Recent progress in determination of fundamental constants (CODATA 2010)

Savely G Karshenboim

Pulkovo observatory (ΓΑΟ) (St. Petersburg) and Max-Planck-Institut für Quantenoptik (Garching)

MAX-PLANCK-INSTITUTE OF QUANTUM OPTICS GARCHING

Outline

- structure of input and output
- auxiliary data
 - Rydberg and R_p
 - m_e/m_p
- h
- mass of a particle

- independent
 constants
 - G • k
- progress: 2006 vs.
 2010
- problems

Structure of the input data and output values

- Auxiliary data = exact + the most accurate data which are to be evaluated <u>prior</u> the adjustment: R_{∞} , m_e/m_p , atomic masses.
- α related data: h/m, hN_A ...
- h related data: e, e/h, ...
 - The lines (\rightarrow) are equations: e.g., theoretical expressions for h/M, the Lamb shift, ...
 - Some data are measured, a lot are derived: m_p [kg], m_e [Mev/c²], ...
- G is uncorrelated,...

Structure of the input data and output values

- Auxiliary data = exact + the most accurate data which are to be evaluated <u>prior</u> the adjustment: R_∞, m_e/m_p, atomic masses.
- α related data: h/m, hN_A ...
- h related data: e, e/h, N_A ...
 - The lines (\rightarrow) are equations: e.g., theoretical expressions for h/M, the Lamb shift, ...
 - Some data are measured, a lot are derived: m_p [kg], m_e [Mev/c²], ...
- G is uncorrelated; k, a_μ, ...

Structure of the input data and output values

- Auxiliary data = exact + the most accurate data which are to be evaluated <u>prior</u> the adjustment: R_{∞} , m_e/m_p , atomic masses.
- α related data: h/m, hN_A ...
- h related data: e, e/h, N_A ...
 - The lines (\rightarrow) are equations: e.g., theoretical expressions for h/M, the Lamb shift, ...
- Some data are measured, a lot are derived: m_p [kg], m_e [Mev/c²], ...

G is uncorrelated; k, a_μ, ...

 Auxiliary data exact: the most accurate 				
Quantity	Symbol	Value	u_r	
speed of light in vacuum	c	$299792458~{ m ms^{-1}}$	exact	
magnetic constant	μ_0	$4\pi \times 10^{-7} \mathrm{NA}^{-2}$	exact	
electric constant	$\epsilon_0 = 1/(c^2\mu_0)$	$8.854187817\ldots imes 10^{-12}\mathrm{Fm^{-1}}$	exact	
atomic mass of ^{12}C	$m(^{12}C)$	12 u	exact	
Rydberg constant	R_{∞}	$10973731.568539(55)$ m $^{-1}$	$[5.0 \times 10^{-12}]$	
proton-electron				
mass ratio	m_p/m_e	1836.15267245(75)	$[4.1 \times 10^{-10}]$	
electron mass	m_e	$5.4857990946(22) imes 10^{-4}$ u	$[4.0 \times 10^{-10}]$	
proton rms			-	
charge radius	R_p	$0.8775(51) \times 10^{-15} \text{ m}$	$[5.9 \times 10^{-3}]$	

Example: multiplicative vs. additive: R_{∞} vs. α

equations:

uncertainties:

•
$$R_{\infty} \sim 10^{-11}$$

•
$$\alpha \sim 10^{-9} - 10^{-10}$$

$$lpha^2
ightarrow 10^{-4} imes 10^{-9}$$

$$c_1 R_\infty c + c_2 \alpha^2 R_\infty c = \nu$$

1/2 $\alpha^2 = R_\infty \frac{h}{m_e c}$

exact

Auxiliary data

the most accurate:

Quantity	Symbol	Value	u_r
speed of light in vacuum	c	$299792458{ m ms^{-1}}$	exact
magnetic constant	μ_0	$4\pi \times 10^{-7} \text{ N A}^{-2}$	exact
electric constant	$\epsilon_0 = 1/(c^2 \mu_0)$	$8.854187817\ldots \times 10^{-12} \mathrm{Fm}^{-1}$	exact
atomic mass of ^{12}C	$m(^{12}C)$	12 u	exact
Rydberg constant	R_{∞}	$10973731.568539(55)~{ m m}^{-1}$	$[5.0 \times 10^{-12}]$
proton-electron			
mass ratio	m_p/m_e	1836.15267245(75)	$[4.1 \times 10^{-10}]$
electron mass	m_e	$5.4857990946(22) imes 10^{-4}$ u	$[4.0 \times 10^{-10}]$
proton rms			
charge radius	R_p	$0.8775(51)\times 10^{-15}~{\rm m}$	$[5.9 imes 10^{-3}]$

exact

Auxiliary data

the most accurate:

Quantity	Symbol	Value	u_r
speed of light in vacuum	c	$299792458{ m ms^{-1}}$	exact
magnetic constant	μ_0	$4\pi \times 10^{-7} \text{ N A}^{-2}$	exact
electric constant	$\epsilon_0 = 1/(c^2\mu_0)$	$8.854187817\ldots \times 10^{-12} \mathrm{Fm^{-1}}$	exact
atomic mass of ^{12}C	$m(^{12}C)$	12 u	Chast
Rydberg constant proton-electron	R_{∞}	$10973731.568539(55) {\rm \ m^{-1}}$	$[5.0 \times 10^{-12}]$
mass ratio	m_p/m_e	1836.15267245(75)	$[4.1 \times 10^{-10}]$
electron mass	m_e	$5.4857990946(22) imes 10^{-4}$ u	$[4.0 \times 10^{-10}]$
proton rms			
charge radius	R_p	$0.8775(51) \times 10^{-15} \mathrm{m}$	$[5.9\times10^{-3}]$

exact

Auxiliary data

the most accurate:

Quantity	Symbol	Value	u_r
speed of light in vacuum	c	$299792458{ m ms^{-1}}$	exact
magnetic constant	μ_0	$4\pi \times 10^{-7} \text{ N A}^{-2}$	exact
electric constant	$\epsilon_0 = 1/(c^2\mu_0)$	$8.854187817\ldots \times 10^{-12} \mathrm{Fm}^{-1}$	exact
atomic mass of ^{12}C	$m(^{12}C)$	12 u	exact
Rydberg constant	R_{∞}	$10973731.568539(55)~{ m m}^{-1}$	$[5.0 \times 10^{-12}]$
proton-electron	/	1000 150 050 45 (55)	[4.1 10-10]
mass ratio	m_p/m_e	1836.15267245(75)	$[4.1 \times 10^{-10}]$
electron mass	m_e	$5.4857990946(22) imes 10^{-4}$ u	$[4.0 \times 10^{-10}]$
proton rms			
charge radius	R_p	$0.8775(51) \times 10^{-15} \text{ m}$	$[5.9 \times 10^{-3}]$

Atomic & nuclear masses

Quantity	Symbol	Value	u_r
atomic mass of ${}^{16}O$ atomic mass of ${}^{28}Si$ atomic mass of ${}^{87}Rb$	$m(^{16}{ m O}) \ m(^{28}{ m Si}) \ m(^{87}{ m Rb})$	15.99491461957(18)u 27.976 $92653496(62)$ u 86.909 $180535(10)$ u	$[1.1 \times 10^{-11}] \\ [2.2 \times 10^{-11}] \\ [1.2 \times 10^{-10}]$

Quantity	Symbol	Value	u_r
proton mass	m_p	1.007276466812(90)u	$[8.9 \times 10^{-11}]$
deuteron mass	m_d	2.013553212712(77)u	$[3.8 \times 10^{-11}]$
triton mass	m_t	3.0155007134(25)u	$[8.2 \times 10^{-10}]$
helion mass	m_h	3.0149322468(25)u	$[8.3 \times 10^{-10}]$
alpha particle mass	m_{lpha}	4.001506179125(62) u	$[1.5 \times 10^{-11}]$

- hydrogen & deuterium spectroscopy
- electron-proton
 elastic scattering
- Lamb shift in muonic hydrogen

- hydrogen & deuterium spectroscopy
- electron-proton elastic scattering
- Lamb shift in muonic hydrogen

 LKP (Paris), MPQ (Garching),...

- hydrogen & deuterium spectroscopy
- electron-proton elastic scattering
- Lamb shift in muonic hydrogen

- MAMI = Mainzer
 Mikrotron
- old world data

- hydrogen & deuterium spectroscopy
- electron-proton
 elastic scattering
- Lamb shift in muonic hydrogen

CREMA collaboration
 @ PSI

Spectroscopy of hydrogen (and deuterium)

Two-photon spectroscopy involves a number of levels strongly affected by QED.

