

Neutrino oscillation physics at NOvA experiment

Vladimir Kravtsov, Southern Methodist U on behalf of the NOvA collaboration

16th Lomonosov Conference on Elementary Particle Physics 22-28 August 2013, MSU, Moscow, Russia

NOvA (NuMI Off-Axis ν_e Appearance) Experiment

Second generation long baseline off-axis neutrino experiment

NOvA Collaboration

۲

COLLABORATING INSTITUTIONS

Fermilab E929

Argonne National Laboratory	Harvard University	University of Minnesota - Twin Cities	Tufts University	Banaras Hindu University
University of Athens	Indiana University	Institute for Nuclear Research - Moscow	University of Virginia	Indian I. of Tech. Guwahati
California Institute of Technology	Iowa State University	University of South Carolina	Wichita State University College of William and Mary	Indian I. of Tech. Hyderabat University of Delhi
Institute of Physics of the Academy of Sciences of the Czech Republic	Lebedev Physical Institute	Southern Methodist University		
Charles University Prague	Michigan State University	Stanford University	University of Sussex	U. of Hyderabat
Czech Technical University	University of Minnesota - Crookston	University of Tennessee	University of Cincinnati	University of Jammu
Fermi National Accelerator Laboratory	University of Minnesota - Duluth	University of Texas at Austin	University Federal de Goias	Panjab University
				Winona State
				University

184 members from 36 Institutes in 7 countries

Main Physics Goals

NOvA experiment is designed to measure 4 oscillation channels:

$$V_{\mu} \rightarrow V_{e}, \ \overline{V}_{\mu} \rightarrow \overline{V}_{e}, \ V_{\mu} \rightarrow V_{\mu}, \ \overline{V}_{\mu} \rightarrow \overline{V}_{\mu}$$

- Measurement of mixing angle θ_{13} by v_e appearance $P(v_{\mu} \rightarrow v_e) \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 (1.27 \Delta m_{31}^2 L/E_{\nu})$ - Leading term
- Determination of neutrino mass hierarchy (normal or inverted)
- Search for CP violation in neutrino sector
- Determination of θ_{23} octant

• Precise measurement θ_{23} , $|\Delta m_{32}^2|$ by v_{μ} disappearance

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin\left(1.27\Delta m_{32}^2 L/E_{\nu}\right) - \text{Leading term}$$

NOvA Early ν_e Appearance Reach

NOvA will start with neutrino running

- ► 5 σ observation of $\nu_{\mu} \rightarrow \nu_{e}$ in first year if NH. (even with partial detector and beam commissioning!)
- Switch to antineutrino running any time as needed.
- Nominal run plan:
 - 3 yrs. in ν + 3 yrs. in $\overline{\nu}$ modes at 6x10²⁰ POT/year.

NOvA sensitivities were recalculated including **new** θ_{13} knowledge:

- $ightarrow sin^2(2\theta_{13}) = 0.095$
- $ightarrow sin^2(2\theta_{23}) = 1.00$
- Signal efficiency: 45%
- NC fake rate: 1%

Event counts for $\nu_{\mu} \rightarrow \nu_{e}$ analysis (3yr +3yr)

Beam	$ u_{\mu}$ CC	v_e CC	NC	BG tot.	Signal
ν	19	5	8	32	68
ν	10	< 1	5	15	32

NOvA Measurement

NOvA will measure:

$$P(\nu_{\mu} \rightarrow \nu_{e})$$
 at 2 GeV
 $P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})$ at 2 GeV

These probabilities depend in different ways on

- CP phase δ
- $sign(\Delta m^2)$

NOvA strategy is to compare the oscillation probability of $v_{\mu} \rightarrow v_{e}$ and $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$.

Starred point is an example of NOvA measurement with 1σ and 2σ contours.

Large θ_{13} is good news for NOvA as it reduces the overlap between bi-probability ellipses.

