

Standard Model Physics with ATLAS

16th Lomonosov Conference on Elementary Particle Physics, Moscow

Luke Lambourne on behalf of the ATLAS collaboration

27/08/13

There have been many SM results released by ATLAS. I don't have time to cover them all here!

I'll present a selection of some of the more recently released results:

- Inclusive Jets
- Photon + Jet Dynamics
- High Mass Drell-Yan
- Z + Jets
- W + charm
- W + b-jets
- WZ
- ZZ

The ATLAS Detector

2010:
$$L = 40 \text{ pb}^{-1}$$
, $\sqrt{s} = 7 \text{ TeV}$
2011: $L = 5 \text{ fb}^{-1}$, $\sqrt{s} = 7 \text{ TeV}$
(+ $L = 0.2 \text{ pb}^{-1}$, $\sqrt{s} = 2.76 \text{ TeV}$)
2012: $L = 25 \text{ fb}^{-1}$, $\sqrt{s} = 8 \text{ TeV}$

(CT10)

NLO

Process Inclusive Jets – Anti- k_t 0.4 & 0.6 Data Sets 0.2 pb^{-1} , 2.76 TeV / 37 pb^{-1} , 7 TeV Measurement Double differential σ w.r.t. p_T & y

- $-20 \le p_T \le 430 \text{ GeV}, |y| \le 4.4$
- Predictions are made using NL0Jet++
- Use 2.76 and 7 TeV cross sections together with HERA data to produce PDF fits
 - Inclusive jet cross section is sensitive to gluon momentum distribution at high x
- Take ratio of σ(2.76 TeV)/σ(7 TeV)
 - Large cancellation of uncertainties

p_ [GeV]

Take ratio of $\sigma(2.76 \text{ TeV})/\sigma(7 \text{ TeV})$

- Large cancellation of uncertainties
- Used, together with HERA data to produce PDF fits
- Shown here as a function of $X_T = 2p_T / \sqrt{s}$, (dimensionless) which reduces theoretical uncertainties, giving a very precise test of pQCD
- Ratio vs. X_T is flat at 1 for simple quark-gluon model but in reality has deviations due to scale dependence of PDFs and α_S

Photon + jet

Process $p p \rightarrow \gamma + jet + X$ • Using anti- k_{τ} 0.6 jets Data Set 37 pb^{-1} , 7 TeVCuts $E_{T}^{\gamma} > 45 \text{ GeV}, |\eta^{\gamma}| < 2.37, p_{T}^{jet} > 40 \text{ GeV}, |y^{jet}|$ $< 2.37 \text{ and } \Delta \eta^{\gamma j} + \Delta \phi^{\gamma j} > 1$ Measurement σ as a function of $E_{T}^{\gamma}, p_{T}^{j}, y^{j}, \Delta \phi^{\gamma j}, m^{\gamma j}, \cos \theta^{\gamma j}$

- Main reducible background to $H \rightarrow \gamma \gamma$
- Looking for prompt photon production $(qg \rightarrow \gamma q)$ so have an isolation requirement on the γ
 - To cut out photons produced from the decay of neutral hadrons
 - Cutting on the E_T in a cone of R=0.4 around the γ , not including the most central contributions
- NLO pQCD prediction gives good description of all variables other than Δφ^{γj}, which is well described by Pythia LO + PS prediction
 - Dependant on the extra jets modelled by the shower
- Investigate the relative contributions of direct and fragmentation γ production to test MC modelling

Photon + jet

Process p p → γ + jet + X • Using anti-*k*_T 0.6 jets Data Set 37 *pb*⁻¹, 7 *TeV* Cuts E_T^γ > 45 GeV, |η^γ| < 2.37, p_T^{jet} > 40 GeV, |*y*^{jet}| < 2.37 and Δη^{γj} + Δφ^{γj} > 1 Measurement σ as a function of E_T^γ, p_T^j, *y*^j, Δφ^{γj}, m^{γj}, cosθ^{γj}

- Main reducible background to $H \rightarrow \gamma \gamma$
- Looking for prompt photon production $(qg \rightarrow \gamma q)$ so have an isolation requirement on the γ
 - To cut out photons produced from the decay of neutral hadrons
 - Cutting on the E_T in a cone of R=0.4 around the γ , not including the most central contributions
- NLO pQCD prediction gives good description of all variables other than Δφ^{γj}, which is well described by Pythia LO + PS prediction
 - Dependant on the extra jets modelled by the shower
- Investigate the relative contributions of direct and fragmentation γ production to test MC modelling

arXiv:1307.6795

High Mass Drell-Yan

Process p p \rightarrow Z/ $\gamma^* \rightarrow e^+e^-$ Data Set 4.6 *fb*⁻¹, 7 *TeV* Cuts p_T^e > 25 GeV, $|\eta^e| < 2.5$ Measurement σ as a function of m_{ee} 116 < m_{ee} < 1500 GeV

