

Hadronic resonance production with the ALICE experiment in pp and Pb-Pb collisions at LHC energies

Sergey Kiselev (ITEP Moscow) for the ALICE collaboration

- Motivation
- Analysis details
- **pp@7 TeV**: K*(892)⁰, φ(1020), Σ(1385)
- **Pb-Pb@2.76 ATeV**: K*(892)⁰, φ(1020)
- Summary

Motivation

• pp collisions:	Resonance	
 reference for tuning QCD-inspired event generators 	K*(892) ⁰	-
	(1020)	۷
\checkmark the baseline for heavy-ion collisions	$\Sigma(1385)^{\pm}$	

$\pi + \mathbf{K}$ 50 4 $K^{+} + K^{-}$ 4.3 46 36 $\Lambda + \pi^{\pm}$ 6

• AA collisions:

- \checkmark restoration of chiral symmetry
- modification of width, mass and \rightarrow branching ratio
- ✓ regeneration and rescattering effects
- timescale between chemical and \rightarrow kinetic freeze-out

S.Kiselev

ALICE detector

Particle identification, centrality in Pb-Pb

TPC resolution $\sim 5 - 6\%$

Pb-Pb: centrality selection using VZERO

TOF **B** 0.9 0.8 0.7 Pb-Pb vs_{NN}=2.76 0.6 0.5 1.5 2 2.5 3 3.5 4.5 0.5 p (GeV/c) ALI-PERF-27125

TOF resolution $\sim 90 \text{ ps}$

data collected by ALICE during 2010 and used for resonance analyses: $pp@7 \text{ GeV: } \sim 60 \text{ Mevents for K*, } \phi$ $\sim 200 \text{ Mevents for } \Sigma^*$ Pb-Pb@2.76 AGeV: $\sim 10 \text{ Mevents}$

central rapidity region: |y| < 0.5

22-28 Aug 2013

pp: signal extraction

combinatorial background: mixed-event or like-sign techniques fit: Breit-Wigner (Voigtian for ϕ) + polynomial

22-28 Aug 2013

pp: $p_{\rm T}$ spectrum

φ

 Σ^*

ALICE Coll. EPJ C72(2012)2183

PYTHIA Perugia 2011

22-28 Aug 2013

 $p_{\rm T} < 2 \text{ GeV/c: PYTHIA D6T}$ $p_{\rm T} > 3 \text{ GeV/c: PYTHIA}$ Perugia 2011

XVI Lomonosov EPP, Moscow

S.Kiselev

The models underpredict the data

 $pp: \langle p_T \rangle$

resonance $\langle p_T \rangle$ in agreement with the trend drawn by other particles at 7 TeV

 $\langle p_T \rangle$ for π , K and p in pp at $\sqrt{s} = 200$ GeV, Phys.Rev.C 79(2009)34909, is still compatible with ISR parameterization ($\sqrt{s} = 25$ GeV, Nucl.Phys.B 114(1976)334)

22-28 Aug 2013

pp: particle ratios

ALICE Coll. EPJ C72(2012)2183

both K*/K⁻ and ϕ /K* independent of \sqrt{s}

S.Kiselev

pp: particle ratios

Σ*

 Σ^*/π^- : independent of \sqrt{s} Σ^*/K^- : independent of \sqrt{s} Σ^*/Ξ^- : hint of a decrease with \sqrt{s}

 Σ^*/π^- and Σ^*/K^- : agree with Becattini thermal model (arXiv:0912.2855), $\gamma_s = 0.6$, T=170 MeV

22-28 Aug 2013

Pb-Pb: signal extraction

Pb-Pb: mass and width

Pb-Pb: $p_{\rm T}$ spectrum

K*

ø

fit: Blast-Wave function, Phys.Rev. C48(1993)2462

22-28 Aug 2013

Pb-Pb: $\langle p_T \rangle$

 $\langle p_{\rm T} \rangle_{\rm LHC} > \langle p_{\rm T} \rangle_{\rm RHIC}$

K*⁰/K⁻ : hint for a decreasing trend
 → a possible increase in rescattering effects for central collisions

 ϕ/π , ϕ/K : independent of collision centrality

Pb-Pb: R_{AA} and R_{CP}

 $R_{AA}\left(\pi,K\right) \leq \ R_{AA}\left(\phi\right) \leq R_{AA}\left(p\right)$

but same within uncertainties

22-28 Aug 2013

XVI Lomonosov EPP, Moscow S.Kiselev 17

Summary: pp

pp@7 TeV: K*(892)⁰, φ(1020), Σ(1385)

✓ none of PHOJET and PYTHIA tunes give a fully satisfactory description of p_T spectrum. In particular they underestimate strange baryon resonances yields

✓ particle ratios:

- \circ K^{*}/K⁻, K^{*}/ ϕ and ϕ /K are independent of \sqrt{s}
- $\circ \phi/\pi$: saturates above $\sqrt{s} = 200 \text{ GeV}$
- $\circ \Omega/\phi$: not reproduced by PYTHIA, agrees with HIJING/BB model with a Strong Color Field modeled with increased string tension
- $\circ \Sigma^*/\pi^-$ and Σ^*/K^- : independent of \sqrt{s} , agree with the thermal model
- $\circ \Sigma^*/\Xi^-$: hint of a decrease with \sqrt{s} , overpredicted by the thermal model

Summary: Pb-Pb

Pb-Pb@2.76 ATeV: K*(892)⁰, φ(1020)

✓ masses and widths compatible with PDG values

 $\checkmark \langle p_{\mathrm{T}} \rangle_{\mathrm{LHC}} > \langle p_{\mathrm{T}} \rangle_{\mathrm{RHIC}}$

✓ particle ratios: • ϕ/K , $\phi/\pi \rightarrow$ independent of collision centrality and \sqrt{s} • $K^*/K^- \rightarrow$ hint of decrease with centrality → rescattering effects ? • $(K^*/K^-)_{AA} < (K^*/K^-)_{pp} \rightarrow$ rescattering effects ? ✓ R_{AA} and R_{CP} : • high p_T suppression in central events • R_{AA} $(\pi,K) \leq R_{AA}$ $(\phi) \leq R_{AA}$ (p)