In "old good time" we had to deal only with 2s Lamb shift. The idea is based on theoretical study of

 $\Delta(2) = L_{1s} - 2^3 \times L_{2s}$

which we understand much better since any short distance effect vanishes for $\Delta(2)$.

variables to determine:

the 1s Lamb shift L_{1s} &

The Lamb shift in the hydrogen atom

S. G. Karshenboĭm

FUR PRITOIN D

© Springer-Verlag 1997

D.I. Mendeleyev Russian Metrology Research Institute, 198005 St. Petersburg, Russia (Submitted 6 April 1994) Zh. Eksp. Teor. Fiz. 106, 414-424 (August 1994)

A theoretical expression is derived for the difference $\Delta E_{\rm L}(1s_{1/2}) - 8\Delta E_{\rm L}(2s_{1/2})$ in Lamb shifts

 R_{∞} .

Z. Phys. D 39, 109-113 (1997)

The Lamb shift of excited S-levels in hydrogen and deuterium atoms

Theory for p

simple sin

functions

Savely G. Karshenboim'

The Lamb shift in muonic hydrogen: experiment

Figure 4 | **Summed X-ray time spectra.** Spectra were recorded on resonance (**a**) and off resonance (**b**). The laser light illuminates the muonic atoms in the laser time window $t \in [0.887, 0.962] \mu s$ indicated in red. The 'prompt' X-rays are marked in blue (see text and Fig. 1). Inset, plots showing complete data; total number of events are shown.

The size of the proton

Randolf Pohl¹, Aldo Antognini¹, François Nez², Fernando D. Amaro³, François Biraben², João M. R. Cardoso³, Daniel S. Covita^{3,4}, Andreas Dax⁵, Satish Dhavan⁵, Luis M. P. Fernandes³, Adolf Giesen⁶⁴, Thomas Graf⁶, Theodor W. Hänsch¹, Paul Indelicato², Lucile Julien², Cheng-Yang Kao⁷, Paul Knowles⁸, Eric-Olivier Le Bigot², Yi-Wei Liu⁷, José A. M. Lopes³, Livia Ludhova⁸, Cristina M. B. Monteiro³, Françoise Mulhauser⁸⁶, Tobias Nebel¹, Paul Rabinowitz⁹, Joaquim M. F. dos Santos³, Lukas A. Schaller⁸, Karsten Schuhmann¹⁰, Catherine Schwob², David Taqqu¹¹, João F. C. A. Veloso⁴ & Franz Kottmann¹²

The Lamb shift in muonic hydrogen: experiment

Figure 5 | **Resonance.** Filled blue circles, number of events in the laser time window normalized to the number of 'prompt' events as a function of the laser frequency. The fit (red) is a Lorentzian on top of a flat background, and gives a χ^2 /d.f. of 28.1/28. The predictions for the line position using the proton radius from CODATA³ or electron scattering^{1,2} are indicated (yellow data points, top left). Our result is also shown ('our value'). All error bars are the ±1 s.d. regions. One of the calibration measurements using water absorption is also shown (black filled circles, green line).

Proton radius puzzle

electron-to-proton mass ratio

- cyclotron frequencies of e & p (UWash)
- g factor of a bound e in H-like ion (magnetic moment precession vs. ion cyclotron frequency)
 @ Mainz
- antiprotonic He spectroscopy (ASACUSA @ CERN)

equations:

$$R_{\infty} = \frac{\alpha^2 m_e c}{2h}$$

input data

- Δ
- h/m_e

α block

equations:

$$R_{\infty} = \frac{\alpha^2 m_e c}{2h}$$

• m_e/m_p

- input data
 - α
 - h/m_e
 - h/m_p

α block

equations:

$$R_{\infty} = \frac{\alpha^2 m_e c}{2h}$$

- m_e/m_p
- m_p in u
- m_{at} in u

input data

- α
- h/m_e
- h/m_p
- h/m_{at}

α block equations:

$$m(^{12}C)/12 \cdot N_A = 1 \text{ g mol}^{-1}$$

- m_e/m_p
- m_p in u
- m_{at} in u

input data

- α
- h/m_e
- h/m_p
- h/m_{at}
- output
 h·N_A

$$\frac{mc^2}{h} = \frac{1}{(h \cdot N_A)} \times \frac{m}{m(^{12}\mathrm{C})/12} \times c^2 \times (m(^{12}\mathrm{C})/12 \cdot N_A)$$

equations:

$$m(^{12}C)/12 \cdot N_A = 1 \text{ g mol}^{-1}$$

- m_e/m_p
- m_p in u
- m_{at} in u

- input data
 - α
 - h/m_e
 - h/m_p
 - h/m_{at}
- output
 h·N_A

α block

Quantity	Symbol	Value	u_r
inverse fine			
structure constant	α^{-1}	137.035999074(44)	$[3.2 \times 10^{-10}]$
molar Planck constant	$h \cdot N_A$	$3.9903127176(28) \times 10^{-10} \mathrm{Jsmol^{-1}}$	$[7.0 \times 10^{-10}]$
quantum of circulation	$h/(2m_e)$	$3.6369475520(24) \times 10^{-4} \mathrm{m^{2}s^{-1}}$	$[6.5 \times 10^{-10}]$
Compton wavelength	$\lambda_{\rm C} = h/(m_e c)$	$2.4263102389(16) \times 10^{-12} { m m}$	$[6.5 \times 10^{-10}]$
von Klitzing constant	$R_K = h/e^2$	$25812.8074434(84)\ \Omega$	$[3.2 \times 10^{-10}]$
muon-electron mass ratio	m_μ/m_e	206.7682843(52)	$[2.5 \times 10^{-8}]$

α block

- QED vs. Penning trap: a_e
- recoil spectroscopy
 - h/m_{Rb}
 - h/m_{Cs}
- quatum Hall standard vs calculable capacitor: R_K

- QED vs Penning trap: a_e
- recoil spectroscopy
 - h/m_{Rb}
 - h/m_{Cs}

Tenth-Order QED Contribution to the Electron g-2and an Improved Value of the Fine Structure Constant

Tatsumi Aoyama,^{1,2} Masashi Hayakawa,^{3,2} Toichiro Kinoshita,^{4,2} and Makiko Nio²

m_e/m_p vs α : accuracy is close!

α block

- QED vs. Penning trap: a_e
- recoil spectroscopy
 - h/m_{Rb}
 - h/m_{Cs}
- quatum Hall standard vs calculable capacitor: R_K

Quantum Hall effect and a standard of resistance

W. Poirier, Les Houches, 2007

Needs for a `theory' for QHE

h block known from α block • $\alpha = \frac{e^2}{4\pi\epsilon_0 hc}$ h·N_A h/m_e

input:

 h
 e
 N_A

 Output
 m_e
 μ_B

h block

Quantity	Symbol	Value	u_r
Planck constant	h	$6.62606957(29) imes 10^{-34}~{ m Js}$	$[4.4 \times 10^{-8}]$
elementary charge	e	$1.602176565(35) imes10^{-19}~{ m C}$	$[2.2 \times 10^{-8}]$
Avogadro constant	N_A	$6.02214129(27) imes 10^{23}\;{ m mol}^{-1}$	$[4.4 \times 10^{-8}]$
Faraday constant	$F = e \cdot N_A$	$96485.3365(21)\mathrm{Cmol^{-1}}$	$[2.2 \times 10^{-8}]$
electron charge to			
mass quotient	e/m_e	$1.758820088(39) imes10^{11}~{ m Ckg^{-1}}$	$[2.2 \times 10^{-8}]$
electron			
gyromagnetic ratio	$\gamma_e = 2\mu_e/\hbar$	$1.760859708(39) imes 10^{11} { m s}^{-1} { m T}^{-1}$	$[2.2 \times 10^{-8}]$
electron mass	m_e	$9.10938291(40) imes 10^{-31}~{ m kg}$	$[4.4 \times 10^{-8}]$
		$0.510998928(11)~{ m MeV}/c^2$	$[2.2 \times 10^{-8}]$
proton mass	m_p	$1.672621777(74) imes10^{-27}~{ m kg}$	$[4.4 \times 10^{-8}]$
	-	$938.272046(21) \text{ MeV}/c^2$	$[2.2 \times 10^{-8}]$
Bohr magneton	$\mu_B = e\hbar/2m_e$	$927.400968(20) \times 10^{-26} \mathrm{~J~T^{-1}}$	$[2.2 \times 10^{-8}]$
nuclear magneton	$\mu_N = e\hbar/2m_p$	$5.05078353(11) imes 10^{-27}~{ m JT^{-1}}$	$[2.2 \times 10^{-8}]$
Josephson constant	$K_J = 2e/h$	$483597.870(11) \times 10^9{ m Hz}{ m V}^{-1}$	$[2.2 \times 10^{-8}]$