- NNLO QCD + NLO EW calculation from FEWZ 3.1
 - Includes γγ →e⁺e⁻ contribution using MRST2004 that includes QED corrections to the proton PDF
 - Also includes contribution from real W and Z emission in single-boson production (MadGraph)
- Results are compatible with theory
- Sensitive to PDFs
 - In particular the distribution of anti-quarks at high x, which is poorly known

Z + jets

Process p p \rightarrow Z(\rightarrow e⁺e⁻/µ⁺µ⁻) + jets Data Set 4.6 *fb*⁻¹, 7 TeV Cuts Jets: $p_T > 30$ GeV, |y| < 4.4Measurement σ as a function of: N_{jet} , p_T^{I} , $p_T^{jet,i}$, $\Delta y^{i,j}$, $\Delta \phi^{i,j}$,.....

- Also have results after VBF
 preselection
- Very high s/b
 - Dominant background is top
 - Estimated from data sample
- Systematic uncertainties are dominant
 - Largest uncertainty is JER/JES
- Predictions:
 - BlackHat + SHERPA: NLO of up to Z + 4 partons
 - ALPGEN/SHERPA: LO of up to Z + 5 partons
 - MC@NLO: NLO of Z + 1 parton

Z + jets (continued...)

JHEP07(2013)032

W + c

Process $p p \rightarrow W(\rightarrow \mu v_{\mu}/ev_{e}) + c$ Data Set 4.6 fb^{-1} , 7 TeVCuts $p_{T}{}^{\prime} > 20$ GeV, $|\eta'| < 2.5$, $p_{T}{}^{v} > 25$ GeV, $m_{T}{}^{W} > 40$ GeV, $p_{T}{}^{D} > 8$ GeV, $|\eta^{D}| < 2.2$ Measurement $\sigma(W^{\pm}D^{(*)\mp})/\sigma(W^{\pm})$ as a function of $p_{T}{}^{D}$ and η'

- Decay modes:
 - $D^+ \rightarrow K^- \pi^+ \pi^+$
 - $D^{*+} \rightarrow D^0 \pi^+$,
 - $D^0 \rightarrow K^- \pi^+$
 - $D^0 \rightarrow K^- \pi^+ \pi^0$
 - $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$
- Obtain D decay candidates from tracks
 - Exploit opposite charge of W and D by binning in OS – SS events to help remove backgrounds
 - W+D yield obtained by fitting by m(D[±]) or m(D^{*})-m(D⁰)
- Measurement constrains the s-quark PDF

11

ATLAS-CONF-2013-045

W + c

Process $p p \rightarrow W(\rightarrow \mu v_{\mu}/ev_{e}) + c$ Data Set 4.6 fb^{-1} , 7 TeVCuts $p_{T}{}^{\prime} > 20$ GeV, $|\eta'| < 2.5$, $p_{T}{}^{v} > 25$ GeV, $m_{T}{}^{W} > 40$ GeV, $p_{T}{}^{D} > 8$ GeV, $|\eta^{D}| < 2.2$ Measurement $\sigma(W^{\pm}D^{(*)\mp})/\sigma(W^{\pm})$ as a function of $p_{T}{}^{D}$ and η'

- Decay modes:
 - $D^+ \rightarrow K^- \pi^+ \pi^+$
 - $D^{*+} \rightarrow D^0 \pi^+$,
 - $D^0 \rightarrow K^- \pi^+$
 - $D^0 \rightarrow K^- \pi^+ \pi^0$
 - $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$
- Obtain D decay candidates from tracks
 - Exploit opposite charge of W and D by binning in OS – SS events to help remove backgrounds
 - W+D yield obtained by fitting by $m(D^{\pm})$ or $m(D^{*})$ - $m(D^{0})$
- Measurement constrains the *s*-quark PDF

ATLAS-CONF-2013-045

W+b-jets

Process $p p \rightarrow W(\rightarrow \mu v_{\mu}/ev_{e}) + b$ -jets **Data Set** 4.6 *fb*⁻¹, 7 *TeV* **Cuts** b-tagged jets, $p_{T} > 25$ GeV, $|\eta| < 2.1$ **Measurement** σ as a function of p_{T} for 1 and 2 b-jets

