Upper Bound on Neutrino Magnetic Moment

D. Medvedev

Outline

Scientific motivation
History
Measurement under reactor
GEMMA
Perspectives

Scientific motivation

Minimally extended Standard Model (MSM):

$$\mu_{v} \sim 10^{-19} \ \mu_{B} \times (m_{v} \ / \ 1eV)$$

Bohr magneton $\mu_{B} = e \cdot h / 2 m_{e}$

Scientific motivation

Beyond the MSM:

 $\mu_v \le 10^{-14} \mu_B \times (m_v / 1eV)$

 $\mu_{v} \sim 10^{-10} - 10^{-11} \mu_{B}$

Scientific motivation

in case $\mu_v \sim 10^{-11} - 10^{-12} \mu_B$: \diamond Neutrino nature \diamond A parameter \diamond Astrophysical interest

First reactor experiments

1976 - Savannah River. The first observation of the v-e scattering F. Reines et al. [P.R.L.37,315(1976)]. ~ 16 kg plastic scintillator, v flux of 2.2×10^{13} v / cm ² / s 1989 – A revised analysis by P. Vogel and J. Engel [P.R.,D39,3378(1989)] gave a limit $\mu_{\nu} \leq (2-4) \times 10^{-10} \mu_{B}$ 1992 – Krasnoyarsk. G.S. Vidykin et al. [Pis'ma v ZhETPh, 55,206(1992)] ~ 100 kg liquid scintillator C_6F_6 , 254 days "on" / 78 days "off " $\mu_{v} \leq 2.4 \times 10^{-10} \mu_{B}$ (90% CL) 1993 – Rovno. A.V. Derbin, L.A. Popeko et al. [JETP Letters, 57,768(1993)] 75 kg silicon multi-detector, 600 Si(Li) cells, v-flux of ~ 2×10^{13} v / cm ² / s , 30 days "on"/17 days "off " $\mu_v \le 1.9 \times 10^{-10} \mu_B$ (95% CL)

μ_{v} upper bounds

	μ_{v} upper limit	Comments
Solar	<u><4*10⁻¹⁰</u>	
SK+KamLand	<u><1.1*10⁻¹⁰</u>	
White dwarfs	<u><10⁻¹¹</u>	
Red giants	<u><3*10⁻¹²</u>	model dependent
Supernova 1987A	<u><3*10⁻¹²</u>	
"Cosmological" limit	<u><1.5*10⁻¹¹</u>	should not be violated by more than two neutrino species
BOREXINO	<u><5.4*10⁻¹¹</u>	
TEXONO	<u><7.2*10⁻¹¹</u>	
MUNU	<u><9*10⁻¹¹</u>	

μ_{ν} measurement under reactor

The effects can be searched in the recoil electron energy spectrum from the
V - e scattering
measured when the reactor is ON and OFF.

The total cross-section do/dT is a sum of two: (do/dT)_{weak} + (do/dT)_{EM} depending on the recoil energy T in different ways

GEMMA

Search for the Neutrino Magnetic Moment

A.G. Beda^{*a*}, V.B. Brudanin^{*b*}, V.G. Egorov^{*b*}, <u>D.V. Medvedev^{*b*}</u>, V.S. Pogosov^{*b*, *c*}, E.A. Shevchik^{*b*}, M.V. Shirchenko^{*b*}, A.S. Starostin^{*a*}, I.V.Zhitnikov^{*b*}

^a - ITEP (State Science Center, Institute for Theoretical and Experimental Physics, Moscow, Russia);

^b - **JINR** (Joint Institute for Nuclear Research, Dubna, Russia);

^c - YerPhI (Yerevan Physics Institute, Yerevan, Armenia).

Reactor unit #2 of the "Kalinin" Nuclear Power Plant (400 km North from Moscow)

Total mass above (reactor, building, shielding, etc.): ~70 m of W.E. Technological room just under reactor 14 m only! 2.7×10¹³ v/cm²/s

Experiment **GEMMA**

(Germanium Experiment for measurement of Magnetic Moment of Antineutrino)

[Phys. of At. Nucl.,**67**(2004)1948]

- Spectrometer includes a HPGe detector of 1.5 kg installed within Nal active shielding.
- HPGe + Nal are surrounded with multi-layer passive shielding : electrolytic copper, borated polyethylene and lead.

GEMMA background conditions

 γ-rays were measured with Ge detector. The main sources are: ¹³⁷Cs, ⁶⁰Co, ¹³⁴Cs.

- Neutron background was measured with ³He counters, i.e., thermal neutrons were counted. Their flux at the facility site turned out to be <u>30 times</u> <u>lower</u> than in the outside laboratory room.
- Charged component of the cosmic radiation (muons) was measured to be <u>5 times</u> <u>lower</u> than outside.

Background suppresion

E.Garcia e.a. NPB28A(1992)286

Final spectra

Final distribution

Experimental sensitivity

- N_{ν} : number of signal events expected
- **B**: background level in the ROI

$$N_{\nu} \sim \varphi_{\nu} (\sim Power / T^2)$$

$$\sim (T_{max} T_{min} / T_{max} T_{min})^{1/2}$$

GEMMA I 2005 – 2009

- $\phi_{\rm V} \sim 2.7 \times 10^{13} \, {\rm v} \, / \, {\rm cm}^2 \, / \, {\rm s}$
- t ~ 4 years **2.5** keV⁻¹ kg⁻¹ day⁻¹
- **m** ~ 1.5 kg
- $T_{\text{th}} \sim 2.8 \text{ keV}$

$$\mu_{
m V}$$
 \leq 2.9 $imes$ 10 $^{-11}$ μ $_{\scriptscriptstyle B}$

Data Set

♦ I phase – 5184 h ON, 1853 h OFF $\mu_{\nu} < 5.8 * 10^{-11} \mu_{B}$

◆ II phase - 6798 h ON, 1021 h OFF
 ◆ I + II - 11982 h ON, 2874 h OFF
 $\mu_{\nu} < 3.2*10^{-11} \mu_{B}$

♦ III phase – 6152 h ON, 1613 h OFF
♦ I+II+III – 18134 h ON, 4487 h OFF $\mu_{\nu} < 2.9*10^{-11} \mu_{R}$

Beda A.G. et al. // Advances in High Energy Physics. 2012. V. 2012, Article ID 350150. Beda A.G. et al. // Physics of Particles and Nuclei Letters, 2013, V. 10, №2, pp. 139–143.

Perspectives GEMMA II 2013

$$φ_v$$
 ~ 5×10¹³ v / cm² / s
 t ~ 2 years
 B ~ 0.5 keV -1 kg -1 day-1
 m ~ 6 kg (two detectors)
 T_{th} ~ 1.5 keV

23

GEMMA-II

Lifting mechanism

Future detectors

Ge detectors with very low threshold (~ 300 eV) RFBR grant

Sensitivity of future experiments

$B = 0.2 \ 1/keV/kg/day$

Mass, kg	Threshold, keV	Sensitivity, $10^{-12}\mu_B$
4.5	0.4	5.8
10	0.4	4.7
20	0.4	4.0
4.5	0.3	5.6
10	0.3	4.6
20	0.3	3.9