SOX: Short Distance Neutrino Oscillations with BoreXino

Igor Machulin on behalf of the Borexino Collaboration NRC Kurchatov Institute 16 Lomonosov Conference

SOX: Short distance ve Oscillations with BoreXino

Science

- Motivations
 - Search for sterile neutrinos or other short distance effects on Pee
 - Measurement of θ_{W} at low energy (~ 1 MeV)
 - Measurement of neutrino magnetic moment
 - Measurement of $g_V e g_A$ at low energy
- Technology
- Neutrino source: ⁵¹Cr
- Anti-neutrino source: ¹⁴⁴Ce
- Project stages
- SOX-A ⁵¹Cr external
- **SOX-B** ¹⁴⁴Ce external
- SOX-C ¹⁴⁴Ce internal

ERC Ideas approved

European Research Council ERC-2012-AdG Advanced Investigator Grant SOX: Short distance neutrino Oscillations with BoreXino

SEVENTH FRAMEWORK PROGRAMME

"Ideas" specific programme European Research Council

Grant agreement for Advanced Grant

Annex I - Description of Work

Project acronym: SOX Project full title: <u>Short distance neutrino O</u>scillations with Bore<u>X</u>ino Grant agreement N. 320873 Duration: 60 months Date of preparation of annex 1: 23 - 10 - 2012 Principal Investigator: Prof. Marco Pallavicini Host Institution: Istituto Nazionale di Fisica Nucleare (INFN) and Laboratori Nazionali del Gran Sasso (LNGS)

Borexino Detector

<u>Two Neylon Ballons (~100 μm)</u> internal: R=4.25 m external: R=5.50 m

 $\frac{Target}{\varnothing 8.5 \text{ M}}, V = 340 \text{ M}^3, 278 \text{ ton of}$ liquid scintillator $(C_9H_{12} + 1.5 \text{ g/1 PPO})$

 $\frac{Inner Buffer}{C_9H_{12} + DMP} \emptyset 11.5 m \text{ with}$

Stainless Steel Sphere $(\mathcal{O} = 13.7 \text{ m},$ $V = 1340 \text{ m}^3$)?

2212 PMT (ETL 9351) mounted on the inner surface of Stainless Steel Sphere

<u>Water tank</u>

 $(\emptyset = 18 \text{ m}, V = 2400 \text{ m}^3)$ Water Cherenkov muon veto with 208 PMT and also passive shielding from external γ , n.

Detection principle

- Neutrino elastic scattering on electrons of liquid scintillator:
 v + e⁻ → e⁻ + v;
- Scattered electrons cause the scintillation light production;
- <u>Advantages</u>:
 - Low energy threshold (~ 0.2 MeV);
 - High light yield (510 ph.el. / MeV) and a good energy resolution;
 - Event position reconstruction;
 - alpha/beta pulse shape discrimination.

Calibration with radioactive sources

	γ							β		α	n (AmBe)			
source	⁵⁷ Co	¹³⁹ Ce	²⁰³ Hg	⁸⁵ Sr	⁵⁴ Mn	⁶⁵ Zn	⁶⁰ Co	⁴⁰ K	¹⁴ C	²¹⁴ Bi	²¹⁴ Po	n-p	n+ ¹² C	n+Fe
energy (MeV)	0.122	0.165	0.279	0.514	0.834	1.1	1.1, 1.3	1.4	0.15	3.2		2.226	4.94	~7.5

- Absolute source position: LED and CCD cameras (+ 2cm);
- 300 points through the whole scintillator volume;
 - Detector response as a function of position;
 - Fiducial volume definition and tuning of the spatial reconstruction algorithm:

Fiducial volume uncertainty: (+0.5, -1.3) %

- Energy scale definition:
 1.5% (1 σ) calibration in the 0-7 MeV range.
- Tuning of the full Monte Carlo simulation .

