

New Results from the T2R Experiment: Ve Appearance in a Vµ Beam

Matthew Malek Imperial College London (on behalf of the T2K Collaboration)

> Lomonosov Conference 22 August 2013

Neutrino Mixing

Neutrinos have mass!

Flavour eigenstates: v_e , v_μ , v_τ (interaction)

Mass eigenstates: V1, V2, V3 (propagation)

22 Aug 2013

Experimental Probes

 For Dirac neutrinos, standard parameterization of the PMNS matrix Uii (for Dirac neutrinos) has:

3 mixing angles, 2 mass square differences, 1 CP phase

What is the CP violating phase δ ?

What is the mass hierarchy?

Oscillation @Accelerators

Long baseline accelerator: • Search for Ve appearance

• Sensitive to $\theta_{1,3}$, δ , mass hierarchy

M. Malek, Imperial College

22 Aug 2013

Tokai to Kamioka (T2K)

- Experimental goals:
 - Search for Ve appearance (focus of this talk)
 - Precision v_{μ} disappearance (new results coming soon!)
 - Other (v cross sections, sterile v searches, etc.)

T2K Collaboration

~ 500 members, 59 Institutes, 11 countries

TRIUMF U. Alberta U. B. Columbia U. Regina Toronto J. Victoria U. Winnipeg

Canada

York U.

France

CEA Saclay IPN Lyon LLR E. Poly. LPNHE Paris

Germany Aachen U.

INFN, U. Bari INFN, U. Napoli INFN, U. Padova INFN, U. Roma

apan

ICRR RCCN Kavli IPMU KEK

Kobe U. Kyoto U Miyagi U. Edu. Osaka City U Okay<mark>am</mark>a U.

IFJ PAN, Cracow NCBJ, Warsaw U. Silesia, Katowice U. Warsaw Warsaw U. T. Wroklaw U.

Poland

ICRR Kamioka Russia INR

Tokyo Metropolitan U U. Tokyo

IFAE, Barcelona IFIC. Valencia

Spain

Switzerlan

ETH Zurich U. Bern U. Geneva

United Kingdom

Imperial C. London Lancaster U. Oxford U Queen Mary U. L STFC/Daresbury STFC/RAL U. Liverpool

U. Sheffield U. Warwick

Boston U Colorado S. U Duke U. Louisiana S. U Stony Brook U. U. C. Irvine U. Colorado **U.** Pittsburgh Rochester . Washington

22 Aug 2013

Previous T2K V Osc. Results

2013: Competitive measurement of θ₂₃ Submitted to Phys. Rev. Lett. arXiv: 1308.0465

Neutrino Beam

- T2K is the first experiment to use an **off-axis** neutrino beam:
 - Enhances signal at oscillation maximum
 - Reduces backgrounds from other energies $-e.g., \pi^0$ BG greater at higher Ev

T2K Data Taking

analyzed so far

power

Beam

- T2K analysed data for today's presentation: 6.39 x 10²⁰ P.O.T.
 - We have accumulated 6.63 x 10^{20} P.O.T. to date
 - Previous Ve appearance result (2012) used 3.01 x 10^{20} P.O.T. \rightarrow Statistics increased by factor >2!
- Thus far, ~8% of the total data has been collected (assuming design goal)
- Instantaneous luminosity of 220 kW (1.2 x 10¹⁴ protons per pulse) → World record!
- Many thanks to the J-PARC accelerator division for their efforts and much hard work

22 Aug 2013

Near Detector Suite

INGRID (On-axis)

Near Detector Constraint

GOAL: Constrain neutrino flux & cross section parameters used for oscillation prediction (via MC) at T2K far detector

Error on Far Detector v_e Prediction (After Near Detector Constraint)

	Runs 1-3 (2012)	Runs 1-3 (2013)	Runs 1-4 (2013)
sin ² 20 ₁₃ =0.1	4.7%	3.5%	3.0%
sin ² 20 ₁₃ =0.0	6.1%	5.2%	4.9%

Error on Cross Section Parameters (After Near Detector Constraint)

Parameter	Runs 1-3	(201	2)	Runs 1-4	1 (201	3)
M_A^{QE} (GeV/c ²)	1.27 ±	0.19		1.22 ±	0.07	
M_A^{RES} (GeV/c ²)	1.22 ±	0.13		0.96 ±	0.06	
CCQE Norm.	0.95 ±	0.09		0.96 ±	0.08	
CC1π Norm.	1.37 ±	0.20		1.22 ±	0.16	

- Significant reduction for event rate errors at the far detector
- Uncertainties on the cross section & flux parameters have been reduced

Super-Kamiokande (far)

- 50,000 tonne water Chereknov detector
- 22.5 kton fiducial mass
- Inner Detector (ID) has 11,129 inward facing 50cm PMTs for ~40% photocathode coverage
- Outer Detector (OD) has 1885
 20cm PMTs; OD used as passive shielding + active veto
- Stable operation for many years
- Good reconstruction in energy range of T2K beam
- Well-understood particle identification (see next slide)

22 Aug 2013

SK Particle Identification

- Reliable PID particularly crucial to ve appearance analysis
- PID well-established at KEK beam test (1kton tank) in 1990s

22 Aug 2013

T2K Ve Signal & BG

Improved π^0 **Rejection**

- New likelihood fitter used to distinguish electrons from π^0
- Assumes two electron-like rings produced at a common vertex
- Uses 12 parameters in fit:
 - Vertex (X, Y, Z, T)
 - Directions (θ₁, φ₁, θ₂, φ₂)
 - Momenta (p₁, p₂)
 - Conversion lengths (c₁, c₂)
- This 2D cut removes 70% of the π⁰
 background remaining after previous selection applied (for same signal efficiency)
- Total background is reduced by 27%
- 6.36 BG events → 4.64 BG events expected (in full Run 1 – 4 dataset)