Resolving the Mass Hierarchy

Significance of the Mass Ordering Resolution.

 δ range included for given significance of hierarchy determination (NH case)

Significance with which NOvA can establish CP violation.

The significance goes to zero at $\delta = 0$ and $\delta = \pi$ since there is no CP violation at those points. The dips in the peaks occur because the mass ordering has not been resolved.

The CPV significance in the best-case scenario is 1.6σ without T2K and 2σ with T2K data.

*θ***₂₃** Sensitivity

NOvA Detectors

Topology of Neutrino Events (MC Simulation)

NOvA detectors are optimized for detection of v_e CC interaction. Excellent granularity of detectors: 1 plane ~ 0.17 X_0 , $R_M = 11cm$

Prototype of Near Detector (NDOS)

Main goals to build NDOS:

- Test detector design before near and far detectors production.
- Develop DAQ system.
- Detector calibration procedure development.
- Development of simulation and reconstruction software using real data.

NDOS (Near Detector On Surface) is positioned 100m above the NuMI and Booster neutrino beams

NDOS Neutrino Event Candidates

 \sim 5000 neutrino events from the NuMI beam were found. First preliminary result of CC QE cross section measurement with NDOS was presented two months ago.

08/23/2013

Far Detector Site

Far detector site construction was completed in spring 2012

32 planes assembled on a Block Pivoter and then block moved in place.

Far Detector Construction Status

Production was started on July 26 2012

Far Detector Assembly Progress

Near Detector Status

ND will be placed 105 m underground, in a new cavern to was excavated near the MINOS and Minerva ND's hall.

- The cavern excavation and outfitting was finished in June.
- All 10 planes of muon catcher were installed on August 1.
- Full Near Detector will be ready by summer 2014.

Muon catcher in place

NuMI Beam upgrade

NuMI beam

- Operating since 2005
- 10 µsec beam spill, every 2.2 sec
- Currently delivers 280 300 kW
- Recent experiments operating in beam: MINOS, MINERvA, ArgoNeut

Accelerator and NuMI beam upgrades:

- **700 kW power to NuMI beam**
- ✓ Reduce cycle time from 2.2 to 1.33 seconds
- ✓ Increased intensity:
 - 12 Booster batches up from 11
- ✓ New high power target
- New horn, reconfigured for higher energy beam
- ✓ 4.9x10¹³ proton/pulse or 6x10²⁰ POT/year

NOvA will start a first run on September 2013 with beam operating at 300 kW

Beam intensity will be increased up to 500 kW next year and to 700 kW in 2 years.

Far Detector mass will be added at a rate of about 1 kton/3 weeks. Full installation of NOvA detectors will be completed in one year.

Lomonosov 2013

Summary

- NOvA has become the leading experiment at Fermilab.
- A large value of θ_{13} allows NOvA to make many measurements:
 - Determination of neutrino mass hierarchy.
 - Search for CP violation in neutrino sector.
 - > Determination of the θ_{23} octant.
 - > More precise measurements of Δm_{32}^2 and $sin^2(2\theta_{23})$.
- NDOS prototype runs very successful.
- NOvA Far and Near Detectors are under construction:
 - > 19 Far Detector blocks were installed.
 - Over 2 kton of FD instrumented and taking cosmic data.
 - The installation of FD will be finished by early next year and fully instrumented in summer 2014.
 - Assembling of Near Detector was started.
 Full Near Detector will be ready by summer 2014.
- NOvA will start a data taking on September 2013.

Backup slides

FHC v CC

RHC v CC

θ_{23} Sensitivity

- We expect to be able to surpass the current measurement of θ₂₃ after 3+3 years of running.
- If sin²(2θ₂₃) = 1.00, we expect to surpass the current best measurement after only 1+1 years of running.
- > If $sin^2(2\theta_{23}) = 0.95$, we will be able to exclude (at the 90% CL) maximal θ_{23} after 1+1 years of running.