Neutrino and antineutrino detection in Borexino

solar neutrino detection

$v + e^{-} \rightarrow v + e^{-}$

Very low background due to the shielding and purifications Low energy threshold, good energy resolution and spatial reconstruction, pulse shape α / β identification

- **sub-MeV v detection:** proved by ⁷**Be** and *pep*
- sensitivity: as low as a few cpd/100 t
 - *pep:* 3.1 ± 0.6 (stat) ± 0.3 (sys) cpd/100 t

geo and reactor anti-neutrino detection

$$\tilde{\nu}_e + p \rightarrow n + e^+$$

Geo antineutrino rate ~ 7 events/300 ton/ year

Phys. Rev. Lett. 107, 141302 (2011)

Physics Lett. B 722, 4–5 (2013)

Artificial neutrino sources

- The use of artificial neutrino source for calibration in Borexino dates back to the beginning of the project
- ⁵¹Cr successfully implemented by Gallex (LNGS) and SAGE (Russia)

Today the idea of artificial neutrino sources renewed to search for sterile neutrinos:
 White Paper on sterile neutrino: arxiv:1204.5379

SOX proposal - ERC 320873 - Feb. 2012 - approved Oct. 2012

Scientific motivation - I

- A few well known experimental results do not match the standard three-flavors scenario. In particular:
- **LSND** (Los Alamos) in 2001 measured a $\tilde{\nu}_e$ excess in $\tilde{\nu}_{\mu}$ beam
 - Big effect: 87.9 ± 22.4 ± 6.0 (3.8 σ) at L/E_v~ 0.5-1.0 m/MeV
 - **L/E NOT compatible** with standard 3-flavour oscillations
 - LSND region recently reduced by Icarus data, but not excluded

Eur. Phys. J. C (2013) 73:2345

Scientific motivation - II

Gallex and SAGE in the 90's has made a calibration of their detector with an artificial neutrino source

 H_2O

Both experiments show a deficit w.r.t. expectations

 $v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^-$

Scientific motivation - III

Reactor anomaly

NEW analyses of al the experiments at reactors

- New calculations of reactor antineutrino fluxes and specters released recently
- With these new calculations, neutrino deficit is observed

Scientific motivation - IV

Different theoretical models with the extension of standard 3-flavour oscillations. Most promising mass scale ~1eV, (see-saw type I with light sterile neutrinos, 3+1 or 3+2 models).

Sterile neutrino as a dark matter candidate

SOX: Three Stages

- Mission: test the existence of low
 L/E v_e and/or ∑ anomalies by
 placing well known artificial
 sources close to or inside Borexino
- **SOX-A**
- ⁵¹Cr source in pit beneath detector
- **8.25 m** from center **[2015/2016]**
- SOX-B
- ¹⁴⁴**Ce-**¹⁴⁴**Pr** source in W.T.
- PPO everywhere to enhance sensitivity
- **7.15 m** from center **[2015/2016 ?]**
- SOX-C
- ¹⁴⁴Ce-¹⁴⁴Pr source in the center
- Only after the end of solar program
- More effort and more time [>2016]