h block: the most important data

h block: the most important data

- watt ballance
- Avogadro constant from ehrhiched Si

watt-ballance

WB Principle (1): static phase / weighing mode

WB Principle (2): dynamic phase / velocity mode

WB Principle (3): combination of modes

B. Jeanneret, Les Houches, 2007

Josephson effect and quantum volt stardard

3+31

Shapiro step, 1963

V₁ ~ 145 μV @ 70 GHz

B. Jeanneret, Les Houches, 2007

h block: the most important data

- watt ballance
- Avogadro constant from ehrhiched Si

monocrystale ~ 1 kg

isotopic composition

- ²⁸Si: 92%
- ²⁹Si: 5%
- ³⁰Si: 3%

monocrystale ~ 1 kg

isotopic composition

- ²⁸Si: 92% 99.985%
- ²⁹Si: 5%
- ³⁰Si: 3%

monocrystale ~ 1 kg

isotopic composition

- ²⁸Si: 92% 99.985%
- ²⁹Si: 5%
- ³⁰Si: 3%

monocrystale ~ 1 kg isotopic composition

5%

h block: the most important data

- watt ballance
- Avogadro constant from ehrhiched Si

problem remains

h block: the most important data

- watt ballance
- Avogadro constant from ehrhiched Si

Mass of a proton in different units

Symbol	Value	u_r
$m_p \ m_p$	$1.007276466812(90)$ u 1836.152 $67245(75)~m_e$	$[8.9 \times 10^{-11}] \\ [4.1 \times 10^{-10}]$
$m_p c^2/h$	$2.2687318139(16) \times 10^{23} { m ~Hz}$	$[7.1 \times 10^{-10}]$
$\frac{m_p c^2}{m_p}$	938.272 046(21) MeV 1.672 621 777(74) × 10 ⁻²⁷ kg	$[2.2 \times 10^{-8}] \\ [4.4 \times 10^{-8}]$

auxiliary data

α block

	Mass of a proton in different units					
	Symbol	Value	u_r			
	m_p m_p	$1.007276466812(90)$ u 1836.152 $67245(75)~m_e$	$[8.9 \times 10^{-11}] \\ [4.1 \times 10^{-10}]$			
	$m_p c^2/h$	$2.2687318139(16) imes10^{23}~{ m Hz}$	$[7.1 \times 10^{-10}]$			
\langle	$\frac{m_p c^2}{m_p}$	938.272 046(21) MeV 1.672 621 777(74) × 10 ⁻²⁷ kg	$[2.2 \times 10^{-8}] \\ [4.4 \times 10^{-8}]$			
	h b	lock				

Independent constants

Quantity	Symbol	Value	u_r
Newtonian constant of gravitation Planck mass	$G \\ m_P = \sqrt{\hbar c/G}$	$\begin{array}{l} 6.67384(80)\times10^{-11}\;{\rm m}^{3}{\rm s}^{-2}{\rm kg}^{-1}\\ 2.17651(13)\times10^{-8}\;{\rm kg} \end{array}$	$[1.2 \times 10^{-4}] \\ [6.0 \times 10^{-5}]$
Boltzmann constant molar gas constant Stefan-Boltzmann	$k = k N_A$	$\begin{array}{c} 1.3806488(13)\times10^{-23}~{\rm JK^{-1}}\\ 8.3144621(75)~{\rm JK^{-1}mol^{-1}} \end{array}$	$\begin{array}{c} [9.1 \times 10^{-7}] \\ [9.1 \times 10^{-7}] \end{array}$
constant	$\sigma = (\pi^2/60)(k^4/\hbar^3 c^2)$	$5.670373(21) \times 10^{-8} \mathrm{Wm^{-2}K^{-4}}$	$[3.6\times10^{-6}]$
anomalous magnetic moment of muon	a_{μ}	$1.16592091(63) imes 10^{-3}$	$[5.4 \times 10^{-7}]$

Independent constants: G

 $GM_{\odot} = 1.327\,124\,4210(1) \times 10^{20} \text{ m}^3 \text{s}^{-2} \quad \bullet \quad \delta \text{G/G} \sim 10^{-4}$

$$\begin{split} GM_{\oplus} &= 3.986\,004\,418(8) \times 10^{14} \text{ m}^3 \text{s}^{-2} & M_{\odot} &= 1.988\,55(24) \times 10^{30} \text{ kg} \\ \hline \text{IESR, 2010} & M_{\oplus} &= 5.972\,58(72) \times 10^{24} \text{ kg} \end{split}$$

