chi_{c1}$ ,  $\Upsilon(1s)$ ,  $\Upsilon(2s)$ ,  $\Upsilon(3s)$ ,  $\chi_{b1}$ , and  $\chi_{b2}$ . Estimates are taken from Refs. 129, 130.

| State          | Isotropic QGP ( $\xi=0$ ) | Anisotropic QGP ( $\xi$ =1) |
|----------------|---------------------------|-----------------------------|
| $J/\psi$       | 307 MeV                   | 374 MeV                     |
| $\chi_{c1}$    | < 192  MeV                | 210 MeV                     |
| $\Upsilon(1s)$ | 593 MeV                   | 735 MeV                     |
| $\Upsilon(2s)$ | 228 MeV                   | 290 MeV                     |
| $\Upsilon(3s)$ | < 192  MeV                | < 192  MeV                  |
| $\chi_{b1}$    | 265 MeV                   | 351 MeV                     |
| $\chi_{b2}$    | < 192  MeV                | 213 MeV                     |

#### M Strickland et al 1302.2180

![](_page_28_Picture_3.jpeg)

Sonia Kabana, 16th Lomonosov conference, 22-28 Aug 2013, Moscow

![](_page_28_Picture_5.jpeg)