Location for ⁵¹Cr source

Artificial neutrino sources

Source	Production	τ (days)	Decay mode	Energy [MeV]	Mass [kg/MCi]	Heat [W/kCi]			
⁵¹ Cr Ve	Neutron irradiation of ${}^{50}Cr$ in reactor $\Phi_n \gtrsim 5.\ 10^{14}\ cm^{-2}\ s^{-1}$	40	EC γ 320 keV (10%)	0.747	0.011	0.19			
¹⁴⁴ Ce- ¹⁴⁴ Pr _{Ve}	Chemical extraction from spent nuclear fuel	411	β-	<2.9975	0.314	7.6			
$E_{n} = 427 \text{ keV } 9 \%$ $E_{n} = 432 \text{ keV } 0.9 \%$ $E_{n} = 747 \text{ keV } 81.6 \%$ $E_{n} = 752 \text{ keV } 8.5 \%$ 51Cr 51Cr			^{285 d} ¹⁴⁴ Ce ^{B-} <318keV 144 _{Pr} ^{B-<2301H} 1% B-<2996 97.99 144 Ce-1	17 mn B-<913 keV 1 % 2185 0.7 44 Pr 144 _{Nd}	$ \begin{array}{c} 17 \text{ mn} \\ R - < 913 \text{ keV} \\ 1 \% \\ 2185 \text{ keV} \\ 0.7 \% \\ 4 \text{Pr} \\ 4 \text{Pr} \\ 144_{\text{Nd}} \\ \end{array} $				
ν -	$+ e^{-} \rightarrow v + e^{-}$	$\widetilde{\mathbf{v}}_{\mathbf{e}}$ -	$\mathbf{p} \rightarrow \mathbf{n} + \mathbf{e}^+$	$\overline{V_{e}}$	Scint Prompt signa	Illator Il Delayed signal 2.2MeV			

Electron energy specter from ⁵¹Cr

Detector signal with external source

Volume:

$$V(l) = 2\pi l^2 \left(1 - \frac{d^2 - R^2 + l^2}{2 \ d \ l} \right)$$

Flux and decay

$$\Phi(l) = \frac{I_0}{4\pi l^2} \tau e^{-\frac{t_D}{\tau}} \left(1 - e^{-\frac{t}{\tau}}\right)$$

Oscillations (one sterile)

$$\mathbf{P_{ee}} = \mathbf{1.} - \mathbf{sin^2}(\mathbf{2 heta_s}) \cdot \mathbf{sin^2}\left(rac{\mathbf{1.27}\ \mathbf{\Delta m^2}\ \mathbf{l}}{\mathbf{E}}
ight)$$

The number of v_e -e⁻ events at distance l from the source, with detection threshold T₁ and maximum recoil energy T₂:

$$\mathbf{N_0}(\mathbf{l},\mathbf{T_1},\mathbf{T_2}) = \mathbf{n_e} \ \mathbf{\Phi}(\mathbf{l}) \ \mathbf{V}(\mathbf{l}) \ \mathbf{P_{ee}}(\mathbf{l},\mathbf{E})$$

The distribution of events is not uniform even without oscillations

Geant 4 Monte-Carlo simulation for Cr51 source

• Waves may be detected in the distribution of events as a function of the distance from source

■ With waves, <u>both</u> parameters can be measured

Analytical curves Borexino Background - No fluctuations

Full Geant4 simulation - example Borexino Background

Space-energy correlation

SOX-A sensitivity

Phase I can happen any time during next solar neutrino phase
 2015 is realistic scenario

SOX-B sensitivity

SOX-B can happen any time during next solar neutrino phase
 2015 is a realistic scenario – 1,5 year of data taking

- SOX-C can happen only after the end of solar neutrino program
- 2016-2017 is a realistic scenario
- decision to be taken after SOX-A and/or SOX-B results

Low energy neutrino physics

Weinberg angle: $\delta(\sin^2\theta_W)=2.6\%$

Magnetic moment

-0.45 -0.45 -0.55 -0.50 -0.55 -0.60 -0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 gV

> CHARM II (1994) $v_{\mu} + e^{-} E \sim 10 \text{ GeV}$

- With both sources (SOX-A and B or C)
- Test of SM EW running at very low energy
- Constraints on neutrino NSI
- Independent measurement of $g_V \& g_A$
 - $g_V = -1/2 + 2 \sin^2 \theta_W = -0.038$
 - $g_A = -1/2 = 0.5$