$\mathrm{PSR}~\mathrm{J0737}\text{-}3039/\mathrm{A/B}$

$$M_m = 1.3381(7) \ M_{\odot} = 2.6609(14) \times 10^{30} \ \text{kg}$$

 $M_p = 1.2489(7) \ M_{\odot} = 2.4835(14) \times 10^{30} \ \text{kg}$

Kramer et al., 2006

Independent constants: G

Independent constants: G

Independent constants: k

 $T_{\rm CMB} = 2.725\,48(57)\,K$

Fixsen, 2009: COBE

Independent constants: k

Year

Quantity	$u_r(2006)$	Δ	$\Delta/u_r(2006)$	$u_r(2010)$	$u_r(2010)/u_r(2006)$
R_{∞}	6.6×10^{-12}	1.1×10^{-12}	0.17	5.0×10^{-12}	0.76
m_e/m_p	4.3×10^{-10}	0.1×10^{-10}	0.03	4.1×10^{-10}	0.95
α	6.8×10^{-10}	44.2×10^{-10}	6.50	3.2×10^{-10}	0.47
h	5.0×10^{-8}	9.2×10^{-8}	1.84	4.4×10^{-8}	0.88
k	1.7×10^{-6}	-1.2×10^{-6}	-0.68	9.1×10^{-7}	0.53
G	1.0×10^{-4}	-0.7×10^{-4}	-0.66	1.2×10^{-4}	1.2

Quantity	$u_r(2006)$	Δ	$\Delta/u_r(2006)$	$u_r(2010)$	$u_r(2010)/u_r(2006)$
R_{∞}	$6.6 imes 10^{-12}$	1.1×10^{-12}	0.17	5.0×10^{-12}	0.76
m_e/m_p	4.3×10^{-10}	0.1×10^{-10}	0.03	4.1×10^{-10}	0.95
lpha	6.8×10^{-10}	44.2×10^{-10}	6.50	3.2×10^{-10}	0.47
h	5.0×10^{-8}	9.2×10^{-8}	1.84	4.4×10^{-8}	0.88
k	1.7×10^{-6}	-1.2×10^{-6}	-0.68	9.1×10^{-7}	0.53
G	1.0×10^{-4}	-0.7×10^{-4}	-0.66	1.2×10^{-4}	1.2

- R_∞ & R_p
 m_e/m_p
- Δ
- h
- G
- k

R_∞ & R_p
 m₁/m₁

- + better accuracy in scattering
- + new method for R_p
- discrepancy in data

- R_∞ & R_p
 m_e/m_p
- α
- ∎ h
- G
- k

+ slow progress in two methods
+ no discrepancies

overlap with α data

- R_∞ & R_p
 m_e/m_p
- α
- h
- G
- k

- + better accuracy
- + two methods
- + sensitivity to 5 loops
- 6-sigma jump
- R_∞ & R_p
 m_e/m_p
- h
- G
- k

- + natural-silicon discrepacy resolved
- + better accuracy for Avodagro
- new discrepancy

 $\mathsf{NPL}\to\mathsf{NRC}$

+ natural-silicon discrepacy resolved

+ better accuracy for Avodagro

- new discrepancy

 $NPL \rightarrow NRC$

- $\blacksquare R_{\infty} \& R_{p}$ $- m_e/m_p$
- Ω
- h
- G
- k

+ more accurate results

bigger scatter

- R_∞ & R_p
 m_e/m_p
- h
- G
- k

- + more accurate results
- + more methods
- + efforts for atomic/molecular spectroscopy

CODATA Recommended Values of the Fundamental Physical Constants: 2010^{*}

Peter J. Mohr[†], Barry N. Taylor[‡], and David B. Newell[§],

National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8420, USA

*This report was prepared by the authors under the auspices of the CODATA Task Group on Fundamental Constants. The members of the task group are:

- F. Cabiati, Istituto Nazionale di Ricerca Metrologica, Italy
- J. Fischer, Physikalisch-Technische Bundesanstalt, Germany
- J. Flowers, National Physical Laboratory, United Kingdom
- K. Fujii, National Metrology Institute of Japan, Japan
- S. G. Karshenboim, Pulkovo Observatory, Russian Federation
- P. J. Mohr, National Institute of Standards and Technology, United States of America

D. B. Newell, National Institute of Standards and Technology, United States of America

- F. Nez, Laboratoire Kastler-Brossel, France
- K. Pachucki, University of Warsaw, Poland
- T. J. Quinn, Bureau international des poids et mesures
- B. N. Taylor, National Institute of Standards and Technology, United States of America
- B. M. Wood, National Research Council, Canada
- Z. Zhang, National Institute of Metrology, China (People's Republic of)