- $W(\rightarrow lv) + bb$: key background to $W(\rightarrow lv)H(\rightarrow bb)$ search
- Testing pQCD with a heavy quark final state
- Fit the b-tag weight, get the templates from Pythia MC
 - Do the fit for each \textbf{p}_{T} bin for the differential measurement
- $\sigma_{\text{fiducial}} = 7.1 \pm 0.5 \text{ (stat)} \pm 1.4 \text{ (syst) pb}$
 - Consistent within 1.5σ to NLO prediction
 - Jet energy measurement results in the dominant systematics

JHEP 06 (2013) 084

W + b

WZ

Process $p p \rightarrow W^{\pm}Z$, with e/μ final states **Data Set** 13 *fb*⁻¹, 8 *TeV*

- Want to measure triple gauge coupling (TGC)
 - Test EW interaction at high energies
- Diboson production can be enhanced in *W*' and H[±] models
- Cut based analysis: Look for high p_T isolated leptons + E_t^{miss}
- Observe 1094 candidate events; estimated background 277 ± 9 (stat.) ± 24 (syst.)

WZ

Process $p p \rightarrow W^{\pm}Z$, with e/μ final states **Data Set** 13 *fb*⁻¹, 8 *TeV*

- Want to measure triple gauge coupling (TGC)
 - Test EW interaction at high energies
- Diboson production can be enhanced in W' and H[±] models
- Cut based analysis: Look for high p_T isolated leptons + E_t^{miss}
- Observe 1094 candidate events; estimated background 277 ± 9 (stat.) ± 24 (syst.)

Process p p \rightarrow ZZ with e/µ final states **Data Set** 20 *fb*⁻¹, 8 *TeV*

- Sensitive to new resonances decaying to Z's
- Look for 2 opposite sign, same flavour lepton pairs (e⁺e⁻/μ⁺μ⁻) with 66 < m_{II} < 116 GeV
- Observe 305 candidate events with expected background 20.4±2.9(stat)±5.0(syst.)

$$I_{VS} = 8 \text{ TeV}$$

$$I_{VS} = 10 \text{ TeV}$$

∑²²⁰ 95 200

180

160

oair Mass

ATLAS Preliminar

Data

ZZ-→|||||

 $\sigma_{ZZ}^{\text{tot}} = 7.1^{+0.5}_{-0.4}(\text{stat.}) \pm 0.3(\text{syst.}) \pm 0.2(\text{lumi.}) \text{ pb}$

In agreement with SM NLO prediction of 7.2^{+0.3}-0.2 pb

ATLAS-CONF-2013-020

I've shown a small selection of the more recent ATLAS results. These have:

- Tested the Standard Model up to the TeV scale
 - So far no significant deviations from SM predictions
- The results of these measurements are being used to:
 - Constrain PDFs
 - Improve and constrain the accuracy modeling of backgrounds to Higgs and new physics searches

Many more ATLAS SM analyses to be published in the near future!

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults

Thank you for listening!

Backup Slides

Luke Lambourne

- **Inclusive Jets**
- 0.2 *pb*⁻¹ @ 2.76 TeV / 37 *pb*⁻¹ @ 7 • TeV
- Anti-*k*_t 0.4 & 0.6 •
- Double differential σ w.r.t p_T & y
 - $-20 \le p_T \le 430 \text{ GeV}, |y| < 4.4$
- Predictions are NLOJet++
- Take ratio of $\sigma(2.76 \text{ TeV})/\sigma(7 \text{ TeV})$
 - Large cancellation of uncertainties
 - Used, together with HERA data to produce PDF fits

High Mass Drell-Yan

Process p p \rightarrow Z/ $\gamma^* \rightarrow e^+e^-$ Data Set 4.6 *fb*⁻¹, 7 *TeV* Cuts p_T^e > 25 GeV, $|\eta^e| < 2.5$ Measurement σ as a function of m_{ee} 116 < m_{ee} < 1500 GeV

- NNLO QCD + NLO EW calculation from FEWZ 3.1
 - Includes γγ→e⁺e⁻ contribution using MRST2004 that includes QED corrections to the proton PDF
 - Also includes contribution from real W and Z emission in single-boson production (MadGraph)
- Results are compatible with theory
- Sensitive to PDFs
 - In particular the distribution of anti-quarks at high x, which is poorly known