150

50

100

200

 π^0 Mass (MeV/c²)

250

T2K Ve Event Selection

Ve Selection Criteria

- # clustered veto hits < 16
- Distance to wall > 200 cm
- # of rings = 1
- PID of ring is e-like
- Visible energy > 100 MeV
- no Michel electrons
- New likelihood π^0 cut
- 0 < E_V < 1250 MeV

22 Aug 2013

M. Malek, Imperial College

16

Ve Appearance Analysis

- Expected background:
 - 4.64 ± 0.53 events
- With the following assumptions:
 - $\sin^2(2\theta_{13}) = 0.1$
 - $\sin^2(2\theta_{23}) = 1$
 - δ_{CP} = 0
 - normal mass hierarchy

the expected signal is:

– 20.4 ± 1.8 events

- 5.5 σ sensitivity to exclude $\theta_{13} = 0$

- Oscillation parameters were extracted with two parallel analyses:
 - Using the 1D Ev distribution (top)
 - Using the 2D p-θ distribution (bottom)

22 Aug 2013

Ve Appearance Results

- **28** ve events observed (recall 20.4 ± 1.8 expected for $sin^2(2\theta_{13}) = 0.1$)
- Comparison to null hypothesis gives 7.5 σ significance for $\theta_{13} \neq 0$

First direct observation (>5 σ) of a v appearance channel!

(N.B. These are 1D contours for various values of δ_{CP} not 2D contours)

- The near detectors can also be used to make cross section measurements
- The T2K charged current inclusive cross section measurement was published earlier this year:
 - Phys. Rev D 87:092003 (2013)
 - Uses same near detector event selection as 2012 osc. analysis
- The CCQE sample from the 2012 osc. analysis has been used to measure σ_{CCQE}(E_ν)
- Additional cross section results expected soon...

Other T2K Results: V_µ Disappearance T2K

- Preliminary results using Run 1 3 data (3.01 x 10^{20} P.O.T.) were first shown earlier this year
- Contours for both octants ($\theta_{23} < \pi/4$ and $\theta_{23} > \pi/4$) now provided (above)
 - Previously, only first octant ($\theta_{23} < \pi/4$) reported
- New $V\mu$ disappearance results coming soon
 - Future results will be reported as $\sin^2(\theta_{23})$ NOT $\sin^2(2\theta_{23})$ to remove octant ambiguity

Summary & Conclusions

• First observation of electron neutrino appearance!

- T2K has measured ν_e appearance in a ν_μ beam
- $\theta_{13} = 0$ is excluded at the 7.5 σ level (assuming $\delta_{CP} = 0$ and $\theta_{23} = 45^\circ$)
- Neutrino beam at J-PARC achieved stable operation with a 220 kW beam power
- A total exposure of 6.39 x 10²⁰ P.O.T. has been collected & analysed to 2013-Apr-12, more than doubling the data sample used for the previous (2012) analysis
 - A total of 6.63 x 10^{20} P.O.T. has been accumulated
- Near detector CC-inclusive cross section measurement has been published; other cross section measurements are on the way
- Many other exciting results to come:
 - A new v_{μ} disappearance measurement will be out soon
 - Combined v_{μ} + v_{e} joint analysis is underway
 - Comparison of accelerator results from T2K with reactor anti-neutrino results (measuring only θ_{13}) may provide insight to δ_{CP} and mass hierarchy

Supplemental Slides

22 Aug 2013

M. Malek, Imperial College

22

Open Questions

- Q: What do we still need to know?
- <u>A:</u> Two big questions in front of us now:
- 1) What is the CP violating phase δ ? 2) What is the mass hierarchy?

→ Electron neutrino appearance can help answer both questions!

Oscillation Probabilities

Long baseline accelerator: Sensitive to $\theta_{1,3}$, δ , mass hierarchy

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= \begin{array}{c} 4C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \sin^{2}\Delta_{31} \\ &+8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ &+8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta \right) \sin\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ &-8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta \right) \sin\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ &+4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta) \cdot \sin^{2}\Delta_{21} \\ &-8C_{13}^{2}S_{12}^{2}S_{23}^{2} \cdot \frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \\ &S_{ij} = \sin(\theta_{ij}) \\ &\Delta_{ij} = \Delta_{mij} (L/4E) \Big| \\ \end{array}$$

Short baseline reactor: Sensitive only to θ_{13}

$$P_{\rm sur} \approx 1 - \sin^2 2\theta_{13} \sin^2(1.267\Delta m_{31}^2 L/E)$$

Beam Stability: Rate & Direction

integrated day(1 data point / 1 day)

22 Aug 2013

Reconstructing v Energy

- Only final state lepton is reconstructed
- Neutrino energy can be determined with certain assumptions:
 - Neutrino direction is known (beam direction)
 - Recoil nucleon mass is known (use neutron mass)
 - Target nucleon is at rest (not quite true; introduces smearing)

Neutrino Interactions

 In the region of interest for T2K, large contribution from charge current quasi-elastic scattering:

T2K signal at SK

- Also significant CC contribution with pion in final state
- NCπ⁰ is a major background mode from electron appearance:

e.µ.7

e,μ,τ

A Typical Ve Candidate

22 Aug 2013

Vertex Distributions

Vertex distributions for Ve candidates at the far detector:

22 Aug 2013