 $g_V^{\nu e} = -0.035 \pm 0.012(\text{stat}) \pm 0.012(\text{syst}),$

 $g_A^{\nu e} = -0.503 \pm 0.006(\text{stat}) \pm 0.016(\text{syst}).$

Technology: ⁵¹Cr source

- 36 kg of ⁵⁰Cr enriched at 38 % will be irradiated at reactor (Russia or USA) with high neutron flux Φ_n ≥ 5.
 10¹⁴ cm⁻² s⁻¹ and delivered to Gran-Sasso (the logistic and safety tasks)
- □ 190 W/MCi from gammas
- \square ~ few μ Sv/h on the surface (required < 100)
- □ Thermal special design to handle 2 kW (10 Mci)

External T must be acceptable Current value: T=90° C

Internal T must be below syntherization (750°C) Current value: T=260°C

Technology: ⁵¹Cr encapsulation

Thermal studies

Surface temperatures

0,200

Bulk temperatures

A: Steady-State Thermal A: Steady-State Thermal Temperature Copper Temperature Total Type: Temperature Type: Temperature Unit: °C Unit: °C Time: 1 Time: 1 25/06/2013 9.12 25/06/2013 9.12 365,7 Max 76.686 Max 333,1 76,198 300,5 75,711 267,9 75,223 235,3 74,736 74,248 202,7 170,1 73,76 137,5 73,273 104.9 72,785 72,298 Min 72,298 Min . 0,000 0,200 0,000 0,100 0,100

Precise determination of the source activity

• Particularly important at relatively high $\Delta m^2 > 2 \text{ eV}^2$ where the measurement relies essentially on the disappearance effect. Not important in the region where the oscillometric measurement dominates the sensitivity

Sampling

 $\sqrt{\text{Samples extracted from several}}$ positions in mixed material, at reactor $\sqrt{\text{Ionization chamber measurements}}$ $\sqrt{\text{Gamma-ray spectroscopy (HPGe) of}}$ dissolved samples

Calorimetry

 $\sqrt{\text{Emmited radiations will heat up}}$ source and shield $\sqrt{\text{Suspended and isolated container:}}$ designed as vacuum chamber, water flow measurement

Neutronics/gamma-scanning

 $\sqrt{\text{Neutron flux in reactor + relevant}}$ capture cross-section $\sqrt{\text{Gamma-ray measurement from the}}$ 320keV line from irradiation to hot-cell

Measurement of vanadium $\sqrt{$ Only daughter of 51Cr $\sqrt{$ Also produced *during irradiation*, complicating analysis $\sqrt{$ Ratio Cr/V constant

measurement of reactor hear power (accuracy 0.5 % in France)

Conclusions

Borexino plan to perform an extensive search of sterile neutrinos with neutrino and anti-neutrino sources

SOX-A

- ⁵¹Cr neutrino source (external)
- Tentative schedule: 2015-2016

SOX-B

- ¹⁴⁴Ce anti-neutrino source (external)
- Tentative schedule: 2015-2016

■ SOX-C

- ¹⁴⁴Ce anti-neutrino source (internal)
- After 2016

SOX-A

SOX-C

Спасибо за внимание!

Borexino Collaboration

APC Pari

Petersburg Nucl. Phys. Institute

Virginia Tech. University

Jagiellonian U. Cracow (Poland)

Internal design

Final assembly

without cooling fins

with cooling fins

SOX-C: ¹⁴⁴Ce source inside detector

- Massive source with ~ 4 t of shielding
 ¹⁴⁴Ce Source to be produced at Mayak plant (Russia) from spent nuclear fuel
- DENSIMET (W) shielding plus ultra-pure copper layer to reduce background
- W is dirty for Borexino
- γ background is a problem if rate too high
 - random coincidences make background
- Source deployment to be studied
- Either from the top or from the bottom
- PPO everywhere in the SSS to enlarge active volume (active radius up to 5.5 m)
- > 2016. No schedule yet.

Borexino background today

A significant purification effort done in 2010/2011 to improve purity further
 Very effective on ⁸⁵Kr, good on ²¹⁰Bi, excellent for ²³⁸U and ²³²Th

